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The complexes formed on
nitrates have been studied.
and 31P NMR spectroscopy
defined Ln(NO3)3L3 are ob
mixtures of Ln(NO3)3L3 and
and Lu. Single crystal X-ra
[Er(NO3)2L3(H2O)][NO3] (4)
of Ln(NO3)3L3 show that th
with static structures obser
properties are discussed in

1. Introduction

Complexes of lanthanide nitrates with phosphine oxides have
been investigated since the 1960s. The majority of studies have
centred on triphenylphosphine oxide [1–4] with relatively little
attention given to trialkylphosphine oxides. Nd(NO3)3(R3PO)3

(R = Me, Et) [5] were characterised by elemental analysis, infrared
and electronic spectroscopy and the isolation of complexes
Ln(NO3)3(R3PO)3 (R = butyl, octyl) show that the 3:1 ligand to
metal ratio is common [6] in these systems. The same composition
has been deduced for Am(NO3)3(R3PO)3 and Cm(NO3)3(R3PO)3 in
the solvent extraction studies with Bu3PO and Oct3PO [7]. Mixed
trialkylphosphine oxides RR0R003PO (R, R0, R00 = hexyl, heptyl and
octyl) have been used as extractants for lanthanide ions either
alone [8,9] or in synergy with alkylphosphinic acids [10].

We have previously examined the formation and properties of
lanthanide nitrate complexes with R3PO with varying steric
demands. With Et3PO as ligand complexes Ln(NO3)3(Et3PO)3 form
for the lighter lanthanides and mixtures of Ln(NO3)3(Et3PO)3 and
Ln(NO3)3(Et3PO)2 for the heavier metals [11]. On increasing the
size of the ligand with R = cyclohexyl [12] and iBu3PO [13] we find
that Ln(NO3)3(R3PO)3 form throughout the lanthanide series, with
subtle variations in structure as the ionic radius decreases. When
R = tbutyl the greater steric effects mean that only Ln(NO3)3(tBu3-

PO)2 are formed for all Ln, again with subtle differences in the
structures as the series is traversed [14]. The balance between
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25reaction of tri-isopropylphosphine oxide ((C3H7)3PO = L) and lanthanide
26The new compounds have been characterised by elemental analysis, infrared
27in CD2Cl2 solution. On reaction of lanthanide nitrates and L in 1:3 ratios, well
28tained for Ln = La–Eu with complexes for the heavier lanthanides forming
29Ln(NO3)3L2. Analytically pure complexes Ln(NO3)3L2 can be isolated for Yb
30y structures for Ln(NO3)3L3, Ln = La (1), Ce (2), Pr (3), the ionic complex
31and Ln(NO3)3L2, Ln = Yb (5), Lu (6) are reported. The 31P solution NMR spectra
32e complexes are fluxional at ambient temperature with spectra consistent
33ved at lower temperatures for some complexes. The structures and solution
34terms of the steric and electronic properties of the ligand.
35� 2013 Published by Elsevier Ltd.

36

63increasing steric effects and increasing basicity of the phosphine
64oxide [15], can be seen to be responsible for the changes in compo-
65sition. Thus for Et3PO pure Ln(NO3)3L3 cannot be obtained for
66heavier lanthanides in contrast to the situation with the larger
67but more basic Cy3PO and iBu3PO where the increased basicity
68dominates steric effects and Ln(NO3)3L3 can be isolated for all Ln.
69In this paper, we report our findings on complexes of iPr3PO = L
70which has intermediate steric demands based on the cone angles
71(h) of the parent phosphines. For iPr3P h = 160� whilst Et3P has
72h = 132� and tBu3P has h = 182� [16] and we felt it of interest to
73investigate the influence this might have on the structures and
74properties of the resultant complexes.

752. Results and discussion

76The reactions of lanthanide nitrates with L in hot ethanol affor-
77ded solid complexes on cooling the reaction mixtures Ln = La–Er, or
78on cooling ethanol/diethyl ether solutions for Ln = Yb, Lu. Elemen-
79tal analyses indicate that Ln(NO3)3L3 form for Ln = La–Eu. The bulk
80material isolated from the reaction with Er(NO3)3 and L analysed as
81a mixture of 1:3 and 1:2 complexes, similar to the behaviour of the
82Et3PO complexes with the heavier lanthanides [13]. Similarly,
83attempted preparation of analogous complexes for Ln = Yb and
84Lu gave complexes which on the basis of 31P NMR spectroscopy
85(discussed below) do not correspond to the expected 1:3
86complexes or any other simple composition. On carrying out the
87reaction with a 1:2 ratio complexes were obtained which analysed
88well for Ln(NO3)3L2, Ln = Yb, Lu. Attempted preparation of
89Nd(NO3)3L2 by the same method led to the isolation of material

