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Abstract — This paper investigates human learning and skill 

performance to control an underactuated pendulum-driven 

capsule system within an interactive virtual simulation 

environment. A number of experiments is conducted with 9 

participants who learned to control the robot using a physical 

joystick. The results show differences in learning and skill 

performance among the participants. Right-handed and left-

handed participants achieved their highest trial on the opposite 

side of their handedness. High learning participant tends to 

achieve high performance whereas participant who has steady 

learning tends to produce stable performance either low or high. 

The variance of the displacements achieved appears to be a 

learning indicator while the high frequency of joystick oscillation 

at the right portion and interval gives high performance results. 

Keywords-human factor; human adaptive mechatronics; virtual 

simulation; human skill; human learning 

I.  INTRODUCTION 

Although advances in technology have evolved a machine to 
become more autonomous/automated, many machines still 
require human operators to operate and interact with them 
either fully manual, semi-manual, or supervisory controls 
especially in human centred machine such as lower limbs 
walking support structure for elderly or disabled, prosthesis, 
wheelchair etc.  As a consequence, human control behaviour 
and performance have become the main focus in human 
adaptive mechatronics (HAM) research. 

A HAM concept aims to improve a machine with the 
capability to adjust itself based upon the performance level of 
the human user [1], [2], [3], [4], [5]. The main idea behind 
HAM comes from that humans can learn to operate machines. 
In contrast, it is interesting to develop a machine that could 
learn to provide assistance to its user based on an individual 
skill performance. To achieve this type of machine, several 
methods and techniques such as human behaviour study, 
pattern recognition of the human operator actions, human skill 
performance evaluation during the machine operation, the 
interaction model between human and machine, the machine 
system modelling are being studied. 

Human machine control performance and evaluation are the 
important HAM components because they provide a basis for 
the machine to give the appropriate adjustment and assistant. 
Without the knowledge of human operation performance, the 

machine would have no information for the adaptive 
adjustment or assistant.  

In this paper we investigate human learning and 
performance to control an underactuated pendulum-driven 
capsule system within an interactive virtual simulation 
environment.    

The paper is organised into the following sections. A review 
of the related works is presented in Section II. The proposed 
human interaction model appears in Section III. The 
experimentation procedures and settings are presented in 
Section IV. The results from the experiments are summarised 
in Section V. The discussion and conclusion are presented in 
Section VI and VII, respectively. 

II. RELATED WORKS 

Human skills have been long studied in a number of 
classical research fields e.g. psychology, sports, human factor 
engineering etc. [6], [7], [8]. However, there exist few studies 
on the human skill performance evaluation when operating a 
machine according to the HAM concept.  

In a research area called haptic shared control (HSC) several 
studies have focused on human sharing control simultaneously 
with the machine. A special haptic force feedback device has 
been employed to help assist human driver in a car lane 
keeping task which proven to reduce the control activity by 
16% [9], [10]. A performance and training enhancement by 
applying HSC to give a virtual force field a.k.a. ‘virtual fixture’ 
has proven to improve the performance. However, for a 
training enhancement it is ineffective because the operator tend 
to rely on the existence of the shared assistance [11]. 

Rasmussen divided the human performance behaviour into 
three levels i.e. skill, rule, and knowledge [12]. At the skill 
level behaviour, manipulations by humans are merely based 
upon voluntary movements, which behave like an automated 
action without consciousness. Those actions are extremely 
integrated, smooth, and can hardly be decomposed into 
elements without careful attention. This human low-level skill 
phenomenon is also confirmed in the study of professional 
musicians such as  violinists and cellists who are hardly able to 
specifically describe the components to their performance [13]. 
At the rule level behaviour, the human use the stored rules, 
know-how, or instruction to control their actions. In other 
words, control is ruled by past successful experiences either 



from personal or vicarious/indirect experiences. At the highest 
level, knowledge level behaviour usually occurs in unfamiliar 
situations because previous experiences, rules, or know-how 
cannot be applied directly. Critical thinking, problem solving 
strategy and a modified plan of actions are tested against the 
desired goal heuristically. 

