## The Impact of Human Capital Endowments on International Competitiveness, with Special Reference to Transition Economies

# Arta MULLIQI

A thesis submitted in partial fulfilment of the requirement of Staffordshire University for the degree of Doctor of Philosophy

October 2016

#### Abstract

The aim of this thesis is to investigate the impact of human capital endowments on international competitiveness, with special reference to transition economies. This investigation is based on country, industry and firm level estimations using longitudinal and cross section data for the period 1995-2010 and 2011-2014, respectively. The theoretical framework informing this empirical investigation proposes a relationship between human capital and international competitiveness through the underlying mechanism of labour productivity and innovation. More educated and higher skilled individuals are more likely to innovate and/or adopt and use efficiently new sophisticated technologies which, consequently, boosts labour productivity. In turn, more productive firms and countries are more likely to maintain and/or develop their international competitiveness. In this investigation, the degree of international competitiveness is measured by export market share, relative export advantage, the share of medium and high tech exports, export sophistication, and export intensity. Human capital is represented by educational attainment, the quality of education, and provision/participation in training programmes. To empirically test the human capital-international competitiveness nexus, a diversified modelling strategy has been employed. In line with theoretical underpinnings, human capital endowments appear to exert a positive and significant impact on export market share at both country and industry levels, though this effect is not replicated when the relative export advantage index is taken as the measure of international competitiveness. The share of the population with tertiary education seems to exert a positive impact on the share of medium and high-tech manufactures exported by the EU-27, the impact being relatively stronger in the high tech category. No supporting evidence is found for the influence of the quality of education, irrespective of the international competiveness measure used. In the export sophistication sub-analysis, the estimated results suggest that the share of population with tertiary education has a positive impact only on the level of export sophistication of the EU-17. Consistent with previous research, the firm level results suggest that having a more educated workforce exerts a positive and statistically significant impact on the export intensity and export market share of firms in 30 transition economies. Mixed evidence is found for the role of on-the-job training programmes and years of experience of the top manager. The empirical evidence obtained in this investigation has potentially useful policy implications for European and Euro-Asian countries seeking to sustain or increase their international competitiveness.

### **Table of Contents**

#### CHAPTER 1

#### HUMAN CAPITAL AND INTERNATIONAL COMPETITIVENESS: INTRODUCTION AND CONTEXT

| 1.1 Introduction                                             | 18 |
|--------------------------------------------------------------|----|
| 1.2 International competitiveness and the transition process | 19 |
| 1.3 Human capital development in transition economies        | 29 |
| 1.4 Research questions and structure of the thesis           | 42 |

#### CHAPTER 2

#### ASSESSING THE MULTIDIMENSIONAL CONCEPT OF INTERNATIONAL COMPETITIVENESS

| 2.1 Introduction                                                                      | 46 |
|---------------------------------------------------------------------------------------|----|
| 2.2 The concept of international competitiveness                                      | 47 |
| 2.3 International competitiveness: key measurement approaches                         | 50 |
| 2.4 Empirical evidence on international competitiveness: micro and macro perspectives | 64 |
| 2.5 Conclusions                                                                       | 78 |

#### **CHAPTER 3**

| HUMAN CAPITAL AND INTERNATIONAL COMPETITIVENESS: THEORY, MEASUREMENT AND EVIDEN       | <b>ICE</b> |
|---------------------------------------------------------------------------------------|------------|
| 3.1 Introduction                                                                      | 90         |
| 3.2 Theoretical framework                                                             | 90         |
| 3.2.1 Human capital and economic growth                                               | 90         |
| 3.2.2 Human capital and international competitiveness                                 | 94         |
| 3.3 Human capital, productivity, and growth: empirical evidence                       | 98         |
| 3.3.1 Human capital and international competitiveness: a review of the macro evidence | . 101      |
| 3.3.2 Human capital and international competitiveness: a review of the micro evidence | . 106      |
| 3.4 Human capital: definition and measurement                                         | . 128      |
| 3.5 Conclusions                                                                       | . 137      |

#### **CHAPTER 4**

| HUMAN CAPITAL AND INTERNATIONAL COMPETITIVENESS: 0 | COUNTRY AND INDUSTRY LEVEL EVIDENCE |
|----------------------------------------------------|-------------------------------------|
| 4.1 Introduction                                   |                                     |

| 4.2 Data and variable specification   | 142 |
|---------------------------------------|-----|
| 4.3 Estimation methodology            | 156 |
| 4.4 Country level empirical evidence  | 160 |
| 4.5 Industry level empirical evidence | 174 |
| 4.6 Conclusions                       | 179 |

#### CHAPTER 5

#### HUMAN CAPITAL AND TECHNOLOGY INTENSIVE EXPORTS: EMPIRICAL EVIDENCE

| 5.1. Introduction                                       | 183 |
|---------------------------------------------------------|-----|
| 5.2 Data and variable specification                     | 184 |
| 5.3 Model specification and estimation methodology      | 201 |
| 5.4 Empirical evidence                                  | 204 |
| 5.4.1 Export market share and relative export advantage | 205 |
| 5.4.2 Export sophistication                             | 211 |
| 5.5 Conclusions                                         | 214 |

#### **CHAPTER 6**

#### HUMAN CAPITAL AND INTERNATIONAL COMPETITIVENESS: A MICRO-LEVEL ANALYSIS

| 6.1 Introduction                 | 218 |
|----------------------------------|-----|
| 6.2 Data and model specification | 219 |
| 6.2.1 Descriptive statistics     | 230 |
| 6.3 Estimation methodology       | 234 |
| 6.4 Empirical evidence           | 244 |
| 6.4.1 Export intensity           | 244 |
| 6.4.2 Export market share        | 256 |
| 6.5 Conclusions                  | 260 |

#### CHAPTER 7

#### CONCLUSIONS AND RECOMMENDATIONS

| 7.1 Introduction       | 264 |
|------------------------|-----|
| 7.2 Empirical findings | 266 |

| 7.3 Contributions to knowledge                          |  |
|---------------------------------------------------------|--|
| 7.4 Policy implications                                 |  |
| 7.5 Limitations and recommendations for future research |  |
| 8. References                                           |  |

### FIGURES

| Figure 1.1 Export patterns across transition economies (1995-2014)21                                                               |
|------------------------------------------------------------------------------------------------------------------------------------|
| Figure 1.2 Export to GDP ratio by country group23                                                                                  |
| Figure 1.3 Merchandise exports by product group (1995-2014)25                                                                      |
| Figure 1.4 High-technology exports by country group (1996-2013)27                                                                  |
| Figure 1.5 High-technology exports (% of manufactured exports)                                                                     |
| Figure 1.6 Percentage of population aged 15 and over with no completed schooling                                                   |
| Figure 1.7 Percentage of population aged 15 and over who have completed tertiary education 35                                      |
| Figure 1.8 Average test scores in mathematics and science (1964-2003)                                                              |
| Figure 1.9 Prevalence of staff training in transition countries - Rankings41                                                       |
| Figure 4.1 Export market share (emsh) functional transformation153                                                                 |
| Figure 5.1 Export market share of European transition economies in medium-high and high tech industries, percentages (1995-2010)   |
| Figure 5.2 Export market share of non- transition economies/EU-18 in medium-high and high tech industries, percentages (1995-2010) |
| Figure 5.3 RXAs of non-transition economies/EU-18 in medium-high and high tech industries (1995-2010)                              |
| Figure 5.4 The percentage change in the RXA of non-transition economies (1995-2010)                                                |
| Figure 5.5 RXAs of medium-high and high tech in the Czech Republic, by industry                                                    |
| Figure 5.6 RXAs of medium-high and high tech in Slovak Republic, by industry                                                       |
| Figure 5.7 RXAs of medium-high and high tech in Hungary, by industry                                                               |
| Figure 5.8 RXAs of European transition economies in medium-high and high tech exports (1995-2010)                                  |
| Figure 5.9 The percentage change in the RXA of European transition economies (1995-2010) 197                                       |
| Figure 5.10 Export sophistication index (EXPY)                                                                                     |

### TABLES

| Table 2.1 International competitiveness: overview of empirical studies      72                  | 7 |
|-------------------------------------------------------------------------------------------------|---|
| Table 3.1 Human capital and international competitiveness: overview of empirical studies        | 3 |
| Table 4.1 Manufacturing industries according to ISIC rev. 3                                     | 4 |
| Table 4.2 Variable descriptions                                                                 | 1 |
| Table 4.3 Export market share (emsh) functional transformation                                  | 2 |
| Table 4.4 Descriptive statistics                                                                | 4 |
| Table 4.5 Collinearity diagnostics156                                                           | 6 |
| Table 4.6 Estimated results with Driscoll-Kraay standard errors      162                        | 1 |
| Table 4.7 FEVD and HT estimated results      164                                                | 4 |
| Table 4.8 IV estimated results                                                                  | 6 |
| Table 4.9 IV estimated results (training included)                                              | 1 |
| Table 4.10 IV estimated industry results                                                        | 8 |
| Table 4.11 FEVD and HT estimated results                                                        | 9 |
| Table 5.1 Manufacturing industries according to ISIC rev. 3                                     | 7 |
| Table 5.2 Medium-high and high tech manufacturing industries according to ISIC rev. 3           | 8 |
| Table 5.3 Relative export advantage (RXA) of non-transition economies/EU-18, by industry (1995- |   |
| 2010)                                                                                           | 3 |
| Table 5.4 RXAs of European transition economies, by industry (1995-2010)                        | 3 |
| Table 5.5 Export sophistication index (EXPY), averaged (1995-2010)                              | 9 |
| Table 5.6 Descriptive statistics                                                                | 1 |
| Table 5.7 Driscoll-Kraay and IV estimated results      209                                      | 9 |
| Table 5.8 FEVD and HT estimated results 210                                                     | D |
| Table 5.9 Driscoll-Kraay and IV estimated results      212                                      | 2 |
| Table 5.10 FEVD and HT estimated results      213                                               | 3 |
| Table 6.1 Variable descriptions                                                                 | 8 |
| Table 6.2 Descriptive statistics by export intensity      232                                   | 2 |
| Table 6.3 Collinearity diagnostics 236                                                          | 6 |
| Table 6.4 Full sample estimated results (marginal effects)    247                               | 7 |
|                                                                                                 |   |

| Table 6.6 Industry estimated results (marginal effects) by country group | 256 |
|--------------------------------------------------------------------------|-----|
| Table 6.7 Full sample estimated results (marginal effects)               | 258 |

