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Abstract—The employ of Wireless Visual Sensor Networks (WVSNs)
has grown enormously in the last few years and have emerged in distinctive
applications. WVSNs-based Surveillance applications are one of the important
applications that requires high detection reliability and robust tracking,
while minimizing the usage of energy to maximize the lifetime of sensor
nodes as visual sensor nodes can be left for months without any human
interaction. The constraints of WVSNs such as resource constraints due to
limited battery power, memory space and communication bandwidth have
brought new WVSNs implementation challenges. Hence, the aim of this
paper is to investigate the impact of adaptive Compressive Sensing (CS) in
designing efficient target detection and tracking techniques, to reduce the
size of transmitted data without compromising the tracking performance as
well as space and energy constraints. In this paper, a new hybrid adaptive
compressive sensing scheme is introduced to dynamically achieve higher
compression rates, as different datasets have different sparsity nature that
affects the compression. Afterwards, a modified quantized clipped Least
Mean square (LMS) adaptive filter is proposed for the tracking model.
Experimental results showed that adaptive CS achieved high compression
rates reaching 70%, while preserving the detection and tracking accuracy
which is measured in terms of mean squared error, peak-signal-to-noise-ratio
and tracking trajectory.

Index Terms—Adaptive Compressive Sensing, Compressive
sensing, LMS, Surveillance applications, Target tracking, WVSN

I. INTRODUCTION

Wireless Visual Sensor Networks (WVSNs) have gained
significant importance in the last few years and have emerged
in several distinctive applications [1],[2]. Due to the evolve-
ment of new technologies and techniques, there are immediate
needs for automated energy-efficient surveillance systems.
WVSN has targeted various surveillance applications in com-
mercial, law enforcement and military purpose as well as
traffic control, security in shopping malls and amusement
parks. Systems have been developed for video surveillance
including highway, subway and tunnel monitoring, in addition
to remote surveillance of human activities such as elderly or
patients care.

Visual sensor nodes are resource constraint devices bringing
the special characteristics of WVSNs such as energy, storage
and bandwidth constraints which introduced new challenges
[3]. In WVSN large data sets such as video, and still images
are to be retrieved from the environment requiring high storage
and high bandwidth for transmission. Higher complexity of
data processing and analysis is also challenging which are

all quite costly in terms of energy consumption. Furthermore,
wireless channels in surveillance applications are subject to
noisy conditions; therefore, detection and tracking reliability
within such resource constrained condition is the main chal-
lenge when designing WVSN surveillance applications. En-
ergy efficient processing and efficient compression techniques
are the strongest candidates to overcome such constrains while
transmitting data for WVSN applications and hence minimize
energy expenditure [2],[4]. Recently, it is very challenging
in designing a wireless sensor networks with increased life
time [5]. Where a node called WSNMSP430 is developed
based on the analysis of the various low power components
available in the market and also an energy model was created
for processors, transceivers and sensors for predicting the life
time of the WSN node.

Much work is present in the literature for surveillance
applications within WVSNs [6], [7],[8]. Moreover, there is
significant literature for target tracking surveillance applica-
tions in WVSN. Kalman filtering [9],[10] is relatively the best
linear estimator for target tracking. Kalman filters are robust
under optimal conditions, otherwise adaptive approaches are
needed to solve these problems which can be either com-
putationally expensive or not always be applicable in real
time tracking. To overcome the problems such as changes
in the background, occlusion, color, texture and size. A novel
combined Gaussian hidden Markov model and Kalman Filter
is proposed in [11] for multiple target detection and tracking
Surveillance applications
Particle filtering which is known to be suitable for real
time tracking and non-linear non-Gaussian processes, it relies
on motion parameter estimation and probability estimates
[12]. Subsequently, the performance of the particle filter in
terms of tracking reliability decreases with noisy or low
resolution frames and with false positive detection of target
[10]. Classical active contour [13] for target tracking fails
in tracking multiple targets at once so occlusion problems
are difficult to solve. In [14], the active contour is modified
to resolve occlusion problem by performing merging and
splitting when two targets get close together or move apart.
However, there is a probability that the target is lost if the
displacement of the target between two consecutive frames
is large. Least Mean Sqaure (LMS) algorithm is relatively



simple, has much lower computational complexity than the
original Kalman filters and other adaptive algorithms; it does
not require correlation function calculation nor does it require
matrix inversions. Moreover, it is suitable for real time image
applications [15],[16].

