

An Animated Pedagogical Agent For

Assisting Novice Programmers Within A
Desktop Computer Environment

by

Desmond Robert Case BSc, MSc

Staffordshire University

A thesis submitted in partial fulfilment of the requirements of

Staffordshire University for the award of the degree of Doctor of

Philosophy in Computer Science

September 2012

 ii

Abstract

Learning to program for the first time can be a daunting process, fraught

with difficulty and setback. The novice learner is faced with learning two

skills at the same time each that depends on the other; they are how a

program needs to be constructed to solve a problem and how the

structures of a program work towards solving a problem. In addition the

learner has to develop practical skills such as how to design a solution,

how to use the programming development environment, how to

recognise errors, how to diagnose their cause and how to successfully

correct them. The nature of learning how to program a computer can

cause frustration to many and some to disengage before they have a

chance to progress. Numerous authorities have observed that novice

programmers make the same mistakes and encounter the same

problems when learning their first programming language. The learner

errors are usually from a fixed set of misconceptions that are easily

corrected by experience and with appropriate guidance.

This thesis demonstrates how a virtual animated pedagogical agent,

called MRCHIPS, can extend the Beliefs-Desires-Intentions model of

agency to provide mentoring and coaching support to novice

programmers learning their first programming language, Python. The

Cognitive Apprenticeship pedagogy provides the theoretical underpinning

of the agent mentoring strategy. Case-Based Reasoning is also used to

support MRCHIPS reasoning, coaching and interacting with the learner.

The results indicate that in a small controlled study when novice learners

are assisted by MRCHIPS they are more productive than those working

without the assistance, and are better at problem solving exercises, there

are also manifestations of higher of degree of engagement and learning

of the language syntax.

 iii

Acknowledgements

I would thank my supervisors Professor Bernadette Sharp and Dr Len

Noriega for their patience and support. I would also like to thank Dr

Peter King for his help and support in the past.

Thanks go to various members of the faculty and students of the

Northampton Business School at the University of Northampton for their

technical assistance, interest and accommodation for my activities during

this research.

I would like to thank and reassure the many good friends and extended

family members who must now believe I only appear when the moon is

blue, that I am still here, you have always been in my thoughts and that

I look forward to the joy of renewing old acquaintances.

Finally I would like to offer a special thank you to the patients, faith and

unwavering encouragement of three special women I have woefully

neglected these many, many months: my mother, Mrs Avis Case, my

sister, Ms Rose Case, and my partner Dr Alison Rudd. I love and cherish

you all.

 iv

Table of Contents

 Page

Chapter 1 Introduction 1

 1.1 The difficulty with learning to program 1

 1.2 Research Aims 2

 1.3 Principal contribution of the research 5

 1.4 Background 6

 1.4.1 Mentoring vs. Tutoring 7

 1.5 The research framework 8

 1.5.1 The March and Smith framework 9

 1.5.2 The Järvinen research framework 10

 1.5.3 Applying the frameworks to this research 10

 1.5.4 Ethical statement 12

 1.6 Overview of the thesis 13

Chapter 2 The psychology of the novice programmer 15

 2.1 Introduction 15

 2.1.1 Two typical novice programming errors 15

 2.2 The context for learning to program 17

 2.2.1 The novice and the program 17

 2.3 Enhanced development environments 22

 2.3.1 Code sensitive editors 22

 2.3.2 Visual programming languages 23

 2.3.3 Intelligent assistance 25

 2.4. Summary 27

Chapter 3 Cognitive apprenticeship 28

 3.1 Introduction 28

 3.1.1 Methods of the model 31

 3.1.2 Constructivism 33

 3.1.3 Scaffolding 34

 3.1.4 Double-fading support 35

 3.1.5 Anchored instruction 36

 3.1.6 Traditional vs. Cognitive apprenticeships 36

 3.1.7 Expert areas of knowledge 37

 3.2 A Review of Systems that apply CA 38

 v

 3.3 Summary 45

Chapter 4 Intelligent virtual agents 47

 4.1 Introduction 47

 4.1.1 Intelligent Agents 47

 4.1.2 Animated pedagogical agents 49

 4.1.3 Intelligent Virtual Agent Systems 53

 4.2 Summary 61

Chapter 5 Reasoning in agent based systems 63

 5.1 Introduction 63

 5.2 The BDI agent architecture 63

 5.3 Case-Based Reasoning 67

 5.4 The cognitive agent architecture 72

 5.5 Alternate reasoning methods 74

 5.5.1 Classical agent reasoning 74

 5.5.1.1 Deliberative agents 75

 5.5.1.2 Reactive agents 76

 5.5.2 Practical agent reasoning 78

 5.5.2.1 Hybrid agents 78

 5.5.3 Biologically inspired reasoning methods 81

 5.6 Summary 81

Chapter 6 The challenges of learning Python – Case Study 83

 6.1 Introduction 83

 6.2 Difficulties in learning to program 83

 6.3 The properties of Python 85

 6.4 Observation of novice errors 87

 6.4.1 Method 87

 6.4.2 Categories of programming error 88

 6.4.2.1 Syntax errors 89

 6.4.2.2 Semantic errors 92

 6.4.2.3 Logical errors 96

 6.4.2.4 Strategic errors 98

 6.4.2.5 Errors arising from incorrect use of letter-case

in Python

99

 6.4.3 Recognition of errors 101

 vi

 6.5 Related work 104

 6.6 Summary 106

Chapter 7 An agent framework for mentoring within cognitive

apprenticeship

107

 7.1 Introduction 107

 7.2 Handling errors in Python 108

 7.2.1 Agent capability 110

 7.3 The CA approach to learning to program 110

 7.3.1 Agent capability 113

 7.4 The agent interface 114

 7.5 The agent environment 116

 7.5.1 Agent capability 117

 7.6 A mentoring scenario 117

 7.6.1 Agent capability 118

 7.7 A cognitive apprenticeship agent framework 119

 7.7.1 Agent capability 121

 7.8 Agent requirements for MRCHIPS 121

 7.9 Summary 122

Chapter 8 Implementation of MRCHIPS 123

 8.1 Introduction 123

 8.2 The MRCHIPS cognitive architecture 123

 8.3 The subsystems of MRCHIPS 124

 8.3.1 Reasoning in MRCHIPS 125

 8.3.2 The BDI reasoning subsystem 126

 8.3.3 The case-based reasoning subsystem 129

 8.3.4 Additional agent subsystems 134

 8.3.4.1 The BNF parser 133

 8.3.4.2 Perception 135

 8.3.4.3 Actuators 136

 8.3.4.4 Journaling 138

 8.3.4.5 Reading code 139

 8.4 Implementation details 141

 8.5 The agent environment 144

 8.6 Decision-making in MRCHIPS 146

 8.7 Related Work 149

 vii

 8.8 Summary 150

Chapter 9 Research methodology and experimental design 151

 9.1 Research methodology 151

 9.1.1 Quantitative research methods 151

 9.1.2 Qualitative research methods 152

 9.1.3 Hybrid research methods 153

 9.2 Review of research objectives 153

 9.3 Research Design 154

 9.4 Experimental overview 156

 9.4.1 Experimental setting 160

 9.4.2 Experimental limitations 161

 9.5 Ethical considerations 161

 9.6 Summary 162

Chapter 10 Evaluation of MRCHIPS 163

 10.1 Findings and analysis 163

 10.1.1 The t-test analysis 167

 10.1.2 The t-test calculation 169

 10.1.3 Pearson’s correlation coefficient 172

 10.2 Discussion 173

 10.3 Summary 177

Chapter 11 Conclusions and future work 179

 11.1 Review of research objectives 179

 11.2 Critical Reflection 183

 11.3 Research contribution 186

 11.4 Future work 187

References 189

Bibliography 204

Appendix A Brief Overview of Python 210

Appendix B The MRCHIPS User Guide

Appendix C The Evaluation Brief

Appendix D The Evaluation Test Source Code

Appendix E The MRCHIPS Evaluation Questionnaire

Appendix F The MRCHIPS Conference Poster

 viii

Figures

 Page

Figure 1.1 A Multi-methodological approach to IS research

(Järvinen, 2004)

11

Figure 2.1 Theories informing the mentor agent 15

Figure 2.2 The tkinter colour syntax highlighting editor for Python

code

23

Figure 2.3 The Win32 colour syntax highlighting editor for Python

code

23

Figure 2.4 The Alice user interface (courtesy of www.alice.org) 24

Figure 3.1 The place of cognitive apprenticeship in educational

literature (courtesy of Ghefaili, 2003)

30

Figure 4.1 The Steve agent demonstrating a control panel

(courtesy of Johnson and Rickel, 2000)

55

Figure 4.2 A PPP agent presentation (courtesy of Johnson and

Rickel, 2000)

57

Figure 4.3 The Jacob agent teaching the tower of Hanoi (courtesy

of Evers and Nijholt, 2000)

58

Figure 4.4 FatiMA characters in FearNot! Story (courtesy of Aylett,

2007)

59

Figure 4.5 Adele explains the importance of palpating the patient’s

abdomen (courtesy of Johnson, 1999)

60

Figure 5.1 The generic BDI architecture 64

Figure 5.2 Logical structure of a plan (a) alongside a practical

working example (b)

66

Figure 5.3 The CBR process cycle (Aamodt and Plaza, 1994) 70

Figure 5.4 The seaworld environment – (Courtesy of Vere and

Bickmore 1990)

75

Figure 5.5 Horizontal (a) and vertical (b) information flows in

layered agent architecture (Courtesy of Müller, 1991)

78

Figure 5.6 The Interrap agent architecture (Courtesy of Müller,

1991)

79

 ix

Figure 6.1 Runtime-errors in the Python shell window 99

Figure 6.2 Listing of a faulty Python to be debugged 101

Figure 6.3 Console error output for the faulty Python code 101

Figure 6.4 Windowed error output for the faulty Python code 102

Figure 6.5 Chart of the trend of Python novice errors over one year 103

Figure 6.6 Examples of frequently reported novice programming

errors in Java

105

Figure 7.1 Sketch of the novice and mentor agent interaction 115

Figure 7.2 The mentor agent’s advice to a learner 118

Figure 7.3 The agent framework 119

Figure 8.1 MRCHIPS System overview diagram 124

Figure 8.2 The mentor agent’s architecture 125

Figure 8.3 The PAL execution cycle 126

Figure 8.4 Two example plans in MRCHIPS 127

Figure 8.5 Example of a case in MRCHIPS 129

Figure 8.6 Fragment of a discrimination tree as a case-base index 130

Figure 8.7 The search algorithm for a discrimination network 131

Figure 8.8 Expression for the degree of match in the CBR 132

Figure 8.9 The mentor agent’s architecture 133

Figure 8.10 Fragment of the agent DCG statement parser 135

Figure 8.11 MRCHIPS driving the Victor agent character 137

Figure 8.12 Table of the different types of pedagogical actions 138

Figure 8.13 Instruction hierarchy for an if-statement 140

Figure 8.14 Algorithm of the PAL top-level execution cycle 141

Figure 8.15 Algorithm of the PAL instruction interpreter 142

Figure 8.16 Algorithm for selecting a new plan 143

Figure 8.17 The mentor agent’s advice to a learner 144

Figure 8.18 The agent’s interface to the Win32 OS 145

Figure 8.19 Simplified finite state machine for main MRCHIPS

behaviours

147

Figure 9.1 The user interfaces for the hangman and unit converter

applications used by the control groups

157

Figure 9.2 The user interface numerical converter application used

by the mentored evaluation group

158

 x

Figure 10.1 Proportion of errors corrected by each group 164

Figure 10.2 Comparison of grade distribution for each experimental

group

166

Figure 10.3 T-distributions with different degrees of freedom 167

Figure 10.4 The t-test expression 168

Figure 10.5 The t-test expression for small samples 168

Figure 10.6 Number of errors solved with MRCHIPS and student

grade

172

Figure 10.7 Errors solved with MRCHIPS verses errors solved alone 173

 xi

Tables

 Page

Table 1.1 The March and Smith research framework 9

Table 1.2 Mapping of this thesis against the Järvinen research

framework

12

Table 3.1 Comparison of cognitive apprenticeship systems 42

Table 3.2 How the pedagogical systems implement the cognitive

apprenticeship

43

Table 3.3 The methods in the cognitive apprenticeship pedagogy

mapped against the agent activity

45

Table 6.1 Syntax errors 90

Table 6.2 Semantic errors 93

Table 6.3 Logical errors 97

Table 6.4 Case sensitivity error types 100

Table 7.1 The methods in the cognitive apprenticeship pedagogy

mapped against the agent activity

111

Table 8.1 BNF syntax for body of PAL plans 128

Table 8.2 Table of addressable agent subsystems 129

Table 8.3 Comparison of MRCHIPS with other virtual pedagogical

agents

149

Table 9.1 Details for the experimental setting 160

Table 10.1 Results for number of errors corrected by each group 163

Table 10.2 Results for control group 1, novice programmers 165

Table 10.3 Results for control group 2, experienced programmers 165

Table 10.4 Results for group 3, mentored novice programmers 165

Table 10.5 Results for evaluation group, subjects and MRCHIPS 166

Table 10.6 Empirical data from the novice and mentored groups 169

Table 10.7 Preliminary analysis of the sample research data 170

1

Chapter 1:

Introduction

1.1 The difficulty with learning to program

When a novice programmer first begins to learn a programming language

he, or she, often encounters the same problems and makes the same

mistakes as others who have learned to program before. The

misconceptions, mistakes and errors form a set of knowledge that can be

easily corrected by simple guidance or experience and have to be leaned

as part of the programming skill. Making mistakes when learning to

program is a constructive part of the process, however some learners find

the precision required by programming code frustrating and may become

disengaged with the process. Despite rich interactive development

environments, learners continue to generate errors as they experiment

with the language structures and find debug messages unhelpful because

of their lack of experience of the significance of error information. During

practical sessions a supervisor’s task is often to simply call on prior

experience to provide guidance and offer reassurance that errors are all

part of the development process. Away from supervision some learners

can become stuck on a simple error that halts progress and prevents the

chance to address other problems. The problems are often as a result of

the learner failing to recognise where they have deviated from language

syntax or which solution to apply to address a given problem. The

problems are often easily fixed when pointed out by a tutor or even a

more able peer and this kind of help can occur both within and outside the

classroom situation. When the help is provided by a more able peer or

the help is provided outside of the classroom situation it can be

characterised as mentoring, which is support in the form of a more

experienced practitioner sharing knowledge. It may include privileged

access to information; it is informal in nature and the subject is driven by

2

the concerns of the learner. A fuller discussion of mentoring is given in

section 1.4.1.

When producing a software application it is necessary for the developer to

organise a large body of coding and data structures, and to decide how to

arrange them in such a way as to provide a solution to a given problem.

A programmer is faced with a range of coding options, operators,

functions, choices, knowledge representation and data structures and how

to represent the above in any particular language. In addition, the

programmer must devise a sequence of code for execution and possess

enough insight to recognise deficiencies and make corrections. The range

of possible options and the dependency between concepts makes learning

to write computer programs a challenging task. The programmer must

also possess enough insight into the domain of the problem to be able to

encode a solution.

Although teaching a subject is primarily concerned with one party

imparting knowledge to another, in reality there are other factors that

affect how well a learner is able to assimilate and apply new information.

Learning is a very social activity relying on relationships, in addition to the

subject knowledge, as part of the process. These relationships involve

things such as providing encouragement and explanation. Much of the

activity of supervising novice programmers is social in that the tutor offers

encouragement with often a smaller amount of time on advising

corrections to code. Anecdotal observation has found that this level of

technical guidance is often sought and given irrespective of the details of

the design task being undertaken by the learner.

1.2 Research Aims

This research proposes the use of a pedagogical agent, called MRCHIPS,

to provide mentoring support and presented as an animated character for

social interaction. The aim of the research is to determine whether the

use of an automated and animated pedagogical agent can provide

3

mentoring support to novice programmers as they learn their first

programming language.

Hypothesis 1) An intelligent agent with an anthropomorphic interface

can provide effective mentoring support to novice

programmers learning their first programming language.

The agent would appear as an interactive anthropomorphic entity that

would assist the novice to determine and solve programming errors when

a human mentor in the form of a tutor might not be available. The idea

arose from the observation that students on a business-computing course

learning a programming language for the first time would often give up at

the first problem they found a challenge, limiting their exposure to later

exercises (problem solving with a programming language can be a linear

process) and their overall learning experience.

As the students’ understanding of the subject was distributed across the

range of topics they had encountered, it was difficult to predict which

particular problem would impede them. In general some would

understand some principles and not others in different ways. The

problems would often be relatively minor and the practice of

systematically reviewing the work they had produced would be enough to

uncover the cause, but as reflection on ones’ work is also a skill under

development as people learn programming for the first time that

technique is not available to novices. The information could be gathered

from available documentation and literature but as the students are still

impeded by the same errors these options are not taken, or not effective.

Intelligent virtual agents, sometimes called believable agents, life-like

agents, synthetic agents or embedded virtual agents are part of the field

of Artificial Intelligence research concerned with presenting an

anthropomorphic character to represent an underlying cognitive agent in

an environment. One of the uses of the virtual agent is to promote

greater engagement when interacting with a human user. While this is

4

true of a 3D game environment, is the same also true of the programming

environment?

Hypothesis 2) The use of an animated virtual character user

interface increases the learner’s engagement with

problem solving in the programming environment.

To provide the range of capabilities that would allow an agent to monitor,

interact, diagnose and provide solutions to the learner it is likely to

require an agent architecture that is able to coordinate multiple reasoning

techniques, called a cognitive architecture. However most popular agent

architectures, such as Beliefs Desires Intensions (BDI), generally support

reasoning based around reactive and deliberative planning, which would

be required to control the interactivity of the agent, but not enough to

provide the domain reasoning of a pedagogical agent. Would it be

possible to extend the capabilities of a procedural BDI agent architecture

into a cognitive architecture?

Hypothesis 3) The processing capabilities of a procedural BDI agent

can be extended to provide the more knowledge based

reasoning capabilities of a cognitive agent architecture.

Intelligent Learning Environments (ILE) are based around specially

developed software applications that the student must learn to use before

transferring the skills to a real-world application environment. Intelligent

Tutoring Systems (ITS) and virtual agents also usually reside in their own

application environments. As learning to program is a difficult enough

task without having to become familiar with multiple tools or

environments, the utility of the agent is likely to be greater if the agent

worked in the learner’s environment and not the other way around.

Hypothesis 4) Agent based reasoning provides a framework to

extend knowledge-based systems into existing computing

5

desktop environments and avoid the need to build a

specialised learning application environment.

This would test how much of the cognitive agent would have to be

adapted to cope with an environment that will not be as accommodating

to its requirements as an agent aware environment. This is likely to be

similar to the situation faced by many network applications and robotics

research, but will allow for examination of cognitive and software solutions

respectively. This question also imposes an implied sub constraint that

the mentoring agent should not require any special hardware or software

above what could be expected on a desktop computer that would be used

to learn to program in Python for example. This is a useful guideline for

the development of the agent and deployment for evaluation and

demonstration.

1.3 Principal contributions of the research

This research brings together a number of areas namely Intelligent

Learning Environments (ILE), Intelligent Tutoring Systems (ITS), virtual

agents and cognitive agent architectures, which are covered in the

literature review chapters. ILE systems are usually based around

specially developed software applications the student must learn to use

before transferring the skills to a real-world application. As it will be

shown in the literature review other research into the use of intelligent

virtual agents in teaching has to date provided the environment in which

the interaction with the learner takes place. Evidence from this has been

able to demonstrate that novice programmers respond positively to

interactive learning with animated characters when developing code (Lui

and Chan, 2006). The novel approach taken by this research is to avoid

the requirement for a custom agent environment and for reasons arising

from the pedagogical theory explained in later chapters, the agent

operates in the learners’ environment of the Windows desktop. The novel

approach of MRCHIPS is in its strategy, to allow the novice programmer to

continue to work in the pre-existing development environment, to adhere

to one of the major principles of the cognitive apprenticeship pedagogy.

6

MRCHIPS exists as a separate application that because of its unique

architecture is able to monitor the user and provide knowledgeable

assistance. The agent not only monitors the novice, but makes use of the

reasoning of a cognitive architecture to provide expert level analysis of his

or her work and provide a character driven interactive response to the

user’s errors. These capabilities allow the agent to operate where they

are not usually found, in a programming environment on the desktop of a

conventional computer. If the subject activity is already computer based

the advantage of MRCHIPS is that the learner does not have to become

familiar with a second application, such as an ILE, in order to learn the

first application. In this way MRCHIPS supports a closer adherence to the

requirement of the cognitive apprenticeship pedagogy for the novice to

work with real world examples, as learning practice is accomplished using

real world tools.

1.4 Background

In the opening chapter of the book Inside Case-Based Reasoning the

authors, Riesbeck and Schank, describe Artificial Intelligence as a “search

for the general mechanisms underlying intelligence” (Riesbeck and Schank

1989). Embodied within that view is the concept of computers as an

answer-giving device. The idea of an individual being able to present a

problem to a computer when facing an unfamiliar situation and to have it

provide an answer not only motivates the dreams of science fiction

fantasy, as a casual survey of a series such as Star Trek would show the

purpose of the intelligent computer assistant to provide information to

human characters faced with the unfamiliar, as well as exposition to the

human viewers at home. But also this model of the intelligent machine

advisor has been the goal of real-world research and is increasingly found

in the user interface of commonly available software and hardware. The

concept of the intelligent computer assistant also has merit when users

are charting unfamiliar knowledge and one application area where this has

been useful is in education. This research is interested in the utility of

agents to assist in the learning of a first programming language.

7

According to Gulz (2004) educational researchers have observed that

novice programmers make the same mistakes and encounter the same

problems when first learning a programming language. The learner errors

are usually from a fixed set of misconceptions that are easily corrected by

experience and with simple guidance. Despite rich interactive

development environments, learners continue to generate errors as they

experiment with the language structures and find debug messages

unhelpful because of their lack of experience of the significance of error

information. During practical sessions a supervisor’s task is often to

simply call on prior experience to offer guidance and offer reassurance

that errors are all part of the development process. Computer

programming is a skill-based activity that involves problem solving within

the constraints imposed by a computer environment. Learning to

program is a fairly unique activity; there are few, everyday real world

analogies to the activity, programs are constrained by a mathematical

concept - logic, rather than an observable physical phenomena and the

correctness of code is ultimately mediated by a machine. The difficulty of

the task faced by the novice programmer is that when s/he start they

have a limited idea of how to produce code to achieve a goal, or solve a

problem, and little insight into how the code they produce will be

interpreted by the programming language.

1.4.1 Mentoring vs. Tutoring

The agent’s operation alongside the learner allows another novel

contribution to the research. The agent operates as a mentor towards the

learner, as opposed to a traditional tutor of ITS. In a formal sense there

is little difference between the terms mentor and tutor. The word Mentor

originates from the name of the figure of Greek legend who in his old age

was given charge of Telemachus, the son of Odysseus, when the latter

went to fight in the Trojan wars. According to the legend Mentor

performed his role so well that his name later became the proverbial

phrase for a faithful and wise adviser. The term mentor describes a

teaching relationship and is a synonym of teacher, as is tutor, counsellor,

lecturer, coach, instructor and guru. By convention the different terms for

a teacher are used to describe the nature of the participants in the

8

learning process. For example a person might find himself or herself

taught by at teacher at school, a tutor when learning the piano, a coach

for learning a sport, a lecturer at university, an instructor for driving and a

mentor at the start of employment. The Collins dictionary defines the role

of a mentor as “a wise and trusted advisor or guide” or “an influential

senior sponsor or supporter” (Collins dictionary 1987). While accurate,

this definition does not encompass the scope of mentoring, which also

implies a protective role. The learner in a mentoring relationship is often

called the protégé, which is a French term derived from the Latin meaning

“to protect” (Johnson 2007). Johnson (2007) describes the task of

mentoring which “… nearly always includes an emotional/interpersonal

support dimension. Components of psychosocial support may include

affirmation, encouragement, counselling, and friendship”, while Landsberg

(1996) describes mentoring as “… a role which includes coaching, but also

embraces broader counselling and support, such as career counselling,

privileged access to information, etc.”. So the term mentoring is mainly

used where there is an emphasis on a caring aspect of the teaching in

varied applications such as social care, personal friendships or

employment and career development. Mentoring differs from tutoring in

terms of the nature of the relationship between the participants. In a

paper for the University of Michigan, Arbor (1999) specifies mentors,

among other academic roles, as “… advisers, people with career

experience willing to share their knowledge […] tutors, people who give

specific feedback on one’s performance”. Therefore throughout this

research the term mentor will be used to mean an advice giver who will

support the learner based on experience in pursuit of providing care, while

a tutor provides lesson material, assesses the learner’s performance and

provides specific feedback on progress.

1.5 The research framework

A research framework ensures the correct model is used to evaluate an

item of research so results may be placed into an appropriate context to

show their worth. As different types of research require different types of

9

research frameworks it also defines the different activities that can be

used to produce specific outputs.

1.5.1 The March and Smith framework

The precise origins of the framework as applicable to items of research is

unclear from the literature as the term framework is used to cover other

such diverse subjects as industrial projects, academic programs, corporate

and government initiatives. However March and Smith (1995) proposed a

framework for research projects relevant to the area of information

technology. Their framework is based on the idea that scientific research

can be divided into two categories “natural science” and “design science”.

Research in natural science seeks to apply scientific methods to explain

some phenomena in IT with the aim of either trying to understand the

nature of it, which they termed descriptive, or with the aim of improving

it, which they called prescriptive. Design science based research is

concerned with the development of an artefact to satisfy some particular

goal. It produces tools that serve human purposes and these are assessed

against criteria of value or utility. Using these categories March and

Smith devised a framework that organised the research activities against

the research outputs.

 Build Evaluate Theorise Justify

Constructs

Models

Methods

Instantiations

Table 1.1. Example of an unpopulated March and Smith research

framework

The research framework identified four research activities: build, evaluate,

theorise, and justify. The build and evaluate activities are used in design

science based research, whereas the theorise and justify activities are

used for the natural science based ones.

1. Building is the process of constructing an artefact for a specific

purpose;

10

2. Evaluation is the activity of determining how well the artefact

performs;

3. Theorise is the process of constructing a theory that explains how

or why something happens;

4. Justify refers to the activity of proving a theory. This is done by the

systematic gathering of evidence that supports or refutes the

theory.

The outputs of the framework were identified as constructs, models,

methods and instantiations.

1. The constructs (or concepts) are the conceptualisations used to

describe a problem in the domain. It is the specialised language

and shared knowledge of a discipline.

2. The model is an expression of the relationships among the

constructs. Models represent situations as problem and solution

statements for design based activities.

3. The method is an algorithm – it is the sequence of steps used to

perform a task.

4. Instantiation is the realisation of an artefact in its environment;

this refers as much to the tools that address various aspects of

design in addition to any eventual software artefact.

An example of the layout for the March and Smith research framework

table is shown in table 1.1 above.

1.5.2 The Järvinen research framework

In a later development of the IT based research framework, Järvinen

(2004) expanded the work of March and Smith to identify additional

categories of research activities and research output. The Järvinen

framework makes more of a distinction between the theoretical and

practical activities of research, thus identifying five input activities. They

also identify differences in the types of method of a research project,

defining method identified by March and Smith as normative methods and

specifying methods that are used in reality as positive methods. They

also identified an additional output called description that allows for the

documenting of interesting related phenomena that may occasionally

occur. The Järvinen framework is therefore an extension on the March

11

and Smith framework that refines the model, method and instantiations

outputs.

1.5.3 Appling the framework to this research

To investigate the hypotheses this research focuses on the activities of

design science. Using the Järvinen framework the following outputs and

activities will be produced to address the investigation.

1. The constructs for this research cover concepts such as the

pedagogical theory, cognitive apprenticeship, the virtual agent, the

cognitive architecture, coaching, Python, the development

environment, the learner and the types of coding errors.

2. The model for the research is used to develop the requirements for

the design of the agent and is based on the analysis of errors in

light of the material from the literature review.

3. The method is the development and implementation of the

mentoring agent architecture and development of its knowledge

base.

4. Instantiation is the evaluation of the agent with reference to the

learning of novice programmers.

Theory building

Conceptual frameworks

Mathematical models

Methods

Systems Development

Prototyping

Product development

Technology transfer
Experimentation

Computer simulations

Field experiments

Lab experiments

Observation

Case studies

Survey studies

Field studies

Figure 1.1. A multi-methodological approach to IS research (Järvinen, 2004)

12

 Build Evaluate Analysing Creating Testing

Constructs

Intelligent

Agents

The psychology

of the novice

programmer

The

psychology of

the novice

programmer

Build model Intelligent

virtual agents

Experimental

overview

Theory model

Cognitive

apprenticeship

Cognitive

apprenticeship

Experimental

setting

Normative

method

The cognitive

agent

architecture

The

experimental

exercise

Prescriptive

method

The context for

learning to

program

Categories of

programming

error

Experimental

setting

Instantiations Animated

pedagogical

agents

Evaluation of

the hypothesis

Description NA

The mapping of this research against the Järvinen research framework is

shown in table 1.2 above. The subject name for the section of the thesis

that addresses the particular activity or output of the research is given in

the relevant field of the table.

1.5.4 Ethical statement

As this work involves the collection of empirical data from third parties

embarked on academic studies, particular care was taken to follow the

ethical guidelines as set out by Staffordshire University and The University

of Northampton. All the data gathered was made anonymous. Where

required those participants involved in experimentation were briefed to

the purpose of the exercise and priority was given to the requirements of

teaching over those of experimentation in the preparation of material.

Table 1.2. Mapping of this thesis against the Järvinen research

framework

13

1.6 Overview of the Thesis

Chapter 2 reviews the psychology of programming, the nature of

programming errors and examines the problems faced by a novice when

learning to program for the first time. It also examines the techniques

and tools that are available to reduce the occurrence of errors.

Chapter 3 provides a review of the methods and practices for the major

pedagogical theories. The pedagogies are considered in terms of their

suitability for teaching technical, practice based subjects and highlights

the reasons why the cognitive apprenticeship pedagogy is suitable for a

mentoring agent for teaching computer programming.

Chapter 4 describes the research on intelligent virtual agents, their

properties and capabilities, followed by an analysis of other intelligent

tutoring systems that have adopted a cognitive apprenticeship focus.

Chapter 5 is an introduction to agent architecture, types of agent

reasoning and the aspects of knowledge-based reasoning that are

applicable to cognitive agent systems.

Chapter 6 provides an analysis of the problem domain and the errors

produced by novice Python programmers. It includes a brief introduction

to the features of Python before giving an account of the programming

errors gathered from observation of programming students. The errors

are then classified into categories depending on their cause and this

analysis is used to inform the design of the agent knowledge base.

Chapter 7 brings together the theories from the literature review and the

evidence of the previous chapters making the case for the capabilities of

an agent based mentoring assistant for novice learners and a mapping is

made from the cognitive apprenticeship pedagogy to the agent

architecture.

14

Chapter 8 describes the design and implementation of MRCHIPS, the

mentoring agent system. A description is given of its various subsystems,

demonstrating how the agent’s behaviour and knowledge of programming

errors is used to fulfil the requirements of mentoring.

Chapter 9 describes the evaluation of MRCHIPS in mentoring novice

Python programmers; the options for testing and evaluation of the agent

are briefly discussed. A description is given of the experimental

arrangement used for the evaluation. A discussion is given that examines

the strengths and limitations of MRCHIPS.

Chapter 10 presents the findings and analysis of the evaluation. A brief

description is given of the reasoning behind the statistical methods of the

t-test analysis. An account is given of the analysis of the findings and the

results presented. A discussion is then given for the significance of the

results.

Chapter 11 brings together the questions of the hypotheses and the

empirical findings to summarise the outcomes of the research. A

discussion is given reflecting points arising and choices made during the

research. Suggestions are then made for future directions where the

research and the agent development may be taken.

15

Chapter 2:

The psychology of the novice programmer

2.1 Introduction

In this chapter an analysis is made of the difficulties faced by students

when learning to program for the first time. It gives a number of

examples of the nature of the errors made, the different programming

tools and makes the observation that although the development

environments aid the identification of errors, learners still continue to

make the same kinds of errors based on similar misconceptions. The

literature, as will be reviewed in the following sections, supports the

assertion that learning to program for the first time is a particularly

difficult activity. The reason for the difficulty is that there are few

analogies in the real world to describe many of the concepts in software.

As a result learners have to master two skills when learning to program:

they are (i) how to analyse problems to model them within the computer

and (ii) how a programming language may be used to express the

solutions to problems.

2.1.1 Two typical examples of novice programming errors

In 1990 Gilmore made observations of novice programmers as they

tackled the problem of constructing a correctly looping program to visit

Figure 2.1 Theories informing the mentor agent

Pedagogical
theory

Psychology of
programming

Intelligent
virtual
agents

Mentor

agent

16

each item on a list (Gilmore 1990). The students had been taught how

to code for both the iterative and recursive loop and were allowed to use

any method to produce a solution in the POP-11 programming language.

He noted one student’s particularly tortuous route to a solution as he

wrote code incorporating the single error of omitting the initialisation of a

variable for the loop with the result that the code did not behave as

expected. Rather than attempting to determine the source of the error

the student chose to write the code for the recursive solution but again

made the single error of not returning a value for the terminating

condition. Although the errors required different lines of code to correct

both were conceptually analogous, but rather than trying to directly

determine the source of the error the student chose the less useful

strategy of switching between the different versions of the code a dozen

times before he finally noticed his mistake. The observer noticed that

when subsequently trying to produce an iterative loop the student again

failed to initialise the loop properly but this time only required five

attempts to correct his mistakes.

A similar observation was carried out, as part of this research, in 2008

where a novice student programmer was given an exercise that required

the implementation of a loop as part of the solution. A group of students

had been taught how to code for the two types of iterative loop

supported in the Python scripting language, (a recursive solution was

also possible but not part of the curriculum). The task was to visit each

item in a string and count the total number of vowels present. The

observation of one student noted that he had produced a workable

iterative loop but was confused by looking for the vowels. The student

was asked to simplify the problem to look for occurrences of the letter

“e”. The student completed the program but placed the initialisation of

the counter variable on the line immediately above the one to increment

it all within the loop. The student was guided to verify the answer given

before he noticed the possibility of an error, but attempts to find a

correction involved rewriting the implementation of the loop. Further

guidance asking the student to trace the state of the variable led to the

student determining the source of the error and finally, after proving that

17

removing the initialisation line was not the solution, the student was able

to move the line to occur before the loop to produce a working solution.

2.2 The context for learning to program

The area of study used for this research is the teaching of a first

programming language to university students. Learning to program for

the first time is a challenging task. Programming a computer is a skill

based activity that involves problem solving using the opportunities and

within the constraints imposed by a computer environment. In order to

characterise the difficulties encountered by programming novices an

examination of the psychology of programming is required to provide a

context for the errors the novices make.

2.2.1 The novice and the program

A definition of the programming novice is provided by Mayer as a user

who has had little or no previous experience with computers, who does

not intend to become a professional programmer and who thus lacks

specific knowledge of computer programming (Mayer 1980).

Programming is the craft of devising a set of instructions for a computer

to perform a task, or to solve a problem. The nature of the instructions

may be diverse and different authorities have taken different views as to

the nature of a program at different times (Pane & Myers 1996). Early

programming languages such as Fortran considered the program as a

sequence of calculations. Little or no consideration was given to the

programming structure and unstructured programming code was shown

as an easy way to obfuscate understanding and to introduce errors.

Programming structures were devised to control the sequence of

instructions and increase the safety of programs, for example the Pascal

language. Other authorities viewed programming structures as a means

to control access to data thereby reducing the chance of errors during a

program’s execution (Booch 1993). The functional view defines a

program as a series of functional elements that process data and act as

input or output to other functions, no static data elements are

encouraged and a program becomes an enlarging library of functions.

Another perspective is the object-oriented view where a program is

18

considered to be a collection of data elements effectively bound to the

instructions capable of processing the data (forming the objects). Objects

then process tasks in response to requests from other objects and send

messages to other objects to request they process their data (Booch

1993).

Despite the different views on the construction of programs,

programming languages are generally represented as a script that

describes a series of tasks to be performed by a computer system. All

programming languages present two major forms to its user (Pane &

Myers 1996): the syntax, the syntactic rules that define how data and

code are expressed in the language, and the semantics, the meaning of

the statements expressed in the language. An understanding of both the

syntax and semantics of a language are important for effective use of the

language for solving problems. The programmer must understand the

sequence of execution (program flow), the transformational effects of

operations on data (data flow) and the purposes of statement grouping

(functional design) (Pennington & Grabowski 1990). A programmer’s

ability to understand computer code is characterised by the ability to

comprehend meaning at the different levels of abstraction (Hoc et. al.

1990). Skilled programmers are assumed to be able to successively

regroup statements into different levels or patterns to determine

meaning. Traditionally, programming courses begin by teaching the

syntax of a programming language before consideration of the semantics

(in reality the processes overlap but semantics lag behind syntax). In

education the usual emphasis when teaching a first language is to

minimise the number of new abstract ideas to be acquired and to provide

immediate feedback to program activity. Languages like Logo are often

used for teaching in elementary school, however while Logo is designed

as a language for children with no computer experience it is not designed

for teaching programming. Other experimental programming languages

are being developed to teach programming, such as GRAIL (McIver

2000), but are not widely known or used.

19

The primary activity of writing a computer program is a design-centred

task in that the users construct their own knowledge of the language and

how to use it to solve problems. It is similar in essence to other design

activities such as architecture, music composition, electrical circuit design

or writing an instruction manual (Pennington & Grabowski 1990).

However the difficulty with developing a computer program is not only

the challenge of using the programming tool to solve a design problem

but to also have sufficient insight into the problem solving methods for

the domain being modelled. The simplest computer problems might

involve computing and arithmetic, for other domains might require

computing and accounting, computing and physics, economics, statistics,

etc. which means understanding of an additional subject. However the

use of a second domain is an aid to understanding. Experiments in

teaching mathematical procedures demonstrated that children who were

taught by modelling grounded in real-world examples were better able to

transfer their skills to more complicated problems than those who were

taught the techniques as a set of abstract rules (Mayer 1980). Research

also suggests that novice programmers respond positively to interactive

learning when developing code (Lui & Chan 2006). In a study into agile

software development (also called extreme programming) the

performance of an individual was compared against the performance of

pairs of programmers when solving example problems. Although no

discernable increase in performance could be measured between pairs of

expert programmers compared to a single expert programmer, for novice

programmers working in pairs there was a notable improvement in

productivity over novices working alone. Experienced programmers are

able to call on past experience for programming tasks. Results from

studies indicate that even programmers with intermediate skills solve

programming problems by the application of prior strategies when faced

with new situations (Kummerfeld 2006).

Compared to more discrete fields such as physics or mathematics, results

from the psychology of programming identify the difficulties for novice

programmers in modelling program plans is two-fold: firstly, there are no

everyday intellectual activities that are analogous to programming that

20

may encourage spontaneous creativity in the field, and secondly,

programs operate on a notional machine (albeit in a physical machine)

whose function and operation remain opaque to the learner (Rogalski &

Samurcay 1990). This opacity does not allow for the spontaneous

construction of programming concepts. Rogalski and Samurcay identify

four areas that novice programmers must acquire during the learning

process:

1) A coherent conceptual model of the underlying programming or

processing environment of a computer: The conceptual model was

called a ‘notional machine’ (Rogalski & Samurcay 1990), and

difficulty forming a notional machine leads to the learner

misunderstanding the activity and behaviour of a running program.

Another level of complexity is the similarities and differences

between the notional machines of different programming

languages. A strictly typed procedural Pascal notional machine is

different from an object-oriented Smalltalk machine and a

declarative Prolog notional machine, even though in different

contexts they may share similar syntactic constructs (e.g.

arithmetic). Novice programmers appear to face a great deal of

difficulty with constructing their notional models due to the

complexity of any useful model that needs to incorporate two

major concepts: the use of command systems and the virtual

memory structures such as variables, file handlers, etc. to

simulate entities with no physical identity.

2) Control structures: the primary characteristic of any control

structure is that it can interrupt the linear flow of a program’s

execution. Earlier research was able to demonstrate that

structured programs were easier to understand and maintain than

non-structured programs (Green 1980). However this has little

effect on the difficulty of the use of test conditions for selection

and controlling iteration. Control structures provide two areas of

difficulty for the novice programmer: the conditional expression

and block of executed code as a result. The difficulty a beginner

faces with recursive loops is where an iterative loop describes the

actions modifying the state during each iteration, while the

21

recursion describes the relationship between each state of the loop

(Rogalski & Samurzay 1990). In general, iteration is taught before

recursion and their studies show that students have great difficulty

learning recursion. Learners with a greater grounding in logic and

mathematics were found to learn the new structures more rapidly.

3) Variables, data structures and data representation: all

programming languages allow for the manipulation of entities used

to represent knowledge within the domain. Novice programmers

often produce errors due to misconceptions concerning the content

of variables, the name of variables and their relation to other

elements within a program, the manipulation of a variable’s

content and the scope of variables (Rogalski & Samurcay 1990).

They note that a higher level of conceptual understanding is

required for novice programmers to follow the behaviour of

variables within an iterative or recursive loop.

4) Programming methods: these are the supporting strategies and

techniques that aid the programmer in solving problems, such as

top-down design, the waterfall model, object-oriented design, etc.

Even when familiar with the syntax and semantics of a

programming language, inexperienced programmers tend to lack

sufficient knowledge to know how to design solutions for specific

problems. Studies have shown that beginner programmers find

structured design processes more difficult to use because their

models are based on the input data and are oriented to processes

rather than the more object-based view that expert programmers

take (Rogalski & Samurcay 1990).

For the novice programmer an important skill is not only to recognise

certain problem situations but they also require knowledge of how to

apply appropriate tools and techniques in developing a solution. A study

by Perkins and Martin in 1986, which used a series of interviews, allowed

them to formulate the nature of the major difficulties faced by novice

Basic programmers. They characterised the difficulties as “fragile

knowledge” and “neglected strategies”. With fragile knowledge the

learner is aware of the required information but fails to see the

22

opportunity to use it. The researchers identified 4 types of fragile

knowledge: missing knowledge is knowledge that has simply not been

acquired; inert knowledge refers to knowledge that the student has but

fails to retrieve when needed; misplaced knowledge refers to knowledge

that is used in the wrong context; conglomerated knowledge is a misuse

of knowledge in which a programmer combines two or more known

structures incorrectly. They were able to confirm that the learner was

sometimes in possession of the knowledge by providing hints and clues

that would not contain the actual knowledge, but recorded that on nearly

50% of occasions the student then went on to solve the problem.