### APPENDIX

| Table A4.1 Model 1 - Fixed effects estimated results                   |  |
|------------------------------------------------------------------------|--|
| Table A4.1.1 Model 1 - Random effects estimated results                |  |
| Table A4.1.2 Model 1 - Fixed effects versus Random effects             |  |
| Table A4.1.3 Model 1- Diagnostic tests                                 |  |
| Table A4.1.4 Model 1 - Driscoll-Kraay estimated results                |  |
| Table A4.1.4.1 Model 1 - Driscoll-Kraay estimated results              |  |
| Table A4.1.4.2 Model 1 - Driscoll-Kraay estimated results              |  |
| Table A4.1.5 Model 1 - FEVD estimated results (STATA ado file)         |  |
| Table A4.1.5.1 Model 1- FEVD estimated results (three stage procedure) |  |
| Table A4.1.6 Model 1 - Hausman and Taylor estimated results            |  |
| Table A4.1.6.1 Model 1 - Fixed effects versus Hausman and Taylor       |  |
| Table A4.1.7 Model 1 - Hsiao 2 step procedure                          |  |
| Table A4.1.8 Model 1 - IV estimated results                            |  |
| Table A4.1.8.1 Model 1 - IV estimated results (ETEs)                   |  |
| Table A4.1.8.2 Model 1 - IV estimated results (N-ETEs)                 |  |
| Table A4.1.8.3 Model 1 - IV estimated results                          |  |
| Table A4.1.8.4 Model 1 - IV estimated results                          |  |
| Table A4.2 Model 2 - Fixed effects estimated results                   |  |
| Table A4.2.1 Model 2 - Random effects estimated results                |  |
| Table A4.2.2 Model 2 - Fixed effects versus Random effects             |  |
| Table A4.2.2.1 Models 1& 2 - Fixed effects versus Random effects       |  |
| Table A4.2.3 Model 2 - Diagnostic tests                                |  |
| Table A4.2.3.1 Models 1&2 - Diagnostic tests                           |  |
| Table A4.2.4 Model 2 - Driscoll-Kraay estimated results                |  |
| Table A4.2.4.1 Model 2 - Driscoll-Kraay estimated results              |  |
| Table A4.2.4.2 Model 2 - Driscoll-Kraay estimated results              |  |
| Table A4.2.5 Model 2 - FEVD estimated results (STATA ado file)         |  |

| Table A4.2.5.1 Model 2 - FEVD estimated results (Three stage procedure) |  |
|-------------------------------------------------------------------------|--|
| Table A4.2.6 Model 2 - Hausman and Taylor estimated results             |  |
| Table A4.2.6.1 Model 2 - Fixed effects versus Hausman and Taylor        |  |
| Table A4.2.7 Model 2 - Hsiao 2 step procedure                           |  |
| Table A4.2.8 Model 2 - IV estimated results                             |  |
| Table A4.2.8.1 Model 2 - IV estimated results (ETEs)                    |  |
| Table A4.2.8.2 Model 2 - IV estimated results (N-ETEs)                  |  |
| Table A4.2.8.3 Model 2 - IV estimated results                           |  |
| Table A4.2.8.4 Model 2 - IV estimated results                           |  |
| Table A4.3 Descriptive statistics (Variables in levels)                 |  |
| Table A4.3.1 Correlation matrix                                         |  |
| Figure A4.4 Functional transformations for all explanatory variables    |  |
| Figure A4.4.1 Functional transformation for sedut                       |  |
| Figure A4.4.2 Functional transformation for <i>tedut</i>                |  |
| Figure A4.4.3 Functional transformation for <i>avyrs</i>                |  |
| Figure A4.4.4 Functional transformation for <i>cskills</i>              |  |
| Figure A4.4.5 Functional transformation for <i>patappr</i>              |  |
| Figure A4.4.6 Functional transformation for <i>fdi</i>                  |  |
| Figure A4.4.7 Functional transformation for <i>gdpc</i>                 |  |
| Figure A4.4.8 Functional transformation for <i>unem</i>                 |  |
| Figure A4.4.9 Functional transformation for <i>ecofree</i>              |  |
| Figure A4.5.1 Functional transformation for <i>rulc</i>                 |  |
| Figure A4.5.2 Functional transformation for <i>serv</i>                 |  |
| Figure A4.5.3 Functional transformation for <i>pop</i>                  |  |
| Figure A4.5.4 Functional transformation for <i>trandinN</i>             |  |
| Figure A4.5.5 Functional transformation for <i>dist</i>                 |  |
| Figure A4.5.6 Functional transformation for transdummy                  |  |
| Figure A4.5.7 Functional transformation for <i>emplcvt</i>              |  |
| Figure A4.5.8 Functional transformation for trngent                     |  |
| Table A4.6 Model 1 - Fixed effects estimated results                    |  |
| Table A4.6.1 Model 1 - Diagnostic tests                                 |  |
| Table A4.6.2 Model 1 - Driscoll-Kraay estimated results                 |  |

| Table A4.6.3 Model 1 - FEVD estimated results                                                   | 363   |
|-------------------------------------------------------------------------------------------------|-------|
| Table A4.6.4 Model 1 - Hausman and Taylor estimated results                                     | 364   |
| Table A4.6.5 Model 1 - IV estimated results                                                     | 365   |
| Table A4.6.5.1 Model 1 - IV estimated results (ETEs)                                            | 367   |
| Table A4.6.5.2 Model 1 - IV estimated results (N-ETEs)                                          | 368   |
| Table A4.7 Model 2 - Fixed effects estimated results                                            | 369   |
| Table A4.7.1 Model 2 - Diagnostic tests                                                         | 370   |
| Table A4.7.2 Model 2 - Driscoll-Kraay estimated results                                         | 371   |
| Table A4.7.3 Model 2 - FEVD estimated results                                                   | 372   |
| Table A4.7.4 Model 2 - Hausman and Taylor estimated results                                     | 372   |
| Table A4.7.5 Model 2 - IV estimated results                                                     | 373   |
| Table A4.7.5.1 Model 2 - IV estimated results (ETEs)                                            | 375   |
| Table A4.7.5.2 Model 2 - IV estimated results (N-ETEs)                                          | 376   |
| Table A4.8 Model 1&2 - IV estimated results – emsh at industry level                            | 377   |
| Table A4.9 Model 1& 2 - Estimation results – old version dataset                                | 378   |
| Table A4.9.1 Model 1 - FE standard errors vs FEVD standard errors                               | 379   |
| Table A5.1. Relative export advantage (RXA) of ETEs in medium-high and high tech sub-industries | . 383 |
| Table A5.1.1 Relative export advantage (RXA) of EU -18 in medium-high and high tech sub-industi | ries  |
|                                                                                                 | 383   |
| Table A5.1.2 Correlation between Export sophistication and GDP per capita                       | 385   |
| Table A5.1.3 Correlation matrix between potential measures of international competitiveness     | 385   |
| Table A5.1.4 Descriptive statistics for variables in levels                                     | 386   |
| Table A5.2 Model 1 - Fixed effects estimated results (medium-high and high tech)                | 387   |
| Table A5.2.1 Model 1 - Diagnostic tests                                                         | 388   |
| Table A5.2.2 Model 1 - Driscoll-Kraay estimated results (medium-high and high tech)             | 388   |
| Table A5.2.4 Model 1 - FEVD estimated results (medium-high and high tech)                       | 389   |
| Table A5.2.5 Model 1 - Hausman and Taylor estimated results (medium-high and high tech)         | 390   |
| Table A5.2.6 Model 1 - IV estimated results (medium-high and high tech)                         | 391   |
| Table A5.2.6.1 Model 1 - IV estimated results - ETEs (medium-high and high tech)                | 392   |
| Table A5.2.6.2 Model 1 - IV estimated results –N-ETEs (medium-high and high tech)               | 394   |
| Table A5.2.6.3 Model 1 - IV estimated results (high tech)                                       | 395   |
| Table A5.2.6.3.1 Model 1 - IV estimated results - ETEs (high tech)                              | 396   |

| Table A5.2.6.3.2 Model 1 - IV estimated results – N-ETEs (high tech)                    | 398 |
|-----------------------------------------------------------------------------------------|-----|
| Table A5.2.6.4 Model 1 - IV estimated results (medium-high tech)                        | 399 |
| Table A5.2.6.4.1 Model 1 - IV estimated results – ETEs (medium-high tech)               | 400 |
| Table A5.2.6.4.2 Model 1 - IV estimated results – N-ETEs (medium-high tech)             | 402 |
| Table A5.3 Model 2 - Fixed effects estimated results (medium-high and high tech)        | 403 |
| Table A5.3.1 Model 2 - Diagnostic tests                                                 | 404 |
| Table A5.3.2 Model 2 - Driscoll-Kraay estimated results (medium-high and high tech)     | 405 |
| Table A5.3.4 Model 2 - FEVD estimated results (medium-high and high tech)               | 406 |
| Table A5.3.5 Model 2 - Hausman and Taylor estimated results (medium-high and high tech) | 406 |
| Table A5.3.6 Model 2 - IV estimated results (medium-high and high tech)                 | 407 |
| Table A5.3.6.1 Model 2 - IV estimated results - ETEs (medium-high and high tech)        | 409 |
| Table A5.3.6.2 Model 2 - IV estimated results – N-ETEs (medium-high and high tech)      | 410 |
| Table A5.3.6.3 Model 2 - IV estimated results (high tech)                               | 412 |
| Table A5.3.6.3.1 Model 2 - IV estimated results – ETEs (high tech)                      | 413 |
| Table A5.3.6.3.2 Model 2 - IV estimated results - N-ETEs (high tech)                    | 414 |
| Table A5.3.6.4 Model 2 - IV estimated results (medium-high tech)                        | 416 |
| Table A5.3.6.4.1 Model 2 - IV estimated results – ETEs (medium-high tech)               | 417 |
| Table A5.3.6.4.2 Model 2 - IV estimated results – N-ETEs (medium-high tech)             | 418 |
| Table A5.4 Model 1 - Fixed effects estimated results (medium-high and high tech)        | 420 |
| Table A5.4.1 Model 1 - Diagnostic tests                                                 | 421 |
| Table A5.4.2 Model 1 - Driscoll-Kraay estimated results (medium-high and high tech)     | 421 |
| Table A5.4.3 Model 1 - FEVD estimated results (medium-high and high tech)               | 422 |
| Table A5.4.4 Model 1 - Hausman and Taylor estimated results (medium-high and high tech) | 423 |
| Table A5.4.5 Model 1 - IV estimated results (medium-high and high tech)                 | 424 |
| Table A5.4.5.1 Model 1 - IV estimated results - ETEs (medium-high and high tech)        | 425 |
| Table A5.4.5.2 Model 1 - IV estimated results – N-ETEs (medium-high and high tech)      | 427 |
| Table A5.4.5.3 Model 1 - IV estimated results (high tech)                               | 428 |
| Table A5.4.5.3.1 Model 1 - IV estimated results - ETEs (high tech)                      | 429 |
| Table A5.4.5.3.2 Model 1 - IV estimated results – N-ETEs (high tech)                    | 431 |
| Table A5.4.5.4 Model 1 - IV estimated results (medium-high tech)                        | 432 |
| Table A5.4.5.4.1 Model 1 - IV estimated results – ETEs (medium-high tech)               | 433 |
| Table A5.4.5.4.2 Model 1 - IV estimated results – N-ETEs (medium-high tech)             | 435 |