Based on the above literature, to attain a trade off between
computational complexity and detection and tracking accu-
racy in the context of energy constrained WVSN, an image
processing scheme is required with optimal pre-processing
and post-processing can provide intended target detection
and tracking accuracy within energy constraint nature of
WVSN. Moreover, high volume data sets acquired in WVSN
surveillance applications, should be represented in such a way
that it requires optimum storage, energy, and allow reliable
transmission due to the constraint on the physical and radio
resources. In a surveillance application within WVSN, an
image is captured and required to be sampled for storage as
well as to be transmitted through wireless channel. According
to Shannon-Nyquist sampling theory the minimum number of
samples required to accurately reconstruct the signal without
losses is twice its maximum frequency [17]. It is always
challenging to reduce this sampling rate as much as possible,
hence reducing the computation energy and storage. Recently
proposed Compressive Sensing (CS) [17] is expected to be
a strong candidate to overcome the above mentioned limita-
tions where CS has been considered for different aspects of
surveillance applications due to its energy efficient and low
power processing as reported in [18],[19]..

CS theory shows that a signal can be reconstructed from
far fewer samples than required by Nyquist theory as it is
always challenging to reduce the sampling rate as possible,
provided that the signal is sparse (where most of the signal’s
energy is concentrated in few non-zero coefficients) or
compressible in some basis domain [20].
In [21] a new method of facial expression recognition based
on the sparse representation classifier is presented where
CS has been proposed as an efficient classification method.
The newly-emerged CS theory has been used to form a
new classification technique showing promising performance
on pattern recognition. In [18], compressive sensing for
background subtraction and multi-view ground plane target
tracking are proposed. A convex optimization known as basis
pursuit or orthogonal matching pursuit is exploited to recover
only the target in the difference image using the compressive
measurements to eliminate the requirement of any auxiliary
image reconstruction. Other work in compressive sensing for
surveillance applications has been proposed in [22], where an
image is projected on a set of random sensing basis yielding
some measurements. In [19] a novel compressive particle
filter for tracking one or more targets in video is presented
using a reduced set of observations. It is shown that, by
applying compressive sensing ideas in a multi-particle-filter
framework, it is possible to preserve tracking performance
while achieving considerable dimensionality reduction,
avoiding costly feature extraction procedures. Additionally,
the target locations are predicted directly, without the need
to reconstruct each image. However, the proposed algorithm

failed to provide acceptable performance for fast moving
targets. In addition, it is not designed for WVSN applications
thus constraints of WVSN such as energy and memory
constraints were not taken into consideration.

Another promising direction is the adaptive CS, in [23],
energy efficient data collection in WSN using adaptive com-
pressive sensing is proposed. An adaptive approach is pro-
posed to select a routing path by choosing sensors required to
transmit their data. However, in this approach adaptive CS is
only applied for sensor nodes selection and no compression
is performed on the transmitted data. A heuristic to solve the
optimization problem (which is proven NP-hard) is proposed
in [24] to find a measurement matrix that maximizes the infor-
mation gain per energy expenditure. It was shown that under
suitable conditions, one can reconstruct an (N × N ) matrix
of rank r from a small number of its sampled measurements.
This is done by solving an optimization problem, provided
that the number of measurements is of order of N1.2r log n,
exact matrix recovery would be guaranteed with a reduced
number of measurements. In [25, 26], an adaptive approach
to compressed sensing is proposed using a single pixel camera.
Instead of using a representation (such as pseudo-random
binary masks) that is incoherent with a conventional transform
(as wavelets) to acquire the visual data. The image is sampled
directly in the wavelet domain by tuning the Digital Micro-
Mirror Device (DMD) of the single pixel camera to directly
collect only the significant wavelet coefficients.