://dx.doi.org/10.1016/j.poly.2013.10.028
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90 with an identical infrared spectrum to that of the fully character-
91 ised Nd(NO3)3L3 complex.
92 The electrospray mass spectra of the complexes were obtained
93 from CH2Cl2/CH3CN and show the [M�NO3]+ ion as the most abun-
94 dant ion in the positive ion mode for all complexes. That this is also
95 the case for Ln(NO3)3L2 (Ln = Yb, Lu) implies that [Ln(NO3)2L3]+ is
96 particularly stable in the gas phase. The electrospray process leads
97 to ligand redistribution and further ionisation as we have noted
98 previously with similar systems. The formation of higher coordina-
99 tion numbers seems restricted to the larger lanthanide ions as

100 would be expected on steric grounds, and [Ln(NO3)2L4]+ is not ob-
101 served beyond Nd. Full details of the spectra are given in Table S2
102 as supplementary information.
103 The infrared spectra are as expected for lanthanide nitrate com-
104 plexes with phosphine oxides indicating the presence of bidentate
105 nitrates. The positions of the absorptions show only weak trends
106 within the series of complexes studied. For the nitrate ligands
107 the m1 and m3 bands at 1301–1282 cm�1 and 1490–1440 cm�1,
108 respectively show no trend with the metal, whilst m4 shows a small
109 decrease from 820 (La) to 816 cm�1 (Lu) and m5 increases from 733
110 (La) to 748 cm�1 (Lu). The spectra show subtle differences between

111the lighter and heavier lanthanides. For instance the m1 band which
112is split for La to Sm appears as a single band for Er–Lu.
113The PO stretch is at lower wavenumber than the free ligand for
114which mPO = 1132 cm�1 and shows a small increase from La
115(1090 cm�1) to Lu (1100 cm�1) Full details of the N–O and P–O
116bands are shown in the supplementary information in Table S1.
117The single crystal X-ray structures have been determined for
118Ln(NO3)3L3, Ln = La (1), Ce (2), Pr (3); [Ln(NO3)2(H2O)L3][NO3],
119Ln = Er (4) and Ln(NO3)3L2, Ln = Yb (5), Lu (6). Crystallography
120summary for crystal structures 1–6 are given in Table 1 and se-
121lected bond distances in Tables 2 and 3.
122Nine coordinate neutral complexes Ln(NO3)3L3 form with the
123lighter lanthanides.
124These have three bidentate nitrates and three monodentate
125phosphine oxides and can be considered as distorted mer-octahe-
126dra if the nitrates are considered as pseudo-monodentate ligands
127bonded via the nitrogen atom as found for similar complexes of
128lanthanide nitrates with phosphine oxides [17]. The structure of
129the Ce complex is shown in Fig. 1 as a representative example.
130The geometry of the eight-coordinate ionic complex [Er(NO3)2L3

131(H2O)]+NO3
� can similarly be considered as a distorted pseudo-

Table 1
X-ray crystallography summary for compounds 1–6.

1 2 3 4 5 6

Empirical formula C27H63N3O12P3La C27H63N3O12P3Ce C27H63N3O12P3Pr C27H63N3O13P3Er C18H42N3O11P2Yb C18H42N3O11P2Lu
Formula weight 853.62 854.83 855.62 897.97 711.15 713.12
Temperature (K) 120(2) 120(2) 120(2) 120(2) 100(2) 100(2)
Wavelength (Å) 0.71073 0.71073 0.71073 0.71073 0.71073 0.71073
Crystal system tetragonal tetragonal tetragonal monoclinic orthorhombic orthorhombic
Space group P42/n P42/n P42/n P21/n Pmmn Pmmn

Unit cell dimensions
a (Å) 26.9394(6) 26.9639(7) 26.8750(4) 14.5881(12) 15.207(5) 15.198(3)
b (Å) 26.9394(6) 26.9639(7) 26.8750(4) 23.8759(15) 15.332(5) 15.338(3)
c (Å) 10.9703(3) 10.9785(3) 10.9525(2) 14.8058(11) 12.497(4) 12.487(3)
a (�) 90 90 90 90 90
b (�) 90 90 90 111.070(3) 90 90
c (�) 90 90 90 90 90
Volume (Å3) 7961.5(3) 7981.9(4) 7910.6(2) 4812.1(6) 2913.7(16) 2910.8(11)
Z 8 8 8 4 4 4
Dcalc (Mg m�3) 1.424 1.423 1.437 1.239 1.621 1.627
Absorption coefficient