| Table A5.5 Model 2 - Fixed effects estimated results (medium-high and high tech)        | 436 |
|-----------------------------------------------------------------------------------------|-----|
| Table A5.5.1 Model 2 - Diagnostic tests                                                 | 437 |
| Table A5.5.2 Model 2 - Driscoll-Kraay estimated results (medium-high and high tech)     | 438 |
| Table A5.5.3 Model 2 - FEVD estimated results (medium-high and high tech)               | 438 |
| Table A5.5.4 Model 1 - Hausman and Taylor estimated results (medium-high and high tech) | 439 |
| Table A5.5.5 Model 2 - IV estimated results (medium-high and high tech)                 | 440 |
| Table A5.5.5.1 Model 2 - IV estimated results –ETEs (medium-high and high tech)         | 441 |
| Table A5.5.5.2 Model 2 - IV estimated results –N-ETEs (medium-high and high tech)       | 443 |
| Table A5.5.5.3 Model 2 - IV estimated results (high tech)                               | 444 |
| Table A5.5.5.3.1 Model 2 - IV estimated results - ETEs (high tech)                      | 445 |
| Table A5.5.5.3.2 Model 2 - IV estimated results – N-ETEs (high tech)                    | 447 |
| Table A5.5.5.4 Model 2 - IV estimated results (medium-high tech)                        | 448 |
| Table A5.5.5.4.1 Model 2 - IV estimated results -ETEs (medium-high tech)                | 450 |
| Table A5.5.5.4.2 Model 2 - IV estimated results –N-ETEs (medium-high tech)              | 451 |
| Table A5.6 Model 1 - Fixed effects estimated results                                    | 452 |
| Table A5.6.1 Model 1 - Diagnostic tests                                                 | 453 |
| Table A5.6.2 Model 1 - Driscoll-Kraay estimated results                                 | 454 |
| Table A5.6.3 Model 1 - FEVD estimated results                                           | 455 |
| Table A5.6.4 Model 1 - Hausman and Taylor estimated results                             | 455 |
| Table A5.6.5 Model 1 - IV estimated results                                             | 457 |
| Table A5.6.5.1 Model 1 - IV estimated results - ETEs                                    | 458 |
| Table A5.6.5.2 Model 1 - IV estimated results – N-ETEs                                  | 459 |
| Table A5.7 Model 2 - Fixed effects estimated results                                    | 461 |
| Table A5.7.1 Model 2 - Diagnostic tests                                                 | 462 |
| Table A5.7.2 Model 2 - Driscoll-Kraay estimated results                                 | 462 |
| Table A5.7.3 Model 2 - FEVD estimated results                                           | 463 |
| Table A5.7.4 Model 2 - Hausman and Taylor estimated results                             | 464 |
| Table A5.7.5 Model 2 - IV estimated results                                             | 465 |
| Table A5.7.5.1 Model 2 - IV estimated results – ETEs                                    | 466 |
| Table A5.7.5.2 Model 2 - IV estimated results – N-ETEs                                  | 468 |
| Table A5.8 Driscoll-Kraay and IV estimated results (export market share)                | 470 |
| Table A5.8.1. Driscoll-Kraay and IV estimated results (relative export advantage, RXA)  | 471 |

| Table A5.9 IV estimated results (medium-low, medium-high and high tech)                          | 472 |
|--------------------------------------------------------------------------------------------------|-----|
| Table A5.9.1 FEVD & Hausman and Taylor estimated results (medium-low, medium-high and high       |     |
| tech)                                                                                            | 474 |
| Table A6.1 Descriptive statistics                                                                | 477 |
| Table A6.2 Correlation matrix                                                                    | 477 |
| Table A6.3 Tobit Model - Full sample estimated results                                           | 478 |
| Table A6.3.1 Tobit Model - Industry estimated results                                            | 479 |
| Table A6.3.2 Tobit Model - CEECs estimated results                                               | 480 |
| Table A6.3.3 Tobit Model - CEECs Industry estimated results                                      | 482 |
| Table A6.3.4 Tobit Model - CIS estimated results                                                 | 483 |
| Table A6.3.5 Tobit Model - CIS Industry estimated results                                        | 485 |
| Table A6.3.6 Tobit vs Probit estimated results                                                   | 486 |
| Table A6.3.7 Tobit Model - Full sample (imputed) estimated results                               | 487 |
| Table A6.3.8 Tobit (Augumented) Model - Full sample (imputed) estimated results (45)             | 488 |
| Table A6.3.9 Tobit (Augumented) Model - Full sample (imputed) estimated results (95)             | 489 |
| Table A6.4 Fractional Logit Model - Full sample estimated results                                | 490 |
| Table A6.4.1 Fractional Logit Model - Industry estimated results                                 | 492 |
| Table A6.4.2 Fractional Logit Model - CEECs Estimated results                                    | 493 |
| Table A6.4.3 Fractional Logit Model - CEECs Industry estimated results                           | 494 |
| Table A6.4.4 Fractional Logit Model - CIS estimated results                                      | 496 |
| Table A6.4.5 Fractional Logit Model - CIS Industry estimated results                             | 497 |
| Table A6.4.6 Fractional Logit Model - Full sample (imputed) estimated results                    | 499 |
| Table A6.4.7 Fractional Logit (Augumented) Model - Full sample (imputed) estimated results (45). | 500 |
| Table A6.4.8 Fractional Logit (Augumented) Model - Full sample (imputed) estimated results (95). | 501 |
| Table A6.5 Poisson Model - Full sample estimated results                                         | 503 |
| Table A6.5.1 Poisson Model - Industry estimated results                                          | 504 |
| Table A6.5.2 Poisson Model - CEECs estimated results                                             | 505 |
| Table A6.5.3 Poisson Model - CEECs Industry estimated results                                    | 506 |
| Table A6.5.4 Poisson Model - CIS estimated results                                               | 508 |
| Table A6.5.5 Poisson Model - CIS Industry estimated results                                      | 509 |
| Table A6.5.6 Poisson Model - Full sample (imputed) estimated results                             | 511 |
| Table A6.5.7 Poisson (Augumented) Model - Full sample (imputed) estimated results (45)           | 512 |

Table A6.5.8 Poisson (Augumented) Model - Full sample (imputed) estimated results (95)......513 Table A6.6 Panel estimated results ......514 Table A6.7 Tobit Model - Full sample estimated results (exp share industryEU28) ......517 Table A6.7.2 Tobit Model -CIS estimated results (exp\_share\_industryEU28)......519 Table A6.7.3 Tobit Model - Full sample estimated results (exp share industryEA40)......521 Table A6.7.5 Tobit Model - CIS estimated results (exp\_share\_industryEA40) ......523 Table A6.8.1 Fractional Logit Model - CEECs estimated results (exp\_share\_industryEU28)......528 Table A6.8.3 Fractional Logit Model - Full sample estimated results (exp share industryEA40) ...... 530 Table A6.8.4 Fractional Logit Model - CEECs estimated results (exp share industryEA40)......531 Table A6.8.5 Fractional Logit Model - CIS estimated results (exp\_share\_industryEA40)......532 Table A6.9 Poisson Model - Full sample estimated results (exp\_share\_industryEU28) ......536 Table A6.9.2 Poisson Model - CIS estimated results (exp\_share\_industryEU28)......539 

### Abbreviations

- ALL Adult Literacy and Lifeskills Survey
- BEEPS -Business Environment and Enterprise Performance Survey
- CEE Central and Eastern Europe
- CEEC Central and East European Country
- CEPII Centre d'Études Prospectives et d'Informations Internationales
- CIS Commonwealth of Independent States
- CVTS Continuing Vocational Training Survey
- EBRD European Bank for Reconstruction and Development
- ETE European Transition Economy
- EU European Union
- FDI Foreign Direct Investment
- FE Fixed Effects
- FEVD Fixed Effects Vector Decomposition
- GDP Gross Domestic Product
- GLS Generalized Least Squares
- GMM Generalized Method of Moments
- HT Hausman and Taylor
- IAEP -- International Assessment of Educational Progress
- IALS International Adult Literacy Survey
- IEA International Association for the Evaluation of Educational Achievement
- ISIC International Standard Industrial Classification
- IV Instrumental Variable
- LSDV Least Squares Dummy Variable
- MAR Missing at Random
- MCAR Missing Completely at Random
- MICE Multiple Imputation using Chained Equations
- MLE Maximum Likelihood Estimator
- MNAR Missing not at Random
- MNE Multinational Enterprise

- MVN Multivariate Normal Regression
- N-ETE non-Transition Economy
- OECD Organisation for Economic Co-operation and Development
- OLS Ordinary Least Squares
- PIAAC Programme for the International Assessment of Adult Competencies
- PIRLS Progress in International Reading Literacy Study
- PISA Programme for International Student Assessment
- R&D Research & Development
- RE Random Effects
- SITC Standard International Trade Classification
- SME Small and Medium Enterprise
- TIMSS -- Trends in International Mathematics and Science Study
- UNCTAD United Nations Conference on Trade and Development
- UNESCO United Nations Educational, Scientific and Cultural Organization
- VIF Variance Inflation Factor
- WDI World Development Indicators

#### Acknowledgements

First of all, I would like to express my profound gratitude to my supervisory team, Professor Nick Adnett, Professor Mehtap Hisarciklilar and Dr. Artane Rizvanolli for their valuable advice, guidance, and support during the course of this thesis. A special appreciation goes to Professor Nick Adnett, for leading my academic journey since my Master's, for believing in me, encouraging me and sharing his expertise throughout all these years. I am also deeply thankful to Staffordshire University and the Open Society Foundation for funding this research project and the kind staff that helped during this course. I owe my deepest gratitude to my beloved family for their unconditional love, care and constant support. I would like to extend my gratefulness to my friends and colleagues for their great support and encouragement throughout the time of my research. Special thanks to my roommate, Arberesha Loxha, for the happy time we spent together during the past four years. Last but not the least, I wish to express my warm appreciation to my lovely nephews, Klevis and Levik, whose pure love and beautiful laughter made this journey less stressful for me.

I dedicate this thesis to my beloved parents, Servete and Ramiz.

# HUMAN CAPITAL AND INTERNATIONAL COMPETITVENESS: INTRODUCTION AND CONTEXT

### Contents

| 1.1. Introduction                                            |    |
|--------------------------------------------------------------|----|
| 1.2 International competitiveness and the transition process | 19 |
| 1.3 Human capital development in transition economies        | 29 |
| 1.4 Research questions and structure of the thesis           | 42 |

#### **1.1 Introduction**

The aim of this introductory chapter is to provide a discussion on the characteristics and evolution of international competitiveness and human capital across transition countries since the beginning of the transformation from centrally planned to market economies. The link between international competitiveness and the process of transition is analysed in the light of the data provided by the World Bank and the UNCTAD. Initially, the transformation process has been covered and its impact on the integration of these countries into the global economy is discussed. The evolving performance and pattern of exports in European and Central Asian transition economies since mid-1990s is presented and discussed, followed for comparative purposes by an overview of the performance of 18 European countries, henceforth refered as EU-18<sup>1</sup> over the same time span. The change in the compositional structure of exports in transition economies, and their convergence towards the structure typical of high income countries is placed at the centre of our debate. Particular attention is paid to the high technology-intensive exports and their evolution during the course of transition. This part of the chapter also focuses on the reorientation of the export flows from transition countries towards Western Europe since the beginning of the transformation process.

The following section of this chapter focuses on the development of human capital in the former socialist countries of Central and Eastern Europe and Central Asia. It provides a discussion on the evolution of the human capital stock since the beginning of transition by focusing on the level of education attainment, quality of education and training incidence. Furthermore, it describes the key characteristics of the educational system of the region before and during the reform process with particular emphasis on different types of schooling, skill upgrading and teaching approaches. The remaining gaps with respect to the EU-18, skill and qualification mismatches and other transition-related subjects are also elaborated in this chapter. The last section of the chapter outlines the aim of the thesis, the key research questions and the structure of the thesis.

<sup>&</sup>lt;sup>1</sup> EU18 refers to 17 non-transition member countries of the European Union (Austria, Belgium, Cyprus, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, Malta, Netherlands, Portugal, Spain, Sweden and the United Kingdom) and Norway. EU-17, on the other hand, refers to all the above mentioned countries excluding Malta.

#### **1.2 International competitiveness and the transition process**

The transformation of the Central and Eastern Europe and Former Soviet Union from a centrally planned economic regime to a market oriented system has been associated with a deeper integration of this region into the global economy. Increased openness and international integration through trade have been key outcomes of the transition process in the former socialist countries. Integration into the world economy through trade has also been closely related to integration via labour and capital flows. Increased movement of capital and labour are regarded to play a key role in promoting wider integration and in enhancing the performance of transition economies (EBRD, 2003). During the course of transition, movement of capital was mainly achieved by increased foreign direct investment and cross-border bank flows (Roaf et al., 2014). However, in order for this region to be able to realise greater integration, increased policy cooperation and other adjustments were required to take place. Membership in international institutions, such as World Trade Organization (WTO) has assisted these countries significantly in harmonising their legislation and political frameworks (Roaf et al., 2014).