Most of the CS algorithms proposed [18, 19, 22, 27] are
non-adaptive which means the random measurement matrix
is not chosen according to information collected. An im-
portant issue is to make the measurement matrix adaptive.
Subsequently, most existing work in adaptive compressive
sensing use heuristic techniques which are computationally
expensive, hence taking only into consideration the accuracy
of the approximate data field without considering the energy
factor. Therefore, considering the resource constraint within
WVSN for surveillance applications, the feasibility of such
feature specific adaptation of CS for reliable target detection
and tracking is the major focus of the proposed investiga-
tions. Hence, in this paper, the impact of adaptive CS is
investigated in designing target detection and tracking tech-
niques for WVSNs-based surveillance applications, without
compromising the energy constraint which is one of the main
characteristics of WVSNs. Adaptive CS is expected to reduce
the size of sampled data with low complexity processing due
to its low power simple process [20], hence saving space,
energy of processing and transmission as well as channel
bandwidth. Hence, a compressive sensing-based single/multi
target tracking using LMS is proposed which is expected to
reduce energy consumption, space requirement and commu-
nication overhead, with acceptable tracking reliability which
will be represented as minimal mean square error (MSE).

The rest of the paper is organized as follows, Introduction to
CS is presented in Section II. Section III presents the proposed
system model. The proposed technique for adaptive CS-based
target tracking is given in Section IV. Simulations and results
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Fig. 1. Compressive sensing measurement process

are provided in Section V and finally the conclusion in Section
VI.

II. COMPRESSIVE SENSING THEORY

Suppose image X of size (N × N) is K-sparse that either
sparse by nature or sparse in Ψ domain, CS exploits the
sparsity nature of frames, so it compresses the image using
far fewer measurements [28],[20],[29]. Although, it is not
necessary for the signal itself to be sparse but compressible
or sparse in some known transform domain Ψ according
to the nature of the image, smooth signals are sparse in
the Fourier basis, and piecewise smooth signals are sparse
in a wavelet basis. Ψ is the basis invertible Orthonormal
function of size (N × N) driven from a transform such as
the DCT, fourier, or wavelet, where K � N, that is, only K
coefficients of x are nonzero and the remaining are zero, thus
the K-sparse image X is compressible. CS then guarantees
acceptable reconstruction and recovery of the image from
lower measurements compared to those required by shannon-
Nyquist theory as long as the number of measurements
satisfies a lower bound depending on how sparse the image
is. Hence, X can be recovered from measurements of size
M where M ≥ K logN � N. Eq.(1) shows the mathematical
representation of X

X = ΨS (1)

S contains the sparse coefficients of X of size (N × N),
si =< X, ψT

i >= ψTX, S = ΨTX. The image is represented
with fewer samples from X instead of all pixels by com-
puting the inner product between X and Φ, namely through
incoherent measurements Y in Eq.(2), where Φ is a random
measurement matrix of size (M× N) where K << M << N.
Fig.1 shows the CS measurement process [30].
y1 =< x,φ1 >, y2 =< x, φ2 >,· · · ,ym =< x, φm >.

Y = ΦX = ΦΨS = ΘS (2)

Since M < N, recovery of the image X from the measure-
ments Y is undetermined, However, if S is K-sparse, and M ≥
K logN it has been shown in [20] that X can be reconstructed
by `1 norm minimization with high probability through the
use of special convex optimization techniques without having
any knowledge about the number of nonzero coefficients of
X, their locations, neither their amplitudes which are assumed
to be completely unknown a priori [29],[28],[31]

min‖X̂‖`1 subject to ΦX̂ = Y (3)

Convex optimization problem can be reduced to linear pro-
gramming known as Orthogonal Matching Pursuit (OMP)
which was proposed in [32] to handle the signal recovery
problem. It is an attractive alternative to Basis Persuit (BP)
[33] for signal recovery problems.The major advantages of
this algorithm are its speed and its ease of implementation.
As seen, the CS is a very simple process as it enables simple
computations at the encoder side (sensor nodes) and all the
complex computations for recovery of frames are left at the
decoder side or BS.

