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Abstract 

Learning to program for the first time can be a daunting process, fraught 

with difficulty and setback. The novice learner is faced with learning two 

skills at the same time each that depends on the other; they are how a 

program needs to be constructed to solve a problem and how the 

structures of a program work towards solving a problem.  In addition the 

learner has to develop practical skills such as how to design a solution, 

how to use the programming development environment, how to 

recognise errors, how to diagnose their cause and how to successfully 

correct them.  The nature of learning how to program a computer can 

cause frustration to many and some to disengage before they have a 

chance to progress.  Numerous authorities have observed that novice 

programmers make the same mistakes and encounter the same 

problems when learning their first programming language.  The learner 

errors are usually from a fixed set of misconceptions that are easily 

corrected by experience and with appropriate guidance.     

 

This thesis demonstrates how a virtual animated pedagogical agent, 

called MRCHIPS, can extend the Beliefs-Desires-Intentions model of 

agency to provide mentoring and coaching support to novice 

programmers learning their first programming language, Python.  The 

Cognitive Apprenticeship pedagogy provides the theoretical underpinning 

of the agent mentoring strategy.  Case-Based Reasoning is also used to 

support MRCHIPS reasoning, coaching and interacting with the learner.  

The results indicate that in a small controlled study when novice learners 

are assisted by MRCHIPS they are more productive than those working 

without the assistance, and are better at problem solving exercises, there 

are also manifestations of higher of degree of engagement and learning 

of the language syntax. 
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1 

Chapter 1: 

Introduction 

1.1 The difficulty with learning to program 

When a novice programmer first begins to learn a programming language 

he, or she, often encounters the same problems and makes the same 

mistakes as others who have learned to program before.  The 

misconceptions, mistakes and errors form a set of knowledge that can be 

easily corrected by simple guidance or experience and have to be leaned 

as part of the programming skill.  Making mistakes when learning to 

program is a constructive part of the process, however some learners find 

the precision required by programming code frustrating and may become 

disengaged with the process.  Despite rich interactive development 

environments, learners continue to generate errors as they experiment 

with the language structures and find debug messages unhelpful because 

of their lack of experience of the significance of error information.  During 

practical sessions a supervisor’s task is often to simply call on prior 

experience to provide guidance and offer reassurance that errors are all 

part of the development process.  Away from supervision some learners 

can become stuck on a simple error that halts progress and prevents the 

chance to address other problems.  The problems are often as a result of 

the learner failing to recognise where they have deviated from language 

syntax or which solution to apply to address a given problem.  The 

problems are often easily fixed when pointed out by a tutor or even a 

more able peer and this kind of help can occur both within and outside the 

classroom situation.  When the help is provided by a more able peer or 

the help is provided outside of the classroom situation it can be 

characterised as mentoring, which is support in the form of a more 

experienced practitioner sharing knowledge. It may include privileged 

access to information; it is informal in nature and the subject is driven by 
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the concerns of the learner.  A fuller discussion of mentoring is given in 

section 1.4.1. 

 

When producing a software application it is necessary for the developer to 

organise a large body of coding and data structures, and to decide how to 

arrange them in such a way as to provide a solution to a given problem.  

A programmer is faced with a range of coding options, operators, 

functions, choices, knowledge representation and data structures and how 

to represent the above in any particular language.  In addition, the 

programmer must devise a sequence of code for execution and possess 

enough insight to recognise deficiencies and make corrections.  The range 

of possible options and the dependency between concepts makes learning 

to write computer programs a challenging task.  The programmer must 

also possess enough insight into the domain of the problem to be able to 

encode a solution.         

 

Although teaching a subject is primarily concerned with one party 

imparting knowledge to another, in reality there are other factors that 

affect how well a learner is able to assimilate and apply new information.  

Learning is a very social activity relying on relationships, in addition to the 

subject knowledge, as part of the process.  These relationships involve 

things such as providing encouragement and explanation.  Much of the 

activity of supervising novice programmers is social in that the tutor offers 

encouragement with often a smaller amount of time on advising 

corrections to code.  Anecdotal observation has found that this level of 

technical guidance is often sought and given irrespective of the details of 

the design task being undertaken by the learner. 

1.2  Research Aims 

This research proposes the use of a pedagogical agent, called MRCHIPS, 

to provide mentoring support and presented as an animated character for 

social interaction.  The aim of the research is to determine whether the 

use of an automated and animated pedagogical agent can provide 



 

3 

mentoring support to novice programmers as they learn their first 

programming language.  

   

Hypothesis 1)  An intelligent agent with an anthropomorphic interface 

can provide effective mentoring support to novice 

programmers learning their first programming language. 

 

The agent would appear as an interactive anthropomorphic entity that 

would assist the novice to determine and solve programming errors when 

a human mentor in the form of a tutor might not be available.  The idea 

arose from the observation that students on a business-computing course 

learning a programming language for the first time would often give up at 

the first problem they found a challenge, limiting their exposure to later 

exercises (problem solving with a programming language can be a linear 

process) and their overall learning experience. 

 

As the students’ understanding of the subject was distributed across the 

range of topics they had encountered, it was difficult to predict which 

particular problem would impede them.  In general some would 

understand some principles and not others in different ways.  The 

problems would often be relatively minor and the practice of 

systematically reviewing the work they had produced would be enough to 

uncover the cause, but as reflection on ones’ work is also a skill under 

development as people learn programming for the first time that 

technique is not available to novices.  The information could be gathered 

from available documentation and literature but as the students are still 

impeded by the same errors these options are not taken, or not effective.  

 

Intelligent virtual agents, sometimes called believable agents, life-like 

agents, synthetic agents or embedded virtual agents are part of the field 

of Artificial Intelligence research concerned with presenting an 

anthropomorphic character to represent an underlying cognitive agent in 

an environment.  One of the uses of the virtual agent is to promote 

greater engagement when interacting with a human user. While this is 
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true of a 3D game environment, is the same also true of the programming 

environment? 

 

Hypothesis 2)  The use of an animated virtual character user 

interface increases the learner’s engagement with 

problem solving in the programming environment.  

 

To provide the range of capabilities that would allow an agent to monitor, 

interact, diagnose and provide solutions to the learner it is likely to 

require an agent architecture that is able to coordinate multiple reasoning 

techniques, called a cognitive architecture.  However most popular agent 

architectures, such as Beliefs Desires Intensions (BDI), generally support 

reasoning based around reactive and deliberative planning, which would 

be required to control the interactivity of the agent, but not enough to 

provide the domain reasoning of a pedagogical agent.  Would it be 

possible to extend the capabilities of a procedural BDI agent architecture 

into a cognitive architecture? 

 

Hypothesis 3)  The processing capabilities of a procedural BDI agent 

can be extended to provide the more knowledge based 

reasoning capabilities of a cognitive agent architecture. 

 

Intelligent Learning Environments (ILE) are based around specially 

developed software applications that the student must learn to use before 

transferring the skills to a real-world application environment.  Intelligent 

Tutoring Systems (ITS) and virtual agents also usually reside in their own 

application environments.  As learning to program is a difficult enough 

task without having to become familiar with multiple tools or 

environments, the utility of the agent is likely to be greater if the agent 

worked in the learner’s environment and not the other way around. 

    

Hypothesis 4)  Agent based reasoning provides a framework to 

extend knowledge-based systems into existing computing 
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desktop environments and avoid the need to build a 

specialised learning application environment.  

 

This would test how much of the cognitive agent would have to be 

adapted to cope with an environment that will not be as accommodating 

to its requirements as an agent aware environment.  This is likely to be 

similar to the situation faced by many network applications and robotics 

research, but will allow for examination of cognitive and software solutions 

respectively.  This question also imposes an implied sub constraint that 

the mentoring agent should not require any special hardware or software 

above what could be expected on a desktop computer that would be used 

to learn to program in Python for example.  This is a useful guideline for 

the development of the agent and deployment for evaluation and 

demonstration.   

1.3 Principal contributions of the research 

This research brings together a number of areas namely Intelligent 

Learning Environments (ILE), Intelligent Tutoring Systems (ITS), virtual 

agents and cognitive agent architectures, which are covered in the 

literature review chapters.  ILE systems are usually based around 

specially developed software applications the student must learn to use 

before transferring the skills to a real-world application.  As it will be 

shown in the literature review other research into the use of intelligent 

virtual agents in teaching has to date provided the environment in which 

the interaction with the learner takes place.  Evidence from this has been 

able to demonstrate that novice programmers respond positively to 

interactive learning with animated characters when developing code (Lui 

and Chan, 2006). The novel approach taken by this research is to avoid 

the requirement for a custom agent environment and for reasons arising 

from the pedagogical theory explained in later chapters, the agent 

operates in the learners’ environment of the Windows desktop.  The novel 

approach of MRCHIPS is in its strategy, to allow the novice programmer to 

continue to work in the pre-existing development environment, to adhere 

to one of the major principles of the cognitive apprenticeship pedagogy.  
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MRCHIPS exists as a separate application that because of its unique 

architecture is able to monitor the user and provide knowledgeable 

assistance.  The agent not only monitors the novice, but makes use of the 

reasoning of a cognitive architecture to provide expert level analysis of his 

or her work and provide a character driven interactive response to the 

user’s errors.  These capabilities allow the agent to operate where they 

are not usually found, in a programming environment on the desktop of a 

conventional computer.  If the subject activity is already computer based 

the advantage of MRCHIPS is that the learner does not have to become 

familiar with a second application, such as an ILE, in order to learn the 

first application.  In this way MRCHIPS supports a closer adherence to the 

requirement of the cognitive apprenticeship pedagogy for the novice to 

work with real world examples, as learning practice is accomplished using 

real world tools. 

1.4 Background 

In the opening chapter of the book Inside Case-Based Reasoning the 

authors, Riesbeck and Schank, describe Artificial Intelligence as a “search 

for the general mechanisms underlying intelligence” (Riesbeck and Schank 

1989). Embodied within that view is the concept of computers as an 

answer-giving device.  The idea of an individual being able to present a 

problem to a computer when facing an unfamiliar situation and to have it 

provide an answer not only motivates the dreams of science fiction 

fantasy, as a casual survey of a series such as Star Trek would show the 

purpose of the intelligent computer assistant to provide information to 

human characters faced with the unfamiliar, as well as exposition to the 

human viewers at home.  But also this model of the intelligent machine 

advisor has been the goal of real-world research and is increasingly found 

in the user interface of commonly available software and hardware.  The 

concept of the intelligent computer assistant also has merit when users 

are charting unfamiliar knowledge and one application area where this has 

been useful is in education.  This research is interested in the utility of 

agents to assist in the learning of a first programming language. 
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According to Gulz (2004) educational researchers have observed that 

novice programmers make the same mistakes and encounter the same 

problems when first learning a programming language.  The learner errors 

are usually from a fixed set of misconceptions that are easily corrected by 

experience and with simple guidance. Despite rich interactive 

development environments, learners continue to generate errors as they 

experiment with the language structures and find debug messages 

unhelpful because of their lack of experience of the significance of error 

information.  During practical sessions a supervisor’s task is often to 

simply call on prior experience to offer guidance and offer reassurance 

that errors are all part of the development process.  Computer 

programming is a skill-based activity that involves problem solving within 

the constraints imposed by a computer environment.  Learning to 

program is a fairly unique activity; there are few, everyday real world 

analogies to the activity, programs are constrained by a mathematical 

concept - logic, rather than an observable physical phenomena and the 

correctness of code is ultimately mediated by a machine.  The difficulty of 

the task faced by the novice programmer is that when s/he start they 

have a limited idea of how to produce code to achieve a goal, or solve a 

problem, and little insight into how the code they produce will be 

interpreted by the programming language. 

1.4.1 Mentoring vs. Tutoring 

The agent’s operation alongside the learner allows another novel 

contribution to the research.  The agent operates as a mentor towards the 

learner, as opposed to a traditional tutor of ITS.  In a formal sense there 

is little difference between the terms mentor and tutor.  The word Mentor 

originates from the name of the figure of Greek legend who in his old age 

was given charge of Telemachus, the son of Odysseus, when the latter 

went to fight in the Trojan wars.  According to the legend Mentor 

performed his role so well that his name later became the proverbial 

phrase for a faithful and wise adviser.  The term mentor describes a 

teaching relationship and is a synonym of teacher, as is tutor, counsellor, 

lecturer, coach, instructor and guru.  By convention the different terms for 

a teacher are used to describe the nature of the participants in the 
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learning process.  For example a person might find himself or herself 

taught by at teacher at school, a tutor when learning the piano, a coach 

for learning a sport, a lecturer at university, an instructor for driving and a 

mentor at the start of employment.  The Collins dictionary defines the role 

of a mentor as “a wise and trusted advisor or guide” or “an influential 

senior sponsor or supporter” (Collins dictionary 1987).  While accurate, 

this definition does not encompass the scope of mentoring, which also 

implies a protective role.  The learner in a mentoring relationship is often 

called the protégé, which is a French term derived from the Latin meaning 

“to protect” (Johnson 2007).  Johnson (2007) describes the task of 

mentoring which “… nearly always includes an emotional/interpersonal 

support dimension.  Components of psychosocial support may include 

affirmation, encouragement, counselling, and friendship”, while Landsberg 

(1996) describes mentoring as “… a role which includes coaching, but also 

embraces broader counselling and support, such as career counselling, 

privileged access to information, etc.”.  So the term mentoring is mainly 

used where there is an emphasis on a caring aspect of the teaching in 

varied applications such as social care, personal friendships or 

employment and career development. Mentoring differs from tutoring in 

terms of the nature of the relationship between the participants.  In a 

paper for the University of Michigan, Arbor (1999) specifies mentors, 

among other academic roles, as “… advisers, people with career 

experience willing to share their knowledge […] tutors, people who give 

specific feedback on one’s performance”.  Therefore throughout this 

research the term mentor will be used to mean an advice giver who will 

support the learner based on experience in pursuit of providing care, while 

a tutor provides lesson material, assesses the learner’s performance and 

provides specific feedback on progress. 

1.5 The research framework 

A research framework ensures the correct model is used to evaluate an 

item of research so results may be placed into an appropriate context to 

show their worth.  As different types of research require different types of 
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research frameworks it also defines the different activities that can be 

used to produce specific outputs. 

1.5.1 The March and Smith framework 

The precise origins of the framework as applicable to items of research is 

unclear from the literature as the term framework is used to cover other 

such diverse subjects as industrial projects, academic programs, corporate 

and government initiatives.  However March and Smith (1995) proposed a 

framework for research projects relevant to the area of information 

technology.  Their framework is based on the idea that scientific research 

can be divided into two categories “natural science” and “design science”.  

Research in natural science seeks to apply scientific methods to explain 

some phenomena in IT with the aim of either trying to understand the 

nature of it, which they termed descriptive, or with the aim of improving 

it, which they called prescriptive.  Design science based research is 

concerned with the development of an artefact to satisfy some particular 

goal. It produces tools that serve human purposes and these are assessed 

against criteria of value or utility.  Using these categories March and 

Smith devised a framework that organised the research activities against 

the research outputs.    

 Build Evaluate Theorise Justify 

Constructs     

Models     

Methods     

Instantiations     

Table 1.1. Example of an unpopulated March and Smith research 

framework 

 

The research framework identified four research activities: build, evaluate, 

theorise, and justify.  The build and evaluate activities are used in design 

science based research, whereas the theorise and justify activities are 

used for the natural science based ones.  

1. Building is the process of constructing an artefact for a specific 

purpose; 
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2. Evaluation is the activity of determining how well the artefact 

performs; 

3. Theorise is the process of constructing a theory that explains how 

or why something happens;  

4. Justify refers to the activity of proving a theory. This is done by the 

systematic gathering of evidence that supports or refutes the 

theory.    

The outputs of the framework were identified as constructs, models, 

methods and instantiations. 

1. The constructs (or concepts) are the conceptualisations used to 

describe a problem in the domain. It is the specialised language 

and shared knowledge of a discipline. 

2. The model is an expression of the relationships among the 

constructs.  Models represent situations as problem and solution 

statements for design based activities. 

3. The method is an algorithm – it is the sequence of steps used to 

perform a task. 

4. Instantiation is the realisation of an artefact in its environment; 

this refers as much to the tools that address various aspects of 

design in addition to any eventual software artefact. 

An example of the layout for the March and Smith research framework 

table is shown in table 1.1 above. 

1.5.2 The Järvinen research framework 

In a later development of the IT based research framework, Järvinen 

(2004) expanded the work of March and Smith to identify additional 

categories of research activities and research output.  The Järvinen 

framework makes more of a distinction between the theoretical and 

practical activities of research, thus identifying five input activities.  They 

also identify differences in the types of method of a research project, 

defining method identified by March and Smith as normative methods and 

specifying methods that are used in reality as positive methods.  They 

also identified an additional output called description that allows for the 

documenting of interesting related phenomena that may occasionally 

occur.   The Järvinen framework is therefore an extension on the March 
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and Smith framework that refines the model, method and instantiations 

outputs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.5.3 Appling the framework to this research 

To investigate the hypotheses this research focuses on the activities of 

design science.  Using the Järvinen framework the following outputs and 

activities will be produced to address the investigation. 

1. The constructs for this research cover concepts such as the 

pedagogical theory, cognitive apprenticeship, the virtual agent, the 

cognitive architecture, coaching, Python, the development 

environment, the learner and the types of coding errors.   

2. The model for the research is used to develop the requirements for 

the design of the agent and is based on the analysis of errors in 

light of the material from the literature review. 

3. The method is the development and implementation of the 

mentoring agent architecture and development of its knowledge 

base.  

4. Instantiation is the evaluation of the agent with reference to the 

learning of novice programmers. 
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Figure 1.1. A multi-methodological approach to IS research (Järvinen, 2004) 
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The mapping of this research against the Järvinen research framework is 

shown in table 1.2 above.  The subject name for the section of the thesis 

that addresses the particular activity or output of the research is given in 

the relevant field of the table. 

1.5.4 Ethical statement 

As this work involves the collection of empirical data from third parties 

embarked on academic studies, particular care was taken to follow the 

ethical guidelines as set out by Staffordshire University and The University 

of Northampton.  All the data gathered was made anonymous.  Where 

required those participants involved in experimentation were briefed to 

the purpose of the exercise and priority was given to the requirements of 

teaching over those of experimentation in the preparation of material. 

Table 1.2. Mapping of this thesis against the Järvinen research 

framework 
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1.6 Overview of the Thesis 

Chapter 2 reviews the psychology of programming, the nature of 

programming errors and examines the problems faced by a novice when 

learning to program for the first time.  It also examines the techniques 

and tools that are available to reduce the occurrence of errors. 

 

Chapter 3 provides a review of the methods and practices for the major 

pedagogical theories.  The pedagogies are considered in terms of their 

suitability for teaching technical, practice based subjects and highlights 

the reasons why the cognitive apprenticeship pedagogy is suitable for a 

mentoring agent for teaching computer programming.  

 

Chapter 4 describes the research on intelligent virtual agents, their 

properties and capabilities, followed by an analysis of other intelligent 

tutoring systems that have adopted a cognitive apprenticeship focus. 

 

Chapter 5 is an introduction to agent architecture, types of agent 

reasoning and the aspects of knowledge-based reasoning that are 

applicable to cognitive agent systems. 

 

Chapter 6 provides an analysis of the problem domain and the errors 

produced by novice Python programmers.  It includes a brief introduction 

to the features of Python before giving an account of the programming 

errors gathered from observation of programming students. The errors 

are then classified into categories depending on their cause and this 

analysis is used to inform the design of the agent knowledge base.   

 

Chapter 7 brings together the theories from the literature review and the 

evidence of the previous chapters making the case for the capabilities of 

an agent based mentoring assistant for novice learners and a mapping is 

made from the cognitive apprenticeship pedagogy to the agent 

architecture. 
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Chapter 8 describes the design and implementation of MRCHIPS, the 

mentoring agent system.  A description is given of its various subsystems, 

demonstrating how the agent’s behaviour and knowledge of programming 

errors is used to fulfil the requirements of mentoring.   

 

Chapter 9 describes the evaluation of MRCHIPS in mentoring novice 

Python programmers; the options for testing and evaluation of the agent 

are briefly discussed.  A description is given of the experimental 

arrangement used for the evaluation.  A discussion is given that examines 

the strengths and limitations of MRCHIPS. 

 

Chapter 10 presents the findings and analysis of the evaluation.  A brief 

description is given of the reasoning behind the statistical methods of the 

t-test analysis.  An account is given of the analysis of the findings and the 

results presented.  A discussion is then given for the significance of the 

results.   

 

Chapter 11 brings together the questions of the hypotheses and the 

empirical findings to summarise the outcomes of the research.  A 

discussion is given reflecting points arising and choices made during the 

research.  Suggestions are then made for future directions where the 

research and the agent development may be taken. 
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Chapter 2: 

The psychology of the novice programmer 

2.1 Introduction  

In this chapter an analysis is made of the difficulties faced by students 

when learning to program for the first time.  It gives a number of 

examples of the nature of the errors made, the different programming 

tools and makes the observation that although the development 

environments aid the identification of errors, learners still continue to 

make the same kinds of errors based on similar misconceptions.  The 

literature, as will be reviewed in the following sections, supports the 

assertion that learning to program for the first time is a particularly 

difficult activity. The reason for the difficulty is that there are few 

analogies in the real world to describe many of the concepts in software.  

As a result learners have to master two skills when learning to program: 

they are (i) how to analyse problems to model them within the computer 

and (ii) how a programming language may be used to express the 

solutions to problems. 

 

 

 

 

 

 

 

 

 

 

2.1.1 Two typical examples of novice programming errors  

In 1990 Gilmore made observations of novice programmers as they 

tackled the problem of constructing a correctly looping program to visit 

Figure 2.1 Theories informing the mentor agent 
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programming 

Intelligent 
virtual 
agents 
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each item on a list (Gilmore 1990).  The students had been taught how 

to code for both the iterative and recursive loop and were allowed to use 

any method to produce a solution in the POP-11 programming language.  

He noted one student’s particularly tortuous route to a solution as he 

wrote code incorporating the single error of omitting the initialisation of a 

variable for the loop with the result that the code did not behave as 

expected.  Rather than attempting to determine the source of the error 

the student chose to write the code for the recursive solution but again 

made the single error of not returning a value for the terminating 

condition.  Although the errors required different lines of code to correct 

both were conceptually analogous, but rather than trying to directly 

determine the source of the error the student chose the less useful 

strategy of switching between the different versions of the code a dozen 

times before he finally noticed his mistake.  The observer noticed that 

when subsequently trying to produce an iterative loop the student again 

failed to initialise the loop properly but this time only required five 

attempts to correct his mistakes.              

 

A similar observation was carried out, as part of this research, in 2008 

where a novice student programmer was given an exercise that required 

the implementation of a loop as part of the solution.  A group of students 

had been taught how to code for the two types of iterative loop 

supported in the Python scripting language, (a recursive solution was 

also possible but not part of the curriculum).  The task was to visit each 

item in a string and count the total number of vowels present.  The 

observation of one student noted that he had produced a workable 

iterative loop but was confused by looking for the vowels. The student 

was asked to simplify the problem to look for occurrences of the letter 

“e”.  The student completed the program but placed the initialisation of 

the counter variable on the line immediately above the one to increment 

it all within the loop.  The student was guided to verify the answer given 

before he noticed the possibility of an error, but attempts to find a 

correction involved rewriting the implementation of the loop.  Further 

guidance asking the student to trace the state of the variable led to the 

student determining the source of the error and finally, after proving that 
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removing the initialisation line was not the solution, the student was able 

to move the line to occur before the loop to produce a working solution.  

2.2 The context for learning to program  

The area of study used for this research is the teaching of a first 

programming language to university students.  Learning to program for 

the first time is a challenging task.  Programming a computer is a skill 

based activity that involves problem solving using the opportunities and 

within the constraints imposed by a computer environment.  In order to 

characterise the difficulties encountered by programming novices an 

examination of the psychology of programming is required to provide a 

context for the errors the novices make. 

2.2.1 The novice and the program 

A definition of the programming novice is provided by Mayer as a user 

who has had little or no previous experience with computers, who does 

not intend to become a professional programmer and who thus lacks 

specific knowledge of computer programming (Mayer 1980).  

Programming is the craft of devising a set of instructions for a computer 

to perform a task, or to solve a problem.  The nature of the instructions 

may be diverse and different authorities have taken different views as to 

the nature of a program at different times (Pane & Myers 1996).  Early 

programming languages such as Fortran considered the program as a 

sequence of calculations. Little or no consideration was given to the 

programming structure and unstructured programming code was shown 

as an easy way to obfuscate understanding and to introduce errors. 

Programming structures were devised to control the sequence of 

instructions and increase the safety of programs, for example the Pascal 

language.  Other authorities viewed programming structures as a means 

to control access to data thereby reducing the chance of errors during a 

program’s execution (Booch 1993). The functional view defines a 

program as a series of functional elements that process data and act as 

input or output to other functions, no static data elements are 

encouraged and a program becomes an enlarging library of functions.   

Another perspective is the object-oriented view where a program is 
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considered to be a collection of data elements effectively bound to the 

instructions capable of processing the data (forming the objects). Objects 

then process tasks in response to requests from other objects and send 

messages to other objects to request they process their data (Booch 

1993). 

 

Despite the different views on the construction of programs, 

programming languages are generally represented as a script that 

describes a series of tasks to be performed by a computer system.  All 

programming languages present two major forms to its user (Pane & 

Myers 1996): the syntax, the syntactic rules that define how data and 

code are expressed in the language, and the semantics, the meaning of 

the statements expressed in the language. An understanding of both the 

syntax and semantics of a language are important for effective use of the 

language for solving problems.  The programmer must understand the 

sequence of execution (program flow), the transformational effects of 

operations on data (data flow) and the purposes of statement grouping 

(functional design) (Pennington & Grabowski 1990).  A programmer’s 

ability to understand computer code is characterised by the ability to 

comprehend meaning at the different levels of abstraction (Hoc et. al. 

1990). Skilled programmers are assumed to be able to successively 

regroup statements into different levels or patterns to determine 

meaning.  Traditionally, programming courses begin by teaching the 

syntax of a programming language before consideration of the semantics 

(in reality the processes overlap but semantics lag behind syntax).  In 

education the usual emphasis when teaching a first language is to 

minimise the number of new abstract ideas to be acquired and to provide 

immediate feedback to program activity.  Languages like Logo are often 

used for teaching in elementary school, however while Logo is designed 

as a language for children with no computer experience it is not designed 

for teaching programming.  Other experimental programming languages 

are being developed to teach programming, such as GRAIL (McIver 

2000), but are not widely known or used.        
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The primary activity of writing a computer program is a design-centred 

task in that the users construct their own knowledge of the language and 

how to use it to solve problems.  It is similar in essence to other design 

activities such as architecture, music composition, electrical circuit design 

or writing an instruction manual (Pennington & Grabowski 1990). 

However the difficulty with developing a computer program is not only 

the challenge of using the programming tool to solve a design problem 

but to also have sufficient insight into the problem solving methods for 

the domain being modelled. The simplest computer problems might 

involve computing and arithmetic, for other domains might require 

computing and accounting, computing and physics, economics, statistics, 

etc. which means understanding of an additional subject.  However the 

use of a second domain is an aid to understanding. Experiments in 

teaching mathematical procedures demonstrated that children who were 

taught by modelling grounded in real-world examples were better able to 

transfer their skills to more complicated problems than those who were 

taught the techniques as a set of abstract rules (Mayer 1980).  Research 

also suggests that novice programmers respond positively to interactive 

learning when developing code (Lui & Chan 2006).  In a study into agile 

software development (also called extreme programming) the 

performance of an individual was compared against the performance of 

pairs of programmers when solving example problems.  Although no 

discernable increase in performance could be measured between pairs of 

expert programmers compared to a single expert programmer, for novice 

programmers working in pairs there was a notable improvement in 

productivity over novices working alone.  Experienced programmers are 

able to call on past experience for programming tasks.  Results from 

studies indicate that even programmers with intermediate skills solve 

programming problems by the application of prior strategies when faced 

with new situations (Kummerfeld 2006). 

 

Compared to more discrete fields such as physics or mathematics, results 

from the psychology of programming identify the difficulties for novice 

programmers in modelling program plans is two-fold: firstly, there are no 

everyday intellectual activities that are analogous to programming that 
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may encourage spontaneous creativity in the field, and secondly, 

programs operate on a notional machine (albeit in a physical machine) 

whose function and operation remain opaque to the learner (Rogalski & 

Samurcay 1990).  This opacity does not allow for the spontaneous 

construction of programming concepts.  Rogalski and Samurcay identify 

four areas that novice programmers must acquire during the learning 

process: 

1) A coherent conceptual model of the underlying programming or 

processing environment of a computer:  The conceptual model was 

called a ‘notional machine’ (Rogalski & Samurcay 1990), and 

difficulty forming a notional machine leads to the learner 

misunderstanding the activity and behaviour of a running program.  

Another level of complexity is the similarities and differences 

between the notional machines of different programming 

languages. A strictly typed procedural Pascal notional machine is 

different from an object-oriented Smalltalk machine and a 

declarative Prolog notional machine, even though in different 

contexts they may share similar syntactic constructs (e.g. 

arithmetic).  Novice programmers appear to face a great deal of 

difficulty with constructing their notional models due to the 

complexity of any useful model that needs to incorporate two 

major concepts: the use of command systems and the virtual 

memory structures such as variables, file handlers, etc. to 

simulate entities with no physical identity.   

2) Control structures: the primary characteristic of any control 

structure is that it can interrupt the linear flow of a program’s 

execution. Earlier research was able to demonstrate that 

structured programs were easier to understand and maintain than 

non-structured programs (Green 1980).  However this has little 

effect on the difficulty of the use of test conditions for selection 

and controlling iteration. Control structures provide two areas of 

difficulty for the novice programmer: the conditional expression 

and block of executed code as a result.  The difficulty a beginner 

faces with recursive loops is where an iterative loop describes the 

actions modifying the state during each iteration, while the 
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recursion describes the relationship between each state of the loop 

(Rogalski & Samurzay 1990).  In general, iteration is taught before 

recursion and their studies show that students have great difficulty 

learning recursion. Learners with a greater grounding in logic and 

mathematics were found to learn the new structures more rapidly.   

3) Variables, data structures and data representation: all 

programming languages allow for the manipulation of entities used 

to represent knowledge within the domain.  Novice programmers 

often produce errors due to misconceptions concerning the content 

of variables, the name of variables and their relation to other 

elements within a program, the manipulation of a variable’s 

content and the scope of variables (Rogalski & Samurcay 1990).  

They note that a higher level of conceptual understanding is 

required for novice programmers to follow the behaviour of 

variables within an iterative or recursive loop.     

4) Programming methods: these are the supporting strategies and 

techniques that aid the programmer in solving problems, such as 

top-down design, the waterfall model, object-oriented design, etc.  

Even when familiar with the syntax and semantics of a 

programming language, inexperienced programmers tend to lack 

sufficient knowledge to know how to design solutions for specific 

problems.  Studies have shown that beginner programmers find 

structured design processes more difficult to use because their 

models are based on the input data and are oriented to processes 

rather than the more object-based view that expert programmers 

take (Rogalski & Samurcay 1990).  

 

For the novice programmer an important skill is not only to recognise 

certain problem situations but they also require knowledge of how to 

apply appropriate tools and techniques in developing a solution.  A study 

by Perkins and Martin in 1986, which used a series of interviews, allowed 

them to formulate the nature of the major difficulties faced by novice 

Basic programmers.  They characterised the difficulties as “fragile 

knowledge” and “neglected strategies”.  With fragile knowledge the 

learner is aware of the required information but fails to see the 
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opportunity to use it.  The researchers identified 4 types of fragile 

knowledge: missing knowledge is knowledge that has simply not been 

acquired; inert knowledge refers to knowledge that the student has but 

fails to retrieve when needed; misplaced knowledge refers to knowledge 

that is used in the wrong context; conglomerated knowledge is a misuse 

of knowledge in which a programmer combines two or more known 

structures incorrectly.  They were able to confirm that the learner was 

sometimes in possession of the knowledge by providing hints and clues 

that would not contain the actual knowledge, but recorded that on nearly 

50% of occasions the student then went on to solve the problem.   

Neglected strategies refer to the way students do not use techniques to 

gain further understanding of the problem they are solving.  They 

determined that the main strategy that learners neglected was to 

properly read the code to determine what it actually does (Perkins & 

Martin 1986). 

2.3  Enhanced development environments 

2.3.1 Code sensitive editors 

One innovation to aid software development has been the adoption of 

colour syntax highlighting for program code in text editors (Figures 2.2 

and 2.3).  This allows the different components of a program script to be 

displayed in a different colour depending on what category the 

component belongs to for instance all mathematical operators may be 

displayed in red, constant numerical and string values in green and 

language keywords in blue.  The purpose of syntax highlighting is to aid 

the readability of code so that simple errors, such as a misspelling may 

be noted by the non-appearance of the expected colour and corrected 

before the code is compiled or run.  Colour syntax highlighting is now a 

common feature of most program text editors, it is unclear whether 

colour syntax highlighting has any effect on novice programmers; 

anecdotal observations indicate programmers appear to make little use 

of the feature.  Research on experienced programmers show a 

preference for syntax colouring with swifter identification of cognitive 

structures within code, although no corresponding increase in 



 

23 

productivity was found with novice programmers (Green 1989).  Work by 

Davies (1991) indicates that syntax highlighting has an influence on the 

development and problem solving strategies employed by the 

programmer.    

 

                       

 

 

                  

  

 

2.3.2 Visual programming languages 

Software presents the additional challenge to learners in that code can be 

used to represent not only physical objects but also insubstantial 

concepts.  There are therefore times when visual examples that may be 

acquired from the real world are not available and designing a suitable 

analogue for use on a computer can be inflexible and error prone.   A 

number of strategies have been investigated to attempt to remedy the 

Figure 2.3. The Win32 colour syntax highlighting editor for 

Python code  

Figure 2.2. The Tkinter colour syntax highlighting editor for 
Python code  



 

24 

difficulties.  One approach is the development of languages especially for 

teaching, such as LOGO or GRAIL, a more recent example of this type of 

system is the Alice programming environment (Cooper et al. 2003) 

developed by the Stage 3 Research Group at Carnegie Mellon University.  

Alice is a 3D interactive programming environment where students are 

taught the principles of programming code in terms of manipulating 

characters and objects in a 3D environment.  The Alice system is 

presented as a series of windows that present different resources to the 

programming environment.  One window depicts the 3D scene under 

development where objects from a library in another window may be 

drag-and-dropped into the scene (Figure 2.4).       

       

 

 

The properties of any object in the scene may be viewed by selecting it 

and behaviours added by adding code to events that the object responds 

to.  Instead of the learner having to write code in a script, they are 

shielded from the syntax details by building code from pull-down menus, 

edit boxes and list boxes.  According to the literature Alice was designed 

to encourage students (typically female students who may not have been 

exposed to computer programming) to engage with computing by 

emphasising the use of programming as a method of story telling.  In 

controlled studies involving novice programming students on their first 

programming course the use of Alice was credited for an average grade 

Figure 2.4. The Alice user interface (courtesy of www.alice.org)  
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increase from C to B and an increase in retention from 47% to 88% 

(Moskal et al. 2004). 

 

However the limitation of this approach is that the learners avoid learning 

the features of syntax for languages likely to be encountered beyond 

education.  Teachers have found that students who can program in Alice 

have trouble making the transition to traditional programming languages 

that use a text editor.  So another approach is to design new application 

tools that guide the learner and couple them with new pedagogical 

models that specifically address issues, such as the logic of programming 

structures, the manipulation of different data types that arise in the 

programming domain. 

2.3.3 Intelligent assistance 

One application area related to the development of software is that of the 

intelligent assistant.  An intelligent assistant is a software application 

designed to support a design activity by taking over some of a user’s 

more menial tasks or providing checks and verification of their activity.  

The nature of the assistance can be passive, only responding to the 

user’s requests or activity; monitoring the user’s work and carrying out 

operations according to set goals. 

    

An example of a passive intelligent assistant is the Genie application 

(Kaiser 1990).  Genie is a question and answer system that is similar to 

the application help facility available on desktop programs and is 

designed to provide expert information on the use of a development 

environment to new users.  The information in Genie exists in a single 

knowledge base but the application acts intelligently in the way that the 

user is able to interact with it.  Genie was designed to address the need 

to search large knowledge bases to find the appropriate information for 

the immediate need of the user and to present the answer at the 

appropriate level for the user’s ability.  New users to a system may 

possess different levels of expertise.  The system assumes novice users 

require precise shorter answers while expert users may require more 

detailed and comprehensive information. So Genie models three levels of 
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user expertise “novice”, “intermediate” or “expert” and tailors its help to 

be either:  

a) An introduction where a command is taught that a user may not 

have encountered before;   

b) A reminder where a brief description is given of a command that 

may have been forgotten; 

c) A clarification to explain the details or options about commands; 

d) Elucidation to correct user misunderstandings that have arisen or; 

e) A direct execution of a command on behalf of the user. 