Neglected strategies refer to the way students do not use techniques to

gain further understanding of the problem they are solving. They

determined that the main strategy that learners neglected was to

properly read the code to determine what it actually does (Perkins &

Martin 1986).

2.3 Enhanced development environments

2.3.1 Code sensitive editors

One innovation to aid software development has been the adoption of

colour syntax highlighting for program code in text editors (Figures 2.2

and 2.3). This allows the different components of a program script to be

displayed in a different colour depending on what category the

component belongs to for instance all mathematical operators may be

displayed in red, constant numerical and string values in green and

language keywords in blue. The purpose of syntax highlighting is to aid

the readability of code so that simple errors, such as a misspelling may

be noted by the non-appearance of the expected colour and corrected

before the code is compiled or run. Colour syntax highlighting is now a

common feature of most program text editors, it is unclear whether

colour syntax highlighting has any effect on novice programmers;

anecdotal observations indicate programmers appear to make little use

of the feature. Research on experienced programmers show a

preference for syntax colouring with swifter identification of cognitive

structures within code, although no corresponding increase in

23

productivity was found with novice programmers (Green 1989). Work by

Davies (1991) indicates that syntax highlighting has an influence on the

development and problem solving strategies employed by the

programmer.

2.3.2 Visual programming languages

Software presents the additional challenge to learners in that code can be

used to represent not only physical objects but also insubstantial

concepts. There are therefore times when visual examples that may be

acquired from the real world are not available and designing a suitable

analogue for use on a computer can be inflexible and error prone. A

number of strategies have been investigated to attempt to remedy the

Figure 2.3. The Win32 colour syntax highlighting editor for

Python code

Figure 2.2. The Tkinter colour syntax highlighting editor for
Python code

24

difficulties. One approach is the development of languages especially for

teaching, such as LOGO or GRAIL, a more recent example of this type of

system is the Alice programming environment (Cooper et al. 2003)

developed by the Stage 3 Research Group at Carnegie Mellon University.

Alice is a 3D interactive programming environment where students are

taught the principles of programming code in terms of manipulating

characters and objects in a 3D environment. The Alice system is

presented as a series of windows that present different resources to the

programming environment. One window depicts the 3D scene under

development where objects from a library in another window may be

drag-and-dropped into the scene (Figure 2.4).

The properties of any object in the scene may be viewed by selecting it

and behaviours added by adding code to events that the object responds

to. Instead of the learner having to write code in a script, they are

shielded from the syntax details by building code from pull-down menus,

edit boxes and list boxes. According to the literature Alice was designed

to encourage students (typically female students who may not have been

exposed to computer programming) to engage with computing by

emphasising the use of programming as a method of story telling. In

controlled studies involving novice programming students on their first

programming course the use of Alice was credited for an average grade

Figure 2.4. The Alice user interface (courtesy of www.alice.org)

25

increase from C to B and an increase in retention from 47% to 88%

(Moskal et al. 2004).

However the limitation of this approach is that the learners avoid learning

the features of syntax for languages likely to be encountered beyond

education. Teachers have found that students who can program in Alice

have trouble making the transition to traditional programming languages

that use a text editor. So another approach is to design new application

tools that guide the learner and couple them with new pedagogical

models that specifically address issues, such as the logic of programming

structures, the manipulation of different data types that arise in the

programming domain.

2.3.3 Intelligent assistance

One application area related to the development of software is that of the

intelligent assistant. An intelligent assistant is a software application

designed to support a design activity by taking over some of a user’s

more menial tasks or providing checks and verification of their activity.

The nature of the assistance can be passive, only responding to the

user’s requests or activity; monitoring the user’s work and carrying out

operations according to set goals.

An example of a passive intelligent assistant is the Genie application

(Kaiser 1990). Genie is a question and answer system that is similar to

the application help facility available on desktop programs and is

designed to provide expert information on the use of a development

environment to new users. The information in Genie exists in a single

knowledge base but the application acts intelligently in the way that the

user is able to interact with it. Genie was designed to address the need

to search large knowledge bases to find the appropriate information for

the immediate need of the user and to present the answer at the

appropriate level for the user’s ability. New users to a system may

possess different levels of expertise. The system assumes novice users

require precise shorter answers while expert users may require more

detailed and comprehensive information. So Genie models three levels of

26

user expertise “novice”, “intermediate” or “expert” and tailors its help to

be either:

a) An introduction where a command is taught that a user may not

have encountered before;

b) A reminder where a brief description is given of a command that

may have been forgotten;

c) A clarification to explain the details or options about commands;

d) Elucidation to correct user misunderstandings that have arisen or;

e) A direct execution of a command on behalf of the user.

Input questions to Genie are constructed in a natural language form from

a selection of templates where the user inserts domain specific keywords

into appropriate fields to form queries that are then analysed. Typical

questions to Genie may be in the form of “What does command C do?” or

“How do I accomplish goal G?”.

Marvel is an example of an active intelligent assistant system designed to

monitor and automate many of the tasks for organising software

development projects (Kaiser 1990). Marvel is similar to a Make facility

but is useful for large or complex developments that may be spread

across many teams or platforms and not limited to any one programming

language, method of development or type of project. It uses a

production system that is able to reason about and manage many of the

resources in a software development project in accordance with a set of

rules and information is processed based on a knowledge base, which

contains a description of the project in terms of:

a) Resources: software libraries, classes and objects, the

development tools and the source code and target platform;

b) Relations: among the objects, inputs and outputs, products and

variations;

c) Rules: which are similar to those in expert systems with a

conventional condition part but the action is expressed as a single

activity with a set of post-conditions and used to model the

requirements of each project.

Marvel can be made to model the stages of the software life cycle and

the activities required to transform from one stage to the next.

27

Processing is carried out opportunistically using both forward and

backward chaining and automatically switching between the two when

necessary. When, for example, a new procedure needs to be added to a

project Marvel knows which dependences need to be updated and

performs the necessary operation.

2.4 Summary

For the novice, learning to program for the very first time is fraught with

difficulties. To build anything more than the most trivial program skilled

practitioners have acquired the skills of how to understand a problem,

how it can be represented in a computer, and how to encode it in a given

programming language. In addition the practitioner needs the

experience to know how to analyse the resultant output of a program,

how to trace faults and how to devise solutions to correct errors. In

order to make any progress as a programmer, the novice has to acquire

these same skills and apply them. The nature of developing software

means these skills have to be developed roughly in parallel and to avoid

either one undermining the capacity to make progress with the other

skills. The major obstacles to understanding for the novice programmer

can be summarised as “fragile knowledge”, where the learner is aware of

the required information but fails to see the opportunity to use it, and

“neglected strategies”, where the learner does not use techniques to gain

further understanding of problem solving in the domain. It was also

shown that producing errors while learning to program cannot be

avoided, software applications that simply attempt to remove the chance

of errors often only delay learning about parts of the language.

 28

Chapter 3:

Cognitive apprenticeship

3.1 Introduction

The cognitive apprenticeship approach grew out of and is a part of the

constructivist family of pedagogical techniques; it shares common

attributes with methods such as Scaffolding where both require learning

materials to be based on real world examples, i.e. materials that are

similar to those used by expert practitioners on a subject. The cognitive

apprenticeship model differs from others in providing a greater flexibility

in the nature of the interaction between teacher and learner and

therefore is better able to accommodate computer-supported learning

environments. The cognitive apprenticeship model also accounts for a

relationship between factual knowledge about the domain that may be

gained from traditional textbook based sources and the requirement for

heuristic knowledge that experts develop through problem solving

practice. The model depends on a learner centred approach; it expects

the learner to be motivated to learn the subject, to be attentive, to have

access to the learning materials and to be skilled enough to be able to

reproduce the desired outcomes. It specifies the need for the learner to

develop monitoring, diagnostic and remedial strategies to regulate

problem solving so as to be able reflect on their reasoning in a process

called meta-cognition. The cognitive apprenticeship model attempts to

develop the skills of the learner by allowing them to observe, enact and

practice them under the guidance of the teacher with the participants

taking on roles that pre-date formal traditional education. For example

the way that knowledge was imparted from master craftsman to an

apprentice is embedded in the social, deliberative and physical context

where the learning activities were guided by interactions between

teacher and learner.

 29

The Cognitive Apprenticeship pedagogy was first proposed by Collins et

al. in 1989 to address what they saw as some of the shortcomings of

curricular practices. They proposed addressing these issues by revisiting

the traditional apprenticeship model and adapting some of its

characteristics to teaching cognitive skills (Collins et al. 1989). They

observed that apprenticeships involved the social context in which the

learning takes place and that important cognitive characteristics are not

only derived from didactic instruction but also as a result of a culture of

self-motivated exploration from the learners. The work was primarily

concerned with the teaching of reading, writing and mathematical skills

so the researchers proposed the adaptation of traditional apprenticeships

to cognitive apprenticeships for two reasons. Firstly, the pedagogy is

primarily aimed at teaching the processes that experts use when

handling complex tasks. For this reason conceptual and factual

knowledge is made subordinate to the problem-solving context of the

task. They argued that an expert in a field is one who is able to solve

problems, monitor their performance, make self-corrections, reflect on

features and possibly make creative developments in their field.

Secondly, this allows the learner to demonstrate a deep understanding of

a field. The proponents believed that using real-world knowledge in the

relevant context, as opposed to much simplified training exercises should

be the basis for developing similar skills.

The researchers then chose to retain the apprenticeship aspects of the

model to emphasise that the learning was to be acquired through guided

experience, as it was for traditional skills. They acknowledged that

models for the learning of physical and cognitive skills were necessarily

different but that both shared characteristics on observation, refinement,

and correction towards the production of a measurable outcome. They

proposed that applying cognitive skills to apprenticeships required the

externalisation of processes that were normally internalised. Effective

coaching of the learner is impeded because there is no natural access to

the cognitive process. The process is also true the other way around in

that the masters of a skill may not necessarily have insight into how to

explain all of the processing involved in using that skill when teaching

 30

and the learner may have limited access to the teacher’s reasoning. The

cognitive apprenticeship model therefore, was designed to bring these

processes into the open through an encouraging of the various stages of

the pedagogy.

Just as with traditional apprenticeship practice in fields such as

carpentry, tailoring, etc. where the learner acquires skills while working

on real tasks and products, so too the cognitive apprenticeship approach

where the teacher is able to model processes involved in solving real-

world problems. Figure 3.1 illustrates the position and relationship of the

cognitive apprenticeship model to other pedagogies. Practice from

current educational theory credits one of the strengths of the model is

due to the use of real-world situations as the source of the training tasks

and this becomes less effective when information is taught outside of a

real context: “Situated learning does not mean ‘no abstractions’ but

rather reconnecting formal education to everyday life” (Clancey 1982).

The learner is then able to observe the teacher’s approach and solution

to problems and attempts to reproduce these behaviours. The teacher

provides coaching support as the learner attempts the task with

feedback, hints and reminders to tune the learner’s performance towards

a more proficient approach to solving the task. The learner is expected

to repeat the tasks many number of times with the amount of support

from the teacher reduced as the learner becomes more proficient in a

process known as fading. The cognitive apprenticeship model tends to

Socio-cultural learning theories

Situated learning

Anchored

instruction

Traditional
apprenticeship

Cognitive
apprenticeship

Figure 3.1. The place of cognitive apprenticeship in

educational literature – (Courtesy of Ghefaili 2003)

 31

lend itself to computer automation and should also encourage the use of

AI technologies and intelligent tutoring systems. In a report in 2001,

Woolf and colleagues examined the importance of intelligent tutoring

systems in supporting sophisticated interaction, adaptability and focused

problem solving as a remedy to the limitations of simpler computer aided

educational tools that leave the learner passive and an uninvolved

participant in the process (Woolf et al. 2001).

3.1.1 Methods of the model

The cognitive apprenticeship model is divided into six main teaching

methods which are divided into three major classes of skills: cognitive

skills covered in the modelling, coaching and scaffolding methods,

development of problem-solving skills addressed in the articulation and

reflection methods and autonomy which is encouraged in the exploration

method (Collins et al. 1989). A detailed explanation of activity for each

method is given below:

(i) Modelling: In modelling the expert performs a skills task while the

student observes the practice involved. The modelling can belong

to two strategies: behavioural and cognitive modelling. In

behavioural modelling a demonstration of how the task is to be

performed is given by the instructor whereas in cognitive modelling

the instructor articulates the reasoning that the learner should use

in performing the task. Current teaching practice for programming

can make use of both modelling strategies with behavioural

modelling giving way to cognitive modelling as time and student

competences progress. When the teacher articulates their reasoning

it is to indicate to the learner what factors are used to guide the

decision making during the task. When the learner articulates their

reasoning they explain their understanding of the task and their

approach to solving the problem.

(ii) Coaching: For this step the expert observes the learner performing

the skill and offers hints, feedback, and reminders to help them. In

addition, if necessary, extra support may be provided by

scaffolding, remodelling and goal setting for subtasks. The learner

would be expected to crudely follow the steps learned in the

 32

modelling phase and, through repetition with support at each stage,

to refine their performance and/or their outcomes. The role of the

coach is inexact and can be complex but they would be expected to

provide motivation, analyse the performance, provide feedback and

promote reflection on the task. As coaching has a social context the

learner would be expected to seek help or confirm their approach at

various times and would also expect the unsolicited help and

encouragement from the teacher. The context of the coaching is

necessarily driven by the performance of the learner and the

literature outlines a number of strategies for effective coaching

(Laffey et al. 1998). These include the ability to relate the

importance of aspects of the task to the learner and to provide

reasons for the learner to remain engaged with the task. The coach

should work to boost the learner’s confidence as they progress.

Motivational prompts that are important at the beginning of the

coaching can be faded as progress is made.

(iii) Scaffolding: For this step activities are organised at the level of the

learner’s current skills to encourage the learner to progress to

subsequent levels where the amount of support is withdrawn. This

will be provided by the structure of the course with a series of

practical exercises, tutorials and assignments. The structuring of the

tasks with increasing levels of complexity allows the student to be

able to build on previous lessons and incorporate new knowledge

into what has already been learned. The fading of support from the

teacher is to encourage the student, during coaching, to tackle

tasks using their own resources. The method of the fading could

take two formats, either through the quantity of the support with

changes in frequency or proactive offers of help, or through a

change to the quality of the help using more general guidance or

Socratic help to encourage the learner’s reasoning.

(iv) Articulation: The use of articulation requires the problem solver to

explicitly express their reasoning and understanding of the process

at the time they are performing the task and while being observed.

As a teaching tool articulation should provide additional insight into

the expert’s view of the domain. The teacher can be made aware of

 33

errors, misunderstandings and incorrect assumptions in the

student’s model of the domain and offer coaching support.

Articulation can take three forms with the aim of encouraging the

student to self-monitor and to explore the strategies and actions

employed: 1) inquiry teaching where the teacher asks the student

to answer questions that articulate and refine their theories about

the domain’s knowledge, 2) articulate thoughts: the teacher can

also ask the learner to explain their reasoning as they problem solve

and 3) critique or monitor peers in cooperative tasks.

(v) Reflection: In reflection the learner is encouraged to critically

evaluate their own performance against that of the experts. Expert

practitioners tend to have expectations of the results of various

activities in a task and can adjust actions to improve outcomes.

Learners need to be able to not only apply similar actions, but also

to understand if the expectation has been met or how to recover if it

has not. There are various suggested techniques for doing this that

can recreate the expert’s post-mortem of the processes involved

and their effects on the problem-solving task. Reflection also allows

for the use of audiovisual recording tools.

(vi) Exploration: For this attribute the student is encouraged to pursue

general goals to tackle problems independently. Exploration

requires the questions posed to be made challenging and interesting

enough to encourage the student’s participation. The major

exploration technique is for the teacher to set general goals for the

student but to encourage them to concentrate on specific sub goals.

The method even allows students to refine the general goals in

order to pursue areas of particular interest.

3.1.2 Constructivism

The Constructivist based family of pedagogies share a characteristic with

the cognitive apprenticeship model of a learner centred approach to

teaching where the emphasis is on the learner to construct his or her

individual model of new knowledge rather than being simply a passive

recipient of the information presented by the teacher. Constructivism

 34

itself is concerned with the learner's actual act of creating meaning

(Brooks 1990). The constructivist model argues that the learner’s mind

actively constructs relationships and ideas, rather than simply labelling

objects that exist in the world; hence, meaning is derived from

negotiating, generating, and linking concepts within a community of

peers (Harel & Papert 1991). In constructivism, knowledge of the world

is constructed by the individual through interacting with the world and

the testing and refining of cognitive representation (Boyle 2001). Tom

Boyle identified five major principles of constructivism as related to

computing science from a list of general principles as:

1) authentic learning tasks: learners are better able to learn if they

can see the relevance of knowledge;

2) interaction: allows learners to construct their own models of a

domain;

3) ownership of the learning process: rather than the teacher as a

taskmaster the learner selects the problem they work on;

4) experience with the knowledge construction process: learning how

to learn, how to construct and refine new meaning;

5) meta-cognition: to allow the learner to monitor and direct their

own learning and performance.

Constructivist theory argues that it is impractical for teachers to make all

the current decisions and simply "download" the information to learners

without involving the learner in the decision process and utilising the

learner's abilities to construct knowledge. A major component of

constructivism is its emphasis on making meaning through shared

cultural, historical, social and political experiences through collaborative

activities. While an agent system may be able to simulate some of the

social skills in mentoring, to actually share experiences would be beyond

the perceptive and reasoning capabilities of the agent.

3.1.3 Scaffolding

In addition to being a pedagogy in its own right Scaffolding is also a

method within the Cognitive Apprenticeship pedagogy, by which a tutor

provides temporary support to the learner until help is no longer needed.

The help can take many forms e.g. explanations, examples, direction,

 35

etc. but the help is guided by the learners activity in the subject so the

learner is required to be an active participant in the learning process

rather than a passive recipient of information. Scaffolding allows

learners to attempt things they would not be capable of without

assistance. It is similar in essence to a number of other pedagogical

strategies such as guided practice, apprenticeships and double-fading

support but differs in detail. For example, in the classroom guided

practice usually looks like a combination of individual work, close

observation by the teacher, and short segments of individual or whole

class instruction. In computer based or Internet based learning, guided

practice has come to mean instructions presented on the learner's

computer screen on which they can act. This action may be to perform

some task using a program that is running at the same time, or it may

be to interact with a simulation that is embedded in the program or web

page. One study of computer-based Scaffolding was carried out into its

use in teaching the design of concept maps (Chang et al. 2001). The

research compared the learning outcomes of constructing concept maps

using Scaffolding, termed ‘construct on scaffold’, against unstructured

learning, called ‘construct by self’ and a non-computer based method,

‘construct on pencil-and-paper’. The ‘construct on pencil-and-paper’ was

used to measure for any effect of using computers in learning. Via a

series of test results and feedback from students, the results of the study

were able to demonstrate that the ‘construct on scaffold’ concept

mapping had a better impact on learning than the other two methods.

The results were also able to show that although those students who

worked on computers were more positive about the learning there was

no significant difference between the results of those groups who learned

without Scaffolding.

3.1.4 Double-fading support

Another noteworthy pedagogy is double-fading support (DFS) it is a

pedagogical technique that has particular application for teaching of

complex software applications with minimal instructional support

(Leutner 2000). When learning a new application the learner is locked

out of various areas of functionality and provided with detailed guidance

 36

(the doubled component) that is gradually removed during training.

Leutner and Vogt developed DFS in 1989, as an application of ACT-

theory to improve software usability and in practice it is similar to the

scaffolding method. To test the effectiveness of the DFS method

Leutner monitored the learning outcomes of 208 university students

learning how to use a CAD application in two series of experiments. The

results indicated that students who learned using the initially reduced

software outperformed the control group learning on the fully functional

system (Leutner 2000). They were also able to measure that students

who were made aware of features that were unavailable to them (e.g.

inactive icons and buttons) performed less well than those students

where the inactive controls were not visible. Double-fading support

appears to be similar to scaffolding but suited to learners in a computing

environment. Its major difference is that in the practice of utilising DFS

the learning environment is under the control of the tutoring system with

components being made available to the learner as they progress.

3.1.5 Anchored instruction

The Anchored instruction pedagogy is a form of situated learning that

involves the use of multimedia tools to pose and solve complex realistic

problems (see figure 3.1). The developers’ goal was to create

interesting, realistic contexts that encourage the active construction of

knowledge by the learner. The stories presented were designed to act as

anchors, sometimes called situated contexts, for the learner to explore

rather than a series of lectures. The primary research application area of

anchored learning was for the development of reading and mathematical

skills at the elementary learning level and although related to

apprenticeship pedagogies it is separated by not implementing the

methods of cognitive apprenticeship.

3.1.6 Traditional vs. Cognitive apprenticeships

Apprenticeships were the way that skills were traditionally taught; its use

predates the development of school-based education. There are

differences between traditional and cognitive apprenticeships that impose

 37

considerations on teaching of non-traditional subjects (Collins et al.

1991). The authors outlined three major differences:

1) Traditional apprenticeships are usually grounded in physical tasks

that culminate with a product. The teacher can therefore make

their activities easily observable. For cognitive applications the

teacher must ensure that mental processes are made visible to the

learner.

2) As traditional apprenticeships produce tangible finished products

the steps of manufacture are more easily understandable, i.e. the

avoidance of some subprocess or subcomponent is likely to

produce a measurable deficiency in the final product. So for

cognitive tasks the challenge is to situate abstract tasks in

contexts that make sense to the student.

3) Traditional apprenticeships have skills that are specific to the

tasks, i.e. the craft of turning a piece of wood on a lathe is

particular to carpentry and it is different and non-transferable to

the skills used by, for example, a baker. The cognitive skills

developed in the cognitive apprenticeship model need to be

transferable; the elements of reasoning and problem solving may

have application across many fields.

3.1.7 Expert areas of knowledge

The developers of cognitive apprenticeship, Collins, Brown & Newman

(1989) and Collins, Brown & Holum (1991), identified four target areas of

expert knowledge that are essential for the learner to gain a true

understanding of a field. They then highlighted the limitation of the

traditional schooling model in that the focus of the teaching concentrates

primarily on the domain knowledge area to the exclusion of the others.

The four knowledge areas are explained below:

1. Domain knowledge: These are the facts, concepts and relations

that exist within a topic that encompasses the knowledge of that

subject. Domain knowledge can be thought of as the information

that is conveyed in the books and literature about a subject. It

 38

forms the basis and the extent of the knowledge that can be

taught by traditional, learning-by-rote, classroom based methods.

2. Problem solving strategies: These are the techniques that allow

users to achieve tasks within the domain. This is the kind of

information that is not obvious from the domain knowledge alone

but required to make use of the knowledge. The problem solving

strategies might incorporate experiential knowledge and heuristic

knowledge “rules of thumb” that expert practitioners might use.

3. Control strategies: These are the techniques for recognising and

selecting the most appropriate problem-solving strategy for the

situations that may arise. This skill involves being able to monitor

and diagnose features of the domain and then to select the correct

remedial activity to achieve goals for a given state of the domain.

4. Learning strategies: are strategies to learn the types of knowledge

that are present in the domain and described in the strategies

above. Different techniques may be employed for which a

rudimentary knowledge, from the techniques above, would be

required in order to place it into a proper context.

3.2 A Review of Systems that apply CA

Other researchers have subsequently used the cognitive apprenticeship

model for other fields including the teaching of programming languages

(Chee 1994, Clancey 1992). There has been much research and use of

cognitive apprenticeships in training and education. The model appears

to be more applicable to secondary and tertiary education, with papers

describing its use in business, law, mathematics, software engineering,

research, nursing and medicine, but no examples were found for use in

primary education. This may be due to the learner having to acquire a

core set of skills in order to benefit from the model’s learner centred

prerequisite. Another reason might also be that traditional

apprenticeships have continued in the age of formal school education but

primarily to prepare people for work towards the end of childhood,

although early developers of the pedagogy did describe its application to

the teaching of reading writing and mathematics in a secondary level

schoolroom environment. Table 3.1 below provides an overview of the

 39

domains and features of a number of systems that deploy the cognitive

apprenticeship pedagogy.

 The different teaching systems have all implemented the cognitive

apprenticeship model in different ways, from some systems, such as

UNCLE (Wang & Bonk 2001) and SIPLeS (Chee 1997) automating most

of the methods to others that automate only one or two methods, such

as the Cognitive Peedy assistant (Tholander & Karlgren 2002) or CABLE

(Chen Mow et al. 2006). As cognitive apprenticeship is defined only in

terms of its six methods with no constraints on what may or may not be

automated, the subject specialists appear to have applied technology

based on their individual requirements while remaining within the

structure of the theory. Other intelligent tutor systems (ITS) such as

PAT (Koedinger 1997), Adele (Shaw et al. 1991), Autotutor (Wiemer-

Hastings et al. 1989) and Steve (Rickel & Johnson 1998) were also

considered but not included in this analysis as their developers’

evaluation made little consideration of their application to any one

pedagogy.

The following systems considered were designed with the aim of aiding

learners in diverse domains and have all used the cognitive

apprenticeship model differently. UNCLE, an acronym for “Using Notes

for Case-based learning Environments” was designed to teach business

skills and management (Wang & Bonk 2001). The CABLE system is an

examination into the influence of the cognitive apprenticeship to model a

learning environment for teaching computer programming in Java (Chen

et al. 2006). In a similar domain the SIPLeS system was used in the

teaching of object-oriented design in Smalltalk (the description of SIPLeS

includes the second version, SIPLeS-II. They are a development of an

older ITS system called SmallTALKER all by the same author). The

Instructional Planning Assisting System (IPASS) provides a multimedia

tool to help inexperienced teachers to visualise how a lesson works and a

systematic guide to the use of the specific standard and to provide the

skills and knowledge to begin their careers. The cognitive apprenticeship

has been used as a method for teaching clinical practice to pre-registered

 40

nurses by making use of multimedia technology (Woolley & Jarvis 2007).

The authors did not report the system as having a name but described

the training environment as the clinical practice suite (CPS). SHERLOCK

was a computer-based coaching environment employed by the Air Force

for training aviation technicians in a realistic context (Lesgold et al.

1992). It differed from other intelligent tutoring systems in that it did

not model the student but was instead driven by responding to student

questions. Evaluation of SHERLOCK demonstrated that subjects who

used the system showed an increase in competence over non-users and

a troubleshooting ability expected of technicians with four years of job

experience.

Table 3.2 below illustrates how the various systems make use of

computer automation to implement methods of the cognitive

apprenticeship pedagogy. The modelling method is implemented in

different ways by each system but the systems often attempt to

represent the expert reasoning graphically as part of the user interface.

In UNCLE the learner reads the text of an example case study prepared

by a domain expert. The modelling is supplemented by the exercises in

the later methods, but the initial reading of the case is a manual

exercise, albeit one carried out on line. In SIPLeS the learner plays the

part of a junior programmer in a software engineering team. The type

and nature of the problem is selected from a computer and the problem

scenario delivered by a multimedia presentation. Multimedia tools were

also used for modelling in the clinical practice suite (CPS) and web-based

cognitive apprenticeship systems. The domain modelling for the

pedagogical assistant was given by more traditional human based

interaction. The web-based instructional planning system also provides a

multimedia presentation to supplement more traditional reading

materials. To model expert reasoning in Cognitive Peedy a computerised

step-by-step account is provided of how a domain expert solves various

modelling tasks (Lusk & Atkinson 2007); the information the student has

to follow links from decision to decision and questions and difficulties are

made explicit.

 41

The coaching method is concerned with modelling, selecting the problem

solving tasks, providing hints and feedback on performance (Collins et al.

1991). With the exception of the Cognitive Peedy assistant, all of the

systems use computer or electronic media to provide coaching support.

Different strategies are used depending on the requirements of the

domain. CPS records the exercises for later review, the others provide

various levels of email feedback from experts or peers while SIPLeS

makes use of a case-base archive to determine the feedback to the

learner. The UNCLE system is designed to provide coaching through

online discussions and feedback from more able peers and teachers. The

use of email by these systems works to reduce the constraints of space

and time in the access to expert knowledge. The Sherlock system

provides coaching in the form of advice when prompted by the user. The

advice is slightly different to the hints provided by other systems in that

it can indicate what option to pursue next or even indicate what

conclusions may be drawn from various factors.

Scaffolding selects the appropriate level of problem task and the fading

of the support. Students on the UNCLE system undergo a series of

online tests stored in the system’s library. The results are then

diagnosed and the experts are able to direct learners to additional

materials from the library or work with the learners to address

difficulties. In SIPLeS the learner is allowed to select their role in and as

part of a programming team scenario, from an online menu system, the

designer expectation is that the learners would undertake different roles

over time. Cognitive Peedy provides a computerised design tool where

expert pattern models are presented and may be adapted and modified

for use by the learner.

4
2

 N
a
m

e
 o

f

s
y
s
te

m

A
u

th
o

r
s

Y
e
a
r

S
u

b
je

c
t

ta
u

g
h

t

C
o

m
p

u
te

r
is

e
d

m
e
th

o
d

s

H
u

m
a
n

c
e
n

tr
e
d

m
e
th

o
d

s

M
e
d

iu
m

A

p
p

li
c
a
ti

o
n

le
v
e
l

C
A

B
L
E

M

o
w

 I
.

C
.,

 A
u
 W

.
&

Y
a
te

s
 G

.

2
0
0
6

Ja
v
a

m
o
d
e
ll
in

g

c
o
a
c
h
in

g

re
fl
e
c
ti
o
n

s
c
a
ff

o
ld

in
g

a
rt

ic
u
la

ti
o
n

e
x
p
lo

ra
ti
o
n

N
e
tw

o
rk

d
is

c
u
s
s
io

n

a
n
d
 e

m
a
il
s

T
e
rt

ia
ry

E
d
u
c
a
ti
o
n

C
li
n

ic
a
l

P
r
a
c
ti

c
e

S
u

it
e

(
C

P
S

)

W
o
o
ll
e
y
 &

 J
a
rv

is

2
0
0
7

M
a
te

rn
it
y

c
li
n
ic

a
l
s
k
il
ls

m
o
d
e
ll
in

g

c
o
a
c
h
in

g

s
c
a
ff

o
ld

in
g

a
rt

ic
u
la

ti
o
n

re
fl
e
c
ti
o
n

e
x
p
lo

ra
ti
o
n

M
u
lt
im

e
d
ia

C
D

s

P
re

-s
e
rv

ic
e

n
u
rs

in
g

C
o

g
n

it
iv

e

P
e
e
d

y

T
h
o
la

n
d
e
r

J.

2
0
0
2

O
.O

.

m
o
d
e
ll
in

g

m
o
d
e
ll
in

g

s
c
a
ff

o
ld

in
g

re
fl
e
c
ti
o
n

c
o
a
c
h
in

g

a
rt

ic
u
la

ti
o
n

e
x
p
lo

ra
ti
o
n

In
te

ra
c
ti
v
e

a
g
e
n
t

T
e
rt

ia
ry

E
d
u
c
a
ti
o
n

S
H

E
R

L
O

C
K

L
e
s
g
o
ld

,
A
.,

 L
a
jo

ie
,

S
.,

 B
u
n
z
o
,

M
.,

 &

E
g
g
a
n
,

G

1
9
9
2

E
le

c
tr

o
n
ic

s

m
o
d
e
ll
in

g

c
o
a
c
h
in

g

s
c
a
ff

o
ld

in
g

a
rt

ic
u
la

ti
o
n

re
fl
e
c
ti
o
n

e
x
p
lo

ra
ti
o
n

C
o
m

p
u
te

r

s
im

u
la

ti
o
n

A
ir

 F
o
rc

e

T
e
c
h
n
ic

ia
n
s

S
I
P

L
e
S

-
I
I

S
a
n
 C

h
e
e

1
9
9
7

O
O

 i
n

S
m

a
ll
ta

lk

A
ll

N
o
n
e

C
u
s
to

m
 S

W

p
a
c
k
a
g
e

T
e
rt

ia
ry

E
d
u
c
a
ti
o
n

U
N

C
L
E

W

a
n
g
 F

.K
 &

 B
o
n
k

C
.J

.

2
0
0
1

M
a
n
a
g
e
m

e
n
t

d
e
c
is

io
n

a
n
a
ly

s
is

c
o
a
c
h
in

g

s
c
a
ff

o
ld

in
g

a
rt

ic
u
la

ti
o
n

re
fl
e
c
ti
o
n

e
x
p
lo

ra
ti
o
n

M
o
d
e
ll
in

g

N
e
tw

o
rk

d
is

c
u
s
s
io

n

P
o
s
t

g
ra

d
u
a
ti
o
n

b
u
s
in

e
s
s

W
e
b

-b
a
s
e
d

in
s
tr

u
c
ti

o
n

a
l

p
la

n
n

in
g

(
W

I
P

)

L
u
i,
 T

.-
C
.

2
0
0
5

L
e
s
s
o
n

p
la

n
n
in

g

m
o
d
e
ll
in

g

c
o
a
c
h
in

g

s
c
a
ff

o
ld

in
g

a
rt

ic
u
la

ti
o
n

re
fl
e
c
ti
o
n

e
x
p
lo

ra
ti
o
n

W
e
b
-b

a
s
e
d

M
u
lt
im

e
d
ia

P
re

-s
e
rv

ic
e

te
a
c
h
e
rs

 T
a
b
le

 3
.1

.
C
o
m

p
a
ri
s
o
n
 o

f
C
o
g
n
it
iv

e
 A

p
p
re

n
ti
c
e
s
h
ip

 s
y
s
te

m
s

4
3

N
a
m

e
 o

f

s
y
s
te

m

M
o

d
e
ll
in

g

C
o

a
c
h

in
g

S

c
a
ff

o
ld

in
g

A

r
ti

c
u

la
ti

o
n

R

e
fl

e
c
ti

o
n

E

x
p

lo
r
a
ti

o
n

C
A

B
L
E

W

e
b
-b

a
s
e
d
 h

o
s
ti
n
g

o
f
d
e
m

o
n
s
tr

a
ti
o
n

n
o
te

s

S
y
s
te

m
a
ti
c
 p

e
ri

o
d
ic

e
m

a
il
 f
e
e
d
b
a
c
k

W
e
e
k
ly

 e
m

a
il

q
u
e
s
ti
o
n
/a

n
s
w

e
r

s
e
s
s
io

n
 w

it
h
 t

u
to

r

C
li
n

ic
a
l

p
r
a
c
ti

c
e

s
u

it
e
 (

C
P

S
)

M
u
lt
im

e
d
ia

 D
V
D

p
re

s
e
n
ta

ti
o
n
 o

f
th

e

p
ra

c
ti
c
e

W
o
rk

in
g
 i
n
 s

m
a
ll

g
ro

u
p
s
 w

it
h
 a

te
a
c
h
e
r,

 s
e
s
s
io

n
s

re
c
o
rd

e
d
 f
o
r

re
v
ie

w

T
h
in

k
 a

lo
u
d
 w

h
il
e

c
a
rr

y
in

g
 o

u
t

th
e

e
x
e
rc

is
e

R
e
v
ie

w
 o

f
th

e

re
c
o
rd

e
d
 s

e
s
s
io

n
 a

n
d

a
n
s
w

e
ri

n
g
 q

u
e
s
ti
o
n
s

C
o
n
s
id

e
r

a
d
a
p
ta

ti
o
n

o
f

s
k
il
ls

 i
n
 d

if
fe

re
n
t

s
c
e
n
a
ri

o

C
o

g
n

it
iv

e

P
e
e
d

y

S
te

p
-b

y
-s

te
p
 g

u
id

e

P
a
tt

e
rn

 L
ib

ra
ry

 o
f

p
ro

b
le

m
 c

a
s
e
s

In

te
ra

c
ti
v
e
 a

n
im

a
te

d

a
s
s
is

ta
n
t

S
H

E
R

L
O

C
K

S
im

u
la

ti
o
n

e
n
v
ir

o
n
m

e
n
t

o
v
e
r

e
x
p
e
rt

 m
o
d
e
l

A
d
v
ic

e
 o

p
ti
o
n
s
 o

r

re
fl
e
c
ti
o
n
s
 w

h
e
n

p
ro

m
p
te

d

S
tu

d
e
n
t

d
a
ta

 u
s
e
d

to
 d

e
te

rm
in

e
 l
e
v
e
l

o
f

s
u
p
p
o
rt

F
ro

m
 s

y
s
te

m
 a

d
v
ic

e

S
I
P

L
e
S

M

u
lt
im

e
d
ia

d
e
m

o
n
s
tr

a
ti
o
n
 o

f

th
e
 s

c
e
n
a
ri

o

A
u
to

m
a
te

d
 a

d
v
is

o
r

re
tu

rn
s
 c

o
n
te

x
tu

a
l

fe
e
d
b
a
c
k

R
e
le

v
a
n
t

c
o
d
e

fr
a
g
m

e
n
ts

 f
ro

m
 a

c
a
s
e
-b

a
s
e
 a

re

p
re

s
e
n
te

d

O
p
ti
o
n
a
l

q
u
e
s
ti
o
n
s
 a

re

p
o
s
e
d
 t

o
 t

h
e

le
a
rn

e
r

Q
u
e
s
ti
o
n
s
 a

n
d

m
u
lt
im

e
d
ia

 e
x
p
e
rt

a
n
s
w

e
rs

 a
re

p
re

s
e
n
te

d

A
c
c
e
s
s
 t

o
 f

u
ll

d
e
v
e
lo

p
m

e
n
t

e
n
v
ir

o
n
m

e
n
t

U
N

C
L
E

L
e
a
rn

e
r

re
a
d
s

o
n
li
n
e
 e

x
a
m

p
le

c
a
s
e
s

E
x
p
e
rt

 h
e
lp

 b
y

e
m

a
il
,

n
e
tw

o
rk

c
o
n
fe

re
n
c
in

g
 w

it
h

p
e
e
rs

 a
n
d
 e

x
p
e
rt

s

O
n
li
n
e
 t

e
s
ti
n
g
 a

n
d

d
ia

g
n
o
s
is

O
n
li
n
e

q
u
e
s
ti
o
n
in

g
 a

n
d

a
n
s
w

e
ri

n
g

C
o
m

p
a
ri

s
o
n
 o

f

le
a
rn

e
r

s
o
lu

ti
o
n
 w

it
h

e
x
p
e
rt

 a
n
d
/o

r
p
e
e
rs

s
o
lu

ti
o
n
s

V
a
ri

e
d

re
p
re

s
e
n
ta

ti
o
n
 o

f

p
ro

b
le

m
,

u
s
e
 o

f

h
y
p
e
rm

e
d
ia

W
e
b

-b
a
s
e
d

in
s
tr

u
c
ti

o
n

a
l

p
la

n
n

in
g

(
W

I
P

)

L
e
a
rn

e
r

re
a
d
s

te
x
tb

o
o
k
 c

h
a
p
te

r

a
n
d
 v

ie
w

s

m
u
lt
im

e
d
ia

p
re

s
e
n
ta

ti
o
n

W
e
b
-b

a
s
e
d

d
is

c
u
s
s
io

n
 f
o
ru

m

w
it
h
 e

x
p
e
rt

 t
e
a
c
h
e
r

P
la

n
s
 a

re
 d

e
s
ig

n
e
d

u
s
in

g
 e

le
c
tr

o
n
ic

to
o
l

L
e
a
rn

e
rs

 w
ri

te
 t

h
e
ir

re
fl
e
c
ti
o
n
s
 a

b
o
u
t

th
e
ir

 d
e
s
ig

n
 a

n
d
 t

h
e

re
s
u
lt
s

 T
a
b
le

 3
.2

.
H

o
w

 e
a
c
h
 p

e
d
a
g
o
g
ic

a
l
s
y
s
te

m
 i
m

p
le

m
e
n
ts

 c
o
g
n
it
iv

e
 a

p
p
re

n
ti
c
e
s
h
ip

44

In articulation the student is encouraged to show their understanding of

their processing of the task- the social way is to provide a commentary

as they address the problem. In UNCLE articulation is partly covered by

the activities in the scaffolding, but in support the experts are able to

pose additional scenarios and questions in computer conference sessions

to challenge the learners. In the CPS the students are required to

comment on the task they are performing during stages of the exercise.

This is not only to help consolidate their knowledge but provides material

to compare and contrast in the reflection method.

Reflection encourages the learner to evaluate their reasoning and think of

ways of tuning their future performance to be ever closer to that of the

expert practitioner. The UNCLE system encourages the learner to

compare their solution with that of peers and experts to gain multiple

perspectives on processes and solutions. Reflection in the web-based

instructional planning system is a predominantly human centred task.

The pre-service teachers write their own reflections on their plans and

the demonstrations, which are reviewed by the experts where

suggestions may be made. Cognitive Peedy is able to encourage

students to reflect on their work by issuing a series of context sensitive

questions requiring them to justify their decisions. The authors

categorised three types of question that were prompted with no deep

critique of the students’ work but that were still able to solicit reflection.

Exploration builds on the understanding developed throughout the earlier

methods and allows the learner to see how problem-solving skills may be

adapted to new situations and across domains. Most of the systems do

not explicitly implement tools for exploration but rather allow

unstructured access to their tools and libraries for exploration. The main

mechanism of encouraging exploration in UNCLE is the availability of the

tools and case library outside of the availability of the expert teachers.

Other systems such as CPS merely ask students to consider how the

skills learned may be adapted or applied to new situations.

45

3.3 Summary

The cognitive apprenticeship pedagogy has been developed from a

traditional and tested method of teaching. As traditional apprenticeships

are usually for physical based skills the developers emphasised the new

pedagogy was designed for thought based skills and contains activities to

promote the cognitive engagement, such as articulation and reflection.

The need for the pedagogy arose from the need to address some of the

deficiencies of traditional didactic classroom teaching, which have been

demonstrated as insufficient to produce expert practitioners in a field.

The developers structured a model around the way skills are deployed

and used by subject experts and encoded methods by which those skills

might be developed.

Method Agent activity

Modelling The expert performs the activity while being observed by learner also
includes lectures, workshop exercises and assessed pieces of work.

Coaching The learner repeats the task observed by the expert who provides
hints, tips and reminders to aid them.

Scaffolding The learners activities are tuned to the current level of their skill and
the level of support is gradually withdrawn as the learner becomes
more proficient

Articulation Both the expert and the learner are requires the problem solver to
explain their reasoning and understanding as they perform the task,
to provide expert incites or learner misunderstandings.

Reflection The learner is encouraged to critically evaluate their performance
against the experts to adjust and improve outcomes.

Exploration To promote active participation the learner is encouraged to
additionally set and pursue their own goals and tackle problems
independently.