(mm�1)
1.249 1.316 1.409 1.892 3.373 3.555

F(000) 3552 3560 3568 1852 1436 1440
Crystal rod; colourless needle; colourless needle; light green lath; light pink block; Colourless plate; colourless
Crystal size (mm3) 0.23 � 0.03 � 0.02 0.64 � 0.08 � 0.05 0.23 � 0.03 � 0.02 0.20 � 0.05 � 0.02 0.09 � 0.08 � 0.04 0.05 � 0.04 � 0.01
h range for data

collection (�)
2.93–27.50 2.93–25.00 3.03–27.50 2.91–25.00 2.98–27.48 2.98–27.49

Index ranges �34 6 h 6 25,
�34 6 k 6 34,
�14 6 l 6 12

�32 6 h 6 31,
�27 6 k 6 32,
�8 6 l 6 13

�31 6 h 6 34,
�34 6 k 6 34,
�14 6 l 6 14

�17 6 h 6 16,
0 6 k 6 28,
0 6 l 6 17

�19 6 h 6 19,
�16 6 k 6 19,
�16 6 l 6 15

�19 6 h 6 19,
�19 6 k 6 19,
�16 6 l 6 16

Reflections collected 36955 37079 54074 8471 16187 66121
Independent

reflections (Rint)
9119 [0.0623] 7006 [0.1144] 9060 [0.0867] 8471 [0.0000]* 3573 [0.0225] 3576 [0.0761]

Completeness to
h = 27.50�

99.70% 99.60% 99.70% 99.80% 99.4% 99.5%

Maximum and
minimum
transmission

0.9755 and 0.7621 0.9371 and 0.4864 0.9724 and 0.7377 0.9631 and 0.7034 0.8769 and 0.7511 0.9653 and 0.8423

Data/restraints/
parameters

9119/0/433 7006/0/433 9060/0/433 8471/0/442 3573/205/255 3576/205/255

Goodness-of-fit (GOF)
on F2

1.163 1.018 1.184 0.976 1.141 1.260

Final R indices
[F2 > 2r(F2)]

R1 = 0.0522,
wR2 = 0.0969

R1 = 0.0508,
wR2 = 0.0986

R1 = 0.0644,
wR2 = 0.1121

R1 = 0.0964,
wR2 = 0.2217

R1 = 0.0268,
wR2 = 0.0494

R1 = 0.0558,
wR2 = 0.1062

,
74
�0.6

* P
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R indices (all data) R1 = 0.0741,
wR2 = 0.1077

R1 = 0.0937,
wR2 = 0.1137

R1 = 0.0972
wR2 = 0.12

Largest difference in
peak and hole
(e Å�3)

0.539 and �0.499 0.580 and �0.598 0.621 and

laton/Squeeze routine was used.
ease cite this article in press as: A. Bowden et al., Polyhedron (2013), http://dx.
R1 = 0.1862,
wR2 = 0.2504

R1 = 0.0300,
wR2 = 0.0508

R1 = 0.0600,
wR2 = 0.1085

59 1.329 and �1.030 0.735 and �0.502 2.111 and �1.342
doi.org/10.1016/j.poly.2013.10.028
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Table 2
Selected bond distances (Å) in Ln(NO3)3L3 (Ln = La, Ce, Pr) and [Er(NO3)L3(H2O)][NO3].

La Ce Pr Er La Ce Pr Er

Ln–O(N) O11�Ln1 2.658(3) 2.649(4) 2.622(4) 2.448(10) N–O(Ln) N11�O11 1.258(5) 1.266(6) 1.258(6) 1.250(14)
O12�Ln1 2.620(3) 2.606(4) 2.572(4) 2.452(8) N11�O12 1.272(5) 1.276(6) 1.261(6) 1.252(14)
O21�Ln1 2.621(3) 2.606(4) 2.575(4) 2.444(10) N21�O21 1.265(5) 1.268(5) 1.269(6) 1.300(15)
O22�Ln1 2.644(3) 2.621(4) 2.600(4) 2.435(10) N21�O22 1.275(5) 1.270(6) 1.270(6) 1.336(15)
O31�Ln1 2.610(3) 2.619(4) 2.600(4) N31�O31 1.274(5) 1.279(6) 1.271(6) 1.22(2)⁄