III. SYSTEM MODEL

This work proposes an adaptive compressive sensing model
which is expected to reduce space requirements and com-
munication overhead with low processing complexity while
preserving detection and tracking accuracy.

Consider for a surveillance application a WVSN model
composed of V visual sensor nodes and one or more BS.
Each sensor node i is required to capture images from a
video sequence and detect the presence of objects. At the
time where a sensor node enters a ’wake-up’ state, the time
reference for the frame count is assumed to be t = 0. Hence,
a single snapshot at t = 0 is expected to be stored within the
memory allocated at the sensor node; that is assumed to be
the background for the intended target tracking; denoted as
Xb. The following frames are the subsequent captured frames
Xt with t > 0. Hence, Xb and Xt are the background and
test images respectively of size (N× N) each. Let us assume
most features of the targets are known to the monitoring
center. However, the existence and the location of targets are
required for monitoring. The receiver or BS also has prior
explicit information of the background. To achieve higher
compression rates, the foreground target is extracted first
by background subtraction resulting in the difference frame.
Hence, assuring sparsity as the difference frame is always
sparse regardless the sparsity nature of real frames. Within
the image frame, The extraction of foreground target Xd is
achieved at each sensor node where adaptive CS is then
applied for transmission through the wireless channel. CS
adaptively chooses the compression rate according to the
sparsity nature of difference frames which varies from one
dataset to another. The training/calibration phase is pre the CS
phase and is discussed later in Sec.IV-B. At the BS side, the
receiver decompresses the received compressed data obtaining
X̂t to predicts the intended target’s next location for tracking.
The system model for the proposed WVSN is shown in Fig.
2

IV. PROPOSED ADAPTIVE CS-BASED TRACKING
ALGORITHM

A. Foreground detection and morphology operations

At each sensor node, after each image frame is being
captured, some preprocessing might be required. In our case,
to assure sparsity within the image frame, the foreground
target is extracted first based on thresholding the absolute
difference between current frame Xt and background frame
Xb, Xd = |Xt −Xb| > γ, where γ is a given threshold to
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Fig. 2. The proposed model for WVSN-based surveillance application

extract the foreground target by background subtraction result-
ing in the difference frame Xd. Hence, instead of producing
the compressed measurements for Xb and Xt separately, the
compressed measurements are produced directly for Xd, as
the difference frame is always sparse regardless of the sparsity
nature of real frames.
Once the foreground is detected, morphology operations [34]
such as erosion and dilation operations are then applied for
noise removal and blob formation respectively. The purpose
of morphological processing is primarily to remove imper-
fections added during segmentation, in the context of our
work, after background subtraction an opening or closing
operations are then applied depending on the nature of images.
Sometimes an opening operation is performed where erosion
is first applied as a noise removal method by applying the
specified structuring element to remove unwanted pixels,
followed by dilation to fill the holes within target objects
forming a connected object blob by linking the unconnected
parts of the target. Hence, any regions that have survived the
erosion are restored to their original size by the dilation. Or
a closing operation, obtained by dilation of the image using
the specified structuring element to form a connected object
blob, followed by erosion of the resulting image to restore
the original size of objects. It can fill holes in the regions
while keeping the initial region sizes[34]. Fig.3 shows the blob
formation after background subtraction and morphological
operations

B. Proposed adaptive Compressive Sensing

After the foreground blob Xd is being extracted from the
difference image, the proposed adaptive CS is then applied to
Xd by multiplying it by a random projection sensing matrix
Φ producing the compressed measurements Yd. At the BS
side, the received compressed data is decompressed for the
reconstruction of the estimated data X̂d. As mentioned, Xb is
known to the BS, making it possible to reconstruct the original
test frame X̂t by adding Xb to X̂d.