Table 3.3. The methods in the cognitive apprenticeship pedagogy
mapped against the agent activity

The cognitive apprenticeship method therefore specifies six methods of

practice to be carried out between teacher and learner that encapsulate

the pedagogy, they are modelling, coaching, scaffolding, articulation,

reflection and exploration and are summarised in table 3.3. The main

activity of the model is to develop the apprentice’s skills by repeatedly

setting them challenges of increasing difficulty, coaching their activities

and encouraging the apprentice to become an independent practitioner.

This section examined some of the environments that use cognitive

apprenticeship methods as a basis for their teaching model. Although the

46

domains and implementation of the model and even the amount of the

model addressed were all different, all of the implementations made use

of computer based technologies. Cognitive apprenticeship has a number

of features that made it an attractive choice for use in this research.

Firstly the pedagogy maps to the practice used in teaching programming.

The major exception was that the lectures, used in teaching, made for a

poor modelling method. This was addressed by emphasising more

working demonstrations and examples of practice in lecture materials.

Secondly, cognitive apprenticeship provides a structured framework with

separate methods where the aims and outcomes of each method may be

considered in isolation and easily measured for any evaluation. The third

feature of the pedagogy is that the methods may be implemented in

different ways (e.g. by exercise, reading material, a discussion, etc.).

This flexibility allows for the use of technology for some or all of the

pedagogy. One of the main strengths of cognitive apprenticeships is that

it accommodates the use of multimedia and intelligent computer-

supported learning environments especially in the coaching and

scaffolding methods of the pedagogy.

 47

Chapter 4:

Intelligent virtual agents

4.1 Introduction

This chapter is an introduction to intelligent agent systems; it examines

the capabilities of agents and the characteristics of the agent

environment. An examination is then made of the concept of intelligent

virtual agents (IVAs), what they are, their architectures and

environments, how they interact with users and the application areas for

IVAs with emphasis on their use in education. The agent systems

considered do not necessarily conform to the cognitive apprenticeship

model or any one pedagogical theory but can be a useful vehicle to

demonstrate the value of the IVA model.

4.1.1 Intelligent Agents

An intelligent agent is a self-contained software system that performs

some useful action. Intelligent agents are usually viewed as software

assistants that take care of specific tasks on behalf of a client or owner.

Agent systems need not necessarily exhibit intelligent behaviour and

have been researched and used for areas such as communication and

networking, so that different authorities make different claims for the

capabilities of agents. Wooldridge gives the definition that is usually

adopted for intelligent agents as: “An encapsulated computer system

that is situated in some environment, and that is capable of flexible,

autonomous action in that environment in order to meet its design

objectives” (Wooldridge & Jennings 1995).

Therefore an intelligent agent would be expected to be capable of

autonomous decision-making based on the agent’s experience and the

current situation. The agent should be responsive to events that occur

within the environment and the agent is expected to have an ongoing

relationship, one that persists over a period of time with that

 48

environment. In order to satisfy the design objectives for intelligent

agents, Wooldridge and Jennings defined a set of characteristics that the

agent should be expected to demonstrate:

 Autonomy – operate without direct control or intervention of a

user;

 Social – capable of communicating and negotiating with other

agents (or humans) in the environment;

 Reactive – perceive changes in the system and respond in a timely

manner;

 Proactive – make decisions and take action based on long term

goal-seeking behaviour.

In considering the intelligent agent one also has to consider the

characteristics of the environment in which they are situated.

Knowledge-based system design traditionally pays little attention to the

environment in which systems operate. This was because applications,

such as expert systems were not autonomous; the main interface to the

environment was only concerned with interacting with a human user. As

agents are designed to act autonomously within an environment a

definition of the properties of the agent’s environment is integral to its

design. Different domains impose different constraints on agent

systems. Russell and Norvig (1995) provide an analysis of various types

of environment, depending on the domain agents may be expected to

operate where one or more of the following constraints apply:

a) The environment is not being fully visible to the agent (at any one

time) but can be detectable through sensors (and changeable

through effectors);

b) The environment may contain other mechanisms (simple

machines) and agents (machines of similar capability) and users

(agents who may set goals);

c) The environment changes over time (outside of the control of the

agent) as a result of other agents or mechanisms present;

d) Changes that occur in the environment are not always predictable

(non-deterministic).

 49

e) The environment may pose differing types of requirement to the

agent.

Russell and Norvig (1996) specify five properties used to characterise

agent environments that influence the required capabilities of a resultant

agent. These are:

 Accessibility vs. inaccessibility: whether the whole of the

environment is detectable by the agent or parts remain

unavailable;

 Deterministic vs. nondeterministic: does the next state of the

environment depend completely on the current state or can the

environment change in unexpected ways;

 Episodic vs. non-episodic: with the agent’s experience divided into

separate sensory episodes, can decisions be made based on the

experience of a single episode or are the occurrences of previous

episodes required;

 Static vs. dynamic: if the environment remains in the same state

while the agent deliberates then it is static; if the environment can

change then it is dynamic;

 Discrete vs. continuous: if there are a limited number of clearly

defined perceptions in a state then the environment is discrete; if

the perceptions are variable then the environment is continuous.

A chess-playing environment for an agent would then be described as

being accessible, deterministic, non-episodic, static and discrete while a

medical diagnosis expert-system environment would be inaccessible,

nondeterministic, non-episodic, dynamic and continuous (Russell &

Norvig 1996). Intelligent agent systems therefore provide a mechanism

to combine the processing requirements of reactive and deliberative

systems to allow decision making to continue even when the state of the

environment may not always be apparent.

4.1.2 Animated pedagogical agents

Traditional agent research makes no assumptions about an agent

necessarily possessing a physical form. In fact, an agent may be

 50

anywhere between a Unix demon process (an automatic task that is

executed as a background process) to a controller for robot systems that

are able to interact with humans in natural ways such as speech and

gesture (Kopp et al. 2005). However, believable agents usually exhibit

an anthropomorphic form and so present physical representation within a

domain; they range from 2D human shaped animated graphical objects

on a screen to 3D entities in virtual reality environments that look and

behave like humans.

The major aim of believable agent research is the production of the

‘illusion of life’ in computational systems that allow human observers to

suspend disbelief and invest the agent with human-like personality. That

is to say the agent is attributed with having feelings, thoughts and

desires. In a study by the OZ project group the audience’s expectations

when observing obviously artificial characters were analysed to measure

the effects of realism on believability. The study was able to define a

character’s believability as: “A believable character is one who seems

lifelike, whose actions make sense, who allows you to suspend disbelief.

This is not the same thing as realism. For example, Bugs Bunny is a

believable character, but not a realistic character.” (Mateas 1997: 5-6).

The film industry, especially in terms of animators, has addressed the

issue of believability as a factor for engaging with audiences. Their

findings have informed various research projects such as the OZ project.

The researchers studied the writings of renowned animators, such as

Chuck Jones, describing their experiences in creating and presenting

effective characters. They provide a set of requirements for believability

to include the following (Mateas 1999):

1. Personality – what makes characters interesting are their unique

ways of doing things;

2. Emotion – characters exhibit their own emotions and respond to

the emotions of other personalities;

3. Self-motivation – characters don’t just react to the activities of

others. They have their own drives and desires;

 51

4. Change – characters grow and change with time in a consistent

manner to their personality;

5. Social-relationships – characters interact with others in a

consistent manner to their personality;

6. Illusion of life – requirements such as pursuing multiple,

simultaneous goals, movement, perception, memory, language

and reactivity.

Of the characteristics listed above the animators were said to have

emphasised the appropriateness of emotions, or the ability of a character

to reflect the emotion of the observer for a given situation, as the most

effective technique to aid the willingness of an audience to suspend

disbelief (Mateas 1997). As a result many research projects have been

carried out into simulating and expressing appropriate emotions for

agents as they interact with users (Krämer 2005, Aylett et al. 2007).

Intelligent virtual agents are agent systems that provide an animated

character as part of the interface to intentionally solicit an

anthropomorphic response from a human user. Various sources describe

them as embodied, animated, believable or lifelike agents. In addition to

presenting an animated character virtual agent systems offer the

opportunity to communicate with the user in ways that model human

interaction. Depending on the sophistication of the agent features such

as voice input, speech output, natural language parsing, physical

gesture, facial expression and dialogue may be used to communicate in

ways are more natural for human users and to support a believable

persona. Animated pedagogical agents are a subset of intelligent virtual

agents and an extension of Intelligent Tutoring Systems where the

primary area of application is in providing an educational tool. Early

intelligent tutoring systems were little more than multimedia

presentations where the learner was a passive recipient of information.

Pedagogical theories such as the cognitive apprenticeship model

advocate the learner as a performer of activities in the domain as a

method of developing deep knowledge (see chapter three). Animated

pedagogical agents are used to encourage the participation of the learner

 52

by interaction during the teaching session. The current paradigm for

desktop computer interfaces is by direct manipulation of windows and

icons on the desktop. The effect of this is that in most instances the

computer will only do something if the user explicitly tells it to, for

example in a browser application clicking and dragging the scrollbar to

display a particular page of a document. However when humans work

with each other on a task they are able to bring some prior knowledge

and understanding to proactively help each other in problem solving.

The idea behind interface agents is to have the agent take the initiative

in certain recognised circumstances to proactively assist the user to

achieve the task rather than await explicit instructions on what to do.

The effect of this is that the agent works alongside the user to

cooperatively achieve goals rather than acting solely as a servant. This

method of agent interaction is referred to as expert assistants or

interface agents (Maes 1994).

Current research into the use of animated pedagogical agents is based on

examining how effective these tools are for teaching (it is possible that in

holding the user’s attention they are only a piece of entertainment) and

how they might be best used. Studies by Lusk and Atkinson (2007)

found that the degree of embodiment for a pedagogical agent did have

an influence on how much information learners were able to retain. In a

series of tests they compared both how much of the virtual agent was

displayed and the degree of animation the agent was able to depict.

Results showed that students working with more embodied agents with a

sophisticated repertoire of animation were able to outperform their peers

who worked with static and disembodied agents in retaining information

from the exercise. Research suggests that the use of embodied

characters makes (or will make) the interface to computers much easier

because it more closely reflects the way humans interact (Cassell et al.

1999). In a study exploring the ease of human-computer interaction

researchers found evidence that users interact in a more human-like

way, that is to say as though they were interacting with another human,

when interacting with an anthropomorphic agent interface (Krämer

2005). Measurements of the user’s behaviour such as the number of

 53

words they used, use of non-verbal gestures and the length of interaction

were shown to increase the more human-like the interface.

Empirical studies into Intelligent Virtual Agents (IVA) indicate that users

have a greater ease interacting with the IVA than a real person for

similar tasks across similar media. Users were said to find a greater

degree of trust in the information conveyed by an anthropomorphic agent

interface (Sproull et al. 1996, Rickenberg 2000), although research into

the use of virtual agent in retail applications found an exception when the

agent was used in a banking application (McBreen et al. 2000). As well

as preference for an anthropomorphic agent interface (which may be the

result of interest in a novel technology), research indicated that the

presence of an anthropomorphic agent improves a user’s cognition even

when the agent does nothing in a phenomena is known as the persona

effect (Lester et al. 1999). Lester suggests four educational benefits of a

pedagogical agent:

1) As the agent appears to care about the learner’s progress it may

convey that the learner and agent are “in it together” encouraging

the learner to care about their progress;

2) An emotive agent that is sensitive to the user’s progress may help

alleviate the user’s frustration before they begin to lose interest;

3) An emotive IVA may convey enthusiasm for the subject that may

be reciprocated in the learner;

4) An agent with a rich and varied personality may make the learning

fun.

Although the specific reason why the presence of a virtual agent may

have an effect on the learning process is not known, the evidence from

the studies demonstrates that there is a measurable effect.

4.1.3 Intelligent Virtual Agent Systems

In this section a brief survey is given of a number of pedagogical virtual

agent systems; though the list is not exhaustive the systems chosen are

as a representative range of the types of environment used to interface

with and provide teaching to the user.

 54

Steve

The Soar Training Expert for Virtual Environments (Steve) is an agent

designed to assist in the training of tasks within a virtual environment

(Rickel & Johnson 1998). It was developed as part of a program to

explore the use virtual reality environments as a training tool at the USC.

Steve is an autonomous, animated character that operates within a

virtual world alongside the student (see figure 4.1). The Steve agent

continuously monitors operations within the domain and can manipulate

objects within it through virtual motor actions. In operation he can

demonstrate tasks, explain his actions (through a text to speech

interface), monitor the student’s performance of tasks and provide help

when it is required. Steve can also respond to verbal questions such

“What should I do next?” or “Why” via an interface to a commercial

speech recognition application.

The architecture of Steve consists of two major components. First, the

high-level cognitive processing module responsible for interpreting the

world, making decisions and developing plans, which is implemented

using the Soar cognitive architecture (see chapter five, section 4). The

second component is the sensory-motor process that interfaces Steve to

the virtual world, allowing the cognitive processing module to perceive

the state of the environment and changes to it, and activities carried out

by the student, etc. The process also sends messages to the

environment to affect actions that Steve may take and to control the

animation of Steve. The researchers have experimented with several

graphical representations for Steve but have made little comment on the

merits of different representations. However Steve often appears as a

head (including an articulating face), a torso and one or two hands to

manipulate objects. The researchers plan to extend Steve’s capabilities

to allow for non-verbal communication and the expression of emotions to

increase the agent’s ability to motivate students.

 55

The Steve agent has been tested on training simulations for the US Navy

for a number of operational procedures. Steve has the knowledge to

operate several consoles that control naval ship engines and to carry out

inspections of the air compressors for the engines. The Steve agent, in

theory, is not limited to performing only in the navy ship domain. As all

instructions and knowledge is coded as declarative domain knowledge

moving Steve to a different domain should be a matter of producing a

different knowledge base.

BodyChat

The BodyChat system (Vihjalmsson & Cassell 1998), developed at MIT,

allows the presentation, animation and communication with agent

controlled avatars in a virtual reality environment. The system was

researched to help in the design of behaviours for avatars. The focus of

the research was based around the behaviours that accompany

communicating language. Rather than programming each and every

action the avatar has to perform, the avatar is controlled by an

autonomous agent with a core set of movement and behaviours. The

avatar is able to demonstrate behaviours and interact with the user

based on the context of a situation. As with other believable agent

systems, the user is only expected to use (relatively) few high-level

parameters that represent the agent’s intention.

Figure 4.1. The Steve agent demonstrating a control panel –
(Courtesy of Johnson & Rickel 2000)

 56

The BodyChat system is implemented as a distributed virtual

environment with a central server accessed by individual avatars

implemented on separate client computers. Each avatar is represented

as a 3D model representing the head, with an articulating face, and torso

of a humanoid character. The lower body is not rendered (as it probably

has little impact in communication). The avatar animations are able to

gesture with their arms (wave, salute, etc), produce head movements,

the face can articulate mouth movements when speaking, blink and

produce eye movement. Special facial expressions can be produced to

emphasise various utterances when speaking. Users are able to navigate

the virtual environment via their avatar and interact with other

users/avatars they encounter.

A four-tiered agent model is used to distribute the processing used to

control the BodyChat avatar. Events detected in the environment are

passed through the layers to elicit the appropriate response from the

avatar. The lowest layer reacts to events in the environment and decides

how the agent responds to a given situation. If the event requires a

more involved response then a knowledge structure from the second

layer that the researchers call a Conversational Phenomena is used to

assess the situation and to select an appropriate communication

behaviour object from the third layer, which in turn makes use of an

associated package of animation gestures from a fourth layer.

PPP

The PPP persona is an animated interface agent that presents multimedia

material to the user. While the user views the presentation the agent

can comment on particular parts and highlight them through pointing

gestures. The agent supports a repertoire of gestures for expressing

things such as approval, disapproval, warning, recommendation, etc.

The PPP persona system is different from other believable agents

featured so far in that the agents do not occupy a virtual environment,

but are instead part of a multimedia document. As such the agent exists

on the plane of the document as a 2D character (see figure 4.2 below)

 57

and their behaviour is described as being similar to a lecturer

commenting on a slide presentation (Andre 1999).

Studies were made with the PPP agent involving subjects watching a

series of presentations both in the presence of the agent and sometimes

without, on technical and non-technical topics. Comparisons of the

results of the comprehension of subjects indicated that the presence of

the agent made no significant difference. However most of subjects

indicated a preference for the presentations with the agent. The subjects

reported that presentations for the technical topics were more

entertaining and less difficult to follow in the presence of the PPP agent.

Jacob

The Jacob agent was designed to provide training and assistance within a

virtual environment (Evers & Nijholt 2000). It was developed as part of

a virtual reality (VR) project called VR-valley developed at the University

of Twente, Netherlands. The Jacob agent is represented as a human-like

three-dimensional figure that resides in a virtual reality environment. It

is able to provide instruction to students to carry out tasks within that

environment and assist them if they become stuck. The prototype

version was able to instruct users on how to solve the Towers of Hanoi

game by manipulating various blocks and pegs within the environment.

The Jacob project attempts to answer research questions such as how

Figure 4.2. A PPP agent presentation – (Courtesy

of Johnson & Rickel 2000)

 58

different interaction modalities (e.g. natural language, gesture) can be

integrated into a VR environment and an examination of the use of

technologies required to produce the agent. Jacob is intended for

interaction and use via a standard web browser. The VR-valley project is

based on representation of environments in VRML 2.0 (Virtual Reality

Markup Language), which is also used to design Jacobs’s form; the

agent’s reasoning is implemented in Java. The agent’s architecture

consists of two main modules: the task module that is used to

encapsulate knowledge about the task being performed, which objects

need to be manipulated, how the task is to be performed, what errors a

user can make, etc. The second module models the instructional

knowledge. The researchers postulate that the techniques of instruction

are independent of the specific task; the module is able to adapt the

agent’s behaviour depending on the actions and progress of the user.

The Jacob agent is similar to the Steve research, the major difference is

that Steve is based on custom technologies and provides an environment

in which the user is fully immersed, whereas Jacob makes use of

commonly used computing applications, such as web-browsers, and

standards.

Figure 4.3. The Jacob agent teaching the tower of

Hanoi – (Courtesy of Evers & Nijholt 2000)

 59

An image of Jacob is shown in figure 4.3. As a model of a mentoring

agent it is able to demonstrate a number of interesting features. The

user and the agent share a common environment in which the user

attempts to solve a task, the user is the primary problem solver, the

agent merely provides help, only if asked for, when the user becomes

stuck, the agent is able to confirm when a correct solution has been

reached.

FatiMA

The FearNot! affective Mind Architecture (FatiMA) is an agent

architecture designed to operate characters in a virtual storytelling

education application for pre-teenage children (Aylett et al. 2007). The

FearNot! (Fun with empathic agents reaching Novel outcomes in

Teaching) system presents a 3D cartoon-like environment (see figure

4.4) in which interactive dramas are played out. For example, where one

or more of the characters bully another character in various situations

and between episodes the victimised character is able to receive advice

from the user. FearNot! was designed to allow children to explore the

actions and outcomes of various bullying scenarios in safety and without

inducing feelings of victimisation in the child users (Aylett et al. 2005).

FearNot! allows for a phenomenon called emergent narrative as the

author of the scenarios only set up the initial premise and background

information for the characters – there is no pre-determined sequence of

events or ending to a story and the story unfolds as the characters

interact driven by the FatiMA agent architecture. Each character in the

world perceives information about events and objects in the world and is

Figure 4.4. FatiMA characters in FearNot! story –
(Courtesy of Aylett 2007)

 60

able to carry out actions through actuators. The FatiMA agent

architecture is based on a system called OCC (named after its designers

Ortony, Clore and Collins), where decision making is not only based on

deliberative and reactive reasoning but is also influenced by a simulation

of the emotional response to stimuli. Upon receiving a perception the

FatiMA agent evaluates its significance and produces an emotional

response and if the event activates a goal intentions are also set up to be

achieved. FatiMA agents support autobiographical memory so that past

interactions with the user can affect decision-making.

Adele

Adele (Agent for Distance Education – Light Edition) is a 2D animated

pedagogical agent, which is implemented as a web-based Java applet.

Adele presents a software personality to assist medical and dental

students in working through course materials. Adele was part of the ADE

(Advanced Distance Education) project, which researched the use of

artificial intelligence in the creation of adaptive courseware that may be

delivered via the Internet (see Figure 4.5). Adele works by presenting

case-based diagnostic situations to the learner highlighting relevant and

salient parts. The learner can ask questions of the case, specify tests to

be performed and receive the results. Adele then monitors and provides

appropriate feedback to the learner.

 Figure 4.5. Adele explains the importance of palpating
the patient’s abdomen. – (Courtesy of Johnson 1999)

 61

The virtual agent personality is maintained through animating the

character representation by swapping frames in and out of the applet

window. It is unclear from the literature frame whether the effect is a

series of static images or at a rate to provide continuous movement, but

the authors assert that users find the amount of the personality

acceptable (Johnson et al. 1999).

Adele consists of two components: the case simulation engine and the

pedagogical agent. The agent contains a reasoning engine that is able to

follow the student’s decisions and monitors the state of the simulation.

Knowledge in the agent is represented in the form of hierarchical plans

that include preconditions and effects for each action. The decisions

made by the agent are based on the student model, a task plan for the

medical case, an initial state and the agent’s current mental state, which

is updated as a student works through the case.

4.2 Summary

Intelligent agents are self-contained software systems that perform one

or more useful operations on behalf of a client or user. They are

characterised as being autonomous, sociable, reactive to changes in the

environment and able to pursue long-term goals. This allows agents to

operate in environments where changes may occur unexpectedly or all of

the information to allow decision-making may not be conveniently

available to the agent. One aspect of agent research is the

implementation and application of intelligent virtual agents, which is the

presentation of the agent as an anthropomorphic character for social

interaction with users. Other applications for IVAs include a range of

educational applications where the agent may carry out a range of

activities such as demonstrations, question answering or making

assessments of the learners work. There are different strategies for

implementing IVA applications in education; many exist in 3D virtual

environments but 2D IVAs may also be used on desktop or web-based

applications. The use of an animated virtual agent interface offers two

facilities to an agent based mentoring system. Firstly, the opportunity to

 62

use modes of communication that appear more intuitive to the learner

avoids the additional cognitive load of having to learn an application

interface to access the mentoring knowledge. Secondly, the phenomena

of the presence of an anthropomorphic character for in increasing

performance in computer users should also aid the learner.

 63

Chapter 5:

Reasoning in agent based systems

5.1 Introduction

In the previous chapter the concept of intelligent virtual agents and their

application were introduced, however little examination was made of the

reasoning mechanisms used to produce the intelligence. The architecture

of an agent describes the components that determine the processing and

reasoning capabilities of the system. A number of different solutions

arising in the field of Artificial Intelligence (AI) have been used to provide

the reasoning capabilities of agents, such as rule-based production

systems, Bayesian belief network, fuzzy logic, etc. to equip the agent to

respond to its environment. This chapter examines the two knowledge-

based reasoning technologies that are the basis of the decision making in

the developed mentoring agent, MRCHIPS, described in later chapters.

The technologies are the Beliefs Desires and Intentions (BDI) planning

and Case-Base Reasoning (CBR). The architecture of an agent describes

the arrangement of its component parts, which eventually determines its

behaviour and capabilities. The design of the architecture is determined

by the required behaviour of the agent, the environment in which the

agent acts, interactions with the environment, knowledge representation,

the way in which information is processed and the communications

interface.

5.2 The BDI agent architecture

The most common architecture in use for agent systems is based on a

method of reasoning called the Belief-Desires-Intentions (BDI) model,

see figure 5.1. The BDI agent model was developed from a theory of

human practical reasoning originally proposed by the philosopher Michael

Bratman in the mid-1980s. In the BDI architecture the software

structures are used to represent mental attitudes about the world

(beliefs), the goals the agent is to pursue (desires) and a set of

 64

behaviours (intentions) the agent is able to perform. The architecture

allows for the agent to make decisions based on its mental attitudes, an

interpreter makes use of the data structures to select given behaviours

(intentions) to achieve certain goals (desires) in response to particular

attitudes (beliefs) formed from sensing information about the world. It is

the combination of the BDI structures that allows the agent to reason

both reactively in response to its environment and deliberatively to

pursue goals (Bratman, 1987). Many BDI systems also include event

data structures when interfacing with the environment and a library of

plans as part of their reasoning mechanism. Events usually lead to the

formation of new goals and thereby contribute to the desires mechanism,

while the library of plans defines “recipes” for the actions the agent is

able to perform. Although BDI systems are primarily deterministic in

that they maintain an internal representation of their domain, plans can

be made to act reactively by having a simple sense and response

structure. Research carried out at the University of Michigan describes

how a BDI based system (PRS – the Procedural Reasoning System) was

used to control the activity of a robot to navigate a path and correctly

cope with unexpected obstacles in its path (Lee et al., 1994),

demonstrating its deterministic reasoning in the path finding and reactive

reasoning for obstacle avoidance. More modern BDI systems are able to

demonstrate similar capabilities in real-world activities as well as for

virtual environments such as games and simulation (Baillie, 2004).

The BDI agent architecture is a mature and widely used model for agent

reasoning, it is used to resolve the problem of choosing the appropriate

action in a changing environment and based on a model of the mental

Desires

Beliefs

Plans

Intentions

Interpreter

Figure 5.1. The generic BDI architecture

Action output Sensor input

 65

attitudes of people as agents in a defined environment. A BDI

interpreter maintains a number of data structures for coordinating the

execution of plans to achieve goals while remaining responsive to new

events (see Figure 5.3). The mental attitudes that are modelled in BDI

are:

 Beliefs - these are informational structures that reflect the current

state of the world. Although similar to facts in a knowledge base,

beliefs model knowledge that is based largely on an agent’s

perceptions from the environment, other beliefs may be inferred or

the result of a communication. Beliefs are very dynamic; they are

changed constantly during an agent’s execution and can contain

inaccuracies such as out of date facts.

 Desires are the motivational structures for the agent that specifies

the objectives to be accomplished. Agents may have multiple

desires to achieve; during execution only a subset of desires need

to be active at any one period; the activity of goals can be

switched on or off depending on the context indicated by the

agent’s beliefs therefore the set of goals may be unrelated,

complementary or even incompatible with one another. Desires

and goals are generally treated as synonymous terms in the

literature, but some authorities (Rao and Georgeff, 1995) do make

a distinction between them and distinguish goals as tasks to be

accomplished, while desires are states to be maintained.

 Intentions are produced in response to desires; these are the

structures that represent the selected course of action of an agent

to achieve a desire within a current set of beliefs. They are

dynamically generated paths of reasoning indicating the current

state of the agent’s deliberation and can be used to backtrack if

necessary. The deliberation in most BDI systems is guided from a

library of plans.

Practical BDI implementations also maintain additional data structures

that support the core deliberative and reactive structures.

 66

 Plans are maintained in a library by the agent and encode the

agent’s capabilities. The mental attitudes of a BDI system are

manipulated by a series of planning rules in a plan base to produce

the behaviour of an agent. Each plan describes the processing

activities required to achieve one or more goals. Although some

BDI implementation may contain more elaborate structures plans

are basically comprised of three structures, (see figure 5.2).

1. An invocation condition, the head of the plan, which is a

goal to be matched against goals in the desires;

2. A context sometimes called a guard condition which contains

one or more beliefs that must hold for a plans to be

activated; and

3. A body which contains a sequence of primitive operations or

subgoals to be executed and is placed on the intention stack

if the plan is activated.

More elaborate plans may also contain exception structures that

specify operations to be carried out on the failure or successful

completion of the plan body.

Goal Context | Body

 plan:

 goal : awakeAgent,

 context : avatar:isVisible(false),

 body : {

 write('== maximise Agent'), nl,

 avatar:isVisible(N),

 if N \== true then {avatar:show()}

 }.

 Events are dynamic goals or beliefs that may be added or deleted

to trigger or alter the activation of plans. Events may originate

either externally from the environment to the agent or internally

from the agent to the agent. External events are the signals or

messages from the environment that trigger a response or thread

(a) (b)

Figure 5.2. Logical structure of a plan (a) alongside a practical

working example (b)

 67

of reasoning in the agent. Internal events are the subgoals

generated during the execution of the body of active plans.

One of the earliest practical implementations of BDI was the PRS

developed for NASA and used in fault diagnosis for space shuttle

systems. A later system, DMARS, was a re-implementation of PRS in

C++ (PRS was written in Common Lisp). Both PRS and DMARS were

considered a general-purpose model of BDI but they were said to lack

portability and sufficient explanation of their runtime reasoning (Chen

2003). Other BDI systems such as JACK, Jadex and JAM are also based

on PRS. They are said to be based on an engineering approach (Ancona

et al. 2005) and are implemented in Java. Knowledge in these systems

is usually represented in a highly procedural Java-like notation with great

emphasis on easy re-use of code libraries and integration with the

external environment and system. Other BDI developments

concentrated on establishing a closer link between the theoretical aspects

and a practical abstract interpreter that could be used to implement real

systems, which led to the definition of systems such as AgentSpeak(L)

architecture (d’Inverno & Luck 1998) and Jason, a Java implementation

of AgentSpeak(L). More recently a version of PRS was implemented in

Python by Stanford Research Institute, called SPARK (SRI Procedural

Agent Realization Kit), with features to address the issues of formal

properties and application development (Morley & Myers 2004). The

theoretically derived BDI systems such as Jason (a popular open source

implementation of AgentSpeak(L)) and 3APL are also implemented in

Java but represent and process knowledge in a declarative Prolog-like

programming language, 3APL makes use of a clearly distinct embedded

Prolog engine while Jason tightly integrates the unifier and resolution

process into its plan interpreter.

5.3 Case-Based Reasoning

The second major reasoning subsystem of MRCHIPS is the Case-Based

Reasoning (CBR) engine. Like BDI, case-based reasoning is a method of

problem solving inspired from a theoretical model of how humans reason.

It is the CBR module of the agent that is concerned with the domain

 68

knowledge about the Python language, novice errors and where

identification of anomalies with novice errors is done. In general

symbolic reasoning mechanisms can be classified into two general

categories: deductive reasoning and inductive reasoning approaches.

Although there are many varied types of deductive reasoning the most

established method is typified by rule-based reasoning as used in

production systems. A rule-based reasoning system uses existing

domain knowledge in the form of rules to make inferences about new

problems and is considered an effective reasoning mechanism when the

theory of the underlying problem domain can be well defined and easily

encoded into rules. Deductive reasoning in a rule-based system works

by progressively rewriting the problem state in working memory so it

more closely resembles the solution space (Jackson 1999). The major

weakness with using rules is the relative expense of the knowledge

elicitation process for developing the rule-base.

One alternative to rule-based reasoning is Case-based reasoning, which

records knowledge in terms of entire diagnostic situations and reasons

inductively to draw inferences for new cases based on the experiences

learned from previous encountered cases – if the experience is not quite

sufficient for the new problem then they are often able to make

adaptations to likely strategies to achieve their goals. Case-based

reasoning attempts to solve problems by making analogous links to

similar problems that may have been encountered before. In CBR

knowledge is represented in schemas of information containing attributes

and values known as cases and reasoning is performed by comparing

cases against each other to find similar historical episodes. CBR systems

are concerned with finding the best match to a solution rather than an

exact match and cases are selected by searching for an appropriate

match to a current problem. Once one or more candidate cases have

been selected various attributes of the case may be adapted to make it

more appropriate to the problem being addressed. However rather than

being a single solution CBR describes a family of information processing

techniques that attempt to solve new problems from prior experience

rather than first principles.

 69

A CBR system involves storing and recalling previous examples of similar

problems. New cases (that have proved to be successful) may be stored

and can be used for solving later problems; this is in effect a form of

machine learning. The primary reason for using CBR is that it appears to

be particularly well suited to representing the knowledge about the

learner errors; the literature describes a number of typical characteristics

for suitable problems for case-based systems:

a) Problems for which the domain knowledge is broad but shallow;

b) Where the primary source of information is based on experience

rather than theory;

c) For problems where the requirement is for the best available

solution, rather than a guaranteed exact solution;

d) For domains where solutions are reusable, rather than unique to

each situation;

e) The search space for cases has a mechanism that draws similar

cases together;

f) The similarity metric (for the domain) exploits this similarity.

Case-based problem solving is acknowledged to be an attractive

alternative to rule-based solutions if the knowledge available is already

organised in cases (Tanimoto 1995) and where there does not exist any

accepted set theory or set of rules that can be used to solve new

problems directly.

Irrespective of the details of implementation a case-based reasoning

system consists of two components: a library of prior/historical cases,

which forms a knowledge base – the case-base, and a reasoning

mechanism to select and apply the most applicable case. Cases are

defined as being a complete description of a diagnostic situation; they

contain a description of the symptoms of the case, information about the

failure or cause of the failure and a strategy to repair the case. The

reasoning mechanism consists of a means of using the key elements of

the present problem to find and retrieve the most similar case (or cases)

from the case library. This is called indexing, a method for modifying the

 70

selected solution to make it applicable to the current problem and finally

a mechanism for storing the modified case in the case-base.

Aamodt and Plaza defined the reasoning mechanism in CBR as a four

major step process called the four REs (Aamodt & Plaza 1994), as

illustrated in figure 5.3. They are:

1. RETRIEVE the most similar case(s);

2. REUSE the case(s) to attempt to solve the problem;

3. REVISE the proposed solution if necessary; and

4. RETAIN the new solution as a part of a new case.

The retrieval process is concerned with using the features of a case

describing the current problem to help select the best matching previous

case. In retrieval the case engine identifies features of cases to make a

comparison, matches features against other cases and selects the closest

match.

It is likely that the problem case and the selected case still contains

differences. The reuse process is concerned with making a copy of the

selected case and adapting to apply to the current problem. Different

strategies may be used to transform the selected case depending on the

requirements of the CBR. A domain-dependent model such as rule-base

Figure 5.3. The CBR process cycle (Aamodt & Plaza 1994)

 71

is used to govern the transformation of the solution into a new case. The

effect of the adaptation process may be to adjust parameters values in

the solution, to reorder the sequence of operators or insertion or removal

of operators.

After reuse the case is applied to the domain but there are circumstances

where the selected solution fails, so CBR provides a mechanism to assess

the effectiveness of the new case and revise it if necessary. Both the

assessment of the solution and the revision itself may require the

intervention of a human operator or the use of some external reasoning

system. The use of revision allows CBR to make use of failure as a

learning mechanism.

The final process of the reasoning cycle allows the CBR to automatically

add to its knowledge base by retaining the new case. One of the major

tasks of the retain process is to ensure the new case is indexed on

features that allow the case to be selected should the appropriate

problem features arise. Depending on the implementation the whole of a

new case may be retained or only those parts that differ as a result of

reuse and revision. It may be required to retain even those cases that

failed after revision as it can be a useful indication to situations that have

no solutions.

The earliest development of CBR was credited to Roger Schank and

associates at Yale University in the 1980s, it was based on the

proposition that when faced with a new situation humans are able to plan

and make decisions based on lessons from prior experience rather than

the first principles as modelled in the knowledge-based technology of the

time. To model this type of reasoning they developed a frame-like

knowledge representation scheme called a Memory Organisation Package

(MOP), where each MOP was used to represent a concept, an entire case

or some facet of a case. The MOPs could be as simple as a single value

but usually represented more complex values such as a sequence of

events or a relationship. The MOPs are linked together to form a

network of abstract and instance data to represent the case-base. The

 72

use of MOPs as a knowledge representation scheme has the advantage

that a different granularity of features of a case may be represented. The

features may be easily manipulated for revising cases and MOPs may be

inherited from the memory efficiency of storage and searching (Riesbeck

& Schank 1989). Although efficient the difficulty with working with MOPS

is that individual cases are distributed across many frames and it is not

always intuitive how the granularity and hierarchy of each MOP should be

representation and organised. The first CBR system based on Schank’s

work was a question-answering system with knowledge about diplomatic

missions called CYRUS and developed by Janet Kolodner (Kolodner

1983). A number of other prototype CBR systems were developed at

that time, such as CHEF, which demonstrates case-based planning in the

cookery domain; JULIA, a case-based designer; CASEY, a hybrid CBR

diagnostic program, using case-based and model-based reasoning;

SWALE, a case-based explainer for anomalies in stories; HYPO, which

provides CBR in the legal domain; and CLAVIER, a CBR used to layout

composite components in an autoclave. Other knowledge representation

schemes such as a flat file, relational databases and program objects

have also been used to represent cases (Chi & Kiang 1991).

Prodigy/Analogy is a CBR planner that, like CHEF, integrates rule-based

reasoning to allow multiple strategies to be used when solving problems

(Veloso 1994). At the core of Prodigy/Analogy is a domain-independent,

non-linear planner that uses means-ends analysis and backward chaining

to find solutions. The amount of searching performed by the planner is

reduced by the CBR that records decisions, their contexts and outcomes

at given points during planning to form cases. When similar

circumstances reoccur the cases may be recalled to save the amount of

planning required from first principles.

5.4 The cognitive agent architecture

The study of cognitive agents architectures is concerned with devising

the set of principles and artefacts required for creation of general-

purpose intelligent systems, rather than describing any one method of

processing. Cognitive architectures are defined as theories of how the

mind integrates different processes to produce thoughts and behaviours

 73

(Stewart 2006). Over many years of AI research fields have tended to

fragment into the examination of specific subcomponents that underlie

intelligent behaviour, but with little concern for how components work

together (Langley 2006). In his article Langley identified that the

production of versatile intelligent systems such as sophisticated robotics,

intelligent tutoring systems, and embedded virtual characters, require

generalist intelligent reasoning resources whereas much of the field

centres around pure or “niche” reasoning systems. There are three

architectural paradigms concerned with how intelligent systems may be

combined to produce more general reasoning resources. The oldest

architecture is the blackboard system where a collection of independent

reasoning systems (called knowledge sources in the model) tackle

particular subtasks of a problem and share information on a centrally

accessible knowledge-base known as the blackboard (Hopgood 2000).

The blackboard allows information to be selected, added or deleted as

required by each knowledge source. This allows each knowledge source

to remain independent of others but does not allow for knowledge

sources to use information about the capabilities of other parts of the

system to route knowledge to parts of the system where it needs to be

processed. The second and most widely known architecture is the multi-

agent systems framework in which several interacting, intelligent agents

work together to pursue a set of individually held goals or perform a set

of individual tasks (Hopgood 2000). As with blackboard systems each

agent undertakes a facet of a problem but this time communicates

directly with other agents. The design of multi-agent systems makes use

of the social capability of agents and is therefore concerned with how

agents negotiate with one another if they wish to solicit services from

each other. The third paradigm is the cognitive agent architecture, which

was advocated by Newell (1990), where the architecture should be based

on theoretical assumptions about the mind and subcomponents should be

highly interdependent on one another. The work of Newell, one of the

contributors to the development of the Soar cognitive architecture, was

credited by Langley (1991), who extended his theories to define the four

commitments for the development of cognitive agents architecture:

 74

a) They should be based around short-term and long-term memories

that store the agent’s beliefs, goals and knowledge;

b) Clear representation and organisation of structures that are

embedded in these memories;

c) Clear functional processes that operate on the memories for both

retrieving and maintaining content;

d) A programming language that allows the construction of

knowledge-based systems that embodies the architecture.

A number of intelligent agent systems encompass Newell’s commitments

in their implementation, such as Langley’s Icarus architecture (Langley et

al. 1991), the Soar architecture (Laird et al. 1987), which is used to drive

the reasoning of the Steve virtual agent described in section 4.4 and

ACT-R agents (Anderson 1993), EPIC (Kieras & Mayer 1997) and Clarion

(Sun et al. 2001).

5.5 Alternate reasoning methods

There are other AI reasoning technologies that have also been applicable

to agent decision-making, these technologies offer different

opportunities, capabilities or constraints to the design or reasoning of

agents. A review is given for the technologies that were considered but

not developed in this research.

5.5.1 Classical agent reasoning

Classical artificial intelligence systems are based on the symbolic

representation and manipulation of knowledge for their decision-making

process. The control of classical agent-like systems, such as SHRDLU,

STRIPS and NOAH, were based on deliberative plan generation, where

the problem-solving follows the sense-plan-act process, the planning

problem was described in terms of the state of the world, the desired

goal state and a set of operators to effect changes to the world. The

knowledge bases maintained by these systems were both the agent’s

internal model of the environment and the application’s simulation of the

environment. The systems assumed that the agent had a complete and

up to date view of the environment and that no changes occurred in the

 75

environment outside of the control of the agent. Little emphasis was

placed on the execution of actions so manipulating items in the

environment was simply a task of altering a symbolic statement in the

knowledge base. In addition the information about the environment was

represented as a set of highly abstract, symbolic statements about the

environment. Although the systems produced positive results in their

environment they suffered the limitation of being less successful when

applied to real world environments.

5.5.1.1 Deliberative agents

One of the more sophisticated deliberative agents was the Homer project

(Vere & Bickmore 1990), which was an attempt to construct a complete

socially aware rational agent that was able to function in a simulated

dynamic environment. The environment called Seaworld simulated the

activity around a small harbour (see figure 5.4) containing a number of

objects such as docks, islets, fish and passing boats. The agent, called

Homer, operated as an Autonomous Underwater Vehicle (AUV) able to

sense, make plans, perform actions, communicate in a subset of English

and reflect upon its activities in the environment.

 Figure 5.4. The seaworld environment –
(Courtesy of Vere & Bickmore 1990)

STEVE> What is in front of you?

HOMER> A log.

STEVE> Do you own the log?

HOMER> No I don’t.

STEVE> The log belongs to you.

HOMER> Oh.

STEVE> Cows eat grass.

HOMER> I know.

STEVE> Do you own the log now?

HOMER> Yes I do.

 76

The goal of the developers was to integrate the then technology to

develop an autonomous intelligent agent. Homer did address some of

the deficiencies of deliberative systems. The knowledge base for the

agent and the environment were separate, the agent had limited sensory

abilities so was only “aware” of its immediate surroundings and changes

could be made to the world outside of the agents knowledge. To allow

Homer to function in the environment its reasoning capabilities were built

around specialised modules such as a temporal plan generator, an action

executor, different types of agent memory for different tasks and a

reflective processor. Homer also contained natural language processing

modules for communication with human users, including being set goals

to achieve and commenting on its activities.

Although Homer is only capable of deliberative processing it is able to

react to changes in the environment by re-planning, making changes to

the formulated plans in the agent memory to cope with the new

information. Homer can be regarded as an advancement on the SHRDLU

simulation system, where there was no distinction between the agent’s

knowledge base and the environment. It was developed with the

engineering goal of investigating the state of AI technology by producing

a complete agent artefact rather than any particular contribution to

research. However more recent research by Liu and Schubert use a

similar planner and reasoning engine called ME (for Motivated Explorer)

to research linguistic competence in self motivated intelligent agents (Liu

& Schubert 2010).