Input questions to Genie are constructed in a natural language form from 

a selection of templates where the user inserts domain specific keywords 

into appropriate fields to form queries that are then analysed.   Typical 

questions to Genie may be in the form of “What does command C do?” or 

“How do I accomplish goal G?”.   

   

Marvel is an example of an active intelligent assistant system designed to 

monitor and automate many of the tasks for organising software 

development projects (Kaiser 1990).  Marvel is similar to a Make facility 

but is useful for large or complex developments that may be spread 

across many teams or platforms and not limited to any one programming 

language, method of development or type of project.  It uses a 

production system that is able to reason about and manage many of the 

resources in a software development project in accordance with a set of 

rules and information is processed based on a knowledge base, which 

contains a description of the project in terms of:  

a) Resources: software libraries, classes and objects, the 

development tools and the source code and target platform; 

b) Relations: among the objects, inputs and outputs, products and 

variations; 

c) Rules: which are similar to those in expert systems with a 

conventional condition part but the action is expressed as a single 

activity with a set of post-conditions and used to model the 

requirements of each project. 

Marvel can be made to model the stages of the software life cycle and 

the activities required to transform from one stage to the next.  



 

27 

Processing is carried out opportunistically using both forward and 

backward chaining and automatically switching between the two when 

necessary.  When, for example, a new procedure needs to be added to a 

project Marvel knows which dependences need to be updated and 

performs the necessary operation.     

2.4 Summary 

For the novice, learning to program for the very first time is fraught with 

difficulties. To build anything more than the most trivial program skilled 

practitioners have acquired the skills of how to understand a problem, 

how it can be represented in a computer, and how to encode it in a given 

programming language.  In addition the practitioner needs the 

experience to know how to analyse the resultant output of a program, 

how to trace faults and how to devise solutions to correct errors.  In 

order to make any progress as a programmer, the novice has to acquire 

these same skills and apply them.  The nature of developing software 

means these skills have to be developed roughly in parallel and to avoid 

either one undermining the capacity to make progress with the other 

skills.  The major obstacles to understanding for the novice programmer 

can be summarised as “fragile knowledge”, where the learner is aware of 

the required information but fails to see the opportunity to use it, and 

“neglected strategies”, where the learner does not use techniques to gain 

further understanding of problem solving in the domain. It was also 

shown that producing errors while learning to program cannot be 

avoided, software applications that simply attempt to remove the chance 

of errors often only delay learning about parts of the language. 
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Chapter 3: 

Cognitive apprenticeship  

3.1 Introduction 

The cognitive apprenticeship approach grew out of and is a part of the 

constructivist family of pedagogical techniques; it shares common 

attributes with methods such as Scaffolding where both require learning 

materials to be based on real world examples, i.e. materials that are 

similar to those used by expert practitioners on a subject.  The cognitive 

apprenticeship model differs from others in providing a greater flexibility 

in the nature of the interaction between teacher and learner and 

therefore is better able to accommodate computer-supported learning 

environments.  The cognitive apprenticeship model also accounts for a 

relationship between factual knowledge about the domain that may be 

gained from traditional textbook based sources and the requirement for 

heuristic knowledge that experts develop through problem solving 

practice.  The model depends on a learner centred approach; it expects 

the learner to be motivated to learn the subject, to be attentive, to have 

access to the learning materials and to be skilled enough to be able to 

reproduce the desired outcomes. It specifies the need for the learner to 

develop monitoring, diagnostic and remedial strategies to regulate 

problem solving so as to be able reflect on their reasoning in a process 

called meta-cognition.  The cognitive apprenticeship model attempts to 

develop the skills of the learner by allowing them to observe, enact and 

practice them under the guidance of the teacher with the participants 

taking on roles that pre-date formal traditional education. For example 

the way that knowledge was imparted from master craftsman to an 

apprentice is embedded in the social, deliberative and physical context 

where the learning activities were guided by interactions between 

teacher and learner. 
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The Cognitive Apprenticeship pedagogy was first proposed by Collins et 

al. in 1989 to address what they saw as some of the shortcomings of 

curricular practices. They proposed addressing these issues by revisiting 

the traditional apprenticeship model and adapting some of its 

characteristics to teaching cognitive skills (Collins et al. 1989).  They 

observed that apprenticeships involved the social context in which the 

learning takes place and that important cognitive characteristics are not 

only derived from didactic instruction but also as a result of a culture of 

self-motivated exploration from the learners.  The work was primarily 

concerned with the teaching of reading, writing and mathematical skills 

so the researchers proposed the adaptation of traditional apprenticeships 

to cognitive apprenticeships for two reasons. Firstly, the pedagogy is 

primarily aimed at teaching the processes that experts use when 

handling complex tasks. For this reason conceptual and factual 

knowledge is made subordinate to the problem-solving context of the 

task.  They argued that an expert in a field is one who is able to solve 

problems, monitor their performance, make self-corrections, reflect on 

features and possibly make creative developments in their field.  

Secondly, this allows the learner to demonstrate a deep understanding of 

a field.  The proponents believed that using real-world knowledge in the 

relevant context, as opposed to much simplified training exercises should 

be the basis for developing similar skills. 

   

The researchers then chose to retain the apprenticeship aspects of the 

model to emphasise that the learning was to be acquired through guided 

experience, as it was for traditional skills.  They acknowledged that 

models for the learning of physical and cognitive skills were necessarily 

different but that both shared characteristics on observation, refinement, 

and correction towards the production of a measurable outcome.  They 

proposed that applying cognitive skills to apprenticeships required the 

externalisation of processes that were normally internalised.  Effective 

coaching of the learner is impeded because there is no natural access to 

the cognitive process.  The process is also true the other way around in 

that the masters of a skill may not necessarily have insight into how to 

explain all of the processing involved in using that skill when teaching 
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and the learner may have limited access to the teacher’s reasoning.  The 

cognitive apprenticeship model therefore, was designed to bring these 

processes into the open through an encouraging of the various stages of 

the pedagogy.   

 

 

 

 

 

 

 

 

 

 

 

 

Just as with traditional apprenticeship practice in fields such as 

carpentry, tailoring, etc. where the learner acquires skills while working 

on real tasks and products, so too the cognitive apprenticeship approach 

where the teacher is able to model processes involved in solving real-

world problems.  Figure 3.1 illustrates the position and relationship of the 

cognitive apprenticeship model to other pedagogies.  Practice from 

current educational theory credits one of the strengths of the model is 

due to the use of real-world situations as the source of the training tasks 

and this becomes less effective when information is taught outside of a 

real context: “Situated learning does not mean ‘no abstractions’ but 

rather reconnecting formal education to everyday life” (Clancey 1982). 

The learner is then able to observe the teacher’s approach and solution 

to problems and attempts to reproduce these behaviours.  The teacher 

provides coaching support as the learner attempts the task with 

feedback, hints and reminders to tune the learner’s performance towards 

a more proficient approach to solving the task.  The learner is expected 

to repeat the tasks many number of times with the amount of support 

from the teacher reduced as the learner becomes more proficient in a 

process known as fading.  The cognitive apprenticeship model tends to 

Socio-cultural learning theories 

Situated learning  

Anchored 

instruction 

Traditional 
apprenticeship 

Cognitive 
apprenticeship 

Figure 3.1. The place of cognitive apprenticeship in 

educational literature – (Courtesy of Ghefaili 2003)  
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lend itself to computer automation and should also encourage the use of 

AI technologies and intelligent tutoring systems.  In a report in 2001, 

Woolf and colleagues examined the importance of intelligent tutoring 

systems in supporting sophisticated interaction, adaptability and focused 

problem solving as a remedy to the limitations of simpler computer aided 

educational tools that leave the learner passive and an uninvolved 

participant in the process (Woolf et al. 2001). 

3.1.1 Methods of the model 

The cognitive apprenticeship model is divided into six main teaching 

methods which are divided into three major classes of skills: cognitive 

skills covered in the modelling, coaching and scaffolding methods, 

development of problem-solving skills addressed in the articulation and 

reflection methods and autonomy which is encouraged in the exploration 

method (Collins et al. 1989).  A detailed explanation of activity for each 

method is given below: 

(i) Modelling: In modelling the expert performs a skills task while the 

student observes the practice involved.  The modelling can belong 

to two strategies: behavioural and cognitive modelling.  In 

behavioural modelling a demonstration of how the task is to be 

performed is given by the instructor whereas in cognitive modelling 

the instructor articulates the reasoning that the learner should use 

in performing the task.  Current teaching practice for programming 

can make use of both modelling strategies with behavioural 

modelling giving way to cognitive modelling as time and student 

competences progress. When the teacher articulates their reasoning 

it is to indicate to the learner what factors are used to guide the 

decision making during the task.  When the learner articulates their 

reasoning they explain their understanding of the task and their 

approach to solving the problem.   

(ii) Coaching: For this step the expert observes the learner performing 

the skill and offers hints, feedback, and reminders to help them.  In 

addition, if necessary, extra support may be provided by 

scaffolding, remodelling and goal setting for subtasks. The learner 

would be expected to crudely follow the steps learned in the 
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modelling phase and, through repetition with support at each stage, 

to refine their performance and/or their outcomes.  The role of the 

coach is inexact and can be complex but they would be expected to 

provide motivation, analyse the performance, provide feedback and 

promote reflection on the task.  As coaching has a social context the 

learner would be expected to seek help or confirm their approach at 

various times and would also expect the unsolicited help and 

encouragement from the teacher.  The context of the coaching is 

necessarily driven by the performance of the learner and the 

literature outlines a number of strategies for effective coaching 

(Laffey et al. 1998).  These include the ability to relate the 

importance of aspects of the task to the learner and to provide 

reasons for the learner to remain engaged with the task.  The coach 

should work to boost the learner’s confidence as they progress. 

Motivational prompts that are important at the beginning of the 

coaching can be faded as progress is made. 

(iii) Scaffolding: For this step activities are organised at the level of the 

learner’s current skills to encourage the learner to progress to 

subsequent levels where the amount of support is withdrawn.  This 

will be provided by the structure of the course with a series of 

practical exercises, tutorials and assignments. The structuring of the 

tasks with increasing levels of complexity allows the student to be 

able to build on previous lessons and incorporate new knowledge 

into what has already been learned.  The fading of support from the 

teacher is to encourage the student, during coaching, to tackle 

tasks using their own resources.  The method of the fading could 

take two formats, either through the quantity of the support with 

changes in frequency or proactive offers of help, or through a 

change to the quality of the help using more general guidance or 

Socratic help to encourage the learner’s reasoning. 

(iv) Articulation: The use of articulation requires the problem solver to 

explicitly express their reasoning and understanding of the process 

at the time they are performing the task and while being observed.  

As a teaching tool articulation should provide additional insight into 

the expert’s view of the domain.  The teacher can be made aware of 
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errors, misunderstandings and incorrect assumptions in the 

student’s model of the domain and offer coaching support.  

Articulation can take three forms with the aim of encouraging the 

student to self-monitor and to explore the strategies and actions 

employed: 1) inquiry teaching where the teacher asks the student 

to answer questions that articulate and refine their theories about 

the domain’s knowledge, 2) articulate thoughts: the teacher can 

also ask the learner to explain their reasoning as they problem solve 

and 3) critique or monitor peers in cooperative tasks.  

(v) Reflection: In reflection the learner is encouraged to critically 

evaluate their own performance against that of the experts.  Expert 

practitioners tend to have expectations of the results of various 

activities in a task and can adjust actions to improve outcomes. 

Learners need to be able to not only apply similar actions, but also 

to understand if the expectation has been met or how to recover if it 

has not.  There are various suggested techniques for doing this that 

can recreate the expert’s post-mortem of the processes involved 

and their effects on the problem-solving task.  Reflection also allows 

for the use of audiovisual recording tools. 

(vi) Exploration: For this attribute the student is encouraged to pursue 

general goals to tackle problems independently.  Exploration 

requires the questions posed to be made challenging and interesting 

enough to encourage the student’s participation.  The major 

exploration technique is for the teacher to set general goals for the 

student but to encourage them to concentrate on specific sub goals.  

The method even allows students to refine the general goals in 

order to pursue areas of particular interest. 

   

3.1.2 Constructivism 

The Constructivist based family of pedagogies share a characteristic with 

the cognitive apprenticeship model of a learner centred approach to 

teaching where the emphasis is on the learner to construct his or her 

individual model of new knowledge rather than being simply a passive 

recipient of the information presented by the teacher.   Constructivism 
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itself is concerned with the learner's actual act of creating meaning 

(Brooks 1990). The constructivist model argues that the learner’s mind 

actively constructs relationships and ideas, rather than simply labelling 

objects that exist in the world; hence, meaning is derived from 

negotiating, generating, and linking concepts within a community of 

peers (Harel & Papert 1991).  In constructivism, knowledge of the world 

is constructed by the individual through interacting with the world and 

the testing and refining of cognitive representation (Boyle 2001).  Tom 

Boyle identified five major principles of constructivism as related to 

computing science from a list of general principles as:  

1) authentic learning tasks: learners are better able to learn if they 

can see the relevance of knowledge;  

2) interaction: allows learners to construct their own models of a 

domain; 

3) ownership of the learning process: rather than the teacher as a 

taskmaster the learner selects the problem they work on;  

4) experience with the knowledge construction process: learning how 

to learn, how to construct and refine new meaning;  

5) meta-cognition: to allow the learner to monitor and direct their 

own learning and performance.  

Constructivist theory argues that it is impractical for teachers to make all 

the current decisions and simply "download" the information to learners 

without involving the learner in the decision process and utilising the 

learner's abilities to construct knowledge.  A major component of 

constructivism is its emphasis on making meaning through shared 

cultural, historical, social and political experiences through collaborative 

activities.  While an agent system may be able to simulate some of the 

social skills in mentoring, to actually share experiences would be beyond 

the perceptive and reasoning capabilities of the agent. 

3.1.3 Scaffolding 

In addition to being a pedagogy in its own right Scaffolding is also a 

method within the Cognitive Apprenticeship pedagogy, by which a tutor 

provides temporary support to the learner until help is no longer needed.  

The help can take many forms e.g. explanations, examples, direction, 
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etc. but the help is guided by the learners activity in the subject so the 

learner is required to be an active participant in the learning process 

rather than a passive recipient of information.  Scaffolding allows 

learners to attempt things they would not be capable of without 

assistance.  It is similar in essence to a number of other pedagogical 

strategies such as guided practice, apprenticeships and double-fading 

support but differs in detail.  For example, in the classroom guided 

practice usually looks like a combination of individual work, close 

observation by the teacher, and short segments of individual or whole 

class instruction.  In computer based or Internet based learning, guided 

practice has come to mean instructions presented on the learner's 

computer screen on which they can act. This action may be to perform 

some task using a program that is running at the same time, or it may 

be to interact with a simulation that is embedded in the program or web 

page.  One study of computer-based Scaffolding was carried out into its 

use in teaching the design of concept maps (Chang et al. 2001).  The 

research compared the learning outcomes of constructing concept maps 

using Scaffolding, termed ‘construct on scaffold’, against unstructured 

learning, called ‘construct by self’ and a non-computer based method, 

‘construct on pencil-and-paper’. The ‘construct on pencil-and-paper’ was 

used to measure for any effect of using computers in learning.  Via a 

series of test results and feedback from students, the results of the study 

were able to demonstrate that the ‘construct on scaffold’ concept 

mapping had a better impact on learning than the other two methods.  

The results were also able to show that although those students who 

worked on computers were more positive about the learning there was 

no significant difference between the results of those groups who learned 

without Scaffolding. 

3.1.4 Double-fading support 

Another noteworthy pedagogy is double-fading support (DFS) it is a 

pedagogical technique that has particular application for teaching of 

complex software applications with minimal instructional support 

(Leutner 2000).  When learning a new application the learner is locked 

out of various areas of functionality and provided with detailed guidance 
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(the doubled component) that is gradually removed during training.  

Leutner and Vogt developed DFS in 1989, as an application of ACT-

theory to improve software usability and in practice it is similar to the 

scaffolding method.   To test the effectiveness of the DFS method 

Leutner monitored the learning outcomes of 208 university students 

learning how to use a CAD application in two series of experiments.  The 

results indicated that students who learned using the initially reduced 

software outperformed the control group learning on the fully functional 

system (Leutner 2000).  They were also able to measure that students 

who were made aware of features that were unavailable to them (e.g. 

inactive icons and buttons) performed less well than those students 

where the inactive controls were not visible.  Double-fading support 

appears to be similar to scaffolding but suited to learners in a computing 

environment.  Its major difference is that in the practice of utilising DFS 

the learning environment is under the control of the tutoring system with 

components being made available to the learner as they progress. 

3.1.5 Anchored instruction 

The Anchored instruction pedagogy is a form of situated learning that 

involves the use of multimedia tools to pose and solve complex realistic 

problems (see figure 3.1).  The developers’ goal was to create 

interesting, realistic contexts that encourage the active construction of 

knowledge by the learner.  The stories presented were designed to act as 

anchors, sometimes called situated contexts, for the learner to explore 

rather than a series of lectures.  The primary research application area of 

anchored learning was for the development of reading and mathematical 

skills at the elementary learning level and although related to 

apprenticeship pedagogies it is separated by not implementing the 

methods of cognitive apprenticeship. 

3.1.6 Traditional vs. Cognitive apprenticeships 

Apprenticeships were the way that skills were traditionally taught; its use 

predates the development of school-based education. There are 

differences between traditional and cognitive apprenticeships that impose 
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considerations on teaching of non-traditional subjects (Collins et al. 

1991).  The authors outlined three major differences: 

1) Traditional apprenticeships are usually grounded in physical tasks 

that culminate with a product. The teacher can therefore make 

their activities easily observable.  For cognitive applications the 

teacher must ensure that mental processes are made visible to the 

learner. 

2) As traditional apprenticeships produce tangible finished products 

the steps of manufacture are more easily understandable, i.e. the 

avoidance of some subprocess or subcomponent is likely to 

produce a measurable deficiency in the final product.  So for 

cognitive tasks the challenge is to situate abstract tasks in 

contexts that make sense to the student. 

3) Traditional apprenticeships have skills that are specific to the 

tasks, i.e. the craft of turning a piece of wood on a lathe is 

particular to carpentry and it is different and non-transferable to 

the skills used by, for example, a baker.  The cognitive skills 

developed in the cognitive apprenticeship model need to be 

transferable; the elements of reasoning and problem solving may 

have application across many fields.        

3.1.7 Expert areas of knowledge  

The developers of cognitive apprenticeship, Collins, Brown & Newman 

(1989) and Collins, Brown & Holum (1991), identified four target areas of 

expert knowledge that are essential for the learner to gain a true 

understanding of a field.  They then highlighted the limitation of the 

traditional schooling model in that the focus of the teaching concentrates 

primarily on the domain knowledge area to the exclusion of the others.  

The four knowledge areas are explained below: 

 

1. Domain knowledge: These are the facts, concepts and relations 

that exist within a topic that encompasses the knowledge of that 

subject.  Domain knowledge can be thought of as the information 

that is conveyed in the books and literature about a subject.  It 
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forms the basis and the extent of the knowledge that can be 

taught by traditional, learning-by-rote, classroom based methods. 

2. Problem solving strategies: These are the techniques that allow 

users to achieve tasks within the domain.  This is the kind of 

information that is not obvious from the domain knowledge alone 

but required to make use of the knowledge.  The problem solving 

strategies might incorporate experiential knowledge and heuristic 

knowledge “rules of thumb” that expert practitioners might use.  

3. Control strategies: These are the techniques for recognising and 

selecting the most appropriate problem-solving strategy for the 

situations that may arise.  This skill involves being able to monitor 

and diagnose features of the domain and then to select the correct 

remedial activity to achieve goals for a given state of the domain.  

4. Learning strategies: are strategies to learn the types of knowledge 

that are present in the domain and described in the strategies 

above.  Different techniques may be employed for which a 

rudimentary knowledge, from the techniques above, would be 

required in order to place it into a proper context.  

3.2  A Review of Systems that apply CA 

Other researchers have subsequently used the cognitive apprenticeship 

model for other fields including the teaching of programming languages 

(Chee 1994, Clancey 1992).  There has been much research and use of 

cognitive apprenticeships in training and education. The model appears 

to be more applicable to secondary and tertiary education, with papers 

describing its use in business, law, mathematics, software engineering, 

research, nursing and medicine, but no examples were found for use in 

primary education.  This may be due to the learner having to acquire a 

core set of skills in order to benefit from the model’s learner centred 

prerequisite.  Another reason might also be that traditional 

apprenticeships have continued in the age of formal school education but 

primarily to prepare people for work towards the end of childhood, 

although early developers of the pedagogy did describe its application to 

the teaching of reading writing and mathematics in a secondary level 

schoolroom environment.  Table 3.1 below provides an overview of the 
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domains and features of a number of systems that deploy the cognitive 

apprenticeship pedagogy.   

 

 The different teaching systems have all implemented the cognitive 

apprenticeship model in different ways, from some systems, such as 

UNCLE (Wang & Bonk 2001) and SIPLeS (Chee 1997) automating most 

of the methods to others that automate only one or two methods, such 

as the Cognitive Peedy assistant (Tholander & Karlgren 2002) or CABLE 

(Chen Mow et al. 2006).  As cognitive apprenticeship is defined only in 

terms of its six methods with no constraints on what may or may not be 

automated, the subject specialists appear to have applied technology 

based on their individual requirements while remaining within the 

structure of the theory.  Other intelligent tutor systems (ITS) such as 

PAT (Koedinger 1997), Adele (Shaw et al. 1991), Autotutor (Wiemer-

Hastings et al. 1989) and Steve (Rickel & Johnson 1998) were also 

considered but not included in this analysis as their developers’ 

evaluation made little consideration of their application to any one 

pedagogy. 

 

The following systems considered were designed with the aim of aiding 

learners in diverse domains and have all used the cognitive 

apprenticeship model differently.  UNCLE, an acronym for “Using Notes 

for Case-based learning Environments” was designed to teach business 

skills and management (Wang & Bonk 2001).  The CABLE system is an 

examination into the influence of the cognitive apprenticeship to model a 

learning environment for teaching computer programming in Java (Chen 

et al. 2006). In a similar domain the SIPLeS system was used in the 

teaching of object-oriented design in Smalltalk (the description of SIPLeS 

includes the second version, SIPLeS-II. They are a development of an 

older ITS system called SmallTALKER all by the same author).  The 

Instructional Planning Assisting System (IPASS) provides a multimedia 

tool to help inexperienced teachers to visualise how a lesson works and a 

systematic guide to the use of the specific standard and to provide the 

skills and knowledge to begin their careers.  The cognitive apprenticeship 

has been used as a method for teaching clinical practice to pre-registered 
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nurses by making use of multimedia technology (Woolley & Jarvis 2007).  

The authors did not report the system as having a name but described 

the training environment as the clinical practice suite (CPS).  SHERLOCK 

was a computer-based coaching environment employed by the Air Force 

for training aviation technicians in a realistic context (Lesgold et al. 

1992).  It differed from other intelligent tutoring systems in that it did 

not model the student but was instead driven by responding to student 

questions.  Evaluation of SHERLOCK demonstrated that subjects who 

used the system showed an increase in competence over non-users and 

a troubleshooting ability expected of technicians with four years of job 

experience. 

 

Table 3.2 below illustrates how the various systems make use of 

computer automation to implement methods of the cognitive 

apprenticeship pedagogy.  The modelling method is implemented in 

different ways by each system but the systems often attempt to 

represent the expert reasoning graphically as part of the user interface.  

In UNCLE the learner reads the text of an example case study prepared 

by a domain expert. The modelling is supplemented by the exercises in 

the later methods, but the initial reading of the case is a manual 

exercise, albeit one carried out on line.  In SIPLeS the learner plays the 

part of a junior programmer in a software engineering team. The type 

and nature of the problem is selected from a computer and the problem 

scenario delivered by a multimedia presentation. Multimedia tools were 

also used for modelling in the clinical practice suite (CPS) and web-based 

cognitive apprenticeship systems. The domain modelling for the 

pedagogical assistant was given by more traditional human based 

interaction.  The web-based instructional planning system also provides a 

multimedia presentation to supplement more traditional reading 

materials.  To model expert reasoning in Cognitive Peedy a computerised 

step-by-step account is provided of how a domain expert solves various 

modelling tasks (Lusk & Atkinson 2007); the information the student has 

to follow links from decision to decision and questions and difficulties are 

made explicit. 
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The coaching method is concerned with modelling, selecting the problem 

solving tasks, providing hints and feedback on performance (Collins et al. 

1991). With the exception of the Cognitive Peedy assistant, all of the 

systems use computer or electronic media to provide coaching support.  

Different strategies are used depending on the requirements of the 

domain. CPS records the exercises for later review, the others provide 

various levels of email feedback from experts or peers while SIPLeS 

makes use of a case-base archive to determine the feedback to the 

learner.  The UNCLE system is designed to provide coaching through 

online discussions and feedback from more able peers and teachers.  The 

use of email by these systems works to reduce the constraints of space 

and time in the access to expert knowledge.  The Sherlock system 

provides coaching in the form of advice when prompted by the user. The 

advice is slightly different to the hints provided by other systems in that 

it can indicate what option to pursue next or even indicate what 

conclusions may be drawn from various factors. 

 

Scaffolding selects the appropriate level of problem task and the fading 

of the support.  Students on the UNCLE system undergo a series of 

online tests stored in the system’s library.  The results are then 

diagnosed and the experts are able to direct learners to additional 

materials from the library or work with the learners to address 

difficulties.  In SIPLeS the learner is allowed to select their role in and as 

part of a programming team scenario, from an online menu system, the 

designer expectation is that the learners would undertake different roles 

over time.  Cognitive Peedy provides a computerised design tool where 

expert pattern models are presented and may be adapted and modified 

for use by the learner. 
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In articulation the student is encouraged to show their understanding of 

their processing of the task- the social way is to provide a commentary 

as they address the problem.  In UNCLE articulation is partly covered by 

the activities in the scaffolding, but in support the experts are able to 

pose additional scenarios and questions in computer conference sessions 

to challenge the learners.  In the CPS the students are required to 

comment on the task they are performing during stages of the exercise.  

This is not only to help consolidate their knowledge but provides material 

to compare and contrast in the reflection method. 

 

Reflection encourages the learner to evaluate their reasoning and think of 

ways of tuning their future performance to be ever closer to that of the 

expert practitioner.  The UNCLE system encourages the learner to 

compare their solution with that of peers and experts to gain multiple 

perspectives on processes and solutions. Reflection in the web-based 

instructional planning system is a predominantly human centred task. 

The pre-service teachers write their own reflections on their plans and 

the demonstrations, which are reviewed by the experts where 

suggestions may be made.   Cognitive Peedy is able to encourage 

students to reflect on their work by issuing a series of context sensitive 

questions requiring them to justify their decisions.  The authors 

categorised three types of question that were prompted with no deep 

critique of the students’ work but that were still able to solicit reflection.        

 

Exploration builds on the understanding developed throughout the earlier 

methods and allows the learner to see how problem-solving skills may be 

adapted to new situations and across domains.  Most of the systems do 

not explicitly implement tools for exploration but rather allow 

unstructured access to their tools and libraries for exploration.  The main 

mechanism of encouraging exploration in UNCLE is the availability of the 

tools and case library outside of the availability of the expert teachers.  

Other systems such as CPS merely ask students to consider how the 

skills learned may be adapted or applied to new situations.  
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3.3 Summary  

The cognitive apprenticeship pedagogy has been developed from a 

traditional and tested method of teaching.  As traditional apprenticeships 

are usually for physical based skills the developers emphasised the new 

pedagogy was designed for thought based skills and contains activities to 

promote the cognitive engagement, such as articulation and reflection.  

The need for the pedagogy arose from the need to address some of the 

deficiencies of traditional didactic classroom teaching, which have been 

demonstrated as insufficient to produce expert practitioners in a field.  

The developers structured a model around the way skills are deployed 

and used by subject experts and encoded methods by which those skills 

might be developed.    

 

Method Agent activity 

Modelling The expert performs the activity while being observed by learner also 
includes lectures, workshop exercises and assessed pieces of work. 

Coaching The learner repeats the task observed by the expert who provides 
hints, tips and reminders to aid them. 

Scaffolding The learners activities are tuned to the current level of their skill and 
the level of support is gradually withdrawn as the learner becomes 
more proficient 

Articulation Both the expert and the learner are requires the problem solver to 
explain their reasoning and understanding as they perform the task, 
to provide expert incites or learner misunderstandings. 

Reflection The learner is encouraged to critically evaluate their performance 
against the experts to adjust and improve outcomes. 

Exploration To promote active participation the learner is encouraged to 
additionally set and pursue their own goals and tackle problems 
independently. 

 

Table 3.3. The methods in the cognitive apprenticeship pedagogy 
mapped against the agent activity 

 

The cognitive apprenticeship method therefore specifies six methods of 

practice to be carried out between teacher and learner that encapsulate 

the pedagogy, they are modelling, coaching, scaffolding, articulation, 

reflection and exploration and are summarised in table 3.3.  The main 

activity of the model is to develop the apprentice’s skills by repeatedly 

setting them challenges of increasing difficulty, coaching their activities 

and encouraging the apprentice to become an independent practitioner.  

This section examined some of the environments that use cognitive 

apprenticeship methods as a basis for their teaching model. Although the 
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domains and implementation of the model and even the amount of the 

model addressed were all different, all of the implementations made use 

of computer based technologies.  Cognitive apprenticeship has a number 

of features that made it an attractive choice for use in this research. 

Firstly the pedagogy maps to the practice used in teaching programming.  

The major exception was that the lectures, used in teaching, made for a 

poor modelling method.  This was addressed by emphasising more 

working demonstrations and examples of practice in lecture materials.  

Secondly, cognitive apprenticeship provides a structured framework with 

separate methods where the aims and outcomes of each method may be 

considered in isolation and easily measured for any evaluation.  The third 

feature of the pedagogy is that the methods may be implemented in 

different ways (e.g. by exercise, reading material, a discussion, etc.).   

This flexibility allows for the use of technology for some or all of the 

pedagogy.  One of the main strengths of cognitive apprenticeships is that 

it accommodates the use of multimedia and intelligent computer-

supported learning environments especially in the coaching and 

scaffolding methods of the pedagogy. 
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Chapter 4: 

Intelligent virtual agents 

4.1 Introduction 

This chapter is an introduction to intelligent agent systems; it examines 

the capabilities of agents and the characteristics of the agent 

environment.  An examination is then made of the concept of intelligent 

virtual agents (IVAs), what they are, their architectures and 

environments, how they interact with users and the application areas for 

IVAs with emphasis on their use in education.  The agent systems 

considered do not necessarily conform to the cognitive apprenticeship 

model or any one pedagogical theory but can be a useful vehicle to 

demonstrate the value of the IVA model.   

4.1.1 Intelligent Agents 

An intelligent agent is a self-contained software system that performs 

some useful action.  Intelligent agents are usually viewed as software 

assistants that take care of specific tasks on behalf of a client or owner.  

Agent systems need not necessarily exhibit intelligent behaviour and 

have been researched and used for areas such as communication and 

networking, so that different authorities make different claims for the 

capabilities of agents.  Wooldridge gives the definition that is usually 

adopted for intelligent agents as:  “An encapsulated computer system 

that is situated in some environment, and that is capable of flexible, 

autonomous action in that environment in order to meet its design 

objectives” (Wooldridge & Jennings 1995). 

 

Therefore an intelligent agent would be expected to be capable of 

autonomous decision-making based on the agent’s experience and the 

current situation. The agent should be responsive to events that occur 

within the environment and the agent is expected to have an ongoing 

relationship, one that persists over a period of time with that 
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environment.   In order to satisfy the design objectives for intelligent 

agents, Wooldridge and Jennings defined a set of characteristics that the 

agent should be expected to demonstrate:  

 Autonomy – operate without direct control or intervention of a 

user; 

 Social – capable of communicating and negotiating with other 

agents (or humans) in the environment; 

 Reactive – perceive changes in the system and respond in a timely 

manner; 

 Proactive – make decisions and take action based on long term 

goal-seeking behaviour. 

 

In considering the intelligent agent one also has to consider the 

characteristics of the environment in which they are situated.  

Knowledge-based system design traditionally pays little attention to the 

environment in which systems operate.  This was because applications, 

such as expert systems were not autonomous; the main interface to the 

environment was only concerned with interacting with a human user.  As 

agents are designed to act autonomously within an environment a 

definition of the properties of the agent’s environment is integral to its 

design.  Different domains impose different constraints on agent 

systems. Russell and Norvig (1995) provide an analysis of various types 

of environment, depending on the domain agents may be expected to 

operate where one or more of the following constraints apply:  

a) The environment is not being fully visible to the agent (at any one 

time) but can be detectable through sensors (and changeable 

through effectors); 

b) The environment may contain other mechanisms (simple 

machines) and agents (machines of similar capability) and users 

(agents who may set goals); 

c) The environment changes over time (outside of the control of the 

agent) as a result of other agents or mechanisms present;  

d) Changes that occur in the environment are not always predictable 

(non-deterministic).  
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e) The environment may pose differing types of requirement to the 

agent.  

 

Russell and Norvig (1996) specify five properties used to characterise 

agent environments that influence the required capabilities of a resultant 

agent. These are: 

 Accessibility vs. inaccessibility: whether the whole of the 

environment is detectable by the agent or parts remain 

unavailable; 

 Deterministic vs. nondeterministic: does the next state of the 

environment depend completely on the current state or can the 

environment change in unexpected ways; 

 Episodic vs. non-episodic: with the agent’s experience divided into 

separate sensory episodes, can decisions be made based on the 

experience of a single episode or are the occurrences of previous 

episodes required;  

 Static vs. dynamic: if the environment remains in the same state 

while the agent deliberates then it is static; if the environment can 

change then it is dynamic;  

 Discrete vs. continuous: if there are a limited number of clearly 

defined perceptions in a state then the environment is discrete; if 

the perceptions are variable then the environment is continuous. 

 

A chess-playing environment for an agent would then be described as 

being accessible, deterministic, non-episodic, static and discrete while a 

medical diagnosis expert-system environment would be inaccessible, 

nondeterministic, non-episodic, dynamic and continuous (Russell & 

Norvig 1996).  Intelligent agent systems therefore provide a mechanism 

to combine the processing requirements of reactive and deliberative 

systems to allow decision making to continue even when the state of the 

environment may not always be apparent. 

4.1.2 Animated pedagogical agents  

Traditional agent research makes no assumptions about an agent 

necessarily possessing a physical form.  In fact, an agent may be 
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anywhere between a Unix demon process (an automatic task that is 

executed as a background process) to a controller for robot systems that 

are able to interact with humans in natural ways such as speech and 

gesture (Kopp et al. 2005).  However, believable agents usually exhibit 

an anthropomorphic form and so present physical representation within a 

domain; they range from 2D human shaped animated graphical objects 

on a screen to 3D entities in virtual reality environments that look and 

behave like humans.  

 

The major aim of believable agent research is the production of the 

‘illusion of life’ in computational systems that allow human observers to 

suspend disbelief and invest the agent with human-like personality. That 

is to say the agent is attributed with having feelings, thoughts and 

desires.  In a study by the OZ project group the audience’s expectations 

when observing obviously artificial characters were analysed to measure 

the effects of realism on believability.  The study was able to define a 

character’s believability as: “A believable character is one who seems 

lifelike, whose actions make sense, who allows you to suspend disbelief.  

This is not the same thing as realism.  For example, Bugs Bunny is a 

believable character, but not a realistic character.”  (Mateas 1997: 5-6). 

 

The film industry, especially in terms of animators, has addressed the 

issue of believability as a factor for engaging with audiences.  Their 

findings have informed various research projects such as the OZ project.  

The researchers studied the writings of renowned animators, such as 

Chuck Jones, describing their experiences in creating and presenting 

effective characters.  They provide a set of requirements for believability 

to include the following (Mateas 1999): 

1. Personality – what makes characters interesting are their unique 

ways of doing things; 

2. Emotion – characters exhibit their own emotions and respond to 

the emotions of other personalities; 

3. Self-motivation – characters don’t just react to the activities of 

others.  They have their own drives and desires; 
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4. Change – characters grow and change with time in a consistent 

manner to their personality; 

5. Social-relationships – characters interact with others in a 

consistent manner to their personality; 

6. Illusion of life – requirements such as pursuing multiple, 

simultaneous goals, movement, perception, memory, language 

and reactivity.    

 

Of the characteristics listed above the animators were said to have 

emphasised the appropriateness of emotions, or the ability of a character 

to reflect the emotion of the observer for a given situation, as the most 

effective technique to aid the willingness of an audience to suspend 

disbelief (Mateas 1997).  As a result many research projects have been 

carried out into simulating and expressing appropriate emotions for 

agents as they interact with users (Krämer 2005, Aylett et al. 2007). 