In [14], four approaches to human performance modelling; 
information processing, control theory, task network, and 
knowledge based are studied for a number of useful 
applications  e.g. in system design, system development, and 
system evaluation. Having a human performance model has 
benefits such as reducing risk, cost, and danger prior to the 
actual system implementation.  

A brain monitoring system to investigate voluntary motion 
is studied to reveal the relation between brain activation area 
and skilled motion [15]. A near-infrared spectroscopy (NIRS) 
brain monitoring technique is used while the participants are 
asked to perform a drawing task by looking at the mirror 
instead of looking at the paper directly. The proposed index is 
used to evaluate and classify the skill levels into three 
categories high-skilled (HS), middle-skilled (MS), and low-
skilled (LS). High-skilled persons show that there is activation 
in a premotor cortex (PMC) and supplementary motor area 
(SMA) during the early phase of the task performance which 
decreases gradually later on as an indicator of normal skilled 
action. 

 Discrete operator’s hands movement during machine 
console operation have been investigated to evaluate the 
operator performance in [16], [17]. Fitts’ law [18] is applied 
and validated in the study for the task which has partly visual 
feedback such as machine console operation. The machine 
console operation is considered as partly visual feedback 
because it does not intensively require perception through the 
eye. The outcome indicates that it is possible to use discrete 
hand motion to estimate skill level of the machine operator. In 
other words, there is a difference in the sequences of hand 
movement among novice and expert operators. A novice seems 
to be prone to unnecessary sequence of motions while the 
expert motions are optimised. In addition,  eye gaze tracking 
[19] is applied to gather the operator eyes gaze while 
performing machine console operation. 

A human performance index (HPI) is a method to evaluate 
human operator performance by scoring the chosen 
performance variables such as speed and accuracy variables 
and then applying multilayer weighting criteria to obtain the 
performance index value [20]. The method is validated using 
an on screen mouse target hitting task to measure a user’s time 
taken to reach a circle target on the screen, an average time 
used across the number of trials, a cursor path accuracy, and an 
accuracy on the clicked target. The Fitts’ law is also applied in 
this study to validate the speed-accuracy trade-off of the task.  

The work presented in this paper follows the concept from 
[21] which provides an interactive virtual simulation 
environment to allow human interaction with the system based 
on the HAM principle. However, instead of a single human 
operator learning heuristically to control and identify the 
possibilities of angle profile pattern of the pendulum-driven 
capsule system, a number of participants participate in this 

work allow performance measurement analysis from their 
control trials. Also, the difference in learning and control 
strategies among the participants can be analysed.  

III. HUMAN OPERATOR AND CAPSULE SYSTEM  

In this section, a human operator interaction model with the 
capsule system is proposed and the details of the pendulum-
driven capsule system are presented.  

A. Human-capsule system interaction model 

Fig. 1 shows the human-capsule system interaction model in 
this study. The model consists of 4 building blocks which pass 
the control information throughout system paths. The human 
operator is given the goal of the task to be performed. The 
internal processing of human brain processes the provided 
information and takes action via the joystick interface to 
control the pendulum-driven capsule system. The joystick 
actions then translate into the inverted pendulum angle. A 
proper rotation of the inverted pendulum will drive the capsule 
system towards desire direction. However, this rotation is the 
main control that the individual human operator has to learn. 
The appearance of pendulum orientation and capsule position 
on the display acts as the feedback information to the human 
operator eyes to be perceived and react. Then, it is returned to 
the human operator internal processing to process the 
information and make progress to the capsule position as 
required by the given task goal. 

 
Figure 1 The human interaction model with the pendulum-driven capsule 

robot system. 

Fig. 1 contains time-varying variables passing the 
information throughout the system paths. r(t) is the reference or 
the given task goal, p(t) is  an internal processing of an 
individual human brain, and h(t) is the result of an internal 
brain processing output as a hand motion to control the joystick 
interface. j(t) is the output from the joystick which is generated 
by the human operator hand movement, u(t) is the control 
output from the PID controller to the pendulum-driven capsule 

simulation according to the desired angle. (t) and x(t) are 
outputs from the simulation model which appear on the screen 
of the virtual simulation platform and they act as feedback to 
the human operator visual perception. ep(t) is the simulation 
output information plus any external disturbances such as 
environmental distractions and unrelated activities on the 
screen.  