The increased trade liberalisation which started after the fall of the Berlin Wall and the end of the Soviet Union has been characterized by an improved export performance in the majority of these countries. In a globalized economy, maintaining and increasing international competitiveness is a major challenge for most countries, particularly for developing and transition economies. Over the transition period, the majority of transition countries have managed to increase their engagement with international markets and in turn enhanced their international competitiveness. As a complex and multifaceted concept, international competitiveness has been elaborated quite extensively in the literature; however, its definition and measurement still remain contentious. Various definitions and measurement approaches at both macro and micro levels of aggregation have been proposed and used in the literature with no agreement on any single one. Since the ability to compete in international markets is regarded as an important indication of the economic performance of countries, this section will focus primarily on export based indicators. Greater integration into international markets has been followed by faster productivity growth in most of these countries, thus, narrowing, the previously wide productivity gap with the EU-15 and other developed countries. As already postulated in the literature, international trade is perceived to facilitate technological transfer, which in turn plays a key role in increasing productivity,

particularly in developing countries (Choudhri and Hakura, 2000). The benefits of fuller international integration for productivity improvement in transition economies have been more prevalent in the new EU member states, with their productivity levels being twice as high, in 2005, as those in several CIS economies (Alam et al., 2008). The impact of trade and FDI on productivity enhancement appears to have been mainly channelled through technological transfers and innovation promotion. Note that productivity growth in some services industries, over the period 1997 to 2004 has significantly exceeded the comparable growth rates in the EU-15 (Broadman, 2005, Alam et al., 2008). However, in spite of the evident convergence, there is still a significant gap in productivity levels of the region relative to those found in high income countries. The aim of this section is to assess and discus the evolving performance and pattern of exports in European and Central Asian transition economies since mid-1990s. A comparative analysis of this region's export performance with that of EU-18 is also presented and debated in this section. Particular attention is paid to the change in the composition of exports, i.e. the movement towards technology intensive (more sophisticated goods), and the extent to which these countries have converged in this respect with the EU-18.

Since the start of transition, the region has witnessed a rapid and significant growth of exports, which has been accompanied by increasing market shares in world markets. In 2014, the total exports of Central and East European countries (CEECs) and the Commonwealth of Independent States (CIS) accounted for approximately 1,228 billion (constant) US dollars, which represents an increase of 235 percent from 1995 (an annual average rate of 6.6 percent). Data on the EU-18, on the other hand, reveals just a 126 percent increase in total exports of goods and services during this period (World Bank, 2016a). It is pertinent to note that the transition progress and consequently the international integration have been uneven among transition countries. Important discrepancies in the speed and degree of integration and export restructuring have been observed between countries in Central and Eastern Europe (CEECs) and Former Soviet Union (CIS). The highest average growth rate in total exports of goods and services among transition economies was recorded in the region of Central and Eastern Europe. From 1995 to 2014, the exports of the CEECs increased by 351 percent, as compared to 138 percent for the CIS. It is also worth noting that these high growth rates are partly a result of the lower levels of international integration of these countries prior to transition. While, the majority of countries

from the former group have finalised the transformation process and have joined the European Union, many countries from the CIS are still lagging behind in terms of their reform and transformation progress. Many of the CEE countries have had bilateral trade agreements with the EU since the mid-1990s, whereas, the trade agreements of CIS with the EU are much weaker in terms of the degree of liberalization (Roaf et al., 2014). Geographical proximity, initial economic conditions, transformation progress and their prevailing policy regime have been considered as the main sources of the faster integration of the former region into the EU markets and beyond (Roaf et al., 2014). Figure 1.1, presented below, shows how the total exports of these transition economies have evolved from mid-1990s to 2014. It is important to note that the share of Russia's exports in total exports of Commonwealth Independent States (CIS) is quite large; hence, driving the total export figures considerably. After excluding Russia from the calculations, the export value of CIS drops significantly and the gap between the latter and CEECs widens further (see Figure 1.1). However, it should be emphasized, that many countries from the former Soviet Union are highly engaged in exporting primary goods due to their natural resource abundance, thus making it difficult to compare their export performance with that of the CEECs.



Figure 1.1 Export patterns across transition economies (1995-2014)

Data Source: World Bank - World Development Indicators (Exports of goods and services, constant 2005 US\$)

In spite of the relatively high average growth rate recorded in the CEECs, diverse exporting performances have been witnessed across the region. While, Poland, the Czech Republic, Hungary, the Slovak Republic, and Romania appear to be the top five export performers, countries from the Western Balkan region seem to lag behind and thus are positioned at the lower end of the ranking. However, it is worth emphasizing that countries such as Albania and Serbia have experienced exceptionally high rates of growth in their exports from 1995 to 2014, i.e. 792.9 and 905.5 percent increase, respectively. The violent dissolution of former Yugoslavia has been regarded as one of the potential causes for the slower integration of many of the Western Balkan countries (EBRD, 2003).

Regarding the export performance of the former Soviet Union countries (i.e. CIS), Russia, Kazakhstan, Ukraine, Azerbaijan and Belarus appear to be the top five exports performers, whereas, Armenia, Kyrgyz Republic and Tajikistan are ranked amongst the countries with the weakest export performance. Countries that experienced the highest rate of (positive) change over the period 1995-2014 were Azerbaijan and Georgia (over 800 percent). It is important to note that the overall positive trend of transition economies was hampered by the global financial crisis 2008-09, which affected to a large extent the exporting sector. The entire region suffered an 8 percent decline in its exports of goods and services in 2009 as compared to a 11.8 percent fall in the EU-18. However, their overall exports recovered rapidly in 2010, with a rate of increase of 13.7 percent in CEECs and 7.4 percent in the CIS (World Bank, 2016a).

The overall increase in exports over time has been accompanied by a significant expansion in the exports to GDP ratio. From the two sets of transition economies, countries from the Central and Eastern Europe appear to have witnessed the highest growth rates since mid-1990s. On average, CEECs' total exports in 2014 accounted for 60 percent of GDP, as compared to about 35 percent in 1995, reaching the EU-18 level by the end of this period. It is pertinent to note that countries such as the Slovak Republic, the Czech Republic, Hungary, and Estonia in 2014 recorded relatively high export ratios, thus, outperforming most of the EU-18 countries. A completely different story is portrayed when the CIS' export to GDP figures are assessed. With an initial rate higher than the average of CEECs, these countries have recorded a decrease of 7 percent on their export shares in GDP from 1995 to 2014 (World Bank, 2016b). The first two decades of

transition for these countries have been followed by high volatility in their export to GDP ratios. Among the potential causes for the limited degree of integration of many of these countries, their less favourable geographical position, high transportation and transit costs, and the poor quality of institutions and policies have been highlighted (EBRD, 2003). The composition and quality of exports might be another potential reason for their lower rates of participation in western markets. The change on the export to GDP ratio from 1995 to 2014 across these countries is presented in Figure 1.2.



Figure 1.2 Export to GDP ratio by country group

A separate assessment of goods and services export data (in current US dollars) during 1995-2013, reveals an extremely high growth rate in the export of goods (i.e. 618%), followed by an almost equally impressive growth rate in the services sector (i.e. 507%). The highest average growth rate, in the export of services, was recorded in the CIS region, i.e. a growth rate of 647%, as compared to 368% percent in CEECs and 257 percent in the EU-18. While the share of goods in total exports during the same period increased slightly in CEECs, both the CIS and EU-18 experienced a decline in this ratio by approximately 10.7 percent and 16.6 percent, respectively. Differences in the contribution of services to total exports (i.e. services as a % of total exports), on the other hand, has been more evident in the CIS region. While countries from Central and East Europe have experienced a negligible increase in this share over time, i.e. a 1.4 % increase

Data Source: World Bank- World Development Indicators (Exports of goods and services % of GDP)

from 1995 to 2013; countries from the former Soviet Union, have recorded an average rate of change as high as 93.7%. The share of services in total exports for EU-18 went up as well. At the same time, this set of countries has witnessed an average share of 37.8%, representing a change of 37.7 percent since 1995 (UNCTAD, 2016b).

A further disaggregation of the data extracted from the UNCTAD has helped us to assess the evolution of the share of manufactured and primary goods in merchandise exports across the region during the course of transition. The new data show large differences between the two transition subgroups in terms of their engagement in exporting these particular product groups over the past twenty years. While, the share of manufactured goods<sup>2</sup>, in CEECs, in 2014, appears to be as high as 78.3 percent (exceeding this share in the EU-18), the CIS has recorded a share as low as 19.5 percent, which represent a decline of approximately 37% since 1995. The EU-18's share has slightly declined over the same period of time (i.e.3.8%), though it still remains high with a current value of around 72.5%. The contribution of primary commodities<sup>3</sup> to their export baskets, on the other hand, has grown in both the CIS and EU-18 countries, by 39.8 percent and 26.3 percent respectively, while it has dropped by 20.3 % in European transition economies. It is worth noting that the engagement of the latter group of transition countries (i.e. CEECs) together with the EU-18 in this sector, has not been very substantial, as indicated by their relatively low shares (19-21%), whereas, the average share of the same product group, in the former Soviet bloc in 2014 was recorded to be around 77% (UNCTAD, 2016a). Overall, data seem to suggest that the latter set of countries have experienced in the last two decades a significant shift of exports away from manufacturing industries and towards primary commodity exports. It is worth noting that, reliance on primary products tends to be associated with a real appreciation of a country's exchange rate, a contraction of other exportable sectors, i.e. the "Dutch disease" problem, and greater trade volatility. The average shares of merchandise exports by product group, during 1995-2014, are presented graphically in Figure 1.3.

<sup>&</sup>lt;sup>2</sup> UNCTAD data based on SITC 5 to 8 (less 667 and 68)

<sup>&</sup>lt;sup>3</sup> UNCTAD data based on SITC 0 + 1 + 2 + 3 + 4 + 68



Figure 1.3 Merchandise exports by product group (1995-2014)

Data Source: Author's calculations based on UNCTAD's Merchandise: Trade matrix by product groups, exports in thousands of dollars, annual, 1995-2014.

The rapid export growth in transition countries has also been accompanied by re-orientation of their export flows towards Western Europe. Data on the export direction reveal that the EU-15 has become the main destination for these countries' exports, particularly for CEECs (UNCTAD, 2016a). Note that, the pre-transition period was characterized by countries exporting predominately within their own region, particularly for the Soviet Union economies. In 1990, Russia was the most important destination (approx. 80 percent) for the Baltic and Commonwealth of Independent States (CIS) exports (Roaf et al., 2014). However, despite the overall increased diversification of the export destinations, there are still significant differences in the extent of this reorientation across countries from the Central and Eastern Europe and those from the CIS. Data on merchandise exports to the EU-15 and EU-28 (% of total merchandise exports)<sup>4</sup> show relatively high rates for CEECs as compared to the CIS bloc (UNCTAD, 2016a). During 1995-2014, the exports of CEECs to EU-15 accounted for approximately 60.3 percent of their total exports, while the average share of exports absorbed by the EU-28 was 78.1 %. It is pertinent to note that this export trend, particularly to the EU-15 has not been very stable during

<sup>&</sup>lt;sup>4</sup>Merchandise exports to EU-15 and EU-28 are defined as the value of merchandise exports from CEECs and CIS to EU-15 and EU-28 as a percentage of total merchandise exports by these countries. These are the author's own calculations based on UNCTAD's Merchandise: Trade matrix by product groups, exports in thousands of dollars, annual, 1995-2014, database (UNCTAD, 2016a).

the course of transition. A general positive tendency was witnessed until yearly 2000s, followed by a 1.73 percent average annual contraction in the subsequent years. The share of CIS's merchandise exports to these two markets, on the other hand, has been less impressive. During the same time span, countries from the former Soviet Union appear to have had relatively lower shares of merchandise exported to EU countries. CIS's exports to EU-15 and EU-28, on average, accounted for 31.4 and 44.3 percent of their total exports, respectively. While, their initial low shares to EU-15 increased by 4.6 percent, the same was not experienced regarding the EU-28. Their share of merchandise exports to the latter market fell by 16.7 percent, i.e. from 35.5 percent, in 1995 to 29.6 percent in 2014. It is also worth highlighting that in the last 20 years, these countries experienced a volatile trend, with the lowest share of exports recorded in 2014 (UNCTAD, 2016a).