5.5.1.2 Reactive agents

Completely reactive systems are able to rapidly process real world

information that is often presented as a stream of data with very little

abstraction from the environment. They are said to have advantages

such as simplicity, economy and robustness against failure (Wooldridge

2002). However there are a number of difficulties, for example, as

decisions are based on local information they are inherently short term

and there is no principled methodology for building such agents.

 77

Nils Nilsson proposed the Teleo-Reactive as an architecture for creating

goal oriented reactive programs. The Teleo-Reactive (T-R) architecture

is a reactive agent control system that directs an agent toward a goal in

a manner that continuously takes into account the agent's changing

perceptions of its environment. T-R programs are structured as a

network of decision-making elements, processing directs an agent toward

a goal in a manner that continuously takes into account the agent's

changing perceptions of a dynamic environment to select the agent’s

action. The programs are written in and interpreted by a production-

rule-like condition-action language, where conditions may specify some

detectable situation from the environment condition and actions specify

agent behaviours. Although rule-based reasoning is generally associated

with production systems they may also be used for plan generation and

execution. Rules allow agent behaviours to be executed from simple

operators rather than a library of pre-coded plans typical of BDI agents.

In addition to continuous feedback, T-R programs support parameter

binding and recursion. In addition, T-R programs are said to be intuitive

and easy to write and are written in a form that is compatible with

automatic planning and learning methods (Nilsson 1994). T-R programs

have been used in the control of simulated agents and actual mobile

robots.

Another example of a completely reactive agent is the subsumption

architecture devised by Rodney Brooks, (Brooks 1991) who wanted to

explore producing intelligence without the need for elaborate knowledge

representation or reasoning. The idea of subsumption is to produce

intelligent behaviour from a network of interacting stimuli-response

subsystem modules, each of which controls a logically single or simple

behaviour. The network of modules are organised into a fixed hierarchy

where modules in lower layers represent primitive behaviours such as

avoiding obstacles, which are able to override or subsume the behaviour

effects from other modules at higher layers that govern more general

tasks such as path following. In effect a subsumption architecture forms

a software circuit analogous to an electronic circuit, where the operation

at any one time is determined by the state of the inputs. There are two

 78

mechanisms that allow modules to override the effects of other modules:

suppression where the input to a module is blocked, hence preventing it

producing a behaviour and inhibition where the output from a module is

blocked. The reasoning for module behaviours are implemented as

stimulus-response processes typically using condition-action rules and

although computationally very simple the subsumption powered

machines are capable of producing behaviours that would be regarded as

sophisticated if produced by symbolic AI systems.

5.5.2 Practical agent reasoning

5.5.2.1 Hybrid agents

In the last chapter the set of required capabilities for agent systems was

specified as: autonomy, reactivity, deliberation and sociability. The

processing for these capabilities requires differing resources that are not

always complementary. The limitation with deliberative agents is that

they are not able to respond quickly to changes or unexpected events in

their environment. The limitation with reactive agents is that they are

not really capable of pursing a range of goals over a long term. One

solution to the differing requirements is to allow different subsystems, or

layers, to process the deliberative and reactive requirements separately

and then combine results to provide the overall agent behaviour (Müller

1991).

This hybrid arrangement of processing layers allows the agent to produce

timely responses to changes in the environment while pursuing longer-

term goals. Hybrid agents such as INTERRAP (Müller 1991) and Touring

Figure 5.5 Horizontal (a) and vertical (b) information flows in layered

agent architecture (Courtesy of Müller 1991)

Reactive layer

Deliberative layer

Model layer
Perceptual

input

Action

output

(a)

Reactive layer

Deliberative layer

Model layer

Perceptual

input

Action

output
(b)

 79

Machines (Ferguson 1992) are typically constructed with a reactive rapid

responding layer, a goal seeking deliberative layer and a third domain

specific modelling layer. The major difference between the types of

agent is how the layers interact. In INTERRAP the layers are arranged

vertically in a hierarchy. All sensory input and action output to the

environment is through the reactive layer. If an input requires more

processing it can be passed up to the deliberative layer and so on to the

model layer, see figure 5.5 (b). If a layer is able to process an item of

information the result is passed down the hierarchy where it may affect

the operation of a lower layer or produce an action via the reactive layer.

In Touring Machines the layers are arranged horizontally. Each layer has

sensory input and action output to the environment, see figure 5.5 (a).

Information in the agent is processed in parallel by each layer; because

of this it is possible for layers to produce contradictory actions so each

layer contains a mediation function to inhibit, or be inhibited by, other

layers giving control to one layer only at any particular time (Ferguson

1992). The horizontal reasoning, Touring Machines architecture, makes

use of suppression and inhibition mechanisms similar to that used in the

subsumption architecture to determine which layer controls the agent’s

behaviour.

Cooperative Planning

Layer

Local Planning Layer

Behavior-Based Layer

Social Model

Mental Model

World Model

 Sensors Communications Actions

Figure 5.6 The Interrap agent architecture (Courtesy of Müller 1991)

SG DE

SG DE

SG DE

 80

The INTERRAP architecture consists of three vertically layered processing

areas that each process perceptions from its environment at a different

level of abstraction, see figure 5.6. Each layer consists of two processes

called SG, for recognising situations and setting goals and the DE process

for making decisions and overseeing plan execution. The lowest layer,

called the behaviour based layer (BBL), deals with supervising reactive

responses to changes in the environment. The middle layer, called the

local planning layer (LPL), implements a planner to generate plans

required to achieve the proactive goals of the agent. The highest layer,

the cooperative planning layer (CPL), governs social interactions with

other agents.

Another example of a layered hybrid system is the Prodigy/RAPS

architecture developed by Veloso and Rizzo (1998). This consists of two

separate reasoning layers. The upper layer is Prodigy, which is a

deliberative reasoning system, although it is not clear from the authors

whether or not the Prodigy planner includes the Analogy CBR engine for

this architecture. The lower layer is based on James Firby’s Reaction

Action Package system (RAPS), a rule processor, which executes

planning goals that are specified as knowledge structures similar to the

reactive plans of a BDI architecture. Plans generated by Prodigy are

translated into RAPS operators, as the two systems do not share a

common syntax, for execution where RAPS controls the pursuit of

deliberative and reactive goals without intervention from Prodigy.

Another hybrid architecture, called CBR-BDI, combines a BDI planner

with a CBR to address some of the limitations of BDI such as the absence

of a learning mechanism, the need to recompile the agent knowledge

base to add new plans and the efficiency of some implementations (Bajo

& Corchado 2005). The architecture is not layered but rather implements

the BDI reasoning within the CBR by mapping the BDI knowledge

structures onto the cases in the knowledgebase. In a CBR-BDI a case

represents the set of beliefs, an intention and a desire, which cause the

resolution of a problem (Corchado & Pellicer 2005). The mapping

between cases and BDI plans are for the problem component of a case to

represent the beliefs, the solution component is equivalent to the

 81

intentions and the result represents the desires. Reasoning in the CBR-

BDI is performed in the four REs process cycle of the CBR engine. It is

not clear from the authors how efficiently reactive processing is

supported in the architecture compared to other BDI systems, however

the agent is able to reason, communicate and learn.

5.5.3 Biologically inspired reasoning methods

Another class of agent reasoning is the reasoning technologies inspired

by processes found in nature such as neural networks or genetic

algorithms. Rather than representing and manipulating knowledge in the

form of symbols as a method of reasoning these systems reason by

mimicking biological processes. The systems tend to be self-organising

so acquire knowledge by a process of learning rather than from a

knowledge base. A genetic algorithm reasons by an evolutionary process

of repeated manipulation and evaluation of a population of strings to

optimise a search towards a solution. An artificial neural network (ANN)

is a programming structure that consists of many simple processing units

interconnected in layers to produce specific outputs in response to

particular inputs. The ANN is said to mimic the way the brain processes

information (Schalkoff 2011) and is very useful for pattern matching and

predicting trends in data. A more comprehensive treatment of

technologies is available in Schalkoff (2011), Russell and Norvig (1995),

and Hopgood (2001). There has been some use of biologically inspired

reasoning systems for agent decision making used in applications such as

for the control of embodied agents in virtual reality environments (Florian

2003), crowds of people and flocks of birds simulations (Stanley et al.

2005).

5.6 Summary

This chapter introduced two reasoning technologies, agent systems and

case-based reasoning, which form the basis of the mentor agent system.

Agent systems combine different methods of reasoning to satisfy the

requirements to be autonomous, to be social, reactive to changes in the

environment and able to pursue long-term goals. Although agents may

be implemented in different ways those based around the BDI

 82

architecture are the most developed and popular. BDI reasoning is a

form of planning that provides a method of reasoning that supports both

reactive and deliberative processing; it makes use of a library of

hierarchical plans to achieve goals. The architecture provides a

mechanism for handling the differing requirements from a learner in the

desktop environment. The agent has to reconcile information from

multiple sources on the desktop, make inferences about the learner’s

activity, control the agent’s interface, coordinate information from the

different knowledge sources and respond to commands from the learner.

The second technology, CBR, stores records of complete diagnostic

situations and provides mechanisms to select and adapt historical cases

to supply the closest solution possible to new cases. CBR is analogous to

the way humans solve problems by recalling past experience and

therefore is used for domains where there are large example sets of

decision making data. Traditionally CBR systems are used by a

consultation process, where a user presents the properties of problem for

diagnosis and a solution is returned. In later chapters these technologies

will be brought together to form a cognitive agent architecture where the

different reasoning and knowledge sources are integrated to produce the

agent mentor. By combining BDI and CBR the BDI will manage the

presentation of problems to the CBR making its diagnosis resources

available to the learner.

 83

Chapter 6:

The challenges of learning Python – Case

Study

6.1 Introduction

This research focuses on the programming language Python, which is the

language taught by the researcher at his university, and provides a

useful case study as the researcher has access to his students’ work and

their difficulties. Python is not only a good introductory programming

language to first year students but also provides an ideal situation to test

the proposed mentoring approach and validate the results. This chapter

begins with an analysis of the nature of the errors produced by novice

learners and a classification of the programming errors encountered by

novice programmers in Python. It is followed by a brief overview of the

features of Python to explain why it is used as a teaching tool. There is

then an explanation of the different schemes that may be used to

characterise programming language errors before a detailed examination

of the observed learner errors is given within the scheme chosen as the

most appropriate.

6.2 Difficulties in learning to program

Although this chapter is concerned with the domain of python

programming errors it is worth examining whether errors occur

irrespective of any particular programming language. In section 2.2.1 a

review was made of the literature related to the psychology of the novice

programmer and why errors are made. The literature summarised the

source of novice errors as from two causes: fragile knowledge where the

learner is aware of the required information but fails to see the

opportunity to use it and neglected strategies where students do not use

techniques to gain further understanding of the problem they are solving.

Both these causes are related to the difficulties of understanding the

 84

semantics and the logic of code, and independent of the syntax of any

particular language. However, the syntax of a language has an influence

on how easy it is for a programmer to introduce errors.

As will be explored in sections 6.4 and 6.5, syntax errors account for

most of the errors made by novice programmers. As the design of a

language influences the range of real-world developments it may be used

for there are many non-scholarly Internet debates comparing the design

of programming languages and the influence of different syntax on error

rates. More scholarly sources have examined novice errors while

learning a range of prominent programming languages such as BASIC

(Mayer 1981), LISP (Gray et al 1988), Pascal (Ueno 1998), Smalltalk (Xu

and Chee 1999), LOGO (Glezou and Grigoriadou 2007), C/C++

(Kummerfeld and Kay 2006, Gobil, et al 2009), and Java (Jadud 2004,

Traynor and Gibson 2004, Thompson 2006). One of the scholarly

sources McIver and Conway (1996) examined the design of programming

languages suitable for teaching and summarised three types of syntactic

and semantic constructs they termed “grammatical traps” that impede

the novice programmers. They are:

 Syntactic synonyms – in which two or more syntactic forms are

available to refer to a single construct,

 Syntactic homonyms – a syntactic form that has two or more

semantics depending on context and

 Elision – the optional inclusion of a syntactic component.

The researches also identified other language design issues such as:

 Hardware dependence – where programmers have to specify

storage class of data (often merely for the convenience of the

compiler writer),

 Backward compatibility – including features for historical reasons,

 Excess of features – languages support many more features than

required for teaching that are used for real-world application

development,

 Excessive cleverness – features that cause misunderstanding at

the novice level but are considered obvious to experienced

programmers and

 85

 Violation of expectation – there is no reason why the protocols of a

programming language should appear obvious or natural to a

novice.

While tools such as syntax highlighting editors, reviewed in section 2.3.1,

are shown to aid the productivity of experienced programmers evidence

of a similar increase with novice programmers is unclear (Green 1989).

The reason why a given language has relatively little effect on the types

of novice errors observed is because any programming language is

essentially a protocol for communicating commands to a computer. The

differences between programming languages are influenced more by

their purpose and method of evaluation within the computer. Novice

programmers face two major obstacles in learning a new language:

firstly, there are no everyday intellectual activities that are analogous to

programming and secondly, programs operate on a notional machine

(albeit in a physical machine) whose function and operation remains

opaque to the learner (Rogalski & Samurcay 1990). Novice

programmers face the same difficulty with the syntax of any

programming language as they do with the semantics and logic of

program design that of fragile knowledge. They will often have yet to

acquire required information missing knowledge, lack the experience of

when to use information inert knowledge or use what they have in the

wrong context misplaced knowledge. The difficulty is further

compounded by having to learn the multiple skills of the syntax,

semantics and logic of program design in parallel, each reliant on the

other to produce error free code.

6.3 The properties of Python

Python is an object oriented scripting language developed by Guido Van

Rossum in the 1980s with the aim of being easy to learn and easy for

rapid application development. The Python programming language is the

main development tool used to teach programming to the students in the

“Foundations of programming” module for the Information Sciences

course at the University of Northampton. A more detailed explanation of

the Python programming language is given in appendix-A. There are a

 86

number of features of Python that make it an attractive choice as a

software development tool and a suitable language for teaching:

1. Support for multiple coding styles, i.e. scripting, procedural

programming, object-oriented development;

2. Automatic memory management;

3. Dynamic data typing;

4. Simple syntax, few keywords and indentation for block

delimitation;

5. Rich set of data types – integers, floats, strings, lists, association

lists, sets, etc.;

6. Interactive interpreted (compiles to byte-code) programming

environment - suitable for rapid application development;

7. Large set of third party code library;

8. Widely used in the networking and computing industry.

In terms of programming languages Python is conventional in many

ways. The most distinguishable feature of Python is its use of

indentation to mark the beginning and end of sections of code, which

coupled with its dynamic data typing, avoiding the need to declare the

data type for variables when writing code, provides for a brevity in its

notation. The general impression given of Python code is as a kind of

executable pseudo-code; in the book Artificial Intelligence for Games

(Millington 2006) the author acknowledges the similarity of the notation

of the pseudo-code examples given to Python. The computer scientist

Peter Norvig wrote on his web site of a similar observation when

converting lisp programs to Python for his book, Artificial Intelligence: a

modern approach (Russell and Norvig 1995). It is the pseudo-code like

features that make Python easy to read and easy for non-programmers

to learn. The step from a design to implementing code reduces the

cognitive load of the learner having to remember large amounts of

detailed punctuation, such as where to place a semi-colon or a bracket.

The professional computing community has used Python in many

applications, often as a configuration or prototyping tool, but also in

deliverable products. The Python web site lists about 60 such applications

 87

written wholly in Python or using Python to drive or configure the

application. It is worth noting that there are some limitations with

Python. Although semi-compiled and executed in a virtual machine it is

relatively slow compared to rival programming languages such as Java,

Perl and Lua, it does not produce easily portable compiled object code

like Java class files and compatibility is not supported between different

versions of the Python run-time environment. Therefore Python

applications often include the entire run-time environment when

distributed.

6.4 Observation of novice errors

The novice learners were students from a year one undergraduate

university course who had to complete an introduction to programming

module as a compulsory component of a business computing degree

course. The module was designed to offer the students insight into the

production of software applications and to develop the student’s skills in

areas including problem solving and working in teams. The average

number of students per cohort was between 20 and 25 with ages starting

from 18 years old upwards and an average age of 21. The module was

taught over a twenty-four week period consisting of a weekly one-hour

lecture where an introduction to some aspect of programming was

examined followed by a ninety-minute practical session where

supervision was given while students worked through a set of related

programming exercises, to reinforce the topic introduced in the lecture.

However, for many students computer programming was not the primary

interest of their study and the level of motivation was variable. As

programming is a skill based activity that relies on building new

knowledge upon old, students who had difficulty with the beginner level

concepts and exercises had even greater difficulty with the later

intermediate level and advanced level exercises.

6.4.1 Method

The observations were carried out using five techniques to gather

sufficient information about the errors made. Care was taken to observe

ethical considerations and none of the techniques involved interfered with

 88

the learning process. The first method was to observe the learners

during normal practical sessions where students carried out programming

exercises. Due to time commitments and the desire to reduce classroom

disruption it was not possible to make contemporaneous detailed notes,

but notes were recorded at the end of most sessions. In this way two or

three original (that is to say not recorded previously) errors were

generated from each practical session. The second method was to run

one-to-one tutorial sessions with three student volunteers from the

cohort where similar programming exercises to those in the practical

were carried out and notes could be made as the student worked through

the problem. This approach allowed a more detailed record to be made:

the chronology of how novices approached problem solving and questions

to be asked as to why certain decisions were made. The third method

was to review the assignment work submitted by students and categorise

the different solutions used – what worked and what problems they were

unable to solve properly. The fourth method was to offer an email

consultation service to the students where they could email questions

describing problems they had encountered and a solution returned. This

allowed a record to be made of the way students think about and express

problems. One final source for information on novice errors was

literature from third parties; this was often in the form of error finding

(debugging) hints that accompanied Python programming tutorials and

allowed for different sets of problems that would occur from different

types of teaching materials.

6.4.2 Categories of programming errors

The purpose of undertaking the observations of novice programmer

errors was to identify the range and types of learner mistakes with the

aim of finding ways to rapidly identify the source and possible solution.

These observations form the basis of the knowledge for the mentoring

agent and so the domain knowledge for the agent, the categories

therefore needed to reflect how the errors would be used to determine

the program cause.

 89

One approach to categorising the errors observed would be to organise

them in terms of the types of programming statements they represent

and to have the errors treated as variations on the legitimate statement.

This would allow the assessment of student code to be made by

comparison against legitimate statements. This method of diagnosis can

be called source-to-source comparison (Chee & Xu 1998) and is the

method used in SIPLeS discussed in the literature. The limitation of this

approach is that, assuming a mentor agent would provide assistance

when the learner had produced an error. It would lead to the mentor

performing a substantial amount of analysis on code that had already

been analysed by the Python environment.

As Python is a loosely typed language, variables do not have a type and

the data type of operations can therefore only be determined at runtime.

This means that the static analysis of the syntax of a program cannot

determine some types of error. The Python interpreter makes a

distinction between the way it treats errors that occur when compiling

the source code, syntax errors and those that occur when the program is

being executed – these are as a result of the semantics of the program.

This would appear to be a logical way to categorise programming faults

as it is the same way the programmer experiences them and skilled

programmers are able to reason about and correct faults using this level

of information. There are also some errors that do not fall into the

category of syntax error or semantic error, but produce an unexpected or

incorrect output. These errors will be placed in the category of logical

errors.

6.4.2.1 Syntax errors

The syntax error category is where the rules of the language have been

broken so the meaning of statements and expressions cannot be properly

interpreted. Syntax errors in formal languages such as those used for

programming are more likely than in natural languages for two reasons:

the syntax rules are less flexible and the semantics of parts of many

programming languages are carried by the use of more non-

alphanumeric symbols than those in natural languages. In terms of this

 90

analysis syntax errors are those that prevent the successful compilation

of a Python script. There are a number of errors that will be uncovered

as syntax errors in strictly typed languages that, because of the nature of

Python will only become apparent at runtime in a Python development.

 Example Description Notes

6.1.1 if food == “spam” Missing colon from end of
statement

6.1.2 print “hello” name Missing comma between
terms

Print can handle a single
argument or a comma
separated list

6.1.3 Test = [alpha, beta gamma] Missing comma between
terms

A list should contain comma
separated items

6.1.4 if test(max(x,6): Unbalanced parentheses
missing)

6.1.5 x = 1 + 2 y = m * x + c Missing operator between 2
and y

These are two lines of code
and should be separated by a
new line or semicolon

6.1.6 If food == “spam”: Upper case letter used in
keyword ‘if’

6.1.7 if food = “spam”: Assignment operator rather
than test for equality

The = means “becomes equal
to” in Python

6.1.8 Ifval == 123: Missing space after if
keyword

Words must be ended by a
space or non-alphanumeric
character

6.1.9 def say_hello():
print “Hello World”

No indentation in line after
the colon ended line

Produces an indentation error

6.1.10 day = day + 1
 print “start of the weekend”

Rogue alignment of
statements

Variation of error 6.1.9 but
produces a syntax error

6.1.11 def name(arg1 * arg2): Illegal operator in argument
list

6.1.12 def na me(): Illegal space in function
name

The names of items in Python
must be a single word

6.1.13 def = name(arg1): Illegal syntax in function
definition

6.1.14 def name(arg1 arg2): Missing comma in argument
list

Variation of error 6.1.3

6.1.15 def “name”(arg1, arg2): Quotes not permitted around
function name

6.1.16 def__init__(self): Missing space after def
keyword

Variation of error 6.1.8

6.1.17 print “please press enter’ Different symbols to delimit
string constant

6.1.18 import “string” Module name should not be
a string

6.1.19 class = “month” Use of a keyword as a
variable

6.1.20 int(calc_area(width,10) Unclosed bracket Usually flagged on line
following

Table 6.1 Syntax Errors

For example, because there is no variable declaration the compiler is

unable to detect the incorrect spelling of a variable name. Although most

 91

novice errors originate from minor causes, such as the incorrect use of

punctuation the effect can be quite critical to their progress through a

problem. Most errors are as a result of fragile knowledge and have trivial

solutions: the inclusion of a missing symbol, or the substitution of a

correct piece of punctuation, etc. In table 6.1 are examples of the

observed errors that prevented compilation of Python code. It is worth

noting that none of the errors is particularly complex, usually requiring

the addition or the changing of a single character. Some learners are

able to locate and correct them by themselves, but where they are

unable to, these errors greatly restrict further learning.

One of the first types of error to be observed (and one that would

continue to occur regularly) was the missing out of punctuation symbols

(or non-alphanumeric), characters or the format of Python code. The

most commonly missed symbols were, for example, the comma

separator between multiple arguments in print statements (table 6.1,

error 6.1.14) and missing the colon at the end of a program structure

defining line such as def, if, while, etc. (table 6.1, error 6.1.1). The

comma separator was the symbol most often missed. With most of the

other errors the learner could determine the fault as long as the location

of the error was pointed out. This is an example of inert knowledge,

although students were often unable to determine the cause of the error

if the missing symbol was a comma, an example of missing knowledge.

In an example of misplaced knowledge there was often confusion

between the use of the equals symbol for a test for equality or to assign

a value, but students were often able to correct the problem by

themselves. There were no errors with arithmetic operators, however

comparisons operators such as less-than and greater-than were often

confused for one another, and became apparent as a logical error, (see

table 6.3, error 6.3.2). The observation of the learners’ treatment of

symbols is that different punctuation and operator symbols carry

different amounts of meaning for individuals. The four arithmetic

operators posed little difficulty but after that, less familiar symbols

including commas and parentheses caused some to make errors.

 92

The other commonly occurring error was difficulty in handling the level or

degree of indentation. Observations noted mistakes even when students

were tasked to type in some code from a pre-prepared program code

(see table 6.1, errors 6.1.9 and 6.1.10). Managing white-space

characters is more important in Python than with other languages as

they are used to delimit blocks of code. The most frequent error with

white spaces, made by novices, is to not include them; this is probably

as an attempt to avoid potential errors but is particularly unproductive.

Incorrect indentation is potentially a more difficult problem to diagnose

and treat because it relates to the student’s understanding of how the

program is supposed to work. Even when copying a piece of code some

students will alter the indentation and are surprised at the level of

accuracy required to reproduce the working code. This is consistent with

McIver and Conway (1996) who categorise white-space block delimiting

as a feature of excessive cleverness.

6.4.2.2 Semantic errors

Once a program is in a state where its code is syntactically correct the

next level of errors that may occur are semantic errors, these are

statements that are legal, but they have an error in meaning that will

cause the program to fail when it is run. Semantic errors are usually

generated by an incompatible operation for a particular type of data.

These errors are sometimes only detectable when a program is

processing data and thus are usually detected at runtime. Strictly typed

programming languages provide a margin of security against some

semantic errors, but Python is a weak typing mechanism (the language

designers preferred the increased flexibility for its data handling in

weakly typed language). Exception handling is another mechanism

available to a programming language to allow the application to catch

errors that occur at runtime within the application and if possible to take

remedial action to deal with them. For the purposes of this analysis a

limit is going to be placed on the definition of a semantic error as one

that causes a runtime error such that a Python program would not be

able to complete its execution. Other authorities may have a different

definition of the semantic error.

 93

 Example Description Notes

6.2.1 y = 0

result = x / y

Division by zero error The zero is usually arrived at

by a longer calculation

6.2.2 result = “123” – “456” Type error operation,

subtraction, is not legal for

strings

String concatenation by use of

the addition is legal

6.2.3 Sum = m * x + c

print “the answer is”, result

Variable name ‘result’ is not

defined

Usually as a result of copying

example code without

adaptation

6.2.4 current = week * 7.0 + day

. . .

.

today = days[current]

Type error as array indexes

must be an integer value

6.2.5 noOfDwarves = 7

. . .

.

boots = 2 * noOfDwarfs

Name error noOfDwarfs is an

unrecognised variable

6.2.6 name = graham Name error it is unclear

whether graham is to be a

variable with a value or literally

the word “graham”

The line of code needs to be

analysed in context as it might

produce a syntax error, a

semantic error or no error

6.2.7 def foo(arg):

 …

.

foo()

Type error exception missing

argument in function call

Table 6.2 Semantic Errors

The name error exception outlined in table 6.2 usually occurs for a

number of reasons, from simple reasons such as failure to initialise a

variable or a spelling mistake, to more subtle reasons like the mixing of

cases (see table 6.4 below). However homophones, such as illustrated in

table 6.2, error 6.2.5, where dwarves and dwarfs become confused,

support the theory that novice programmers are more concerned with

meaning than with representation and some novices incorrectly presume

the computer capable of providing more human-like levels of

 94

interpretation. The differences can remain opaque to the novice until

they are encouraged to check each spelling letter by letter.

For error 6.2.6 (table 6.2) the absence of quotes means the interpreter

evaluates the word “graham” as being a variable and not finding one

would cause the program to raise an exception. A run-time error

message accurately reports a name error saying that the graham

variable (in this instance) has not been defined but from the error

message students are often unable to understand why the error has

occurred and so how to proceed to correct it. It is notable that this error

occurs more often when the constant value being assigned is a single

word. For some reason the space in a phrase or sentence acts as a

prompt for the correct delimitation. Both of the errors above indicate

that, even after being shown how to create different data types, some

learners tend to pay attention to the largest portion of data constants to

determine the meaning. This error occurs even in the presence of

editors with colour syntax highlighting, which might indicate that while

syntax colouring is noted to be more of an aid to experienced

programmers its purpose appears to be opaque to the untrained eye of

the programming novice. Although type errors are some of the earliest

mistakes made they tend to produce semantic or logical errors. The

learners who have difficulty with types often mistakenly expect the

programming language to have more human-like levels of interpreting

meaning called Egocentrism (Pea 1986).

In addition to learning the core of the language learners are introduced

to programming concepts that start to illustrate some of the purpose of

programming with more real-world application examples for their

practice. To do this the course introduces the student to two new

concepts, which can influence some semantic errors; the concepts are:

1) Modules: The introduction of Python modules allows the learners

to develop two new resources: first it allows for larger programs

with code spread across a number of files, and second it

introduces the use of third-party code libraries for access to

different applications such as database access via an ODBC library

 95

and more importantly writing GUI applications via the Python

version of the TCL/Tk interface, called Tkinter. Python allows for a

number of formats for the import of modules, affecting what

resources are imported and how the resources are addressed. The

addressing code (and data) from other modules introduces the

concept of the dot notation for names, used extensively in object-

oriented and object based programming discussed in the next

section. Although the introduction of modules allows for many

potential errors the one that students regularly make is handling

the case sensitivity for the imported file names.

2) Object-orientation: Although object-oriented programming is

optional in Python scripts and learners are not expected to develop

any object-oriented programs, with the use of third party code

libraries, especially the Tkinter GUI library, object-based

programming, where objects are made use of would become

necessary. Students were given a brief introduction to the general

concepts behind object-orientation, such as encapsulation and

inheritance, an explanation of the terminology, such as the

difference between a class and an instance and a look at how

Python implements such features. The most important feature the

students needed to understand was the creation of an object

before making use of its functionality; this was mainly done using

the Tkinter window objects, called widgets. The use of window

objects meant that changes to underlying code often produced an

immediate visual effect on the application so students made fewer

errors than expected (or were able to correct them without tutor

intervention) even though there was a substantial increase in the

complexity of the code being developed. The same degree of

competence did not appear when working with database access via

the ODBC library, which would lead to the inference that the visual

confirmation offered from the Tkinter widgets had a substantial

effect on their understanding. The most frequently occurring error

appeared to be case confusion when creating Tkinter widgets, the

writers of Tkinter adhere to the convention in the object-oriented

programming community of spelling class names with a capitalised

 96

first letter and all other names to begin with a lower case letter; so

some learners would find their program producing a runtime error

for an undefined function, say “frame” rather than having

produced an object from the class “Frame”. Other difficulties

arose from manipulating objects once created: first, in not creating

new variable names to hold different instances of objects. So

learners would call all their Button widget instances say “b1” and

be unsure why only one button would appear on their application

even though they had intended more. Second, the requirement

for objects to be configured after creation was also a source of

errors. It is not clear if this was because variables with simple data

types do not require further initialisation, or solely the peculiarities

of the Tkinter programming interface. The operation most often

forgotten by the learner was to pack (the Tkinter name for placing)

the widget into the application window.

6.4.2.3 Logical errors

The third type of programming error is the logical error where there are

no errors in the code that prevent a program from executing, but rather

faults that prohibit the production of the required or meaningful output.

Logical errors can be difficult to detect from analysis of the code alone,

as there often must be an understanding of the difference between the

code produced by the programmers and the requirements of the problem

to indicate what may be missing. For instance Python requires the name

of a function to be followed by parenthesise when call is being made to it,

however functions first class object, meaning the function name acts as a

variable and its value (a function object) may be passed as an item of

data in which case the parenthesise are not used. The use of either

format is fully legal and depends on the logic of the problem and the

intention of the programmer. There are, however, some attributes that

can be searched for that would be expected to be in most novice level

programs such as the program containing a structure where there is

initialisation, processing and termination. Each phase would be expected

to contain a typical set of activities such as the initialisation or input of

data in the initialisation phase, a processing phase where there is a

 97

relation between the input data as some result and the termination phase

where the results are usually presented to the user.

 Example Description Notes

6.3.1 raw_input(“prompt>> ”) No destination for input value Not an error if awaiting an

Enter (often to pause a

program)

6.3.2 If a>10 and a<0: No value may be both less

than 0 and greater than 10

The results of any test will

therefore always be true (or

false)

6.3.3 for each in myList:

 print myList

Use of wrong variable in a for

statement

6.3.4 for count in range(len(myList)):

 sum = sum + myList[count]

 ave = sum/count

Code misplacement the

calculation of average should

not be in the loop

6.3.5 def f1(v1):

 if v1 > 10:

 v2 = 2 + 3 * 4 / 7 << 3;

 return v2

 else:

 return 7

 return 0

Unreachable code Zero is never returned as v1 is

either greater than 10 or not so

there can be no third option

6.3.6 User = raw_input missing brackets for a

function call

Python executes this as an

assignment of the identity of

the function

6.3.7 count + 1 No destination for an

expression result

The user usually means to

increment count by one

6.3.8 if 3 > 2:

 print “Answer is True”

Both sides of the test are

constant values

The result will always be true

(or false)

6.3.9 data = [‘string message’] Incorrect data type specified Here the intention was to

process a string

Table 6.3 Logical Errors

Logical errors are very difficult to define and therefore difficult to detect

also. The reason for this is that the logical purpose of a program’s

statements also depends on the context of its use; for example the use

of the raw_input function pauses a running program and awaits some

input from the computer keyboard before continuing execution. An

 98

optional prompt message may be passed to the function to specify the

information requested and the result can then be assigned to a variable.

However on some occasions no information need be returned from the

input (for instance to confirm when the user is ready to proceed) so no

variable is required for the result. The need for a destination variable

for the input depends on the context of the input. The determination of

its presence requires an overall understanding of the purpose of a piece

of code.

6.4.2.4 Strategic errors

There are a number of other errors observed that do not arise so much

from the code written by learners but more from their approach to

writing code. These have been placed in here in a category of their own

and are included here as they relate to methods of cognitive

apprenticeship but may not be directly addressed by the mentoring

agent.

1) Slow Rate of work: The rate of work from an individual is

consistently slower than the average rate of progress within a

cohort because they do not engage with practical exercises. An

individual’s output in performance may vary greatly from session

to session and it might mean nothing or even be an indication of

taking the time to learn. However a sustained low level of output

might indicate a student who is struggling or will come to struggle

as they miss a proportion of the learning experience.

2) Programming as a typing exercise: This can be indicated by a

learner who constantly finishes exercises more quickly than the

average; where the individual is happy to type in and run example

programs but reluctant to change or experiment. The learner

presumes speed is a measure of progress, but takes little

opportunity to reflect and understand. They start to struggle as

scaffolding is removed.

3) Reluctance to compile: Novice programmers are encouraged to

compile and run their programs regularly as an aid to

 99

understanding the effect of each incremental change. Some

learners may adopt the strategy of writing as much code as

possible before attempting to run it and do all the corrections in a

single step. While there may be efficiency in performing these

tasks in a batch there is usually a penalty to pay in terms of

understanding.

4) Ignoring error messages: In the Python environment when an

exception is raised the program is halted and a record of the call

stack is printed to the screen as it is unwound. This means the

oldest information is printed at the top of the screen and

information related to the cause of the exception is towards the

bottom (see Figure 6.1). A number of novices who attempt to find

feedback from stack output have been observed to read error

messages from the top of the screen and often fail to make sense

of the information presented because they cannot see anything

relevant so are unable to determine the nature or location of the

error.

Figure 6.1. Runtime-errors in the Python shell window

6.4.2.5 Errors arising from incorrect use of letter-case in Python

One of the particular properties of Python is that it is at the same time

loosely typed and case sensitive. For this reason it is possible for some

errors to cause a symptom in more than one category depending on

where the error occurs in the code. For instance the incorrect use of

letter case in a Python keyword would cause a syntax error. If error

 100

occurs in the name of an item of data, such as a variable name it would

cause a runtime exception error. The way the errors are detected is

different, but in both cases the cause of and the solution to the problem

are precisely the same – the correct case should be used.

 Example Correct form Notes

6.4.1 Def foo(arg1, arg2): def foo(arg1, arg2): Produces an invalid syntax

compile error

6.4.2 import tkinter import Tkinter Produces a file not found

runtime exception

6.4.3 if current_drive == “c:”: If current_drive == “C:”: Representation in the data

can obscure the expected

interpretation

Table 6.4 Case sensitivity error types

The most frequently occurring mistake that caused errors in all three

categories was caused by incorrect use of cases, illustrated in table 6.4.

The choice of case sensitivity in a programming language depends on the

purpose of the original language designers. Languages that are designed

for teaching such as LOGO tend to be case insensitive, whereas

languages used for application development tend to be case sensitive,

but may still be used for teaching, Python and Java for example,

although the designers of Alice thought it an important enough issue to

modify the version of Python that was shipped with Alice to be case

insensitive. They gave the argument:

While we, as programmers, were comfortable with this language
feature, our user community suffered much confusion over it. [...]
Case sensitivity is an artificial rule that fights against older

knowledge that novice users have, namely that while forward and
FORWARD may look different, they should at least mean the same

thing (Conway 1997).

Another type of error that is reported differently are those caused by

incorrect alignment or indentation of code; failure to indent correctly are

reported as a syntax errors while inconsistent indentation raises runtime

errors. The way the errors are detected is different but in both cases the

cause of and the solution to the problem are the same – the code should

be properly aligned.

 101

6.4.3 Recognition of errors

So given a problem the programmer must be able to categorise a

sufficient number of features of the code to determine its likely cause.

The first clue is when the problem occurs because that determines which

strategy to use for the rest of the analysis of the problem.

today = raw_input(“What day is it? ”)

.

if today = saturday:

 print “Hurrah it’s the weekend”

Figure 6.2. Listing of a faulty Python to be debugged

As determined from the observations although the causes may be varied

errors eventually manifest in the Python environment belonging to one of

three categories; syntactic, semantic or logical errors. Due to the way

Python is compiled and interpreted if a coding fault exists that may cause

errors in more than one category it will always be expressed as type

syntax error before type semantic error and type semantic error before

type logical error. To illustrate debugging in Python the result of

processing the program code above in figure 6.2 is examined. Note that

only the relevant lines are shown for brevity, in most instances the lines

will exist as a more substantial module of code. Presenting the code

above to the Python interpreter would generate a compile error because

it first violates the syntax rules for Python.

Figure 6.3. Console error output for the faulty Python code

The error message would be displayed to the console as illustrated in

figure 6.3 or in the case of using an IDE the editor would produce a

dialog box window and highlight the symbol at fault as shown in figure

 102

6.4. Although the error output would be enough for an experienced

programmer to determine the source and a likely correction, a novice

may require more guidance, which is not provided by the interpreter.

The error message would indicate that the equality symbol “=”, in the

line beginning “if today…” is at fault.

Figure 6.4. Windowed error output for the faulty Python code

As the error is with the syntax it becomes a matter of checking the code

against the rules for the language. The interpreter has given the line of

the error and the offending component. In this case it is an if-statement

and the equality symbol. A check of the rules of the language (see

Appendix A) would indicate the if-statement expects a test expression

(i.e. that will evaluate to a Boolean value), that the single equals symbol

in “today = Saturday” makes it an assignment statement. In Python

statements are not allowed in place of expressions, and the closest

similar operator used in test expressions is the double equals symbol

“==” which is the test for equality. However as it is a frequently

occurring error from novice programmers the source of the error can be

determined without the need for reasoning from the rules of the

language syntax given the clues syntax error, if-statement and the

equals-symbol.

1
0
3

T
re

n
d

 o
f

N
o

v
ic

e
 E

rr
o

rs

01234567

2
4

6
8

1
0

1
2

1
4

1
6

1
8

2
0

2
2

2
4

W
e

e
k

s

Occurrences

s
y
n
ta

x

s
e
m

a
n
tic

lo
g
ic

a
l

F
ig

u
re

 6
.5

.
C
h
a
rt

 o
f
th

e
 t

re
n
d
 o

f
P
y
th

o
n
 n

o
v
ic

e
 e

rr
o
rs

 o
v
e
r

o
n
e
 y

e
a
r

-
b
a
s
e
d
 o

n
 a

 c
o
h
o
rt

 2
0
 s

tu
d
e
n
ts

 104

Once the code has been corrected (the correct equality check has been

inserted) and assuming no other syntax errors, executing the Python

code will run the program until completion or a runtime error is detected.

Using the corrected example code above, executing would run the

programme until the if-statement line where it would produce a runtime

exception indicating that ‘saturday’ was undefined. There are usually two

sources for this type of error: first, that the offending item of data is an

undefined variable. This might be due to the need to define a variable,

but it might also be due to a spelling mistake including the mixing of

cases in different occurrences of the name. The second reason is that

the data is meant to be a literal value and needs to be surrounded by

quotes. The point is from a runtime error while the source of the error is

as easy to determine as with syntax errors the range of solutions for

semantic errors is increased.

Detailed figures for the numbers of each type of error that occurred were

not kept as the observations were carried out during the running of the

computing practical classes, addressing the needs of the students had to

be given priority. However a record was kept for the weeks on which

errors occurred, this information can be used to give an indication of the

different rate for each category error and any trend over time. From the

chart, in figure 6.5, it can be seen that syntax errors are encountered

first, closely followed by semantic errors. While syntax errors begin to

decline after week 6, the rate of semantic errors were more persistent.

The logical errors began to occur later than the others and occurred at a

lower rate than the others.

6.5 Related work

Other languages have been used as the basis of research into the

difficulties faced by novice programmers. Thompson (2006) identifies 4

categories of error for Java programmers, syntactic errors, semantic

errors and logical errors. She then distinguishes the run-time error as a

separate category of semantic error. This is possible because Java is

strictly typed. The compiler is able to identify some semantic errors

 105

during compilation; those it cannot find occur at run-time. This is

different in Python as all type checking occurs at run-time so all semantic

errors are run-time errors. Jadud (2004) found that 60% of novice Java

errors were from 4 sources (illustrated in figure 6.6): missing

semicolons, spelling mistakes in variable and class names, missing

brackets and illegal start of expressions usually caused by the missing

brackets or semicolons errors of previous statements. Gobil, et al (2009)

used C++ in their research with novice programmers, concentrating on

the semantics of code for their ability to follow the path of execution in

selection (if…else) statements. They also observed that the novices had

difficulty dealing with basic syntax similar to those with Java (both

languages share a similar syntax), but did not indicate how learners were

able to progress to the semantic problem solving.

day++
System.out.println(“start of the weekend”);

(a) Missing semicolon

int noOfDwarves = 7;

. . .

.

boots = 2 * noOfDwarfs;

(b) Misspelled name

for (int count=0; count < myList.length; count++{
 sum = sum + myList[count];
}

(c) Missing bracket

day++;
if (day == 6)
 System.out.println(“start of the weekend”);

}

(d) Illegal start of expression

Figure 6.6. Examples of frequently reported novice programming errors

in Java

 106

In a series of student assessments the researchers found novices had

difficulty understanding how expressions and assignments alter a

program's memory, comprehending the limits of a selection statement,

following the likely path of execution through a selection statement and

the importance of the correct sequence of instruction.

6.6 Summary

This study has been primarily concerned with understanding and

classifying the diversity of errors faced by novice learners. These errors

were classified in three categories, namely syntactical, semantic and

logical errors; these will provide the framework for building the animated

pedagogical agent, MRCHIPS, which is introduced in the next chapter.