B. The pendulum-driven capsule model and simulation 

The schematic diagram of a pendulum-driven capsule 
model is shown on Fig. 2. The model is adopted from [22] with 
additional proportional-integral-differential (PID) controller 
applied to control the input torque to achieve the desired angle 



of the pendulum. In other words, the same mathematical model 
in [21] is applied with additional PID controller. The PID 
controller constants – kP, kI, kD are 0.7, 0.7, and 6.0,  
respectively. The control output gain factor is 10. Table I 
shows the parameters for the pendulum-driven capsule system. 
Fig. 3 shows the 3D simulation of the model that is used for the 
experimentation. 

 

Figure 2 The pendulum-driven capsule system model. 

TABLE I. THE CAPSULE SYSTEM PARAMETERS 

Ball mass 

(kg) 

Capsule 

mass (kg) 

Shaft 

length (m) 

Surface 

friction 

coefficient 

Gravity 

constant 

(m/s2) 

0.2 0.5 0.3 0.5 9.81 

IV. THE EXPERIMENT  

The experiment is designed to investigate the human 
operator learning and skill performance when operating the 
pendulum-driven capsule system. This capsule system is 
chosen because it has a number of unique features [23], [24]. It 
is an unusual machine by its underactuated mechanism which 
is a good point in order to avoid benefit from past experience. 
A direct control of the angle of the pendulum requires hand 
motion skill to swing the pendulum at the right oscillation and 
timing to initiate the capsule robot to displace. As a 
consequence, it requires both learning and skill to operate this 
system. 

As described in the interaction model, a joystick is used as 
the interaction interface for the human operator to operate the 
system. Fig. 4 shows the joystick and the corresponding axis 
used to control the angle of the pendulum directly. The direct 
angle control means that when the joystick is pushed towards 
negative x direction it will rotate the pendulum angle of the 
capsule system to left hand side which means toward the 
positive 90 degrees of the pendulum-driven capsule model 
(Fig. 2). A screenshot of the 3D simulation of the pendulum-
driven capsule system is shown on Fig. 3. The sampling 
interval was at 10 milliseconds. 

 
Figure 3 The screenshot of the simulation platform. 

 
Figure 4 The joystick control interface and the axis uses to control the 

pendulum angle. 

The given control task in this experiment is a direct 
pendulum angle control to displace the capsule to the specified 
direction i.e. left or right. A human controller has full control 
over the desired angle of the pendulum by pushing the joystick 
handle. The effect of pushing the handle will cause the capsule 
to move erratically back and forth. This is normal because of 
the mechanism of the inverted pendulum-driven capsule 
system. However, it is controllable for the intended 
displacement direction. 

Each session of the experiment for each participant 
contained learning sessions prior to the actual performance 
trials. The actual trials consist of 6 trials separated into 3 trials 
for right and 3 trials for left movement. There is no time 
limitation for the learning session while the actual trial is 
limited to 20 seconds a session which means a participant has 
to control the capsule to the specified direction as far as 
possible within the provided time limit. 

Nine participants ages between 21 and 50 attended this 
experiment. Each of them agreed and signed the consent form 
prior to the experiment session. The participants have different 
personal attributes such as ages, handedness, and knowledge 
about principles related to the machine which could influence 
the control learning and performance. 

V. RESULTS  

This section summarises the results from the 
experimentation conducted by nine participants. The naming 
conventions are described in this early of the section for 
clarification of the terms and abbreviations. The ‘P’ letter 
followed by a number is used for participant identity. The ‘R’ 
and ‘L’ letter indicate right or left movement task followed by a 
trial number in Figure 5. For examples, ‘R1’ stands for the first 



right trial, ‘R2’ for the second right trial, and so on. Therefore, 
there are nine participant labelled from ‘P1’ to ‘P9’. Each of 
the participant did perform the experiment for ‘R1’ to ‘R3’ and 
‘L1’ to ‘L3’ produced a total of 54 trials for the entire 
experimentation from 9 participants. 