Competing successfully in terms of the quality of exports rather than just quantity appears to be at the centre of many current economic debates. Highly sophisticated and technology-intensive exports are considered a key source of sustainable economic growth and international competitiveness given the rapidly increasing global demand for these products. It has been postulated that what countries export rather than how much is likely to matter more for economic development and growth. Specializing in certain products might have a stronger impact on growth than specializing in others (Hausmann et al., 2007). In other words, focusing on products that rich countries export, keeping everything else unchanged, tends to have a stronger impact on growth compared to specializing in other (less sophisticated) products (Hausmann et al., 2007). The authors explain the influencing mechanism by arguing that, the reallocation of resources from lower productivity products to higher productivity ones tends to yield a positive impact on economic performance and growth. Hence, amid growing global competition, many transition countries managed to change their initial export structure and move towards more knowledge and technology intensive goods and services, which, in turn has increased their relative competitive positions within these industries. The data extracted from the World Bank, World Development Indicators, show an overall positive trend towards an increasing specialisation in high technology goods. Note that, a deeper analysis on the export specialization of selected transition economies using various measures and indices of the quality and sophistication of exports will be presented in Chapter 5. In this section, a particular focus will be paid to the

evolvement of high technology exports during the process of transition. On average, total high technology<sup>5</sup> exports appear to have increased in most transition economies, though; the rates of change are not uniform across them. In 2013, countries from Central and Eastern Europe have experienced growth rates as high as, 1,674 percent, i.e. from around 3.699 billion (current) US dollars in 1996 to approximately 65.656 billion in 2013. This was followed by a 439 percent raise in the CIS block, i.e. from 2.748 billion dollars, in 1996 to 14.819 billion in 2013 (World Bank, 2016c). The overall positive trend of high technology exports is also presented in Figure 1.4.



Figure 1.4 High-technology exports by country group (1996-2013)

Data Source: World Bank - World Development Indicators (High-technology exports, current US\$)

These high growth rates of exports have been also followed by an increased share of hightechnology exports in total manufactured exports, particularly in the CEECs. During 1996-2013, transition countries from the Central and Eastern Europe experienced, on average, an increase of 90 percent in their share of high technology exports (World Bank, 2016d). Countries with the highest high-tech export shares recorded in 2013 were Hungary (16 %), Czech Republic (14 %), Latvia (13 %), Estonia (10.5 %), Lithuania (10.3 %) and Slovak Republic (10.1 %), whereas, countries that displayed the highest growth rates in exporting this product group, over the same period of time, were Romania, Slovak Republic, Lithuania and Albania. The average rate of

<sup>&</sup>lt;sup>5</sup> According to the World Bank, **High-technology** exports are products with high R&D intensity, such as in aerospace, computers, pharmaceuticals, scientific instruments, and electrical machinery.

change for CIS countries, for the same time span, on the other hand, appears to be relatively lower (i.e. 35 %) compared to the former group of transition economies. Kazakhstan led the top performers group, in 2013, with a relatively high share of high technology exports (i.e. 36%), followed by Azerbaijan (13.4 %), and Russia (10 %). It is worth stressing that, with the exception of Kazakhstan and Azerbaijan, the remaining set of countries from the former Soviet Union<sup>6</sup> have experienced either small or negative<sup>7</sup> changes over the period 1996-2013. The actual outcome implies that there are large differences in the structure and level of sophistication of the export baskets between the countries in this region. Furthermore, the exclusion of Kazakhstan's exports, as an outstanding performer, from the total CIS exports, turns the rate of change to negative, implying a decline on the average share of high technology exports in this region by around 18%. After excluding Kazakhstan from the total exports of CIS, the average rate of change in the region becomes negative (i.e. 18 %). Note that, Kazakhstan's technology based exports as a share of manufactured exports are the highest in the context of transition economies and well above the EU-18 export shares (World Bank, 2016d).

Despite its relatively high level of export sophistication, the EU-18 has, on average, experienced a negative trend in high technology exports since early 2000s, with very few annual exceptions. However, it is worth emphasising that there are significant variations across the region, with some of the countries experiencing positive or lower negative rates as compared to others. In sum, in spite of the positive tendency of transition economies to converge, there are still striking differences between the export structure of the latter and that of the EU-18. This further reinforces the importance of assessing the potential determinants of their diverse export baskets, with special focus on the role of human capital endowments. A regression analysis examining the impact of human capital endowments on the technology intensive exports of EU-18 and selected European transition economies will be conducted in Chapter 5. Differences in the share of high technology exports as a percentage of total manufacturing exports across CEECs, CIS, and EU-18 are exhibited also graphically in Figure 1.5.

<sup>&</sup>lt;sup>6</sup>Data for Tajikistan, Turkmenistan and Uzbekistan are largely missing.

<sup>&</sup>lt;sup>7</sup> Armenia, Kyrgyzstan, and Moldova.



Figure 1.5 High-technology exports (% of manufactured exports)

Data Source: World Bank - World Development Indicators

#### 1.3 Human capital development in transition economies

The shift towards knowledge-based economies, greater participation into international markets and continued transition-related structural changes has increased profoundly the demand for highly qualified labour in the former socialist countries of Central and East Europe and Central Asia. Switching to market economies has brought the need for a new set of skills that were not promoted and developed in the former planned economic system. This section describes the evolution of the human capital stock in transition economies, since the beginning of the transformation and reform process. It focuses on three key dimensions of the human capital: education attainment, quality of education and training incidence. Furthermore, it presents the key characteristics of the educational system before and during the transition with particular emphasis on different types of schooling, i.e. vocational versus general, non-cognitive skills development and the main pedagogical approach adopted. While, there are several approaches to defining and measuring human capital, a particular focus in the literature has been placed on education as a key source of human capital accumulation. In accordance with the conventional human capital theory (see Schultz, 1961, Becker, 1964), education is regarded as a key component of human capital development, assessed primarily through its role in boosting labour productivity. In recent years, the potential importance of the quality of education has also

become a subject of considerable debates amongst researchers, particularly in the growth literature. Another important component, albeit, less frequently assessed in the empirical literature, is the provision of on- and off-the-job training programmes. It should be acknowledged that the measurement of these human capital dimensions faces many challenges, particularly related to data restrictions. Hence, by making use of the available data, this section provides a comparative assessment of different measures of the stock of human capital since early 1990s. The transition of the Central and East European countries (CEECs) and the Commonwealth of Independent States (CIS) towards market economies was accompanied by numerous changes in their educational systems. The pre-transition period in these countries was primarily associated with larger shares of resources being invested in heavy industries and agriculture (Brunello et al., 2010). Intellectual work was valued relatively less than physical work, whereas, the socialism period was associated with low wage differences between skilled and unskilled workers (Munich et al., 2005). This encouraged the overwhelming majority of students to pursue vocational studies and/or leave school after the completion of the secondary level of education (Brunello et al., 2010). Their educational system was dominated by vocational schooling as compared to a general type of education. In 1989, countries from the European and Euro-Asian transition region witnessed a very high proportion of students enrolled in vocational studies, i.e. an average of 61.3 percent. A particularly high prevalence of vocational secondary students was found in CEECs, i.e. over 70 percent of total students (Murthi and Sondergaard 2012).

This period was also associated with an authoritarian administration of education institutions – strictly centralized, old-fashioned curriculum with no emphasis on creative judgment and problem-solving skills, and restricted monitoring of learning outcomes (OECD, 2011a). A stronger emphasis was placed on technical skills as compared to business-relevant skills (Kertesi and Köllő, 2002). According to Radó (2001), a key feature of the communism era was the lack of interest in the "pedagogical added-value" of teaching, with participation rates and talented students' achievement being the main quality indicators assessed. Teaching approaches in CEECs and CIS before the collapse of the planned economic system were mainly teacher centred as compared to the student-centred approach in the EU-18. The traditional pedagogy in these countries discouraged interactive discussion and treated students as strictly passive learners.

Students were not encouraged to make their own choices, judgments and problem formulations, thus were unable to learn from their mistakes (Berryman, 2000).

However, when the restructuring process started in early 1990s, the situation changed significantly, shifting the focus from vocational upper secondary towards general education. Student enrolments in the former type of schooling, during the period 1989-1999 decreased significantly, i.e. from 60 to 40 percent of total enrolments (Arias et al., 2014). The expansion of the services and the contraction of the agriculture sector were associated with a profound change in the composition of skills demanded in the market. A shift in the demand towards highly educated employees has been prevalent in the majority of these countries. In particular, the structural changes were reflected in a reduction in the demand for agricultural and manual skills and a growing demand for services and professional skills (Murthi and Sondergaard 2012). However, it is important to note that the reform process did not evolve evenly in all transition economies, partly due to their varying initial economic and political conditions (Botezat and Seiberlich, 2011). The economic transition has posed new challenges regarding the adaptability of pre-transition educated labour force. There is a large number of studies that have assessed the issue of skills "obsolesce" in the former socialist countries, with many of them having found supporting evidence regarding skills devaluation since the beginning of transition (e.g. Vecernik, 1995, Rutkowski, 1996, Burda and Schmidt, 1997, Kertesi and Köllő, 1999).

During socialism, vocational education and training was provided solely by education institutions or in collaboration with the industry. While, the former was mainly organized in the school settings, the latter also involved learning in the workplace, i.e. the so called, "a dual-system" (Kogan et al., 2008). However, the reform and privatization process in the CEECs has led to a considerable reduction in the provision of apprentice and training programmes by enterprises, primarily due to the lack of infrastructure and finance. This, in turn, caused chaos in the education and training systems followed by broken links between schools and the industry (Kogan et al. 2008). Influenced by the Austro-German tradition, countries such as Hungary, Slovakia and the Czech Republic have continued to operate their dual education systems-apprentice practices, though their nature has changed remarkably over time, losing their similarity with Western European counterparts (Horn, 2013). Poland appears to have a larger

apprenticeship sector, followed by less significant provisions in Latvia, Slovenia and Croatia. Regulation of apprenticeship programmes have been recently introduced in Estonia, Lithuania, and Romania, albeit their implementation has been very restricted (West, 2013). It is worth noting that the lack of data on apprenticeships and the lack comparability of these programmes across countries have made their assessment much more complex.

The transition process appears to have been associated with changes in the duration of compulsory schooling as well. Across the transition region, the years of compulsory education range between eight and eleven, with the majority of countries having extended the duration of this type of education over the course of transition. Compulsory schooling for the EU-18, on the other hand, lasts from nine to thirteen years, with an average of 10.5, 13 percent higher than the transition average (UNdata, 2016). The importance of starting to learn at an early age has been highly emphasised in the literature (see Heckman, 1999). Compulsory schooling in majority of transition economies starts at primary level, commencing at the age of six or seven (generally higher than in developed countries), albeit, in countries such as Bulgaria, Latvia, Hungary and Poland, the pre-primary level of education has become mandatory as well (Eurydice, 2012).