The cognitive or psychological reasons for producing an error are likely to

be less informative than the class of the error, but it is worth noting that

these errors are produced by novices learning Python and similar sets of

errors would also be produced when learning any other programming

language. The study of the literature identified the difficulty in learning

to program as a result of not having a real world analogue to the activity

of programming, in learning two concepts simultaneously, in modelling

problems into code and understanding what features are available from

the computing language to represent the model. Student errors stem

from their inexperience with the use of program code for expressing

ideas and problem solving. Most programming novice students appear to

understand the need to manipulate programming code to produce

solutions to problems and thus appreciate that the mutability of code

allows a notation for expressing many different types of solution.

Unfortunately an appreciation of how code is to be manipulated is difficult

to grasp with a first programming language. The source of the majority

of novice errors appear to be because they are not able to discriminate

between the importance of different components of a body of code.

Often students will create a non-standard syntactic notation while at the

same time being greatly unwilling to manipulate the components such as

the names of variables and the order of statements.

 107

Chapter 7:

An agent framework for mentoring within

cognitive apprenticeship

7.1 Introduction

In this chapter the theories, problems and technologies discussed in the

previous chapters are considered in relation to each other to explain the

rationale behind the development of the mentoring agent, MRCHIPS, and

to determine the processing requirements for its architecture. In

previous chapters an examination was made of a number of Intelligent

Tutoring Systems (ITS) such as SHERLOCK (Lesgold et al. 1992), UNCLE

(Wang & Bonk 2001), CABLE (Chen et al. 2006) and SIPLeS (Woolley &

Jarvis 2007) that had implemented cognitive apprenticeship. An

examination was also made of the capabilities of intelligent virtual agents

used for tutoring in systems such as Steve (Rickel & Johnson 1998),

Adele (Johnson et al. 1999), PPP persona (Andre 1999) and FatiMA

(Aylett et al. 2007). While the development of agent systems as a tutor

is a well researched area very little attention has been made to the role

of an agent as a mentor. The role of the mentor is to act as a more

experienced practitioner willing to share their knowledge, guided by the

concerns of the learner in comparison to that of a tutor who provides a

programme of teaching material and gives feedback on the learner’s

performance. Mentoring includes the activity of coaching (Landsberg

1996), which provides support during practice-based learning and is a

large component of learning to program. A more detailed discussion of

the role and tasks involved in mentoring was given in chapter one. They

are reviewed in the sections of this chapter each followed by an Agent

capability section used to accumulate the requirements for the MRCHIPS

agent.

 108

The cognitive apprenticeship pedagogy is used to provide the theoretical

underpinning for mentoring as they share the activities of coaching and

support in terms of scaffolding. The requirements for a cognitive agent

based mentor can therefore be determined by examination of the

pedagogy alongside the other subjects introduced in previous chapters of

programming theories, the programmer’s environment, the observed

novice errors, the capabilities of virtual agents and architectures for

intelligent reasoning. This chapter describes the mentor agent named

MRCHIPS (Mentoring Resource a Cognitive Helper for Informing

Programming Students), explains how it interacts with the learner and

determines a set of capabilities for its operation.

7.2 Handling errors in Python

When errors occur in software the programmer is faced with two tasks to

determine the location of the code that is at fault and to devise a solution

to correct the fault. Locating the fault includes both identifying the

position in the code and determining the component of the code that is

the cause. For syntax errors and simple semantic errors (those in the

order of misspelled variables or unquoted strings that would normally be

detected by the compiler in languages like Java or C++), identifying the

code component at fault usually identifies the required correction. For

more complex errors a redesign of the code, such as initialisation of data,

the order of statements or additional operations might be required. For

an experienced programmer the type of the error, the content of the

error message and a reading of the relevant section of code are usually

all that is required to determine the cause of an error. From the analysis

in chapter six it was shown that the programming errors produced in

Python could be grouped into three categories and that these groups

were based on how the programmer experienced the error. The

categories are syntax errors, semantic errors and logical errors. The

reason for the distinction between the categories was to account for the

dynamic typing of Python where some decisions on the nature of the

operation to be carried out on data can only be determined once the

program code is being executed. The categories also reflect how the

 109

learner is encouraged to diagnose errors and attempt to correct them on

their own.

Learners do progress while learning to program within the normal

teaching curriculum, making fewer errors and solving more complex

problems over time. The trend of the results for the observation of

student errors, summarised in chapter six, figure 6.5, shows that the

occurrence of errors decreased over time. As students continue to learn

the main purpose of the agent is to supplement the process and provide

mentoring in the form of additional diagnosis resources when errors are

produced. To provide additional mentoring support this thesis proposes

an intelligent animated agent to sit alongside the learner on the desktop

and provide support within the framework of cognitive apprenticeship by

supplementing coaching and scaffolding methods. The reasons for an

agent-based solution are:

1) An agent would avoid an ITS environment where the learner would

have the additional cognitive load of having to learn the interface

of the additional application.

2) Working alongside the Python IDE and Windows desktop produces

a dynamic environment with differing requirements, such as

monitoring applications and diagnosing errors, challenges that are

suited to agents’ reasoning.

3) The capabilities of agents may be extended by interfacing with

other code libraries and tools.

Evidence from the psychology of programmers (chapter three) indicates

that programmers do not solve programming problems from first

principles but rather recall experience to apply to new situations that

may arise. This method of reasoning is analogous to case-based

reasoning, which is embedded in the mentor agent activity in the

following way:

1) To diagnose the learner’s errors the mentor agent, which has a

profile of the learner’s previous errors can retrieve the closest

solution match from similar past cases, or adapt the candidate

case to the new problem and offer the solution to the learner.

 110

2) Each of the novice programming errors can be combined with its

given solution to correct the error. The various error-solution

combinations form individual diagnostic situations or cases, which

may be used as the knowledge base for the CBR.

3) The solution contained in each case is a plan to address the

problem of the case. When the agent executes the plan it causes

the agent to appear on the desktop and prompt the learner to

identify a cause for the error.

7.2.1 Agent capability

a) The agent must be able to monitor and detect the placement and

content of desktop windows in general and those related to the

Python development environment specifically to help determine

learner’s activity.

b) The agent must be able to monitor the Python development

environment and sample the learner’s code to determine the

context and cause of errors.

7.3 The Cognitive Apprenticeship approach to

learning to program

Cognitive Apprenticeship pedagogy, which describes a structure for

teaching practice-based subjects such as law and medicine, underpins

the approach adopted by the mentor agent. It consists of six methods

that describe the activities to be undertaken by teachers and learners, as

was discussed in chapter three and summarised in table 7.1 below. From

the literature it was found that researchers have used cognitive

apprenticeship as a teaching framework for their ITS and a number of

the systems were also reviewed. Each of the ITS systems used different

approaches and selected those methods in their implementation of the

cognitive apprenticeship to suit their teaching requirements. In this

research the main methods of cognitive apprenticeship that are

considered for the agent are those concerned with mentoring activities of

coaching, scaffolding and exploration. The assumption is made that

 111

other parts of the pedagogy are available as part of the normal course of

a university based programming module where the agent supplements

the teaching.

Method Agent activity

Modelling The teacher as the subject expert would carry out this activity in the
form of lectures, workshop exercises and assessed pieces of work.

Coaching This stage is one of the major tasks of the automated agent; it would
provide support to the learner based on its database of prior similar
cases.

Scaffolding The agent will implement scaffolding by tuning the level of feedback
to the learner and fading the level or amount of support as the learner
becomes more proficient

Articulation No explicit support is being provided for this method of the pedagogy.

Reflection The agent will eventually be able to provide a summary of the users
performance

Exploration This should be available to the learner by virtue of the agent learning
support working within the standard development environment.

Table 7.1 The methods in the cognitive apprenticeship pedagogy mapped
against the agent activity

The only constraint that cognitive apprenticeship makes on the identity of

the coach is that they have expertise in the subject. In the normal

course of events a teacher would provide coaching, however if a teacher

were not available the expertise could be encoded in a knowledge-based

agent system. For a knowledge-based system to be able to provide

teaching assistance to a learner it has to fulfil a number of requirements.

The agent has to be responsive to the user, it needs to monitor and react

to changes in the environment, it has to be able to reason about

problems in the subject area, communicate the results of its reasoning

and monitor the outcomes. Some of the steps are available to

automation in the programming field by intelligent software. The

mapping of each step of the pedagogy is shown in table 7.1 alongside the

behaviour of the intelligent system.

The primary methods of cognitive apprenticeship that are addressed by

the mentor agent are coaching and scaffolding, where the agent supports

the learner in practical exercise sessions when the learner attempts to

reproduce the activities of the expert. This supports the initial

description of the agent as a mentor as opposed to a tutor; the agent

 112

does not introduce course material to the learner rather it provides a

mechanism to help assimilate new knowledge. The major activity of the

agent in mentoring will be in support of the coaching method. At this

stage the agent system sits alongside the learner’s development

environment to monitor activity as they write code and alert or advise

them of errors and problems in a format suited to the requirements of

the novice. The mentor agent has to monitor the user’s activity, analyse

the nature of a user’s problem and provide effective responses. Other

methods are addressed as part of the normal teaching curriculum. A

human teacher following a course of lectures, demonstrations and set

exercises still provides the modelling method. The scaffolding method is

shared between the teacher and the agent following the requirements of

the curriculum in setting the level of the tasks and support provided and

the mentor in selecting the level of support in responses within individual

exercises.

Although the cognitive apprenticeship methodology does not have an

explicit mentoring method it does include a coaching method. The

assumption made for this research is that there is no significant

difference between mentoring and coaching. The term mentor was

chosen for this research to emphasise a passive role for the agent’s

assistance and make a clear distinction from a tutor. Cognitive

apprenticeship defines coaching as the learner repeating the task

observed by the expert who provides hints, tips and reminders to aid

them, while the dictionary defines mentoring as advice from a wise guide

or counsellor. However both words are synonymous and it is arguable

that the perceived difference between the two words is primarily a

matter of context. Mentoring students involves explaining the code

component at fault and providing a solution for novice learners. As the

students become more proficient the level of help required reduces to the

level required by experienced programmers in locating and rectifying the

error. Scaffolding is provided as a result of the activity of the learner, as

the learner progresses they reduce the number of errors made or

become more able to correct them before seeking help.

 113

As mentoring is largely a coaching process the main activity is to allow

the learner to reproduce the expert’s activity under observation, to

provide hints, tips and reminders. In terms of the agent’s behaviours

this means:

 Reproducing the expert’s activity means allowing the learner to

practice writing code in the environment;

 Under observation means the agent needs to monitor and assess

the learner’s work; and

 Provide hints, tips and reminders means under certain

circumstances providing appropriate feedback to the learner.

The result of this is that the learner programs Python and interacts with

the normal development environment for most of the time while the

agent remains out of the way, but the agent observes the learner’s

activity and is activated (that is to say becomes interactive) to provide

hints, tips and reminders in specific circumstances.

Two situations were chosen for agent activation:

 An error occurs and the learner has been unable to correct it after

a set period of time;

 The learner makes a request for the agent to become active.

A third situation where the agent would give a positive message after a

successful run was considered but not pursued. The idea was that the

message would encourage further reflection, but there was no evidence

for this. It might be possible that the agent’s approval would signal the

end of development to the learner, where there may still be logical errors

to uncover and correct.

7.3.1 Agent capability

c) The agent strategy will be to respond to errors found by the

development environment rather than lead the process. This will

avoid the agent presenting information to the learner that they

might not be ready to receive and to allow the learning activity to

remain driven by and centred on the learner.

 114

d) When the Python interpreter finds a syntax error an additional

parser in the agent will compare the learner’s code against the

BNF for the language to identify the location in a statement that is

the element of code at fault before being used to index case

retrieval in the CBR. The need for the additional parse is because

each syntax error message covers multiple types of coding error.

e) The agent will use runtime error messages directly from the

Python interpreter to index case retrieval to determine the cause

of semantic errors, as the range of error messages compared to its

cause is small.

f) Logical errors will be addressed by a natural language consultation

where the learner can pose questions to the agent and causes or

solutions suggested.

7.4 The agent interface

One possible solution to automating coaching support would be to

implement a specialised ITS environment on which the novice

programmer can practice and be provided with a more detailed

breakdown of mistakes and errors. While this approach may provide an

environment where teaching material could be presented in a systematic

and highly controlled way the limitation would be to break the principle of

cognitive apprenticeship for the learner to use the real world tools of

expert practitioners. Another approach might be to provide a

programming environment that would be the same as that used by

practitioners, where areas of the environment and the language code

could be shielded from the novice as they begin and with the restrictions

fading as the learner progresses. This would be a more attractive

approach than a specialised ITS application and would allow the learner

to work in an environment closer to a real world context. While the

restrictions would offer a scaffold to the learner the limitation of this

approach would be in how to accommodate the cognitive apprenticeship

method of exploration. The restrictions would provide the learner with

fewer opportunities to become familiar with aspects outside of the

sequence of the fading scaffold. A solution that allows a closer

adherence to cognitive apprenticeship would be to allow the learner to

 115

train in the real world environment of the programming language and

have knowledge-based software mentor the learner by providing

expertise within the same environment. The knowledge-based tool

designed for work in a given environment is the intelligent agent and its

behaviour would be to fulfil the main functions of coaching support.

Although an agent approach provides a solution that should integrate

within the cognitive apprenticeship pedagogy with little alteration to the

environment or method of learning the greatest challenge is the

unstructured nature of the environment and interaction with the novice.

One of the main principles arising from the cognitive apprenticeship

pedagogy for this research is for the learner to work on real-world

problems in as near as possible to the environment as used by expert

practitioners. The theory does not directly speak of cognitive load for the

learner but addresses it in the principle of scaffolding and the fading of

support as the learner becomes more competent. The Python

programming language provides a real-world software development tool.

It also supports the reduction in cognitive load by way of a small

language core, a simple syntax, optional inclusion of module and object

libraries and other support tools such as colour syntax highlighting

editors and code profiling tools. To develop an agent with a solely

conventional application interface (i.e. buttons, text fields, icons, etc)

would provide yet another tool to learn that would add to the cognitive

load. Research form intelligent virtual agents, as explained in chapter

four, indicates that animated virtual characters allow users to

communicate in modes that are a closer analogue of the real-world, such

Programming novice

Mentor

Agent

Knowledge

base of

errors

Desktop

Environment

Python

and IDE

Figure 7.1. Sketch of the novice and mentor agent interaction

 116

as natural language, speech, embodiment and gesture. In this way the

rules of interaction are already largely known by the user and the

requirement to learn an additional application can be avoided. An

anthropomorphic interface, where the agent maintains strategies for

communication and dialogue with the learner, provides an easy interface

to the agent’s knowledge by avoiding the requirement for the learner to

learn how to use an additional interface and so would not add

significantly to the cognitive load of the learner.

7.5 The agent environment

To fully understand the capabilities of any agent system consideration

needs to be made of the environment in which it operates. The design of

MRCHIPS was influenced by the opportunities and constraints imposed by

the nature of the environment. Opportunities include factors such as the

message passing nature of a computer desktop environment, whereas

constraints are features such as the set of development tools. The

agent’s environment is the Windows desktop of any PC variant of the

Microsoft Win32 operating system such as Windows ME/2000/XP/Vista;

although Windows 7 has limited support for the Microsoft agents engine,

it is used for the animated character interface and explained in chapter

eight. It is no longer shipped with the operating system and needs to be

obtained from the Microsoft website.

In terms of Russell and Norvig’s five properties used to characterise

agent environments, as explained in chapter five, the Windows operating

system imposes the following constraints on the capabilities of the agent.

These are:

 Accessibility vs. inaccessibility: the privacy and security issues of

the Windows environment means it is not accessible;

 Deterministic vs. nondeterministic: as Windows is a multitasking

operating system it is nondeterministic;

 Episodic vs. nonepisodic: as the accessibility is limited on Windows

the agent episodes have to be retained across perceptions;

 Static vs. dynamic: the Windows environment is dynamic as it

changes constantly outside of the control of the agent;

 117

 Discrete vs. continuous: as Windows may support an unlimited

number of configurations the environment is continuous.

These properties inform the eventual capability of the agent and

constrain the overall design of its architecture.

7.5.1 Agent capability

g) The agent must operate on a Desktop environment, notably

Win32, as this is the platform used to teach programming in the

university.

7.6 A mentoring scenario

To illustrate the use of an agent-mentoring assistant, consider a student,

called Oscar, working on a desktop environment to develop a Python

program. Alongside him but not visible is the agent, the Mentoring

Resource a Cognitive Helper for Informing Programming Students

(MRCHPS). Oscar has been asked to make use of an insert swap

program that is able to sort a list of numbers and then to sort a list of

names, of the seven dwarves, "Sneezy", "Dopey", "Grumpy", "Sleepy",

"Happy", "Bashful" and "Doc", into alphabetical order. He has

successfully used the program to sort ten numbers and works out that he

must put the names in place of the numbers. Oscar edits his program

and enters the names, however when he attempts to run the program it

reports an error of type ‘name error’ for an unidentified variable on the

line specifying the names of the dwarves. The error alerts the MRCHIPS

agent, which has been monitoring the learner’s activity in the desktop

environment. The agent then reads the code from the Python

development environment along with other values that are used to help

select the closest matching cases from its knowledge base. It is possible

that the learner is able to correct the error by him or her self so

MRCHIPS places a small transparent window on the desktop informing

Oscar that help will be provided in thirty seconds to see if he is able to

correct the error. MRCHIPS notes that Oscar’s activity makes no change

to the faulty code, as a result the MRCHIPS interface, the Merlin

 118

character from Microsoft agents, becomes visible on the desktop (Figure

7.2), with an introductory message offering help.

The agent character, and an input dialog box are placed alongside the

Python code Window, and offers to help. As Oscar is unsure why the

error has occurred he accepts the help and MRCHIPS gestures toward the

code while providing the explanation from the selected case that the

variable name is likely to be data and should be surrounded by quotes to

prevent evaluation. MRCHIPS continues to monitor Oscar as he makes

the correction. Once done the new case is recorded. Working in this

way MRCHIPS provides mentoring support by undertaking the behaviours

of coaching in providing immediate feedback to the learner, that is

context/task sensitive, and the guidance offered is to support

performance improvements (Laffey et al. 1998).

7.6.1 Agent capability

h) The Agent output to the learner will be directed via an animated,

anthropomorphic character as produced by the MS Agents

interface or similar system. Use will be made of the text to speech

for voice generation if available.

Figure 7.2. The mentor agent’s advice to a learner

 119

i) The agent will make a delay between detecting an error and

providing assistance to allow the learner a chance to solve the

problem on their own and therefore to encourage learning.

j) Input to the agent will be via text input, with a simple natural

language parser to interpret inputs. While speech input may be

possible it will not be considered a requirement as the natural

mode for programming input is already via the keyboard.

7.7 A Cognitive Apprenticeship agent framework

The scenario above illustrates that the development goal for the

mentoring agent is to produce an agent architecture with the range of

behaviours and the available knowledge to provide mentoring support to

novice programmers. Rather than producing a single or pure reasoning

technique the architecture is a collection of reasoning techniques that

integrate to produce a cognitive architecture based on the definition

asserted by Langley (2006). Whether the design is based around a

multiple-agent systems framework, a blackboard system, or a cognitive

architecture, all of the systems maintain some form of reliance on short-

term and long-term memories, the representation and organisation of

structures within these memories, the reasoning that is able to operate

on the structures and a programming language that allows the

construction of knowledge-bases (Langley 2006).

The architecture chosen consists of a number of processing subsystems

that coordinate the activities of the agent. The two main reasoning

Agent

Interface

Pedagogical module

Coaching

Scaffolding

CBR

Solutions/

Explanations

Coding Errors
Learner coding

problem

Figure 7.3. The agent framework

 120

modules are the Beliefs-Desires-Intentions (BDI) and the Case-Based

Reasoning (CBR) subsystems. The two subsystems coordinate the

different levels of reasoning required to provide the different capabilities

of the agent, as in figure 7.3. The BDI subsystem provides the

processing required to interface the agent with the environment. It

coordinates the control of the agent interface, the speech, emotional

expression, gestures, its position and orientation. The reactive and

deliberative capabilities of the BDI allow the agent to sense various

computer resources such as the filing system, the Windows desktop, the

content of Windows of interest, keyboard activity and mouse clicks. By

tracking the user’s activity this layer will also be able to make inferences

about user activities and select suitable responses for the agent

character. The CBR subsystem maintains specific domain knowledge

about programming errors, techniques for diagnosing errors and the

strategies for communicating solutions to the learner. Although both the

CBR and BDI subsystems use different internal representations suited to

their individual processing requirements, they are both capable of

sharing each other’s knowledge-bases by including mechanisms to access

the different knowledge-bases from within the plans of the BDI and the

cases of the CBR. Other research has also proposed the combining of

BDI-CBR agent systems for intelligent web searching and a tourist guide

agent (Corchado and Pellicer 2005). These systems have primarily been

concerned with adding learning capabilities to BDI and have in different

ways used CBR to implement BDI agents. The MRCHIPS agent works

differently from these systems in that the BDI and CBR subsystems are

structured to reason in different ways on different aspects of a problem

domain and combine their results to provide solutions where a single

reasoning method would be insufficient. In this way MRCHIPS is similar

to cognitive architectures such as Homer (Vere and Bickmore 1991),

Prodigy/Analogy (Veloso 1994), Fatima (Aylett et al. 2007) and the

challenge set for generality in intelligent systems by Pat Langley (Langley

2006).

 121

7.7.1 Agent capability

k) The agent will be implemented as a processing shell. The domain

knowledge, behaviours, plans, rules and cases will exist as a

knowledge base script that will be interpreted by the agent.

l) The rules and plans of the BDI engine will coordinate the

interaction with the learner and processing of other modules within

the agent.

m) Domain Knowledge concerning learner errors and corrective action

required naturally form cases and will be processed by the CBR

engine.

n) The knowledge base content will be expressed as a sequence of

predicate calculus clauses. A Prolog-like parser will read the

content and individual modules will extract data into an internal

representation as required by each module.

7.8 Agent requirements for MRCHIPS

The MRCHIPS architecture can be characterised as an implementation of

a cognitive architecture produced by an integration of a plan-based agent

system and a case-based reasoning system to address a problem that

would be difficult to solve using a single reasoning system. The

architecture satisfies the commitments of a cognitive architecture

explained in the literature review. The agent is implemented as a

number of integrated interpreter subsystems that can be programmed

via various knowledge sources to produce the required behaviours.

Through access via various Win32 programming resources the agent is

able to share a desktop programming environment with a programming

novice to allow learning to continue in a real-world context. MRCHIPS

is able to detect and analyse Python syntax errors and semantic errors

and to provide help via an animated assistant when programming errors

are produced. At the present time the agent still lacks the component to

provide support for logical errors, but the plan is for a natural language

parser to drive a question-answer subsystem to access the cases

concerned with logic errors. However with the MRCHIPS agent able to

address issues of syntax and semantic programming errors it has enough

 122

functionality for experimentation with programming novices and testing

of the hypotheses.

7.9 Summary

In this chapter the idea for a mentor agent to assist novice programmers

was analysed in terms of the problems of learning to program, the

cognitive apprenticeship pedagogy and agent theory. The literature in

chapter three was concerned with the psychology of learning to program

and identified the causes of these errors as neglected strategies and

fragile knowledge. In chapter four it was shown that cognitive

apprenticeship was an effective pedagogy for teaching subjects where

the learners had to understand how to apply the acquired knowledge.

The analysis of novice errors, from chapter six, confirmed the

observation that learners make programming mistakes in a variety of

ways from a set of misunderstood concepts. The results of the analysis

from the students’ errors are collated with the literature from cognitive

apprenticeship pedagogy to determine the type of reasoning required to

provide mentoring support to novice programmers. So the decision was

made to concentrate the agent’s assistance on the coaching and

scaffolding methods of the cognitive apprenticeship pedagogy and the

agent behaviour on diagnosis of syntactic and semantic errors. It was

also decided to implement the agent behaviour in a BDI planner as this

provides a mechanism for handling the differing requirements from a

learner in the desktop environment and a CBR for the diagnosis of

learner errors as the combination of a programming error and its solution

correlates to a diagnostic case. The Microsoft agent engine will be used

to produce the animated character for the virtual agent as this provides

most of the facilities for an anthropomorphic interface.

 123

Chapter 8:

Implementation of MRCHIPS

8.1 Introduction

This chapter describes in detail the design and implementation of a

cognitive diagnostic agent that is able to provide mentoring support to

novice programmers and the interface to its environment. The

information from the analysis of student errors, which was examined in

chapter six, has led to the development of an agent given the name

MRCHIPS (Mentoring Resource a Cognitive Helper for Informing

Programming Students). In section 8.2 a description is given of the

agent’s operation as it interacts with and helps diagnose student errors,

illustrating its reasoning and mentoring capabilities. In section 8.3 the

constraints of the programming environment and windowing desktop are

highlighted. In section 8.4 a description of an overall design of a

mentoring agent is provided, followed by a more detailed view of its

architecture, subsystems and components. Finally section 8.5 explains

how the prototype MRCHIPS agent is implemented.

8.2 The MRCHIPS cognitive architecture

The agent, MRCHIPS, is an implementation of a cognitive agent

architecture, as discussed in chapter three, which combines a plan-based

agent system with a case-based reasoning system to address the

complexity of the learners’ problems and the reasoning required for

mentoring purposes. To satisfy the methods of the cognitive

apprenticeship model the system’s architecture included the following

components:

a) The long-term and short-term memories are addressed by the

case memory and belief-base.

b) The memory based knowledge structures are represented in the

form of Prolog clauses.

 124

c) The processing is distributed across the Python Agent Language

(PAL) engine, the Case-Based Reasoner (CBR), the agent-user

interface and the Backus-Naur Form (BNF) parser.

d) The PAL language and Prolog are used to configure the knowledge

bases in the agent.

The agent is implemented as a number of integrated processing

subsystems that can be programmed via various knowledge sources to

produce the required reasoning. By accessing various Win32

programming resources the agent is able to share a desktop

programming environment with a programming novice to allow learning

to continue in a real-world context. MRCHIPS is able to detect and

analyse Python syntax errors and semantic errors and to provide help via

an animated assistant when programming errors are produced. An

overview of MRCHIPS showing its logical interface to the environment is

shown in figure 8.1.

8.3 The subsystems of MRCHIPS

The MRCHIPS architecture consists of four major subsystems: the BDI,

the CBR, the BNF parser and the agent interface (see figure 8.2) that

coordinate the various behaviours of the agent and provides the domain

specific reasoning. At the heart of MRCHIPS is the Python Agent

Language (PAL). This is an implementation of a plan interpreter that

combines reactive and deliberative reasoning. MRCHIPS has to be able

MRCHIPS

User Input

Automation

Learner Code

Shell Message

Avatar

Show

Hide

Move

Speak

Figure 8.1 MRCHIPS System overview diagram

Top Window

 125

to monitor and respond to changes on the desktop as well as performing

diagnostic activities and maintaining interactions with the learner. It is

the presence of PAL that co-ordinates all these activities within the

agent.

An early design for the agent considered a design based on the Interrap

architecture as discussed in chapter five. The design involved insertion

of the case-based reasoning layer between the deliberative planning and

communications modules to produce a four-layered architecture.

However this design was not pursued as it was thought the real-time

requirements for a desktop environment did not require separate reactive

and deliberative processing layers. The capability of the BDI to combine

deliberative and reactive processes was considered to be adequate for

the requirements of a desktop environment.

8.3.1 Reasoning in MRCHIPS

The main cognitive processes in MRCHIPS are shared between the BDI

planner, the CBR subsystem and the Python syntax pre-processor. There

is also a very limited natural language parser to allow interrogation of the

agent’s knowledge base as part of an interactive reasoning facility for

analysis of logical errors, but this was not fully developed and the agent

can only respond to a limited set of queries. To aid the easy integration

of knowledge between the systems all of the knowledge bases, plans,

cases and rules are encoded as Prolog predicate calculus clauses.

However once parsed they are processed in different ways by the

relevant parts of the agent.

Action output Program code

Figure 8.2. The mentor agent’s architecture

Desktop Environment

Agent interface BNF parser

PAL/BDI

CBR

Sensor input

 126

The Prolog database, normally used to store facts and rules in a Prolog

program, is used as the beliefs knowledge base of the agent. No

distinction is made to distinguish agent beliefs from Prolog clauses. This

strategy allows MRCHIPS to access beliefs that are implemented as

demon processes, for instance to retrieve the current day of the week.

The behavioural capabilities of MRCHIPS are to monitor the desktop and

Python shell, profile the user’s program code, select the closest matching

case and inform the learner of any solution. In general plans are domain

independent and used to encode the agent behaviours and capabilities,

although some of the capabilities are domain related in terms of the way

the Python development environment works. The knowledge used for

the cases and syntax rules is domain specific and although not unique to

Python is directly related to issues arising from learning Python.

8.3.2 The BDI reasoning subsystem

The PAL interpreter at the core of MRCHIPS is based on the BDI (beliefs-

desires-intentions) family of agent architecture, which is a customised

system largely based on the AgentSpeak(L) agent architecture and

incorporating language features from other agent systems such as 3APL

and JAM (Ancona et al. 2005).

execution

e1

 e3

 e2

 i1 i2 i3

context test

 relevant plans

 event: e4

 applicable plans

add to intentions

event selection

plan selection

plan library

intention selection

messages actions

Figure 8.3. The PAL execution cycle

 beliefs

p

e

r

c

e

p

t

i

o

n

 127

A similar evolution of the AgentSpeak(L) architecture was implemented

by Flake and Geiger in their CASA agent system (Flake & Geiger, 2000)

and used in the simulation of character interaction. The execution cycle

for PAL is shown in figure 8.3 it is a modified version of the execution

cycle given for the CASA agent system. The strategy and decision-

making of MRCHIPS is coordinated from its plan-base. Plans are a

specification of a list of actions to be performed in response to events

and to fulfil an intention. Plans consist of three components: the trigger

event, a guard condition that specifies the applicable context of the plan

and finally the body of the plan is the set of actions to be performed.

plan:

 event : awakeAgent,

 context : true,

 body : {

 write('== maximise Agent'), nl,

 avatar:isVisible(N),

 if N \== true then {avatar:show()}

 }.

plan:

 event : checkHelp(RtErr),

 context : [agentMode(idle)],

 body : {

 eval(currentFile(File)),

 if profileCode(File,RtErr) then

 {wait(offerHelp)}

 else

 {wait(pause(0.5)),

 wait(getDeskTopApps)}

 }.

The structure of two BDI plans are illustrated in figure 8.4. Events can

be a single symbol or a clause. If the clause contains variables they can

be used to pass values in a similar manner to a function call. Plans in

PAL support Prolog-like variables. They are indicated by symbols

beginning with an uppercase letter and can be instantiated by unification.

The context guard condition is optional if it is not required, meaning the

Figure 8.4. Two example plans in MRCHIPS

 128

plan is universally applicable and then the context can be set to true.

Otherwise the context is a list of clauses that must be available in the

belief base or evaluate as true. Using context conditions within each plan

allows varied modes to be specified, either by a flag value or testing

some value in the belief knowledge base. The effect of this causes some

collections of plans to govern particular behaviours, while other

collections remain inactive. The body of the plan is a list of statements

that are evaluated by the PAL interpreter or passed to the Prolog

interpreter, which executes primitive operations. The syntax for the

body of PAL plans is shown in table 8.1 in BNF notation (for clarity

keywords, operators and functions have been highlighted in bold).

Block ‘{‘ block-content ‘}’

Block-content statement [‘,’ block-content]

statement if-statement | while-statement | assignment | belief-modifier |

plan-call | primitive-statement

if-statement if condition then block [else block]

While-statement while condition do block

assignment Variable is expression | variable ‘=’ expression

belief-modifier assert(expression) | retract(expression) | eval(expression)

Plan-call wait(expression) | achieve(expression)

Primitive-statement atom | primitive-function

Condition atomic formula

Expression Variable | primitive-function

primitive-function prolog clause | external function

Braces are used to delimit blocks of procedural code. The PAL interpreter

supports the while loop and the if-then statement and plans may be

chained together by lists of trigger event of other sub-plans that are

called in sequence. If the event is within a wait function the calling plan

is suspended until the sub-plan completes. External primitive functions

are indicated by a colon separated function name, where the left of the

colon identifies a subsystem of the agent and to the right the function in

that system. From the point of view of programming the agent there are

Table 8.1. BNF syntax for body of PAL plans

 129

five subsystems that are addressed directly through function calls. They

are shown in the table in table 8.2 below.

bdi Exposed functions PAL interpreter

cbr The case-based reasoning subsystem

avatar The MS-agent and general outputs

sensor The Perception subsystem

epi The journaling subsystem

8.3.3 The case-based reasoning subsystem

Cases in the agent are implemented in a frame-like data structure where

each frame represents a complete case. It was decided to represent one

case per frame for simplicity rather than a distributed structure. Each

case is implemented as a Prolog clause with two fields. The first field

holds a unique name for the case, the second holds a nested hierarchy of

attribute-value pairs that define symptoms and a solution for the case

(see figure 8.5). Each case situation is described by four attributes that

contain lists of clauses; they are the initial description, the solution, the

final state and the success of the case.

case(upperCaseKeyword, [

 initial - [errortype(compiletime),

 start(P),

 keywordCase(P)],

 solution - [Opt = ["The " + P + " should be all lower case",

 "Python is case sensitive so " + P + " should be lower case",

 "Check the case of your " + P + " keyword"],

 bdi:selectOne(Opt,I2),

 avatar:speak(I2),

 bdi:rememberCase(upperCaseKeyword,I2)],

 final - [checkResult([lower(P),_])],

 success - true]).

Table 8.2. Table of addressable agent subsystems

Figure 8.5. Example of a case in MRCHIPS

 130

The initial attribute contains clauses that identify the nature of the error,

for most cases the information about the error messages produced by

the Python development environment. This strategy allows MRCHIPS to

be guided by the context of what the learner is working on and avoids

the risk of providing information on unrelated problems that might only

have the effect of confusing the learner. The solution attribute lists the

set of actions the agent is to carry out to achieve the state of the final

attribute. The success attribute indicates the desirability of the outcome.

Both solution and final attributes are not currently used by MRCHIPS but

included for future expansion. The agent’s case-base contains records of

typical novice level errors based on information gathered from

observations from cohorts of learners explained in the literature and

analysed in chapter six. Although the errors observed were as a result of

different types of coding problems the ultimate action of the agent is the

same in each case, to provide additional information – the difference

occurs in meaning of the information provided.

The cases in MRCHIPS are indexed and stored using a discrimination tree

(Charniak et al. 1987), also called a discrimination network, which

Figure 8.6. Fragment of a discrimination tree as a case-base index

begin

compileTime

runTime
logicTime

statement(if)

nameError

typeError noOutput

concatenation

Error

statement(while)

compileTime,

statement(while)

compileTime,

statement(if)

.

runTime, typeError, concatenation.

runTime, nameError.

logicTime, noOutput.

 131

provides an efficient method to access the case-base. A discrimination

tree is a branching network data structure used for storing and retrieving

large numbers of symbolic objects. The principle behind a discrimination

tree is to recursively partition a set of objects where each partition

divides the set based on a particular property and properties that are

similar by some measure are shared in memory. The effect of placing

data in the network is to cluster together items that are similar. As a

side effect of the clustering a discrimination network is also able to

discriminate between cases. For instance as illustrated in figure 8.6,

MRCHIPS cases are initially partitioned based on the class of error, so

some cases belong to the set of compile-time errors, others to the run-

time errors and others to a third set of the logical-errors. Each internal

node is a question that subdivides the items of data that are stored

below, where each item is a different answer to the question. Case

retrieval is performed by using the features of the problem case as a

map into the discrimination tree to similar cases and a complete case is

stored at the terminal node of each branch of the tree. The algorithm for

searching a discrimination network is based on a simple loop shown

below. The main work of the search is contained in the strategy for

matching nodes.

 Let N = top node of tree

 Repeat until N is a case:

 Ask question at N of the input

 Let N = subnode with the answer that best matches the input

 Return N

Incomplete data, indicated by a non-ground expression returns all of the

sub-cases of a branch. If a variable is encountered in the problem case

during retrieval it is matched against the corresponding field in the

discrimination tree and all of the branches of the tree below that may

have a valid value for the variable remain in the search. Ground value,

occurring later in the problem case can be used to discriminate the

branches at a later iteration of the retrieval. If the variable is in the tree

Figure 8.7. The search algorithm for a discrimination network

 132

it can be matched against any corresponding fields in the case and the

search continued. A measure is kept of the degree of match for each

clause selected from the discrimination tree and the solutions returned in

a sorted list if more than one exists. The degree of match is given by the

expression:

 D = 3 * NE + NV

Where:

D = degree of match

NE = number of symbols that match exactly

NV = number of items matched by a variable

The case-base contains a default case, called defaultError, that has a

single variable value for its index pattern and therefore gives the value 1,

the lowest degree of match permitted. This means that the case will

always be selected but with the lowest possible priority compared to

other cases. If as the result of a search there are no appropriate cases

for a particular problem the default case is selected and reports a general

warning message. The initial information gathered from the exercises

observed from novice programmers revealed some thirty types of

programming error, but no claim is being made for a complete coverage

of all types of novice errors. The indications are for the number of cases

to be in the order of many tens (possibly hundreds), rather than

thousands and even if the case-base were to grow the discrimination tree

based search would still work with these numbers. A more detailed

treatment of discrimination networks, their use in deductive information

retrieval systems and implementation can be found in Charniak et al.

(1987).

Although the domain knowledge is described as case-based reasoning

MRCHIPS does not fully implement CBR. The cases in the agent describe

stereotypical rather than particular error situations. They may contain

variable fields rather than fully grounded clauses and although the

programming structures are present to revise and retain newer cases

they have not been developed in this agent implementation. But it is to

Figure 8.8. Expression for the degree of match in the CBR

 133

be considered as a recommendation for the future. The case structures

might more accurately be described as contextual schema, such as

developed for the MEDIC and Orca knowledge based systems (Turner

1994). Schema-based reasoning is a generalisation of case-based

reasoning that extends cases to generalized situations by allowing cases

to contain variable fields and saving the effort needed to transfer

knowledge from an old case to a new situation. The variable field allows

for more approximate matching and can exist in the problem case and in

the case-base. Case selection is performed by tracing the content of the

initial attribute only against the discrimination tree for the best matching

case. This is because the initial field contains the symptoms of a problem

and it is that data that is used to identify similar cases. Once a case has

been selected a copy is taken and it is adapted to the new problem. This

is achieved by unifying the problem case with the new case and

instantiating variables to produce a fully grounded data structure, the

new case is then asserted into the agent’s beliefs knowledge base, where

it becomes available for further processing.

PAL

plans

 e1

 e3

 e2

events

Case

retrieval
Analysis of

retrieval

Case

adaptation
Reify

solution

beliefs

case memory

intentions

 i1 i2 i3 in

Figure 8.9. The mentor agent’s architecture

 134

The reasoning in MRCHIPS is shared between the BDI and CBR

subsystems and linked associating BDI beliefs and intentions with case

symptoms and solutions respectively. See figure 8.8. To link the

subsystems the agent is able to use some of the information in the

beliefs knowledge base as symptoms for case selection. The symptoms

are constructed under the control of the plans as this assists the indexing

process, which can be suppressed if additional knowledge is available or

the format adjusted if the requirements change. When the most

appropriate case is selected it is activated for use within the agent by

placing the solution, which is merely a plan to address the symptoms,

into the BDI system’s intentions stack for execution. The activation is

again under the control of the plans so case activity may be subsumed.

8.3.4 Additional agent subsystems

MRCHIPS makes use of additional subsystems to allow the core reasoning

components to integrate with its environment. As the Prolog interpreter

makes use of a Python hash table data structure to store all of its built in

functions, this method was chosen to allow for a relatively fast access to

functions and because the table can be dynamically added to. Each of

the additional agent components extends the capability of MRCHIPS by

adding access to their functions via the function table in the Prolog

interpreter.

8.3.4.1 The BNF parser

The BNF parser is a Definite Clause Grammar (DCG) parser that contains

the Backus–Naur Form (BNF) rules for Python code. MRCHIPS makes

use of the BNF parser to locate the cause of syntax errors. The output

from the Python parser generally only specifies the location of errors and

the category in broad terms. In a DCG the rules of grammar are coded

in first order logic and when a legal phrase is processed a parse tree or

semantic statement of the phrase can be returned or, if the phrase is not

legal, the point at which the error occurred. As DCGs are powerful

enough to be used to parse natural languages, parsing an artificial

programming language is relatively simple. Using a DCG allows the

Prolog engine to analyse each token of a Python statement in turn.

 135

Figure 8.9 illustrates two of the BNF rules of the DCG for parsing a while-

statement and a def-statement and the need rule that first checks for an

item and if it is not found reports it missing if it belongs to the set

symbol (not shown) or as unexpected for any other item.

statement([while|Z0],Z,Err,while(Test,Do)) :-

 test(Z0,Z1,Err,Test),

 next(':',Z1,Z2),

 statement(Z2,Z,Err,Do).

statement([def|Z0],Z,Err,def(name(Name),Args,Stmt)) :-

 next(Name,Z0,Z1),

 need('(',Z1,Z2,Err),

 arglist(Z2,Z3,Err,Args),

 need(')',Z3,Z4,Err),

 need(':',Z4,Z5,Err),

 statement(Z5,Z,Err,Stmt).

need(A,[A|R],R,_) :- !. %% progress

need(A,_,[],missing(B)) :- symbol(A,B),!. %% report error

need(_,[B|_],[],unexpected(B)). %% report error

Language keywords are used to identify the type of the statement,

variables and constant data isolated, operators and punctuation symbols

checked and when an unknown or unexpected token is found the details

are returned.

8.3.4.2 Perception

The MRCHIPS agent monitors the Windows desktop to make inferences

about what the user is looking at. It looks for the presence of the Python

development environment and then clues to the occurrence of errors.

MRCHIPS is fairly “short-sighted”. It is able to directly sense the content

of its environment in terms of the position of the windows on the

desktop. It is able to identify if a window is in plain view, minimised or

covered by another, the title message of a window can be read and with

some effort the textual contents of editor windows may be sampled. As

the Python development environment also runs as a process within the

Figure 8.10. Fragment of the DCG for the BNF parser

 136

operating system and also makes use of the display to present a

collection of Windows and components for interaction with the user. By

monitoring the Windows display and sampling the contents of Windows in

the development environment the agent is able to infer the behaviour of

the learner, examine any source code produced and make appropriate

responses. As stated earlier, windowing systems use message passing to

allow applications to communicate. For reasons of stability and security

typical Windows applications are only aware of their own message queue.