The participant’s attributes and knowledge regarding the 
theory related to the capsule system has been shown in Table 
II. Eight of them are male and seven of them are right handed 
while the other two are left handed for handedness. All of them 
know Newton’s law of motion which is a basis to this capsule 
system model and almost all of them know about a pendulum. 
However, approximately half of them know an inverted 
pendulum and only three of them understand the principle on 
the inverted pendulum. None of the participants has tried this 
experimentation platform before. 

TABLE II. THE PARTICIPANTS ATTRIBUTES AND KNOWLEDGE 

P G A H N Pe IPe IpeP TBF 

P1 M 31-35 Right Y Y N N N 

P2 M 36-40 Right Y Y Y N N 

P3 F 31-35 Right Y Y N N N 

P4 M 21-25 Right Y N N N N 

P5 M 26-30 Left Y Y N N N 

P6 M 26-30 Right Y Y Y N N 

P7 M 41-45 Left Y Y Y Y N 

P8 M 46-50 Right Y Y Y Y N 

P9 M 26-30 Right Y Y Y Y N 

P=Participant Identity, G=Gender, A=Ages, H=Handedness, N=Knowledge on Newton law of motion, 

Pe=Knowledge on pendulum, IPe=Knowledge on inverted pendulum, IPeP=Knowledge on inverted 
pendulum principle, TBF=Has the participant tried this experiment before 

TABLE III. LEARNING TIME, AVERAGE DISPLACEMENT, AND AVERAGE SPEED   

P 
LT 
(sec) 

Avg 

R 

Avg 

R 

Avg 

L 

Avg L 

Spd 

Tot.  

ABS 

Tot. 

Avg 

Dis 
(cm) 

Spd 
(cm/s) 

Dis 
(cm) 

(cm/s) Dis 
(cm) 

Spd 
(cm/s) 

P1 78.79 0.89 0.045 -2.90 -0.145 11.38 0.95 

P2 100.76 3.07 0.154 -5.34 -0.267 25.22 2.10 

P3 212.9 2.12 0.106 -5.15 -0.257 21.79 1.82 

P4 260.8 0.53 0.026 -2.81 -0.141 10.02 0.84 

P5 141.97 2.07 0.104 -2.06 -0.103 12.39 1.03 

P6 318.09 2.42 0.121 -2.02 -0.101 13.33 1.11 

P7 98.88 4.31 0.216 -3.82 -0.191 24.41 2.03 

P8 97.51 0.77 0.038 -1.26 -0.063 6.09 0.51 

P9 586.88 0.60 0.030 -0.90 -0.045 4.50 0.38 

P=Participant identity, LT=Learning time, Avg R Dis=Average right displacement, Avg L Dis=Average 

left displacement, Avg R Spd=Average right speed, Avg L Spd=Average left speed, Tot. ABS Dis=Total 
absolute displacement gained, Tot. Avg Spd=Total average absolute speed (cm/s) 

Table III shows the results – learning time prior to the actual 
performance, average displacement achieved and average 
speed. A total absolute displacement and a total average speed 
are also calculated to see an overall performance of each 
participant. The absolute value of final capsule position for 
each of the trial for every participant is plotted and shown on 
Fig. 5.  

VI. DISCUSSIONS 

In this section, interpretation of the results concerning 
learning and skill performance in the context of the capsule 
system control task is discussed.  

According to Table III the amount of learning time (LT) 
does not reflect the performance of the actual trials. The best 
total absolute displacement achieved belongs to ‘P2’ who took 
100.76s for learning time while ‘P9’ used 586.88 to learn to 
control the robot but the total absolute displacement achieved 
for ‘P9’ is the worst among all participants. This indicates that 
the participant ‘P9’ spent a large amount of time to figure out 
how the capsule system works but could not acquire sufficient 
skill to control the capsule system. 

 
Figure 5 The absolute value of final capsule position. 

 



The skill performance indicator is a final position of the 
capsule achieved within the time limitation of 20 seconds for a 
trial. As shown on Fig. 5 the highest performances belong to 
‘P2-L3’ and ‘P3-L2’. It is apparent that the best performer, P2, 
also exhibits the highest total average speed at 2.10 cm/s (Tot. 
Avg Spd) as shown on Table III. ‘P2’ shows consistent 
performance. The lowest trial belong to ‘P4-R2’, however, the 
total average speed is on a moderate level at 0.84 cm/s. 