The distribution of educational attainment of the population aged 15 and over across transition countries is presented using Barro and Lee's (2014) data. Stock figures extracted from their most recent dataset show that transition economies<sup>8</sup> have managed to successfully reduce their no schooling rates over the period 1990-2010<sup>9</sup> (see Figure 1.6). The proportion of population aged 15 and over, with no completed schooling, on average, decreased significantly by 82.8 percent, i.e. from 4.7 percent in 1990 to 0.8 percent in 2010. With a relatively high proportion of the population without an education in 1990 compared to the CEECs, the CIS region has witnessed a sharp decline of 88 percent. For the same period of time, countries from Central and Eastern Europe have experienced a slightly lower rate of change, though it is worth noting that both sets of countries, on average, have outperformed the EU-18. In 2010, among the countries with the lowest no schooling rates, i.e. proportion of population 15 and over without any level of schooling, were Lithuania, Estonia, Czech Republic, Hungary, Latvia, Kazakhstan and

<sup>&</sup>lt;sup>8</sup> Educational attainment data for Azerbaijan, Belarus, Georgia, Uzbekistan, Bosnia-Herzegovina, Kosovo, Macedonia, and Montenegro are missing hence are not included in our calculations.

<sup>&</sup>lt;sup>9</sup>Data are not available after 2010.

Tajikistan. The proportion of population aged 15 and over who have completed primary education as their highest level of education attainment in transition economies also decreased significantly from 18.9 percent in 1990 to just 5.0 percent in 2010, on average. However, it is pertinent to note that a greater reduction in the proportion of the individuals with primary education (as their highest level completed) was recorded in CEECs as compared to the former Soviet Union countries, though the latter started from a lower base.





With initially on average higher rates compared to the EU-18, the transition region experienced a significant improvement in the proportion of the population who completed secondary education during the course of transition. A positive trend in the proportion of population who have attended and completed secondary education has been recorded in the entire region since the early 1990s, though the magnitude is significantly higher in the CEE region. A rate of approximately 43 percent was recorded for the percentage of the population 15 and over who have attended secondary education in European transition economies (CEECs), while the growth rate for population with completed secondary education (as their highest level attained) was 70 percent whereas, the corresponding rates for the CIS region, on average, were 8.6 percent and 19.2 percent, respectively. In 2010, the average proportion of individuals who have attended (but not completed) secondary education, in the entire transition region was 70.7 percent, whereas the

Data Source: Barro and Lee (2014)

proportion of population who have completed the entire cycle of secondary education was 52.4 percent. The corresponding average rates for EU-18, for the same time span were 55.1 percent and 33.6 percent respectively. It is worth noting that these figures represent the proportion of population who have completed secondary education as their highest level attained rather than total stock of population with secondary education. The latter values are relatively higher for both sets of countries.

A rapid expansion was also recorded in the attainment of tertiary education of the population aged 15 and over, albeit, there is considerable variation across the region. Data extracted from Barro and Lee (2014) reveal positive trends since the beginning of the transformation process in the majority of transition economies. In 2010, the transition region experienced an increase of 80.5 - 85.5 percent in the stock of population who have attended and completed tertiary education, the rate being higher for the CEECs. The CEECs' figures seem to confirm a converging pattern towards the EU-18 region, though, slight difference are still persistent. While, the CIS region, on average, appears to have continuously outperformed the EU-18, this has been mainly driven by the very large rates of Russia and Ukraine. Regarding the transition economies of Central and Eastern Europe, in spite of their average rapid growth rate, in 2010, a gap of 28 percent was prevalent with respect to the EU-18. In 2010, countries with highest stock of population with higher education were: Estonia, Hungary, Lithuania, Armenia, Russia and Ukraine. The improvement in the completion of higher levels of education among the population aged 15 and over has also contributed to rising the average years of schooling. Barro and Lee's stock data show that, since the beginning of transition, the average years of total schooling has increased by 21 percent, i.e. from 9.2 percent, in 1990 to 11.2 percent, in 2010. The transition region and CEECs in particular, appears to have persistently recorded high average years of schooling, overtaking the EU-18. While there are variations across the countries, the Czech Republic, Estonia and Slovakia have been positioned on top of the ranking list. Figure 1.7 illustrates the evolution of the stock of population with tertiary education across countries during the transition period.



Figure 1.7 Percentage of population aged 15 and over who have completed tertiary education

It is pertinent to note that the consistency of the education stock figures available is highly dependent on the data sources used. A comparison at a glance of educational attainment data provided by Barro and Lee with the OECD reveals an overall lack of correspondence between the two. As Barro and Lee (2000, 2013) emphasise, the difference between the two outputs stem from the different data sources used, i.e. while their figures are constructed primarily based on UNESCO national censuses, OECD data are extracted from labour force survey on samples of households/individuals. This is also accompanied by differences in the classification of education systems used by the two sources. Furthermore, it is important to note that the labour force surveys utilized by OECD do not cover the population aged 15-24 and over 65, making thus a comparison inherently difficult. Note that, excluding the percentage of population with generally lower education attainment (i.e. 65 and over) tends to inflate the overall average attainment figures (Barro and Lee, 2000).

A complementary discussion regarding the proportion of the labour force with different levels of educational attainment is presented below. The World Bank's World Development Indicators (WDI) provides data on the proportion of the labour force with primary, secondary and tertiary

Data Source: Barro and Lee (2014)

education across the region. In 1995, the percentage of labour force with tertiary education entering the labour market in transition economies was 18.5, though data coverage was limited to a handful of countries. The percentage increased to 19.5 in 2002, when additional transition economies entered the calculations, with the CIS average being relatively higher. In recent years, the country coverage has improved significantly, albeit, missing data are persistent, particularly for countries from the former Soviet Union. In 2012, 26.3 percent of labour force had completed tertiary education. The corresponding values for the EU-18 were 19.9, 23.8 and 32.1 percent, respectively. In spite of the slight yearly changes, the percentage of labour force that attained or completed secondary education remained generally unchanged during the course of transition. In 2012, transition economies, on average, recorded a share of 58.3 percent of labour force with secondary education as the highest level of education completed as compared to 43 percent in EU-18. The process of structural transformation was also associated with decreasing rates in the labour force flows with only completed primary education. In 1995, the average labour force with only primary education (% of total) in eight transition economies was 22 percent, dropping steadily over time. Data from a more completed set of countries<sup>10</sup> collected in 2012 show an average share of 14.4 percent in the transition region as compared to the 23.4 percent in EU-18 (World Bank, 2016e).

However, in spite of the rapid growth of the higher education sector, the lack of suitable skills to meet the needs of the market economies appears to be a persistent issue in many transition economies. Following firm surveys conducted in the transition region, skill mismatches have been identified as a key impediment to firms' growth (see World Bank's reports by Arias et al., 2014, and Murthi and Sondergaard 2012). The labour force's lack of adequate skills has been regarded as an important obstacle to doing business by firms in the majority of transition economies (EBRD, 2014). In addition to the relevance of cognitive skills, employers in these countries have also highlighted the importance of hiring employees well endowed with non-cognitive (soft) skills (Arias et al., 2014). For instance, employee's behavioural skills (e.g. job attitudes, teamwork and other related skills) are perceived by firms in Kazakhstan and Poland to be as important as knowledge and generic cognitive skills (Murthi and Sondergaard 2012). While, the majority of countries from the region have recognized the importance of developing

<sup>&</sup>lt;sup>10</sup>Excluding Belarus, Tajikistan, Turkmenistan, Ukraine, and Uzbekistan.
skills to match the upgraded demand through introducing different reforms to their education systems, the key focus seems to remain on imparting facts and knowledge, as opposed to critical thinking and problem-solving skills (Murthi and Sondergaard 2012). In addition, business related and entrepreneurial skills, previously ignored, started to receive greater attention during the course of transition, albeit, significant gaps remain with respect to developed countries. Among CEECs, Slovenia, Estonia and Latvia seem to have started to integrate entrepreneurial and business start-up skills into their educational programmes (Mojsoska-Blazevski, 2006). Universities in South Eastern Europe have also started to establish stronger links with the private sector and to develop relevant partnerships that can assist technological diffusion (Potter and Proto, 2005).

In addition to skill mismatch, there is evidence of shortages in certain professions in the region. Occupations that are essential to international competitiveness, particularly in knowledgeintensive industries, such as those related to science, technology, engineering, and mathematics appear to be deficient in many transition countries (Arias et al., 2014). A decreasing share of graduates in science and engineering in transition economies was accompanied by a significant rise in business, law, social sciences, and service-related ones (Arias et al., 2014). A study conducted in Croatia by Rutkowski (2008a) revealed that there is a lack of engineers and an excess of lawyers and art designers among employees with higher education (Murthi and Sondergaard, 2012).

The discussion presented above has provided evidence that the stock of educated individuals in transition economies has increased significantly over the last two decades, however, the quality of education is another key dimension of human capital accumulation that requires a deeper analysis. Hanushek and Woessmann (2009) provide a quality measure that is constructed by averaging international mathematics and science test scores over the period 1964-2003 for a sample of 50 countries. The cognitive skills indicator measured by the average test scores, primary through to the end of secondary school in the entire transition region<sup>11</sup> is 4.71. The CEECs average is 4.73 as compared to 4.88 in the EU-18, though; countries such as Estonia have

<sup>&</sup>lt;sup>11</sup> It is worth noting that very few countries from the former Soviet Union have been covered (e.g. Armenia, Moldova and Russia).

recorded higher test scores than many OECD developed countries, outperforming Finland and other highly ranked performers. The Czech Republic, Slovakia and Hungary are also ranked amongst the high performing countries in the region with international comparable scores. Countries such as Albania and Macedonia, on the other hand, have been listed in the lower end of the distribution. Russia appears to be among the best scoring economies from the CIS region, albeit, the region has largely not been covered in this dataset. More specific measures, such as the average test score in mathematics and science, only for lower secondary education, reveal an average of 4.74 in Central and East Europe, which is 2.68 percent lower than the average EU-18. The share of students reaching basic literacy is 0.81, whereas the share of top-performing students is 0.066 for CEECs and 0.039 for CIS as compared to 0.076 in EU-18. Best performers from the transition region in the latter dimension are the Czech Republic, Slovakia, Hungary and Poland, while, participating countries from the CIS, such as Moldova and Armenia have recorded relatively low average test scores. The different components of the quality of education across countries are also illustrated graphically in Figure 1.8.