For any given scheme, different M and Φ are needed, as

(a) Walking men

(b) Shopping center 1

(c) Shopping center 2

Fig. 3. First row in (a),(b) and (c) shows test frames and background
subtraction results and blob formation in second row

stated earlier the value of M is inversely proportional to the
degree of sparsity of an image. If the same value of M is
used for all different schemes, it is expected that the reliability
of target detection will be different as the degree of sparsity
varies from one image to another. For this reason there is
a great challenge for adaptive CS by making M variable
depending on how sparse the image is. For the adaptive CS,
the CS process is preceded by a calibration phase. During
that phase an Automatic Repeat Query (ARQ) transmission
protocol is used between sensor nodes and the receiver side,
as a feedback is needed for the adaptation phase. Initially,
an arbitrary value of M is chosen according to a sparsity
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measure and is used to obtain the compressed measurements
Yd. The sensor node is then set to transmit Yd to the
receiver side where the image is to be reconstructed, and based
on the reconstruction error a decision is made whether the
reconstruction is satisfactory or not. In case the reconstruction
results are satisfactory, the receiver node sends a ’zero’ flag
through the feedback channel ending the calibration phase;
otherwise a ’one’ flag is to be sent. While the sensor node
receives a ’one’ flag, it is expected to change the value of M
and change Φ accordingly, the sensor node repeats the search
for an optimum value of M at the CS adaptation process till it
receives a zero feedback from the receiver. At this point, the
optimum values for M and Φ obtained are used next in the
CS process. Fig.4 shows a flow chart summarizing the entire
adaptive CS process. Below are the steps undertaken during
the entire process

• Step 1: Xd = |Xt − Xb| > γ, where γ is a given thresh-
old to extract the foreground target

• Step 2: Φ is a randomly chosen sensing matrix from the
adaptive process of size M× N, where M� N

• Step 3: produce the compressed measurements
Yd = ΦXd

• Step 4: sensor nodes transmits Yd through the wireless
channel

• Step 5: at the receiver side, Φ must be known for
the decompression of Yd. X̂d is reconstructed from the
compressed measurements Yd, resulting in a frame with
only the foreground target present.

• Step 6: the real frame X̂t is then obtained by adding
X̂d to the background frame Xb which is also has to be
known to the receiver side apriori.

• Step 7: the targets locations are obtained after recon-
structing the real frame producing a trajectory for the
complete path of each moving target

C. Least Mean Square (LMS) tracking
The LMS algorithm, is referred to as adaptive filtering

algorithm since the statistics are predicted continuously, hence
it can adapt to changes. LMS incorporates an iterative proce-
dure during the training phase where it predicts the required
coefficients to minimize the mean square error (MSE). This is
accomplished through successive corrections to the expected
set of coefficients which eventually leads to the minimum
MSE.

The outputs are linearly combined after being scaled using
corresponding weights. The weights are computed using LMS
algorithm based on MSE criterion. Therefore the spatial filter-
ing problem involves estimation of a signal from the received
signal, by minimizing the error between the reference signal,
which closely matches or has some extent of correlation
with the desired signal estimate and the output. The LMS
algorithm is initiated with an arbitrary value w(0) for the
weight vector at n = 0. The successive corrections of the
weight vector eventually leads to the minimum value of the
mean squared error. The weight update can be given by the
following equation

w(n + 1) = w(n) + µx(n)e(n) (4)

Fig. 4. Flowchart for the adaptive CS process

where, x(n) is the input signal, µ is the step size parameter,
e(n) is the MSE between the predicted output y(n) and the
reference signal d(n) which is given by

e(n) = (d(n)− y(n))2 (5)

the output y(n) is calculated as follows

y(n) = x(n)w(n) (6)