O32�Ln1 2.642(3) 2.592(4) 2.572(4) N31�O32 1.265(5) 1.263(6) 1.269(6) 1.25(3)⁄

Ln–O(H2O) 2.325(9)
Ln–O(P) O1�Ln1 2.398(3) 2.373(3) 2.351(4) 2.229(9) N–O N11�O13 1.221(5) 1.216(6) 1.228(6) 1.227(14)

O2�Ln1 2.453(3) 2.435(3) 2.410(4) 2.207(8) N21�O23 1.216(5) 1.222(5) 1.222(6) 1.192(15)
O3�Ln1 2.404(3) 2.391(3) 2.371(4) 2.244(8) N31�O33 1.221(5) 1.231(6) 1.224(7) 1.19(3)⁄

P–O O1�P1 1.512(3) 1.521(4) 1.515(4) 1.528(9)
O2�P2 1.510(3) 1.515(4) 1.516(4) 1.531(9)
O3�P3 1.512(3) 1.511(4) 1.512(4) 1.497(9)

Table 3
Selected bond distances (Å) in Ln(NO3)3L2.

Yb Lu Yb Lu

Ln–O(N) O2�Ln1 2.395(3) 2.358(5) N–O(Ln) N1�O2 1.279(4) 1.276(9)
O3�Ln1 2.399(3) 2.391(6) N1�O3 1.274(4) 1.266(8)
O5�Ln1 2.422(3) 2.396(5) N2�O5 1.274(3) 1.269(6)
O8�Ln2 2.400(3) 2.375(6) N3�O8 1.272(4) 1.266(8)
O9�Ln2 2.402(3) 2.390(5) N3�O9 1.272(4) 1.268(8)
O11�Ln2 2.402(3) 2.382(5) N4�O11 1.279(6) 1.259(7)

Ln–O(P) O1�Ln1 2.156(3) 2.147(5) N–O N1�O4 1.210(4) 1.214(9)
O7�Ln2 2.146(2) 2.143(5) N2�O6 1.213(5) 1.229(11)

N3�O10 1.214(4) 1.220(9)
P–O O1�P1 1.510(3) 1.513(6) N4–O12 1.212(6) 1.214(12)

O7�P2 1.518(2) 1.514(5)

Fig. 1. The X-ray crystal structure of Ce(NO3)3L3 (2) 0. Thermal ellipsoids are drawn at 50% probability level. All hydrogen atoms are ommited for clarity.
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mer octahedron with the coordinated water molecule occupying
site trans to a phosphine oxide and its structure is shown in Fig. 2
The elemental analysis of the bulk material does not correspon
to the crystal structure and it seems likely that the crystal selecte
for analysis is not representative of the sample as a whole.
Please cite this article in press as: A. Bowden et al., Polyhedron (2013), http
The Ln–O(N) and Ln–O(P) distances show the expected decreas
with ionic radius of the metal. When these distances are correcte
for the effect of the lanthanide contraction by subtracting th
appropriate ionic radii, there are no significant differences (a
tested by single factor ANOVA at 95% confidence level) betwee
://dx.doi.org/10.1016/j.poly.2013.10.028
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Pl
e metals. Thus the decrease can be explained as being solely due
the lanthanide contraction as we have observed in similar

mplexes [13,14]. The change in geometry from nine to
ht-coordination can be seen as a ‘‘classic’’ effect of the lantha-

de contraction with the loss of a nitrate from the primary coordi-
tion sphere and its replacement by the smaller water molecule.

Sim
be

wi
8-
m

. 2. The X-ray crystal structure of [Er(NO3)2L3)H2O][NO3] (4). Thermal ellipsoids are dra
mited for clarity.

. 3. The X-ray crystal structure of Lu(NO3)3L2 (6). Displacement ellispoids �50% probabili
drogen atoms are omitted for clarity.

ease cite this article in press as: A. Bowden et al., Polyhedron (2013), http://dx.
wn at 50% probability level. All hydrogen atoms and one counterion (NO2�
3 ) are
148ilarly, the formation of Ln(NO3)L2 for heavier lanthanides can
149explained by the lanthanide contraction.
150The complexes Ln(NO3)3L2, Ln = Yb and Lu, are isostructural
151th two independent molecules in the unit cell. These are
152coordinate with a hexagonal bipyramidal geometry about the
153etal with the equatorial plane defined by three bidentate nitrates

ty. Only one component of disorder present in the crystal structure is shown. All

doi.org/10.1016/j.poly.2013.10.028
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and the phosphine oxides occupying the axial positions. Th
structure of the Lu complex is shown in Fig. 3. The structures hav
the same molecular geometry as one of the isomers observed fo
Ln(NO3)3(tBu3PO)2 with the heavier lanthanides [14] and ar
presumably formed as a result of the increasing steric congestio
around the smaller Yb and Lu ions compared with the lighte
lanthanides which form Ln(NO3)3L3. The Lu–O(N) distances ar
marginally shorter for the isopropyl complexes compared to th
tert-butyl analogue with average Lu–O(N) distances of 2.382
(iPr) and 2.392 Å (tBu).