It was possible to monitor the Windows message queue globally to

intercept messages for other applications such as those for keyboard and

mouse inputs, but after investigation this was decided against due to the

volume of messages and level of noise. It was found that attempts to

filter system messages via the Python interpreter would cause the

Windows interface to slow down noticeably. Inferences are therefore

made from the arrangement of windows on the desktop and scanning of

contents of windows concerned with the Python development

environment, by examination of the source code and error messages the

appropriate agent response may be selected.

8.3.4.3 Actuators

Actions are the means by which goals can be achieved in the

environment. All actions in MRCHIPS are controlled via the avatar

subsystem. The results of the cognitive processing of the agent are

presented to the world mainly via a Microsoft Agent character, a 2D

anthropomorphic animated figure that is able to gesture and perform a

repertoire of actions under program control. A mock-up of the agent

using the Microsoft Agent interface and working in the Python

development environment is shown in figures 8.10 and 8.16. In addition

to the animated gestures, the agents’s main output method is speech via

a speech bubble window that pops up and down as required and is

accompanied by audio speech, if a text to speech engine is available on

the computer. The texts of the messages are taken from the adapted

case selected as a solution to the error. The agent community treats

communication as an important facet of an agent’s capabilities to help

pursue its goals (Wooldridge 2002).

 137

The work of John Austin and later John Searle in the 1960s attempted to

categorise the classes of natural language communications in a field

called speech act theory (Russell & Norvig 1995, Wooldridge 2002). The

later AI research based on speech acts as a plan or rational action does

not really apply to MRCHIPS because the agent makes no choice in

whether to communicate or not – if the agent finds a case, it provides an

answer as its pedagogical action. In terms of Searle’s communication

categories MRCHIPS mainly communicates in the form of representatives,

informing the learner of information known by the agent. The sentences

of the pedagogical actions are structured into three different types:

Explain, Suggest, and Show. Explain actions state what is wrong in the

program statement but do not offer a solution. Suggest actions offer

answers in the correct the form of the line but do not state the cause of

the error. Show explanations say what is wrong with the suspect line

and the form to which it should be corrected. Outputs to the standard

Win32 API are used to create dialog box controls and windows, the input

control to the agent and the popup window that provides a countdown to

Figure 8.11. MRCHIPS driving the Victor agent character

 138

the arrival of the agent while the learner attempts to solve the error on

their own.

Program line Type Pedagogical action

 Explain A single equal sign '=' means set value to

if test = 123: Suggest The symbol for equality should be a '=='

 Show You need to replace the set value symbol '=' with the

equality check '=='

Other output from the agent is used to manipulate the windows desktop

using a technique called windows automation, the process of injecting

messages into the message queue of windows belonging to other

applications to simulate key presses and mouse clicks. Automation is

used by MRCHIPS to control which window is in view and to scroll to the

appropriate line of code when giving error advice.

8.3.4.4 Journaling

MRCHIPS contains a journaling system to record particular events and

actions taken. The journaling system keeps a record from the time of its

start up to shut down, the identity of the application window that has the

user’s focus if it is Python, the location of the Python source file, errors

detected and the solutions offered by the agent. Each entry in the

journal is written to a file in backing storage as the entry is made, so in

the event of an abnormal termination the journal is preserved, as well as

being preserved in the agent. At the present time the journaling system

does nothing that would aid the agent’s cognitive processing but the

output file is used to analyse the learner’s activity and that of the agent.

With some adjustments the agent can be made to make use of the

historical record in the journal and therefore to access an autobiographic

memory (Tulving 2002). Autobiographic memory is an entity’s personal

history of the events and activities it has experienced; it allows an agent

to remain situated in time and able to make higher cognitive decisions,

such as reflection (Nuxoll & Laird 2004). Autobiographic memory might

become more important for modelling the learner’s understanding over

Figure 8.12. Table of the different types of pedagogical actions

 139

the long term, but the facility has not been implemented for the current

agent.

8.3.4.5 Reading code

The Python environment produces outputs in two different formats in a

windowed environment: syntax errors are detected as the program is

compiled and the error message is displayed in a dialog box. Semantic

errors are produced at runtime as the code is executed and error

messages in the form of runtime exceptions are displayed to the Python

shell window. In reality all messages from the Python interpreter are

routed to the process output console, but the development environment

intercepts the messages and routes them appropriately. When the dialog

window for a compiler reported error is detected MRCHIPS locates the

source code file from the title bar of the editor window and sends the file

through the agent’s internal parser. The Python executable carries its

compiler alongside the runtime systems, which is why it is more

accurately described as an interpreted language, whereas systems such

as Java are described as compiled because the compiler and runtime are

separate, even though both languages produce object code that is

executed in a virtual machine. The output from the parser reproduces

the same error message as displayed to the user in a data structure that

specifies the type of error, its location and the line of code in question.

The message output by the parser does not provide enough information

to determine the cause of the error for the novice programmer, so the

suspect line is passed to the BNF parser, which further analyses the

Python line and isolates the unexpected syntax. The parser operates as

a pre-processor to the case-based reasoning system when analysing

compile-time errors, it is able to parse the keywords and operators in a

line while ignoring the details of data items. When an error is

encountered in the form of an unexpected component the parse ceases

and an error message returned. For some errors involving a missing

component, such as for example a closing parenthesis, comma or colon,

the expected component is specified in the error message. The type of

the error, the type of the statement and the unexpected component are

 140

then used to construct the index, which is sent to the case-based

reasoning component.

As the BNF parser is based on a DCG it is able to parse statements

containing syntax errors, isolate the program structure that contains the

error and in some cases provide information on what the expected

structure should be. For the abstraction of ‘if’ statements, as illustrated

in figure 8.12, each level of the hierarchy may have the same meaning

but contains different levels of detail. For a CBR system each statement

would require a different case to account for that pattern and layers 0

and 1 would require additional cases for expressions involving different

data types, different operators, calls to functions, etc. When a runtime

error is produced the message is output to the Python shell window and

to detect them MRCHIPS monitors the window on a two second cycle for

the presence of an error message. The agent is not directly able to read

the contents of the window but does so via the Windows clipboard. This

is accomplished using Windows automation (see section 8.3.4.3

concerning MRCHIPS actuators) to select and copy the contents. It is

then available to be read by the agent for analysis.

5 ifstatement

4 If expression colon

3 If term operator term colon

2 if Data Operator data operator data operator data colon

1 if Identity Equal string Or identity equal string colon

0 if X == “one” Or X == “two” :

The last line and the third from last line are parsed to provide the type

and location of the error. The information in a runtime error message is

fairly detailed. A major problem faced by novice Python programmers is

with interpreting its structure and relating the information to a location in

the source code, so no pre-processing is performed and the runtime error

message alone is used as an index to the case-base.

Figure 8.13. Instruction hierarchy for an if-statement

 141

8.4 Implementation details

The MRCHIPS agent is implemented in Python, but its execution is run as

a separate process to any of the code run by the students, that is to say

the development environment and tools used by the student do not rely

on any service from MRCHIPS and would still run in absence of the agent.

The main reason for choosing to implement in Python was due simply to

the availability of the Python environment with a known set of libraries

on the computers at the University. Other languages such as Java,

Pascal or Prolog can also be applicable, but Python’s support for rapid

prototyping development, abstract level processing, modular and object-

oriented development, while allowing support for low level interface to

the operating system resources made it an attractive choice for a large

experimental program. The suitability of Python for developing AI

software has been demonstrated by the development of knowledge-

based systems such as the Sherlock expert system shell (Lutz 2001),

porting of Lisp examples as demonstrated in the book Artificial

Intelligence: a modern approach (Russell & Norvig 1995) and similar

research investigated by the author (Case 2000).

procedure run():

 while number of PAL.Intention > 1:

 foreach stack in PAL.Intention:

 step(stack)

procedure step(stack):

 loop 8 times:

 interpret(stack)

Other advantages of using a Python application to analyse Python code,

such as access to the internal components of the compiler came to light

later in the development. The whole of the agent is encoded in 35

classes across 12 files of Python code, with a knowledge base of 37

plans, 25 cases and 50 Prolog rules and it incorporates the winGuiAuto

by Simon Brunning and Tim Couper for driving the Windows automation

Figure 8.14. Algorithm of the PAL top-level execution cycle

 142

(explained in greater detail in section 8.6). MRCHIPS runs in Python

version 2.4 upward and requires the PyWin32 library to allow access to

the Win32 API. Installations in version 2.4 also require installation of the

ctype library. One of the first decisions of the design was how knowledge

would be represented. The Prolog horn clause was chosen because it

provided a rich notation to express ideas and could be directly

manipulated by the Prolog engine in the PAL interpreter.

Procedure interpret(code):

 instruction = code.pop()

 if instruction == [if, Cond, then, Action]:

 if evaluate(Cond) is true:

 code.push (Action)

 else if instruction == [while Cond, then, Action]:

 if evaluate(Cond) is true:

 code.push (instruction)

 code.push (Action)

 else if instruction == [achieve(Event)]:

 getAlternatePlans(Event, Plan)

 code.push(Plan)

 else if instruction == [assert(Clause)]:

 prolog_assert (Clause)

 .

 .

 else if getAlternatePlans(instruction, Plan):

 PAL.instances.push(Plan)

 else:

 prolog_prove(instruction)

It is the PAL interpreter that drives the MRCHIPS agent; it implements

the execution cycle described in figure 8.3. The execution cycle is driven

by interpreting the instructions contained in one or more of the intention

stacks. The interpreter removes an instruction one at a time from a

stack and determines how it is to be executed, as illustrated in figure

8.13. Each stack can be thought of as a different execution thread and

Figure 8.15. Algorithm of the PAL instruction interpreter

 143

when a stack is to be executed it is passed to the interpreter, see figure

8.14. PAL itself is implemented as single threaded Python code but

performs multithreading by switching the execution between the different

intention stacks. If the instruction is a built-in PAL command it is

dispatched and executed there. This usually involves manipulation of the

stack and controlling the next instruction to be interpreted. If the

instruction is unrecognised as a PAL command it is checked against the

plans in the agent knowledge base to see if it is the trigger event for an

agent plan in the getAlternatePlans function. If the instruction is neither

a PAL command nor a plan event it is passed to the Prolog interpreter to

execute if it is a recognised Prolog clause. The getAlternatePlans

function shown in figure 8.15 selects all plans with the matching

triggering event. The guard condition of the plans is also checked at this

stage. The guard conditions may contain a true value if the plan is

applicable in any context, or if the guard is a more complicated clause it

is passed to the Prolog interpreter where it can be checked against the

current beliefs.

Procedure getAlternatePlans(event,plan):

 plans = knowlegeBase.get(event)

 for plan in plans:

 if unify(event, plan.event) and

 (plan.guard == true or prolog_prove(plan.guard)):

 return True

 return True

All of the other subsystems in the MRCHIPS agent are able to read and

write data in the form of Prolog horn clauses to communicate with other

parts of the system. The Prolog engine in the PAL interpreter began as a

support to evaluate data within the agent, but was re-written and grew

over time to support a large subset of the Edinburgh syntax Prolog,

including arithmetic, list manipulation, the cut operator, and macro

operators. The Prolog parser is implemented as a separate object from

the Prolog interpreter. It is therefore available to be “borrowed” by the

Figure 8.16. Algorithm for selecting a new plan

 144

other reasoning modules within the agent to read their knowledge bases.

Unification is also contained in a separate object for the same reason.

Matching is able to work with all of the Prolog data types. Variable

values are held in a table environment and their values looked up or set

during the matching process. On a successful unification the new

environment (possibly empty) is returned, otherwise a Boolean False

value is returned. The Prolog interpreter is mainly used for the resolution

loop that is used to search clauses in the knowledge base. Recursion

uses the Python stack and functions in Prolog are implemented as

functions of Python code that are called via a table lookup. This

mechanism allows the capability of the interpreter to be easily extended

by adding new entries to the table. When new functions are added to the

agent to extend its perception, cognition or motor capabilities (see

sections 5 and 6 below), they are implemented as extensions to the

Prolog function table.

8.5 The agent environment

For reasons of stability the address spaces for each process on a modern

operating system, such as Microsoft Windows and Unix, are all made

transparent to each other. This regime allows each process to run

without interfering with the activities of other processes. Even if a

Figure 8.17. The mentor agent’s advice to a learner

 145

process locks up or terminates abnormally it can do so without

interrupting the rest of the operating system. Each process in the

Windows operating system is executed in its own, private four Gigabyte

memory address space and nearly all of the resources used by a process

are restricted to this memory space. This makes the observation of the

activities of one process from within another process extremely difficult.

However, it is possible to observe the effects of other processes where

computer resources are shared, such as at the filing system and on the

display. The Windows desktop consists of a variable number of desktop

components of icons, menus and windows that represent the interface to

underlying applications, which are addressable via a pointing device or

keyboard.

Each desktop component is represented as a software structure with a

number of attributes that record its appearance, size and position on the

desktop, not only in terms of its position in two-dimensions but also

indicating its position in front of or behind other desktop components, its

Z-order. Windowing environments, such as the Microsoft desktop and

Unix based systems that implement X Windows are usually event driven,

that is to say in order to provide interactive processing the desktop

components respond to event messages sent as a result of mouse

movements and clicks or keyboard key presses. The application behind

the component is usually in an idle state waiting for an event to make an

appropriate response. Message passing and message handling is a major

property for programs operating in an event driven windowing

environment, as it is a mechanism that allows each application to share

the user interface. Microsoft Windows maintains in the order of

thousands of types of message that are used to perform functions from

Figure 8.18. The agent’s interface to the Win32 OS

Win32 Operating System

Windows Desktop MS-agents

Agent Sensors Agent Actuators

MRCHIPS

Python VM

 146

the positioning of a component on the desktop to handling

communicating between windows. The Python environment is a user

level application (it does not execute as part of the operating system). It

is used to develop script files that are executed in the Python virtual

machine, which is written in C and is executed by the computer’s CPU.

MRCHIPS is just an application level process that is run in the Python

virtual machine (see figure 8.18), but able to access some of the

underlying resources of the Windows operating system.

A default installation of Python makes use of the Tk library to provide a

cross-platform for producing windowed applications for modern desktop

environments. The default editor and development environment called

IDLE (from Integrated DeveLopment Environment) was written making

use of the Tk library. The Tk based development environment is

important to MRCHIPS because it is the one on which the students are

taught and so the one targeted by the agent. While the interface

provides a simple to use and consistent interface into the desktop

environment, it does not provide the same set of features as the

underlying operating system. The most noted absent feature in terms of

MRCHIPS is an interface for automation control.

8.6 Decision-making in MRCHIPS

Without its knowledge-base the MRCHIPS agent architecture provides

only an empty shell incapable of any real reasoning. It is the contents of

the of plans, cases, rules and other knowledge structures that are able to

use the architecture and provide the agent with its diagnostic capability

and behaviours. At the core of MRCHIPS decision-making are the plans

that are used to coordinate various modes of the agent’s behaviour that

can be explained using a kind of finite state machine (FSM), as in figure

8.18 below. However the modes only approximate the FSM as the

MRCHIPS architecture allows for concurrent reasoning so the various

states are not mutually exclusive.

 147

The way by which each state contributes to the reasoning is as follows:

a) During the initialisation mode the agent announces its presence to

the learner and is minimised to be out of the way. When the

agent starts MRCHIPS announces his presence and then is

minimised to the windows taskbar if the user wishes to manually

launch or exit the application.

b) Control is then switched to the monitor mode. This is the main

mode of the agent’s operation where the desktop is first monitored

for the Python development environment and the placement of

editor, console and dialog windows. When the learner is not using

Python the plans that control the monitor mode poll the desktop

every five seconds. Once a Python window is active its contents

and the desktop are polled every two seconds for the presence of

an error message. The agent polls the desktop on a two second

cycle for the presence of the Python IDE. When the IDE is found a

record is made of the window and the file being edited.

c) The recall mode prepares and sends the symptoms of the error to

the CBR and awaits the selected case solution. As MRCHIPS has

no mechanism to directly detect when the user attempts to run

their code the agent monitors for the error output from Python.

Once an error has been detected the source code is profiled by the

agent in a Python subroutine where syntax errors are first

tokenised and parsed and the details added to the agent’s belief

 recall

 initialize

 converse

 monitor
 greeting

 Give help

Figure 8.19. Simplified finite state machine for main MRCHIPS behaviours

error
detected

selected
case

case
solution

answer to query

user
query

restart

start

 148

base or with semantic errors the error message read from the

Python shell window is processed and again added to the agent

belief base. Once the profiling is complete the profiler routine

sends an event to the agent to signal this and the appropriate

plans use the output from the profiler to construct the problem

case, which is then sent to the CBR module for a matching case.

d) The greeting mode alerts the user that MRCHIPS will offer a

solution to the error after a set delay and waits for a period before

checking the error again.

e) If the user has not corrected the error by the end of the delay the

agent is switched to the “give help” mode where the solution from

the case is used to provide help to the user. The selected case is

placed into the agent’s beliefs knowledge base and activated by a

call to a plan called executeCase, which selects the steps of the

solution from the case and inserts them into the BDI’s intention

stack for execution. Control is then passed back to the monitor

mode to check for future errors.

f) The converse mode is activated when the agent awaits input from

the user. Its initial plan is spawned from a separate intention in

the BDI and in effect operates in parallel with the monitor

planning. The converse mode is used to accept text input from the

user and sequence the natural language parsing and question

answering operations.

There are also additional sub states that oversee the handling of other

components of MRCHIPS, handshaking with system resources and

overseeing input and output operations. Other plans in MRCHIPS are

mainly concerned with “housekeeping” tasks such as controlling the MS

agent character and coordinating communication with the user. Some

functions such as monitoring which window is on top of another are

coded directly in Python for reasons of speed and efficiency.

 149

8.7 Related work

The MRCHIPS agent shares some of the features of the other pedagogical

agent systems explained in the literature review as well as introducing

new features to address the requirements of its domain.

Agent Reasoning World Interactive Pedagogy Environment Source

Steve Rule-based 3D Yes Coaching VRML C/Soar

FatiMA OCC 3D Episodic Immersive Ogre 3D Java

BodyChat Procedural 3D Yes C++

PPP Procedural 2D No Lecture Document

Jacob Procedural 3D Yes Coaching VRML Java

Adele Planner 2D Yes Web-applet Java

MRCHIPS BDI/CBR 2D Yes Coaching Windows Python

Like the Steve and FatiMA agents MRCHIPS implements a cognitive agent

architecture. FatiMA agents simulate emotions as an important part of

their decision-making, Steve and Adele have no facility for this and the

author reported no adverse effects as a result. The Jacob and PPP

agents perform their pedagogical tasks with little reasoning capacity,

certainly less than available to the other systems, but as a result are less

interactive than the others. Unlike most of the virtual agents MRCHIPS

exists in a 2D desktop environment, because that is where the learner

works but there is no reason why it cannot be adapted to work in a 3D

world. Adele and PPP are based in 2D environments for the same reason

as MRCHIPS in order to make use of pre-existing resources to conduct

interactions. In terms of the interaction MRCHIPS has most in common

with the Adele system with the main difference in the scope of the

pedagogy. Adele presents teaching materials while MRCHIPS is guided

only by the code produced by the learner. Most of the other systems

provide additional tools to allow domain experts, who may not be

programming experts, to prepare subject materials; MRCHIPS only allows

this by direct alteration of its knowledge base. A summary of the

Table 8.3. Comparison of MRCHIPS with other virtual pedagogical agents

 150

features of MRCHIPS in comparison with other virtual pedagogical agents

is shown in table 8.3.

8.8 Summary

Previous similar systems used CBR to either extend the reasoning

capabilities of a planner, such as with Prodigy/Analogy, or to completely

implement BDI reasoning, such as CBR-BDI. The MRCHIPS architecture

differs from these systems in that the CBR provides its diagnostic

capability and the BDI facilitates this by its interaction with the

environment and the learner. The agent can pursue multiple goals while

interleaving the execution of multiple plans and the diagnostic case-

based reasoning. The agent makes use of domain knowledge in the form

of cases that can be rapidly selected and used to initiate additional goals

and plans. Additional support subsystems allow MRCHIPS to exist as an

independent application on the MS Windows operating system, able to

monitor and interact with the Python development and the desktop

environment. Although capable, MRCHIPS still lacks some features that

were designed for but not fully developed. First, a natural language

interface to the case-base would allow logical errors to be analysed were

MRCHIPS not able to determine the cause. The second is a mechanism

in the CBR to record new cases. Encoding cases as generalised examples

has reduced the effect of the absence of this feature. The third feature is

a mechanism to recall and make use of events stored in the journal to

inform decision-making. This would act as episodic memory and allow

the agent to be situated in time. As a result the agent is unable to

maintain a model of the user from which to reason and produce primarily

reactive behaviours. However MRCHIPS is capable of providing sufficient

analysis and mentoring of novice errors. The evaluation of MRCHIPS and

a discussion of its performance are given in the following chapters.

 151

Chapter 9:

Research methodology and experimental

design

The purpose of this chapter is to examine the experimental design for the

evaluation of the performance of novice programmers working with

MRCHIPS. In the following sections a discussion is given for the

suitability of different methods for conducting different types of research.

This is followed by an explanation of the rationale to use the selected

method and the strategy behind the data collection. A discussion is then

given for the options influencing the choice of research method for the

evaluation of the MRCHIPS agent.

9.1 Research methodology

The purpose of a research methodology is to structure the collection of

data that will be used towards the testing of an academic hypothesis.

There are various approaches to the collection of research data and the

method of collection generally depends on some combination of the

nature of the subject and the aims of the research. However, data

gathering can be categorised into 3 general groups: those that are

largely quantitative, those that are largely qualitative and hybrid

research methods.

9.1.1 Quantitative research methods

Quantitative research is generally used to measure a collection of

parameters with the aim of verifying or questioning a theory or

hypothesis. According to Walliman (2011) the primary purpose of

quantitative analysis is to measure, make comparisons, examine

relationships, make forecasts, test hypotheses, construct concepts and

theories, explore, control, and explain. Although quantitative analysis

deals with data in the form of numbers and uses mathematical operators,

 152

such as statistics, to investigate their properties the measurements are

guided by the kind of question asked and can be as subjective as a

qualitative method. Quantitative research involves the collection of data

so that information can be quantified and analysed in order to support or

refute a given theory. “Quantitative research begins with a problem

statement and involves the formation of a hypothesis, a literature review,

and a quantitative data analysis.” (Williams 2007). Quantitative research

methods often involve experimentation where a series of measurements

or counts may be taken, although it is also possible to use some of the

methods from quantitative research such as the survey where

participants are invited to rate or categorise a given experience.

9.1.2 Qualitative research methods

Qualitative research methods deal with data expressed mainly in words

that offer descriptions, opinions, beliefs, accounts, experience, etc.

Qualitative research is usually carried out when first exploring a domain

(Wisker 2001) and is more often used where individuals or groups of

people are the focus for the research. The main methods for qualitative

data gathering are:

 The interview: A face-to-face discussion with human subjects. It

is usual for one of the participants to posses experience or

knowledge of interest and the other to make a record of the event,

such as by note taking.

 Focus groups: small groups of participants brought together to

focus on a given issue. The group are presented with questions

and scenarios regarding issues and asked for their response or

opinion.

 Participant observation: the researcher joins the group as they are

going about their activity and studies their activity. This is

recognised as a highly subjective data gathering method, as the

observer may be too distant to have enough of a full view of the

subjects or so deeply immersed that they cannot remain objective.

 Personal learning logs: the researcher maintains a log recording

their observations, experiences and reactions as data is gathered.

 153

9.1.3 Hybrid research methods

A hybrid research method (sometimes known as mixed-mode, mixed-

method or fused research) is an approach that relies on a combination of

quantitative and qualitative methods (Wisker 2001). Although it would

not be unusual to find quantitative techniques used in a qualitative

research or quantitative methods in qualitative research the hybrid

methodology is more accurately used to refer to the combined analysis

from different methods contributing to the testing a research hypothesis.

There are various techniques for the analysis of hybrid data one common

method is to count the number of times an item of qualitative data

occurs. Another hybrid method might is to enumerate the frequency of

qualitative themes within a sample (Driscoll et al. 2007). Quantitative

analysis is usually used to provide detailed assessment of the magnitude

of phenomena and qualitative data used to provide a deep understanding

of a domain. The hybrid research methodology allows researchers to

overcome the limitations of using a single method and provides

advantages for exploring more complex research questions.

9.2 Review of research objectives

For the evaluation of MRCHIPS it is worth reconsidering the main

hypothesis of this research, which was to examine the best approach to

data gathering to address the assertion:

The aim of this research is to investigate whether the use of an animated

pedagogical agent would provide effective mentoring support to novice

programmers as they learn their first programming language.

The questions of the hypothesis that can be addressed by the evaluation

are:

1) To demonstrate that the presence of the agent produces a positive

effect on the student’s learning;

2) Within that, how much is as a result of the presence of a

personality and how much is from the content of the information

provided by the agent.

 154

From the review of virtual agents, in chapter four, researchers have

noted that the presence of a virtual agent tends to increase a user’s

performance in tasks irrespective of whether the agent provides domain

information or not (Lester et al. 1999). It is believed that people

respond to the personality of the agent as they would to the presence of

a person. Research from psychology suggests the effect of people

surrogates show similar increase in performance in other fields (Lester et

al. 1999). However it is necessary to show a material improvement of

the learner’s ability to cope with programming errors as a result of the

presence of MRCHIPS. This would indicate the need for a quantitative

evaluation where the measure is of the learner’s use of domain

knowledge. An assessment of MRCHIPS could be carried out where

students were asked their opinion of working with the agent by interview

or survey. A qualitative measure might indicate a learner’s preference (or

not) for the presence of the agent but offer no indication of the

effectiveness of MRCHIPS in helping students to learn to program. The

use of an experiment with quantitative measures allows for the controlled

testing of MRCHIPS where extraneous factors can be limited.

9.3 Research Design

In order to demonstrate the effectiveness of MRCHIPS it is necessary to

show that novice-programming students are able to make more progress

in practical exercises with the agent than they would without and that

this is as a result of the agent. An ideal study would allow for two groups

of students to be evaluated over the course of an academic year the time

normally taken to teach Python. One group, the test students, would

have access to MRCHIPS during the evaluation period the other group

would not have access and would act as a control group. During the

study comparisons would be made of the relative progress of one group

against the other with a large enough sample for the study so that

individual factors such as teaching skill, age, prior experience and

motivation of the individual could be mitigated. Then any difference

would be attributable to the effect of the agent. However to use

MRCHIPS in such a study, where a learning tool were deliberately denied

 155

to some students, would raise issues of ethics in a university

environment where what is learned by students will have a material

effect on their overall progression. Another difficulty would be that test

results towards the end of a long study would be expected to show a

smaller difference between both groups than in the beginning as the

agent supports novice level learners and both groups would continue to

learn throughout the period.

During the academic year the students’ progress on the “foundations of

programming” module is tested in three different exercises that

demonstrate different skills at various stages of the course. Towards the

end of the first term students are given a comprehension exercise

consisting of about ten short answer questions and small fragments of

code requiring explanation. During term two they are given a complete

programming project usually to provide a custom user interface to a

database application. This is largely a design-based challenge allowing

the students the chance to apply what they have learned. The third

assessment is a practical exercise, called a Time-Constrained Assignment

(TCA) and designed to be the equivalent of an end of year examination,

but testing many real-world programming skills. For the TCA students

are challenged to correct a faulty Python program within a fixed period of

time. The students are allowed to use programming books and lecture

notes, but have to correct the program individually.

Rather than devise a completely new experimental framework for the

agent evaluation it was decided to base the testing around the (TCA),

exercise used to assess students. The TCA provides the clearest

experimental structure for testing the effectiveness of the agent and

although it might appear an artificial exercise it provides a good real-

world test of programming skills as professional programmers are often

expected to be able to maintain and make use of code originally created

by other people.

The observation of novice errors was also at the data gathering stage of

the research. Although the results of the observation were presented as

 156

a trend, shown in figure 6.6 of chapter six, the data was primarily

qualitative; the real value of each error was its occurrence as that was

then used to populate the knowledgebase for the CBR.

9.4 Experimental overview

For the agent experiments three trial groups were run: the first group of

novice students working without the MRCHIPS agent, the second group

of experienced students also working without the agent and the third

group of novice programmers who were mentored by the MRCHIPS

agent. Throughout the rest of the text the groups will be referred to as

novice, experienced and mentored respectively. The novice and

experienced groups were to act as a control providing a measure of how

students perform normally in the TCA. The mentored group would also

be asked to complete a questionnaire to provide some qualitative

information about the experience of working with the agent. The

evaluation of MRCHIPS working alongside novice programmers allows

evidence to be gathered to examine the first two hypotheses of this

research. The first of these was:

1) An intelligent agent with an anthropomorphic interface can provide

effective mentoring support to novice programmers learning their

first programming language.

To measure the effectiveness of the mentoring the evaluation should

show that mentored students are more likely to produce work of a higher

standard than would be expected of a similar novice programmer and

that the mentoring aids their learning.

The second hypothesis was:

2) The use of an animated virtual character user interface increases

the learner’s engagement with problem solving in the

programming environment.

Indicators such as positive opinions about using the agent from the

learner or a willingness to explore beyond the core requirements of

exercises will be assumed to be a measure of increased engagement for

this evaluation.

 157

Figure 9.1. The user interfaces for the hangman and unit converter

applications used by the control groups

The method of evaluation chosen was to compare the problem solving of

a test group of novice learners working with the aid of MRCHIPS against

those of two control groups of learners working without the agent. The

control groups were novice programmers tested at the beginning of their

course, after six weeks of Python study when students were familiar with

the Python tools but very much at a novice level of skill and a second

group of more experienced programmers tested after 24 weeks of study

towards the end of their course. Three different Python applications,

which made use of the Tk/Tickle library to provide a Windows interface,

(see Figure 9.1) were used as programs to debug for the different

evaluation groups. The level of complexity for each program was

approximately the same, although the numbers of errors and their

complexity was different, depending upon the curricula requirements for

the control group. The program for control group one, the non-mentored

novices, contained the fewest and most simple errors while the

experienced programmers and mentored novices group contained more

challenging errors. The code used by the mentored students contained a

few duplicated errors to help examine for signs of learning.

The challenge of the exercise was for the students to find and correct

some twenty syntactic, semantic and logical errors in a two-hour period.

The test is run as an open book exercise, meaning students may use any

 158

printed Python or programming related material. The errors in the test

program are of a similar type to those highlighted in Chapter three.

Figure 9.2. The user interface numerical converter application used by

the mentored evaluation group

The test program used for the mentored evaluation group was a small

Python application to convert values between Arabic and Roman

numerals, see Figure 9.2 and contained eleven syntactic and semantic

errors. Some of the errors were repeated, to allow testing of whether

the user had learned through the guidance from the agent from the first

instance of the error enough to recognise and solve the second instance

of the error without guidance. The MRCHIPS agent was capable of

detecting and offering assistance for all of the error types included. The

errors used in the evaluation program are listed below with a brief

explanation of what they were designed to elicit from the subject. Note:

the errors are listed in the order the Python compiler detected them.

def mainform(root)

1. The first error was the missing colon at the end of a function

definition statement. This produces a syntax error that is simple

for the agent to determine and provide direct help to solve and

designed to allow the subject to make a start. This is a compile-

time error.

 m_frame = Frame(root)

 m_frame.pack(fill=BOTH)

2. The second problem is an un-indentation error this again produces

a simple error for which the agent is able to provide direct help.

 159

def arab 2rome():

3. The next problem was a split in the name for a function, in Python

a function or variable name must be a single word.

 If not isinstance(arabic, type(0)):

4. The case sensitivity of Python was used for the next problem; the

uppercase ‘I’ in the ‘if’ invalidated the keyword.

def roman _to_int(roman):

5. The space in the name definition of the function is the error for

this problem – the same as the error in the third problem. Again

this is to test if the subjects were learning and if they were able to

solve the problem without the agent.

 if int_to_roman(total) = roman:

6. This syntax error has the assignment operator in the place of the

equality operator in the if statement.

def reset(root)

7. The problem in the reset function definition is a repeat of the first

problem; this was to see if the subjects were able to provide a

correction without the aid of the agent.

 root = Tk()

 initialise(root)

8. This is another indentation error. This time the line is indented one

space too many. If the subject corrects the error without MRCHIPS

it would indicate learning.

 process(roo)

9. This is the first of the run-time errors. It is a spelling mistake with

the last letter omitted from the variable name root.

 if not 0 < Arabic < 4000:

 160

10. This is a case-sensitivity error with the Arabic variable name; as

all other instances of the variable are in lower case.

 Roman = roman.upper

11. This error contains two logical errors. The first is the absence of

parenthesises (or brackets) to indicate a function call. The other

logical error is that the function name should be lower to change

all of the characters in the roman string to lower-case.

The mentored volunteers were given forty minutes to complete as much

of the program as they could manage and then asked to complete a

questionnaire about the experience (see Appendix E). The activity of

MRCHIPS during the session was logged by the agent’s journaling system

and at the end of the exercise the log file, program source code and

questionnaires were collected for analysis.

9.4.1 Experimental setting

The material from a total of thirty-three people was used in this study.

There were ten students in control group one, novice programmers who

worked without the agent. Fourteen more experienced student

programmers also worked without the agent in the second control group.

Both groups were from a cohort of year one university undergraduate

students. The tests they carried out were also as a part of their normal

curriculum activity.

Group Experience

(wks)

Participants Agent

present

Total

Errors

Duration

(mins)

Novice 6 10 No 10 60

Experienced 24 14 No 18 120

Mentored 0 9 Yes 11 40

Table 9.1. Details for the experimental setting

The experimental agent mentored group consisted of nine volunteer

novice programmers who worked with the agent. The arrangement for

each test group is shown in table 9.1. Due to scheduling issues the

volunteers for the mentored group were not from the initially identified

 161

student body; suitable novice programming students would usually be

available at the start of an academic year but the agent software was not

stable enough for testing at this time. Instead volunteers were gathered

with suitable computing experience but with limited experience of

programming, or of Python. The exercises were run as individual

sessions, six of the nine were run in the presence of the researcher and

three were carried out remotely with the results emailed back to the

researcher.

9.4.2 Experimental limitations

There are three main limitations with the method of experimentation; the

number of participants in the test group is very small which could lead to

inaccurate findings as unusual results may have larger influence than

normal. However, the t-test analysis, discussed in the next chapter, can

provide a measure of the confidence for the accuracy of the findings.

Second, no account is made for any prior programming abilities for the

participants of the mentored group the only test taken was for any

knowledge of Python programming. Ideally pre-testing of the individuals

could have been performed to assess their base-line ability however,

students in the control groups also had different prior programming

experience so these conditions for all groups would be the same. Third,

using the TCA as the basis for the experiment provides quantitative data

on syntax and semantic errors but does not allow testing for problem

solving with logical errors. Logical errors start to affect students later in

the learning process as the programs become more sophisticated, see

figure 6.6 for a measure of this trend, as this experiment is concerned

with testing novices the TCA was considered to be a sufficient challenge.

9.5 Ethical considerations

As the TCAs were part of the curriculum of the student participants and

would contribute to their academic progress it was decided to test the

control groups before the completion of the working agent, in order to

avoid any potential ethical problems arising from withholding a learning

tool from some or all of the students. Volunteers from the subsequent

cohort of students would then form the mentored group. Another

 162

consideration was the requirement for the novice and experienced

programmer groups to be given different challenges for their TCA

exercises although an identical exercise would have been more

convenient and the different TCA exercises can be accommodated by

correlation of the individual problems across each.

9.6 Summary

The decision was taken to use a quantitative data gathering approach to

evaluate the effectiveness of the MRCHIPS agent. The experimentation

would be based around supporting students to complete the TCA

practical examination. Three test groups would be used in the

evaluation: novice programmers, experienced programmers to provide

control data and mentored programmers to provide data of working with

the MRCHIPS agent. This approach allows the experimentation to be

based around a pre-existing evaluation infrastructure and tests the agent

in a real-world application.

 163

Chapter 10:

Evaluation of MRCHIPS

This chapter evaluates the effectiveness of a mentoring agent, MRCHIPS,

in providing mentoring support to novice programmers and helping

novice Python programmers overcome the common Python syntactical,

semantic and logical errors. First findings from the evaluation, using the

framework described in the previous chapter, are presented. A brief

description is then given of the reasoning behind the choice of the t-test

and correlation coefficient statistical methods used for the analysis. The

findings are analysed in order to determine how well the evaluation is

able to test the hypothesis. Finally, the limitations of the approach taken

with this study are examined.

10.1 Findings and analysis

A summary of each error and the numbers of learners in each group able

to correct them is shown in table 10.1 below.

Error Novice (group

size: 10)

Experienced

(group size: 14)

Mentored

(group size: 9)

Missing colon 1 9 14 9

Indentation 1 10 14 9

Split name 1 7 14 8

Incorrect operator 9 14 8

Missing colon 2 5 14 4

Indentation 2 5 13 5

Split name 2 NA NA 6

Spelling 1 4 7 5

Case sensitivity 1 13 6

Missing bracket 0 4 1

Spelling 2 NA 6 3

Table 10.1. Results for number of errors corrected by each group

 164

The experienced coders group were able to correct most of errors, but

the results were more varied for the other groups. In all groups the

majority of participants were able to correct the earlier occurrence of

errors. Almost every participant corrected the first missing colon and

indentation errors. The split variable name and incorrect operator errors

were also corrected by most. The case sensitivity error was uncorrected

by all but one in the novice group, while all but one of the participants in

the experienced group and the majority of the mentored group were able

to correct the same error. The errors that were the least well addressed

by all groups were the errors in spelling and missing parenthesis. The

spelling error would be highlighted only at runtime and reported as a

missing variable while the missing parenthesis is a logical error that

could not be directly detected by the language compiler/interpreter, but

might produce an error at a later stage or merely an incorrect answer.

Subject A was a computer user with no programming experience and

managed to introduce new errors in attempting to fix the code.

0 20 40 60 80 100

Spelling 2

Missing bracket

Case sensitivity

Spelling 1

Split name 2

Indentation 2

Missing colon 2

Incorrect operator

Split name 1

Indentation 1

Missing colon 1

Percentage of participants

Novices

Experienced

Mentored

 Figure 10.1. Proportion of errors corrected by each group

The marks and percentage grades for individual students in group one,

the un-mentored novices, are shown below in table 10.2.

 165

Mark 7 6 6 6 6 4 4 4 4 3

%-age 78 67 67 67 67 44 44 44 44 33

Table 10.2. Results for control group 1, novice programmers

The mean number of errors corrected was five with a standard deviation

of 3.54 and an average grade of 55.5 percent. The grades for individual

students in group 2, the experienced programmers, are shown in table

10.3. These students produced a mean number of eight errors corrected

with a standard deviation of 3.97 and an average grade of 65.7 percent.

Mark 10 10 10 9 9 8 8 8 8 7 7 7 7 5

%-age 100 100 100 90 90 80 80 80 80 70 70 70 70 50

Table 10.3. Results for control group 2, experienced programmers

The grades for individual participants in mentored group of novice

programmers are shown in table 10.4. These students produced a mean

of seven errors corrected with a standard deviation of 2.58 and an

average grade of 65 percent.

Participant M1 M2 M3 M4 M5 M6 M7 M8 M9

Mark 11 10 9 8 7 6 5 5 4

%-age 100 91 82 73 64 55 45 45 36

Table 10.4. Results for group 3, mentored novice programmers

Of the nine mentored participants in the evaluation group only one, M1,

was able to correct all of the errors. However participant M2 was also

able to correct enough of the errors to produce a running version of the

program, although the application would not produce a correct result.

In a comparison of results for each experimental group the grades for the

experienced coders clustered towards the higher grades, producing

higher average grades than the other groups, while grades for less

experienced learners were distinctly lower, figure 10.2. The results for

the mentored group were fairly evenly distributed across grades. A

larger sample might cause a more conventional distribution, however

 166

some of the participants were able to perform better and produce a

higher average grade than non-mentored novices.

-1

0

1

2

3

4

5

20 30 40 50 60 70 80 90 100

Percentage of errors corrected

N
o

 o
f

s
tu

d
e

n
ts

Experienced

Mentored

Novice

Figure 10.2. Comparison of grade distribution for each experimental

group

Participants M1, M2, M4 and M5 were able to solve one or more of the

repeated errors without the aid of MRCHIPS, the agent’s journal recorded

the offer of help as cancelled but the errors were still corrected, see table

10.5. These patterns were interpreted as indications of learning as the

subjects were able to recognise and solve problems on their own.

Participant Errors solved

with agent

Errors solved

by self

Total Tutor

present

Time

(mins)

M1 7 4 11 Yes 38

M2 6 4 10 No 41

M3 9 0 9 No 67

M4 6 2 8 Yes 40

M5 6 1 7 No 35

M6 6 0 6 No 60

M7 5 0 5 Yes 40

M8 5 0 5 No 46

M9 4 0 4 No 27

Table 10.5. Results for evaluation group, subjects and MRCHIPS

 167

Four of the participants (M1, M4, M5 and M7) chose independently to

keep the MRCHIPS character on the desktop as they worked, even

though the instructions indicated the MRCHIPS character be minimised

when not in use. Student M4 reported that the text-to-speech feature

did not work on their computer but s/he was still able to proceed.

Student M8 reported that MRCHIPS shutdown during the processing of

the fifth error and was unable to progress beyond that point even after a

system reset. Attempts by the researcher to determine the cause of the

error or to reproduce the problem were unsuccessful.

10.1.1 The t-test analysis

The t-test is carried out to test the hypothesis that the presence of the

agent, MRCHIPS, is responsible for the difference in performance

between the two groups: novice control group and mentored group. The

t-test is used to estimate the mean population distribution in data when

the sample size is small. It is based on the assumption that random data

samples should exist on a normal distribution curve. The t-test relies on

the t-distribution, which is a family of continuous probability distributions

that are used for estimating the mean population distribution, see figure

10.3. By analysis of values from a sample, such as the mean and the

standard deviation, and a t-distribution, the t-test calculation is able to

provide a comparison of the performance between two independent (or

unpaired) samples (Madsen 2011). The t-test also allows for a measure

of confidence for results when the sample sizes are statistically small

(Freund & Simon 1996).

Figure 10.3. T-distributions with different degrees of freedom (courtesy

of StatsDirect Limited)

 168

The two-sample t-test compares the mean values between two sets of

data. The analysis tests a null hypothesis that proposes the population

means related to two random samples, from an approximately normal

distribution, to be equal, i.e. u1 – u2 = 0 and an alternate hypothesis

where the means are the inverse of the null hypothesis, i.e. u1 – u2 ≠ 0.

A probability is calculated as a measure of the chances of observing a

random value when the null hypothesis is true. If the probability value is

below a given threshold then the null hypothesis can be ruled out and the

alternate hypothesis shown to be valid.