 

Intelligent virtual agents are agent systems that provide an animated 

character as part of the interface to intentionally solicit an 

anthropomorphic response from a human user.  Various sources describe 

them as embodied, animated, believable or lifelike agents.  In addition to 

presenting an animated character virtual agent systems offer the 

opportunity to communicate with the user in ways that model human 

interaction.  Depending on the sophistication of the agent features such 

as voice input, speech output, natural language parsing, physical 

gesture, facial expression and dialogue may be used to communicate in 

ways are more natural for human users and to support a believable 

persona. Animated pedagogical agents are a subset of intelligent virtual 

agents and an extension of Intelligent Tutoring Systems where the 

primary area of application is in providing an educational tool.  Early 

intelligent tutoring systems were little more than multimedia 

presentations where the learner was a passive recipient of information. 

Pedagogical theories such as the cognitive apprenticeship model 

advocate the learner as a performer of activities in the domain as a 

method of developing deep knowledge (see chapter three).  Animated 

pedagogical agents are used to encourage the participation of the learner 
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by interaction during the teaching session.  The current paradigm for 

desktop computer interfaces is by direct manipulation of windows and 

icons on the desktop. The effect of this is that in most instances the 

computer will only do something if the user explicitly tells it to, for 

example in a browser application clicking and dragging the scrollbar to 

display a particular page of a document.  However when humans work 

with each other on a task they are able to bring some prior knowledge 

and understanding to proactively help each other in problem solving.  

The idea behind interface agents is to have the agent take the initiative 

in certain recognised circumstances to proactively assist the user to 

achieve the task rather than await explicit instructions on what to do.  

The effect of this is that the agent works alongside the user to 

cooperatively achieve goals rather than acting solely as a servant.  This 

method of agent interaction is referred to as expert assistants or 

interface agents (Maes 1994). 

 

Current research into the use of animated pedagogical agents is based on 

examining how effective these tools are for teaching (it is possible that in 

holding the user’s attention they are only a piece of entertainment) and 

how they might be best used.  Studies by Lusk and Atkinson (2007) 

found that the degree of embodiment for a pedagogical agent did have 

an influence on how much information learners were able to retain.  In a 

series of tests they compared both how much of the virtual agent was 

displayed and the degree of animation the agent was able to depict.  

Results showed that students working with more embodied agents with a 

sophisticated repertoire of animation were able to outperform their peers 

who worked with static and disembodied agents in retaining information 

from the exercise.   Research suggests that the use of embodied 

characters makes (or will make) the interface to computers much easier 

because it more closely reflects the way humans interact (Cassell et al. 

1999).  In a study exploring the ease of human-computer interaction 

researchers found evidence that users interact in a more human-like 

way, that is to say as though they were interacting with another human, 

when interacting with an anthropomorphic agent interface (Krämer 

2005).  Measurements of the user’s behaviour such as the number of 
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words they used, use of non-verbal gestures and the length of interaction 

were shown to increase the more human-like the interface.  

 

Empirical studies into Intelligent Virtual Agents (IVA) indicate that users 

have a greater ease interacting with the IVA than a real person for 

similar tasks across similar media.  Users were said to find a greater 

degree of trust in the information conveyed by an anthropomorphic agent 

interface (Sproull et al. 1996, Rickenberg 2000), although research into 

the use of virtual agent in retail applications found an exception when the 

agent was used in a banking application (McBreen et al. 2000).  As well 

as preference for an anthropomorphic agent interface (which may be the 

result of interest in a novel technology), research indicated that the 

presence of an anthropomorphic agent improves a user’s cognition even 

when the agent does nothing in a phenomena is known as the persona 

effect (Lester et al. 1999).  Lester suggests four educational benefits of a 

pedagogical agent: 

1) As the agent appears to care about the learner’s progress it may 

convey that the learner and agent are “in it together” encouraging 

the learner to care about their progress; 

2) An emotive agent that is sensitive to the user’s progress may help 

alleviate the user’s frustration before they begin to lose interest; 

3) An emotive IVA may convey enthusiasm for the subject that may 

be reciprocated in the learner; 

4) An agent with a rich and varied personality may make the learning 

fun.   

Although the specific reason why the presence of a virtual agent may 

have an effect on the learning process is not known, the evidence from 

the studies demonstrates that there is a measurable effect. 

4.1.3 Intelligent Virtual Agent Systems 

In this section a brief survey is given of a number of pedagogical virtual 

agent systems; though the list is not exhaustive the systems chosen are 

as a representative range of the types of environment used to interface 

with and provide teaching to the user.    
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Steve 

The Soar Training Expert for Virtual Environments (Steve) is an agent 

designed to assist in the training of tasks within a virtual environment 

(Rickel & Johnson 1998).  It was developed as part of a program to 

explore the use virtual reality environments as a training tool at the USC.  

Steve is an autonomous, animated character that operates within a 

virtual world alongside the student (see figure 4.1).  The Steve agent 

continuously monitors operations within the domain and can manipulate 

objects within it through virtual motor actions.  In operation he can 

demonstrate tasks, explain his actions (through a text to speech 

interface), monitor the student’s performance of tasks and provide help 

when it is required.  Steve can also respond to verbal questions such 

“What should I do next?” or “Why” via an interface to a commercial 

speech recognition application. 

 

The architecture of Steve consists of two major components.  First, the 

high-level cognitive processing module responsible for interpreting the 

world, making decisions and developing plans, which is implemented 

using the Soar cognitive architecture (see chapter five, section 4).  The 

second component is the sensory-motor process that interfaces Steve to 

the virtual world, allowing the cognitive processing module to perceive 

the state of the environment and changes to it, and activities carried out 

by the student, etc.  The process also sends messages to the 

environment to affect actions that Steve may take and to control the 

animation of Steve.  The researchers have experimented with several 

graphical representations for Steve but have made little comment on the 

merits of different representations.  However Steve often appears as a 

head (including an articulating face), a torso and one or two hands to 

manipulate objects.  The researchers plan to extend Steve’s capabilities 

to allow for non-verbal communication and the expression of emotions to 

increase the agent’s ability to motivate students.  
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The Steve agent has been tested on training simulations for the US Navy 

for a number of operational procedures.  Steve has the knowledge to 

operate several consoles that control naval ship engines and to carry out 

inspections of the air compressors for the engines.  The Steve agent, in 

theory, is not limited to performing only in the navy ship domain.  As all 

instructions and knowledge is coded as declarative domain knowledge 

moving Steve to a different domain should be a matter of producing a 

different knowledge base.  

 

BodyChat 

The BodyChat system (Vihjalmsson & Cassell 1998), developed at MIT, 

allows the presentation, animation and communication with agent 

controlled avatars in a virtual reality environment.  The system was 

researched to help in the design of behaviours for avatars.  The focus of 

the research was based around the behaviours that accompany 

communicating language.  Rather than programming each and every 

action the avatar has to perform, the avatar is controlled by an 

autonomous agent with a core set of movement and behaviours.  The 

avatar is able to demonstrate behaviours and interact with the user 

based on the context of a situation. As with other believable agent 

systems, the user is only expected to use (relatively) few high-level 

parameters that represent the agent’s intention. 

Figure 4.1. The Steve agent demonstrating a control panel – 
(Courtesy of Johnson & Rickel 2000)  
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The BodyChat system is implemented as a distributed virtual 

environment with a central server accessed by individual avatars 

implemented on separate client computers.  Each avatar is represented 

as a 3D model representing the head, with an articulating face, and torso 

of a humanoid character. The lower body is not rendered (as it probably 

has little impact in communication).  The avatar animations are able to 

gesture with their arms (wave, salute, etc), produce head movements, 

the face can articulate mouth movements when speaking, blink and 

produce eye movement.  Special facial expressions can be produced to 

emphasise various utterances when speaking.  Users are able to navigate 

the virtual environment via their avatar and interact with other 

users/avatars they encounter. 

 

A four-tiered agent model is used to distribute the processing used to 

control the BodyChat avatar.  Events detected in the environment are 

passed through the layers to elicit the appropriate response from the 

avatar.  The lowest layer reacts to events in the environment and decides 

how the agent responds to a given situation.  If the event requires a 

more involved response then a knowledge structure from the second 

layer that the researchers call a Conversational Phenomena is used to 

assess the situation and to select an appropriate communication 

behaviour object from the third layer, which in turn makes use of an 

associated package of animation gestures from a fourth layer.   

 

PPP 

The PPP persona is an animated interface agent that presents multimedia 

material to the user.  While the user views the presentation the agent 

can comment on particular parts and highlight them through pointing 

gestures.  The agent supports a repertoire of gestures for expressing 

things such as approval, disapproval, warning, recommendation, etc.   

The PPP persona system is different from other believable agents 

featured so far in that the agents do not occupy a virtual environment, 

but are instead part of a multimedia document.  As such the agent exists 

on the plane of the document as a 2D character (see figure 4.2 below) 
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and their behaviour is described as being similar to a lecturer 

commenting on a slide presentation (Andre 1999).    

                       

 

 

Studies were made with the PPP agent involving subjects watching a 

series of presentations both in the presence of the agent and sometimes 

without, on technical and non-technical topics.  Comparisons of the 

results of the comprehension of subjects indicated that the presence of 

the agent made no significant difference.  However most of subjects 

indicated a preference for the presentations with the agent.  The subjects 

reported that presentations for the technical topics were more 

entertaining and less difficult to follow in the presence of the PPP agent. 

 

Jacob 

The Jacob agent was designed to provide training and assistance within a 

virtual environment (Evers & Nijholt 2000).  It was developed as part of 

a virtual reality (VR) project called VR-valley developed at the University 

of Twente, Netherlands.  The Jacob agent is represented as a human-like 

three-dimensional figure that resides in a virtual reality environment.  It 

is able to provide instruction to students to carry out tasks within that 

environment and assist them if they become stuck.  The prototype 

version was able to instruct users on how to solve the Towers of Hanoi 

game by manipulating various blocks and pegs within the environment.  

The Jacob project attempts to answer research questions such as how 

Figure 4.2. A PPP agent presentation – (Courtesy 

of Johnson & Rickel 2000)  
 



 

 58 

different interaction modalities (e.g. natural language, gesture) can be 

integrated into a VR environment and an examination of the use of 

technologies required to produce the agent.  Jacob is intended for 

interaction and use via a standard web browser.  The VR-valley project is 

based on representation of environments in VRML 2.0 (Virtual Reality 

Markup Language), which is also used to design Jacobs’s form; the 

agent’s reasoning is implemented in Java.  The agent’s architecture 

consists of two main modules: the task module that is used to 

encapsulate knowledge about the task being performed, which objects 

need to be manipulated, how the task is to be performed, what errors a 

user can make, etc.  The second module models the instructional 

knowledge.  The researchers postulate that the techniques of instruction 

are independent of the specific task; the module is able to adapt the 

agent’s behaviour depending on the actions and progress of the user.  

The Jacob agent is similar to the Steve research, the major difference is 

that Steve is based on custom technologies and provides an environment 

in which the user is fully immersed, whereas Jacob makes use of 

commonly used computing applications, such as web-browsers, and 

standards.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.3. The Jacob agent teaching the tower of 

Hanoi – (Courtesy of Evers & Nijholt 2000)  
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An image of Jacob is shown in figure 4.3. As a model of a mentoring 

agent it is able to demonstrate a number of interesting features.  The 

user and the agent share a common environment in which the user 

attempts to solve a task, the user is the primary problem solver, the 

agent merely provides help, only if asked for, when the user becomes 

stuck, the agent is able to confirm when a correct solution has been 

reached.   

 

FatiMA 

The FearNot! affective Mind Architecture (FatiMA) is an agent 

architecture designed to operate characters in a virtual storytelling 

education application for pre-teenage children (Aylett et al. 2007).  The 

FearNot! (Fun with empathic agents reaching Novel outcomes in 

Teaching) system presents a 3D cartoon-like environment (see figure 

4.4) in which interactive dramas are played out.  For example, where one 

or more of the characters bully another character in various situations 

and between episodes the victimised character is able to receive advice 

from the user.  FearNot! was designed to allow children to explore the 

actions and outcomes of various bullying scenarios in safety and without 

inducing feelings of victimisation in the child users (Aylett et al. 2005).  

                      

 

 

FearNot! allows for a phenomenon called emergent narrative as the 

author of the scenarios only set up the initial premise and background 

information for the characters – there is no pre-determined sequence of 

events or ending to a story and the story unfolds as the characters 

interact driven by the FatiMA agent architecture.  Each character in the 

world perceives information about events and objects in the world and is 

Figure 4.4. FatiMA characters in FearNot! story – 
(Courtesy of Aylett 2007)  
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able to carry out actions through actuators.  The FatiMA agent 

architecture is based on a system called OCC (named after its designers 

Ortony, Clore and Collins), where decision making is not only based on 

deliberative and reactive reasoning but is also influenced by a simulation 

of the emotional response to stimuli.  Upon receiving a perception the 

FatiMA agent evaluates its significance and produces an emotional 

response and if the event activates a goal intentions are also set up to be 

achieved.  FatiMA agents support autobiographical memory so that past 

interactions with the user can affect decision-making. 

 

Adele 

Adele (Agent for Distance Education – Light Edition) is a 2D animated 

pedagogical agent, which is implemented as a web-based Java applet.  

Adele presents a software personality to assist medical and dental 

students in working through course materials.  Adele was part of the ADE 

(Advanced Distance Education) project, which researched the use of 

artificial intelligence in the creation of adaptive courseware that may be 

delivered via the Internet (see Figure 4.5).  Adele works by presenting 

case-based diagnostic situations to the learner highlighting relevant and 

salient parts.  The learner can ask questions of the case, specify tests to 

be performed and receive the results.  Adele then monitors and provides 

appropriate feedback to the learner. 

               Figure 4.5. Adele explains the importance of palpating 
the patient’s abdomen. – (Courtesy of Johnson 1999)  
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The virtual agent personality is maintained through animating the 

character representation by swapping frames in and out of the applet 

window.  It is unclear from the literature frame whether the effect is a 

series of static images or at a rate to provide continuous movement, but 

the authors assert that users find the amount of the personality 

acceptable (Johnson et al. 1999).   

 

Adele consists of two components: the case simulation engine and the 

pedagogical agent.  The agent contains a reasoning engine that is able to 

follow the student’s decisions and monitors the state of the simulation.  

Knowledge in the agent is represented in the form of hierarchical plans 

that include preconditions and effects for each action.  The decisions 

made by the agent are based on the student model, a task plan for the 

medical case, an initial state and the agent’s current mental state, which 

is updated as a student works through the case.             

4.2   Summary 

Intelligent agents are self-contained software systems that perform one 

or more useful operations on behalf of a client or user.  They are 

characterised as being autonomous, sociable, reactive to changes in the 

environment and able to pursue long-term goals.  This allows agents to 

operate in environments where changes may occur unexpectedly or all of 

the information to allow decision-making may not be conveniently 

available to the agent. One aspect of agent research is the 

implementation and application of intelligent virtual agents, which is the 

presentation of the agent as an anthropomorphic character for social 

interaction with users.  Other applications for IVAs include a range of 

educational applications where the agent may carry out a range of 

activities such as demonstrations, question answering or making 

assessments of the learners work.  There are different strategies for 

implementing IVA applications in education; many exist in 3D virtual 

environments but 2D IVAs may also be used on desktop or web-based 

applications.  The use of an animated virtual agent interface offers two 

facilities to an agent based mentoring system.  Firstly, the opportunity to 
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use modes of communication that appear more intuitive to the learner 

avoids the additional cognitive load of having to learn an application 

interface to access the mentoring knowledge.  Secondly, the phenomena 

of the presence of an anthropomorphic character for in increasing 

performance in computer users should also aid the learner. 
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Chapter 5: 

Reasoning in agent based systems  

5.1 Introduction 

In the previous chapter the concept of intelligent virtual agents and their 

application were introduced, however little examination was made of the 

reasoning mechanisms used to produce the intelligence.  The architecture 

of an agent describes the components that determine the processing and 

reasoning capabilities of the system.  A number of different solutions 

arising in the field of Artificial Intelligence (AI) have been used to provide 

the reasoning capabilities of agents, such as rule-based production 

systems, Bayesian belief network, fuzzy logic, etc. to equip the agent to 

respond to its environment.  This chapter examines the two knowledge-

based reasoning technologies that are the basis of the decision making in 

the developed mentoring agent, MRCHIPS, described in later chapters.  

The technologies are the Beliefs Desires and Intentions (BDI) planning 

and Case-Base Reasoning (CBR).  The architecture of an agent describes 

the arrangement of its component parts, which eventually determines its 

behaviour and capabilities.  The design of the architecture is determined 

by the required behaviour of the agent, the environment in which the 

agent acts, interactions with the environment, knowledge representation, 

the way in which information is processed and the communications 

interface. 

5.2 The BDI agent architecture 

The most common architecture in use for agent systems is based on a 

method of reasoning called the Belief-Desires-Intentions (BDI) model, 

see figure 5.1.  The BDI agent model was developed from a theory of 

human practical reasoning originally proposed by the philosopher Michael 

Bratman in the mid-1980s.   In the BDI architecture the software 

structures are used to represent mental attitudes about the world 

(beliefs), the goals the agent is to pursue (desires) and a set of 
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behaviours (intentions) the agent is able to perform.  The architecture 

allows for the agent to make decisions based on its mental attitudes, an 

interpreter makes use of the data structures to select given behaviours 

(intentions) to achieve certain goals (desires) in response to particular 

attitudes (beliefs) formed from sensing information about the world.  It is 

the combination of the BDI structures that allows the agent to reason 

both reactively in response to its environment and deliberatively to 

pursue goals (Bratman, 1987).  Many BDI systems also include event 

data structures when interfacing with the environment and a library of 

plans as part of their reasoning mechanism.  Events usually lead to the 

formation of new goals and thereby contribute to the desires mechanism, 

while the library of plans defines “recipes” for the actions the agent is 

able to perform.  Although BDI systems are primarily deterministic in 

that they maintain an internal representation of their domain, plans can 

be made to act reactively by having a simple sense and response 

structure.  Research carried out at the University of Michigan describes 

how a BDI based system (PRS – the Procedural Reasoning System) was 

used to control the activity of a robot to navigate a path and correctly 

cope with unexpected obstacles in its path (Lee et al., 1994), 

demonstrating its deterministic reasoning in the path finding and reactive 

reasoning for obstacle avoidance.   More modern BDI systems are able to 

demonstrate similar capabilities in real-world activities as well as for 

virtual environments such as games and simulation (Baillie, 2004).      

 

 

 

 

 

 

 

 

 

The BDI agent architecture is a mature and widely used model for agent 

reasoning, it is used to resolve the problem of choosing the appropriate 

action in a changing environment and based on a model of the mental 

Desires 

Beliefs 

Plans 

Intentions 

Interpreter 

Figure 5.1. The generic BDI architecture 

Action output Sensor input 



 

 65 

attitudes of people as agents in a defined environment.  A BDI 

interpreter maintains a number of data structures for coordinating the 

execution of plans to achieve goals while remaining responsive to new 

events (see Figure 5.3).  The mental attitudes that are modelled in BDI 

are:  

 Beliefs - these are informational structures that reflect the current 

state of the world. Although similar to facts in a knowledge base, 

beliefs model knowledge that is based largely on an agent’s 

perceptions from the environment, other beliefs may be inferred or 

the result of a communication.  Beliefs are very dynamic; they are 

changed constantly during an agent’s execution and can contain 

inaccuracies such as out of date facts.  

 Desires are the motivational structures for the agent that specifies 

the objectives to be accomplished.  Agents may have multiple 

desires to achieve; during execution only a subset of desires need 

to be active at any one period; the activity of goals can be 

switched on or off depending on the context indicated by the 

agent’s beliefs therefore the set of goals may be unrelated, 

complementary or even incompatible with one another.  Desires 

and goals are generally treated as synonymous terms in the 

literature, but some authorities (Rao and Georgeff, 1995) do make 

a distinction between them and distinguish goals as tasks to be 

accomplished, while desires are states to be maintained.  

 Intentions are produced in response to desires; these are the 

structures that represent the selected course of action of an agent 

to achieve a desire within a current set of beliefs.  They are 

dynamically generated paths of reasoning indicating the current 

state of the agent’s deliberation and can be used to backtrack if 

necessary.  The deliberation in most BDI systems is guided from a 

library of plans.    

 

Practical BDI implementations also maintain additional data structures 

that support the core deliberative and reactive structures. 
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 Plans are maintained in a library by the agent and encode the 

agent’s capabilities.  The mental attitudes of a BDI system are 

manipulated by a series of planning rules in a plan base to produce 

the behaviour of an agent.  Each plan describes the processing 

activities required to achieve one or more goals.  Although some 

BDI implementation may contain more elaborate structures plans 

are basically comprised of three structures, (see figure 5.2).  

1. An invocation condition, the head of the plan, which is a 

goal to be matched against goals in the desires;  

2. A context sometimes called a guard condition which contains 

one or more beliefs that must hold for a plans to be 

activated; and  

3. A body which contains a sequence of primitive operations or 

subgoals to be executed and is placed on the intention stack 

if the plan is activated.  

More elaborate plans may also contain exception structures that 

specify operations to be carried out on the failure or successful 

completion of the plan body. 

  

 

 

Goal  Context | Body 

 plan: 

       goal      : awakeAgent, 

       context : avatar:isVisible(false), 

       body     : { 

 write('== maximise Agent'), nl, 

 avatar:isVisible(N), 

 if N \== true then {avatar:show()} 

        }. 

 

 

 

 

 Events are dynamic goals or beliefs that may be added or deleted 

to trigger or alter the activation of plans.  Events may originate 

either externally from the environment to the agent or internally 

from the agent to the agent.  External events are the signals or 

messages from the environment that trigger a response or thread 

(a)                                                           (b) 

Figure 5.2. Logical structure of a plan (a) alongside a practical 

working example (b) 
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of reasoning in the agent.  Internal events are the subgoals 

generated during the execution of the body of active plans.  

 

One of the earliest practical implementations of BDI was the PRS 

developed for NASA and used in fault diagnosis for space shuttle 

systems. A later system, DMARS, was a re-implementation of PRS in 

C++ (PRS was written in Common Lisp).  Both PRS and DMARS were 

considered a general-purpose model of BDI but they were said to lack 

portability and sufficient explanation of their runtime reasoning (Chen 

2003).  Other BDI systems such as JACK, Jadex and JAM are also based 

on PRS.  They are said to be based on an engineering approach (Ancona 

et al. 2005) and are implemented in Java.  Knowledge in these systems 

is usually represented in a highly procedural Java-like notation with great 

emphasis on easy re-use of code libraries and integration with the 

external environment and system.  Other BDI developments 

concentrated on establishing a closer link between the theoretical aspects 

and a practical abstract interpreter that could be used to implement real 

systems, which led to the definition of systems such as AgentSpeak(L) 

architecture (d’Inverno & Luck 1998)  and Jason, a Java implementation 

of AgentSpeak(L).  More recently a version of PRS was implemented in 

Python by Stanford Research Institute, called SPARK (SRI Procedural 

Agent Realization Kit), with features to address the issues of formal 

properties and application development (Morley & Myers 2004).  The 

theoretically derived BDI systems such as Jason (a popular open source 

implementation of AgentSpeak(L)) and 3APL are also implemented in 

Java but represent and process knowledge in a declarative Prolog-like 

programming language, 3APL makes use of a clearly distinct embedded 

Prolog engine while Jason tightly integrates the unifier and resolution 

process into its plan interpreter.        

5.3 Case-Based Reasoning 

The second major reasoning subsystem of MRCHIPS is the Case-Based 

Reasoning (CBR) engine.  Like BDI, case-based reasoning is a method of 

problem solving inspired from a theoretical model of how humans reason. 

It is the CBR module of the agent that is concerned with the domain 
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knowledge about the Python language, novice errors and where 

identification of anomalies with novice errors is done.  In general 

symbolic reasoning mechanisms can be classified into two general 

categories: deductive reasoning and inductive reasoning approaches.  

Although there are many varied types of deductive reasoning the most 

established method is typified by rule-based reasoning as used in 

production systems.  A rule-based reasoning system uses existing 

domain knowledge in the form of rules to make inferences about new 

problems and is considered an effective reasoning mechanism when the 

theory of the underlying problem domain can be well defined and easily 

encoded into rules.  Deductive reasoning in a rule-based system works 

by progressively rewriting the problem state in working memory so it 

more closely resembles the solution space (Jackson 1999).  The major 

weakness with using rules is the relative expense of the knowledge 

elicitation process for developing the rule-base.   

 

One alternative to rule-based reasoning is Case-based reasoning, which 

records knowledge in terms of entire diagnostic situations and reasons 

inductively to draw inferences for new cases based on the experiences 

learned from previous encountered cases – if the experience is not quite 

sufficient for the new problem then they are often able to make 

adaptations to likely strategies to achieve their goals.  Case-based 

reasoning attempts to solve problems by making analogous links to 

similar problems that may have been encountered before.  In CBR 

knowledge is represented in schemas of information containing attributes 

and values known as cases and reasoning is performed by comparing 

cases against each other to find similar historical episodes.  CBR systems 

are concerned with finding the best match to a solution rather than an 

exact match and cases are selected by searching for an appropriate 

match to a current problem.  Once one or more candidate cases have 

been selected various attributes of the case may be adapted to make it 

more appropriate to the problem being addressed.  However rather than 

being a single solution CBR describes a family of information processing 

techniques that attempt to solve new problems from prior experience 

rather than first principles. 
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A CBR system involves storing and recalling previous examples of similar 

problems.  New cases (that have proved to be successful) may be stored 

and can be used for solving later problems; this is in effect a form of 

machine learning.  The primary reason for using CBR is that it appears to 

be particularly well suited to representing the knowledge about the 

learner errors; the literature describes a number of typical characteristics 

for suitable problems for case-based systems: 

a) Problems for which the domain knowledge is broad but shallow; 

b) Where the primary source of information is based on experience 

rather than theory; 

c) For problems where the requirement is for the best available 

solution, rather than a guaranteed exact solution; 

d) For domains where solutions are reusable, rather than unique to 

each situation; 

e) The search space for cases has a mechanism that draws similar 

cases together; 

f) The similarity metric (for the domain) exploits this similarity. 

 

Case-based problem solving is acknowledged to be an attractive 

alternative to rule-based solutions if the knowledge available is already 

organised in cases (Tanimoto 1995) and where there does not exist any 

accepted set theory or set of rules that can be used to solve new 

problems directly. 

 

Irrespective of the details of implementation a case-based reasoning 

system consists of two components: a library of prior/historical cases, 

which forms a knowledge base – the case-base, and a reasoning 

mechanism to select and apply the most applicable case.  Cases are 

defined as being a complete description of a diagnostic situation; they 

contain a description of the symptoms of the case, information about the 

failure or cause of the failure and a strategy to repair the case.  The 

reasoning mechanism consists of a means of using the key elements of 

the present problem to find and retrieve the most similar case (or cases) 

from the case library. This is called indexing, a method for modifying the 
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selected solution to make it applicable to the current problem and finally 

a mechanism for storing the modified case in the case-base. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Aamodt and Plaza defined the reasoning mechanism in CBR as a four 

major step process called the four REs (Aamodt & Plaza 1994), as 

illustrated in figure 5.3.  They are: 

1. RETRIEVE the most similar case(s); 

2. REUSE the case(s) to attempt to solve the problem;  

3. REVISE the proposed solution if necessary; and 

4. RETAIN the new solution as a part of a new case. 

 

The retrieval process is concerned with using the features of a case 

describing the current problem to help select the best matching previous 

case.  In retrieval the case engine identifies features of cases to make a 

comparison, matches features against other cases and selects the closest 

match. 

 

It is likely that the problem case and the selected case still contains 

differences.  The reuse process is concerned with making a copy of the 

selected case and adapting to apply to the current problem.  Different 

strategies may be used to transform the selected case depending on the 

requirements of the CBR.  A domain-dependent model such as rule-base 

Figure 5.3. The CBR process cycle (Aamodt & Plaza 1994) 
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is used to govern the transformation of the solution into a new case.  The 

effect of the adaptation process may be to adjust parameters values in 

the solution, to reorder the sequence of operators or insertion or removal 

of operators.     

 

After reuse the case is applied to the domain but there are circumstances 

where the selected solution fails, so CBR provides a mechanism to assess 

the effectiveness of the new case and revise it if necessary.  Both the 

assessment of the solution and the revision itself may require the 

intervention of a human operator or the use of some external reasoning 

system.  The use of revision allows CBR to make use of failure as a 

learning mechanism. 

 

The final process of the reasoning cycle allows the CBR to automatically 

add to its knowledge base by retaining the new case.  One of the major 

tasks of the retain process is to ensure the new case is indexed on 

features that allow the case to be selected should the appropriate 

problem features arise.  Depending on the implementation the whole of a 

new case may be retained or only those parts that differ as a result of 

reuse and revision.  It may be required to retain even those cases that 

failed after revision as it can be a useful indication to situations that have 

no solutions.    

 

The earliest development of CBR was credited to Roger Schank and 

associates at Yale University in the 1980s, it was based on the 

proposition that when faced with a new situation humans are able to plan 

and make decisions based on lessons from prior experience rather than 

the first principles as modelled in the knowledge-based technology of the 

time.  To model this type of reasoning they developed a frame-like 

knowledge representation scheme called a Memory Organisation Package 

(MOP), where each MOP was used to represent a concept, an entire case 

or some facet of a case. The MOPs could be as simple as a single value 

but usually represented more complex values such as a sequence of 

events or a relationship.  The MOPs are linked together to form a 

network of abstract and instance data to represent the case-base.  The 
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use of MOPs as a knowledge representation scheme has the advantage 

that a different granularity of features of a case may be represented. The 

features may be easily manipulated for revising cases and MOPs may be 

inherited from the memory efficiency of storage and searching (Riesbeck 

& Schank 1989).  Although efficient the difficulty with working with MOPS 

is that individual cases are distributed across many frames and it is not 

always intuitive how the granularity and hierarchy of each MOP should be 

representation and organised.  The first CBR system based on Schank’s 

work was a question-answering system with knowledge about diplomatic 

missions called CYRUS and developed by Janet Kolodner (Kolodner 

1983).   A number of other prototype CBR systems were developed at 

that time, such as CHEF, which demonstrates case-based planning in the 

cookery domain; JULIA, a case-based designer; CASEY, a hybrid CBR 

diagnostic program, using case-based and model-based reasoning; 

SWALE, a case-based explainer for anomalies in stories; HYPO, which 

provides CBR in the legal domain; and CLAVIER, a CBR used to layout 

composite components in an autoclave.  Other knowledge representation 

schemes such as a flat file, relational databases and program objects 

have also been used to represent cases (Chi & Kiang 1991).  

Prodigy/Analogy is a CBR planner that, like CHEF, integrates rule-based 

reasoning to allow multiple strategies to be used when solving problems 

(Veloso 1994).  At the core of Prodigy/Analogy is a domain-independent, 

non-linear planner that uses means-ends analysis and backward chaining 

to find solutions.  The amount of searching performed by the planner is 

reduced by the CBR that records decisions, their contexts and outcomes 

at given points during planning to form cases.  When similar 

circumstances reoccur the cases may be recalled to save the amount of 

planning required from first principles. 

5.4 The cognitive agent architecture 

The study of cognitive agents architectures is concerned with devising 

the set of principles and artefacts required for creation of general-

purpose intelligent systems, rather than describing any one method of 

processing.  Cognitive architectures are defined as theories of how the 

mind integrates different processes to produce thoughts and behaviours 
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(Stewart 2006).  Over many years of AI research fields have tended to 

fragment into the examination of specific subcomponents that underlie 

intelligent behaviour, but with little concern for how components work 

together (Langley 2006).  In his article Langley identified that the 

production of versatile intelligent systems such as sophisticated robotics, 

intelligent tutoring systems, and embedded virtual characters, require 

generalist intelligent reasoning resources whereas much of the field 

centres around pure or “niche” reasoning systems.  There are three 

architectural paradigms concerned with how intelligent systems may be 

combined to produce more general reasoning resources.  The oldest 

architecture is the blackboard system where a collection of independent 

reasoning systems (called knowledge sources in the model) tackle 

particular subtasks of a problem and share information on a centrally 

accessible knowledge-base known as the blackboard (Hopgood 2000).  

The blackboard allows information to be selected, added or deleted as 

required by each knowledge source.  This allows each knowledge source 

to remain independent of others but does not allow for knowledge 

sources to use information about the capabilities of other parts of the 

system to route knowledge to parts of the system where it needs to be 

processed.  The second and most widely known architecture is the multi-

agent systems framework in which several interacting, intelligent agents 

work together to pursue a set of individually held goals or perform a set 

of individual tasks (Hopgood 2000).  As with blackboard systems each 

agent undertakes a facet of a problem but this time communicates 

directly with other agents.  The design of multi-agent systems makes use 

of the social capability of agents and is therefore concerned with how 

agents negotiate with one another if they wish to solicit services from 

each other. The third paradigm is the cognitive agent architecture, which 

was advocated by Newell (1990), where the architecture should be based 

on theoretical assumptions about the mind and subcomponents should be 

highly interdependent on one another.  The work of Newell, one of the 

contributors to the development of the Soar cognitive architecture, was 

credited by Langley (1991), who extended his theories to define the four 

commitments for the development of cognitive agents architecture: 
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a) They should be based around short-term and long-term memories 

that store the agent’s beliefs, goals and knowledge; 

b) Clear representation and organisation of structures that are 

embedded in these memories; 

c) Clear functional processes that operate on the memories for both 

retrieving and maintaining content; 

d) A programming language that allows the construction of 

knowledge-based systems that embodies the architecture.  

 

A number of intelligent agent systems encompass Newell’s commitments 

in their implementation, such as Langley’s Icarus architecture (Langley et 

al. 1991), the Soar architecture (Laird et al. 1987), which is used to drive 

the reasoning of the Steve virtual agent described in section 4.4 and 

ACT-R agents (Anderson 1993), EPIC (Kieras & Mayer 1997) and Clarion 

(Sun et al. 2001).    

5.5 Alternate reasoning methods 

There are other AI reasoning technologies that have also been applicable 

to agent decision-making, these technologies offer different 

opportunities, capabilities or constraints to the design or reasoning of 

agents.  A review is given for the technologies that were considered but 

not developed in this research.  

5.5.1 Classical agent reasoning 

Classical artificial intelligence systems are based on the symbolic 

representation and manipulation of knowledge for their decision-making 

process.  The control of classical agent-like systems, such as SHRDLU, 

STRIPS and NOAH, were based on deliberative plan generation, where 

the problem-solving follows the sense-plan-act process, the planning 

problem was described in terms of the state of the world, the desired 

goal state and a set of operators to effect changes to the world.  The 

knowledge bases maintained by these systems were both the agent’s 

internal model of the environment and the application’s simulation of the 

environment.  The systems assumed that the agent had a complete and 

up to date view of the environment and that no changes occurred in the 
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environment outside of the control of the agent.  Little emphasis was 

placed on the execution of actions so manipulating items in the 

environment was simply a task of altering a symbolic statement in the 

knowledge base.  In addition the information about the environment was 

represented as a set of highly abstract, symbolic statements about the 

environment.  Although the systems produced positive results in their 

environment they suffered the limitation of being less successful when 

applied to real world environments.   

5.5.1.1 Deliberative agents 

One of the more sophisticated deliberative agents was the Homer project 

(Vere & Bickmore 1990), which was an attempt to construct a complete 

socially aware rational agent that was able to function in a simulated 

dynamic environment.  The environment called Seaworld simulated the 

activity around a small harbour (see figure 5.4) containing a number of 

objects such as docks, islets, fish and passing boats.  The agent, called 

Homer, operated as an Autonomous Underwater Vehicle (AUV) able to 

sense, make plans, perform actions, communicate in a subset of English 

and reflect upon its activities in the environment.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 5.4. The seaworld environment – 
(Courtesy of Vere & Bickmore 1990)  

 

STEVE> What is in front of you? 

HOMER> A log. 

STEVE> Do you own the log? 

HOMER> No I don’t. 

STEVE> The log belongs to you. 

HOMER> Oh. 

STEVE> Cows eat grass. 

HOMER> I know. 

STEVE> Do you own the log now? 

HOMER> Yes I do. 
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The goal of the developers was to integrate the then technology to 

develop an autonomous intelligent agent.  Homer did address some of 

the deficiencies of deliberative systems.  The knowledge base for the 

agent and the environment were separate, the agent had limited sensory 

abilities so was only “aware” of its immediate surroundings and changes 

could be made to the world outside of the agents knowledge.  To allow 

Homer to function in the environment its reasoning capabilities were built 

around specialised modules such as a temporal plan generator, an action 

executor, different types of agent memory for different tasks and a 

reflective processor.  Homer also contained natural language processing 

modules for communication with human users, including being set goals 

to achieve and commenting on its activities. 