The Ln(NO3)3L3 structures all have short contacts between som
of the hydrogen atoms of the isopropyl groups and the coordinate
oxygen atoms of the nitrate groups. The H. . ..O distances are signi
icantly shorter than the sum of the Van der Waals radii for O and
(2.61 Å). The weak H-bonded interactions are shown in Fig. 4 fo
the La complex and similar interactions are evident in the Ce an
Pr structures. Selected distances are given in Table 4.

The strongest interactions occur between the oxygen and one o
the methine protons with H. . .O distances in the region of 2.3 Å
Weaker interactions are present between methyl protons and n
trate oxygen atoms with H. . .O distances which are only slightl
shorter than the sum of Van der Waals radii at just below 2.6 Å
The relative strength of the hydrogen bonding seems reasonabl
Fig. 4. The weak intermolecular C–H. . .O hydrogen bonding in La(NO3)3L3.
Please cite this article in press as: A. Bowden et al., Polyhedron (2013), http
as the C–H proton is closer to the metal, will experience a greate
inductive effect and thus have a larger residual positive charge. Th
hydrogen bonded distances tend to decrease from La to Pr indica
ing and increased strength of interaction. This could be due to a
inductive effect increasing as the charge density on the lanthanid
ion increases.

There are similar, but less extensive interactions between th
methyl protons and coordinated and ionic nitrate in the Er structur
Interestingly, there are no short contacts between the methin
protons and any of the coordinated nitrate oxygen atoms. The ion
nitrate has weak hydrogen bonding between a methine proton an
oxygen atom (O31. . .H16 distance 2.55 Å) and possibly a weake
interaction with a methyl hydrogen (O32. . .H27A at 2.63 Å).

The H-bonding seems to be more limited in Ln(NO3)3L2. There
a weak interaction between a methine proton in one molecule an
O(10) on the nitrate of an adjacent molecule, which with an O. . ..
distance of 2.586 Å is marginally shorter than the sum of Van de
Waals radii.

The behaviour in CD2Cl2 solution has been investigated b
variable temperature 31P NMR spectroscopy and the data ar
collected in Table 5.

The spectra of the lighter lanthanides show very similar behav
iour to those of other Ln(NO3)3(R3PO)3 complexes that we hav
previously analysed [12,13]. A strong temperature dependence
seen for the paramagnetic complexes with chemical shifts movin
to high frequency with decreasing temperature for Ln = Ce–Sm an
to low frequency for Eu–Yb. At low temperatures spectra readil
assigned to static structures based on a pseudo mer-octahedro

Table 4
The weak hydrogen bond distances (Å) in Ln(NO3)3L3.

C–H. . .O [Å] CH3. . ..O [Å]

O12. . .H24 O11. . .H4 O21. . .H5B O22. . .H26B O32. . .H28C

La 2.375 2.599 2.507 2.566 2.574
Ce 2.365 2.564 2.503 2.557 2.579
Pr 2.356 2.561 2.466 2.539 2.567

Table 5
31P NMR data for Ln(NO3)3(iPr3PO)n in CD2Cl2.

Temperature (�C)

Ln n 20 �30 �60 �90
La 3 68.99a 68.94
Ce 3 109.7 119.5 128.9 143.2(2)

140.7(1)
Pr 3 161.2 193.6 228.7 331.0(2)

158.0(1)
Nd 3 169.00 193.6 223.3 296.2(2)

204.4(1)
Sm 3 66.18 69.74 72.96 77.52
Eu 3 �68.6 �90.7 �108.6 �137.8(2)

�114.2(1)
Er 3 �123.6(2)

�245.8(1)
�171.7(2)
�310.2(1)