Figure 10.4. The t-test expression (courtesy of J. P. Key. Oklahoma State

University)

However the t-test expression in figure 10.4 is not always accurate when

the sample size is less than 30. The t-test expression for statistically

small sample groups with a different variance is given in figure 10.5

below. Where the symbols have the same meaning as for expression

10.4 and the terms Σ(x1 – ẍ1)
2 and Σ(x2 – ẍ2)

2 are the sum of the

squared deviations for sample 1 and sample 2 respectively.

Figure 10.5. The t-test expression for small samples (courtesy of J. P.

Key. Oklahoma State University)

The sampling distribution is the t-distribution with n1 + n2 – 2 degrees of

freedom. Once the t-value has been calculated it can be compared

against the standard t-distribution table for the corresponding critical

value for the measure at which the value is said to be significant. A

 169

more detailed treatment of the reasoning behind the t-test is given in

Coolidge (2000) and can be found in the literature.

The p value is a calculation of the probability of producing a rare value

that is outside of the t-distribution (Madsen 2011). The conventional

level of significance for a statistical measure is tested at the p = 0.05

value, that is to say when the probability of rejecting a correct

hypothesis is less than 5% (Coolidge 2000).

10.1.2 The t-test calculation

The preliminary analysis for the data collected from the non-mentored

novice group (table 10.2) and the mentored novice group (table 10.4) of

programming students are shown in table 10.6 below. The results from

the experienced programmers group is not needed to test the

experimental hypothesis and is not considered for this analysis as the

hypothesis is concerned with a comparison of the relative performance of

the novice programmers working with or without the MRCHIPS agent.

Novice Mentored

7 11

6 10

6 9

6 8

6 7

4 6

4 5

4 5

4 4

3

Table 10.6. Empirical data from the novice and mentored groups

The null hypothesis is for the inverse of the experimental hypothesis,

that the presence of MRCHIPS has no effect on the performance of novice

students, that is to say u1 – u2 = 0, the mean difference between the

 170

performances of the groups of novice students irrespective of any

assistance will be or close to zero.

Calculation of ẍ1

ẍ1 =
7+6+6+6+6+4+4+4+4+3

10

 ẍ1 = 5.0

Calculation of ẍ2

ẍ2 =
11+10+9+8+7+6+5+5+4

9

 ẍ2 = 7.2

Calculation of the sum of the squared deviation for the novice group

 Σ(x1 – ẍ1)
2 = (7 – 5.0)2 + … + (3 – 5.0)2

 = 16

Calculation of the sum of the squared deviation for the mentored group

 Σ(x2 – ẍ2)
2 = (11 – 7.2)2 + … + (4 – 7.2)2

 = 47.6

 Novice Mentored

Mean (x) 5.0 7.2

Std dev (s) 1.3 2.4

Number (n) 10 9

Squared deviation Σ(x – ẍ)2 16 47.6

Degree of Freedom (df) 9 8

Table 10.7. Preliminary analysis of the sample research data

Substitution of the values from table 10.7 and the sums of the squared

deviations into expression from figure 10.5 gives the following formula

t =

5 – 7.22

√
16 + 47.6

*
1

+
1

10 + 9 – 2 10 9

 171

t =

– 2.22

√
63.6

*
19

17 90

t =
– 2.22

√ 0.7898

 t = -2.505

The value for t was calculated to be -2.505. The sign of the t value

indicates that it is the value for the mentored group that produces the

larger mean values. The directional component of the research

hypothesis is that mentored novices, the x2 group, perform better than

non-mentored novices, group x1 therefore the negative value produced

for t is consistent with the hypothesis.

The calculated value t = -2.505 exceeds the critical value of t = + 2.110

at p = 0.05 with a df = 17. The calculated value t = -2.505 does not

exceed the critical value of t at p = 0.1 (for df = 17) which is t = +

2.898. This would indicate a p value between 0.05 and 0.01. A precise

value for p can be calculated directly from a spreadsheet program using

the TTEST function. The p value from the TTEST calculation was found

be 0.016, which corresponds to a 1.6% chance of rejecting a correct

hypothesis and is consistent with the t value calculated above. The mean

difference between the data is therefore higher than would be expected

from random chance alone with a very small probability of producing a

rare value. As the t value does exceed the critical value the null

hypothesis is rejected and the difference between the means of the two

groups is significant. It can be concluded that on average novice

students working with the MRCHIPS agent produce higher marks than

those working without.

 172

10.1.3 Pearson’s correlation coefficient

Pearson’s correlation coefficient allows a measure of the relationship

between the activity of MRCHPS and the performance of the mentored

students. The correlation coefficient is a statistical measure of the

strength of linear dependence between two variables. It is expressed in

values from +1.0, indicating a direct relationship between the variables

to –1.0, indicating an inverse relationship. A value of 0.0 indicates no

relationship between the variables.

0

20

40

60

80

100

120

3 4 5 6 7 8 9 10

No of errors solved with MRCHIPS

P
e
r
ce

n
ta

g
e
 g

ra
d
e

Errors
Solved

Figure 10.6. Number of errors solved with MRCHIPS and student grade

A comparison of the number of errors solved with help from MRCHIPS

and the final grade attained is shown in the scatter chart in figure 10.6.

Analysis of the data shows a positive correlation coefficient of 0.73,

which would indicate MRCHIPS to have a significant influence on a

student's success. Further analysis of the results for the help from

MRCHIPS and errors that students were then able to correct without the

agent’s help, shown in figure 10.7, which would indicate student learning

 173

gives a correlation coefficient of only 0.21. This is an indication of some

correlation, but is not clear enough to be significant.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

No of errors solved with MRCHIPS

E
rr

o
rs

 s
o

lv
e

d
 b

y
 s

tu
d

e
n

t

Errors

solved

by self

 Figure 10.7. Errors solved with MRCHIPS verses errors solved alone

Anecdotal feedback from the mentored participants indicated that they

found they were able to follow the help offered by MRCHIPS and that

some felt they were not having to correct errors on their own. Although

not part of the experiment those from the mentored group commented

that they preferred to have the agent speak to them as they read the

text of help messages from MRCHIPS.

10.2 Discussion

MRCHIPS is an agent-based solution to the problem of mentoring novice-

programming students. The MRCHIPS architecture allows for the

reactive and deliberative reasoning required for the agent to operate

within a dynamic desktop environment while making diagnostic decisions

about programming errors. The Beliefs Desires and Intentions (BDI)

based planning system is used to coordinate operations within the agent

from responding to inputs, controlling outputs and scheduling the other

reasoning resources in the agent. Reactive reasoning is supported in the

BDI by maintaining an agenda of goals and selecting an appropriate plan

to solve the goal. Deliberative reasoning in the BDI is supported using a

 174

series of plans refine the steps of a goal before ultimate solution is found.

Most of the agent’s deliberative reasoning involved diagnosis of novice

errors. Categorising errors into different types lead to their consideration

as individual diagnostic situations, which provided a strong correlation to

their representation as cases and indicated the use of case-based

reasoning (CBR) in the agent. However not all of the deliberative

reasoning is processed by the CBR; the diagnosis of syntax errors are

processed using a rule-based parser. The syntax for programming

languages are usually defined as a series of rules, such as in the BNF

notation used in chapter eight in table 8.1. The rule representation

therefore naturally lends itself to efficient processing in a rule-based

parser. The agent-based solution allows different reasoning methods to

be applied to perform different types of problem solving. The MRCHIPS

agent met its initial design requirements. It was able to monitor the

learner’s activity, accurately diagnose the errors and respond to the

learner in a timely manner. This was possible even though the

architecture is run from an interpreter, PAL, within another interpreter,

Python. Much of the speed and accuracy in reasoning is gained via use

of the lookup tables, built from the Python hash table data structure,

which allow for the fast indexing of data and reduces the need to search.

The BDI uses a hash table to reference to the underlying Python

functions that implement the PAL interpreter. The CBR also makes use

of hash tables to form the discrimination network so indexing is

performed via a single lookup for each argument of the case. Operations

that are time consuming such as unification and the BNF parser, both of

which involve a systematic search through data structures, are used

sparingly.

However there are a few limitations in the operation of MRCHIPS,

features that it is not able to carry out or that would require some

redesign to implement. The limitations examined detail below and are

related to:

a) Strategic – how the agent informed the learner, only monitored

the learner in some modes and no direct modelling of the learner;

b) Technical – no capability to adapt to unforeseen situations;

 175

c) Social – the limited capacity for natural language interaction;

d) Portability – only available on Windows platforms.

Two flaws discovered during evaluation had to be corrected to before

further experimentation could take place. First was the strategy used by

MRCHIPS to inform the user that it had a solution to an error. On

detecting an error MRCHIPS waits for a period to allow the learner to self

correct if possible. In its original configuration MRCHIPS provided no

feedback that it had detected the error and appeared only after the

delay. Feedback from the learners indicated that this was disconcerting

so a semi-transparent pop-up window was introduced to alert the learner

that MRCHIPS would provide help after a delay. The second was that the

agent only monitored the environment when the MRCHIPS character was

minimised. As some learners preferred to work while MRCHIPS was on

the desktop they were unable to receive further assistance. It was

incorrectly thought that whenever the agent character was on the

desktop the learner would be in dialog with it, so they were unable to

proceed with writing code. Fortunately the solution required only

changes in the plans within the knowledge base to allow scanning of the

environment to be performed as a separate intention, effectively running

as a thread and irrespective of the state of the agent character.

The MRCHIPS strategy only allows for indirect modelling of the user by

modelling the types of programming errors. No attempt is made to

directly model the user in the way that a system such as the Genie

intelligent assistant, reviewed in chapter 3, is able to do. Modelling the

user would involve making an assessment of the user’s level of expertise

and adjusting the behaviour of MRCHIPS to suit the user’s preferences.

For example a novice user might prefer help only in the form of the

solution to an error, but once more accomplished he or she might prefer

a longer explanation to the cause of the error. Modelling the user via

programming errors was adequate for experimentation with MRCHIPS

but for longer term use direct modelling of the user would allow the

agent to track the user’s progress, present information in a format that is

 176

tuned to the user’s ability and allow for the more complex social

interactions.

The CBR in MRCHIPS has no capacity to automatically acquire new cases

this would have provided MRCHIPS with a form of learning and the

capability to adapt to novel or unforeseen situations. There are two

areas of the agent architecture able to support learning but they were

not required for the evaluation. First the function of the CBR could be

extended to implement the adaptation and storage operations for new

cases. The BDI plans could be used to guide the adaptation process,

which would require the manipulation of the Prolog data structure used

to represent the case. The second learning capability is an

autobiographical memory, which would allow the agent to consult the

record of its experiences for decision-making and reflection. The

journaling system already records the decisions of MRCHIPS but the

agent makes no further use of the information. Autobiographical

memory would allow MRCHIPS to model the record of individual learners

and adjust decisions to meet their needs.

MRCHIPS has limited capacity for complex social interactions with the

user, which could be used with the diagnosis of logical errors and to offer

messages of support and encouragement. No method could be

determined to allow MRCHIPS to diagnose the cause of logical errors

because the program code would be legal and so the agent would need

to understand the programmer’s intentions for the code. A solution was

designed to have the agent guide the learner through a question and

answer process and offer suggestions to allow them to determine the

cause but this was not implemented. There are a few plans and cases in

the agent’s knowledge base that offer messages of encouragement, but

these are presented at random. The use of autobiographic memory

would allow messages to be tracked and encouragement could then be

offered within a strategy.

MRCHIPS is only currently able to run on Microsoft Windows based

platforms. The reasoning subsystems the BDI planner, CBR and BNF

 177

parser are platform independent but the agent interface subsystem is

specific to the operation of the WIN32 programming interface and the

animated character relies on the Microsoft Agents engine, which is only

available for Windows. Converting the agent interface to work with other

GUI systems should be possible if the appropriate operating systems

resources, such as system events and messages, are accessible. An

alternative to the Microsoft Agent character interface would also be

required such as Double Agent or that used in the Adele system reviewed

in chapter four.

10.3 Summary

A quantitative evaluation for the effect of MRCHIPS on the work of novice

programmers has been given. The data presented in this chapter

provides evidence for the effective support of a pedagogical agent for

assisting novice programming students as they learn Python as a first

language. The results of the experimentation were able to demonstrate

that the presence of the agent was able to assist participants to make

progress with developing a Python program, not least because MRCHIPS

was able to provide answers. Comparing the results from the groups of

novice programmers, those working with MRCHIPS were 10% more

productive than those working with no agent. From the t-test the

calculated value t = -2.505 was found to exceed the critical value of t =

+ 2.110 at p = 0.05 with a df = 17. Therefore the null hypothesis is

rejected and it is concluded the mean score for the mentored novice

students (65.5%) was significantly higher than for the un-mentored

novice students (55.5%). Analysis of the experimental findings show

there to be a significant correlation between the presence of MRCHIPS

and the improvement in performance of the novice programmers. There

was a positive correlation coefficient of 0.73 between the support offered

by MRCHIPS and the grade achieved by the mentored students. There

were also indications of learning where subjects were able to recognise

and solve problems without the guidance of the agent, although the

correlation coefficient of 0.21 was less significant. The evaluation was

also able to show some support for learning in that four of the mentored

students were able to recognise and solve one or more of the repeated

 178

errors without the aid of the agent. The mentored student who was able

to solve the logical error even though MRCHIPS had no support

suggested he recalled some knowledge from an earlier programming

experience and replied, “It just seemed to be the way it worked.” The

major caveat with the results is that the size of the study group was

small and the study was short in duration. Therefore the effect of an

individual’s performance on the reading would have a disproportionate

effect on the findings. It had originally been planned to then run a larger

study over a longer learning period. Unfortunately due to a change in

employment that required a move away from the university contact with

the student study group was lost.

 179

Chapter 11:

Conclusions and future work

This chapter summarises the aim of this research, its findings and

proposes future work. In the following sections a discussion is given on

the extent to which the research and objectives were achieved, a critical

reflection on the research conducted, followed by a summary of the

original contributions of the research, and finally ideas are presented for

future work.

11.1 Review of research objectives

In this research it was proposed that a cognitive agent powering an

animated virtual character could provide effective support for novice

programmers as they learnt their first programming language in a

desktop environment. To investigate the hypothesis the framework of

March & Smith, and Järvinen was used to research four complementary

questions:

Hypothesis 1) An intelligent agent with an anthropomorphic

interface can provide effective mentoring support to

novice programmers learning their first programming

language.

This hypothesis can be answered with a measured degree of certainty.

There was a strong correlation found between the mentoring presence of

the MRCHIPS agent and the higher performance for the novice

programming students. From the t-test the calculated value t = -2.505

was found to exceed the critical value of t = + 2.110 at p = 0.05 with a

df = 17. The p value was found be 0.016, which corresponds to a 1.6%

chance of rejecting a correct hypothesis. The mean score for the

mentored novice students of 65.5% was higher than for the un-mentored

novice students of 55.5%. Learners that worked with MRCHIPS scored

 180

on average 10% higher than beginner programmers without the agent.

Results from the evaluation study therefore show that the presence of

MRCHIPS made a positive improvement in the performance of novice

programmers. This difference is more significant as the non-mentored

beginner programmers had had about 6 weeks of Python study at the

time of their test where the mentored group had no Python exposure

before the test. The mentored students who followed the advice given

by MRCHIPS were able to correct more of the errors; there was a positive

correlation coefficient of 0.73 between the support offered by MRCHIPS

and the grade achieved by the mentored students. Of the mentored

group four of the nine subjects were able to solve one or more of the

repeated errors without the aid of MRCHIPS. These were interpreted as

indications of learning, with a correlation coefficient of 0.21.

The MRCHIPS cognitive architecture was able to provide positive answers

for a reasoning solution for the domain. Although this research was able

to show the increase in productivity, some learning of syntax and signs

for an increase of engagement from the learner, it was not able to show

a similar effectiveness for logical errors. However the size of the study

was small and of a short duration, so even with the use of the control

groups the findings should be read as an indication of the agent’s

possibility. Researchers using other teaching virtual agents such as

Steve (Rickel & Johnson 1998) and FatiMA (Aylett et al. 2007) reported

comparable improvements in the performance of learners as found with

MRCHIPS. The literature also reported that programmers improved their

performance with intelligent tutoring systems such as UNCLE (Wang &

Bonk 2001) and CABLE (Chen et al. 2006) although the systems would

not be suitable for novice learners.

Hypothesis 2) The use of an animated virtual character user

interface increases the learner’s engagement with

problem solving in the programming environment.

The engagement of the user is probably the least evaluated part of the

hypothesis due to the choice to bias data gathering to a more

 181

quantitative method. However feedback from the subjects was positive

about the agent with the learners reporting that they found MRCHIPS

helpful even for those who were unable to substantially complete the

exercise. There was a strong positive correlation coefficient between the

activity of MRCHIPS and the progress of the mentored learners.

Although no tests were made of the mentored learners preference for the

degree of embodiment MRCHIPS has the capability of using different

anthropomorphic characters to produce this effect. Feedback from users

expressed a preference for more natural forms of communication such as

having MRCHIPS speak the help messages. A positive response to the

agent is consistent with the persona effect (Lester et al. 1999) reviewed

in chapter 4 where participants reported a preference for the presence of

an anthropomorphic character and demonstrated improvements in

cognitive tests when working with an animated agent interface (Krämer

2005). There is the caveat that it may be the novelty of an intelligent

virtual agent. It remains unclear whether the positive response was as a

result of the help provided by MRCHIPS or the novelty of the animated

character. It is possible that long-term use of MRCHIPS could elicit

similar levels of irritation by its sister product the Microsoft office paper

clip. However as the MRCHIPS reasoning is context sensitive and

attempts to fade support with the level of user competence the chance of

alienating the user may be reduced.

Hypothesis 3) The processing capabilities of a procedural BDI agent

can be extended to provide the more knowledge based

reasoning capabilities of a cognitive agent architecture.

This question was answered by the construction of the MRCHIPS agent.

The MRCHIPS architecture follows Langley’s four commitments for the

development of cognitive agents architecture (1991) explained in section

5.4 and an explanation of how MRCHIPS implements the commitments is

given in section 8.2. At the core of MRCHIPS is the BDI planner, the CBR

for diagnosis, the BNF parser and the agent interface subsystem. Both

the BDI and CBR provide methods for providing different kinds of

reasoning based on theoretical models of cognition. Sharing reasoning

 182

across the different subsystems in the agent architecture allows each to

contribute by providing reasoning for where it is best suited. So the BDI

planner provides goal seeking and procedural control and the CBR

provides domain specific diagnostics. The BNF parser became a

necessary addition when it was found the CBR would be inefficient for

reasoning about syntax errors. The design of the agent architecture

allows the activity of all subsystems to be coordinated by the BDI

including the CBR. The reason for this is to allow the agent architecture

to be adaptable in its operation allowing the plans in the knowledge base

to determine the reasoning resources in use.

Hypothesis 4) Agent based reasoning provides a framework to

extend knowledge-based systems into existing

computing desktop environments and to avoid the need

to build a specialised learning application environment.

The domain knowledge of learner errors is contained in the CBR and BNF

knowledge bases. For conventional knowledge based systems the user

would consult the application presenting the properties of the problem

and await diagnosis. For the novice programmer to have to consult the

knowledge base involves increasing his or her cognitive load, as they

would have to learn how to use the application and decide when to use it.

Using an intelligent virtual agent to monitor the learner in the

environment and decide when to consult diagnostic resources allows the

knowledge-based reasoning to be available to the learner. In order for

the agent to operate within the Windows environment required the

application of various programming techniques to allow the agent to

monitor the learner by assembling information from different parts of the

operating system and the Python development environment. The

automation routines of the Win32 API allow MRCHIPS to access

information about the activity on the Windows desktop. Unfortunately

the Python development environment is built on top of the Tkinter

library, which has limited support for the automation facilities, preventing

MCHIPS from cleanly performing a copy of the content of the Python

editor window. This made it necessary for one change to the

 183

environment as MRCHIPS adds a menu item called clear to the Python

editor window upon installation. This is the only change that MRCHIPS

requires to the environment.

11.2 Critical reflection

There were various challenges faced in undertaking this research, the

discussion below outlines some of the factors that influenced the options

and the decisions taken.

 The MRCHIPS agent was devised to provide mentoring support for

novice programmers within the framework of the cognitive

apprenticeship pedagogy. Cognitive apprenticeship has a number

of features that made it an attractive choice for use in this

research. First the pedagogy correlates to the practice used in

mentoring, most notably the coaching and scaffolding methods.

The exploration method would also be provided by the availability

of a mentoring resource to support the learner when

experimenting with the programming language. Second the

pedagogy provides a structured framework with separate methods,

where the aims and outcomes of each method may be considered

in isolation and easily measured if required. Third, the methods of

the pedagogy may be implemented in different ways, such as by

exercise, reading material, discussion, etc. This flexibility allows

the possible use of a technological solution where the details of

activity may be different, but aims and outcomes are used to

determine how the activity contributes.

 The development of the architecture went through many iterations

of design, mainly due to attempts to integrate a CBR engine based

on the MOPS data structure (Riesbeck & Schank 1989) with the

BDI engine based on the Prolog Horn clause. During the

development of the agent no method could be found for

integrating the Horn clause with the MOPS data structure that

would not cause a loss of data or become time consuming when

converting of data was to be passed back and forth between

 184

subsystems. Once it was decided to base the cases on the same

Horn clause data structure and use a discrimination network to

control storage and retrieval the development progressed quickly.

Using a single knowledge representation scheme the different

reasoning subsystems simplified communication. Concepts that

mean the same thing have the same representation in the

knowledge base even though they are processed in different ways

by different subsystems. The single representation also allows for

some agent resources to be shared such as the Prolog language

parser, which is used by all subsystems to read the agent

knowledge base and the unifier used for matching data.

 Although the MRCHIPS was designed to provide mentoring in a

desktop environment the architecture was designed to follow the

principles of a cognitive architecture. The reason for this was to

allow for the likely range of reasoning requirements within the

desktop environment. The MRCHIPS architecture satisfies nearly

all of the commitments for a cognitive architecture as described by

Langley (2006) and discussed in chapter five; the commitment to

long-term memories is currently underdeveloped; it would be

addressed by the ability to retain new cases in the CBR or the

inclusion of an autobiographical memory similar to that used in

agents like FatiMA (Aylett et al. 2007). It is likely that other

cognitive agent architectures such as Soar (Laird et al. 1987),

Icarus (Langley et al. 1991), or ACT-R (Anderson 1993) would also

be suitable frameworks on which to build MRCHIPS. The decision

was taken to build MRCHIPS in Python for two reasons. First to

gain an insight into how to implement a cognitive architecture.

Secondly in addition to its suitability for teaching the properties of

Python make it an attractive choice for prototype application

development as would be required for this research. In addition

implementing the agent in the same language as would be used by

the learner would simplify its installation process. As MRCHIPS is

simply a Python application all the resources required for its

execution would be available once Python was installed. It was

 185

imagined that student volunteers would install MRCHIPS on their

own computers without supervision so the installation process was

made as simple as possible.

 Although the Microsoft agent character interface is integral to the

way MRCHIPS operates no experimentation was attempted on

changes to the interface. Work had been carried out to provide a

dialog text box to handle inputs to the agent. The Microsoft agent

engine only allows speech input and as the presence or quality of a

speech input engine was unknown for the computer on which

students might use MRCHIPS a dialog box was added.

Consideration was given to assessing the effect of the degree of

embodiment and animation on learning but this was not pursued

as research elsewhere had been carried out to investigate this

(Lusk & Atkinson 2007). It is also worth noting that Microsoft has

withdrawn support for MS-agents on operating system versions

after Windows XP; an open-source alternative application called

Double Agent from Cinnamon Software Inc. is free to download

from the Internet, it is designed to be fully compatible with MS-

agents and available for more recent versions of Windows but at

this time no evaluation has carried out to its use with MRCHIPS. A

significant effort had been made to supply MRCHIPS with a natural

language parser but no solution could be developed that supported

a large enough vocabulary, that could process statements rapidly

enough, and would remain stable enough to be used for the

experimentation. What had not been anticipated was how

important the text-to-speech feature was to engagement with the

agent, with learners commenting that they preferred to have the

agent speak to them as they read the text of the help message

from MRCHIPS.

 The amount of experimentation with the agent was only enough to

establish that MRCHIPS had a positive effect on the outcome for

learners in a task requiring coaching support. There were also

good indications of scaffolding, as some learners did not use

 186

MRCHIPS once they had recognised the reoccurrence of errors and

applied a remembered correction. Due to a change of employment

there was no opportunity to test whether MRCHIPS had an effect

on learner exploration. Ideally a larger evaluation would be

carried out taking place over several months, involving numbers of

students comparable to the cohort size and including a similar

sized randomly selected control group with access to similar

resources working to a similar lesson plan, but in the absence of

the agent. At the end of the trial students of both groups would

be tested on what they had learned. Given that both sets of

students had access to similar resources any difference in the

outcome of their results could be then attributed to the presence

of the agent. However, even under ideal experimental conditions

other factors would still be present that would influence or cause

to question the outcome. For instance as people partake in any

process their experience tends to grow. It would not be

unreasonable to expect learners to become more proficient

programmers with or without an agent assistant leading to the

conclusion that there is no significant measurable difference after a

sufficient period of time. Therefore, in order to demonstrate the

usefulness of MRCHIPS, it was necessary to show that novice

programmers’ were able to make more progress in practical

exercises as a result of the agent than they would without it.

However a larger evaluation of the agent is still required.

11.3 Research contributions

The principle contribution of this research is in demonstrating how an

agent system may be used to provide mentoring support to learners

working with conventional development tools and in a conventional

desktop environment. This approach allows learner practice to occur

within the same environment as used by experienced programmers, a

strategy that adheres to one of the major principles of the cognitive

apprenticeship pedagogy, that of using knowledge in a real world context

(or as close to as possible). It differs from other intelligent tutoring

systems that use specialized learning environments. Using an agent-

 187

based approach allows the expertise in the knowledge base to be brought

to where the learner has to work and avoids increasing the student’s

cognitive load of having to learn how to use the learning environment in

order to use the working environment. The second contribution is the

development of a novel agent architecture that is able to utilise different

reasoning capabilities to provide the mentoring support. This is achieved

by combining a BDI planner with a CBR reasoning engine in a unique

architecture to address the processing requirements to monitor the

environment, control a user interface via an interactive anthropomorphic

animated character and to make the knowledge base available to

diagnose errors within the learner’s program code.

11.4 Future work

There are a number of ways in which the MRCHIPS architecture may be

improved. The completion of the natural language parser for a question

answer system would allow MRCHIPS to be consulted to help solve logical

errors. The simplest method to add this to the architecture would be to

have questions to the agent form some intermediate data structure that

could be used as a problem to the CBR. The selected solution case would

then contain the response or activity required to provide an answer.

A more interesting challenge would be to redesign the journaling system

to provide autobiographic episodic memory for the agent. This would

involve implementing journaling memory as a consultable knowledge

structure and allow the agent to be able to recall events from interaction

with the learner and possibly provide a richer set of interactions with the

learner “This problem is similar to …” or “Do you remember the …”. The

use of autobiographical memory would be one way to provide the

commitment to a long-term memory system, required by cognitive agent

architecture, for MRCHIPS. Two methods would be available to allow the

agent to analyse and reflect on events. First, in the selection of BDI

plans the process may be refined by specifying the past events that need

to have occurred in conditions of plans. Secondly, sequences of episodic

memory could be used to index the CBR and the resultant case used to

specify what activity should then be performed by the agent.

 188

The only development environment currently supported by MRCHIPS is

the Tkinter based environment that is shipped with the Python

installation. However because it is based on the TCL/TK toolset it works

differently from applications developed using the Win32 environment

such as the development environment provided by the PyWin32 library.

The MRCHIPS agent could be extended to work with different

development environments such as the Win32 based IDE that are is

installed with PyWin32 or applications like Notepad++. The MRCHIPS

knowledge base could be extended to recognise which development

environment the learner was using and adjust its operation to cope with

the configuration of the tools.

The MRCHIPS architecture was designed to allow adaptation for the

mentoring of learners in other programming domains as diverse as Java,

CLIPS, Prolog or SQL. MRCHIPS was originally planned with a

programming domain for Visual Basic 6 but this was redesigned when

curriculum for the learners was changed to use Python. Support for Java

might provide a better illustration of the effectiveness of MRCHIPS as the

Java syntax makes fewer, if any concessions to learners but for some

may still be the first programming language that they will be taught. The

adaptation would require analysis of the errors in the language and the

development environment in question. Then changes would be required

to the monitor module, the BNF parser for the language and the case

base in order to provide support. The CLIPS and Prolog languages

provide alternate programming paradigms and related syntax differences

to those of conventional procedural languages as a challenge for the

agent to provide help.

 189

References

Aamodt, A. & Plaza, E. (1994) Case-Based Reasoning: Foundational

Issues, Methodological Variations and System Approaches. AI

Communications 7(1): 39-59.

Ancona, D., Demergasso, D. & Mascardi, V. (2005). A Survey on

Languages for Programming BDI-style Agents. [Online.] Available from:

http://www.cs.uu.nl/~mehdi/al3files/VivianaMascardi.ps [Accessed: 21st

January 2010].

Anderson, J.R. (1989) Practice, Working Memory and the ACT Theory of

Skill Acquisition: A Comment on Carlson, Sullivan and Schneider. Journal

of Experimental Psychology, Learning, Memory and Cognition 15: 527-

530.

Andre, E. (1999) Believable Agent Deixis. Proceedings of the Workshop

on Deixis, Demonstration and Deictic Belief. Eleventh European Summer

School in Logic, Language and Information ESSLLI XI. pp. 30-42.

Arbor, A. (1999) How to mentor graduate students: A guide faculty at a

diverse university. University of Michigan

Aylett, R.S., Louchart, S., Dias, J., Paiva, A. & Vala, M. (2005) Fear Not!

An Experiment in Emergent Narrative. In: Panayiotopoulos, T., Gratch, J.

Aylett, R. Ballin, D., Olivier, P. & Rist, T. (eds.) Intelligent Virtual Agents:

Proceedings of the 5th International Working Conference, IVA 2005, Kos,

Greece, September. Berlin: Springer. pp. 305-316.

Aylett, R.S., Vala, M., Sequeira, P. & Paiva, A. (2007) FearNot! – An

Emergent Narrative Approach to Virtual Dramas for Anti-bullying

Education. Proceedings of the International Conference on Virtual

Storytelling (ICVS), 5-7 December, St Malo, France. Berlin: Springer-

Verlag. pp. 199-202.

 190

Baillie De-Byl, P. (2004) Programming Believable Characters for

Computer Games. Higham, MA: Charles River Media.

Bajo, J. & Corchado, J.M. (2005) Evaluation and Monitoring of Air-Sea

Interaction Using a CBR-Agents Approach. In: Muñoz-Avila, H. & Ricci. F.

(Eds.) Case-based reasoning research and development: 6th

International Conference on Case-Based Reasoning, ICCBR 2005.

Chicago: Springer. pp 50-62

Booch, G. (1993) Object oriented analysis and design with applications.

2nd Ed. Boston: Addison Wesley.

Boyle, T. (2001) Constructivism in Computer Science Education. Paper

presented at Middlesex University, 2 July 2001.

Bratman, M. (1987) Intention, Plans and Practical Reason. Cambridge,

MA: Harvard University Press.

Brooks, R.A. (1991) Intelligence without Representation. Artificial

Intelligence 47: 139-159.

Brunning, S. & Couper, T. (2003) WinGuiAuto Source Code. [Online].

Available:

http://www.brunningonline.net/simon/blog/archives/winGuiAuto.py.html

[Accessed: 2005].

Case, D. (2000) Is Python a suitable tool for developing Artificial

Intelligence Applications? MSc thesis. Milton Keynes: The Open

University.

Cassell, J., Bickmore, T., Billinghurst, M., Campbell, L., Chang, K.,

Vilhjalmsson, H., & Yan, H. (1999) Embodiment in Conversational

Interface: Rea. The CHI is the Limit: Proceedings of the CHI ’99

 191

Conference on Human Factors in Computing Systems, 15-20 May,

Pittsburgh, PA. New York: ACM Press. pp. 520-527.

Chang, K.E., Sung, Y.T. & Chen, S.F. (2001) Learning through computer-

based concept mapping with scaffolding aid, Journal of Computer

Assisted Learning 17: 21-33.

Chee, Y.S. (1994) SMALLTALKER: A Cognitive Apprenticeship Multimedia

Environment for Learning Smalltalk Programming. Proceedings of the

ED-MEDIA 94 World conference on Educational Multimedia and

Hypermedia. Charolottesville, PA: Association for the Advancement of

Computing in Education. pp. 492-497.

Chee, Y.S. & Xu, S. (1997) SIPLeS: Supporting Intermediate Smalltalk

Programming through Goal-based Learning Scenarios. Proceedings of the

AI-ED 8th World Conference on Artificial Intelligence in Education, Kobe,

Japan. Amsterdam: IOS Press. pp. 95-102.

Chan Mow, I, Au, W. & Yates, GCR (2006). The impact of CABLE on

teaching computer programming. Fourteenth International Conference

on Computers in Education (ICCE). Beijing, China, November.

Charniak, E., Riesbeck, C. K., McDermott, D. V. & Meehan, J. R. (1987)

Artificial Intelligence Programming, 2nd Ed. Hillsdale, New Jersey:

Lawrence Erlbaum Association.

Chen, F. (2003) Agent-oriented Fault Detection, Isolation and Recovery

And Aspect-Oriented Plug and Play Tracking Mechanism. Masters

Dissertation. Texas A & M University.

Chi, R.T.H. & Kiang, M.Y. (1991) An Integrated Approach of Rule-Based

and Case-Based Reasoning for Decision Support. Association for

Computing Machinery 3(1): 255-267.

 192

Clancey, W.J. (1992) Representations of Knowing: In Defence of

Cognitive apprenticeship. Journal of Artificial Intelligence in Education

3(2): 139-168.

Collins, A., Brown, J.S. & Newman, S.E. (1989) Cognitive apprenticeship:

Teaching the craft of reading, writing and mathematics. In: Resnick, L.B.

(ed.) Knowing, learning and instruction: Essays in honor of Robert

Glaser. Hillsdale, NJ: Erlbaum. pp. 453-494.

Collins, A., Brown, J.S. & Holum, A. (1991) Cognitive apprenticeship:

Making Thinking Visible. American Educator (Winter).

The Collins Dictionary and Thesaurus (1989) William Collins Sons & Co

Ltd.

Conway, M.J. (1997) Alice: Easy-to-Learn 3D Scripting for Novices. PhD

Thesis. Charlottesville, VA: University of Virginia.

Coolidge, F.L. (2000). Statistics A Gentle Introduction. SAGE

Publications.

Corchado, J. M. & Pellicer, M. A. (2005) Development of CBR-BDI Agents.

International Journal of Computer Science & Applications 2(1): 25-32.

Davies, S.P. (1991) The Role of Notation and Knowledge Representation

in the Determination of Programming Strategy: A Framework for

Integrating Models of Programming Behaviour. Cognitive Science, 15:

547–572.

d'Inverno, M. & Luck, M. (1998) Engineering Agentspeak(L): A formal

computational model. Journal of Logic and Computation 8(3).

Driscoll, D. L., Appiah-Yeboah, A., Salib, P. & Rupert, D. J. (2007)

Merging Qualitative and Quantitative Data in Mixed Methods Research:

 193

How To and Why Not. Ecological and Environmental Anthropology. Vol. 3,

No. 1. pp. 19-28

Evers, M. & Nijholt, A. (2000) Jacob: An Animated Instruction Agent. In:

Advances on Multimodal Interfaces ICMI 2000. Berlin: Springer. pp.

526-533.

Ferguson, I.A. (1992) TouringMachines: An Architecture for Dynamic,

Rational, Mobile Agents. Ph.D. thesis, Computer Laboratory, University of

Cambridge, Cambridge UK.

Florian, R.V. (2003) Biologically inspired neural networks for the control

of embodied agents. Technical Report Coneural-03-03. Available from:

http://www.coneural.org/reports/Coneural-03-03.pdf.

Freund, J.E. & Simon, G.A. (1996) Modern Elementary Statistics. 9th Ed.

Prentice Hall

Ghefaili A. (2003) Cognitive Apprenticeship, Technology, and the

Contextualization of Learning Environments. Journal of Educational

Computing, Design and Online Learning 4 (Fall).

Gilmore, D.J. (1990) Expert Programming Knowledge: A Strategic

Approach. In: Hoc, J.M., Green, T.R.G., Samurcay, R. & Gilmore, D.J.

(eds.) Psychology of Programming (Computers and People). Academic

Press. pp. 223-234.

Glezou, K. & Grigoriadou, M. (2007) A novel didactical approach of the

decision structure for novice programmers. Proceedings of Eurologo 2007

Conference, Bratislava

Gobil, A.R.M., Shukor, Z. & Mohtarl, I.A. (2009) Novice Difficulties in

Selection Structure. 2009 International Conference on Electrical

Engineering and Informatics. Selangor, Malaysia: 351-356

http://www.coneural.org/reports/Coneural-03-03.pdf

 194

Gonzalez, A.J. & Dankel, D.D. (1993) The Engineering of Knowledge-

Based Systems: Theory and Practice. Englewood Cliffs, NJ: Prentice Hall.

Gray, W.D., Corbett, A.T., & VanLehn, K. (1988) Planning and

Implementation Errors in Algorithm Design. Eleventh Annual Conference

of the Cognitive Science Society. Montreal, Canada, pp. 594-600

Green, T.R.G. (1989) Cognitive dimensions of notations. In A. Sutcliffe

and L. Macaulay (Eds.) People and Computers V. Cambridge, UK:

Cambridge University Press, pp 443-460.

Gulz, A. (2004) Benefits of virtual characters in computer based learning

environments: claims and evidence. International Journal of Artificial

Intelligence in Education 14: 313-334.

Harel, I. & Papert, S. (1991) Constructivism. Norwood, NJ: Ablex

Publishing.

Hoc, J.M., Green, T.R.G., Samurcay, R. & Gilmore, D.J. (eds.) Psychology

of Programming (Computers and People). Academic Press.

Hopgood, A.A. (2001) Intelligent Systems for Engineers. 2nd Ed. Baco

Raton, FL: CRC Press.

Jackson, P. (1999) Introduction to Expert Systems. 3rd Ed. Reading, MA:

Addison-Wesley.

Järvinen, P. (2004) Research Questions Guiding Selection of an

Appropriate Research Method. Tampere: University of Tempere.

Johnson, W.L., Shaw, E. & Ganashan, R. (1999) Pedagogical Agents on

the Web. In: Etzioni, O., Müller, J.P. & Bradshaw, J.M. (eds.) Proceedings

of the Third Annual Conference on Autonomous Agents, Seattle, WA. New

York: ACM Press. pp. 283-290.

 195

Johnson W.B. (2007) On Being A Mentor: A Guide for Higher Education

Faculty. Lawrence Erlbaum Associates, inc.

Jadud, M.C. (2004) A first look at novice compilation behavior using

BlueJ. Sixteenth Workshop of the Psychology of Programming Interest

Group

Kieras, D. & Mayer, D.E. (1997) An overview of the EPIC architecture for

cognition and performance with application to human-computer

interaction. Human-Computer Interaction 12: 391-438.

Koedinger K.R. (2001) Cognitive Tutors as Modelling Tools and

Instructional Models. In: Forbus, K.D. & Feltovich, P.J. (eds.) Smart

Machines in Education. Cambridge, MA: MIT Press. pp. 145-167.

Kopp, K., Gesellensetter, L., Krämer, N.C. & Wachsmuth. I. (2005) A

Conversational Agent as Museum Guide – Design and Evaluation of a

Real-World Application. In: Panayiotopoulos, T., Gratch, J. Aylett, R.

Ballin, D., Olivier, P. & Rist, T. (eds.) Intelligent Virtual Agents:

Proceedings of the 5th International Working Conference, IVA 2005, Kos,

Greece, September. Berlin: Springer. pp. 329-343.

Krämer, N.C. (2005) Social Communicative Effects of a Virtual Program

Guide. In: Panayiotopoulos, T., Gratch, J. Aylett, R. Ballin, D., Olivier, P.

& Rist, T. (eds.) Intelligent Virtual Agents: Proceedings of the 5th

International Working Conference, IVA 2005, Kos, Greece, September.

Berlin: Springer. pp. 442-453.

Kummerfeld, S.K. & Kay, J (2006) The neglected battle fields of Syntax

Errors. Proceedings of the fifth Australasian conference on Computing

education. Darlinghurst, Australia, Australia: Australian Computer

Society, Inc., 2003, pp. 105–111

 196

Laffey, J., Tupper, T., Musser, D., & Wedman, J. (1998) A Computer-

Mediated Support System for Project-Based Learning. Education

Technology Research and Development 46(1): 73-86.

Lahtinen, E., Ala-Mutka, K., & Jarvinen, H.M. (2005) A Study of the

Difficulties of Novice Programmers. Innovation and Technology in

Computer Science Education ‘05: June 27-29.

Laird, J., Newell, A. Rosenbloom, P. (1987) SOAR: An architecture for

general intelligence. Artificial Intelligence 33(1 September): 1-64.

Landsberg, M. (1996) The Tao of Coaching. London, Harper Collins

Langley, P. (2006) Cognitive Architectures and General Intelligent

Systems. AI Magazine 27(2): 33-44.

Lee, J., Huber, M.J., Durfee, E.H. & Kenny, P.G. (1994) UMPRS: An

implementation of the procedural reasoning system for multirobotic

applications. In: Proceedings of the AIAA/NASA Conference on Intelligent

Robotics in Field, Factory, Service and Space. pp. 842-849.

Lesgold, A., Lajoie, S., Bunzo, M., & Eggan, G. (1992) SHERLOCK: A

coached practice environment for an electronics troubleshooting job.

Computer-assisted instruction and intelligent tutoring systems: Shared

goals and complementary approaches. Hillsdale. NJ: Erlbaum. pp. 201-

238.

Lester, J., Voerman, J., Towns, S. & Callaway, C. (1999) Deictic

Believability: Coodinating Gesture, Locomotion, and Speech in Lifelike

Pedagogical Agents. Applied Artificial Intelligence 13(4-5): 383-414.

Leutner, D. (2000) Double-fading support – a training approach to

complex software systems, Journal of Computer Assisted Learning 16:

347-357.

 197

Lui, K.M. & Chan, K.C.C. (2006) Pair programming productivity: novice-

novice vs expert-expert. International Journal of Human-Computer

Studies 64(9): 915-925.

Lusk, M.M. & Atkinson, R.K. (2007) Animated pedagogical agents: Does

their degree of embodiment impact learning from static and animated

worked examples? Applied Cognitive Psychology. 21: 1-18.