µ is selected by the autocorrelation matrix of the filter
inputs. In other words, the tap-weights can converge to an
optimum result if and only if the step-size parameter µ is
selected as 0 < µ < 1/λmax

where, λmax is the maximum eigenvalue of the autocorre-
lation matrix which has a relationship of the input signal x(n).
The smallest the eigen value spread the faster the convergence
rate. Eigen value spread is defined as the ratio between the
maximum and minimum eigen values. The LMS algorithm
simplifies the estimation of autocorrelation matrices by us-
ing the instantaneous values of the autocorrelation matrices
instead of their actual values.

There are several variants of the LMS algorithm present
in the literature [35–37] to deal with the shortcoming of its
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basic form and aim for lower computational complexity and
faster adaptation processes. For the proposed model, target
tracking is achieved using a modified quantized clipped LMS
technique to predict the target’s next location, by modifying
the ”sgn” function as shown below with predefined threshold
values; D1 and D2 used to clip the input data.

mqsgn(x(n)) =

 1 x(n) > D1

0 −D2 < x(n) < D1

−1 x(n) < −D2

V. SIMULATIONS AND RESULTS

Based on the system model proposed, simulations and
experiments are conducted to evaluate the performance of
the adaptive CS-based target detection and tracking algorithm.
Simulations are performed for the WVSN-based surveillance
application in both outdoor and indoor scenes for single and
multi-target tracking. Background and target’s appearance are
assumed to be static to investigate the effect of adaptive CS
on the detection and tracking algorithms, hence schemes are
chosen to reflect this assumption. Moreover, to illustrate the
relation between the number of measurements required for
adaptive CS to guarantee reconstruction and how sparse the
image is. Simulations are performed on different schemes with
different sparsity levels as in Fig.3; for the ”outdoor scheme”,
”Walking men” is chosen to resemble multi target tracking
captured by [38]. While ”indoor scheme”, ”Shopping center
1” and ”Shopping center 2” filmed for the EC funded CAVIAR
project found in [39] for different indoor scenes tracking a
single target.

Mean square error (MSE) and peak signal to noise ratio
(PSNR) are used as performance indicators to test the re-
liability of adaptive CS. MSE and PSNR are compared for
different number of CS measurements M, where the MSE
is the reconstruction error measured between real and recon-
structed frames and PSNR is measured after frames recovery
to reflect the quality of image reconstruction which will later
on reflects the ability of reliable tracking. The background
frame and Φ are known to the receiver node. Two candidate
sensing matrices have been compared; normally distributed
random numbers using Matlab function ”randn” and a walsh-
hadamard. Although the measurements are defined by a matrix
multiplication, the operation of matrix-by-vector multiplica-
tion is seldom used in practice, because it has a complexity of
O(MN) which may be too expensive for real time applications.
When a randomly permutated Walsh-Hadamard matrix is used
as the sensing matrix, the measurements may be computed by
using a fast transform which has complexity of O(K log(N))
[40]. The Hadamard matrix, is an (N × N) square matrix
whose entries are either +1 or -1 and whose rows are mutually
orthogonal, the matrix is first randomly reordered then, M
samples are randomly chosen to construct the (M×N) random
sensing matrix Φ.

As stated earlier, the ability of reliable tracking depends on
acceptable recovery of images. In other words, if CS fails in
image reconstruction the targets location can not be detected.
Hence, choosing the right value of M is critical in image
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Fig. 5. Comparing reconstruction MSE and PSNR using randn and walsh
sensing matrices for ”Walking men outdoor scheme”