�316.7(2)b

�356.8(1)b

�198.2(2)c

�220.8(1)c

Yb 2 �10.8 �31.3 �44.8 �52.8
Lu 2 72.2 70.7 70.6 70.8
Y 3 69.8 69.0b71.3c 68.9 2

JPY = 9.9 Hzb

70.7c, 70.4c

68.8 2JPY = 9.9 Hzb

71.0 2JPY = 11.1 Hzc

70.4 2JPY = 8.6 Hzc

69.8c

68.5 2JPY = 9.8 Hzc

L 60.8

a Ppm relative to external H3PO4.
b Major isomer.
c Minor isomer.
://dx.doi.org/10.1016/j.poly.2013.10.028
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Pl
e seen for most complexes, where two signals in an approxi-
ately 2:1 ratio for the two different phosphorus environments
e observed. A single peak at all temperatures was observed for
e La and Sm complexes. In the case of La this indicates that there
rapid interchange between inequivalent environments on the
R timescale even at �90 �C. The single signal seen for the Sm

mplex possibly arises from the small chemical shift difference
tween different environments. The observation of static struc-
res as a function of the metal appears to correlate well with
r earlier work, where the increasing steric demands/ligand
sicity permit the observation of static structures for more of
e metals. The overall pattern seems to be that static structures
e favoured for smaller lanthanide ions and larger, more basic
osphine oxides.
The 31P NMR spectra of the heavier lanthanide’s complexes

ow the presence of more species in solution. The spectrum of
e Er complex shows two peaks at ambient temperature in a 2:1
tensity ratio which are tentatively assigned to the two inequiva-

t phosphorus environments in the pseudo mer-octahedral geom-
ry of the cation. At �90 �C a second pair of signals in a 2:1 ratio is
o present and may be due to a small quantity of the neutral

(NO3)3L3 present in solution. The material isolated from the 1:3
(NO3)3: iPr3PO reaction has more complex behaviour which is
miniscent in some respects to that of the complexes of Et3PO with
avier lanthanides where the presence of Ln(NO3)3L3 and
(NO3)3L2 was deduced from elemental analyses and 31P NMR
ectra. Thus a single peak is observed in the ambient temperature
ectrum as a result of rapid exchange between different com-
exes. The spectra show a single signal between 70.6 and
.8 ppm which does not change between �30 and �90 �C
signed as Lu(NO3)3L2. In addition many peaks which are tenta-
ely assigned to a 2:1 compounds analogous to those formed with
3PO [14] and in solution by Et3PO [13] are observable. Thus at
0 �C peaks at 72.7 and 65.4 ppm in a 2:1 ratio indicate the pres-
ce of a 1:3 complex. At lower temperature there are further
anges to the 31P NMR spectra, which show in addition to the
ong signal at 70.6 from Lu(NO3)3L2 additional peaks at 72.4,
.6 with broad features at 73.3 and 67.2 ppm. This indicates that
her processes are occurring, the nature of which at present is
certain.
The 31P NMR spectra of the isolated Ln(NO3)3L2 Ln = Yb, Lu,

ow the single peak expected at all temperatures for a hexagonal
yramidal structure analogous to those of Ln(NO3)3(tBu3PO)2.

Conclusion

The results show that with iPr3PO as ligand, lanthanide nitrate
mplexes form with two distinct stoichiometries in contrast to
ose formed with iBu3PO and Cy3PO which form only Ln(NO3)3L3

d tBu3PO which forms only Ln(NO3)3L2. The system with iPr3PO
ows the isolation of both 1:2 and 1:3 complexes for the first time

contrast to the related Et3PO system in which mixtures were

rmed for the heavier lanthanides.

Experimental

Tri-isopropylphosphine oxide was prepared by oxidation of the
osphine with hydrogen peroxide. The phosphine (1.50 g,
6 mmol) was added to a solution of hydrogen peroxide in

etone (1.06 g 30% aqueous solution in 50 ml acetone). The tem-
rature rose to 40 �C during the reaction. The mixture was stirred
ernight and evaporated to give a colourless oil which was dried
vacuo over KOH (1.54 g, 93%).
NMR CD 2Cl2 d/ppm 31P (161.8 MHz) 60.79 (s) 13C (100.5 MHz)

24.64 (d) 1JCP = 61.5 Hz CH316.52 (d) 2JCP = 3.1 Hz 1H

5.5

�3
�1

et
in
�2
wa
di
di

5.9

ease cite this article in press as: A. Bowden et al., Polyhedron (2013), http://dx.
99.8 MHz) CH 2.102 (d, sept) 2JHP = 11.5 Hz, 3JHH = 7.3 Hz, CH3