 

Although Homer is only capable of deliberative processing it is able to 

react to changes in the environment by re-planning, making changes to 

the formulated plans in the agent memory to cope with the new 

information.  Homer can be regarded as an advancement on the SHRDLU 

simulation system, where there was no distinction between the agent’s 

knowledge base and the environment.  It was developed with the 

engineering goal of investigating the state of AI technology by producing 

a complete agent artefact rather than any particular contribution to 

research.  However more recent research by Liu and Schubert use a 

similar planner and reasoning engine called ME (for Motivated Explorer) 

to research linguistic competence in self motivated intelligent agents (Liu 

& Schubert 2010).  

5.5.1.2 Reactive agents 

Completely reactive systems are able to rapidly process real world 

information that is often presented as a stream of data with very little 

abstraction from the environment.  They are said to have advantages 

such as simplicity, economy and robustness against failure (Wooldridge 

2002).  However there are a number of difficulties, for example, as 

decisions are based on local information they are inherently short term 

and there is no principled methodology for building such agents.   
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Nils Nilsson proposed the Teleo-Reactive as an architecture for creating 

goal oriented reactive programs.  The Teleo-Reactive (T-R) architecture 

is a reactive agent control system that directs an agent toward a goal in 

a manner that continuously takes into account the agent's changing 

perceptions of its environment.  T-R programs are structured as a 

network of decision-making elements, processing directs an agent toward 

a goal in a manner that continuously takes into account the agent's 

changing perceptions of a dynamic environment to select the agent’s 

action.  The programs are written in and interpreted by a production-

rule-like condition-action language, where conditions may specify some 

detectable situation from the environment condition and actions specify 

agent behaviours.  Although rule-based reasoning is generally associated 

with production systems they may also be used for plan generation and 

execution.  Rules allow agent behaviours to be executed from simple 

operators rather than a library of pre-coded plans typical of BDI agents.  

In addition to continuous feedback, T-R programs support parameter 

binding and recursion.  In addition, T-R programs are said to be intuitive 

and easy to write and are written in a form that is compatible with 

automatic planning and learning methods (Nilsson 1994).  T-R programs 

have been used in the control of simulated agents and actual mobile 

robots. 

 

Another example of a completely reactive agent is the subsumption 

architecture devised by Rodney Brooks, (Brooks 1991) who wanted to 

explore producing intelligence without the need for elaborate knowledge 

representation or reasoning.  The idea of subsumption is to produce 

intelligent behaviour from a network of interacting stimuli-response 

subsystem modules, each of which controls a logically single or simple 

behaviour.  The network of modules are organised into a fixed hierarchy 

where modules in lower layers represent primitive behaviours such as 

avoiding obstacles, which are able to override or subsume the behaviour 

effects from other modules at higher layers that govern more general 

tasks such as path following.  In effect a subsumption architecture forms 

a software circuit analogous to an electronic circuit, where the operation 

at any one time is determined by the state of the inputs.  There are two 
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mechanisms that allow modules to override the effects of other modules: 

suppression where the input to a module is blocked, hence preventing it 

producing a behaviour and inhibition where the output from a module is 

blocked.  The reasoning for module behaviours are implemented as 

stimulus-response processes typically using condition-action rules and 

although computationally very simple the subsumption powered 

machines are capable of producing behaviours that would be regarded as 

sophisticated if produced by symbolic AI systems.  

5.5.2 Practical agent reasoning  

5.5.2.1 Hybrid agents 

In the last chapter the set of required capabilities for agent systems was 

specified as: autonomy, reactivity, deliberation and sociability.  The 

processing for these capabilities requires differing resources that are not 

always complementary.  The limitation with deliberative agents is that 

they are not able to respond quickly to changes or unexpected events in 

their environment.  The limitation with reactive agents is that they are 

not really capable of pursing a range of goals over a long term.  One 

solution to the differing requirements is to allow different subsystems, or 

layers, to process the deliberative and reactive requirements separately 

and then combine results to provide the overall agent behaviour (Müller 

1991).     

 

 

 

 

 

 

 

 

 

This hybrid arrangement of processing layers allows the agent to produce 

timely responses to changes in the environment while pursuing longer-

term goals.  Hybrid agents such as INTERRAP (Müller 1991) and Touring 

Figure 5.5 Horizontal (a) and vertical (b) information flows in layered 

agent architecture (Courtesy of Müller 1991)  
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Machines (Ferguson 1992) are typically constructed with a reactive rapid 

responding layer, a goal seeking deliberative layer and a third domain 

specific modelling layer.  The major difference between the types of 

agent is how the layers interact. In INTERRAP the layers are arranged 

vertically in a hierarchy.  All sensory input and action output to the 

environment is through the reactive layer.  If an input requires more 

processing it can be passed up to the deliberative layer and so on to the 

model layer, see figure 5.5 (b).  If a layer is able to process an item of 

information the result is passed down the hierarchy where it may affect 

the operation of a lower layer or produce an action via the reactive layer.  

In Touring Machines the layers are arranged horizontally.  Each layer has 

sensory input and action output to the environment, see figure 5.5 (a).  

Information in the agent is processed in parallel by each layer; because 

of this it is possible for layers to produce contradictory actions so each 

layer contains a mediation function to inhibit, or be inhibited by, other 

layers giving control to one layer only at any particular time (Ferguson 

1992).  The horizontal reasoning, Touring Machines architecture, makes 

use of suppression and inhibition mechanisms similar to that used in the 

subsumption architecture to determine which layer controls the agent’s 

behaviour. 
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The INTERRAP architecture consists of three vertically layered processing 

areas that each process perceptions from its environment at a different 

level of abstraction, see figure 5.6.  Each layer consists of two processes 

called SG, for recognising situations and setting goals and the DE process 

for making decisions and overseeing plan execution.  The lowest layer, 

called the behaviour based layer (BBL), deals with supervising reactive 

responses to changes in the environment.  The middle layer, called the 

local planning layer (LPL), implements a planner to generate plans 

required to achieve the proactive goals of the agent.  The highest layer, 

the cooperative planning layer (CPL), governs social interactions with 

other agents. 

 

Another example of a layered hybrid system is the Prodigy/RAPS 

architecture developed by Veloso and Rizzo (1998).  This consists of two 

separate reasoning layers.  The upper layer is Prodigy, which is a 

deliberative reasoning system, although it is not clear from the authors 

whether or not the Prodigy planner includes the Analogy CBR engine for 

this architecture.  The lower layer is based on James Firby’s Reaction 

Action Package system (RAPS), a rule processor, which executes 

planning goals that are specified as knowledge structures similar to the 

reactive plans of a BDI architecture.  Plans generated by Prodigy are 

translated into RAPS operators, as the two systems do not share a 

common syntax, for execution where RAPS controls the pursuit of 

deliberative and reactive goals without intervention from Prodigy.  

Another hybrid architecture, called CBR-BDI, combines a BDI planner 

with a CBR to address some of the limitations of BDI such as the absence 

of a learning mechanism, the need to recompile the agent knowledge 

base to add new plans and the efficiency of some implementations (Bajo 

& Corchado 2005).  The architecture is not layered but rather implements 

the BDI reasoning within the CBR by mapping the BDI knowledge 

structures onto the cases in the knowledgebase.  In a CBR-BDI a case 

represents the set of beliefs, an intention and a desire, which cause the 

resolution of a problem (Corchado & Pellicer 2005).  The mapping 

between cases and BDI plans are for the problem component of a case to 

represent the beliefs, the solution component is equivalent to the 
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intentions and the result represents the desires.  Reasoning in the CBR-

BDI is performed in the four REs process cycle of the CBR engine.  It is 

not clear from the authors how efficiently reactive processing is 

supported in the architecture compared to other BDI systems, however 

the agent is able to reason, communicate and learn.       

5.5.3 Biologically inspired reasoning methods 

Another class of agent reasoning is the reasoning technologies inspired 

by processes found in nature such as neural networks or genetic 

algorithms.  Rather than representing and manipulating knowledge in the 

form of symbols as a method of reasoning these systems reason by 

mimicking biological processes.  The systems tend to be self-organising 

so acquire knowledge by a process of learning rather than from a 

knowledge base.  A genetic algorithm reasons by an evolutionary process 

of repeated manipulation and evaluation of a population of strings to 

optimise a search towards a solution.  An artificial neural network (ANN) 

is a programming structure that consists of many simple processing units 

interconnected in layers to produce specific outputs in response to 

particular inputs.  The ANN is said to mimic the way the brain processes 

information (Schalkoff 2011) and is very useful for pattern matching and 

predicting trends in data.  A more comprehensive treatment of 

technologies is available in Schalkoff (2011), Russell and Norvig (1995), 

and Hopgood (2001).  There has been some use of biologically inspired 

reasoning systems for agent decision making used in applications such as 

for the control of embodied agents in virtual reality environments (Florian 

2003), crowds of people and flocks of birds simulations (Stanley et al. 

2005). 

5.6 Summary 

This chapter introduced two reasoning technologies, agent systems and 

case-based reasoning, which form the basis of the mentor agent system.  

Agent systems combine different methods of reasoning to satisfy the 

requirements to be autonomous, to be social, reactive to changes in the 

environment and able to pursue long-term goals.  Although agents may 

be implemented in different ways those based around the BDI 
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architecture are the most developed and popular.  BDI reasoning is a 

form of planning that provides a method of reasoning that supports both 

reactive and deliberative processing; it makes use of a library of 

hierarchical plans to achieve goals.  The architecture provides a 

mechanism for handling the differing requirements from a learner in the 

desktop environment.  The agent has to reconcile information from 

multiple sources on the desktop, make inferences about the learner’s 

activity, control the agent’s interface, coordinate information from the 

different knowledge sources and respond to commands from the learner.  

The second technology, CBR, stores records of complete diagnostic 

situations and provides mechanisms to select and adapt historical cases 

to supply the closest solution possible to new cases.  CBR is analogous to 

the way humans solve problems by recalling past experience and 

therefore is used for domains where there are large example sets of 

decision making data.  Traditionally CBR systems are used by a 

consultation process, where a user presents the properties of problem for 

diagnosis and a solution is returned.  In later chapters these technologies 

will be brought together to form a cognitive agent architecture where the 

different reasoning and knowledge sources are integrated to produce the 

agent mentor.  By combining BDI and CBR the BDI will manage the 

presentation of problems to the CBR making its diagnosis resources 

available to the learner. 
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Chapter 6:  

The challenges of learning Python – Case 

Study 

6.1 Introduction 

This research focuses on the programming language Python, which is the 

language taught by the researcher at his university, and provides a 

useful case study as the researcher has access to his students’ work and 

their difficulties. Python is not only a good introductory programming 

language to first year students but also provides an ideal situation to test 

the proposed mentoring approach and validate the results.  This chapter 

begins with an analysis of the nature of the errors produced by novice 

learners and a classification of the programming errors encountered by 

novice programmers in Python.  It is followed by a brief overview of the 

features of Python to explain why it is used as a teaching tool. There is 

then an explanation of the different schemes that may be used to 

characterise programming language errors before a detailed examination 

of the observed learner errors is given within the scheme chosen as the 

most appropriate. 

6.2 Difficulties in learning to program 

Although this chapter is concerned with the domain of python 

programming errors it is worth examining whether errors occur 

irrespective of any particular programming language.  In section 2.2.1 a 

review was made of the literature related to the psychology of the novice 

programmer and why errors are made.  The literature summarised the 

source of novice errors as from two causes: fragile knowledge where the 

learner is aware of the required information but fails to see the 

opportunity to use it and neglected strategies where students do not use 

techniques to gain further understanding of the problem they are solving.  

Both these causes are related to the difficulties of understanding the 
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semantics and the logic of code, and independent of the syntax of any 

particular language.  However, the syntax of a language has an influence 

on how easy it is for a programmer to introduce errors. 

 

As will be explored in sections 6.4 and 6.5, syntax errors account for 

most of the errors made by novice programmers.  As the design of a 

language influences the range of real-world developments it may be used 

for there are many non-scholarly Internet debates comparing the design 

of programming languages and the influence of different syntax on error 

rates.  More scholarly sources have examined novice errors while 

learning a range of prominent programming languages such as BASIC 

(Mayer 1981), LISP (Gray et al 1988), Pascal (Ueno 1998), Smalltalk (Xu 

and Chee 1999), LOGO (Glezou and Grigoriadou 2007), C/C++ 

(Kummerfeld and Kay 2006, Gobil, et al 2009), and Java (Jadud 2004, 

Traynor and Gibson 2004, Thompson 2006).   One of the scholarly 

sources McIver and Conway (1996) examined the design of programming 

languages suitable for teaching and summarised three types of syntactic 

and semantic constructs they termed “grammatical traps” that impede 

the novice programmers.  They are:  

 Syntactic synonyms – in which two or more syntactic forms are 

available to refer to a single construct,  

 Syntactic homonyms – a syntactic form that has two or more 

semantics depending on context and  

 Elision – the optional inclusion of a syntactic component.  

The researches also identified other language design issues such as:  

 Hardware dependence – where programmers have to specify 

storage class of data (often merely for the convenience of the 

compiler writer),  

 Backward compatibility – including features for historical reasons,  

 Excess of features – languages support many more features than 

required for teaching that are used for real-world application 

development, 

 Excessive cleverness – features that cause misunderstanding at 

the novice level but are considered obvious to experienced 

programmers and 
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 Violation of expectation – there is no reason why the protocols of a 

programming language should appear obvious or natural to a 

novice. 

While tools such as syntax highlighting editors, reviewed in section 2.3.1, 

are shown to aid the productivity of experienced programmers evidence 

of a similar increase with novice programmers is unclear (Green 1989).  

The reason why a given language has relatively little effect on the types 

of novice errors observed is because any programming language is 

essentially a protocol for communicating commands to a computer.  The 

differences between programming languages are influenced more by 

their purpose and method of evaluation within the computer.  Novice 

programmers face two major obstacles in learning a new language: 

firstly, there are no everyday intellectual activities that are analogous to 

programming and secondly, programs operate on a notional machine 

(albeit in a physical machine) whose function and operation remains 

opaque to the learner (Rogalski & Samurcay 1990).  Novice 

programmers face the same difficulty with the syntax of any 

programming language as they do with the semantics and logic of 

program design that of fragile knowledge.  They will often have yet to 

acquire required information missing knowledge, lack the experience of 

when to use information inert knowledge or use what they have in the 

wrong context misplaced knowledge.  The difficulty is further 

compounded by having to learn the multiple skills of the syntax, 

semantics and logic of program design in parallel, each reliant on the 

other to produce error free code. 

6.3  The properties of Python 

Python is an object oriented scripting language developed by Guido Van 

Rossum in the 1980s with the aim of being easy to learn and easy for 

rapid application development.  The Python programming language is the 

main development tool used to teach programming to the students in the 

“Foundations of programming” module for the Information Sciences 

course at the University of Northampton.  A more detailed explanation of 

the Python programming language is given in appendix-A.  There are a 
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number of features of Python that make it an attractive choice as a 

software development tool and a suitable language for teaching: 

1. Support for multiple coding styles, i.e. scripting, procedural 

programming, object-oriented development; 

2. Automatic memory management; 

3. Dynamic data typing; 

4. Simple syntax, few keywords and indentation for block 

delimitation; 

5. Rich set of data types – integers, floats, strings, lists, association 

lists, sets, etc.; 

6. Interactive interpreted (compiles to byte-code) programming 

environment - suitable for rapid application development; 

7. Large set of third party code library; 

8. Widely used in the networking and computing industry.  

 

In terms of programming languages Python is conventional in many 

ways.  The most distinguishable feature of Python is its use of 

indentation to mark the beginning and end of sections of code, which 

coupled with its dynamic data typing, avoiding the need to declare the 

data type for variables when writing code, provides for a brevity in its 

notation.  The general impression given of Python code is as a kind of 

executable pseudo-code; in the book Artificial Intelligence for Games 

(Millington 2006) the author acknowledges the similarity of the notation 

of the pseudo-code examples given to Python. The computer scientist 

Peter Norvig wrote on his web site of a similar observation when 

converting lisp programs to Python for his book, Artificial Intelligence: a 

modern approach (Russell and Norvig 1995).   It is the pseudo-code like 

features that make Python easy to read and easy for non-programmers 

to learn. The step from a design to implementing code reduces the 

cognitive load of the learner having to remember large amounts of 

detailed punctuation, such as where to place a semi-colon or a bracket. 

   

The professional computing community has used Python in many 

applications, often as a configuration or prototyping tool, but also in 

deliverable products. The Python web site lists about 60 such applications 
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written wholly in Python or using Python to drive or configure the 

application.  It is worth noting that there are some limitations with 

Python.  Although semi-compiled and executed in a virtual machine it is 

relatively slow compared to rival programming languages such as Java, 

Perl and Lua, it does not produce easily portable compiled object code 

like Java class files and compatibility is not supported between different 

versions of the Python run-time environment. Therefore Python 

applications often include the entire run-time environment when 

distributed. 

6.4 Observation of novice errors 

The novice learners were students from a year one undergraduate 

university course who had to complete an introduction to programming 

module as a compulsory component of a business computing degree 

course.  The module was designed to offer the students insight into the 

production of software applications and to develop the student’s skills in 

areas including problem solving and working in teams.  The average 

number of students per cohort was between 20 and 25 with ages starting 

from 18 years old upwards and an average age of 21.  The module was 

taught over a twenty-four week period consisting of a weekly one-hour 

lecture where an introduction to some aspect of programming was 

examined followed by a ninety-minute practical session where 

supervision was given while students worked through a set of related 

programming exercises, to reinforce the topic introduced in the lecture.  

However, for many students computer programming was not the primary 

interest of their study and the level of motivation was variable. As 

programming is a skill based activity that relies on building new 

knowledge upon old, students who had difficulty with the beginner level 

concepts and exercises had even greater difficulty with the later 

intermediate level and advanced level exercises.   

6.4.1  Method  

The observations were carried out using five techniques to gather 

sufficient information about the errors made. Care was taken to observe 

ethical considerations and none of the techniques involved interfered with 



 88 

the learning process.  The first method was to observe the learners 

during normal practical sessions where students carried out programming 

exercises.  Due to time commitments and the desire to reduce classroom 

disruption it was not possible to make contemporaneous detailed notes, 

but notes were recorded at the end of most sessions.  In this way two or 

three original (that is to say not recorded previously) errors were 

generated from each practical session.  The second method was to run 

one-to-one tutorial sessions with three student volunteers from the 

cohort where similar programming exercises to those in the practical 

were carried out and notes could be made as the student worked through 

the problem. This approach allowed a more detailed record to be made: 

the chronology of how novices approached problem solving and questions 

to be asked as to why certain decisions were made.  The third method 

was to review the assignment work submitted by students and categorise 

the different solutions used – what worked and what problems they were 

unable to solve properly.  The fourth method was to offer an email 

consultation service to the students where they could email questions 

describing problems they had encountered and a solution returned. This 

allowed a record to be made of the way students think about and express 

problems.  One final source for information on novice errors was 

literature from third parties; this was often in the form of error finding 

(debugging) hints that accompanied Python programming tutorials and 

allowed for different sets of problems that would occur from different 

types of teaching materials.          

6.4.2  Categories of programming errors 

The purpose of undertaking the observations of novice programmer 

errors was to identify the range and types of learner mistakes with the 

aim of finding ways to rapidly identify the source and possible solution.   

These observations form the basis of the knowledge for the mentoring 

agent and so the domain knowledge for the agent, the categories 

therefore needed to reflect how the errors would be used to determine 

the program cause.  
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One approach to categorising the errors observed would be to organise 

them in terms of the types of programming statements they represent 

and to have the errors treated as variations on the legitimate statement.  

This would allow the assessment of student code to be made by 

comparison against legitimate statements. This method of diagnosis can 

be called source-to-source comparison (Chee & Xu 1998) and is the 

method used in SIPLeS discussed in the literature.  The limitation of this 

approach is that, assuming a mentor agent would provide assistance 

when the learner had produced an error. It would lead to the mentor 

performing a substantial amount of analysis on code that had already 

been analysed by the Python environment. 

 

As Python is a loosely typed language, variables do not have a type and 

the data type of operations can therefore only be determined at runtime. 

This means that the static analysis of the syntax of a program cannot 

determine some types of error.  The Python interpreter makes a 

distinction between the way it treats errors that occur when compiling 

the source code, syntax errors and those that occur when the program is 

being executed – these are as a result of the semantics of the program.   

This would appear to be a logical way to categorise programming faults 

as it is the same way the programmer experiences them and skilled 

programmers are able to reason about and correct faults using this level 

of information.  There are also some errors that do not fall into the 

category of syntax error or semantic error, but produce an unexpected or 

incorrect output. These errors will be placed in the category of logical 

errors.  

6.4.2.1  Syntax errors 

The syntax error category is where the rules of the language have been 

broken so the meaning of statements and expressions cannot be properly 

interpreted.  Syntax errors in formal languages such as those used for 

programming are more likely than in natural languages for two reasons: 

the syntax rules are less flexible and the semantics of parts of many 

programming languages are carried by the use of more non-

alphanumeric symbols than those in natural languages.  In terms of this 
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analysis syntax errors are those that prevent the successful compilation 

of a Python script.  There are a number of errors that will be uncovered 

as syntax errors in strictly typed languages that, because of the nature of 

Python will only become apparent at runtime in a Python development.  

       

 Example Description Notes 

6.1.1 if food == “spam” Missing colon from end of 
statement  

 

6.1.2 print “hello” name Missing comma between 
terms 

Print can handle a single 
argument or a comma 
separated list  

6.1.3 Test = [alpha, beta gamma] Missing comma between 
terms 

A list should contain comma 
separated items 

6.1.4 if test(max(x,6): Unbalanced parentheses 
missing )  

 

6.1.5 x = 1 + 2  y = m * x + c Missing operator between 2 
and y 

These are two lines of code 
and should be separated by a 
new line or semicolon 

6.1.6 If food == “spam”: Upper case letter used in 
keyword ‘if’ 

 

6.1.7 if food = “spam”: Assignment operator rather 
than test for equality 

The = means “becomes equal 
to” in Python 

6.1.8 Ifval == 123: Missing space after if 
keyword 

Words must be ended by a 
space or non-alphanumeric 
character  

6.1.9 def say_hello(): 
print “Hello World” 

No indentation in line after 
the colon ended line 

Produces an indentation error 

6.1.10 day = day + 1 
  print “start of the weekend” 

Rogue alignment of 
statements 

Variation of error 6.1.9 but 
produces a syntax error 

6.1.11 def name(arg1 * arg2): Illegal operator in argument 
list 

 

6.1.12 def na  me(): Illegal space in function 
name  

The names of items in Python 
must be a single word  

6.1.13 def = name(arg1): Illegal syntax in function 
definition 

 

6.1.14 def  name(arg1 arg2): Missing comma in argument 
list 

Variation of error 6.1.3 

6.1.15 def  “name”(arg1, arg2): Quotes not permitted around 
function name 

 

6.1.16 def__init__(self): Missing space after def 
keyword 

Variation of error 6.1.8 

6.1.17 print “please press enter’ Different symbols to delimit 
string constant 

 

6.1.18 import “string” Module name should not be 
a string 

 

6.1.19 class = “month” Use of a keyword as a 
variable 

 

6.1.20 int(calc_area(width,10) Unclosed bracket Usually flagged on line 
following 

Table 6.1 Syntax Errors 

 

For example, because there is no variable declaration the compiler is 

unable to detect the incorrect spelling of a variable name.  Although most 
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novice errors originate from minor causes, such as the incorrect use of 

punctuation the effect can be quite critical to their progress through a 

problem.  Most errors are as a result of fragile knowledge and have trivial 

solutions: the inclusion of a missing symbol, or the substitution of a 

correct piece of punctuation, etc.  In table 6.1 are examples of the 

observed errors that prevented compilation of Python code.  It is worth 

noting that none of the errors is particularly complex, usually requiring 

the addition or the changing of a single character. Some learners are 

able to locate and correct them by themselves, but where they are 

unable to, these errors greatly restrict further learning. 

 

One of the first types of error to be observed (and one that would 

continue to occur regularly) was the missing out of punctuation symbols 

(or non-alphanumeric), characters or the format of Python code.  The 

most commonly missed symbols were, for example, the comma 

separator between multiple arguments in print statements (table 6.1, 

error 6.1.14) and missing the colon at the end of a program structure 

defining line such as def, if, while, etc. (table 6.1, error 6.1.1).  The 

comma separator was the symbol most often missed.  With most of the 

other errors the learner could determine the fault as long as the location 

of the error was pointed out.  This is an example of inert knowledge, 

although students were often unable to determine the cause of the error 

if the missing symbol was a comma, an example of missing knowledge.  

In an example of misplaced knowledge there was often confusion 

between the use of the equals symbol for a test for equality or to assign 

a value, but students were often able to correct the problem by 

themselves. There were no errors with arithmetic operators, however 

comparisons operators such as less-than and greater-than were often 

confused for one another, and became apparent as a logical error, (see 

table 6.3, error 6.3.2).  The observation of the learners’ treatment of 

symbols is that different punctuation and operator symbols carry 

different amounts of meaning for individuals.  The four arithmetic 

operators posed little difficulty but after that, less familiar symbols 

including commas and parentheses caused some to make errors.    
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The other commonly occurring error was difficulty in handling the level or 

degree of indentation. Observations noted mistakes even when students 

were tasked to type in some code from a pre-prepared program code 

(see table 6.1, errors 6.1.9 and 6.1.10). Managing white-space 

characters is more important in Python than with other languages as 

they are used to delimit blocks of code.  The most frequent error with 

white spaces, made by novices, is to not include them; this is probably 

as an attempt to avoid potential errors but is particularly unproductive.  

Incorrect indentation is potentially a more difficult problem to diagnose 

and treat because it relates to the student’s understanding of how the 

program is supposed to work.  Even when copying a piece of code some 

students will alter the indentation and are surprised at the level of 

accuracy required to reproduce the working code.  This is consistent with 

McIver and Conway (1996) who categorise white-space block delimiting 

as a feature of excessive cleverness. 

6.4.2.2  Semantic errors 

Once a program is in a state where its code is syntactically correct the 

next level of errors that may occur are semantic errors, these are 

statements that are legal, but they have an error in meaning that will 

cause the program to fail when it is run.  Semantic errors are usually 

generated by an incompatible operation for a particular type of data.  

These errors are sometimes only detectable when a program is 

processing data and thus are usually detected at runtime.  Strictly typed 

programming languages provide a margin of security against some 

semantic errors, but Python is a weak typing mechanism (the language 

designers preferred the increased flexibility for its data handling in 

weakly typed language).  Exception handling is another mechanism 

available to a programming language to allow the application to catch 

errors that occur at runtime within the application and if possible to take 

remedial action to deal with them.  For the purposes of this analysis a 

limit is going to be placed on the definition of a semantic error as one 

that causes a runtime error such that a Python program would not be 

able to complete its execution. Other authorities may have a different 

definition of the semantic error. 
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 Example Description Notes 

6.2.1 y = 0 

result = x / y 

Division by zero error The zero is usually arrived at 

by a longer calculation 

6.2.2 result = “123” – “456” Type error operation, 

subtraction, is not legal for 

strings 

String concatenation by use of 

the addition is legal 

6.2.3 Sum = m * x + c 

print “the answer is”, result 

Variable name ‘result’ is not 

defined 

Usually as a result of copying 

example code without 

adaptation  

6.2.4 current = week * 7.0 + day 

. . . 

. 

today = days[current] 

Type error as array indexes 

must be an integer value  

 

6.2.5 noOfDwarves = 7 

. . . 

.  

boots = 2 * noOfDwarfs  

Name error noOfDwarfs is an 

unrecognised variable 

 

6.2.6 name = graham Name error it is unclear 

whether graham is to be a 

variable with a value or literally 

the word “graham”  

The line of code needs to be 

analysed in context as it might 

produce a syntax error, a 

semantic error or no error 

6.2.7 def foo(arg): 

    … 

. 

foo() 

Type error exception missing 

argument in function call 

 

Table 6.2 Semantic Errors 

 

The name error exception outlined in table 6.2 usually occurs for a 

number of reasons, from simple reasons such as failure to initialise a 

variable or a spelling mistake, to more subtle reasons like the mixing of 

cases (see table 6.4 below).  However homophones, such as illustrated in 

table 6.2, error 6.2.5, where dwarves and dwarfs become confused, 

support the theory that novice programmers are more concerned with 

meaning than with representation and some novices incorrectly presume 

the computer capable of providing more human-like levels of 
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interpretation.  The differences can remain opaque to the novice until 

they are encouraged to check each spelling letter by letter.   

 

For error 6.2.6 (table 6.2) the absence of quotes means the interpreter 

evaluates the word “graham” as being a variable and not finding one 

would cause the program to raise an exception.  A run-time error 

message accurately reports a name error saying that the graham 

variable (in this instance) has not been defined but from the error 

message students are often unable to understand why the error has 

occurred and so how to proceed to correct it.  It is notable that this error 

occurs more often when the constant value being assigned is a single 

word. For some reason the space in a phrase or sentence acts as a 

prompt for the correct delimitation.  Both of the errors above indicate 

that, even after being shown how to create different data types, some 

learners tend to pay attention to the largest portion of data constants to 

determine the meaning.  This error occurs even in the presence of 

editors with colour syntax highlighting, which might indicate that while 

syntax colouring is noted to be more of an aid to experienced 

programmers its purpose appears to be opaque to the untrained eye of 

the programming novice.  Although type errors are some of the earliest 

mistakes made they tend to produce semantic or logical errors. The 

learners who have difficulty with types often mistakenly expect the 

programming language to have more human-like levels of interpreting 

meaning called Egocentrism (Pea 1986). 

 

In addition to learning the core of the language learners are introduced 

to programming concepts that start to illustrate some of the purpose of 

programming with more real-world application examples for their 

practice.  To do this the course introduces the student to two new 

concepts, which can influence some semantic errors; the concepts are: 

1) Modules: The introduction of Python modules allows the learners 

to develop two new resources: first it allows for larger programs 

with code spread across a number of files, and second it 

introduces the use of third-party code libraries for access to 

different applications such as database access via an ODBC library 
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and more importantly writing GUI applications via the Python 

version of the TCL/Tk interface, called Tkinter.  Python allows for a 

number of formats for the import of modules, affecting what 

resources are imported and how the resources are addressed.  The 

addressing code (and data) from other modules introduces the 

concept of the dot notation for names, used extensively in object-

oriented and object based programming discussed in the next 

section.  Although the introduction of modules allows for many 

potential errors the one that students regularly make is handling 

the case sensitivity for the imported file names. 

2) Object-orientation: Although object-oriented programming is 

optional in Python scripts and learners are not expected to develop 

any object-oriented programs, with the use of third party code 

libraries, especially the Tkinter GUI library, object-based 

programming, where objects are made use of would become 

necessary.  Students were given a brief introduction to the general 

concepts behind object-orientation, such as encapsulation and 

inheritance, an explanation of the terminology, such as the 

difference between a class and an instance and a look at how 

Python implements such features.  The most important feature the 

students needed to understand was the creation of an object 

before making use of its functionality; this was mainly done using 

the Tkinter window objects, called widgets.  The use of window 

objects meant that changes to underlying code often produced an 

immediate visual effect on the application so students made fewer 

errors than expected (or were able to correct them without tutor 

intervention) even though there was a substantial increase in the 

complexity of the code being developed.  The same degree of 

competence did not appear when working with database access via 

the ODBC library, which would lead to the inference that the visual 

confirmation offered from the Tkinter widgets had a substantial 

effect on their understanding.  The most frequently occurring error 

appeared to be case confusion when creating Tkinter widgets, the 

writers of Tkinter adhere to the convention in the object-oriented 

programming community of spelling class names with a capitalised 
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first letter and all other names to begin with a lower case letter; so 

some learners would find their program producing a runtime error 

for an undefined function, say “frame” rather than having 

produced an object from the class “Frame”.  Other difficulties 

arose from manipulating objects once created: first, in not creating 

new variable names to hold different instances of objects. So 

learners would call all their Button widget instances say “b1” and 

be unsure why only one button would appear on their application 

even though they had intended more.  Second, the requirement 

for objects to be configured after creation was also a source of 

errors. It is not clear if this was because variables with simple data 

types do not require further initialisation, or solely the peculiarities 

of the Tkinter programming interface. The operation most often 

forgotten by the learner was to pack (the Tkinter name for placing) 

the widget into the application window. 

6.4.2.3  Logical errors 

The third type of programming error is the logical error where there are 

no errors in the code that prevent a program from executing, but rather 

faults that prohibit the production of the required or meaningful output.  

Logical errors can be difficult to detect from analysis of the code alone, 

as there often must be an understanding of the difference between the 

code produced by the programmers and the requirements of the problem 

to indicate what may be missing.  For instance Python requires the name 

of a function to be followed by parenthesise when call is being made to it, 

however functions first class object, meaning the function name acts as a 

variable and its value (a function object) may be passed as an item of 

data in which case the parenthesise are not used.  The use of either 

format is fully legal and depends on the logic of the problem and the 

intention of the programmer.  There are, however, some attributes that 

can be searched for that would be expected to be in most novice level 

programs such as the program containing a structure where there is 

initialisation, processing and termination.  Each phase would be expected 

to contain a typical set of activities such as the initialisation or input of 

data in the initialisation phase, a processing phase where there is a 



 97 

relation between the input data as some result and the termination phase 

where the results are usually presented to the user.  

  

 Example Description Notes 

6.3.1 raw_input( “prompt>> ”) No destination for input value Not an error if awaiting an 

Enter (often to pause a 

program) 

6.3.2 If a>10 and a<0: No value may be both less 

than 0 and greater than 10 

The results of any test will 

therefore always be true (or 

false) 

6.3.3 for each in myList:  

    print myList 

Use of wrong variable in a for 

statement 

 

6.3.4 for count in range(len(myList)): 

    sum = sum + myList[count] 

    ave = sum/count 

Code misplacement the 

calculation of average should 

not be in the loop 

 

6.3.5 def f1(v1): 

    if v1 > 10: 

        v2 = 2 + 3 * 4 / 7 << 3; 

        return v2 

    else: 

        return 7 

    return 0 

Unreachable code Zero is never returned as v1 is 

either greater than 10 or not so 

there can be no third option 

6.3.6 User = raw_input missing brackets for a 

function call 

Python executes this as an 

assignment of the identity of 

the function 

6.3.7 count + 1 No destination for an 

expression result 

The user usually means to 

increment count by one 

6.3.8 if 3 > 2: 

    print “Answer is True” 

Both sides of the test are 

constant values 

The result will always be true 

(or false) 

6.3.9 data = [‘string message’] Incorrect data type specified Here the intention was to 

process a string 

Table 6.3 Logical Errors 

 

Logical errors are very difficult to define and therefore difficult to detect 

also.  The reason for this is that the logical purpose of a program’s 

statements also depends on the context of its use; for example the use 

of the raw_input function pauses a running program and awaits some 

input from the computer keyboard before continuing execution.  An 
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optional prompt message may be passed to the function to specify the 

information requested and the result can then be assigned to a variable.  

However on some occasions no information need be returned from the 

input (for instance to confirm when the user is ready to proceed) so no 

variable is required for the result.   The need for a destination variable 

for the input depends on the context of the input. The determination of 

its presence requires an overall understanding of the purpose of a piece 

of code. 

  

6.4.2.4  Strategic errors 

There are a number of other errors observed that do not arise so much 

from the code written by learners but more from their approach to 

writing code. These have been placed in here in a category of their own 

and are included here as they relate to methods of cognitive 

apprenticeship but may not be directly addressed by the mentoring 

agent. 

 

1) Slow Rate of work: The rate of work from an individual is 

consistently slower than the average rate of progress within a 

cohort because they do not engage with practical exercises.  An 

individual’s output in performance may vary greatly from session 

to session and it might mean nothing or even be an indication of 

taking the time to learn. However a sustained low level of output 

might indicate a student who is struggling or will come to struggle 

as they miss a proportion of the learning experience. 

2) Programming as a typing exercise: This can be indicated by a 

learner who constantly finishes exercises more quickly than the 

average; where the individual is happy to type in and run example 

programs but reluctant to change or experiment.  The learner 

presumes speed is a measure of progress, but takes little 

opportunity to reflect and understand. They start to struggle as 

scaffolding is removed. 

3) Reluctance to compile: Novice programmers are encouraged to 

compile and run their programs regularly as an aid to 
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understanding the effect of each incremental change. Some 

learners may adopt the strategy of writing as much code as 

possible before attempting to run it and do all the corrections in a 

single step.  While there may be efficiency in performing these 

tasks in a batch there is usually a penalty to pay in terms of 

understanding. 

4) Ignoring error messages: In the Python environment when an 

exception is raised the program is halted and a record of the call 

stack is printed to the screen as it is unwound.  This means the 

oldest information is printed at the top of the screen and 

information related to the cause of the exception is towards the 

bottom (see Figure 6.1).  A number of novices who attempt to find 

feedback from stack output have been observed to read error 

messages from the top of the screen and often fail to make sense 

of the information presented because they cannot see anything 

relevant so are unable to determine the nature or location of the 

error. 