reconstruction and afterwards tracking. It is clear from the
results in Fig.5 for the outdoor scheme and Fig.6 and 7 for
the indoor schemes that for different sparsity levels differ-
ent values of M and compression rates are required. When
reaching optimum value of M least MSE while preserving a
33dB PSNR. For illustration, MSE decreases as M increases
till reaching the optimum value, it has been shown that the
lower bound on M is depending on how sparse the difference
frame Xd is or in other words proportional to the ratio between
the number of non-zero coefficients and the total number of
pixels in a frame. For ”outdoor scheme”, adaptive CS sets
M to 90 in Fig.5(a) to achieve satisfactory results. While for
”indoor scheme”, it is obvious from Fig.6(a) and 7(a) that for
single-target tracking (where there is lower number of non-
zero coefficients), better MSE is achieved with lower M for
the ”indoor scheme” , reduced to 50 and 60 for ”Shopping
center 1” and ”Shopping center 2” respectively, compared to
multi-target tracking while maintaining least MSE and 33dB
PSNR as in Fig.6.

As for MSE, Fig.5(b), 6(b) and 7(b) show the effect of
M on PSNR for the different schemes. For each scheme,
according to the sparsity nature of each scheme, the number
of measurements M required will differ to obtain guaranteed
reconstruction which is defined here in terms of PSNR. For
low values of M it is hard to achieve a good PSNR, to
reach the acceptable value, M should increase till reaching its
optimum value as discussed earlier. To illustrate this for the
”indoor scheme”, to achieve a PSNR of ≈ 33dB, M reached
≈ 55, while for the ”outdoor scheme” if the same M is used,
we could not attain a PSNR higher than 25dB.
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Fig. 6. Comparing reconstruction MSE and PSNR using randn and walsh
sensing matrices for ”Shopping center 1 indoor scheme”

The above simulation were carried out using two different
sensing matrices, Randn and walsh-Hadamard. They are com-
pared with respect to MSE and PSNR as in Fig.5, 6 and 7. It
is clear from the results that when reaching the optimum value
of M both sensing matrices perform nearly the same except
in some cases in Fig.6 shows that Randn gives slightly a
better performance than Hadamard. But this can be negligible
when compared to the reduction in complexity gained by
using Hadamard matrix which helps in accomplishing the
main objective to save sensor nodes power and as a result
maximizes their lifetime.

Fig.8 and 9 summarize and demonstrate the effect of the
target size ratio on the number of measurements M needed in
terms of reconstruction MSE and PSNR (the target size ratio
is expressed as a ratio between non-zero pixels representing
the target and the total size of the image frame, which reveals
how much space the target acquires and how sparse the image
is). It is clear from Fig.8 that for smaller target sizes, lower
values of M are used while at the same time achieving the
least MSE and PSNR of ≈ 33dB as in Fig.9(a) and 9(b),
respectively. While for larger target sizes, a higher M is
required to achieve the same performance achieved for frames
with smaller targets. Experiments were carried out using the
same M set to 50 for the different schemes (different sparsity
levels). For example, frames with small size targets gave better
reconstruction results in terms of least MSE and a 33dB
PSNR as in Fig.9(a) and 9(b). Whereas, if the targets size
grew bigger such as acquiring 60% space of the total frame
size, with M set constant reconstruction results in high MSE
and only 18dB PSNR. In that case M should be set to 90 or
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Fig. 7. Comparing reconstruction MSE and PSNR using randn and walsh
sensing matrices for ”Shopping center 2 indoor scheme”
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Fig. 8. Relation between the percentage ratio of target size:frame size vs.
M

higher based on the sparsity nature to reach a low MSE and
a PSNR of ≈ 30dB that was attained by lower M (M = 50)
when compressing frames with targets of size < 10% of the
frame size. These results reflect the constraint of the lower
bound of M discussed in sec.II and give a key to the problem
when M is required to be kept as small as possible. Where
in that case the size of targets is controlled by zooming or
changing the location of sensor nodes while bearing in mind
to keep the scene of interest in the camera’s field of view.
By taking snapshots from a further location the total space
acquired by the target is hence reduced and as a result M can
be reduced, and the goal of reducing the size of transmitted
data is met .