Figure 1.8 Average test scores in mathematics and science (1964-2003)

Since the above analysed indicators reflect student test scores averaged only up to 2003, the latest available data provided by PISA, TIMSS and PIRLS are presented below. The results from the Programme for International Student Assessment (PISA) during 2000-2012 show an

Data Source: Hanushek and Woessmann (2009)

improvement in the performance of 15 year old school students in transition economies, though, not all countries have taken part in all the assessment rounds. In 2012, the CEECs average test scores in reading, science and mathematics were lower than the average EU-18 by a range of 4.8-6.0 percent. As previously emphasised, the CIS region has not been highly represented in PISA, with only Russia and Kazakhstan participating in the most recent round of assessment, (i.e. 2012). Notwithstanding the differences, several countries from the former set of transition economies have performed above the average EU-18. For instance, Estonia and Poland appear to lead the ranking list in the three fields, whereas, countries such as, the Czech Republic, Latvia and Slovenia have higher scores in mathematics and science than the average EU-18. Data from the Progress in International Reading Literacy Study (PIRLS) in reading achievements of 4th grade students, in 2011, show negligible differences between the two groups of countries. Comparable data on mathematics and science achievements of 4<sup>th</sup> and 8<sup>th</sup> grade students have been provided by Trends in International Mathematics and Science Study (TIMSS). The results from the most recent round of assessment (i.e. 2011) show a remaining gap in student scores between transition economies and EU-18, the gap being slightly wider for the former Soviet Union countries (with the exception of Russia). In addition, the achievement gap appears to be wider for the 8<sup>th</sup> grade students as compared to their younger cohorts (4<sup>th</sup> grade), indicating a relatively good quality of education at the early – elementary level. However, it is important to note that number of participants from the CEECs and EU-18 region in TIMSS 8<sup>th</sup> grade student assessment is very low, hence, making this contention more difficult to confirm. In a recent study on education quality, Lassibille (2015) has questioned the reliability of student achievements in international tests in developing countries given potential mismatches between the contents of the tests and curricula. The quality of human capital of the adult labour force, on the other hand, has started to become part of various International Adult Literacy surveys, however, their time span and country coverage are still very limited.

The overview of schooling data presented above shows that the process of transition was associated with decreases in the proportion of population 15 and over with no completed schooling as well as those with primary education as their highest level attained. A positive trend was witnessed, on the other hand, in the proportion of population who have attended and completed secondary education, the magnitude being significantly higher in the CEECs as

compared to CIS. The largest growth rate was recorded in the sector of tertiary education, albeit, considerable variations across the region are observed. In spite of the converging tendency, a significant gap with respect to the EU-18 still exists. The growth in higher levels of education was also reflected in increases in the average years of total schooling. However, notwithstanding the rapid growth of the stock of population with tertiary education, the issue of skill mismatch appears to be prevalent in the region. The labour force's lack of suitable skills has been emphasised as an obstacle to doing business by many firms in transition countries. Furthermore, skill shortages, particularly, in the fields of science, technology, and engineering are also present in many transition economies of the Central and East Europe and Central Asia. The quality of education proxied by average student test scores in reading, mathematics and science (see Hanushek and Woessmann, PISA, TIMSS and PIRLS) appears to be relatively lower than the average EU-18, though, there are economies from the region that outrank many high performing countries. It is important to note that the gap becomes less significant for younger cohorts, i.e. early grade students, implying a better quality of schooling at the primary level, while information on the quality of schooling of the actual labour force is very restricted.

Training as an important source of human capital development in transition economies has increased significantly over time, though; it remains low compared to developed countries standards (Arias et al., 2014). The assessment of this important dimension has been hindered by the restricted availability of data, primarily at the macro level. A survey on Continuing Vocational Training (CVT) made available by Eurostat was launched in 1999, providing information on training enterprises as a percentage of all enterprises and the percentage of employees (all enterprises) participating in CVT courses. During 1999-2010, European transition economies (CEECs<sup>12</sup>), on average, seem to have witnessed a significant growth rate in the former component of vocational training, i.e. an increase of 67.1 percent. With a higher base rate, the percentage of employees participating in CVT courses in the region, on the other hand, appear to have grown relatively slowly (i.e. 15.5%). The increased percentage of training enterprises and participating employees during the period 1999-2010 has contributed to the gap reduction between transition economies and non-transition economies. The initial gap(s) of 52.3

<sup>&</sup>lt;sup>12</sup> Note that the survey did not cover countries from the Western Balkans, with the exception of Croatia in the latest round of data (i.e. 2010).

percent and 35.2 percent respectively recorded in 1999 had narrowed to 22.5 percent and 29 percent by 2010. Furthermore, countries such as the Czech Republic, Slovakia and Slovenia appear to be on par with, or higher than, many countries from the EU-18. The Business Environment and Enterprise Performance Survey (BEEPS) conducted by the EBRD and the World Bank provides data on the provision of training programmes by firms in CEECs as well as in CIS. A review of the data on the share of employees trained in the region shows an average of roughly 34 percent of production employees participating in training in 2008 as compared to 24.5 percent in 2005. The corresponding rates for the share of non-production workers were 24.5 percent in 2008 and 59.3 percent in 2005 (World Bank, 2010). World Economic Forum's report on Global Competitiveness also presents data on the extent of staff training, which is defined as the weighted average of the extent firms invest in training and employee development (i.e. 1- not at all, 7- to a great extent). Data from the most recent report on competitiveness (2014-15) show an average value of 3.75 for transition economies as compared to the 4.67 for EU-18, the gap being wider with the CIS region. Note that countries such as Estonia, Lithuania, Albania and the Czech Republic occupy the highest rankings in the transition region (see Figure 1.9). However, it is worth noting that despite the general improvement in the incidence of training programmes in these countries, data on their quality and appropriateness are not yet available.



Figure 1.9 Prevalence of staff training in transition countries - Rankings

Data Source: World Economic Forum: Global Competitiveness Report 2015-2016

In conclusion, it is important to note that, in spite of the ongoing reforms, the differing features of the educational systems in transition economies compared to the EU-18 make cross country assessment much more complicated. Variations in the length of compulsory schooling (starting and leaving ages), national curricula, the provision of vocational versus general/academic programmes, fields of study, training incidence, skill proficiency levels, relative size of public and private sectors, expenditure on education, quality of teachers, family background and parental education and aspirations and other national specific characteristics contribute to differences in the overall educational output. All these varying features highlight the inherent difficulties in assessing the effectiveness of the education systems across countries. To the possible extent, we will try to account for these in our empirical analysis by controlling for the quality of education.

The aim of this section was to provide a discussion of the human capital development in the transition economies of Europe and Central Asia. The key characteristics of their educational and training systems before and during the transformation process have been assessed. A particular focus has been placed on the evolution of educational attainment, quality of education and training incidence since the early 1990s. The remaining gaps with respect to the EU-18, skill and qualification mismatches and other transition-related subjects were also analyzed. The main research questions on the impact of various dimensions of human capital on international competitiveness, with special reference to transition economies, will be established and discussed in the following section.

#### **1.4 Research questions and structure of the thesis**

The discussion presented in section 1.2 showed that the increased openness and integration which began with the process of transition has been associated with an improved international competiveness in the majority of the European transition countries. Since sustaining and enhancing international competitiveness in a global knowledge economy is very challenging, the former socialist countries of Central and Eastern Europe and Central Asia started to reform their educational systems in order to be able to meet the upgraded labour market's needs. The shift in the demand towards more highly educated employees has been accompanied by an expansion of the higher education sector in the majority of transition economies (see section 1.3). Given the

positive trends in international competitiveness and human capital since early 1990s, this thesis aims to analyse and assess the relationship between the two. In addition to the educational attainment component, the stock of human capital will be proxied by measures of the quality of education and training incidence. With the purpose of investigating the impact of human capital endowments on international competitiveness, with special reference to transition economies, three key research questions will be addressed in this thesis:

- 1. Do human capital endowments have an impact on the international competitiveness of EU countries, with special reference to transition economies?
- 2. Do human capital endowments have an impact on the relative importance of technologyintensive exports of EU countries, with special reference to transition economies?
- 3. Do a firm's human capital resources have an impact on its export intensity and export market share in transition economies?

In attempting to answer these research questions, this investigation makes use of macro and micro level data and adopts various estimations approaches. The remaining parts of the thesis are organised as follows. Chapter 2 elaborates the complexity of defining and measuring international competitiveness, followed by a comprehensive review of the related theoretical and empirical literature. Chapter 3 presents a discussion of the concept of human capital and its measurement, the mechanisms through which human capital influences productivity, growth and international competitiveness, and a review of contextualised theoretical and empirical studies. Chapter 4 develops and estimates empirical models for assessing the impact of human capital endowments on the international competitiveness of European countries, with special reference to transition economies. The empirical analyses conducted in this chapter make use of country and industry level longitudinal data for the period 1995-2010. In this chapter, international competiveness is measured by export market share and the relative export advantage index, whereas the human capital dimension is proxied by educational attainment indicators, measures of the quality of education and the provision of vocational training. A different regression analysis is performed in Chapter 5 which examines the impact of human capital endowments on international competitiveness with special focus on technology intensive exports. The latter component is proxied by the share of medium and high tech exports, an export specialization index and an export sophistication index.

The hypothesized positive impact of human capital endowments on international competitiveness is also investigated through the analysis of firm level data for 30 transition European and Central Asian countries. This investigation is presented in Chapter 6 and it focuses on the impact of the share of employees with higher education, on-the-job training programmes, education and years of experience of the top manager on firms' export intensity and export market share. Finally, Chapter 7 provides a synthesis of the main findings of this research programme, the contribution of these findings to knowledge and their policy implications, the limitations of the research programme and recommendations for future work.

## Chapter 2

### ASSESSING THE MULTIDIMENSIONAL CONCEPT OF INTERNATIONAL COMPETITIVENESS

#### Contents

| 2.1. Introduction                                                                     | 46 |
|---------------------------------------------------------------------------------------|----|
| 2.2. The concept of international competitiveness                                     | 47 |
| 2.3 International competitiveness: key measurement approaches                         | 50 |
| 2.4 Empirical evidence on international competitiveness: micro and macro perspectives | 64 |
| 2.5 Conclusions                                                                       | 78 |

#### **2.1 Introduction**

As elaborated in the introductory chapter of the thesis, increased integration of transition countries into the global economy has been accompanied by an overall improvement in their relative positions in international markets, highlighting the importance of assessing the determinants of their international competitiveness. Hence, the aim of this chapter is to provide a thorough discussion of the complexity and ambiguity of defining and measuring international competitiveness. To provide a deeper understanding of the notion, a broad range of definitions at different levels of aggregation accompanied by a variety of proxy measures are reviewed in the light of the existing theoretical and empirical literature. The remainder of this chapter is structured as follows: section 2.2 presents an overview of the key definitions of international competitiveness with particular focus on the dilemmas and criticisms associated with this concept. In contrast to the micro level perspective, the concept appears to be particularly vague when assessed at more aggregated levels of investigation. Section 2.3 provides a critical assessment of the key measures developed and adopted in the international competitiveness literature and their main limitations. It is pertinent to note that several measurement approaches have been proposed with no agreement on the superiority of any given one. The following section, 2.4, provides a comprehensive review of empirical studies dealing with international competitiveness from two distinct perspectives. The first strand of this literature is particularly concerned with the conceptualization and measurement of international competiveness, providing thus, ranking analyses and comparative assessments of the relative competitive positions of entities. The second set of studies, on the other hand, is mainly focused on the potential determinants of the competitiveness, with less attention being paid to the measurement issue per se. The key purpose of this review is to highlight the underlying conceptualization of competitiveness, its theoretical underpinnings, most frequently employed measures, and to critically analyse their key strengths and weaknesses. The current debate lays the foundations for the specification of international competitiveness in the context of our own empirical investigation. The final section provides a summary of the main findings and general conclusions of the chapter.

#### 2.2 The concept of international competitiveness

The concept of international competitiveness has been widely applied in macro and micro levels of investigation since the early 1980s. Several definitions of competitiveness have been proposed with no general agreement on any single one. According to Latruffe (2010), competitiveness can be defined as the ability to compete, the capacity of ensuring high profitability rates, or the ability to gain market share. In the literature, competitiveness has been assessed by various theoretical perspectives, the most prominent being the international trade economics and strategic management school. One of the most frequently cited definitions in the literature is the one provided by the Organization for Economic Co-operation and Development (OECD). It defines competitiveness as "the ability of companies, industries, regions, nations and supranational regions to generate, while being and remaining exposed to international competition, relatively high factor income and factor employment levels on a sustainable basis" (Hatzichronoglou, 1996, p.20).