73 (d,d) 3JHP = 14.3 Hz, 3JHH = 7.3 Hz.
La(NO3)3(iPr3PO)3 La(NO3)3�7H2O (0.16 g, 0.36 mmol) in 0.9 g

hanol was mixed with a solution of the ligand (0.20 g,
3 mmol) in 0.5 g ethanol. The solution was heated to 70 �C for
, allowed to cool to room temperature and then stored at
0 �C overnight. The white crystals which formed were filtered,
shed with cold ethanol and dried at the pump to give 0.23 g

5%).
Analysis% required (found) C 37.99 (37.74); H 7.44 (7.65); N
2 (5.00).
d 31P (161.8 MHz in CD2Cl2 at -90 �C) 68.94 ppm.
Nd(NO3)3(iPr3PO)3 Nd(NO3)3�6H2O (0.16 g, 0.37 mmol) in 0.8 g

hanol was mixed with a solution of the ligand (0.21 g,
9 mmol) in 0.3 g ethanol. The solution was heated to 70 �C for
, allowed to cool to room temperature and then stored at
0 �C for 5 d. The lilac powder which formed was filtered, washed
th cold ethanol and dried at the pump to give 0.21 g (66%).
Analysis% required (found) C 37.75 (37.25); H 7.39 (7.25); N
9 (4.57).
d 31P (161.8 MHz in CD2Cl2 at �90 �C) 204.4 ppm (1), 296.2 ppm

).
Sm(NO3)3(iPr3PO)3 Sm(NO3)3�6H2O (0.18 g, 0.40 mmol) in 0.5 g

hanol was mixed with a solution of the ligand (0.19 g,
8 mmol) in 0.2 g ethanol. The solution was heated to 70 �C for
, allowed to cool to room temperature and then stored at
0 �C for 5 d. The pale yellow powder which formed was filtered,
shed with cold ethanol and dried at the pump to give 0.08 g

7%).
d 31P (161.8 MHz in CD2Cl2 at �90 �C) 77.52 ppm.
Analysis% required (found) C 37.49 (35.70); H 7.34 (7.02); N
5 (4.63).
Eu(NO3)3(iPr3PO)3 Eu(NO3)3�6H2O (0.17 g, 0.38 mmol) in 0.9 g

hanol was mixed with a solution of the ligand (0.21 g,
9 mmol) in 0.3 g ethanol. The solution was heated to 70 �C for
, allowed to cool to room temperature and then stored at
0 �C for 5 d. The colourless powder which formed was filtered,
shed with cold ethanol and dried at the pump to give 0.18 g

5%).
Analysis% required (found) C 37.42 (37.21); H 7.33 (7.32); N
5 (4.47).
d 31P (161.8 MHz in CD2Cl2 at �90 �C) �114.2 ppm (1),
37.8 ppm (2).
Er(NO3)3(iPr3PO)3[Er(NO3)3(iPr3PO)2]2;Er(NO3)3�6H2O (0.18 g
9 mmol) in 0.8 g ethanol was mixed with a solution of the
and (0.20 g mmol) in 0.5 g ethanol. The solution was heated to
�C for 2 h, allowed to cool to room temperature and then stored
�30 �C for 5 d. The pink powder which formed was filtered,
shed with cold ethanol and dried at the pump to give 0.11 g

3%).
Analysis% required (found) C 32.99 (32.88); H 6.46 (6.41); N
3175 (4.35).
318d 31P (161.8 MHz in CD2Cl2 at �90 �C) major species
31956.8 ppm (1), �316.7 ppm (2); minor species �220.8 ppm (1),
32098.2 ppm (2).
321Yb(NO3)3(iPr3PO)2;Yb(NO3)3�6H2O (0.22 g 0.48 mmol) in 0.6 g
322hanol was mixed with a solution of the ligand (0.16 g 0.89 mmol)
3230.4 g ethanol and heated to 70 �C for 2 h. Cooling the solution to
3240 �C did not produce crystals. An equal volume of diethyl ether
325s layered on top of the ethanol solution and allowed to slowly
326ffuse at �20 �C. The crystals formed were filtered, washed with
327ethylether and dried at the pump to give 0.10 g (34%) white solid.
328Analysis% required (found) C 30.38 (30.52); H 5.95 (6.02); N
3290 (5.80).