        

Figure 6.1. Runtime-errors in the Python shell window  

6.4.2.5  Errors arising from incorrect use of letter-case in Python 

One of the particular properties of Python is that it is at the same time 

loosely typed and case sensitive.  For this reason it is possible for some 

errors to cause a symptom in more than one category depending on 

where the error occurs in the code.  For instance the incorrect use of 

letter case in a Python keyword would cause a syntax error.  If error 
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occurs in the name of an item of data, such as a variable name it would 

cause a runtime exception error.  The way the errors are detected is 

different, but in both cases the cause of and the solution to the problem 

are precisely the same – the correct case should be used.  

    

 Example Correct form Notes 

6.4.1 Def foo(arg1, arg2): def foo(arg1, arg2): Produces an invalid syntax 

compile error 

6.4.2 import tkinter import Tkinter Produces a file not found 

runtime exception 

6.4.3 if current_drive == “c:”: If current_drive == “C:”: Representation in the data 

can obscure the expected 

interpretation 

Table 6.4 Case sensitivity error types 

 

The most frequently occurring mistake that caused errors in all three 

categories was caused by incorrect use of cases, illustrated in table 6.4.  

The choice of case sensitivity in a programming language depends on the 

purpose of the original language designers.  Languages that are designed 

for teaching such as LOGO tend to be case insensitive, whereas 

languages used for application development tend to be case sensitive, 

but may still be used for teaching, Python and Java for example, 

although the designers of Alice thought it an important enough issue to 

modify the version of Python that was shipped with Alice to be case 

insensitive.  They gave the argument:  

While we, as programmers, were comfortable with this language 
feature, our user community suffered much confusion over it. [...] 
Case sensitivity is an artificial rule that fights against older 

knowledge that novice users have, namely that while forward and 
FORWARD may look different, they should at least mean the same 

thing (Conway 1997). 
 

Another type of error that is reported differently are those caused by 

incorrect alignment or indentation of code; failure to indent correctly are 

reported as a syntax errors while inconsistent indentation raises runtime 

errors.  The way the errors are detected is different but in both cases the 

cause of and the solution to the problem are the same – the code should 

be properly aligned. 
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6.4.3  Recognition of errors 

So given a problem the programmer must be able to categorise a 

sufficient number of features of the code to determine its likely cause.  

The first clue is when the problem occurs because that determines which 

strategy to use for the rest of the analysis of the problem.     

 

today = raw_input(“What day is it?  ”) 

. 

if today = saturday: 

    print “Hurrah it’s the weekend” 

Figure 6.2. Listing of a faulty Python to be debugged 

 

As determined from the observations although the causes may be varied 

errors eventually manifest in the Python environment belonging to one of 

three categories; syntactic, semantic or logical errors.  Due to the way 

Python is compiled and interpreted if a coding fault exists that may cause 

errors in more than one category it will always be expressed as type 

syntax error before type semantic error and type semantic error before 

type logical error.  To illustrate debugging in Python the result of 

processing the program code above in figure 6.2 is examined.  Note that 

only the relevant lines are shown for brevity, in most instances the lines 

will exist as a more substantial module of code.  Presenting the code 

above to the Python interpreter would generate a compile error because 

it first violates the syntax rules for Python. 

                    

Figure 6.3. Console error output for the faulty Python code 

 

The error message would be displayed to the console as illustrated in 

figure 6.3 or in the case of using an IDE the editor would produce a 

dialog box window and highlight the symbol at fault as shown in figure 
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6.4.  Although the error output would be enough for an experienced 

programmer to determine the source and a likely correction, a novice 

may require more guidance, which is not provided by the interpreter.  

The error message would indicate that the equality symbol “=”, in the 

line beginning “if today…” is at fault.   

      

Figure 6.4. Windowed error output for the faulty Python code 

 

As the error is with the syntax it becomes a matter of checking the code 

against the rules for the language. The interpreter has given the line of 

the error and the offending component.  In this case it is an if-statement 

and the equality symbol.  A check of the rules of the language (see 

Appendix A) would indicate the if-statement expects a test expression 

(i.e. that will evaluate to a Boolean value), that the single equals symbol 

in “today = Saturday” makes it an assignment statement. In Python 

statements are not allowed in place of expressions, and the closest 

similar operator used in test expressions is the double equals symbol 

“==” which is the test for equality.  However as it is a frequently 

occurring error from novice programmers the source of the error can be 

determined without the need for reasoning from the rules of the 

language syntax given the clues syntax error, if-statement and the 

equals-symbol. 
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Once the code has been corrected (the correct equality check has been 

inserted) and assuming no other syntax errors, executing the Python 

code will run the program until completion or a runtime error is detected.  

Using the corrected example code above, executing would run the 

programme until the if-statement line where it would produce a runtime 

exception indicating that ‘saturday’ was undefined.  There are usually two 

sources for this type of error: first, that the offending item of data is an 

undefined variable.  This might be due to the need to define a variable, 

but it might also be due to a spelling mistake including the mixing of 

cases in different occurrences of the name.  The second reason is that 

the data is meant to be a literal value and needs to be surrounded by 

quotes.  The point is from a runtime error while the source of the error is 

as easy to determine as with syntax errors the range of solutions for 

semantic errors is increased.   

 

Detailed figures for the numbers of each type of error that occurred were 

not kept as the observations were carried out during the running of the 

computing practical classes, addressing the needs of the students had to 

be given priority.  However a record was kept for the weeks on which 

errors occurred, this information can be used to give an indication of the 

different rate for each category error and any trend over time.  From the 

chart, in figure 6.5, it can be seen that syntax errors are encountered 

first, closely followed by semantic errors.  While syntax errors begin to 

decline after week 6, the rate of semantic errors were more persistent.  

The logical errors began to occur later than the others and occurred at a 

lower rate than the others. 

6.5 Related work 

Other languages have been used as the basis of research into the 

difficulties faced by novice programmers.  Thompson (2006) identifies 4 

categories of error for Java programmers, syntactic errors, semantic 

errors and logical errors.  She then distinguishes the run-time error as a 

separate category of semantic error. This is possible because Java is 

strictly typed. The compiler is able to identify some semantic errors 
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during compilation; those it cannot find occur at run-time. This is 

different in Python as all type checking occurs at run-time so all semantic 

errors are run-time errors.   Jadud (2004) found that 60% of novice Java 

errors were from 4 sources (illustrated in figure 6.6): missing 

semicolons, spelling mistakes in variable and class names, missing 

brackets and illegal start of expressions usually caused by the missing 

brackets or semicolons errors of previous statements.  Gobil, et al (2009) 

used C++ in their research with novice programmers, concentrating on 

the semantics of code for their ability to follow the path of execution in 

selection (if…else) statements.  They also observed that the novices had 

difficulty dealing with basic syntax similar to those with Java (both 

languages share a similar syntax), but did not indicate how learners were 

able to progress to the semantic problem solving. 

 

day++ 
System.out.println(“start of the weekend”); 

(a) Missing semicolon 

 

int noOfDwarves = 7; 

. . . 

.  

boots = 2 * noOfDwarfs; 

(b) Misspelled name 

 

for (int count=0; count < myList.length; count++{ 
  sum = sum + myList[count]; 
} 

(c) Missing bracket 

 

day++; 
if (day == 6) 
    System.out.println(“start of the weekend”); 

} 

(d) Illegal start of expression 

  

 

 

Figure 6.6. Examples of frequently reported novice programming errors 

in Java 
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In a series of student assessments the researchers found novices had 

difficulty understanding how expressions and assignments alter a 

program's memory, comprehending the limits of a selection statement, 

following the likely path of execution through a selection statement and 

the importance of the correct sequence of instruction.  

6.6  Summary 

This study has been primarily concerned with understanding and 

classifying the diversity of errors faced by novice learners.  These errors 

were classified in three categories, namely syntactical, semantic and 

logical errors; these will provide the framework for building the animated 

pedagogical agent, MRCHIPS, which is introduced in the next chapter.  

The cognitive or psychological reasons for producing an error are likely to 

be less informative than the class of the error, but it is worth noting that 

these errors are produced by novices learning Python and similar sets of 

errors would also be produced when learning any other programming 

language.  The study of the literature identified the difficulty in learning 

to program as a result of not having a real world analogue to the activity 

of programming, in learning two concepts simultaneously, in modelling 

problems into code and understanding what features are available from 

the computing language to represent the model.  Student errors stem 

from their inexperience with the use of program code for expressing 

ideas and problem solving.  Most programming novice students appear to 

understand the need to manipulate programming code to produce 

solutions to problems and thus appreciate that the mutability of code 

allows a notation for expressing many different types of solution.  

Unfortunately an appreciation of how code is to be manipulated is difficult 

to grasp with a first programming language.  The source of the majority 

of novice errors appear to be because they are not able to discriminate 

between the importance of different components of a body of code.  

Often students will create a non-standard syntactic notation while at the 

same time being greatly unwilling to manipulate the components such as 

the names of variables and the order of statements. 
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Chapter 7: 

An agent framework for mentoring within 

cognitive apprenticeship 

7.1 Introduction 

In this chapter the theories, problems and technologies discussed in the 

previous chapters are considered in relation to each other to explain the 

rationale behind the development of the mentoring agent, MRCHIPS, and 

to determine the processing requirements for its architecture.  In 

previous chapters an examination was made of a number of Intelligent 

Tutoring Systems (ITS) such as SHERLOCK (Lesgold et al. 1992), UNCLE 

(Wang & Bonk 2001), CABLE (Chen et al. 2006) and SIPLeS (Woolley & 

Jarvis 2007) that had implemented cognitive apprenticeship.  An 

examination was also made of the capabilities of intelligent virtual agents 

used for tutoring in systems such as Steve (Rickel & Johnson 1998), 

Adele (Johnson et al. 1999), PPP persona (Andre 1999) and FatiMA 

(Aylett et al. 2007).  While the development of agent systems as a tutor 

is a well researched area very little attention has been made to the role 

of an agent as a mentor.  The role of the mentor is to act as a more 

experienced practitioner willing to share their knowledge, guided by the 

concerns of the learner in comparison to that of a tutor who provides a 

programme of teaching material and gives feedback on the learner’s 

performance.  Mentoring includes the activity of coaching (Landsberg 

1996), which provides support during practice-based learning and is a 

large component of learning to program.  A more detailed discussion of 

the role and tasks involved in mentoring was given in chapter one.  They 

are reviewed in the sections of this chapter each followed by an Agent 

capability section used to accumulate the requirements for the MRCHIPS 

agent.  
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The cognitive apprenticeship pedagogy is used to provide the theoretical 

underpinning for mentoring as they share the activities of coaching and 

support in terms of scaffolding.  The requirements for a cognitive agent 

based mentor can therefore be determined by examination of the 

pedagogy alongside the other subjects introduced in previous chapters of 

programming theories, the programmer’s environment, the observed 

novice errors, the capabilities of virtual agents and architectures for 

intelligent reasoning.  This chapter describes the mentor agent named 

MRCHIPS (Mentoring Resource a Cognitive Helper for Informing 

Programming Students), explains how it interacts with the learner and 

determines a set of capabilities for its operation. 

7.2 Handling errors in Python  

When errors occur in software the programmer is faced with two tasks to 

determine the location of the code that is at fault and to devise a solution 

to correct the fault.  Locating the fault includes both identifying the 

position in the code and determining the component of the code that is 

the cause.  For syntax errors and simple semantic errors (those in the 

order of misspelled variables or unquoted strings that would normally be 

detected by the compiler in languages like Java or C++), identifying the 

code component at fault usually identifies the required correction.  For 

more complex errors a redesign of the code, such as initialisation of data, 

the order of statements or additional operations might be required.  For 

an experienced programmer the type of the error, the content of the 

error message and a reading of the relevant section of code are usually 

all that is required to determine the cause of an error.  From the analysis 

in chapter six it was shown that the programming errors produced in 

Python could be grouped into three categories and that these groups 

were based on how the programmer experienced the error.  The 

categories are syntax errors, semantic errors and logical errors.  The 

reason for the distinction between the categories was to account for the 

dynamic typing of Python where some decisions on the nature of the 

operation to be carried out on data can only be determined once the 

program code is being executed.  The categories also reflect how the 
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learner is encouraged to diagnose errors and attempt to correct them on 

their own. 

 

Learners do progress while learning to program within the normal 

teaching curriculum, making fewer errors and solving more complex 

problems over time.  The trend of the results for the observation of 

student errors, summarised in chapter six, figure 6.5, shows that the 

occurrence of errors decreased over time.  As students continue to learn 

the main purpose of the agent is to supplement the process and provide 

mentoring in the form of additional diagnosis resources when errors are 

produced.  To provide additional mentoring support this thesis proposes 

an intelligent animated agent to sit alongside the learner on the desktop 

and provide support within the framework of cognitive apprenticeship by 

supplementing coaching and scaffolding methods.  The reasons for an 

agent-based solution are: 

1) An agent would avoid an ITS environment where the learner would 

have the additional cognitive load of having to learn the interface 

of the additional application. 

2) Working alongside the Python IDE and Windows desktop produces 

a dynamic environment with differing requirements, such as 

monitoring applications and diagnosing errors, challenges that are 

suited to agents’ reasoning. 

3) The capabilities of agents may be extended by interfacing with 

other code libraries and tools. 

 

Evidence from the psychology of programmers (chapter three) indicates 

that programmers do not solve programming problems from first 

principles but rather recall experience to apply to new situations that 

may arise.  This method of reasoning is analogous to case-based 

reasoning, which is embedded in the mentor agent activity in the 

following way:    

1) To diagnose the learner’s errors the mentor agent, which has a 

profile of the learner’s previous errors can retrieve the closest 

solution match from similar past cases, or adapt the candidate 

case to the new problem and offer the solution to the learner. 
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2) Each of the novice programming errors can be combined with its 

given solution to correct the error.  The various error-solution 

combinations form individual diagnostic situations or cases, which 

may be used as the knowledge base for the CBR.  

3) The solution contained in each case is a plan to address the 

problem of the case. When the agent executes the plan it causes 

the agent to appear on the desktop and prompt the learner to 

identify a cause for the error. 

 

7.2.1 Agent capability 

a) The agent must be able to monitor and detect the placement and 

content of desktop windows in general and those related to the 

Python development environment specifically to help determine 

learner’s activity.   

b) The agent must be able to monitor the Python development 

environment and sample the learner’s code to determine the 

context and cause of errors. 

 

7.3 The Cognitive Apprenticeship approach to 

learning to program  

Cognitive Apprenticeship pedagogy, which describes a structure for 

teaching practice-based subjects such as law and medicine, underpins 

the approach adopted by the mentor agent. It consists of six methods 

that describe the activities to be undertaken by teachers and learners, as 

was discussed in chapter three and summarised in table 7.1 below.  From 

the literature it was found that researchers have used cognitive 

apprenticeship as a teaching framework for their ITS and a number of 

the systems were also reviewed.  Each of the ITS systems used different 

approaches and selected those methods in their implementation of the 

cognitive apprenticeship to suit their teaching requirements.  In this 

research the main methods of cognitive apprenticeship that are 

considered for the agent are those concerned with mentoring activities of 

coaching, scaffolding and exploration.  The assumption is made that 
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other parts of the pedagogy are available as part of the normal course of 

a university based programming module where the agent supplements 

the teaching.  

     

Method Agent activity 

Modelling The teacher as the subject expert would carry out this activity in the 
form of lectures, workshop exercises and assessed pieces of work. 

Coaching This stage is one of the major tasks of the automated agent; it would 
provide support to the learner based on its database of prior similar 
cases. 

Scaffolding The agent will implement scaffolding by tuning the level of feedback 
to the learner and fading the level or amount of support as the learner 
becomes more proficient 

Articulation No explicit support is being provided for this method of the pedagogy. 

Reflection The agent will eventually be able to provide a summary of the users 
performance 

Exploration This should be available to the learner by virtue of the agent learning 
support working within the standard development environment. 

 

Table 7.1 The methods in the cognitive apprenticeship pedagogy mapped 
against the agent activity 

 

The only constraint that cognitive apprenticeship makes on the identity of 

the coach is that they have expertise in the subject.  In the normal 

course of events a teacher would provide coaching, however if a teacher 

were not available the expertise could be encoded in a knowledge-based 

agent system.  For a knowledge-based system to be able to provide 

teaching assistance to a learner it has to fulfil a number of requirements. 

The agent has to be responsive to the user, it needs to monitor and react 

to changes in the environment, it has to be able to reason about 

problems in the subject area, communicate the results of its reasoning 

and monitor the outcomes.  Some of the steps are available to 

automation in the programming field by intelligent software.  The 

mapping of each step of the pedagogy is shown in table 7.1 alongside the 

behaviour of the intelligent system. 

 

The primary methods of cognitive apprenticeship that are addressed by 

the mentor agent are coaching and scaffolding, where the agent supports 

the learner in practical exercise sessions when the learner attempts to 

reproduce the activities of the expert.  This supports the initial 

description of the agent as a mentor as opposed to a tutor; the agent 
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does not introduce course material to the learner rather it provides a 

mechanism to help assimilate new knowledge.  The major activity of the 

agent in mentoring will be in support of the coaching method. At this 

stage the agent system sits alongside the learner’s development 

environment to monitor activity as they write code and alert or advise 

them of errors and problems in a format suited to the requirements of 

the novice.  The mentor agent has to monitor the user’s activity, analyse 

the nature of a user’s problem and provide effective responses.  Other 

methods are addressed as part of the normal teaching curriculum.  A 

human teacher following a course of lectures, demonstrations and set 

exercises still provides the modelling method.  The scaffolding method is 

shared between the teacher and the agent following the requirements of 

the curriculum in setting the level of the tasks and support provided and 

the mentor in selecting the level of support in responses within individual 

exercises. 

 

Although the cognitive apprenticeship methodology does not have an 

explicit mentoring method it does include a coaching method.  The 

assumption made for this research is that there is no significant 

difference between mentoring and coaching.  The term mentor was 

chosen for this research to emphasise a passive role for the agent’s 

assistance and make a clear distinction from a tutor.  Cognitive 

apprenticeship defines coaching as the learner repeating the task 

observed by the expert who provides hints, tips and reminders to aid 

them, while the dictionary defines mentoring as advice from a wise guide 

or counsellor.  However both words are synonymous and it is arguable 

that the perceived difference between the two words is primarily a 

matter of context.  Mentoring students involves explaining the code 

component at fault and providing a solution for novice learners.  As the 

students become more proficient the level of help required reduces to the 

level required by experienced programmers in locating and rectifying the 

error.  Scaffolding is provided as a result of the activity of the learner, as 

the learner progresses they reduce the number of errors made or 

become more able to correct them before seeking help.  
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As mentoring is largely a coaching process the main activity is to allow 

the learner to reproduce the expert’s activity under observation, to 

provide hints, tips and reminders.  In terms of the agent’s behaviours 

this means: 

 Reproducing the expert’s activity means allowing the learner to 

practice writing code in the environment;  

 Under observation means the agent needs to monitor and assess 

the learner’s work; and  

 Provide hints, tips and reminders means under certain 

circumstances providing appropriate feedback to the learner.  

The result of this is that the learner programs Python and interacts with 

the normal development environment for most of the time while the 

agent remains out of the way, but the agent observes the learner’s 

activity and is activated (that is to say becomes interactive) to provide 

hints, tips and reminders in specific circumstances.   

 

Two situations were chosen for agent activation: 

 An error occurs and the learner has been unable to correct it after 

a set period of time; 

 The learner makes a request for the agent to become active.  

 

A third situation where the agent would give a positive message after a 

successful run was considered but not pursued.  The idea was that the 

message would encourage further reflection, but there was no evidence 

for this.  It might be possible that the agent’s approval would signal the 

end of development to the learner, where there may still be logical errors 

to uncover and correct. 

7.3.1 Agent capability 

c) The agent strategy will be to respond to errors found by the 

development environment rather than lead the process.  This will 

avoid the agent presenting information to the learner that they 

might not be ready to receive and to allow the learning activity to 

remain driven by and centred on the learner. 
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d) When the Python interpreter finds a syntax error an additional 

parser in the agent will compare the learner’s code against the 

BNF for the language to identify the location in a statement that is 

the element of code at fault before being used to index case 

retrieval in the CBR.  The need for the additional parse is because 

each syntax error message covers multiple types of coding error.  

e) The agent will use runtime error messages directly from the 

Python interpreter to index case retrieval to determine the cause 

of semantic errors, as the range of error messages compared to its 

cause is small. 

f) Logical errors will be addressed by a natural language consultation 

where the learner can pose questions to the agent and causes or 

solutions suggested. 

7.4 The agent interface 

One possible solution to automating coaching support would be to 

implement a specialised ITS environment on which the novice 

programmer can practice and be provided with a more detailed 

breakdown of mistakes and errors.  While this approach may provide an 

environment where teaching material could be presented in a systematic 

and highly controlled way the limitation would be to break the principle of 

cognitive apprenticeship for the learner to use the real world tools of 

expert practitioners.  Another approach might be to provide a 

programming environment that would be the same as that used by 

practitioners, where areas of the environment and the language code 

could be shielded from the novice as they begin and with the restrictions 

fading as the learner progresses.  This would be a more attractive 

approach than a specialised ITS application and would allow the learner 

to work in an environment closer to a real world context.  While the 

restrictions would offer a scaffold to the learner the limitation of this 

approach would be in how to accommodate the cognitive apprenticeship 

method of exploration.  The restrictions would provide the learner with 

fewer opportunities to become familiar with aspects outside of the 

sequence of the fading scaffold.  A solution that allows a closer 

adherence to cognitive apprenticeship would be to allow the learner to 
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train in the real world environment of the programming language and 

have knowledge-based software mentor the learner by providing 

expertise within the same environment.  The knowledge-based tool 

designed for work in a given environment is the intelligent agent and its 

behaviour would be to fulfil the main functions of coaching support.  

Although an agent approach provides a solution that should integrate 

within the cognitive apprenticeship pedagogy with little alteration to the 

environment or method of learning the greatest challenge is the 

unstructured nature of the environment and interaction with the novice. 

 

 

 

 

 

 

 

 

 

 

One of the main principles arising from the cognitive apprenticeship 

pedagogy for this research is for the learner to work on real-world 

problems in as near as possible to the environment as used by expert 

practitioners.  The theory does not directly speak of cognitive load for the 

learner but addresses it in the principle of scaffolding and the fading of 

support as the learner becomes more competent.  The Python 

programming language provides a real-world software development tool.  

It also supports the reduction in cognitive load by way of a small 

language core, a simple syntax, optional inclusion of module and object 

libraries and other support tools such as colour syntax highlighting 

editors and code profiling tools.  To develop an agent with a solely 

conventional application interface (i.e. buttons, text fields, icons, etc) 

would provide yet another tool to learn that would add to the cognitive 

load.  Research form intelligent virtual agents, as explained in chapter 

four, indicates that animated virtual characters allow users to 

communicate in modes that are a closer analogue of the real-world, such 

Programming novice  

Mentor 
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Knowledge 
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errors 

Desktop 
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Figure 7.1. Sketch of the novice and mentor agent interaction 
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as natural language, speech, embodiment and gesture.  In this way the 

rules of interaction are already largely known by the user and the 

requirement to learn an additional application can be avoided.  An 

anthropomorphic interface, where the agent maintains strategies for 

communication and dialogue with the learner, provides an easy interface 

to the agent’s knowledge by avoiding the requirement for the learner to 

learn how to use an additional interface and so would not add 

significantly to the cognitive load of the learner.        

7.5 The agent environment 

To fully understand the capabilities of any agent system consideration 

needs to be made of the environment in which it operates. The design of 

MRCHIPS was influenced by the opportunities and constraints imposed by 

the nature of the environment. Opportunities include factors such as the 

message passing nature of a computer desktop environment, whereas 

constraints are features such as the set of development tools.  The 

agent’s environment is the Windows desktop of any PC variant of the 

Microsoft Win32 operating system such as Windows ME/2000/XP/Vista; 

although Windows 7 has limited support for the Microsoft agents engine, 

it is used for the animated character interface and explained in chapter 

eight.  It is no longer shipped with the operating system and needs to be 

obtained from the Microsoft website. 

 

In terms of Russell and Norvig’s five properties used to characterise 

agent environments, as explained in chapter five, the Windows operating 

system imposes the following constraints on the capabilities of the agent. 

These are: 

 Accessibility vs. inaccessibility: the privacy and security issues of 

the Windows environment means it is not accessible; 

 Deterministic vs. nondeterministic: as Windows is a multitasking 

operating system it is nondeterministic; 

 Episodic vs. nonepisodic: as the accessibility is limited on Windows 

the agent episodes have to be retained across perceptions;  

 Static vs. dynamic: the Windows environment is dynamic as it 

changes constantly outside of the control of the agent; 
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 Discrete vs. continuous: as Windows may support an unlimited 

number of configurations the environment is continuous.     

These properties inform the eventual capability of the agent and 

constrain the overall design of its architecture. 

7.5.1 Agent capability 

g) The agent must operate on a Desktop environment, notably 

Win32, as this is the platform used to teach programming in the 

university. 

  

7.6 A mentoring scenario 

To illustrate the use of an agent-mentoring assistant, consider a student, 

called Oscar, working on a desktop environment to develop a Python 

program.  Alongside him but not visible is the agent, the Mentoring 

Resource a Cognitive Helper for Informing Programming Students 

(MRCHPS).  Oscar has been asked to make use of an insert swap 

program that is able to sort a list of numbers and then to sort a list of 

names, of the seven dwarves, "Sneezy", "Dopey", "Grumpy", "Sleepy", 

"Happy", "Bashful" and "Doc", into alphabetical order.  He has 

successfully used the program to sort ten numbers and works out that he 

must put the names in place of the numbers.  Oscar edits his program 

and enters the names, however when he attempts to run the program it 

reports an error of type ‘name error’ for an unidentified variable on the 

line specifying the names of the dwarves.  The error alerts the MRCHIPS 

agent, which has been monitoring the learner’s activity in the desktop 

environment. The agent then reads the code from the Python 

development environment along with other values that are used to help 

select the closest matching cases from its knowledge base.  It is possible 

that the learner is able to correct the error by him or her self so 

MRCHIPS places a small transparent window on the desktop informing 

Oscar that help will be provided in thirty seconds to see if he is able to 

correct the error.   MRCHIPS notes that Oscar’s activity makes no change 

to the faulty code, as a result the MRCHIPS interface, the Merlin 
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character from Microsoft agents, becomes visible on the desktop (Figure 

7.2), with an introductory message offering help.   

     

 

 

The agent character, and an input dialog box are placed alongside the 

Python code Window, and offers to help.  As Oscar is unsure why the 

error has occurred he accepts the help and MRCHIPS gestures toward the 

code while providing the explanation from the selected case that the 

variable name is likely to be data and should be surrounded by quotes to 

prevent evaluation.  MRCHIPS continues to monitor Oscar as he makes 

the correction.  Once done the new case is recorded.  Working in this 

way MRCHIPS provides mentoring support by undertaking the behaviours 

of coaching in providing immediate feedback to the learner, that is 

context/task sensitive, and the guidance offered is to support 

performance improvements (Laffey et al. 1998). 

7.6.1 Agent capability 

h) The Agent output to the learner will be directed via an animated, 

anthropomorphic character as produced by the MS Agents 

interface or similar system.  Use will be made of the text to speech 

for voice generation if available. 

Figure 7.2. The mentor agent’s advice to a learner 
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i) The agent will make a delay between detecting an error and 

providing assistance to allow the learner a chance to solve the 

problem on their own and therefore to encourage learning. 

j) Input to the agent will be via text input, with a simple natural 

language parser to interpret inputs.  While speech input may be 

possible it will not be considered a requirement as the natural 

mode for programming input is already via the keyboard. 

7.7 A Cognitive Apprenticeship agent framework 

The scenario above illustrates that the development goal for the 

mentoring agent is to produce an agent architecture with the range of 

behaviours and the available knowledge to provide mentoring support to 

novice programmers.    Rather than producing a single or pure reasoning 

technique the architecture is a collection of reasoning techniques that 

integrate to produce a cognitive architecture based on the definition 

asserted by Langley (2006).  Whether the design is based around a 

multiple-agent systems framework, a blackboard system, or a cognitive 

architecture, all of the systems maintain some form of reliance on short-

term and long-term memories, the representation and organisation of 

structures within these memories, the reasoning that is able to operate 

on the structures and a programming language that allows the 

construction of knowledge-bases (Langley 2006). 

 

 

 

 

 

 

 

 

 

 

 

The architecture chosen consists of a number of processing subsystems 

that coordinate the activities of the agent.  The two main reasoning 
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Figure 7.3. The agent framework  
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modules are the Beliefs-Desires-Intentions (BDI) and the Case-Based 

Reasoning (CBR) subsystems.  The two subsystems coordinate the 

different levels of reasoning required to provide the different capabilities 

of the agent, as in figure 7.3.  The BDI subsystem provides the 

processing required to interface the agent with the environment.  It 

coordinates the control of the agent interface, the speech, emotional 

expression, gestures, its position and orientation.  The reactive and 

deliberative capabilities of the BDI allow the agent to sense various 

computer resources such as the filing system, the Windows desktop, the 

content of Windows of interest, keyboard activity and mouse clicks.  By 

tracking the user’s activity this layer will also be able to make inferences 

about user activities and select suitable responses for the agent 

character.  The CBR subsystem maintains specific domain knowledge 

about programming errors, techniques for diagnosing errors and the 

strategies for communicating solutions to the learner.  Although both the 

CBR and BDI subsystems use different internal representations suited to 

their individual processing requirements, they are both capable of 

sharing each other’s knowledge-bases by including mechanisms to access 

the different knowledge-bases from within the plans of the BDI and the 

cases of the CBR.  Other research has also proposed the combining of 

BDI-CBR agent systems for intelligent web searching and a tourist guide 

agent (Corchado and Pellicer 2005).  These systems have primarily been 

concerned with adding learning capabilities to BDI and have in different 

ways used CBR to implement BDI agents.  The MRCHIPS agent works 

differently from these systems in that the BDI and CBR subsystems are 

structured to reason in different ways on different aspects of a problem 

domain and combine their results to provide solutions where a single 

reasoning method would be insufficient.  In this way MRCHIPS is similar 

to cognitive architectures such as Homer (Vere and Bickmore 1991), 

Prodigy/Analogy (Veloso 1994), Fatima (Aylett et al. 2007) and the 

challenge set for generality in intelligent systems by Pat Langley (Langley 

2006). 
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7.7.1 Agent capability 

k) The agent will be implemented as a processing shell.  The domain 

knowledge, behaviours, plans, rules and cases will exist as a 

knowledge base script that will be interpreted by the agent. 

l) The rules and plans of the BDI engine will coordinate the 

interaction with the learner and processing of other modules within 

the agent. 

m) Domain Knowledge concerning learner errors and corrective action 

required naturally form cases and will be processed by the CBR 

engine. 

n) The knowledge base content will be expressed as a sequence of 

predicate calculus clauses.  A Prolog-like parser will read the 

content and individual modules will extract data into an internal 

representation as required by each module. 

7.8 Agent requirements for MRCHIPS 

The MRCHIPS architecture can be characterised as an implementation of 

a cognitive architecture produced by an integration of a plan-based agent 

system and a case-based reasoning system to address a problem that 

would be difficult to solve using a single reasoning system.  The 

architecture satisfies the commitments of a cognitive architecture 

explained in the literature review.  The agent is implemented as a 

number of integrated interpreter subsystems that can be programmed 

via various knowledge sources to produce the required behaviours.  

Through access via various Win32 programming resources the agent is 

able to share a desktop programming environment with a programming 

novice to allow learning to continue in a real-world context.    MRCHIPS 

is able to detect and analyse Python syntax errors and semantic errors 

and to provide help via an animated assistant when programming errors 

are produced.  At the present time the agent still lacks the component to 

provide support for logical errors, but the plan is for a natural language 

parser to drive a question-answer subsystem to access the cases 

concerned with logic errors.  However with the MRCHIPS agent able to 

address issues of syntax and semantic programming errors it has enough 
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functionality for experimentation with programming novices and testing 

of the hypotheses.       

7.9 Summary 

In this chapter the idea for a mentor agent to assist novice programmers 

was analysed in terms of the problems of learning to program, the 

cognitive apprenticeship pedagogy and agent theory.  The literature in 

chapter three was concerned with the psychology of learning to program 

and identified the causes of these errors as neglected strategies and 

fragile knowledge.  In chapter four it was shown that cognitive 

apprenticeship was an effective pedagogy for teaching subjects where 

the learners had to understand how to apply the acquired knowledge.  

The analysis of novice errors, from chapter six, confirmed the 

observation that learners make programming mistakes in a variety of 

ways from a set of misunderstood concepts.  The results of the analysis 

from the students’ errors are collated with the literature from cognitive 

apprenticeship pedagogy to determine the type of reasoning required to 

provide mentoring support to novice programmers.  So the decision was 

made to concentrate the agent’s assistance on the coaching and 

scaffolding methods of the cognitive apprenticeship pedagogy and the 

agent behaviour on diagnosis of syntactic and semantic errors.  It was 

also decided to implement the agent behaviour in a BDI planner as this 

provides a mechanism for handling the differing requirements from a 

learner in the desktop environment and a CBR for the diagnosis of 

learner errors as the combination of a programming error and its solution 

correlates to a diagnostic case.  The Microsoft agent engine will be used 

to produce the animated character for the virtual agent as this provides 

most of the facilities for an anthropomorphic interface.  

 

 



 123 

Chapter 8: 

Implementation of MRCHIPS  

8.1 Introduction 

This chapter describes in detail the design and implementation of a 

cognitive diagnostic agent that is able to provide mentoring support to 

novice programmers and the interface to its environment.  The 

information from the analysis of student errors, which was examined in 

chapter six, has led to the development of an agent given the name 

MRCHIPS (Mentoring Resource a Cognitive Helper for Informing 

Programming Students).  In section 8.2 a description is given of the 

agent’s operation as it interacts with and helps diagnose student errors, 

illustrating its reasoning and mentoring capabilities.  In section 8.3 the 

constraints of the programming environment and windowing desktop are 

highlighted. In section 8.4 a description of an overall design of a 

mentoring agent is provided, followed by a more detailed view of its 

architecture, subsystems and components.  Finally section 8.5 explains 

how the prototype MRCHIPS agent is implemented. 

8.2 The MRCHIPS cognitive architecture  

The agent, MRCHIPS, is an implementation of a cognitive agent 

architecture, as discussed in chapter three, which combines a plan-based 

agent system with a case-based reasoning system to address the 

complexity of the learners’ problems and the reasoning required for 

mentoring purposes.  To satisfy the methods of the cognitive 

apprenticeship model the system’s architecture included the following 

components: 

a) The long-term and short-term memories are addressed by the 

case memory and belief-base.  

b) The memory based knowledge structures are represented in the 

form of Prolog clauses. 
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c) The processing is distributed across the Python Agent Language 

(PAL) engine, the Case-Based Reasoner (CBR), the agent-user 

interface and the Backus-Naur Form (BNF) parser. 

d) The PAL language and Prolog are used to configure the knowledge 

bases in the agent.  

 

The agent is implemented as a number of integrated processing 

subsystems that can be programmed via various knowledge sources to 

produce the required reasoning.  By accessing various Win32 

programming resources the agent is able to share a desktop 

programming environment with a programming novice to allow learning 

to continue in a real-world context.  MRCHIPS is able to detect and 

analyse Python syntax errors and semantic errors and to provide help via 

an animated assistant when programming errors are produced.  An 

overview of MRCHIPS showing its logical interface to the environment is 

shown in figure 8.1. 

 

 

 

 

 

 

 

 

 

 

 

8.3 The subsystems of MRCHIPS 

The MRCHIPS architecture consists of four major subsystems: the BDI, 

the CBR, the BNF parser and the agent interface (see figure 8.2) that 

coordinate the various behaviours of the agent and provides the domain 

specific reasoning.  At the heart of MRCHIPS is the Python Agent 

Language (PAL).  This is an implementation of a plan interpreter that 

combines reactive and deliberative reasoning.  MRCHIPS has to be able 
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to monitor and respond to changes on the desktop as well as performing 

diagnostic activities and maintaining interactions with the learner. It is 

the presence of PAL that co-ordinates all these activities within the 

agent. 

 

 

 

 

 

 

 

 

 

An early design for the agent considered a design based on the Interrap 

architecture as discussed in chapter five.   The design involved insertion 

of the case-based reasoning layer between the deliberative planning and 

communications modules to produce a four-layered architecture.  

However this design was not pursued as it was thought the real-time 

requirements for a desktop environment did not require separate reactive 

and deliberative processing layers.   The capability of the BDI to combine 

deliberative and reactive processes was considered to be adequate for 

the requirements of a desktop environment.   

8.3.1 Reasoning in MRCHIPS 

The main cognitive processes in MRCHIPS are shared between the BDI 

planner, the CBR subsystem and the Python syntax pre-processor.  There 

is also a very limited natural language parser to allow interrogation of the 

agent’s knowledge base as part of an interactive reasoning facility for 

analysis of logical errors, but this was not fully developed and the agent 

can only respond to a limited set of queries.  To aid the easy integration 

of knowledge between the systems all of the knowledge bases, plans, 

cases and rules are encoded as Prolog predicate calculus clauses.  