Lutz, M. (2001). Programming Python, 2nd Ed. Sebastopol, CA: O'Reilly.

March, S.T. & Smith, G.F. (1995) Designs and Natural science Research

on Information Technology. Decision Support Systems 15(4): 251-266.

Masden, B. (2011). Statistics for Non-Statisticians. 1st Ed. Berlin:

Springer.

Mateas, M. (1997) An Oz-Centric Review of Interactive Drama and

Believable Agents. Working Paper CMU-CS-97-156. Pittsburgh, PA:

Carnegie Mellon University.

Mayer, R.E. (1981) The Psychology of How Novices Learn Computer

Programming. Association of Computing Machinery, Computing Surveys

13(1): 121-141.

McBreen, H., Anderson, J. & Jack, M. (2001) Evaluating 3D Embodied

Conversational Agents in Contrasting VRML Retail Applications. In:

Proceedings of the International Conference on Autonomous Agents,

Workshop on Multimodal Communication and Context in Embodied

Agents, Montreal, Canada. pp. 83-87.

McIver, L. & Conway, D. (1996) Seven Deadly Sins of Introductory

Programming Language Design. Proceedings, Software Engineering:

Education & Practice 1993 (SE:E&P’96),309-316.

 198

Millington, I. (2006) Artificial Intelligence for Games. San Fransisco:

Morgan Kaufmann.

Morley, D. & Myers, K. (2004) The SPARK Agent Framework. Proceedings

of the Third International Joint Conference on Autonomous Agents and

Multiagent Systems Volume 2. 19-23 July. New York: ACM Press. pp.

714-721.

Moskal, B., Lurie, D., & Cooper, S. (2004) Evaluating the Effectiveness of

a New Instructional Approach. Proceeding of SIGCS04, Norfolk, Virginia.

New York: ACM. pp. 75-79.

Müller, J.P. (1991) The Design of Intelligent Agents: A Layered Approach.

Berlin: Springer-Verlag.

Nilsson, N. (1994) Teleo-Reactive Programs for Agent Control. Journal of

Artificial Intelligence Research 1:139-158

Nuxoll, A. & Laird, J.E. (2004). A Cognitive Model of Episodic Memory

Integrated with a General Cognitive Architecture. Proceedings of the

International Conference On Cognitive Modelling (ICCM2004), 30 July –1

August, Pittsburgh, Pennsylvania, USA. pp. 220-225. [Online] Available

from:http://www.informatik.unitrier.de/~ley/db/conf/iccm/iccm2004.htm

l. [Accessed 21st January 2010].

Padgham, L. & Winikoff, M. (2004) Developing Intelligent Agent

Systems: A Practical Guide. Chichester, West Sussex: John Wiley & Sons

Ltd.

Pane, J.F. & Myers, B.A. (1996) Usability Issues in the Design of Novice

Programming Systems. Human-Computer Interaction. Institute Technical

Report CMU-HCII-96-101.

Pea, R.D. (1986) Language-Independent Conceptual “Bugs” in Novice

Programming. Journal of Educational Computing Research 2(1): 25-36.

 199

Pennington, N. & Grabowski, B. (1990) The Tasks of Programming. Hoc,

J.M., Green, T.R.G., Samurcay, R. & Gilmore, D.J. (eds.) Psychology of

Programming (Computers and People). Academic Press.

Perkins, D.N. & Martin, F. (1986) Fragile Knowledge and Neglected

Strategies in Novice Programmers. In: Soloway, E. & Iyengar, S. (eds.)

Empirical Studies of Programmers. Norwood, NJ: Ablex Publishing. pp.

213-229.

Rao, A.S. & Georgeff, M. P. (1995) BDI Agents: From Theory to Practice.

In: Lesser, V. and Gasser, L. (eds.) Proceedings of the first international

conference on multi-agent systems (icmas-95), 12-14 June, San

Fransisco, CA, USA. Cambridge, MA: MIT Press, pp. 312-319.

Rickel J. & Johnson, W.L. (1998) STEVE: A pedagogical agent for virtual

reality. In: Sycara, K.P. & Woolridge, M. (eds.) Proceedings of the 2nd

International Conference on Autonomous Agents, Minneapolis, 10-13

May. New York: ACM Press. pp. 332-333.

Rickel, J. Johnson, W.L. (1999) Animated Agents for Procedural Training

in Virtual Reality: Perceptions, Cognition and Motor Control. Applied

Artificial Intelligence 13(4): 343-382.

Rickenberg, R. & Reeves, B. (2000) The effect of animated characters on

anxiety, task performance and evaluations of user interfaces.

Proceedings of CHI 2000 Conference on Human Factors in Computing

Systems, New York. pp. 49-56.

Riesbeck, C.K. & Schank, R.C. (1989) Inside Case-Based Reasoning.

Mahwah, NJ: Lawrence Erlbaum.

Rogalsk, J. & Samurcay, R. (1990) Acquisition of Programming

Knowledge and Skills. In: Hoc, J.M., Green, T.R.G., Samurcay, R. &

 200

Gilmore, D.J. (eds.) Psychology of Programming (Computers and People).

Academic Press.

Russell, S. & Norvig, P. (1995) Artificial Intelligence: A Modern Approach.

London: Prentice Hall.

Schalkoff, R.J. (2011) Intelligent Systems: Principles, Paradigms, and

Pragmatics. Jones and Bartlett Publishers.

Shaw, E., Johnson, W.L., & Ganeshan, R. (1999) Pedagogical agents on

the Web. In: Etzioni, O., Müller, J.P. & Bradshaw, J.M. (eds.) Proceedings

of the Third Annual Conference on Autonomous Agents, Seattle, WA. New

York: ACM Press. pp. 283-290.

Sproull, L., Subramani, M., Kiesler, S., Walker, J.H., Waters, K. When the

interface is a face. Human-Computer Interaction 11(2 June): 97-124.

Stanley, K.O., Bryant, B.D. & Miikkulainen, R. (2005) Evolving Neural

Network Agents in the NERO Video Game. In: Proceedings of the IEEE

2005 Symposium on Computational Intelligence and Games (CIG’05).

Piscataway, NJ: IEEE. pp. 298-303.

Stewart, T.C. & West, R.L. (2006) Deconstructing ACT-R. In: Proceedings

of the Seventh International Conference on Cognitive Modelling. Trieste,

Italy. pp. 298-303.

Stewart, T.C & West, R.L. (2007) Cognitive Redeployment in ACT-R:

Salience, Vision and Memory. In: Proceedings of the ICCM Eighth

International Conference on Cognitive Modelling. Oxford: Taylor and

Francis. pp. 313-318.

Sun, R., Merrill, E. & Peterson, T. (2001) From implicit skills to explicit

knowledge: a bottom up model of skill learning. Cognitive Science 25(2):

203-244.

 201

Tanimoto, S. (1990) The Elements of Artificial Intelligence Using

Common LISP. 2nd. Ed. New York: Computer Science Press.

Tholander J. & Karlgren K. (2002) Support for Cognitive Apprenticeship in

Object-Oriented Model Construction. Computer-Supported Collaborative

Learning, Boulder, Colorado.

Thompson, S.M. (2006) An Exploratory Study of Novice Programming

Experiences and Errors. Masters Thesis University of Victoria

Traynor, D. & Gibson, J. P. (2004) Towards the development of a

cognitive model of programming; A software engineering proposal.

Sixteenth Workshop of the Psychology of Programming Interest Group

Tulving, E. (2002) Episodic Memory: From Mind to Brain. Annual Review

of Psychology 53: 1-25.

Ueno, H. (1998) A Generalized Knowledge-Based Approach to

Comprehend Pascal and C Programs. Frontiers in AI and Applications,

Vol.48, Ios Press

Veloso, M.M. (1994) Prodigy/Analogy: Analogical reasoning in general

problem solving. In: Wess, S., Althoff, K.D. & Richter, M. (eds.) Topics in

Case Based Reasoning. Berlin: Springer-Verlag. pp. 33-50.

Veloso, M.M, & Rizzo, P. (1998) Mapping planning actions and partially-

ordered plans into execution knowledge. In: Workshop on Integrating

Planning, Scheduling and Execution in Dynamic and Uncertain

Environments, R. Bergmann and A. Kott, (eds.) AAAI Press, Menlo Park,

CA, pp. 94-97.

Vere, S. & Bickmore, T. (1990) A Basic Agent. Computational Intelligence

6(1): 41-60.

 202

Vilhjalmsson, H. & Cassell, J. (1998) BodyChat: Autonomous

Communicative Behaviours in Avatars. In: Sycara, K.P. & Woolridge, M.

(eds.) Proceedings of the Second International Conference on

Autonomous Agents, 10-13 May, Minneapolis. New York: ACM Press. pp.

269-276.

Wang F.K., Bonk C.J. (2001). A Design Framework For Electronic

Cognitive Apprenticeship. Journal of Asynchronous Learning Networks

(JALN) 5 (2 September). pp 131-151

Wiemer-Hastings, P., Graesser, A.C., Harter, D., & the Tutoring Research

Group (1998) The foundations and architecture of AutoTutor.

Proceedings of the 4th International Conference on Intelligent Tutoring

Systems. San Antonio, TX. Berlin: Springer-Verlag. pp. 334-343.

Williams, C. (2007) Research Methods. Journal of Business & Economic

Research. Volume 5, Number 3.

Winikoff, M. (2006) An AgentSpeak Meta-Interpreter and its Applications.

Berlin: Springer.

Wolz, U. (1988) Automated Consulting for Extending User Expertise in

Interactive Environments: A Task Centred Approach. Columbia Univ.

Department of Computer Science, Tech. Rep. CUCS-393-88.

Wolz, U. & Kaiser, G.E. (1988) A Discourse-Based Consultant for

Interactive Environments. 4th IEEE Conf. On Artificial Intelligence

Applications, pp. 28-33.

Wooldridge, M. (2002) An Introduction to MultiAgent Systems.

Chichester, West Sussex: John Wiley & Sons Ltd.

Wooldridge, M. & Jennings, N.R. (1995) Intelligent Agents: Theory and

Practice. The Knowledge Engineering Review 10(2): 115-152.

 203

Woolf, B.P., Beck, J., Eliot, C., Stern, M. (2001) Growth and Maturity of

Intelligent Tutoring Systems: A Status Report. In: Forbus, K.D. &

Feltovich, P.J. (eds.) Smart Machines in Education. Cambridge, MA: MIT

Press. pp. 99-144.

Woolley, N.N., Jarvis, Y. (2007) Situated Cognition and Cognitive

Apprenticeship: A model for teaching and learning clinical skills in a

technologically rich and authentic learning environment. Nurse Education

Today, 27: 73-79.

Xu, S. & Chee, Y. S. (1998) Transformation-based Diagnosis of Student

Programming Errors. Sixth International Conference on Computers in

Education. Beijing, China

 204

Bibliography

Andre, E., Muller, J. & Rist, T. (1996) The PPP Persona: A Multipurpose

Animated Presentation Agent. Proceedings of the Advanced Visual

Interfaces. New York: ACM Press. pp. 245-247.

Bratko, I. (1986) Prolog Programming for Artificial Intelligence.

Wokingham: Addison-Wesley Publishing.

Case, D. (2005) A Synthetic Agent For Mentoring Novice Programmers

Within A Desktop Computer Environment. In: Panayiotopoulos, T.,

Gratch, J. Aylett, R. Ballin, D., Olivier, P. & Rist, T. (eds.) Intelligent

Virtual Agents: Proceedings of the 5th International Working Conference,

IVA 2005, Kos, Greece, September. Berlin: Springer. p. 502.

Chen, F. (2003) Agent Oriented Fault Detection, Isolation and Recovery

and Aspect-Oriented Plug-and-Play Tracking Mechanism. Thesis. Texas

A&M University.

Christiaen, H. (1988) Novice Programming Errors: Misconceptions or

Mispresentations? SIGCSE BULLETIN 20(3): 5-7.

Coelho, H. & Cotta, J.C. (1998) Prolog by Example. Berlin: Springer.

Cooper, S., Dann, W. and Pausch, R. (2003) Using animated 3D graphics

to prepare novices for CS1. Computer Science Education 13(1): 3-30.

Cooper, S., Moskal, B. and Lurie, D. (2004) Evaluating the Effectiveness

of a New Instructional Approach. In: Joyce, D., Knox, D., Dann, W. &

Naps, T.L. Proceedings of the 35th SIGCSE Technical Symposium on

computer Science Education, 3-7 March, Norfolk, VA, 3-7. New York:

ACM Press. pp.75-79.

 205

Corchado, J. M. & Pellicer, M. A. (2005) Development of CBR-BDI Agents.

International Journal of Computer Science & Applications 2(1): 25-32.

Covington, M.A., Nute, D. & Vellino, A. (1996) Prolog Programming in

Depth. Englewood Cliffs, NJ: Prentice Hall.

Dean, T., Allen, J. & Aldimonds, Y. (1995) Artificial Intelligence: Theory

and Practice. Menlo Park, CA: Addison-Wesley Publishing.

d'Inverno, M., Kinny, D., Luck M. & Wooldridge, M. (1998). A Formal

Specification of dMARS. In: Singh, Rao and Woolridge (eds.), Intelligent

Agents IV in Proceedings of the Fourth International Workshop on Agent

Theories, Architectures and Languages. Lecture Notes in Artificial

Intelligence, 1365, Berlin: Springer-Verlag.

Flake, S. & Geiger, C. (2000) Agents with Complex Plans: Design and

Implementation of CASA. From Agent Theory to Agent Implementation

II, Proceedings of the 15th European Meeting on Cybernetics and

Systems Research, Vienna, Austria, April. [Online.] Available from:

http://citeseer.ist.psu.edu/flake00agents.html. [Accessed 21 January

2010].

Flake, S. & Geiger, C. (2000) Structured Design of a Specification

Language for Intelligent Agents. In: Tiagarajan, P.S. & Yap, R. (eds.)

Proceedings of the Fifth Asian Computing Science Conference on

Advances in Computer Science. 10-12 December, Phuket, Thailand.

Berlin: Springer. pp. 373-374.

Flenov, M. (2005) Hackish C++ Pranks & Tricks. A-LIST LLC

Gutschmidt, T. (2004) Game Programming with Python, Lua, and Ruby.

Boston, MA: Premier Press.

Hagner, N. & Tunevi, A. (2000) Implementing Case-Based reasoning in

SICSus Prolog. SICS technical report, T91: 16.

 206

Jarvela, S. (1995) The Cognitive Apprenticeship Model in a

Technologically Rich Learning Environment: Interpreting the Learning

Interaction. Learning and Interaction 5: 237-259.

Kaiser, G. E, (1990) AI Techniques in Software Engineering. In: Adeli, H.

(ed.) Knowledge Engineering: Vol.II Applications, McGraw-Hill, Inc.

Karlgren, K., Tholander, J., Dahlqvist, P., & Ramberg, R., (1998)

Authenticity in Training Systems for Conceptual Modelers. In: Brookman,

A.S., Guzdial, M., Kolodner, J.L. & Ram, A. (eds.) Proceedings of the

International Conference on the Learning Sciences (ICLS-98), Atlanta,

Georgia, 16-19 December.

Kolodner, J.L. (1983) Indexing and Retrieval Strategies for Natural

Language Fact Retrieval. Transactions on Database Systems 8(2): 434-

464.

Kolodner, J.L. (2000) Case-Based Reasoning. San Francisco, CA: Morgan

Kaufmann.

Kumar, S. & Cohen, P.R. (2004) STAPLE: An Agent Programming

Language Based on the Joint Intention Theory. Proceeding of AAMAS04,

New York City. New York: ACM. pp. 1390-1391.

Liu, T.C. (2005) Web-based Cognitive Apprenticeship Model for

Improving Pre-service Teachers’ Performances and Attitudes towards

Instructional Planning: Design and Field Experiment. Educational

Technology & Society 8(2): 136-149.

Luck, M. & d’Inverno, M. (2003) Unifying Agent Systems. Annals of

Mathematics and Artificial Intelligence, Special Issue on Computational

Logic in Multi-Agent Systems 37(1-2): 131-167.

 207

Lutz, M. & Ascher, D. (2003) Learning Python, 2nd Ed. Sebastopol, CA:

O'Reilly.

Lutz, M. (2004). When Pythons Attack: Common Mistakes of Python

Programmers. [Online]. Available from:

http://onlamp.com/pub/a/python/2004/02/05/learn_python.html

[Accessed 21 January 2010].

Mizoguchi, F. (ed.) (1991) Prolog and its Applications. Cook, N. (trans.)

London: Chapman and Hall.

McIver, L. (2000). The Effect of Programming Language on Error Rates

of Novice Programmers. In: Blackwell, A.F. & Bilotta, E. (eds.)

Proceedings of the Twelfth Annual Meeting of the Psychology of

Programming Interest Group, Corigliano Calabro, Italy, April. pp. 181-

192.

Mount, S., Shuttleworth, J. & Winder, R. (2008) Python for Rookies: A

First Course in Programming. Thomson Learning (EMEA) Ltd.

Mueller, E.T. (1990) Daydreaming in Humans and Machines: A Computer

Model of the Stream of Thought. Norwood, NJ: Ablex Publishing.

Norvig, P. (1992) Paradigms of Artificial Intelligence Programming: Case

Studies in Common Lisp. Morgan Kaufmann Publishers, Inc.

Olivia, C., Chang, C.F., Enguix, C.F. & Ghose, A.K. (1999) Case-Based

BDI Agents: An Effective Approach For Intelligent Search on the World

Wide Web. Proceedings of AAAI Spring Symposium on Internet Agents.

pp. 1-8.

Pal, S.K. & Shiu, S.C.K. (2004) Foundations of Soft Case-Based

Reasoning. Hoboken, NJ: John Wiley & Sons.

 208

Rao, A.S. & Georgeff, M. P. (1991) Modelling Rational Agents within a

BDI-Architecture. Online available from: http://eva.cic.ipn.mx/~sher/SID

/BDI.pdf. [Accessed: 21/01/10].

Schank, R. C., Kass, A. & Riesbeck, C. K. (1994) Inside Case-Based

Explanation. Hove, East Sussex: Psychology Press.

Schank, R. C. & Riesbeck, C. K. (1981) Inside Computer Understanding:

Five Programs Plus Miniatures. Hove, East Sussex: Psychology Press.

Schank, R.C. & Reisbeck, C.K. (1982) Inside Computer Understanding.

Hillside, NJ: Lawrence Erlbaum Associates.

Shabo, A., M. Guzdial, and J. Stasko. (1996) Computer Science

Apprenticeship: Creating Support for Intermediate Computer Science

Students. In: Edelson, D.C. & Domeshek, E. A. (eds.) Proceedings of the

International Conference of the Learning Sciences. Evanston, IL, 25-27

July. International Society of the Learning Sciences. pp. 308-315.

Sterling, L. (1994) The Art of PROLOG: Advanced Programming

Techniques (Logic Programming). Cambridge, MA: MIT Press.

Stobo, J. (1989) Problem Solving with Prolog. London: Pitman Publishing.

Tholander J. (2001) Students interacting through a Cognitive

Apprenticeship Learning Environment. European Conference on

Computer-Supported Collaborative Learning, Maastricht, The

Netherlands.

Tholander, J., Karlgren, K., Rutz, F., & Ramberg, R. (1999) Design and

Evaluation of an Apprenticeship Setting for Learning Object-Oriented

Modeling. Paper presented at the ICCE99, Chiba, Japan. November.

[Online] Available from: http://people.dsv.su.se/~klas/Publications/

Design_and_Evaluation_of_an_Apprenticeship_submi.pdf [Accessed 21

January 2010].

 209

Turner, R.M. (1994) Adaptive Reasoning for Real World Problems: A

Schema-Based Approach. Hillsdale, NJ: Lawrence Erlbaum Associates.

Van Le, T. (1993) Techniques of PROLOG Programming: with

Implementation of Logical Negation and Quantified Goals. Hoboken, NJ:

John Wiley & Sons.

Winograd, T. (1972) Understanding Natural Language. Academic Press

Inc.

Appendix A:

Brief Overview of Python

A.1 The Python language:

The Python language is the main development tool used to teach

programming to the students in the “Foundations of programming”

module for the Information Sciences course at the University of

Northampton. For a more complete explanation of Python books such as

“Programming Python” (Lutz 2001), “Learning Python” (Lutz & Ascher

1999), “Python for rookies” (Mount, Shuttleworth & Winder 2008), and

“Game Programming with Python, Lua, and Ruby” (Gutschmidt 2004) are

recommended.

Python is a general purpose programming language, it is interpreted

therefore supports interactive development, although some features of

its syntax are unusual among programming languages it is simple and

promotes uncluttered code, it supports a range of high-level abstract

data types that are easy to manipulate and has a large range of third

party development tools and libraries of code for different applications.

The language was first developed, in the 1980s, at the National Research

Python

Icon Perl Modula

l

ABC

Snobol C AWK Pascal Basic SED

Figure A.1. The Python language family tree

Institute for Mathematics and Computer Science in the Netherlands by

Guido van Rossum. A number of features from older programming

language influenced the design of Python as illustrated in Figure 3.1.

Python was originally designed as a configuration language for the

Amoeba distributed operating system but the design proved to be

general enough to allow for application in other domains. Guido has

stated that Python was named after a favourite television series, “Monty

Pythons Flying Circus” and that the language is greatly influenced by his

experience from the development of an earlier programming language

designed for teaching called ABC (Lutz 2001).

A.1.1.1.1 Data types:

Python programs support a number of built-in data types such as

numbers, strings, lists and dictionaries. Numbers are, quiet

conventionally, used for arithmetic and are available as integers and

floating point values. Strings are immutable collections characters that

can be broken apart and joined together in various ways. In many other

programming language strings are mutable (characters may be altered in

place) however Python has a large and easy to use set of operators to

split and join strings that this limitation is seldom an issue for the

programmer. Lists are collections of items of any data type such as

numbers, strings or even other lists to model different types of data

requirements; the members of a list may also be of mixed types and

adding or removing members allows the dynamic alteration of the length

of lists.

name = [“Michael”, ”Palin”]

nest = [[“a”, ”list”, ”of”], [”lists”, ”containing”], [”some”, ”strings”]]

The values within list may be accessed for either retrieval or assignment

using the name of the list and a numerical index value e.g.

print “the first item is”, nest[0]

name[0] = “Jackson”

Items on a list are considered ordered and may be indexed by an integer

indicating their position, dictionaries are unordered collections of data

items but their position may be indexed by additional data types most

often strings, providing an association table of values. Dictionaries are

associative memory structures that also hold multiple items of data but

this time values are indexed via other data types such as strings e.g.

team ={ “idle” : ”eric”, ”cleese” : ”john”,

 “chapman” : ”graham”, ”palin” : ”micheal” }

Each item in the dictionary forms a key-value pair. To access a value the

name of the dictionary and with the key name must be specified e.g.

print “the first name is”, team[“chapman”]

name[“palin”] = “sarah”

Indexing data items by strings allows for the modelling of data at a

higher level of abstraction than the use of simple arrays, for instance

representing a database of geographic information attributes such as

capitol city, population, etc may be catalogued by the attribute name,

even thought it would be possible to duplicate the data handling features

of dictionaries by the use of arrays.

A.1.1.1.2 Syntax:

The language was designed to fulfil a number of considerations in mind

for the code writer among them, to be easy to learn, easy to use and to

support rapid prototyping and turnaround. For these reasons it has a

relatively simple syntax and with a small set of keywords built into the

language. Python is a weakly typed language in that variables do not

hold type information but are merely references to data structures.

Variables do not require declaration but are created at instantiation. The

simplest statement in Python is assignment that loads a value to a

variable e.g.

answer = 42

eric = 0.5

parrot = “dead”

several values may be loaded at once in a statement e.g.

first, second, third = 1, 2, 3

Values may be retrieved from variables by using the variable name e.g.

series = second * third

print “Life the universe and everything”, answer

Python supports a conventional set of arithmetic and logic operators.

Expressions containing only integer values produce an integer result; if a

floating-point value is present integers are automatically promoted.

Python does not support any syntax words to indicate the beginning and

end of blocks such as the begin/end in Pascal or braces in C++ and Java,

instead Python uses indentation to indicate this e.g.

if x > 5:

 print “x is greater than five”

for index in [1,2,3,4,5]:

 print “currently in loop number”, index

The plus operator can be used on strings to concatenate them together,

in fact a space between strings performs the same operation but the plus

operator is required to concatenate lists, so its use on strings produces

more consistent code.

Functions in Python are also blocks of indented code with a name and the

option of parameters to hold values passed into the function e.g.

def square(x):

 return x*x

Functions are called by use of their name followed by parenthesis, which

may contain values to be passed to the function or remain empty when

no value is to be passed. Functions are first class data items meaning

function values may be assigned to variables or passed parameters by

use of the function name without the parentheses. All functions return a

value, even if they do not contain an explicit return value in which case a

None object is returned, the Python value for no data.

A.1.1.1.3 Object orientation

Python is an object-oriented language, the built-in data types are

implemented as objects and the syntax supports a set of object-oriented

programming features to extent the language. However the use of the

object-oriented features is entirely optional, it is possible and not unusual

to produce substantial programs using only procedural code. For small

or experimental programs or those who lack the experience programs

can be develop using purely procedural code or object-based applications

using object-oriented libraries. As designs grow to require a more

structured solution object-oriented programming techniques are available

where the programmer can define their own classes and objects. Python

objects are created from class prototypes that are used to define the

data and methods of the object.

class Person:

 def __init__(self, name):

 self.name = name

 def say_hi(self):

 print 'Hello,’, self.name, ‘how are you?'

In order to use a class an object needs to be created and initialised from

the class, calling the class by its name performs the instantiation running

any code in the __init__ (initialisation) method.

p = Person (“Brian”)

As with other object-oriented languages the variable, called p, becomes a

reference to an object of the type Person. To send a message to the

object it’s method may be invoked using a dot notation.

p.say_hi()

This will cause the code in say_hi to be run, printing the hello message to

be printed out. Objects are implemented internally as dictionaries, and

message passing may also be performed by conventional dictionary

access. Even if the novice programmer does no object-oriented

programming they are likely to encounter classes and objects when they

access system resources such as file handling objects and graphical

libraries like the Tk library called TKinter.

Python is also equipped with a large set of libraries from the developer

and third-parties. The most prominent library is the TKinter. TKinter is a

cross-platform tool that allows developers to write portable windowed

applications that make use of the desktop environment available on

operating systems. TKinter is distributed as an integral part of

distribution not least because the Python native development

environment called IDLE is written in Python using TKinter. The IDLE

development environment provides an integrated set of tools that are

useful for the production of code such as editor with colour syntax

highlighting, a virtual console for interactive code execution and a

debugging environment. In addition the source code for TKinter, IDLE

and a number of other libraries are all provided in the Python

distribution.

It is the availability of the language features like the brevity of the

notation, high-level data-types, scalability of the language and large

library third party code that makes Python a popular programming

language. Additional features such as the interactive development

environment, optional object-orientation, etc that makes Python a

popular choice as a learning tool for an inexperienced programmer. It is

these reasons and also for its availability on machines that the students

learn to write code on why Python as also been used to implementation

large parts of the agent solution.

Appendix B:

The MRCHIPS User Guide

User guide

A Brief introduction to MRCHIPS

Installation:
 To run MRCHIPS you need to have the following programs installed:

 Python 2.4 or Greater

 PyWin32

 If you are using Python 2.4 you will also need to install ctypes library.

 MRCHIPS also requires MS-agents for its user interface.

 If you are using MRCHIPS on Windows 7 you will have download and

install MS-agents from the Microsoft web site.
 To install MRCHIPS copy the files onto your computer.

Figure 1. The MRCHIPS agent offering advice to the programmer

Running the MRCHIPS:
 To start MRCHIPS locate the main.pyw file and double click

 The MRCHIPS agent will appear, announce its presence and then hide
the Windows toolbar.

 MRCHIPS will monitor the desktop from the toolbar but can be
launched manually

Figure 2. The MRCHIPS toolbar control

Figure 3. The MRCHIPS toolbar control menu

 When MRCHIPS is on the desktop an accompanying dialog box is

often present, which can be used to responses to questions from
MRCHIPS.

Figure 4. The MRCHIPS input dialog box

 “yes” or “no” answers may be entered into the user text field, or the
by pressing the buttons in response to questions

 MRCHIPS can be made to hide by typing “hide” or “bye” into the user
text field

 To shut down MRCHIPS the exit option may be chosen from the menu
in the toolbar icon or by typing an “exit” command into the user text
field

Appendix C:

The Evaluation Brief

MRCHIPS The Python Programmers Assistant

Roman-Arabic numerals converter

Introduction

This is the preparation for the testing of a Python desktop assistant to help

programmers as they find their way around a programming language for the
first time. Please read through the following information carefully, so that

you come to the test, with everything you need to know to do your best.
This exercise is run in the format of a Time-Constrained Assignment (TCA)
but all results are for the purpose of testing the agent and any results

gathered will be made anonymous for use.

Background

The Roman-Arabic numerals converter is a small educational application

designed to make demonstrate number theory in a fun and easy way.
Based on an idea from an application originally developed in a different

language a number of errors were introduced when implementing the
Python version of the code.

To aid you in correcting the program you have the assistance of MRCHIPS a

desktop agent that is able to provide mentoring support as you work your
way through the problems. MRCHIPS will sits out of site for most of the
time as you work your way through your program but if you should

encounter any errors that you are unable to solve by yourself will appear to
offer assistance. Please note: this is an early test of the MRCHIPS agent so

it may not always precise with its help.

You are required to:
1) Run, test and debug the program until it works as designed.

2) Indicate on the hard copy of the program were you have fixed bugs
or altered the program.

3) Add additional comments to the program (to help illustrate your
understanding).

Deliverables:

1. A soft copy of your corrected program code worked on.
2. The log file from MRCHIPS, called journal.txt
3. A completed copy of the questionnaire.

Guidance:

1. Use the information presented to you by the Python environment, line
numbers, highlighted areas etc.

2. Use the example program to ensure you understand how the program

should behave. Any differences (behaviour, colour, position, etc)
should be treated as bugs to be fixed.

3. Deal with one error at a time, one code change at a time run and test
your program frequently.

4. There are about a dozen errors that need to be corrected.

Appendix D:

The Evaluation Test Source Code

from Tkinter import *

##-----------------------------------
Arabic/Roman numerals
converter in python
by D.Case 20/04/08
##-----------------------------------

def initialise(root):
 root.title('Converter')
 mainform(root)

def process(root):
 root.mainloop()

def terminate():
 pass

def mainform(root)
 global result, inp
 b_frame = Frame(root)
 b_frame.pack(side=BOTTOM)
 Label(root,text="Enter Number >>>", anchor=W).pack(side=TOP,fill=BOTH)
 inp = Entry(root)
 inp.pack(fill=BOTH)
 m_frame = Frame(root)
 m_frame.pack(fill=BOTH)
 Label(m_frame,text="Result >>", anchor=W).pack(side=LEFT)
 result = Label(m_frame,text="")
 result.pack(padx='1m')
 Button(b_frame, text='Reset', command=reset).pack(side=LEFT)
 Button(b_frame, text='Rome->Arab', command=rome2arab).pack(side=LEFT)
 Button(b_frame, text='Arab->Rome', command=arab2rome).pack(side=LEFT)
 Button(b_frame, text='Exit', command=root.quit).pack(side=RIGHT)

def arab 2rome():
 val = inp.get()
 try:
 num = int(val)
 except ValueError:
 num = val
 result['text'] = int_to_roman(num)

def rome2arab():
 val = inp.get()
 result['text'] = roman_to_int(val)

def int_to_roman(arabic):
 """ Convert an integer to a Roman numeral. """
 If not isinstance(arabic, type(0)):
 return "expected integer, got %s" % type(arabic)
 if not 0 < Arabic < 4000:
 return "Argument must be between 1 and 3999"
 ints = (1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1)
 nums = ('M', 'CM', 'D', 'CD','C', 'XC','L','XL','X','IX','V','IV','I')
 result = []
 for i in range(len(ints)):
 count = int(arabic / ints[i])
 result.append(nums[i] * count)
 arabic -= ints[i] * count
 return ''.join(result)

def roman _to_int(roman):
 """ Convert a Roman numeral to an integer. """
 if not isinstance(roman, type("")):
 return "expected string, got %s" % type(roman)
 roman = roman.upper # upper case letters for conversion
 nums = {'M':1000, 'D':500, 'C':100, 'L':50, 'X':10, 'V':5, 'I':1}
 total = 0
 for i in range(len(roman)):
 try:
 value = nums[roman[i]]
 # If the next place holds a larger number, this value is negative
 if i+1 < len(roman) and nums[roman[i+1]] > value:
 total -= value
 else:
 total += Value
 except KeyError:
 return 'roman is not a valid Roman numeral: %s' % roman
 # easiest test for validity...
 if int_to_roman(total) = roman:
 return total
 else:
 return 'roman is not a valid Roman numeral: %s' % roman

def reset(root)
 result['text'] = ""
 inp.delete(0, len(inp.get()))

def main():
 root = Tk()
 initialise(root)
 process(roo)
 terminate()

main()

Appendix E:

The MRCHIPS Evaluation Questionnaire
Please answer the following questions as clearly as possible:

1. What gender are you? Female Male

2. What is your age group?

 < 18 18-25 26-35 36-45 46-55 56-65 >=66

3. Length of prior programming experience?

 None < 1 Year 1-2 Years 2-3 Years > 3 Years

4. Type of programming experience?

 None

 Hobby/self taught

 Part of a course

 Other, please specify

5. Have you ever written a program other than for your studies?

 No

 Yes, please specify

6. Did MRCHIPS appear during your programming session? Yes No

7. How many times did MRCHIPS offer help you to solve?

 0 1-2 3-4 5-6 7-8 > 9

8. Did you find the help offered accurate?

 0 1%-25% 25%-50% 50%75% 75%-100%

9. How responsive was MRCHIPS when you found an error?

 too slow about right too quick

10. Did you find MRCHIPS more of a help or hindrance to your working?

 Help

 Hindrance

11. Did you have to ask the tutor for additional help during the session?

 No

 Yes, please specify

12. During the session did consult any other sources of programming sources of help?

 No

 Yes, please specify

A Pedagogical Agent

An Animated Pedagogical Agent For Assisting Novice Programmers

Within A Desktop Computer Environment

Desmond Case, Bernadette Sharp, Len Noriega - University of Staffordshire

Abstract

This research proposes that an intelligent animated agent is able to

provide learning support, in the form of mentoring, to novice programmers

within the Cognitive Apprenticeship pedagogy. This small paper outlines

the nature of learning to program, how an intelligent agent may be used to

support the learner and the design of a new architecture, called MRCHIPS,

to control reasoning and behaviour for such an agent.

1. Introduction

The question addressed by this research is whether an animated

pedagogical agent can provide effective mentoring support for the novice

when learning a programming language for the very first time. The

original contribution of this approach is the use of an intelligent agent for

mentoring programming students (rather than tutoring) within the

Cognitive Apprenticeship pedagogy.

2. The Problem

Educational researchers [5] have observed that novice programmers make

the same mistakes and encounter the same problems when first learning a
programming language. The learner errors are usually from a fixed set of

misconceptions that are easily corrected by experience and with simple

guidance. Despite rich interactive development environments, learners

continue to generate errors as they experiment with the language

structures and find debug messages unhelpful because of their lack of

experience of the significance of error information. During practical

sessions a supervisors task is often to simply call on prior experience to

offer guidance and offer reassurance that errors are all part of the

development process.

3. Background Theory

The behaviour of a tutor during practice based sessions is to provide

coaching in that the learner is encouraged to develop code by themselves

and the tutor offers support as they require it. The support is then

gradually reduced as the learner becomes more skilled. This approach is

closest to the methods of the Cognitive Apprenticeship pedagogy [2], the

tutors support can take a number of forms such as explanations, examples

or specific direction depending on the nature of the problem, the learners

preferences etc. but interactions require the learner be an active
participant in producing work of their own [4].

5. Agent Architecture

The MRCHIPS architecture consists of a hybrid of two reasoning systems

based on Beliefs-Desires-Intentions (BDI) and Case-Based Reasoning
(CBR) (see figure 3) and other support systems. The two reasoning

systems coordinate the different levels of analysis required to provide the

capabilities of the agent. The BDI system provides the processing required

to interface to the environment, monitor the user and control the activity

of the agent character. The reactive and deliberative capabilities of the

BDI [1] allow the agent to track low-level user tasks such as window

position and mouse clicks. By tracking the user’s activity this layer will

also be able to make inferences about user activities and select suitable

responses for the agent. The CBR system maintains specific domain
knowledge about analysis of programming errors and strategies for

communicating solutions to the learner.

The CBR subsystem makes use of information from the BDI data structure to

form the problem when a matching case is selected the agent is committed

to performing the solution by its inclusion on the list of agent intentions.

6. Related Work

Other research has also proposed combining of BDI-CBR agent systems [3,

8] for intelligent web searching and a tourist guide agent. These systems

have primarily been concerned with adding learning capabilities to BDI and
have in different ways used CBR to implement BDI agents. The innovation

with the proposed agent architecture is that the BDI-CBR subsystems are

structured to reason in parallel to provide the spectrum of agent behaviours,

in a similar way to hybrid agent systems such as INTERRAP [7].

7. Current Progress

A prototype of the MRCHIPS agent was completed in autumn 2009 equipped

with a knowledge base for Python programming students. Testing was

carried out on a group of novice Python programmers results demonstrated

a mean grade improvement of 40% when compared to novice students who
worked without the aid of the agent.

8. References
[1] Ancona, D., Demergasso, D. & Mascardi, V. (2005). A Survey on Languages for

Programming BDI-style Agents. [Online.] Available from:

http://www.cs.uu.nl/~mehdi/al3files/VivianaMascardi.ps

[2] Collins, A., Brown, J.S. & Newman, S.E. (1989) Cognitive apprenticeship: Teaching

the craft of reading, writing and mathematics. In: Resnick, L.B. (ed.) Knowing, learning

and instruction: Essays in honor of Robert Glaser. Hillsdale, NJ: Erlbaum. pp. 453-494.

[3] Corchado, J. M. & Pellicer, M. A. (2005); Development of CBR-BDI Agents.

International Journal of Computer Science & Applications. Vol. 2: 1, pg, 25-32

[4] Ghefaili A. (2003) Cognitive Apprenticeship, Technology, and the Contextualization of
Learning Environments. Journal of Educational Computing, Design and Online Learning 4

(Fall).

[5] Gulz, A. (2004); Benefits of Virtual Characters in Computer Based Learning
Environments: Claims and Evidence. International Journal of Artificial Intelligence in

Education 14. pg. 313-334

[6] Luck, M., Ashri, R. & d'Inverno. (2004); Agent-Based Software Development. Artech
House Computing Library.

[7] Muller, J. (1996); The Design of Intelligent Agents, A Layered Approach. Springer-

Verlag.

[8] Olivia, C., Chang, C.F., Enguix, C.F. & Ghose, A.K. (1999); Case-Based BDI Agents:

An Effective Approach For Intelligent Search on the World Wide Web. Procedings of AAAI

Spring Symposium on Internet Agents.

[9] Rist, T., Andre, E., Baldes, S., Gebhard, P., Klesen, M., Kipp, M., Rist, P.,Schmitt, M.

(2003); A review of the development of embodied presentation agents and their

application fields. Life-like Characters: Tools, Affective Functions and Applications.

4. Proposed Solution

An agent system could be made to sit alongside the learners development

environment to monitor activity as they write code and alert or advise them

of errors and problems in a format suited to the requirements of a novice as

illustrated in figure 1. The use of an animated agent character offers the
advantage of modes of communication that are more intuitive to the learner

and avoids the cognitive load of learning an additional application interface.

A number of projects have investigated the effectiveness of animated

characters for imparting information to the user [5]. A responsive agent

system would help to maintain the effect of a knowledgeable character [9].

The mentor would also need to be able to monitor the users activity,

analyse the nature of a users’ problem and provide an effective response.

For these reasons the following architecture innovation is proposed. An

illustration of the MRCHIPS agent using a character from the Microsoft's

Agent interface and working in the Python environment is shown in figure 2.

Programming novice

Mentor

Agent

Knowledge

base of

errors

Desktop

Environment

Python

and IDE

Figure 1. Outline of the novice and mentor agent interaction

PAL

plans

 e1

 e3
 e2

events

Case

retrieval
Analysis of

retrieval

Case
adaptation

Reify

solution

beliefs

case memory

intentions

 i1 i2 i3 in

Figure 3. The MRCHIPS architecture

Figure 2. MRCHIPS offering advice to a learner

	Thesis Desmond Robert Case
	01_chapter01-Introduction-and-terms
	02_chapter02-programmer_psychology
	03_chapter03-cognitive_apprenticeship
	04_chapter04-virtual_agents
	05_chapter05-agent_reasoning
	06_chapter06-Analysis-of-errors
	07_chapter07-Agent-framework
	08_chapter08-Agent-implementation
	09_chapter09-Research-methods
	10_chapter10-Evaluation-and-findings
	11_chapter11-Summary-and-futurework
	12_References
	13_Appendix A
	14_Appendix B
	15_Appendix C
	16_Appendix D
	17_Appendix E
	18_Appendix F

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.268 x 11.693 inches / 210.0 x 297.0 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20130415112334
 841.8898
 a4
 Blank
 595.2756

 Tall
 1
 0
 No
 488
 433
 None
 Left
 8.5039
 0.0000

 Both
 55
 AllDoc
 95

 CurrentAVDoc

 Uniform
 8.5039
 Left

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0d
 Quite Imposing Plus 2
 1

 13
 234
 233
 234

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 12 to page 25
 Trim: none
 Shift: move right by 17.01 points
 Normalise (advanced option): 'original'

 32

 D:20130415112334
 841.8898
 a4
 Blank
 595.2756

 Tall
 1
 0
 No
 488
 433
 Fixed
 Right
 17.0079
 0.0000

 Both
 12
 SubDoc
 25

 CurrentAVDoc

 None
 8.5039
 Left

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0d
 Quite Imposing Plus 2
 1

 11
 234
 24
 14

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 12 to page 25
 Trim: none
 Shift: move left by 2.83 points
 Normalise (advanced option): 'original'

 32

 D:20130415112334
 841.8898
 a4
 Blank
 595.2756

 Tall
 1
 0
 No
 488
 433

 Fixed
 Left
 2.8346
 0.0000

 Both
 12
 SubDoc
 25

 CurrentAVDoc

 None
 8.5039
 Left

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0d
 Quite Imposing Plus 2
 1

 24
 234
 24
 14

 1

 HistoryList_V1
 qi2base