330d 31P (161.8 MHz in CD2Cl2 at �90 �C) �52.8 ppm.

doi.org/10.1016/j.poly.2013.10.028

http://dx.doi.org/10.1016/j.poly.2013.10.028
Original text:
Inserted Text
-

Original text:
Inserted Text
-

Original text:
Inserted Text
-

Original text:
Inserted Text
to 

Original text:
Inserted Text
-

Original text:
Inserted Text
 

Original text:
Inserted Text
-

Original text:
Inserted Text
-

Original text:
Inserted Text
-

Original text:
Inserted Text
-

Original text:
Inserted Text
-

Original text:
Inserted Text
 

Original text:
Inserted Text
-

Original text:
Inserted Text
-

Original text:
Inserted Text
-

Original text:
Inserted Text
-

Original text:
Inserted Text
-

Original text:
Inserted Text
-

Original text:
Inserted Text
 

Original text:
Inserted Text
 



331 Lu(NO3)3(iPr3PO)2 Lu(NO3)3�6H2O (0.10 g 0.20 mmol) in 0.3 g
332 ethanol was mixed with a solution of the ligand (0.08 g 0.43 mmol)
333 in 0.2 g ethanol and heated to 70 �C for 2 h. Cooling the solution to
334 -20 �C did not produce crystals. An equal volume of diethyl ether
335 was layered on top of the ethanol solution and allowed to slowly
336 diffuse at �20 �C. The crystals formed were filtered, washed with
337 diethylether and dried at the pump to give 0.03 g (21%) white solid.
338 Analysis% required (found) C 30.30 (30.29); H 5.93 (5.94); N
339 5.89 (5.70).
340 d 31P (161.8 MHz in CD2Cl2 at �90 �C) 70.8 ppm.

341 5. X-ray crystallography

342 Single-crystal X-ray diffraction analyses of 1–4 were performed
343 at 120 K using a Bruker APEXII CCD diffractometer mounted at the
344 window of a Bruker FR591 rotating anode (Mo Ka, k = 0.71073 Å)
345 and equipped with an Oxford Cryosystems Cryostream device.
346 Data were processed using the COLLECT package [18].
347 The X-ray data for compounds 5 and 6 were collected at 100 K
348 on Rigaku AFC12 goniometer equipped with an enhanced sensitiv-
349 ity (HG) Saturn 724+ detector mounted at the window of an
350 FR�E + Superbright Mo Ka rotating anode generator with HF
351 Varimax optics [19].
352 Unit cell parameters were refined against all data. An empirical
353 absorption correction was carried out using SADABS [20] except com-
354 pounds 5 and 6 for which CrystalClear [21] software was used.
355 All structures were solved by direct methods and refined on Fo2

356 by full-matrix least-squares refinements using programs of the
357 SHELX97 software [22]. All non-hydrogen atoms were refined with
358 anisotropic displacement parameters. All hydrogen atoms were
359 added at calculated positions and refined using a riding model with
360 isotropic displacement parameters based on the equivalent isotro-
361 pic displacement parameter (Ueq) of the parent atom.
362 Crystals of 4 were highly sensitive to solvent loss. Crystal struc-
363 ture of 4 contains infinitive channels of highly diffused solvent
364 (EtOH) which was difficult to model correctly. SQUEEZE [23] rou-
365 tine of PLATON [24] was used to remove such diffused electron
366 density from the crystal lattice. This resulted in better model and
367 led structure refinement to convergence.
368 Crystal structures 5 and 6 are isostructural and contain two inde-
369 pendent molecules. In both crystal structures all isopropyl groups
370 are disordered and modelled over two sites. Four of them (two per
371 each independent molecule) are disordered over symmetry element
372 (mirror plane) and modelled in SHELXL with PART -1 command.
373 Furthermore, for disordered components vibrational restraints
374 (SIMU/DELU), similar displacement restraints (EADP) and dis-
375 tance/angle restraints DFIX/DANG used to maintain sensible geom-
376 etries and atomic displacement ellipsoids. Some atoms required
377 ISOR restraint to approximate isotropic behaviour.
378 Additionally, crystal structure of 5 and 6 is merohedraly
379 twinned and refined in SHELXL with applied twin law: 100 000 100

380000 000 000 000 �100. Refined BASF = 0.07157 (�7% twinning)
381for 5 and 0.046 (�5% twinning) for 6.
382Figs. 1–3 were drawn in Olex2 [25], whereas Fig. 4 in Mercury
383[26].

384Appendix A. Supplementary data

385Crystallographic data (excluding structure factors) for the
386structures in this paper have been deposited with the Cambridge
387Crystallographic Data Centre, CCDC deposition numbers 949790–
388949795 contains the supplementary crystallographic data for this
389paper. This data can be obtained free of charge from The
390Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/
391data_request/cif. Supplementary data associated with this article
392can be found, in the online version, at http://dx.doi.org/10.1016/
393j.poly.2013.10.028.
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