However once parsed they are processed in different ways by the 

relevant parts of the agent.   

 

Action output Program code 

Figure 8.2. The mentor agent’s architecture 
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The Prolog database, normally used to store facts and rules in a Prolog 

program, is used as the beliefs knowledge base of the agent.  No 

distinction is made to distinguish agent beliefs from Prolog clauses.  This 

strategy allows MRCHIPS to access beliefs that are implemented as 

demon processes, for instance to retrieve the current day of the week.  

The behavioural capabilities of MRCHIPS are to monitor the desktop and 

Python shell, profile the user’s program code, select the closest matching 

case and inform the learner of any solution.  In general plans are domain 

independent and used to encode the agent behaviours and capabilities, 

although some of the capabilities are domain related in terms of the way 

the Python development environment works.  The knowledge used for 

the cases and syntax rules is domain specific and although not unique to 

Python is directly related to issues arising from learning Python.    

8.3.2 The BDI reasoning subsystem  

The PAL interpreter at the core of MRCHIPS is based on the BDI (beliefs-

desires-intentions) family of agent architecture, which is a customised 

system largely based on the AgentSpeak(L) agent architecture and 

incorporating language features from other agent systems such as 3APL 

and JAM (Ancona et al. 2005). 
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A similar evolution of the AgentSpeak(L) architecture was implemented 

by Flake and Geiger in their CASA agent system (Flake & Geiger, 2000) 

and used in the simulation of character interaction.   The execution cycle 

for PAL is shown in figure 8.3 it is a modified version of the execution 

cycle given for the CASA agent system.  The strategy and decision-

making of MRCHIPS is coordinated from its plan-base.  Plans are a 

specification of a list of actions to be performed in response to events 

and to fulfil an intention.  Plans consist of three components: the trigger 

event, a guard condition that specifies the applicable context of the plan 

and finally the body of the plan is the set of actions to be performed.   

plan: 

 event   : awakeAgent, 

 context : true, 

 body    : { 

  write('== maximise Agent'), nl, 

  avatar:isVisible(N), 

  if N \== true then {avatar:show()} 

  }. 

plan: 

 event   : checkHelp(RtErr), 

 context : [agentMode(idle)], 

 body    : { 

  eval(currentFile(File)), 

  if profileCode(File,RtErr) then 

   {wait(offerHelp)} 

  else 

   {wait(pause(0.5)), 

    wait(getDeskTopApps)} 

  }. 

 

 

The structure of two BDI plans are illustrated in figure 8.4.  Events can 

be a single symbol or a clause.  If the clause contains variables they can 

be used to pass values in a similar manner to a function call.  Plans in 

PAL support Prolog-like variables.  They are indicated by symbols 

beginning with an uppercase letter and can be instantiated by unification.  

The context guard condition is optional if it is not required, meaning the 

Figure 8.4. Two example plans in MRCHIPS 



 128 

plan is universally applicable and then the context can be set to true.  

Otherwise the context is a list of clauses that must be available in the 

belief base or evaluate as true.  Using context conditions within each plan 

allows varied modes to be specified, either by a flag value or testing 

some value in the belief knowledge base.  The effect of this causes some 

collections of plans to govern particular behaviours, while other 

collections remain inactive.  The body of the plan is a list of statements 

that are evaluated by the PAL interpreter or passed to the Prolog 

interpreter, which executes primitive operations.  The syntax for the 

body of PAL plans is shown in table 8.1 in BNF notation (for clarity 

keywords, operators and functions have been highlighted in bold). 

 

Block  ‘{‘ block-content ‘}’ 

Block-content statement [‘,’ block-content ] 

statement if-statement | while-statement | assignment | belief-modifier | 

plan-call | primitive-statement 

if-statement if condition then block [ else block ] 

While-statement while condition do block  

assignment Variable is expression | variable ‘=’ expression 

belief-modifier assert(expression) | retract(expression) | eval(expression) 

Plan-call wait(expression) | achieve(expression) 

Primitive-statement atom | primitive-function 

Condition atomic formula 

Expression Variable | primitive-function 

primitive-function prolog clause | external function 

  

 

Braces are used to delimit blocks of procedural code.  The PAL interpreter 

supports the while loop and the if-then statement and plans may be 

chained together by lists of trigger event of other sub-plans that are 

called in sequence.  If the event is within a wait function the calling plan 

is suspended until the sub-plan completes. External primitive functions 

are indicated by a colon separated function name, where the left of the 

colon identifies a subsystem of the agent and to the right the function in 

that system.  From the point of view of programming the agent there are 

Table 8.1. BNF syntax for body of PAL plans  
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five subsystems that are addressed directly through function calls. They 

are shown in the table in table 8.2 below. 

 

bdi  Exposed functions PAL interpreter 

cbr The case-based reasoning subsystem 

avatar The MS-agent and general outputs 

sensor The Perception subsystem 

epi The journaling subsystem 

  

 

8.3.3 The case-based reasoning subsystem 

Cases in the agent are implemented in a frame-like data structure where 

each frame represents a complete case.  It was decided to represent one 

case per frame for simplicity rather than a distributed structure.  Each 

case is implemented as a Prolog clause with two fields.  The first field 

holds a unique name for the case, the second holds a nested hierarchy of 

attribute-value pairs that define symptoms and a solution for the case 

(see figure 8.5).  Each case situation is described by four attributes that 

contain lists of clauses; they are the initial description, the solution, the 

final state and the success of the case.   

 

case( upperCaseKeyword, [ 

 initial - [errortype(compiletime), 

   start(P), 

   keywordCase(P)], 

 solution - [Opt = ["The " + P + " should be all lower case", 

       "Python is case sensitive so " + P + " should be lower case", 

       "Check the case of your " + P + " keyword"], 

   bdi:selectOne(Opt,I2), 

   avatar:speak(I2), 

   bdi:rememberCase(upperCaseKeyword,I2)], 

 final    - [checkResult([lower(P),_])], 

 success  - true]). 

 

 

Table 8.2. Table of addressable agent subsystems  

Figure 8.5. Example of a case in MRCHIPS 
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The initial attribute contains clauses that identify the nature of the error, 

for most cases the information about the error messages produced by 

the Python development environment.  This strategy allows MRCHIPS to 

be guided by the context of what the learner is working on and avoids 

the risk of providing information on unrelated problems that might only 

have the effect of confusing the learner.  The solution attribute lists the 

set of actions the agent is to carry out to achieve the state of the final 

attribute. The success attribute indicates the desirability of the outcome. 

Both solution and final attributes are not currently used by MRCHIPS but 

included for future expansion. The agent’s case-base contains records of 

typical novice level errors based on information gathered from 

observations from cohorts of learners explained in the literature and 

analysed in chapter six.  Although the errors observed were as a result of 

different types of coding problems the ultimate action of the agent is the 

same in each case, to provide additional information – the difference 

occurs in meaning of the information provided.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

The cases in MRCHIPS are indexed and stored using a discrimination tree 

(Charniak et al. 1987), also called a discrimination network, which 

Figure 8.6. Fragment of a discrimination tree as a case-base index 
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provides an efficient method to access the case-base.  A discrimination 

tree is a branching network data structure used for storing and retrieving 

large numbers of symbolic objects.  The principle behind a discrimination 

tree is to recursively partition a set of objects where each partition 

divides the set based on a particular property and properties that are 

similar by some measure are shared in memory.  The effect of placing 

data in the network is to cluster together items that are similar.  As a 

side effect of the clustering a discrimination network is also able to 

discriminate between cases.  For instance as illustrated in figure 8.6, 

MRCHIPS cases are initially partitioned based on the class of error, so 

some cases belong to the set of compile-time errors, others to the run-

time errors and others to a third set of the logical-errors.  Each internal 

node is a question that subdivides the items of data that are stored 

below, where each item is a different answer to the question.  Case 

retrieval is performed by using the features of the problem case as a 

map into the discrimination tree to similar cases and a complete case is 

stored at the terminal node of each branch of the tree.  The algorithm for 

searching a discrimination network is based on a simple loop shown 

below.  The main work of the search is contained in the strategy for 

matching nodes. 

     

    Let N = top node of tree 

    Repeat until N is a case: 

     Ask question at N of the input 

     Let N = subnode with the answer that best matches the input 

    Return N 

 

 

Incomplete data, indicated by a non-ground expression returns all of the 

sub-cases of a branch.  If a variable is encountered in the problem case 

during retrieval it is matched against the corresponding field in the 

discrimination tree and all of the branches of the tree below that may 

have a valid value for the variable remain in the search.  Ground value, 

occurring later in the problem case can be used to discriminate the 

branches at a later iteration of the retrieval.  If the variable is in the tree 

Figure 8.7. The search algorithm for a discrimination network 
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it can be matched against any corresponding fields in the case and the 

search continued.  A measure is kept of the degree of match for each 

clause selected from the discrimination tree and the solutions returned in 

a sorted list if more than one exists.  The degree of match is given by the 

expression: 

                   D  = 3 * NE + NV 

Where: 

D  = degree of match 

NE = number of symbols that match exactly 

NV = number of items matched by a variable 

 

 

The case-base contains a default case, called defaultError, that has a 

single variable value for its index pattern and therefore gives the value 1, 

the lowest degree of match permitted. This means that the case will 

always be selected but with the lowest possible priority compared to 

other cases. If as the result of a search there are no appropriate cases 

for a particular problem the default case is selected and reports a general 

warning message.  The initial information gathered from the exercises 

observed from novice programmers revealed some thirty types of 

programming error, but no claim is being made for a complete coverage 

of all types of novice errors. The indications are for the number of cases 

to be in the order of many tens (possibly hundreds), rather than 

thousands and even if the case-base were to grow the discrimination tree 

based search would still work with these numbers.  A more detailed 

treatment of discrimination networks, their use in deductive information 

retrieval systems and implementation can be found in Charniak et al. 

(1987). 

 

Although the domain knowledge is described as case-based reasoning 

MRCHIPS does not fully implement CBR. The cases in the agent describe 

stereotypical rather than particular error situations.  They may contain 

variable fields rather than fully grounded clauses and although the 

programming structures are present to revise and retain newer cases 

they have not been developed in this agent implementation.  But it is to 

Figure 8.8. Expression for the degree of match in the CBR 
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be considered as a recommendation for the future.  The case structures 

might more accurately be described as contextual schema, such as 

developed for the MEDIC and Orca knowledge based systems (Turner 

1994).  Schema-based reasoning is a generalisation of case-based 

reasoning that extends cases to generalized situations by allowing cases 

to contain variable fields and saving the effort needed to transfer 

knowledge from an old case to a new situation.  The variable field allows 

for more approximate matching and can exist in the problem case and in 

the case-base.  Case selection is performed by tracing the content of the 

initial attribute only against the discrimination tree for the best matching 

case.  This is because the initial field contains the symptoms of a problem 

and it is that data that is used to identify similar cases.  Once a case has 

been selected a copy is taken and it is adapted to the new problem.  This 

is achieved by unifying the problem case with the new case and 

instantiating variables to produce a fully grounded data structure, the 

new case is then asserted into the agent’s beliefs knowledge base, where 

it becomes available for further processing. 
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The reasoning in MRCHIPS is shared between the BDI and CBR 

subsystems and linked associating BDI beliefs and intentions with case 

symptoms and solutions respectively.  See figure 8.8.  To link the 

subsystems the agent is able to use some of the information in the 

beliefs knowledge base as symptoms for case selection.   The symptoms 

are constructed under the control of the plans as this assists the indexing 

process, which can be suppressed if additional knowledge is available or 

the format adjusted if the requirements change.  When the most 

appropriate case is selected it is activated for use within the agent by 

placing the solution, which is merely a plan to address the symptoms, 

into the BDI system’s intentions stack for execution.  The activation is 

again under the control of the plans so case activity may be subsumed. 

8.3.4 Additional agent subsystems 

MRCHIPS makes use of additional subsystems to allow the core reasoning 

components to integrate with its environment.  As the Prolog interpreter 

makes use of a Python hash table data structure to store all of its built in 

functions, this method was chosen to allow for a relatively fast access to 

functions and because the table can be dynamically added to.  Each of 

the additional agent components extends the capability of MRCHIPS by 

adding access to their functions via the function table in the Prolog 

interpreter. 

8.3.4.1 The BNF parser 

The BNF parser is a Definite Clause Grammar (DCG) parser that contains 

the Backus–Naur Form (BNF) rules for Python code.  MRCHIPS makes 

use of the BNF parser to locate the cause of syntax errors.  The output 

from the Python parser generally only specifies the location of errors and 

the category in broad terms.  In a DCG the rules of grammar are coded 

in first order logic and when a legal phrase is processed a parse tree or 

semantic statement of the phrase can be returned or, if the phrase is not 

legal, the point at which the error occurred.  As DCGs are powerful 

enough to be used to parse natural languages, parsing an artificial 

programming language is relatively simple.  Using a DCG allows the 

Prolog engine to analyse each token of a Python statement in turn.  
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Figure 8.9 illustrates two of the BNF rules of the DCG for parsing a while-

statement and a def-statement and the need rule that first checks for an 

item and if it is not found reports it missing if it belongs to the set 

symbol (not shown) or as unexpected for any other item. 

 

statement([while|Z0],Z,Err,while(Test,Do)) :- 

  test(Z0,Z1,Err,Test), 

  next(':',Z1,Z2), 

  statement(Z2,Z,Err,Do). 

statement([def|Z0],Z,Err,def(name(Name),Args,Stmt)) :- 

  next(Name,Z0,Z1), 

  need('(',Z1,Z2,Err), 

  arglist(Z2,Z3,Err,Args), 

  need(')',Z3,Z4,Err), 

  need(':',Z4,Z5,Err), 

  statement(Z5,Z,Err,Stmt). 

 

need(A,[A|R],R,_) :- !.                            %% progress 

need(A,_,[],missing(B)) :- symbol(A,B),!. %% report error 

need(_,[B|_],[],unexpected(B)).               %% report error 

 

 

Language keywords are used to identify the type of the statement, 

variables and constant data isolated, operators and punctuation symbols 

checked and when an unknown or unexpected token is found the details 

are returned.   

8.3.4.2 Perception 

The MRCHIPS agent monitors the Windows desktop to make inferences 

about what the user is looking at. It looks for the presence of the Python 

development environment and then clues to the occurrence of errors.  

MRCHIPS is fairly “short-sighted”.  It is able to directly sense the content 

of its environment in terms of the position of the windows on the 

desktop. It is able to identify if a window is in plain view, minimised or 

covered by another, the title message of a window can be read and with 

some effort the textual contents of editor windows may be sampled.  As 

the Python development environment also runs as a process within the 

Figure 8.10. Fragment of the DCG for the BNF parser  
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operating system and also makes use of the display to present a 

collection of Windows and components for interaction with the user.  By 

monitoring the Windows display and sampling the contents of Windows in 

the development environment the agent is able to infer the behaviour of 

the learner, examine any source code produced and make appropriate 

responses.  As stated earlier, windowing systems use message passing to 

allow applications to communicate.  For reasons of stability and security 

typical Windows applications are only aware of their own message queue. 

It was possible to monitor the Windows message queue globally to 

intercept messages for other applications such as those for keyboard and 

mouse inputs, but after investigation this was decided against due to the 

volume of messages and level of noise.  It was found that attempts to 

filter system messages via the Python interpreter would cause the 

Windows interface to slow down noticeably. Inferences are therefore 

made from the arrangement of windows on the desktop and scanning of 

contents of windows concerned with the Python development 

environment, by examination of the source code and error messages the 

appropriate agent response may be selected.    

8.3.4.3 Actuators 

Actions are the means by which goals can be achieved in the 

environment.  All actions in MRCHIPS are controlled via the avatar 

subsystem. The results of the cognitive processing of the agent are 

presented to the world mainly via a Microsoft Agent character, a 2D 

anthropomorphic animated figure that is able to gesture and perform a 

repertoire of actions under program control.  A mock-up of the agent 

using the Microsoft Agent interface and working in the Python 

development environment is shown in figures 8.10 and 8.16.  In addition 

to the animated gestures, the agents’s main output method is speech via 

a speech bubble window that pops up and down as required and is 

accompanied by audio speech, if a text to speech engine is available on 

the computer.  The texts of the messages are taken from the adapted 

case selected as a solution to the error.  The agent community treats 

communication as an important facet of an agent’s capabilities to help 

pursue its goals (Wooldridge 2002). 
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The work of John Austin and later John Searle in the 1960s attempted to 

categorise the classes of natural language communications in a field 

called speech act theory (Russell & Norvig 1995, Wooldridge 2002).  The 

later AI research based on speech acts as a plan or rational action does 

not really apply to MRCHIPS because the agent makes no choice in 

whether to communicate or not – if the agent finds a case, it provides an 

answer as its pedagogical action.  In terms of Searle’s communication 

categories MRCHIPS mainly communicates in the form of representatives, 

informing the learner of information known by the agent.  The sentences 

of the pedagogical actions are structured into three different types: 

Explain, Suggest, and Show.  Explain actions state what is wrong in the 

program statement but do not offer a solution.  Suggest actions offer 

answers in the correct the form of the line but do not state the cause of 

the error.  Show explanations say what is wrong with the suspect line 

and the form to which it should be corrected.  Outputs to the standard 

Win32 API are used to create dialog box controls and windows, the input 

control to the agent and the popup window that provides a countdown to 

Figure 8.11. MRCHIPS driving the Victor agent character 
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the arrival of the agent while the learner attempts to solve the error on 

their own. 

        

Program line Type Pedagogical action 

 Explain A single equal sign '=' means set value to 

if test = 123: Suggest The symbol for equality should be a '==' 

 Show You need to replace the set value symbol '=' with the 

equality check '==' 

 

 

Other output from the agent is used to manipulate the windows desktop 

using a technique called windows automation, the process of injecting 

messages into the message queue of windows belonging to other 

applications to simulate key presses and mouse clicks.  Automation is 

used by MRCHIPS to control which window is in view and to scroll to the 

appropriate line of code when giving error advice. 

8.3.4.4 Journaling 

MRCHIPS contains a journaling system to record particular events and 

actions taken.  The journaling system keeps a record from the time of its 

start up to shut down, the identity of the application window that has the 

user’s focus if it is Python, the location of the Python source file, errors 

detected and the solutions offered by the agent.  Each entry in the 

journal is written to a file in backing storage as the entry is made, so in 

the event of an abnormal termination the journal is preserved, as well as 

being preserved in the agent.  At the present time the journaling system 

does nothing that would aid the agent’s cognitive processing but the 

output file is used to analyse the learner’s activity and that of the agent.  

With some adjustments the agent can be made to make use of the 

historical record in the journal and therefore to access an autobiographic 

memory (Tulving 2002).  Autobiographic memory is an entity’s personal 

history of the events and activities it has experienced; it allows an agent 

to remain situated in time and able to make higher cognitive decisions, 

such as reflection (Nuxoll & Laird 2004).  Autobiographic memory might 

become more important for modelling the learner’s understanding over 

Figure 8.12. Table of the different types of pedagogical actions 
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the long term, but the facility has not been implemented for the current 

agent. 

8.3.4.5 Reading code 

The Python environment produces outputs in two different formats in a 

windowed environment: syntax errors are detected as the program is 

compiled and the error message is displayed in a dialog box. Semantic 

errors are produced at runtime as the code is executed and error 

messages in the form of runtime exceptions are displayed to the Python 

shell window. In reality all messages from the Python interpreter are 

routed to the process output console, but the development environment 

intercepts the messages and routes them appropriately.  When the dialog 

window for a compiler reported error is detected MRCHIPS locates the 

source code file from the title bar of the editor window and sends the file 

through the agent’s internal parser.  The Python executable carries its 

compiler alongside the runtime systems, which is why it is more 

accurately described as an interpreted language, whereas systems such 

as Java are described as compiled because the compiler and runtime are 

separate, even though both languages produce object code that is 

executed in a virtual machine.  The output from the parser reproduces 

the same error message as displayed to the user in a data structure that 

specifies the type of error, its location and the line of code in question.  

The message output by the parser does not provide enough information 

to determine the cause of the error for the novice programmer, so the 

suspect line is passed to the BNF parser, which further analyses the 

Python line and isolates the unexpected syntax.  The parser operates as 

a pre-processor to the case-based reasoning system when analysing 

compile-time errors, it is able to parse the keywords and operators in a 

line while ignoring the details of data items. When an error is 

encountered in the form of an unexpected component the parse ceases 

and an error message returned.  For some errors involving a missing 

component, such as for example a closing parenthesis, comma or colon, 

the expected component is specified in the error message.  The type of 

the error, the type of the statement and the unexpected component are 
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then used to construct the index, which is sent to the case-based 

reasoning component.   

 

As the BNF parser is based on a DCG it is able to parse statements 

containing syntax errors, isolate the program structure that contains the 

error and in some cases provide information on what the expected 

structure should be.  For the abstraction of ‘if’ statements, as illustrated 

in figure 8.12, each level of the hierarchy may have the same meaning 

but contains different levels of detail. For a CBR system each statement 

would require a different case to account for that pattern and layers 0 

and 1 would require additional cases for expressions involving different 

data types, different operators, calls to functions, etc.  When a runtime 

error is produced the message is output to the Python shell window and 

to detect them MRCHIPS monitors the window on a two second cycle for 

the presence of an error message.  The agent is not directly able to read 

the contents of the window but does so via the Windows clipboard.  This 

is accomplished using Windows automation (see section 8.3.4.3 

concerning MRCHIPS actuators) to select and copy the contents.  It is 

then available to be read by the agent for analysis.   

 

5     ifstatement     

4   If  expression  colon   

3  If  term operator term  colon  

2 if Data Operator data operator data operator data colon 

1 if Identity Equal string Or identity equal string colon 

0 if X == “one” Or X == “two” : 

  

 

The last line and the third from last line are parsed to provide the type 

and location of the error.  The information in a runtime error message is 

fairly detailed. A major problem faced by novice Python programmers is 

with interpreting its structure and relating the information to a location in 

the source code, so no pre-processing is performed and the runtime error 

message alone is used as an index to the case-base. 

Figure 8.13. Instruction hierarchy for an if-statement 
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8.4 Implementation details 

The MRCHIPS agent is implemented in Python, but its execution is run as 

a separate process to any of the code run by the students, that is to say 

the development environment and tools used by the student do not rely 

on any service from MRCHIPS and would still run in absence of the agent.  

The main reason for choosing to implement in Python was due simply to 

the availability of the Python environment with a known set of libraries 

on the computers at the University.  Other languages such as Java, 

Pascal or Prolog can also be applicable, but Python’s support for rapid 

prototyping development, abstract level processing, modular and object-

oriented development, while allowing support for low level interface to 

the operating system resources made it an attractive choice for a large 

experimental program.  The suitability of Python for developing AI 

software has been demonstrated by the development of knowledge-

based systems such as the Sherlock expert system shell (Lutz 2001), 

porting of Lisp examples as demonstrated in the book Artificial 

Intelligence: a modern approach (Russell & Norvig 1995) and similar 

research investigated by the author (Case 2000).   

 

procedure run(): 

    while number of PAL.Intention > 1: 

        foreach stack in PAL.Intention: 

            step(stack) 

             

procedure step(stack): 

    loop 8 times: 

        interpret(stack)     

 

 

Other advantages of using a Python application to analyse Python code, 

such as access to the internal components of the compiler came to light 

later in the development.  The whole of the agent is encoded in 35 

classes across 12 files of Python code, with a knowledge base of 37 

plans, 25 cases and 50 Prolog rules and it incorporates the winGuiAuto 

by Simon Brunning and Tim Couper for driving the Windows automation 

Figure 8.14. Algorithm of the PAL top-level execution cycle 
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(explained in greater detail in section 8.6).  MRCHIPS runs in Python 

version 2.4 upward and requires the PyWin32 library to allow access to 

the Win32 API.  Installations in version 2.4 also require installation of the 

ctype library.  One of the first decisions of the design was how knowledge 

would be represented. The Prolog horn clause was chosen because it 

provided a rich notation to express ideas and could be directly 

manipulated by the Prolog engine in the PAL interpreter.   

    

Procedure interpret(code): 

    instruction = code.pop() 

    if instruction == [if, Cond, then, Action]: 

        if evaluate(Cond) is true: 

            code.push (Action) 

    else if instruction == [while Cond, then, Action]: 

        if evaluate(Cond) is true: 

            code.push (instruction) 

            code.push (Action) 

    else if instruction == [achieve(Event)]: 

        getAlternatePlans(Event, Plan) 

        code.push(Plan) 

    else if instruction == [assert(Clause)]: 

        prolog_assert (Clause) 

    . 

    . 

    else if getAlternatePlans(instruction, Plan): 

        PAL.instances.push(Plan) 

    else: 

        prolog_prove(instruction) 

 

 

It is the PAL interpreter that drives the MRCHIPS agent; it implements 

the execution cycle described in figure 8.3.  The execution cycle is driven 

by interpreting the instructions contained in one or more of the intention 

stacks.  The interpreter removes an instruction one at a time from a 

stack and determines how it is to be executed, as illustrated in figure 

8.13.  Each stack can be thought of as a different execution thread and 

Figure 8.15. Algorithm of the PAL instruction interpreter 
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when a stack is to be executed it is passed to the interpreter, see figure 

8.14.  PAL itself is implemented as single threaded Python code but 

performs multithreading by switching the execution between the different 

intention stacks.  If the instruction is a built-in PAL command it is 

dispatched and executed there.  This usually involves manipulation of the 

stack and controlling the next instruction to be interpreted.  If the 

instruction is unrecognised as a PAL command it is checked against the 

plans in the agent knowledge base to see if it is the trigger event for an 

agent plan in the getAlternatePlans function.  If the instruction is neither 

a PAL command nor a plan event it is passed to the Prolog interpreter to 

execute if it is a recognised Prolog clause.  The getAlternatePlans 

function shown in figure 8.15 selects all plans with the matching 

triggering event.  The guard condition of the plans is also checked at this 

stage.  The guard conditions may contain a true value if the plan is 

applicable in any context, or if the guard is a more complicated clause it 

is passed to the Prolog interpreter where it can be checked against the 

current beliefs. 

 

Procedure getAlternatePlans(event,plan): 

    plans = knowlegeBase.get(event) 

    for plan in plans: 

        if unify(event, plan.event) and  

           (plan.guard == true or prolog_prove(plan.guard)): 

        return True 

    return True 

 

 

All of the other subsystems in the MRCHIPS agent are able to read and 

write data in the form of Prolog horn clauses to communicate with other 

parts of the system.  The Prolog engine in the PAL interpreter began as a 

support to evaluate data within the agent, but was re-written and grew 

over time to support a large subset of the Edinburgh syntax Prolog, 

including arithmetic, list manipulation, the cut operator, and macro 

operators.   The Prolog parser is implemented as a separate object from 

the Prolog interpreter.  It is therefore available to be “borrowed” by the 

Figure 8.16. Algorithm for selecting a new plan 
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other reasoning modules within the agent to read their knowledge bases.  

Unification is also contained in a separate object for the same reason.  

Matching is able to work with all of the Prolog data types.  Variable 

values are held in a table environment and their values looked up or set 

during the matching process.  On a successful unification the new 

environment (possibly empty) is returned, otherwise a Boolean False 

value is returned.  The Prolog interpreter is mainly used for the resolution 

loop that is used to search clauses in the knowledge base.  Recursion 

uses the Python stack and functions in Prolog are implemented as 

functions of Python code that are called via a table lookup.  This 

mechanism allows the capability of the interpreter to be easily extended 

by adding new entries to the table.  When new functions are added to the 

agent to extend its perception, cognition or motor capabilities (see 

sections 5 and 6 below), they are implemented as extensions to the 

Prolog function table. 

  

              

 

 

8.5 The agent environment 

For reasons of stability the address spaces for each process on a modern 

operating system, such as Microsoft Windows and Unix, are all made 

transparent to each other.  This regime allows each process to run 

without interfering with the activities of other processes. Even if a 

Figure 8.17. The mentor agent’s advice to a learner 
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process locks up or terminates abnormally it can do so without 

interrupting the rest of the operating system.  Each process in the 

Windows operating system is executed in its own, private four Gigabyte 

memory address space and nearly all of the resources used by a process 

are restricted to this memory space.  This makes the observation of the 

activities of one process from within another process extremely difficult.  

However, it is possible to observe the effects of other processes where 

computer resources are shared, such as at the filing system and on the 

display. The Windows desktop consists of a variable number of desktop 

components of icons, menus and windows that represent the interface to 

underlying applications, which are addressable via a pointing device or 

keyboard. 

   

 

 

 

 

   

 

 

Each desktop component is represented as a software structure with a 

number of attributes that record its appearance, size and position on the 

desktop, not only in terms of its position in two-dimensions but also 

indicating its position in front of or behind other desktop components, its 

Z-order.  Windowing environments, such as the Microsoft desktop and 

Unix based systems that implement X Windows are usually event driven, 

that is to say in order to provide interactive processing the desktop 

components respond to event messages sent as a result of mouse 

movements and clicks or keyboard key presses. The application behind 

the component is usually in an idle state waiting for an event to make an 

appropriate response.  Message passing and message handling is a major 

property for programs operating in an event driven windowing 

environment, as it is a mechanism that allows each application to share 

the user interface.  Microsoft Windows maintains in the order of 

thousands of types of message that are used to perform functions from 

Figure 8.18. The agent’s interface to the Win32 OS 

Win32 Operating System 

Windows Desktop MS-agents 

Agent Sensors Agent Actuators 

MRCHIPS 

Python VM 
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the positioning of a component on the desktop to handling 

communicating between windows.  The Python environment is a user 

level application (it does not execute as part of the operating system). It 

is used to develop script files that are executed in the Python virtual 

machine, which is written in C and is executed by the computer’s CPU.  

MRCHIPS is just an application level process that is run in the Python 

virtual machine (see figure 8.18), but able to access some of the 

underlying resources of the Windows operating system.  

 

A default installation of Python makes use of the Tk library to provide a 

cross-platform for producing windowed applications for modern desktop 

environments.  The default editor and development environment called 

IDLE (from Integrated DeveLopment Environment) was written making 

use of the Tk library.  The Tk based development environment is 

important to MRCHIPS because it is the one on which the students are 

taught and so the one targeted by the agent. While the interface 

provides a simple to use and consistent interface into the desktop 

environment, it does not provide the same set of features as the 

underlying operating system.  The most noted absent feature in terms of 

MRCHIPS is an interface for automation control. 

8.6 Decision-making in MRCHIPS 

Without its knowledge-base the MRCHIPS agent architecture provides 

only an empty shell incapable of any real reasoning.  It is the contents of 

the of plans, cases, rules and other knowledge structures that are able to 

use the architecture and provide the agent with its diagnostic capability 

and behaviours.  At the core of MRCHIPS decision-making are the plans 

that are used to coordinate various modes of the agent’s behaviour that 

can be explained using a kind of finite state machine (FSM), as in figure 

8.18 below.  However the modes only approximate the FSM as the 

MRCHIPS architecture allows for concurrent reasoning so the various 

states are not mutually exclusive.  
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The way by which each state contributes to the reasoning is as follows: 

a) During the initialisation mode the agent announces its presence to 

the learner and is minimised to be out of the way.  When the 

agent starts MRCHIPS announces his presence and then is 

minimised to the windows taskbar if the user wishes to manually 

launch or exit the application. 

b) Control is then switched to the monitor mode.  This is the main 

mode of the agent’s operation where the desktop is first monitored 

for the Python development environment and the placement of 

editor, console and dialog windows.  When the learner is not using 

Python the plans that control the monitor mode poll the desktop 

every five seconds.  Once a Python window is active its contents 

and the desktop are polled every two seconds for the presence of 

an error message.  The agent polls the desktop on a two second 

cycle for the presence of the Python IDE. When the IDE is found a 

record is made of the window and the file being edited. 

c) The recall mode prepares and sends the symptoms of the error to 

the CBR and awaits the selected case solution.  As MRCHIPS has 

no mechanism to directly detect when the user attempts to run 

their code the agent monitors for the error output from Python.  

Once an error has been detected the source code is profiled by the 

agent in a Python subroutine where syntax errors are first 

tokenised and parsed and the details added to the agent’s belief 

 recall 

 initialize 

 converse 

 monitor 
 greeting 

 Give help 

Figure 8.19. Simplified finite state machine for main MRCHIPS behaviours  

error 
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base or with semantic errors the error message read from the 

Python shell window is processed and again added to the agent 

belief base.  Once the profiling is complete the profiler routine 

sends an event to the agent to signal this and the appropriate 

plans use the output from the profiler to construct the problem 

case, which is then sent to the CBR module for a matching case. 

d) The greeting mode alerts the user that MRCHIPS will offer a 

solution to the error after a set delay and waits for a period before 

checking the error again.   

e) If the user has not corrected the error by the end of the delay the 

agent is switched to the “give help” mode where the solution from 

the case is used to provide help to the user.  The selected case is 

placed into the agent’s beliefs knowledge base and activated by a 

call to a plan called executeCase, which selects the steps of the 

solution from the case and inserts them into the BDI’s intention 

stack for execution.  Control is then passed back to the monitor 

mode to check for future errors.   

f) The converse mode is activated when the agent awaits input from 

the user.  Its initial plan is spawned from a separate intention in 

the BDI and in effect operates in parallel with the monitor 

planning.  The converse mode is used to accept text input from the 

user and sequence the natural language parsing and question 

answering operations. 

 

There are also additional sub states that oversee the handling of other 

components of MRCHIPS, handshaking with system resources and 

overseeing input and output operations.  Other plans in MRCHIPS are 

mainly concerned with “housekeeping” tasks such as controlling the MS 

agent character and coordinating communication with the user. Some 

functions such as monitoring which window is on top of another are 

coded directly in Python for reasons of speed and efficiency. 
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8.7 Related work 

The MRCHIPS agent shares some of the features of the other pedagogical 

agent systems explained in the literature review as well as introducing 

new features to address the requirements of its domain.   

     

Agent Reasoning World Interactive Pedagogy Environment Source 

Steve Rule-based 3D Yes Coaching VRML C/Soar 

FatiMA OCC 3D Episodic Immersive Ogre 3D Java 

BodyChat Procedural 3D Yes   C++ 

PPP Procedural 2D No Lecture Document  

Jacob Procedural 3D Yes Coaching VRML Java 

Adele Planner 2D Yes  Web-applet Java 

MRCHIPS BDI/CBR 2D Yes Coaching Windows Python 

  

 

Like the Steve and FatiMA agents MRCHIPS implements a cognitive agent 

architecture.  FatiMA agents simulate emotions as an important part of 

their decision-making, Steve and Adele have no facility for this and the 

author reported no adverse effects as a result.  The Jacob and PPP 

agents perform their pedagogical tasks with little reasoning capacity, 

certainly less than available to the other systems, but as a result are less 

interactive than the others.  Unlike most of the virtual agents MRCHIPS 

exists in a 2D desktop environment, because that is where the learner 

works but there is no reason why it cannot be adapted to work in a 3D 

world.  Adele and PPP are based in 2D environments for the same reason 

as MRCHIPS in order to make use of pre-existing resources to conduct 

interactions.  In terms of the interaction MRCHIPS has most in common 

with the Adele system with the main difference in the scope of the 

pedagogy.  Adele presents teaching materials while MRCHIPS is guided 

only by the code produced by the learner.  Most of the other systems 

provide additional tools to allow domain experts, who may not be 

programming experts, to prepare subject materials; MRCHIPS only allows 

this by direct alteration of its knowledge base.  A summary of the 

Table 8.3. Comparison of MRCHIPS with other virtual pedagogical agents 
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features of MRCHIPS in comparison with other virtual pedagogical agents 

is shown in table 8.3. 

8.8 Summary 

Previous similar systems used CBR to either extend the reasoning 

capabilities of a planner, such as with Prodigy/Analogy, or to completely 

implement BDI reasoning, such as CBR-BDI.  The MRCHIPS architecture 

differs from these systems in that the CBR provides its diagnostic 

capability and the BDI facilitates this by its interaction with the 

environment and the learner.  The agent can pursue multiple goals while 

interleaving the execution of multiple plans and the diagnostic case-

based reasoning.  The agent makes use of domain knowledge in the form 

of cases that can be rapidly selected and used to initiate additional goals 

and plans.  Additional support subsystems allow MRCHIPS to exist as an 

independent application on the MS Windows operating system, able to 

monitor and interact with the Python development and the desktop 

environment.  Although capable, MRCHIPS still lacks some features that 

were designed for but not fully developed.  First, a natural language 

interface to the case-base would allow logical errors to be analysed were 

MRCHIPS not able to determine the cause.  The second is a mechanism 

in the CBR to record new cases.  Encoding cases as generalised examples 

has reduced the effect of the absence of this feature.  The third feature is 

a mechanism to recall and make use of events stored in the journal to 

inform decision-making.  This would act as episodic memory and allow 

the agent to be situated in time.  As a result the agent is unable to 

maintain a model of the user from which to reason and produce primarily 

reactive behaviours.  However MRCHIPS is capable of providing sufficient 

analysis and mentoring of novice errors.  The evaluation of MRCHIPS and 

a discussion of its performance are given in the following chapters. 
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Chapter 9: 

Research methodology and experimental 

design 

The purpose of this chapter is to examine the experimental design for the 

evaluation of the performance of novice programmers working with 

MRCHIPS.  In the following sections a discussion is given for the 

suitability of different methods for conducting different types of research.  