Another performance indicator is the correlation coefficient.
After reconstructing the compressed measurements, the corre-
lation coefficient indicates how likely the reconstructed frame
correlates with the original one. Fig.10 shows by increasing
M till reaching its optimum values the correlation coefficients
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Fig. 9. Relation between the percentage ratio of target size:frame size and
(a) reconstruction MSE, (b) average PSNR
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Fig. 10. Correlation coefficient for different M

is nearly 100%, this implies that adaptive CS has not affected
the image quality after recovery, whereas less number of
measurements were required reducing the size of transmitted
data.
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Fig. 11. Probability of detection vs different values of M

Fig.11 shows the probability of detection for different
values of measurements M , it is clear from the graph that
for lower values of M the target is misdetected. This reflects

the fact that the reconstruction can not be guaranteed with
lower values of M . The probability of detection increases till
reaching 100% as M increases to its optimum value selected
during the adaptive CS process.
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(a) M=40
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(b) M=70
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(c) M=90

Fig. 12. Comparing predicted trajectory of multi-targets using LMS for
”Walking men” (using different M for CS)

CS states that when enough measurements are used for
compression, the reconstruction is done with high accuracy
depending on a lower bound of M . Trajectory tracking of
moving targets is considered to reflects the degree of recon-
struction accuracy. Tracking reliability is tested by comparing
the moving target’s real and predicted trajectories using LMS.
Fig.12, 13 and 14 show the (x,y) position plots of the path
tracked for the targets in the camera’s scene. Fig.12(a) and
12(b) show that (for ”Walking men”) for lower values of M <
optimum value (40 and 70 respectively), frames can not be
reconstructed properly and as a result the targets tracks are not
matching their real trajectories, whereas for optimum values
of M reaching 90, LMS accurately predicted the target’s
locations and the results are closely matching the real target
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Fig. 13. Comparing predicted trajectory of single target using LMS for
”Shopping center 1” (using different M for CS)

trajectory before compression. Fig.13 and 14 illustrate the
same for the ”Shopping canter1” and ”Shopping center 2”,
respectively.

VI. CONCLUSION

In this paper, the constraints of WVSNs are characterized
such as resource constraints due to limited battery power,
memory space and communication bandwidth. These con-
straints brought new implementation challenges to investigate
adaptive CS in designing robust target detection and tracking
techniques for surveillance applications without compromis-
ing the tracking performance as well as space and energy
constraint. CS has been expected to be a strong candidate
to achieve high compression rate using simple computations.
Since the compression rates differ from one dataset to an-
other depending on the degree of sparsity. An adaptive CS
technique has been proposed and has proven to achieve high
compression rates with minimum reconstruction error.

Experiments were carried out to evaluate the performance
of adaptive CS and its effect on target detection and tracking.
Simulations have shown that CS is a strong candidate to
reduce the size of images without degrading the tracking
performance. Results have shown that using adaptive CS up
to 31% measurements of data are required to be transmitted,
while preserving the reconstruction quality which is measured
in terms of MSE, PSNR and trajectory tracking. The recon-
struction MSE adaptively decreases till reaching the lower
bound on the number of compressed measurements while
preserving the acceptable PSNR. In addition, for different
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(a) M=40
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Fig. 14. Comparing predicted trajectory of single target using LMS for
”Shopping center 2” (using different M for CS)

schemes where the sparsity nature of each image differs, adap-
tive CS chooses the compression rates accordingly. Moreover,
surveillance application within WVSNs is one of the important
applications that requires high detection reliability and robust
tracking. After image reconstruction, the impact of adaptive
CS on target tracking is investigated using LMS adaptive filter
to predict target’s next location. Target’s trajectory tracking
has been used as a performance indicator for the LMS
algorithm. Results have demonstrated that the predicted path
closely matches the target’s real path which illustrates the
accuracy of LMS and that adaptive CS has not affected the
performance of target detection and tracking.
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