Fig. 6 shows the average absolute speed for right and left 
control task. It is interesting that almost all of the right-handed 
participants gained more speed on the control task for the given 
left hand side movement task. Likewise, the left-handed 
participants, ‘P5’ and ‘P7’ achieved more speed on their right 
hand side tasks. This could be an effect of hand grasping 
orientation on the joystick control interface. This interesting 
fact conforms to performance achieved by the best trial which 
belongs to the left movement task by right handed participant 
‘P2-L3’, while the maximum displacement achieved from left 
handed participants belongs to the right movement task ‘P7-
R1’. 

 
Figure 6. Graphs of the average absolute speed. 

 

Figure 7. Variance of absolute displacement for each participant. 

The variance of the absolute displacement achieved for each 
participant is calculated and is shown in Fig. 7. This value 
indicates consistency of performance for each of the participant 
across the performance trials. It could be used as a ‘learning 
index’. For example, the participant ‘P3’ gained the highest 
learning performance because the first three right side trials 
(Fig. 5) are not very well but in the next three left trials the 
participant achieves almost as long displacement as the highest 

displacement achieved by ‘P2’. This interpretation method is 
also applied to the participant ’P4’ who gained a high learning 
performance indicator (variance). Although the participant ‘P7’ 
achieved good performance across all of the trials, the variance 
is relatively low. This means there was not much learning 
gained by this participant.  

Fig. 8 shows the control input characteristics of two best and 
two worst trials from all of 54 trials. The two best trials from 
the participant ‘P2-L3’ and ‘P3-L2’ are shown on Fig. 8 (a) and 
Fig. 8 (b), respectively. The worst two performance trials are 
from participant ‘P4-R2’ and ‘P1-R3’ which are shown in Fig. 
8 (c) and Fig. 8 (d), respectively.  

The frequency characteristic of the control input from Fig. 8 
shows clues for the high performance trials. The control inputs 
with high frequency i.e. around 1 Hz or more are from both of 
the highest trials, ‘P2-L3’ and ‘P3-L2’. Also, this frequency is 
performed and maintained across the performance trials. In 
other words, it is performed at consistent frequency across the 
trials. In contrast, the low skill performer exhibits low 
frequency action, inconsistent across the trial. These control 
input characteristics were performed by ‘P4-R2’ and ‘P1-R3’. 

VII. CONCLUSIONS AND FUTURE WORKS 

Human learning and skill performance to control an 
underactuated pendulum-driven capsule system is studied in 
this paper. The human interaction model with the capsule 
system is proposed to explain the flow of control data and 
information throughout the system paths. The experimentation 
is carried out with 9 participants to study their learning and 
skill to control the capsule system. These participants exhibit 
different learning strategies, control strategies, and 
performance outcomes.  

In this study, the learning time used prior to the actual 
performance does not reflect the actual trial sequences. 
However, the variance of the displacements achieved across all 
trials indicates the learning achievement. The final 
displacement of the capsule and the corresponding average 
speed are skill performance indicators. It appears that the 
participant who is able to oscillate the control input at high, 
consistent frequency, and at the appropriate portion on the 
joystick x-axis has achieved relatively high performance. 

Although the angle control pattern generated by human 
operator differs from the 6 steps control strategy in [22] the 
pattern successfully drives the capsule system forward, it is not 
a perfect trajectory as in automatic control. This is normal as a 
human being who can heuristically learn and apply knowledge 
at the facing circumstance to solve the problem but does not 
need to be mathematically/objectively perfect as in the 
automation. 

In future works, an analysis of the time series of the control 
input will be studied to utilise the details of the participants 
hand control behaviour on the joystick interface, for example 
similarity, trend and seasonality of the control input. In 
addition, future experiment will include biometric measurement 
such as eye gaze, body movement, and surface brain activity 
during the participants control activity. These measurements 
will give a deeper understanding of the human learning, skill 



performance, and control behaviour on the robot system control 
task under the HAM concept. 
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