This is followed by an explanation of the rationale to use the selected 

method and the strategy behind the data collection.  A discussion is then 

given for the options influencing the choice of research method for the 

evaluation of the MRCHIPS agent. 

9.1 Research methodology 

The purpose of a research methodology is to structure the collection of 

data that will be used towards the testing of an academic hypothesis.  

There are various approaches to the collection of research data and the 

method of collection generally depends on some combination of the 

nature of the subject and the aims of the research.  However, data 

gathering can be categorised into 3 general groups: those that are 

largely quantitative, those that are largely qualitative and hybrid 

research methods. 

9.1.1 Quantitative research methods  

Quantitative research is generally used to measure a collection of 

parameters with the aim of verifying or questioning a theory or 

hypothesis.  According to Walliman  (2011) the primary purpose of 

quantitative analysis is to measure, make comparisons, examine 

relationships, make forecasts, test hypotheses, construct concepts and 

theories, explore, control, and explain.  Although quantitative analysis 

deals with data in the form of numbers and uses mathematical operators, 
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such as statistics, to investigate their properties the measurements are 

guided by the kind of question asked and can be as subjective as a 

qualitative method.  Quantitative research involves the collection of data 

so that information can be quantified and analysed in order to support or 

refute a given theory.  “Quantitative research begins with a problem 

statement and involves the formation of a hypothesis, a literature review, 

and a quantitative data analysis.” (Williams 2007).  Quantitative research 

methods often involve experimentation where a series of measurements 

or counts may be taken, although it is also possible to use some of the 

methods from quantitative research such as the survey where 

participants are invited to rate or categorise a given experience.       

9.1.2 Qualitative research methods 

Qualitative research methods deal with data expressed mainly in words 

that offer descriptions, opinions, beliefs, accounts, experience, etc.  

Qualitative research is usually carried out when first exploring a domain 

(Wisker 2001) and is more often used where individuals or groups of 

people are the focus for the research.  The main methods for qualitative 

data gathering are: 

 The interview: A face-to-face discussion with human subjects.  It 

is usual for one of the participants to posses experience or 

knowledge of interest and the other to make a record of the event, 

such as by note taking.  

 Focus groups: small groups of participants brought together to 

focus on a given issue. The group are presented with questions 

and scenarios regarding issues and asked for their response or 

opinion.   

 Participant observation: the researcher joins the group as they are 

going about their activity and studies their activity.  This is 

recognised as a highly subjective data gathering method, as the 

observer may be too distant to have enough of a full view of the 

subjects or so deeply immersed that they cannot remain objective.   

 Personal learning logs: the researcher maintains a log recording 

their observations, experiences and reactions as data is gathered. 
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9.1.3 Hybrid research methods 

A hybrid research method (sometimes known as mixed-mode, mixed-

method or fused research) is an approach that relies on a combination of 

quantitative and qualitative methods (Wisker 2001).  Although it would 

not be unusual to find quantitative techniques used in a qualitative 

research or quantitative methods in qualitative research the hybrid 

methodology is more accurately used to refer to the combined analysis 

from different methods contributing to the testing a research hypothesis.  

There are various techniques for the analysis of hybrid data one common 

method is to count the number of times an item of qualitative data 

occurs.  Another hybrid method might is to enumerate the frequency of 

qualitative themes within a sample (Driscoll et al. 2007).  Quantitative 

analysis is usually used to provide detailed assessment of the magnitude 

of phenomena and qualitative data used to provide a deep understanding 

of a domain.  The hybrid research methodology allows researchers to 

overcome the limitations of using a single method and provides 

advantages for exploring more complex research questions. 

9.2 Review of research objectives 

For the evaluation of MRCHIPS it is worth reconsidering the main 

hypothesis of this research, which was to examine the best approach to 

data gathering to address the assertion: 

 

The aim of this research is to investigate whether the use of an animated 

pedagogical agent would provide effective mentoring support to novice 

programmers as they learn their first programming language. 

 

The questions of the hypothesis that can be addressed by the evaluation 

are: 

1) To demonstrate that the presence of the agent produces a positive 

effect on the student’s learning; 

2) Within that, how much is as a result of the presence of a 

personality and how much is from the content of the information 

provided by the agent. 
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From the review of virtual agents, in chapter four, researchers have 

noted that the presence of a virtual agent tends to increase a user’s 

performance in tasks irrespective of whether the agent provides domain 

information or not (Lester et al. 1999).  It is believed that people 

respond to the personality of the agent as they would to the presence of 

a person. Research from psychology suggests the effect of people 

surrogates show similar increase in performance in other fields (Lester et 

al. 1999).  However it is necessary to show a material improvement of 

the learner’s ability to cope with programming errors as a result of the 

presence of MRCHIPS.  This would indicate the need for a quantitative 

evaluation where the measure is of the learner’s use of domain 

knowledge.  An assessment of MRCHIPS could be carried out where 

students were asked their opinion of working with the agent by interview 

or survey. A qualitative measure might indicate a learner’s preference (or 

not) for the presence of the agent but offer no indication of the 

effectiveness of MRCHIPS in helping students to learn to program.  The 

use of an experiment with quantitative measures allows for the controlled 

testing of MRCHIPS where extraneous factors can be limited.   

9.3 Research Design 

In order to demonstrate the effectiveness of MRCHIPS it is necessary to 

show that novice-programming students are able to make more progress 

in practical exercises with the agent than they would without and that 

this is as a result of the agent.  An ideal study would allow for two groups 

of students to be evaluated over the course of an academic year the time 

normally taken to teach Python.  One group, the test students, would 

have access to MRCHIPS during the evaluation period the other group 

would not have access and would act as a control group.  During the 

study comparisons would be made of the relative progress of one group 

against the other with a large enough sample for the study so that 

individual factors such as teaching skill, age, prior experience and 

motivation of the individual could be mitigated.  Then any difference 

would be attributable to the effect of the agent.  However to use 

MRCHIPS in such a study, where a learning tool were deliberately denied 
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to some students, would raise issues of ethics in a university 

environment where what is learned by students will have a material 

effect on their overall progression.  Another difficulty would be that test 

results towards the end of a long study would be expected to show a 

smaller difference between both groups than in the beginning as the 

agent supports novice level learners and both groups would continue to 

learn throughout the period. 

 

During the academic year the students’ progress on the “foundations of 

programming” module is tested in three different exercises that 

demonstrate different skills at various stages of the course.  Towards the 

end of the first term students are given a comprehension exercise 

consisting of about ten short answer questions and small fragments of 

code requiring explanation.  During term two they are given a complete 

programming project usually to provide a custom user interface to a 

database application.  This is largely a design-based challenge allowing 

the students the chance to apply what they have learned.  The third 

assessment is a practical exercise, called a Time-Constrained Assignment 

(TCA) and designed to be the equivalent of an end of year examination, 

but testing many real-world programming skills.  For the TCA students 

are challenged to correct a faulty Python program within a fixed period of 

time.  The students are allowed to use programming books and lecture 

notes, but have to correct the program individually.   

 

Rather than devise a completely new experimental framework for the 

agent evaluation it was decided to base the testing around the (TCA), 

exercise used to assess students.  The TCA provides the clearest 

experimental structure for testing the effectiveness of the agent and 

although it might appear an artificial exercise it provides a good real-

world test of programming skills as professional programmers are often 

expected to be able to maintain and make use of code originally created 

by other people. 

 

The observation of novice errors was also at the data gathering stage of 

the research.  Although the results of the observation were presented as 
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a trend, shown in figure 6.6 of chapter six, the data was primarily 

qualitative; the real value of each error was its occurrence as that was 

then used to populate the knowledgebase for the CBR.      

9.4   Experimental overview     

For the agent experiments three trial groups were run: the first group of 

novice students working without the MRCHIPS agent, the second group 

of experienced students also working without the agent and the third 

group of novice programmers who were mentored by the MRCHIPS 

agent.  Throughout the rest of the text the groups will be referred to as 

novice, experienced and mentored respectively.  The novice and 

experienced groups were to act as a control providing a measure of how 

students perform normally in the TCA.  The mentored group would also 

be asked to complete a questionnaire to provide some qualitative 

information about the experience of working with the agent.  The 

evaluation of MRCHIPS working alongside novice programmers allows 

evidence to be gathered to examine the first two hypotheses of this 

research. The first of these was: 

1) An intelligent agent with an anthropomorphic interface can provide 

effective mentoring support to novice programmers learning their 

first programming language. 

To measure the effectiveness of the mentoring the evaluation should 

show that mentored students are more likely to produce work of a higher 

standard than would be expected of a similar novice programmer and 

that the mentoring aids their learning.  

 

The second hypothesis was: 

2) The use of an animated virtual character user interface increases 

the learner’s engagement with problem solving in the 

programming environment. 

Indicators such as positive opinions about using the agent from the 

learner or a willingness to explore beyond the core requirements of 

exercises will be assumed to be a measure of increased engagement for 

this evaluation. 
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Figure 9.1. The user interfaces for the hangman and unit converter 

applications used by the control groups  

 

The method of evaluation chosen was to compare the problem solving of 

a test group of novice learners working with the aid of MRCHIPS against 

those of two control groups of learners working without the agent.  The 

control groups were novice programmers tested at the beginning of their 

course, after six weeks of Python study when students were familiar with 

the Python tools but very much at a novice level of skill and a second 

group of more experienced programmers tested after 24 weeks of study 

towards the end of their course.  Three different Python applications, 

which made use of the Tk/Tickle library to provide a Windows interface, 

(see Figure 9.1) were used as programs to debug for the different 

evaluation groups.  The level of complexity for each program was 

approximately the same, although the numbers of errors and their 

complexity was different, depending upon the curricula requirements for 

the control group.  The program for control group one, the non-mentored 

novices, contained the fewest and most simple errors while the 

experienced programmers and mentored novices group contained more 

challenging errors.  The code used by the mentored students contained a 

few duplicated errors to help examine for signs of learning.   

 

The challenge of the exercise was for the students to find and correct 

some twenty syntactic, semantic and logical errors in a two-hour period.  

The test is run as an open book exercise, meaning students may use any 



 158 

printed Python or programming related material.  The errors in the test 

program are of a similar type to those highlighted in Chapter three.  

 

 

Figure 9.2. The user interface numerical converter application used by 

the mentored evaluation group 

 

The test program used for the mentored evaluation group was a small 

Python application to convert values between Arabic and Roman 

numerals, see Figure 9.2 and contained eleven syntactic and semantic 

errors.  Some of the errors were repeated, to allow testing of whether 

the user had learned through the guidance from the agent from the first 

instance of the error enough to recognise and solve the second instance 

of the error without guidance.  The MRCHIPS agent was capable of 

detecting and offering assistance for all of the error types included. The 

errors used in the evaluation program are listed below with a brief 

explanation of what they were designed to elicit from the subject. Note: 

the errors are listed in the order the Python compiler detected them. 

 

def mainform(root) 

1. The first error was the missing colon at the end of a function 

definition statement.  This produces a syntax error that is simple 

for the agent to determine and provide direct help to solve and 

designed to allow the subject to make a start.  This is a compile-

time error. 

 

    m_frame = Frame(root) 

   m_frame.pack(fill=BOTH) 

2. The second problem is an un-indentation error this again produces 

a simple error for which the agent is able to provide direct help. 
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def arab 2rome(): 

3. The next problem was a split in the name for a function, in Python 

a function or variable name must be a single word. 

 

    If not isinstance(arabic, type(0)): 

4. The case sensitivity of Python was used for the next problem; the 

uppercase ‘I’ in the ‘if’ invalidated the keyword.  

 

def roman _to_int(roman): 

5. The space in the name definition of the function is the error for 

this problem – the same as the error in the third problem.  Again 

this is to test if the subjects were learning and if they were able to 

solve the problem without the agent. 

    

    if int_to_roman(total) = roman: 

6. This syntax error has the assignment operator in the place of the 

equality operator in the if statement.  

 

def reset(root) 

7. The problem in the reset function definition is a repeat of the first 

problem; this was to see if the subjects were able to provide a 

correction without the aid of the agent.  

 

    root = Tk() 

     initialise(root) 

8. This is another indentation error. This time the line is indented one 

space too many. If the subject corrects the error without MRCHIPS 

it would indicate learning. 

  

    process(roo) 

9. This is the first of the run-time errors. It is a spelling mistake with 

the last letter omitted from the variable name root. 

 

    if not 0 < Arabic < 4000: 
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10. This is a case-sensitivity error with the Arabic variable name; as 

all other instances of the variable are in lower case. 

 

                Roman = roman.upper 

11. This error contains two logical errors. The first is the absence of 

parenthesises (or brackets) to indicate a function call. The other 

logical error is that the function name should be lower to change 

all of the characters in the roman string to lower-case. 

 

The mentored volunteers were given forty minutes to complete as much 

of the program as they could manage and then asked to complete a 

questionnaire about the experience (see Appendix E).  The activity of 

MRCHIPS during the session was logged by the agent’s journaling system 

and at the end of the exercise the log file, program source code and 

questionnaires were collected for analysis. 

9.4.1 Experimental setting 

The material from a total of thirty-three people was used in this study.  

There were ten students in control group one, novice programmers who 

worked without the agent.  Fourteen more experienced student 

programmers also worked without the agent in the second control group. 

Both groups were from a cohort of year one university undergraduate 

students. The tests they carried out were also as a part of their normal 

curriculum activity.     

Group Experience 

(wks) 

Participants Agent 

present 

Total 

Errors 

Duration 

(mins) 

Novice 6 10 No 10 60 

Experienced 24 14 No 18 120 

Mentored 0 9 Yes 11 40 

Table 9.1. Details for the experimental setting 

 

The experimental agent mentored group consisted of nine volunteer 

novice programmers who worked with the agent.  The arrangement for 

each test group is shown in table 9.1.  Due to scheduling issues the 

volunteers for the mentored group were not from the initially identified 
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student body; suitable novice programming students would usually be 

available at the start of an academic year but the agent software was not 

stable enough for testing at this time.  Instead volunteers were gathered 

with suitable computing experience but with limited experience of 

programming, or of Python.  The exercises were run as individual 

sessions, six of the nine were run in the presence of the researcher and 

three were carried out remotely with the results emailed back to the 

researcher. 

9.4.2 Experimental limitations 

There are three main limitations with the method of experimentation; the 

number of participants in the test group is very small which could lead to 

inaccurate findings as unusual results may have larger influence than 

normal.  However, the t-test analysis, discussed in the next chapter, can 

provide a measure of the confidence for the accuracy of the findings.  

Second, no account is made for any prior programming abilities for the 

participants of the mentored group the only test taken was for any 

knowledge of Python programming.  Ideally pre-testing of the individuals 

could have been performed to assess their base-line ability however, 

students in the control groups also had different prior programming 

experience so these conditions for all groups would be the same.  Third, 

using the TCA as the basis for the experiment provides quantitative data 

on syntax and semantic errors but does not allow testing for problem 

solving with logical errors.  Logical errors start to affect students later in 

the learning process as the programs become more sophisticated, see 

figure 6.6 for a measure of this trend, as this experiment is concerned 

with testing novices the TCA was considered to be a sufficient challenge. 

9.5 Ethical considerations 

As the TCAs were part of the curriculum of the student participants and 

would contribute to their academic progress it was decided to test the 

control groups before the completion of the working agent, in order to 

avoid any potential ethical problems arising from withholding a learning 

tool from some or all of the students.  Volunteers from the subsequent 

cohort of students would then form the mentored group.  Another 
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consideration was the requirement for the novice and experienced 

programmer groups to be given different challenges for their TCA 

exercises although an identical exercise would have been more 

convenient and the different TCA exercises can be accommodated by 

correlation of the individual problems across each.    

9.6 Summary 

The decision was taken to use a quantitative data gathering approach to 

evaluate the effectiveness of the MRCHIPS agent.  The experimentation 

would be based around supporting students to complete the TCA 

practical examination.  Three test groups would be used in the 

evaluation: novice programmers, experienced programmers to provide 

control data and mentored programmers to provide data of working with 

the MRCHIPS agent.  This approach allows the experimentation to be 

based around a pre-existing evaluation infrastructure and tests the agent 

in a real-world application. 
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Chapter 10: 

Evaluation of MRCHIPS 

This chapter evaluates the effectiveness of a mentoring agent, MRCHIPS, 

in providing mentoring support to novice programmers and helping 

novice Python programmers overcome the common Python syntactical, 

semantic and logical errors.  First findings from the evaluation, using the 

framework described in the previous chapter, are presented.  A brief 

description is then given of the reasoning behind the choice of the t-test 

and correlation coefficient statistical methods used for the analysis.  The 

findings are analysed in order to determine how well the evaluation is 

able to test the hypothesis.  Finally, the limitations of the approach taken 

with this study are examined. 

10.1 Findings and analysis 

A summary of each error and the numbers of learners in each group able 

to correct them is shown in table 10.1 below.   

      

Error Novice (group 

size: 10) 

Experienced 

(group size: 14) 

Mentored 

(group size: 9) 

Missing colon 1 9 14 9 

Indentation 1 10 14 9 

Split name 1 7 14 8 

Incorrect operator  9 14 8 

Missing colon 2 5 14 4 

Indentation 2 5 13 5 

Split name 2 NA NA 6 

Spelling 1 4 7 5 

Case sensitivity 1 13 6 

Missing bracket 0 4 1 

Spelling 2 NA 6 3 

Table 10.1. Results for number of errors corrected by each group 
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The experienced coders group were able to correct most of errors, but 

the results were more varied for the other groups.  In all groups the 

majority of participants were able to correct the earlier occurrence of 

errors.  Almost every participant corrected the first missing colon and 

indentation errors.  The split variable name and incorrect operator errors 

were also corrected by most.  The case sensitivity error was uncorrected 

by all but one in the novice group, while all but one of the participants in 

the experienced group and the majority of the mentored group were able 

to correct the same error.  The errors that were the least well addressed 

by all groups were the errors in spelling and missing parenthesis.  The 

spelling error would be highlighted only at runtime and reported as a 

missing variable while the missing parenthesis is a logical error that 

could not be directly detected by the language compiler/interpreter, but 

might produce an error at a later stage or merely an incorrect answer. 

 

Subject A was a computer user with no programming experience and 

managed to introduce new errors in attempting to fix the code. 
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 Figure 10.1. Proportion of errors corrected by each group 

 

The marks and percentage grades for individual students in group one, 

the un-mentored novices, are shown below in table 10.2.   
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Mark 7 6 6 6 6 4 4 4 4 3 

%-age 78 67 67 67 67 44 44 44 44 33 

Table 10.2. Results for control group 1, novice programmers 

 

The mean number of errors corrected was five with a standard deviation 

of 3.54 and an average grade of 55.5 percent.  The grades for individual 

students in group 2, the experienced programmers, are shown in table 

10.3.  These students produced a mean number of eight errors corrected 

with a standard deviation of 3.97 and an average grade of 65.7 percent. 

 

Mark 10 10 10 9 9 8 8 8 8 7 7 7 7 5 

%-age 100 100 100 90 90 80 80 80 80 70 70 70 70 50 

Table 10.3. Results for control group 2, experienced programmers 

 

The grades for individual participants in mentored group of novice 

programmers are shown in table 10.4.  These students produced a mean 

of seven errors corrected with a standard deviation of 2.58 and an 

average grade of 65 percent. 

 

Participant M1 M2 M3 M4 M5 M6 M7 M8 M9 

Mark 11 10 9 8 7 6 5 5 4 

%-age 100 91 82 73 64 55 45 45 36 

Table 10.4. Results for group 3, mentored novice programmers 

 

Of the nine mentored participants in the evaluation group only one, M1, 

was able to correct all of the errors.  However participant M2 was also 

able to correct enough of the errors to produce a running version of the 

program, although the application would not produce a correct result. 

 

In a comparison of results for each experimental group the grades for the 

experienced coders clustered towards the higher grades, producing 

higher average grades than the other groups, while grades for less 

experienced learners were distinctly lower, figure 10.2.  The results for 

the mentored group were fairly evenly distributed across grades.  A 

larger sample might cause a more conventional distribution, however 
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some of the participants were able to perform better and produce a 

higher average grade than non-mentored novices.  
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Figure 10.2. Comparison of grade distribution for each experimental 

group 

 

Participants M1, M2, M4 and M5 were able to solve one or more of the 

repeated errors without the aid of MRCHIPS, the agent’s journal recorded 

the offer of help as cancelled but the errors were still corrected, see table 

10.5.  These patterns were interpreted as indications of learning as the 

subjects were able to recognise and solve problems on their own.      

 

Participant Errors solved 

with agent 

Errors solved 

by self 

Total Tutor 

present 

Time 

(mins) 

M1 7 4 11 Yes 38 

M2 6 4 10 No 41 

M3 9 0 9 No 67 

M4 6 2 8 Yes 40 

M5 6 1 7 No 35 

M6 6 0 6 No 60 

M7 5 0 5 Yes 40 

M8 5 0 5 No 46 

M9 4 0 4 No 27 

Table 10.5. Results for evaluation group, subjects and MRCHIPS 
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Four of the participants (M1, M4, M5 and M7) chose independently to 

keep the MRCHIPS character on the desktop as they worked, even 

though the instructions indicated the MRCHIPS character be minimised 

when not in use.  Student M4 reported that the text-to-speech feature 

did not work on their computer but s/he was still able to proceed.  

Student M8 reported that MRCHIPS shutdown during the processing of 

the fifth error and was unable to progress beyond that point even after a 

system reset.  Attempts by the researcher to determine the cause of the 

error or to reproduce the problem were unsuccessful. 

10.1.1 The t-test analysis 

The t-test is carried out to test the hypothesis that the presence of the 

agent, MRCHIPS, is responsible for the difference in performance 

between the two groups: novice control group and mentored group.  The 

t-test is used to estimate the mean population distribution in data when 

the sample size is small.  It is based on the assumption that random data 

samples should exist on a normal distribution curve.  The t-test relies on 

the t-distribution, which is a family of continuous probability distributions 

that are used for estimating the mean population distribution, see figure 

10.3.  By analysis of values from a sample, such as the mean and the 

standard deviation, and a t-distribution, the t-test calculation is able to 

provide a comparison of the performance between two independent (or 

unpaired) samples (Madsen 2011).  The t-test also allows for a measure 

of confidence for results when the sample sizes are statistically small 

(Freund & Simon 1996). 

                                   

Figure 10.3. T-distributions with different degrees of freedom (courtesy 

of StatsDirect Limited) 
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The two-sample t-test compares the mean values between two sets of 

data.  The analysis tests a null hypothesis that proposes the population 

means related to two random samples, from an approximately normal 

distribution, to be equal, i.e. u1 – u2 = 0 and an alternate hypothesis 

where the means are the inverse of the null hypothesis, i.e. u1 – u2 ≠ 0.  

A probability is calculated as a measure of the chances of observing a 

random value when the null hypothesis is true.  If the probability value is 

below a given threshold then the null hypothesis can be ruled out and the 

alternate hypothesis shown to be valid. 

   

                                        

Figure 10.4. The t-test expression (courtesy of J. P. Key. Oklahoma State 

University) 

 

However the t-test expression in figure 10.4 is not always accurate when 

the sample size is less than 30.  The t-test expression for statistically 

small sample groups with a different variance is given in figure 10.5 

below.  Where the symbols have the same meaning as for expression 

10.4 and the terms Σ(x1 – ẍ1)
2 and Σ(x2 – ẍ2)

2 are the sum of the 

squared deviations for sample 1 and sample 2 respectively.   

 

                     

Figure 10.5. The t-test expression for small samples (courtesy of J. P. 

Key. Oklahoma State University) 

  

The sampling distribution is the t-distribution with n1 + n2 – 2 degrees of 

freedom.  Once the t-value has been calculated it can be compared 

against the standard t-distribution table for the corresponding critical 

value for the measure at which the value is said to be significant.  A 
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more detailed treatment of the reasoning behind the t-test is given in 

Coolidge (2000) and can be found in the literature. 

 

The p value is a calculation of the probability of producing a rare value 

that is outside of the t-distribution (Madsen 2011).  The conventional 

level of significance for a statistical measure is tested at the p = 0.05 

value, that is to say when the probability of rejecting a correct 

hypothesis is less than 5% (Coolidge 2000).                                       

10.1.2 The t-test calculation 

The preliminary analysis for the data collected from the non-mentored 

novice group (table 10.2) and the mentored novice group (table 10.4) of 

programming students are shown in table 10.6 below.  The results from 

the experienced programmers group is not needed to test the 

experimental hypothesis and is not considered for this analysis as the 

hypothesis is concerned with a comparison of the relative performance of 

the novice programmers working with or without the MRCHIPS agent.  

  

Novice Mentored 

7 11 

6 10 

6 9 

6 8 

6 7 

4 6 

4 5 

4 5 

4 4 

3  

Table 10.6. Empirical data from the novice and mentored groups 

 

The null hypothesis is for the inverse of the experimental hypothesis, 

that the presence of MRCHIPS has no effect on the performance of novice 

students, that is to say u1 – u2 = 0, the mean difference between the 
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performances of the groups of novice students irrespective of any 

assistance will be or close to zero. 

 

Calculation of ẍ1 

ẍ1 = 
7+6+6+6+6+4+4+4+4+3 

10 

                     ẍ1 = 5.0 

Calculation of ẍ2 

ẍ2 = 
11+10+9+8+7+6+5+5+4 

9 

                     ẍ2 = 7.2 

 

Calculation of the sum of the squared deviation for the novice group 

       Σ(x1 – ẍ1)
2    =    (7 – 5.0)2 +  …  + (3 – 5.0)2 

                          =    16 

Calculation of the sum of the squared deviation for the mentored group 

       Σ(x2 – ẍ2)
2    =    (11 – 7.2)2 +  …  + (4 – 7.2)2 

                          =    47.6 

 

 Novice Mentored 

Mean (x) 5.0 7.2 

Std dev (s) 1.3 2.4 

Number (n) 10 9 

Squared deviation Σ(x – ẍ)2 16 47.6 

Degree of Freedom (df) 9 8 

Table 10.7. Preliminary analysis of the sample research data 

 

Substitution of the values from table 10.7 and the sums of the squared 

deviations into expression from figure 10.5 gives the following formula 

 

t = 

5 – 7.22 

√ 
16 + 47.6 

* 
1 

+ 
1 

10 + 9 – 2 10 9 
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t = 

– 2.22 

√ 
63.6 

* 
19 

17 90 

 

t = 
– 2.22 

√ 0.7898 

 

                    t = -2.505 

   

The value for t was calculated to be -2.505.  The sign of the t value 

indicates that it is the value for the mentored group that produces the 

larger mean values.  The directional component of the research 

hypothesis is that mentored novices, the x2 group, perform better than 

non-mentored novices, group x1 therefore the negative value produced 

for t is consistent with the hypothesis. 

 

The calculated value t = -2.505 exceeds the critical value of t = + 2.110 

at p = 0.05 with a df = 17.  The calculated value t = -2.505 does not 

exceed the critical value of t at p = 0.1 (for df = 17) which is t = + 

2.898. This would indicate a p value between 0.05 and 0.01.  A precise 

value for p can be calculated directly from a spreadsheet program using 

the TTEST function.  The p value from the TTEST calculation was found 

be 0.016, which corresponds to a 1.6% chance of rejecting a correct 

hypothesis and is consistent with the t value calculated above.  The mean 

difference between the data is therefore higher than would be expected 

from random chance alone with a very small probability of producing a 

rare value.  As the t value does exceed the critical value the null 

hypothesis is rejected and the difference between the means of the two 

groups is significant.  It can be concluded that on average novice 

students working with the MRCHIPS agent produce higher marks than 

those working without. 
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10.1.3 Pearson’s correlation coefficient  

Pearson’s correlation coefficient allows a measure of the relationship 

between the activity of MRCHPS and the performance of the mentored 

students.  The correlation coefficient is a statistical measure of the 

strength of linear dependence between two variables.  It is expressed in 

values from +1.0, indicating a direct relationship between the variables 

to –1.0, indicating an inverse relationship.  A value of 0.0 indicates no 

relationship between the variables. 
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Figure 10.6. Number of errors solved with MRCHIPS and student grade 

 

A comparison of the number of errors solved with help from MRCHIPS 

and the final grade attained is shown in the scatter chart in figure 10.6.  

Analysis of the data shows a positive correlation coefficient of 0.73, 

which would indicate MRCHIPS to have a significant influence on a 

student's success.  Further analysis of the results for the help from 

MRCHIPS and errors that students were then able to correct without the 

agent’s help, shown in figure 10.7, which would indicate student learning 
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gives a correlation coefficient of only 0.21. This is an indication of some 

correlation, but is not clear enough to be significant. 
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 Figure 10.7. Errors solved with MRCHIPS verses errors solved alone 

 

Anecdotal feedback from the mentored participants indicated that they 

found they were able to follow the help offered by MRCHIPS and that 

some felt they were not having to correct errors on their own.  Although 

not part of the experiment those from the mentored group commented 

that they preferred to have the agent speak to them as they read the 

text of help messages from MRCHIPS. 

10.2 Discussion 

MRCHIPS is an agent-based solution to the problem of mentoring novice-

programming students.  The MRCHIPS architecture allows for the 

reactive and deliberative reasoning required for the agent to operate 

within a dynamic desktop environment while making diagnostic decisions 

about programming errors.  The Beliefs Desires and Intentions (BDI) 

based planning system is used to coordinate operations within the agent 

from responding to inputs, controlling outputs and scheduling the other 

reasoning resources in the agent.  Reactive reasoning is supported in the 

BDI by maintaining an agenda of goals and selecting an appropriate plan 

to solve the goal.  Deliberative reasoning in the BDI is supported using a 
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series of plans refine the steps of a goal before ultimate solution is found.  

Most of the agent’s deliberative reasoning involved diagnosis of novice 

errors.  Categorising errors into different types lead to their consideration 

as individual diagnostic situations, which provided a strong correlation to 

their representation as cases and indicated the use of case-based 

reasoning (CBR) in the agent.  However not all of the deliberative 

reasoning is processed by the CBR; the diagnosis of syntax errors are 

processed using a rule-based parser.  The syntax for programming 

languages are usually defined as a series of rules, such as in the BNF 

notation used in chapter eight in table 8.1.  The rule representation 

therefore naturally lends itself to efficient processing in a rule-based 

parser.  The agent-based solution allows different reasoning methods to 

be applied to perform different types of problem solving.  The MRCHIPS 

agent met its initial design requirements.  It was able to monitor the 

learner’s activity, accurately diagnose the errors and respond to the 

learner in a timely manner.  This was possible even though the 

architecture is run from an interpreter, PAL, within another interpreter, 

Python.  Much of the speed and accuracy in reasoning is gained via use 

of the lookup tables, built from the Python hash table data structure, 

which allow for the fast indexing of data and reduces the need to search.  

The BDI uses a hash table to reference to the underlying Python 

functions that implement the PAL interpreter.  The CBR also makes use 

of hash tables to form the discrimination network so indexing is 

performed via a single lookup for each argument of the case.  Operations 

that are time consuming such as unification and the BNF parser, both of 

which involve a systematic search through data structures, are used 

sparingly.    

 

However there are a few limitations in the operation of MRCHIPS, 

features that it is not able to carry out or that would require some 

redesign to implement.  The limitations examined detail below and are 

related to: 

a) Strategic – how the agent informed the learner, only monitored 

the learner in some modes and no direct modelling of the learner; 

b) Technical – no capability to adapt to unforeseen situations; 
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c) Social – the limited capacity for natural language interaction; 

d) Portability – only available on Windows platforms. 

 

Two flaws discovered during evaluation had to be corrected to before 

further experimentation could take place. First was the strategy used by 

MRCHIPS to inform the user that it had a solution to an error.  On 

detecting an error MRCHIPS waits for a period to allow the learner to self 

correct if possible.  In its original configuration MRCHIPS provided no 

feedback that it had detected the error and appeared only after the 

delay.  Feedback from the learners indicated that this was disconcerting 

so a semi-transparent pop-up window was introduced to alert the learner 

that MRCHIPS would provide help after a delay.  The second was that the 

agent only monitored the environment when the MRCHIPS character was 

minimised.  As some learners preferred to work while MRCHIPS was on 

the desktop they were unable to receive further assistance.  It was 

incorrectly thought that whenever the agent character was on the 

desktop the learner would be in dialog with it, so they were unable to 

proceed with writing code.  Fortunately the solution required only 

changes in the plans within the knowledge base to allow scanning of the 

environment to be performed as a separate intention, effectively running 

as a thread and irrespective of the state of the agent character. 

 

The MRCHIPS strategy only allows for indirect modelling of the user by 

modelling the types of programming errors.  No attempt is made to 

directly model the user in the way that a system such as the Genie 

intelligent assistant, reviewed in chapter 3, is able to do.  Modelling the 

user would involve making an assessment of the user’s level of expertise 

and adjusting the behaviour of MRCHIPS to suit the user’s preferences.  

For example a novice user might prefer help only in the form of the 

solution to an error, but once more accomplished he or she might prefer 

a longer explanation to the cause of the error.  Modelling the user via 

programming errors was adequate for experimentation with MRCHIPS 

but for longer term use direct modelling of the user would allow the 

agent to track the user’s progress, present information in a format that is 
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tuned to the user’s ability and allow for the more complex social 

interactions. 

 

The CBR in MRCHIPS has no capacity to automatically acquire new cases 

this would have provided MRCHIPS with a form of learning and the 

capability to adapt to novel or unforeseen situations.  There are two 

areas of the agent architecture able to support learning but they were 

not required for the evaluation.  First the function of the CBR could be 

extended to implement the adaptation and storage operations for new 

cases.  The BDI plans could be used to guide the adaptation process, 

which would require the manipulation of the Prolog data structure used 

to represent the case.  The second learning capability is an 

autobiographical memory, which would allow the agent to consult the 

record of its experiences for decision-making and reflection.  The 

journaling system already records the decisions of MRCHIPS but the 

agent makes no further use of the information.  Autobiographical 

memory would allow MRCHIPS to model the record of individual learners 

and adjust decisions to meet their needs. 

 

MRCHIPS has limited capacity for complex social interactions with the 

user, which could be used with the diagnosis of logical errors and to offer 

messages of support and encouragement.  No method could be 

determined to allow MRCHIPS to diagnose the cause of logical errors 

because the program code would be legal and so the agent would need 

to understand the programmer’s intentions for the code.  A solution was 

designed to have the agent guide the learner through a question and 

answer process and offer suggestions to allow them to determine the 

cause but this was not implemented.  There are a few plans and cases in 

the agent’s knowledge base that offer messages of encouragement, but 

these are presented at random.  The use of autobiographic memory 

would allow messages to be tracked and encouragement could then be 

offered within a strategy.   

 

MRCHIPS is only currently able to run on Microsoft Windows based 

platforms.  The reasoning subsystems the BDI planner, CBR and BNF 
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parser are platform independent but the agent interface subsystem is 

specific to the operation of the WIN32 programming interface and the 

animated character relies on the Microsoft Agents engine, which is only 

available for Windows.  Converting the agent interface to work with other 

GUI systems should be possible if the appropriate operating systems 

resources, such as system events and messages, are accessible.  An 

alternative to the Microsoft Agent character interface would also be 

required such as Double Agent or that used in the Adele system reviewed 

in chapter four.   

10.3 Summary 

A quantitative evaluation for the effect of MRCHIPS on the work of novice 

programmers has been given.  The data presented in this chapter 

provides evidence for the effective support of a pedagogical agent for 

assisting novice programming students as they learn Python as a first 

language.  The results of the experimentation were able to demonstrate 

that the presence of the agent was able to assist participants to make 

progress with developing a Python program, not least because MRCHIPS 

was able to provide answers.  Comparing the results from the groups of 

novice programmers, those working with MRCHIPS were 10% more 

productive than those working with no agent.  From the t-test the 

calculated value t = -2.505 was found to exceed the critical value of t = 

+ 2.110 at p = 0.05 with a df = 17.  Therefore the null hypothesis is 

rejected and it is concluded the mean score for the mentored novice 

students (65.5%) was significantly higher than for the un-mentored 

novice students (55.5%).  Analysis of the experimental findings show 

there to be a significant correlation between the presence of MRCHIPS 

and the improvement in performance of the novice programmers.  There 

was a positive correlation coefficient of 0.73 between the support offered 

by MRCHIPS and the grade achieved by the mentored students.  There 

were also indications of learning where subjects were able to recognise 

and solve problems without the guidance of the agent, although the 

correlation coefficient of 0.21 was less significant.  The evaluation was 

also able to show some support for learning in that four of the mentored 

students were able to recognise and solve one or more of the repeated 
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errors without the aid of the agent.  The mentored student who was able 

to solve the logical error even though MRCHIPS had no support 

suggested he recalled some knowledge from an earlier programming 

experience and replied, “It just seemed to be the way it worked.”  The 

major caveat with the results is that the size of the study group was 

small and the study was short in duration.  Therefore the effect of an 

individual’s performance on the reading would have a disproportionate 

effect on the findings. It had originally been planned to then run a larger 

study over a longer learning period.  Unfortunately due to a change in 

employment that required a move away from the university contact with 

the student study group was lost.  
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Chapter 11: 

Conclusions and future work 

This chapter summarises the aim of this research, its findings and 

proposes future work.  In the following sections a discussion is given on 

the extent to which the research and objectives were achieved, a critical 

reflection on the research conducted, followed by a summary of the 

original contributions of the research, and finally ideas are presented for 

future work.  

11.1  Review of research objectives 

In this research it was proposed that a cognitive agent powering an 

animated virtual character could provide effective support for novice 

programmers as they learnt their first programming language in a 

desktop environment.  To investigate the hypothesis the framework of 

March & Smith, and Järvinen was used to research four complementary 

questions:  

 

Hypothesis 1)  An intelligent agent with an anthropomorphic 

interface can provide effective mentoring support to 

novice programmers learning their first programming 

language. 

 

This hypothesis can be answered with a measured degree of certainty.  

There was a strong correlation found between the mentoring presence of 

the MRCHIPS agent and the higher performance for the novice 

programming students.  From the t-test the calculated value t = -2.505 

was found to exceed the critical value of t = + 2.110 at p = 0.05 with a 

df = 17.  The p value was found be 0.016, which corresponds to a 1.6% 

chance of rejecting a correct hypothesis.  The mean score for the 

mentored novice students of 65.5% was higher than for the un-mentored 

novice students of 55.5%.  Learners that worked with MRCHIPS scored 
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on average 10% higher than beginner programmers without the agent.  

Results from the evaluation study therefore show that the presence of 

MRCHIPS made a positive improvement in the performance of novice 

programmers.  This difference is more significant as the non-mentored 

beginner programmers had had about 6 weeks of Python study at the 

time of their test where the mentored group had no Python exposure 

before the test.  The mentored students who followed the advice given 

by MRCHIPS were able to correct more of the errors; there was a positive 

correlation coefficient of 0.73 between the support offered by MRCHIPS 

and the grade achieved by the mentored students.  Of the mentored 

group four of the nine subjects were able to solve one or more of the 

repeated errors without the aid of MRCHIPS.  These were interpreted as 

indications of learning, with a correlation coefficient of 0.21. 

  

The MRCHIPS cognitive architecture was able to provide positive answers 

for a reasoning solution for the domain.  Although this research was able 

to show the increase in productivity, some learning of syntax and signs 

for an increase of engagement from the learner, it was not able to show 

a similar effectiveness for logical errors.  However the size of the study 

was small and of a short duration, so even with the use of the control 

groups the findings should be read as an indication of the agent’s 

possibility.  Researchers using other teaching virtual agents such as 

Steve (Rickel & Johnson 1998) and FatiMA (Aylett et al. 2007) reported 

comparable improvements in the performance of learners as found with 

MRCHIPS.  The literature also reported that programmers improved their 

performance with intelligent tutoring systems such as UNCLE (Wang & 

Bonk 2001) and CABLE (Chen et al. 2006) although the systems would 

not be suitable for novice learners. 

 

Hypothesis 2)  The use of an animated virtual character user 

interface increases the learner’s engagement with 

problem solving in the programming environment.  

 

The engagement of the user is probably the least evaluated part of the 

hypothesis due to the choice to bias data gathering to a more 
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quantitative method.  However feedback from the subjects was positive 

about the agent with the learners reporting that they found MRCHIPS 

helpful even for those who were unable to substantially complete the 

exercise.  There was a strong positive correlation coefficient between the 

activity of MRCHIPS and the progress of the mentored learners.  

Although no tests were made of the mentored learners preference for the 

degree of embodiment MRCHIPS has the capability of using different 

anthropomorphic characters to produce this effect.  Feedback from users 

expressed a preference for more natural forms of communication such as 

having MRCHIPS speak the help messages.  A positive response to the 

agent is consistent with the persona effect (Lester et al. 1999) reviewed 

in chapter 4 where participants reported a preference for the presence of 

an anthropomorphic character and demonstrated improvements in 

cognitive tests when working with an animated agent interface (Krämer 

2005).  There is the caveat that it may be the novelty of an intelligent 

virtual agent.  It remains unclear whether the positive response was as a 

result of the help provided by MRCHIPS or the novelty of the animated 

character.  It is possible that long-term use of MRCHIPS could elicit 

similar levels of irritation by its sister product the Microsoft office paper 

clip.  However as the MRCHIPS reasoning is context sensitive and 

attempts to fade support with the level of user competence the chance of 

alienating the user may be reduced.   

 

Hypothesis 3)  The processing capabilities of a procedural BDI agent 

can be extended to provide the more knowledge based 

reasoning capabilities of a cognitive agent architecture. 

 

This question was answered by the construction of the MRCHIPS agent.  

The MRCHIPS architecture follows Langley’s four commitments for the 

development of cognitive agents architecture (1991) explained in section 

5.4 and an explanation of how MRCHIPS implements the commitments is 

given in section 8.2.  At the core of MRCHIPS is the BDI planner, the CBR 

for diagnosis, the BNF parser and the agent interface subsystem.  Both 

the BDI and CBR provide methods for providing different kinds of 

reasoning based on theoretical models of cognition.  Sharing reasoning 
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across the different subsystems in the agent architecture allows each to 

contribute by providing reasoning for where it is best suited.  So the BDI 

planner provides goal seeking and procedural control and the CBR 

provides domain specific diagnostics.  The BNF parser became a 

necessary addition when it was found the CBR would be inefficient for 

reasoning about syntax errors.  The design of the agent architecture 

allows the activity of all subsystems to be coordinated by the BDI 

including the CBR.  The reason for this is to allow the agent architecture 

to be adaptable in its operation allowing the plans in the knowledge base 

to determine the reasoning resources in use. 

 

Hypothesis 4)  Agent based reasoning provides a framework to 

extend knowledge-based systems into existing 

computing desktop environments and to avoid the need 

to build a specialised learning application environment.  

 

The domain knowledge of learner errors is contained in the CBR and BNF 

knowledge bases.  For conventional knowledge based systems the user 

would consult the application presenting the properties of the problem 

and await diagnosis.  For the novice programmer to have to consult the 

knowledge base involves increasing his or her cognitive load, as they 

would have to learn how to use the application and decide when to use it.  

Using an intelligent virtual agent to monitor the learner in the 

environment and decide when to consult diagnostic resources allows the 

knowledge-based reasoning to be available to the learner.  In order for 

the agent to operate within the Windows environment required the 

application of various programming techniques to allow the agent to 

monitor the learner by assembling information from different parts of the 

operating system and the Python development environment.  The 

automation routines of the Win32 API allow MRCHIPS to access 

information about the activity on the Windows desktop.  Unfortunately 

the Python development environment is built on top of the Tkinter 

library, which has limited support for the automation facilities, preventing 

MCHIPS from cleanly performing a copy of the content of the Python 

editor window.  This made it necessary for one change to the 
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environment as MRCHIPS adds a menu item called clear to the Python 

editor window upon installation.  This is the only change that MRCHIPS 

requires to the environment. 

11.2 Critical reflection 

There were various challenges faced in undertaking this research, the 

discussion below outlines some of the factors that influenced the options 

and the decisions taken. 

 

 The MRCHIPS agent was devised to provide mentoring support for 

novice programmers within the framework of the cognitive 

apprenticeship pedagogy.  Cognitive apprenticeship has a number 

of features that made it an attractive choice for use in this 

research.  First the pedagogy correlates to the practice used in 

mentoring, most notably the coaching and scaffolding methods.  

The exploration method would also be provided by the availability 

of a mentoring resource to support the learner when 

experimenting with the programming language.  Second the 

pedagogy provides a structured framework with separate methods, 

where the aims and outcomes of each method may be considered 

in isolation and easily measured if required.  Third, the methods of 

the pedagogy may be implemented in different ways, such as by 

exercise, reading material, discussion, etc.  This flexibility allows 

the possible use of a technological solution where the details of 

activity may be different, but aims and outcomes are used to 

determine how the activity contributes. 

 

 The development of the architecture went through many iterations 

of design, mainly due to attempts to integrate a CBR engine based 

on the MOPS data structure (Riesbeck & Schank 1989) with the 

BDI engine based on the Prolog Horn clause.  During the 

development of the agent no method could be found for 

integrating the Horn clause with the MOPS data structure that 

would not cause a loss of data or become time consuming when 

converting of data was to be passed back and forth between 
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subsystems.  Once it was decided to base the cases on the same 

Horn clause data structure and use a discrimination network to 

control storage and retrieval the development progressed quickly.  

Using a single knowledge representation scheme the different 

reasoning subsystems simplified communication.  Concepts that 

mean the same thing have the same representation in the 

knowledge base even though they are processed in different ways 

by different subsystems.  The single representation also allows for 

some agent resources to be shared such as the Prolog language 

parser, which is used by all subsystems to read the agent 

knowledge base and the unifier used for matching data. 

 

 Although the MRCHIPS was designed to provide mentoring in a 

desktop environment the architecture was designed to follow the 

principles of a cognitive architecture.  The reason for this was to 

allow for the likely range of reasoning requirements within the 

desktop environment.  The MRCHIPS architecture satisfies nearly 

all of the commitments for a cognitive architecture as described by 

Langley (2006) and discussed in chapter five; the commitment to 

long-term memories is currently underdeveloped; it would be 

addressed by the ability to retain new cases in the CBR or the 

inclusion of an autobiographical memory similar to that used in 

agents like FatiMA (Aylett et al. 2007).  It is likely that other 

cognitive agent architectures such as Soar (Laird et al. 1987), 

Icarus (Langley et al. 1991), or ACT-R (Anderson 1993) would also 

be suitable frameworks on which to build MRCHIPS.  The decision 

was taken to build MRCHIPS in Python for two reasons.  First to 

gain an insight into how to implement a cognitive architecture. 

Secondly in addition to its suitability for teaching the properties of 

Python make it an attractive choice for prototype application 

development as would be required for this research.  In addition 

implementing the agent in the same language as would be used by 

the learner would simplify its installation process.  As MRCHIPS is 

simply a Python application all the resources required for its 

execution would be available once Python was installed.  It was 
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imagined that student volunteers would install MRCHIPS on their 

own computers without supervision so the installation process was 

made as simple as possible. 

 

 Although the Microsoft agent character interface is integral to the 

way MRCHIPS operates no experimentation was attempted on 

changes to the interface.  Work had been carried out to provide a 

dialog text box to handle inputs to the agent.  The Microsoft agent 

engine only allows speech input and as the presence or quality of a 

speech input engine was unknown for the computer on which 

students might use MRCHIPS a dialog box was added.  

Consideration was given to assessing the effect of the degree of 

embodiment and animation on learning but this was not pursued 

as research elsewhere had been carried out to investigate this 

(Lusk & Atkinson 2007).  It is also worth noting that Microsoft has 

withdrawn support for MS-agents on operating system versions 

after Windows XP; an open-source alternative application called 

Double Agent from Cinnamon Software Inc. is free to download 

from the Internet, it is designed to be fully compatible with MS-

agents and available for more recent versions of Windows but at 

this time no evaluation has carried out to its use with MRCHIPS.  A 

significant effort had been made to supply MRCHIPS with a natural 

language parser but no solution could be developed that supported 

a large enough vocabulary, that could process statements rapidly 

enough, and would remain stable enough to be used for the 

experimentation.  What had not been anticipated was how 

important the text-to-speech feature was to engagement with the 

agent, with learners commenting that they preferred to have the 

agent speak to them as they read the text of the help message 

from MRCHIPS.     

 

 The amount of experimentation with the agent was only enough to 

establish that MRCHIPS had a positive effect on the outcome for 

learners in a task requiring coaching support.  There were also 

good indications of scaffolding, as some learners did not use 
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MRCHIPS once they had recognised the reoccurrence of errors and 

applied a remembered correction.  Due to a change of employment 

there was no opportunity to test whether MRCHIPS had an effect 

on learner exploration.  Ideally a larger evaluation would be 

carried out taking place over several months, involving numbers of 

students comparable to the cohort size and including a similar 

sized randomly selected control group with access to similar 

resources working to a similar lesson plan, but in the absence of 

the agent.  At the end of the trial students of both groups would 

be tested on what they had learned.  Given that both sets of 

students had access to similar resources any difference in the 

outcome of their results could be then attributed to the presence 

of the agent.  However, even under ideal experimental conditions 

other factors would still be present that would influence or cause 

to question the outcome.  For instance as people partake in any 

process their experience tends to grow.  It would not be 

unreasonable to expect learners to become more proficient 

programmers with or without an agent assistant leading to the 

conclusion that there is no significant measurable difference after a 

sufficient period of time.  Therefore, in order to demonstrate the 

usefulness of MRCHIPS, it was necessary to show that novice 

programmers’ were able to make more progress in practical 

exercises as a result of the agent than they would without it.  

However a larger evaluation of the agent is still required.   

11.3   Research contributions  

The principle contribution of this research is in demonstrating how an 

agent system may be used to provide mentoring support to learners 

working with conventional development tools and in a conventional 

desktop environment.   This approach allows learner practice to occur 

within the same environment as used by experienced programmers, a 

strategy that adheres to one of the major principles of the cognitive 

apprenticeship pedagogy, that of using knowledge in a real world context 

(or as close to as possible).  It differs from other intelligent tutoring 

systems that use specialized learning environments.  Using an agent-



 187 

based approach allows the expertise in the knowledge base to be brought 

to where the learner has to work and avoids increasing the student’s 

cognitive load of having to learn how to use the learning environment in 

order to use the working environment.  The second contribution is the 

development of a novel agent architecture that is able to utilise different 

reasoning capabilities to provide the mentoring support.  This is achieved 

by combining a BDI planner with a CBR reasoning engine in a unique 

architecture to address the processing requirements to monitor the 

environment, control a user interface via an interactive anthropomorphic 

animated character and to make the knowledge base available to 

diagnose errors within the learner’s program code.  

11.4   Future work 

There are a number of ways in which the MRCHIPS architecture may be 

improved.  The completion of the natural language parser for a question 

answer system would allow MRCHIPS to be consulted to help solve logical 

errors.  The simplest method to add this to the architecture would be to 

have questions to the agent form some intermediate data structure that 

could be used as a problem to the CBR.  The selected solution case would 

then contain the response or activity required to provide an answer. 

  

A more interesting challenge would be to redesign the journaling system 

to provide autobiographic episodic memory for the agent.  This would 

involve implementing journaling memory as a consultable knowledge 

structure and allow the agent to be able to recall events from interaction 

with the learner and possibly provide a richer set of interactions with the 

learner “This problem is similar to …” or “Do you remember the …”.  The 

use of autobiographical memory would be one way to provide the 

commitment to a long-term memory system, required by cognitive agent 

architecture, for MRCHIPS.  Two methods would be available to allow the 

agent to analyse and reflect on events.  First, in the selection of BDI 

plans the process may be refined by specifying the past events that need 

to have occurred in conditions of plans.  Secondly, sequences of episodic 

memory could be used to index the CBR and the resultant case used to 

specify what activity should then be performed by the agent. 
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The only development environment currently supported by MRCHIPS is 

the Tkinter based environment that is shipped with the Python 

installation.  However because it is based on the TCL/TK toolset it works 

differently from applications developed using the Win32 environment 

such as the development environment provided by the PyWin32 library.  

The MRCHIPS agent could be extended to work with different 

development environments such as the Win32 based IDE that are is 

installed with PyWin32 or applications like Notepad++.  The MRCHIPS 

knowledge base could be extended to recognise which development 

environment the learner was using and adjust its operation to cope with 

the configuration of the tools.          

 

The MRCHIPS architecture was designed to allow adaptation for the 

mentoring of learners in other programming domains as diverse as Java, 

CLIPS, Prolog or SQL.  MRCHIPS was originally planned with a 

programming domain for Visual Basic 6 but this was redesigned when 

curriculum for the learners was changed to use Python.  Support for Java 

might provide a better illustration of the effectiveness of MRCHIPS as the 

Java syntax makes fewer, if any concessions to learners but for some 

may still be the first programming language that they will be taught.  The 

adaptation would require analysis of the errors in the language and the 

development environment in question.  Then changes would be required 

to the monitor module, the BNF parser for the language and the case 

base in order to provide support.  The CLIPS and Prolog languages 

provide alternate programming paradigms and related syntax differences 

to those of conventional procedural languages as a challenge for the 

agent to provide help. 
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Appendix A: 

Brief Overview of Python 

A.1 The Python language: 

The Python language is the main development tool used to teach 

programming to the students in the “Foundations of programming” 

module for the Information Sciences course at the University of 

Northampton.  For a more complete explanation of Python books such as 

“Programming Python” (Lutz 2001), “Learning Python” (Lutz & Ascher 

1999), “Python for rookies” (Mount, Shuttleworth & Winder 2008), and 

“Game Programming with Python, Lua, and Ruby” (Gutschmidt 2004) are 

recommended. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Python is a general purpose programming language, it is interpreted 

therefore supports interactive development, although some features of 

its syntax are unusual among programming languages it is simple and 

promotes uncluttered code, it supports a range of high-level abstract 

data types that are easy to manipulate and has a large range of third 

party development tools and libraries of code for different applications.  

The language was first developed, in the 1980s, at the National Research 

Python 
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l 

ABC 

Snobol C AWK Pascal Basic SED 

Figure A.1. The Python language family tree 



Institute for Mathematics and Computer Science in the Netherlands by 

Guido van Rossum.  A number of features from older programming 

language influenced the design of Python as illustrated in Figure 3.1.  

Python was originally designed as a configuration language for the 

Amoeba distributed operating system but the design proved to be 

general enough to allow for application in other domains.  Guido has 

stated that Python was named after a favourite television series, “Monty 

Pythons Flying Circus” and that the language is greatly influenced by his 

experience from the development of an earlier programming language 

designed for teaching called ABC (Lutz 2001).        

A.1.1.1.1 Data types: 

Python programs support a number of built-in data types such as 

numbers, strings, lists and dictionaries.  Numbers are, quiet 

conventionally, used for arithmetic and are available as integers and 

floating point values.  Strings are immutable collections characters that 

can be broken apart and joined together in various ways.  In many other 

programming language strings are mutable (characters may be altered in 

place) however Python has a large and easy to use set of operators to 

split and join strings that this limitation is seldom an issue for the 

programmer.  Lists are collections of items of any data type such as 

numbers, strings or even other lists to model different types of data 

requirements; the members of a list may also be of mixed types and 

adding or removing members allows the dynamic alteration of the length 

of lists.        

name = [“Michael”, ”Palin”] 

nest = [[“a”, ”list”, ”of”], [”lists”, ”containing”], [”some”, ”strings”]]  

The values within list may be accessed for either retrieval or assignment 

using the name of the list and a numerical index value e.g. 

print “the first item is”, nest[0]  

name[0] = “Jackson” 

 

Items on a list are considered ordered and may be indexed by an integer 

indicating their position, dictionaries are unordered collections of data 

items but their position may be indexed by additional data types most 



often strings, providing an association table of values.  Dictionaries are 

associative memory structures that also hold multiple items of data but 

this time values are indexed via other data types such as strings e.g. 

team ={ “idle” : ”eric”,   ”cleese” : ”john”,  

              “chapman” : ”graham”,   ”palin” : ”micheal” } 

Each item in the dictionary forms a key-value pair.  To access a value the 

name of the dictionary and with the key name must be specified e.g.  

print “the first name is”, team[“chapman”]  

name[“palin”] = “sarah” 

Indexing data items by strings allows for the modelling of data at a 

higher level of abstraction than the use of simple arrays, for instance 

representing a database of geographic information attributes such as 

capitol city, population, etc may be catalogued by the attribute name, 

even thought it would be possible to duplicate the data handling features 

of dictionaries by the use of arrays. 

A.1.1.1.2 Syntax: 

The language was designed to fulfil a number of considerations in mind 

for the code writer among them, to be easy to learn, easy to use and to 

support rapid prototyping and turnaround.  For these reasons it has a 

relatively simple syntax and with a small set of keywords built into the 

language.  Python is a weakly typed language in that variables do not 

hold type information but are merely references to data structures.  

Variables do not require declaration but are created at instantiation. The 

simplest statement in Python is assignment that loads a value to a 

variable e.g.  

answer = 42 

eric = 0.5 

parrot = “dead” 

several values may be loaded at once in a statement e.g. 

first, second, third = 1, 2, 3 

Values may be retrieved from variables by using the variable name e.g. 

series = second * third 

print “Life the universe and everything”, answer 



Python supports a conventional set of arithmetic and logic operators.    

Expressions containing only integer values produce an integer result; if a 

floating-point value is present integers are automatically promoted.  

Python does not support any syntax words to indicate the beginning and 

end of blocks such as the begin/end in Pascal or braces in C++ and Java, 

instead Python uses indentation to indicate this e.g. 

if x > 5: 

    print “x is greater than five” 

 

for index in [1,2,3,4,5]: 

    print “currently in loop number”, index 

The plus operator can be used on strings to concatenate them together, 

in fact a space between strings performs the same operation but the plus 

operator is required to concatenate lists, so its use on strings produces 

more consistent code. 

 

Functions in Python are also blocks of indented code with a name and the 

option of parameters to hold values passed into the function e.g. 

def square(x): 

    return x*x 

Functions are called by use of their name followed by parenthesis, which 

may contain values to be passed to the function or remain empty when 

no value is to be passed.  Functions are first class data items meaning 

function values may be assigned to variables or passed parameters by 

use of the function name without the parentheses. All functions return a 

value, even if they do not contain an explicit return value in which case a 

None object is returned, the Python value for no data.   

A.1.1.1.3 Object orientation 

Python is an object-oriented language, the built-in data types are 

implemented as objects and the syntax supports a set of object-oriented 

programming features to extent the language.  However the use of the 

object-oriented features is entirely optional, it is possible and not unusual 

to produce substantial programs using only procedural code.  For small 

or experimental programs or those who lack the experience programs 



can be develop using purely procedural code or object-based applications 

using object-oriented libraries.  As designs grow to require a more 

structured solution object-oriented programming techniques are available 

where the programmer can define their own classes and objects.  Python 

objects are created from class prototypes that are used to define the 

data and methods of the object.     

class Person: 

    def __init__(self, name): 

        self.name = name 

    def say_hi(self): 

        print 'Hello,’, self.name,  ‘how are you?' 

In order to use a class an object needs to be created and initialised from 

the class, calling the class by its name performs the instantiation running 

any code in the __init__ (initialisation) method.   

p = Person (“Brian”) 

As with other object-oriented languages the variable, called p, becomes a 

reference to an object of the type Person.  To send a message to the 

object it’s method may be invoked using a dot notation. 

p.say_hi() 

This will cause the code in say_hi to be run, printing the hello message to 

be printed out.  Objects are implemented internally as dictionaries, and 

message passing may also be performed by conventional dictionary 

access.  Even if the novice programmer does no object-oriented 

programming they are likely to encounter classes and objects when they 

access system resources such as file handling objects and graphical 

libraries like the Tk library called TKinter.  

 

Python is also equipped with a large set of libraries from the developer 

and third-parties.  The most prominent library is the TKinter.  TKinter is a 

cross-platform tool that allows developers to write portable windowed 

applications that make use of the desktop environment available on 

operating systems.  TKinter is distributed as an integral part of 

distribution not least because the Python native development 

environment called IDLE is written in Python using TKinter.  The IDLE 

development environment provides an integrated set of tools that are 



useful for the production of code such as editor with colour syntax 

highlighting, a virtual console for interactive code execution and a 

debugging environment.  In addition the source code for TKinter, IDLE 

and a number of other libraries are all provided in the Python 

distribution.      

 

It is the availability of the language features like the brevity of the 

notation, high-level data-types, scalability of the language and large 

library third party code that makes Python a popular programming 

language.  Additional features such as the interactive development 

environment, optional object-orientation, etc that makes Python a 

popular choice as a learning tool for an inexperienced programmer.  It is 

these reasons and also for its availability on machines that the students 

learn to write code on why Python as also been used to implementation 

large parts of the agent solution. 

 

  



Appendix B: 

The MRCHIPS User Guide 

User guide 

A Brief introduction to MRCHIPS 

 

Installation:  
 To run MRCHIPS you need to have the following programs installed: 

 Python 2.4 or Greater 

 PyWin32 
 

 If you are using Python 2.4 you will also need to install ctypes library. 
 

 MRCHIPS also requires MS-agents for its user interface.  

 
 If you are using MRCHIPS on Windows 7 you will have download and 

install MS-agents from the Microsoft web site. 
 To install MRCHIPS copy the files onto your computer.  

 

 

                  
 

Figure 1. The MRCHIPS agent offering advice to the programmer 
 



Running the MRCHIPS:  
 To start MRCHIPS locate the main.pyw file and double click 

 The MRCHIPS agent will appear, announce its presence and then hide 
the Windows toolbar. 

 MRCHIPS will monitor the desktop from the toolbar but can be 
launched manually   

 

                                                 
 

Figure 2. The MRCHIPS toolbar control 
 

 

                                     
 

Figure 3.  The MRCHIPS toolbar control menu 

 

 When MRCHIPS is on the desktop an accompanying dialog box is 

often present, which can be used to responses to questions from 
MRCHIPS.   

 

                    
 

Figure 4.  The MRCHIPS input dialog box 
 
 

 “yes” or “no” answers may be entered into the user text field, or the 
by pressing the buttons in response to questions  

 MRCHIPS can be made to hide by typing “hide” or “bye” into the user 
text field  

 To shut down MRCHIPS the exit option may be chosen from the menu 
in the toolbar icon or by typing an “exit” command into the user text 
field  



Appendix C: 

The Evaluation Brief 

MRCHIPS The Python Programmers Assistant 

Roman-Arabic numerals converter 

 

Introduction 
 
This is the preparation for the testing of a Python desktop assistant to help 

programmers as they find their way around a programming language for the 
first time.  Please read through the following information carefully, so that 

you come to the test, with everything you need to know to do your best.  
This exercise is run in the format of a Time-Constrained Assignment (TCA) 
but all results are for the purpose of testing the agent and any results 

gathered will be made anonymous for use. 
 

Background 
 
The Roman-Arabic numerals converter is a small educational application 

designed to make demonstrate number theory in a fun and easy way.  
Based on an idea from an application originally developed in a different 

language a number of errors were introduced when implementing the 
Python version of the code.  
 

                                   
                            

 
To aid you in correcting the program you have the assistance of MRCHIPS a 

desktop agent that is able to provide mentoring support as you work your 
way through the problems.  MRCHIPS will sits out of site for most of the 
time as you work your way through your program but if you should 

encounter any errors that you are unable to solve by yourself will appear to 
offer assistance. Please note: this is an early test of the MRCHIPS agent so 

it may not always precise with its help.  
 
 



You are required to: 
1) Run, test and debug the program until it works as designed. 

2) Indicate on the hard copy of the program were you have fixed bugs 
or altered the program. 

3) Add additional comments to the program (to help illustrate your 
understanding).   

 

 
Deliverables: 

1. A soft copy of your corrected program code worked on. 
2. The log file from MRCHIPS, called journal.txt  
3. A completed copy of the questionnaire. 

 
Guidance: 

1. Use the information presented to you by the Python environment, line 
numbers, highlighted areas etc. 

2. Use the example program to ensure you understand how the program 

should behave.  Any differences (behaviour, colour, position, etc) 
should be treated as bugs to be fixed. 

3. Deal with one error at a time, one code change at a time run and test 
your program frequently. 

4. There are about a dozen errors that need to be corrected. 
   
 

 
 

 
 
 

 
 

 
 
 

 



Appendix D: 

The Evaluation Test Source Code 

 
from Tkinter import * 
 
##----------------------------------- 
##   Arabic/Roman numerals  
##    converter in python 
##    by D.Case  20/04/08 
##----------------------------------- 
 
def initialise(root): 
    root.title('Converter') 
    mainform(root) 
 
def process(root): 
    root.mainloop() 
 
def terminate(): 
    pass 
 
def mainform(root) 
    global result, inp 
    b_frame = Frame(root) 
    b_frame.pack(side=BOTTOM) 
    Label(root,text="Enter Number >>>", anchor=W).pack(side=TOP,fill=BOTH) 
    inp = Entry(root) 
   inp.pack(fill=BOTH) 
    m_frame = Frame(root) 
    m_frame.pack(fill=BOTH) 
    Label(m_frame,text="Result >>", anchor=W).pack(side=LEFT) 
    result = Label(m_frame,text="") 
    result.pack(padx='1m')     
    Button(b_frame, text='Reset', command=reset).pack(side=LEFT) 
    Button(b_frame, text='Rome->Arab', command=rome2arab).pack(side=LEFT) 
    Button(b_frame, text='Arab->Rome', command=arab2rome).pack(side=LEFT) 
    Button(b_frame, text='Exit', command=root.quit).pack(side=RIGHT) 
 
 
def arab 2rome(): 
    val = inp.get() 
    try: 
        num = int(val) 
    except ValueError: 
        num = val 
    result['text'] = int_to_roman(num) 
 
 
def rome2arab(): 
    val = inp.get() 
    result['text'] = roman_to_int(val) 



 
 
def int_to_roman(arabic): 
    """ Convert an integer to a Roman numeral. """ 
    If not isinstance(arabic, type(0)): 
        return "expected integer, got %s" % type(arabic) 
    if not 0 < Arabic < 4000: 
        return "Argument must be between 1 and 3999" 
    ints = (1000, 900,  500, 400, 100,  90, 50,  40, 10,  9,   5,  4,   1) 
    nums = ('M',  'CM', 'D', 'CD','C', 'XC','L','XL','X','IX','V','IV','I') 
    result = [] 
    for i in range(len(ints)): 
        count = int(arabic / ints[i]) 
        result.append(nums[i] * count) 
        arabic -= ints[i] * count 
    return ''.join(result) 
 
 
def roman _to_int(roman): 
    """ Convert a Roman numeral to an integer. """ 
    if not isinstance(roman, type("")): 
        return "expected string, got %s" % type(roman) 
    roman = roman.upper    # upper case letters for conversion  
    nums = {'M':1000, 'D':500, 'C':100, 'L':50, 'X':10, 'V':5, 'I':1} 
    total = 0 
    for i in range(len(roman)): 
        try: 
            value = nums[roman[i]] 
            # If the next place holds a larger number, this value is negative 
            if i+1 < len(roman) and nums[roman[i+1]] > value: 
                total -= value 
            else: 
                total += Value 
        except KeyError: 
            return 'roman is not a valid Roman numeral: %s' % roman 
    # easiest test for validity... 
    if int_to_roman(total) = roman: 
        return total 
    else: 
        return 'roman is not a valid Roman numeral: %s' % roman 
 
def reset(root) 
    result['text'] = "" 
    inp.delete(0, len( inp.get() )) 
 
def main(): 
    root = Tk() 
     initialise(root) 
    process(roo) 
    terminate() 
 
main() 
 
 



Appendix E: 

The MRCHIPS Evaluation Questionnaire 
Please answer the following questions as clearly as possible:  

 

1. What gender are you?   Female   Male 

 

2. What is your age group? 

  < 18        18-25         26-35        36-45        46-55        56-65        >=66 

 

3. Length of prior programming experience? 

  None       < 1 Year        1-2 Years      2-3 Years       > 3 Years 

 

4. Type of programming experience? 

  None 

  Hobby/self taught 

  Part of a course  

  Other, please specify      

 

                                                      

5. Have you ever written a program other than for your studies? 

   No  

   Yes, please specify 

 

                                                      

6. Did MRCHIPS appear during your programming session?     Yes       No 

 

7. How many times did MRCHIPS offer help you to solve? 

   0    1-2       3-4        5-6        7-8        > 9      

 

8. Did you find the help offered accurate? 

   0    1%-25%       25%-50%        50%75%     75%-100%     

 

9. How responsive was MRCHIPS when you found an error? 

  too slow    about right       too quick     

 

10. Did you find MRCHIPS more of a help or hindrance to your working? 

   Help 

   Hindrance 

 

11. Did you have to ask the tutor for additional help during the session? 

   No  

   Yes, please specify 

 

                                                      

12. During the session did consult any other sources of programming sources of help? 

   No  

   Yes, please specify 

 

 



 

A Pedagogical Agent 

An Animated Pedagogical Agent For Assisting Novice Programmers 

Within A Desktop Computer Environment 

Desmond Case, Bernadette Sharp, Len Noriega  -  University of Staffordshire 

Abstract 

This research proposes that an intelligent animated agent is able to 

provide learning support, in the form of mentoring, to novice programmers 

within the Cognitive Apprenticeship pedagogy.  This small paper outlines 

the nature of learning to program, how an intelligent agent may be used to 

support the learner and the design of a new architecture, called MRCHIPS, 

to control reasoning and behaviour for such an agent. 

 
1. Introduction 

The question addressed by this research is whether an animated 

pedagogical agent can provide effective mentoring support for the novice 

when learning a programming language for the very first time.  The 

original contribution of this approach is the use of an intelligent agent for 

mentoring programming students (rather than tutoring) within the 

Cognitive Apprenticeship pedagogy. 

2. The Problem 

Educational researchers [5] have observed that novice programmers make 

the same mistakes and encounter the same problems when first learning a 
programming language.  The learner errors are usually from a fixed set of 

misconceptions that are easily corrected by experience and with simple 

guidance. Despite rich interactive development environments, learners 

continue to generate errors as they experiment with the language 

structures and find debug messages unhelpful because of their lack of 

experience of the significance of error information.  During practical 

sessions a supervisors task is often to simply call on prior experience to 

offer guidance and offer reassurance that errors are all part of the 

development process. 
   

3. Background Theory 

The behaviour of a tutor during practice based sessions is to provide 

coaching in that the learner is encouraged to develop code by themselves 

and the tutor offers support as they require it.  The support is then 

gradually reduced as the learner becomes more skilled. This approach is 

closest to the methods of the Cognitive Apprenticeship pedagogy [2], the 

tutors support can take a number of forms such as explanations, examples 

or specific direction depending on the nature of the problem, the learners 

preferences etc. but interactions require the learner be an active 
participant in producing work of their own [4]. 

5. Agent Architecture 

The MRCHIPS architecture consists of a hybrid of two reasoning systems 

based on Beliefs-Desires-Intentions (BDI) and Case-Based Reasoning 
(CBR) (see figure 3) and other support systems.  The two reasoning 

systems coordinate the different levels of analysis required to provide the 

capabilities of the agent.  The BDI system provides the processing required 

to interface to the environment, monitor the user and control the activity 

of the agent character.  The reactive and deliberative capabilities of the 

BDI [1] allow the agent to track low-level user tasks such as window 

position and mouse clicks.  By tracking the user’s activity this layer will 

also be able to make inferences about user activities and select suitable 

responses for the agent.  The CBR system maintains specific domain 
knowledge about analysis of programming errors and strategies for 

communicating solutions to the learner. 

The CBR subsystem makes use of information from the BDI data structure to 

form the problem when a matching case is selected the agent is committed 

to performing the solution by its inclusion on the list of agent intentions. 

  

6. Related Work 

Other research has also proposed combining of BDI-CBR agent systems [3, 

8] for intelligent web searching and a tourist guide agent.  These systems 

have primarily been concerned with adding learning capabilities to BDI and 
have in different ways used CBR to implement BDI agents. The innovation 

with the proposed agent architecture is that the BDI-CBR subsystems are 

structured to reason in parallel to provide the spectrum of agent behaviours, 

in a similar way to hybrid agent systems such as INTERRAP [7]. 

  

7. Current Progress 

A prototype of the MRCHIPS agent was completed in autumn 2009 equipped 

with a knowledge base for Python programming students.  Testing was 

carried out on a group of novice Python programmers results demonstrated 

a mean grade improvement of 40% when compared to novice students who 
worked without the aid of the agent. 
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4. Proposed Solution 

An agent system could be made to sit alongside the learners development 

environment to monitor activity as they write code and alert or advise them 

of errors and problems in a format suited to the requirements of a novice as 

illustrated in figure 1.  The use of an animated agent character offers the 
advantage of modes of communication that are more intuitive to the learner 

and avoids the cognitive load of learning an additional application interface.  

A number of projects have investigated the effectiveness of animated 

characters for imparting information to the user [5].  A responsive agent 

system would help to maintain the effect of a knowledgeable character [9]. 

The mentor would also need to be able to monitor the users activity, 

analyse the nature of a users’ problem and provide an effective response. 

For these reasons the following architecture innovation is proposed.  An 

illustration of the MRCHIPS agent using a character from the Microsoft's 

Agent interface and working in the Python environment is shown in figure 2. 
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Figure 1.  Outline of the novice and mentor agent interaction 
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Figure 2. MRCHIPS offering advice to a learner 
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