Whilst the concept might seem simpler to define and measure at the firm level, it is more difficult at the national level, due to its arguably more complex nature. According to Scott and Lodge (1985, p.3), competitiveness is defined as: "a country's ability to create, produce, distribute and/or service products in international trade while earning rising returns on its resources". Whereas, D'Andrea Tyson (1992, p.1) defined a nation's competitiveness as "the degree to which it can, under free and fair market conditions, produce goods and services that meet the test of international markets while simultaneously expanding the real incomes of its citizens "According to the EU Commission (2003, p.15), competitiveness implies "high and rising standards of living of a nation with the lowest possible level of involuntary unemployment on a sustainable basis". By emphasising that countries themselves do not directly produce goods, Storper (1997, p.20) states that: "competitiveness reflects the capability of an economy to attract and maintain firms with stable or rising shares in activity, while maintaining or increasing standards of living for those who participate in it" All these definitions appear to agree that competitiveness of a country reflects its ability to produce goods and services that meet international market requirements, while, earning increasing returns on resources and increasing standards of living for its citizens.

In spite of its popular nature and attractiveness, the concept of competitiveness at the national level has been strongly criticised and contested by some scholars. Krugman (1994) as one of the most critical voices defines the concept as "elusive" and "meaningless". He rejects the supposed equivalence between a country's and a firm's competitiveness by explaining that, while, firms that cannot afford to pay their stakeholders due to weak performance go out of the business; the same does not apply to countries, even when they experience poor economic performance. While, at the micro level, competitiveness refers to the ability of firms to exist, the concept is perceived to be much more complicated at the country level. From a micro perspective, a firm's gain might come at the expense of others, while, for nations, on the other hand, international trade is not a zero-sum game (Krugman, 1994). Furthermore, Krugman also questions the widely used proxy measures of competitiveness (i.e. trade-based performance indicators) by arguing that, in many cases, a trade deficit might be considered an indication of strength, with a trade surplus representing a weakness. For instance, Mexico in the 1980s had to run large trade surpluses in order to be able to pay the interest on its foreign debt, since foreign investors refused to lend additional funds; while, after 1990, it started to run trade deficits, when it became able to borrow abroad. However, it should be noted that, in this case, a better indicator of strength is the ability to sustain trade deficits over time. In an early study, Krugman and Hatsopoulos (1987) also criticised the export based measures, arguing that the failure of the latter to account for imports leads to no inference about the balance of trade and the potential economic strength of a country. Again, given the present floating exchange rates and the large international flows of capital, we argue that the balance of trade does not seem to represent a very reliable indicator of economic strength.

Krugman also argues that for a country that is not involved much in trade, international competitiveness does not make much sense, as it represents just another way of describing productivity. However, it should be noted that given the hypothesised positive impact of international trade on economic growth, nations have persistently increased their participations in international markets, highlighting, thus, the relevance of the concept. As discussed in Chapter 1, international integration through trade, as one of the key outcomes of the transition process, led to a significant improvement in the competitive position of countries from CEE and the former Soviet Union block in the global economy. Krugman considers the concept of competitiveness to

be a largely political device used by politicians to defend or avoid hard decisions. He refers to the concept as a wrong and dangerous "obsession" which might lead to misallocation of sources, e.g. governments spending considerable amounts of money to improve the nation's competitiveness, trade conflicts, and bad economic discussion and policymaking. For instance, during the 1950s, driven by fear of the Soviet Union, in addition to spending on science and education activities, the United States have also engaged in non-competitiveness enhancing activities, e.g. bomb shelters. Furthermore, there has frequently been biasness in government support towards firms engaged in manufacturing (generally perceived to serve more international markets) as compared to services, though the latter has been regarded as a key source of employment and value-added. Krugman also argues that for countries that are not capable of sustaining their competitive positions in global markets, the competitiveness principle might suggest a closure of their borders through protection measures, instead of risking high paid jobs and greater value sectors to be acquired by foreigners. The latter outcome of the competitiveness "obsession" refers to its influence on the quality of the economic debates and polices. That is to say, a misguided policymaking in the context of international competitiveness might distort the quality of other economic policy agendas, even when not closely related to trade Krugman, 1994). Note that the foundation of Krugman's latter criticisms lies in certain assumptions and conclusions that may not necessarily be applicable to all countries. Besides, potential misuses by governments and politicians are not strictly tied to the competitiveness concept per se. The same applies to the quality of policy agendas argument, hence making the nature of this criticism somewhat general (i.e. potentially applicable to other economic concepts and theories).

The ambiguity and complex nature of the concept of competitiveness has also been raised by Porter (1990, 2002). He claims that, despite the widespread acceptance of its importance, the concept has not yet been well defined or fully understood. He further suggests that the aim of a nation to reach high and rising standards of living depends on the productivity with which a nation employs its human and capital resources, rather than on the unclear concept of competitiveness. High and sustainable levels of productivity require that an economy constantly upgrades itself (Porter, 1990, 2002).

With regard to a firm level definition, competitiveness appears to reflect the ability of firms to produce and sell goods profitably in an open market. According to the Report from the Select Committee of the House of Lords on Overseas Trade (1985), "a firm is competitive if it can produce products and services of superior quality and lower costs than its domestic and international competitors. Competitiveness is synonymous with a firm's long run profit performance and its ability to compensate its employees and provide superior returns to its owners" (Buckley et al. p.176). Similarly, the Department of Trade and Industry (1998) postulates that, "for a firm, competitiveness is the ability to produce the right goods and services, at the right price, at the right time. It means meeting customers' needs more efficiently and more effectively than other firms" (Henricsson et al., 2004, p. 338). The diversity of competitiveness definitions formulated in the literature highlights the multidimensional nature of the concept, thus, making it more difficult to measure and investigate. Hence, the aim of the remaining section is to provide a review of indicators being most commonly used to assess competitiveness at the macroeconomic and microeconomic levels of investigation.

#### 2.3 International competitiveness: key measurement approaches

A review of the existing literature has revealed two approaches to measuring international competitiveness. The first approach, building off several neoclassical theories and the new trade theory, relies on trade performance indicators, whereas, the second approach proposed by the strategic management school, focuses on the structure and strategy of firms (Latruffe, 2010). According to the Heckscher-Ohlin theory, each country trades goods that are intensive in its relatively abundant factor input, while the related theory developed earlier by Ricardo suggests that each country trades goods in the production of which it has comparative advantages. The new trade theory added the possibility of increasing returns to scale and monopolistic competition to the traditional models (Krugman, 1979). The alternative measurement approach, on the other hand, originally proposed by Porter (1990) suggests that there are four country attributes (the 'diamond') that determine the main conditions for the competitive advantages of a nation. These attributes are: factor endowments, demand conditions, related and support industries, and firms' strategy, structure and rivalry. In the trade based approach competitiveness is commonly measured by the real exchange rate, comparative advantage indices, and export or

import indices, while the second approach assesses competitiveness through performance indicators such as cost superiority, profitability, productivity, and efficiency (Latruffe, 2010).

The broad range of competitiveness indicators and its potential determinants is another extensively debated issue in the current academic literature. According to Porter (1990), no two research studies in the competitiveness literature have assessed and investigated the same factors, and similarly, Belkacem (2002) claims that the vast majority of studies tend to implement their own concepts and measures of competitiveness. However, in spite of the variety of definitions proposed in the literature, the above overview highlights a mutual objective, i.e. furthering the mission of a firm or a nation. While, the mission of a firm refers to its underlying ability to generate persistently high rates of returns for it owners, the mission of a nation is reaching high and rising standards of living for its citizens. Thus, in this regard, competitiveness refers to the ability of firms and nations to fulfil their mission statements (Henricsson et al., 2004).

The real exchange rate index (RER) has been proposed as a potential measure of the international competitiveness of countries by several economists (Edwards, 1989, Lipschitz and McDonald, 1991). There are two main categories of RER definitions adopted in the literature. The first category defines the real exchange rate based on purchasing power parity ( $r_{ppp}$ ) as the ratio of the foreign price level to the domestic price level, measured in the same currency (Eq. 2.1). While, the second group defines the RER ( $r_r$ ) as the ratio of the price index of tradable commodities to that of non-tradable ones (see eq. 2.2). Both definitions are extensively employed in the literature, with the latter being more commonly used to measure the level of a country's international competitiveness (Kipici and Kesriyeli, 1997).

$$r_{ppp} = e \frac{P_f}{P} \tag{2.1}$$

Where *e* denotes nominal exchange rate,  $P_f$  represents the foreign price level, while, *P* is the domestic price level.

$$r_r = \frac{P_t}{P_n} = e \frac{P_t^*}{P_n}$$
(2.2)

 $P_t$  represents the domestic price level of tradable commodities, while  $P_n$  and  $P_t^*$  denote the price level of non-tradable commodities and the international price level of tradable commodities, respectively.

A decrease in the real exchange rate represents an appreciation of the real exchange rate, which implies a decline in the absolute and relative profitability of tradable commodities, a reallocation of resources from the tradable to the non-tradable sector, and an increase in the domestic costs of producing tradable commodities. All these changes are reflected in a deterioration in international competitiveness (Chowdhury, 2005). Despite this, Di Bella et al. (2007) claim that, an appreciation of the RER does not always result in a loss of international competitiveness, and similarly, a depreciation of RER does not always result in increased level of competitiveness. For illustration, the authors argue that productivity gains in the tradable goods sector might be reflected in an increasing real exchange rate. Besides, even when the productivity gains are more prevalent in the non-tradable sector, the real exchange rate might appreciate if there is a fixed exchange rate system and no adequate government policy (i.e. lack of accommodative monetary policies to keep interest rates low). A common problem associated with the real exchange rates is the difficulty of measuring directly the price of tradable and non-tradable commodities. In spite of the acknowledged limitations, several proxies have been adopted in the literature to measure the price of tradables and non-tradables, e.g., CPI, Unit Labour Cost (ULC), Producer Price Index (PPI) and Wholesale Price Index (WPI).

Besides the difficulty of finding a good price proxy, other limitations restrain the use of the real exchange rate. According to Frohberg and Hartmann (1997), it is not easy to interpret different movements in the real exchange rate between countries, because it is not clear if these movements are a consequence or a cause of the actual change in international competitiveness. Moreover, they suggest that real exchange rates in the short and medium term are mainly affected by capital movements and their impact on the nominal exchange rate, rather than by changes in the competitiveness of the economy. Hence, the relationship between the real exchange rate and international competitiveness cannot be established, if information on the factors that impact the movement of the former is missing (Frohberg and Hartmann, 1997).

Moreover, import and export restrictions, changes in world commodity prices and data limitations may distort RER movements (Harberger, 2004).

A country's assessment of competitiveness has also relied on a wide range of trade performance indicators. The revealed comparative advantage (RCA) index developed by Balassa (1965) is among the most commonly used measures in the competitiveness literature. This index reveals the comparative advantage of a country in an industry or in a specific commodity. It is defined as the ratio of a country's exports of a commodity or industry relative to its total exports and to the corresponding exports of the world or a specific set of countries.

$$RCA_{ij} = (X_{ij} / X_{it}) / (X_{nj} / X_{nt})$$
(2.3)

Where *X* represents exports, *i* is a country index, *j* is a commodity (industry) index, *t* is a set of commodities (industries) or total exports and *n* is a set of countries. If the value of the index (i.e. RCA) is greater than 1, a given country is considered to exert a revealed comparative advantage in the export of a specific commodity or industry. Conversely, if the value of the index is lower than 1, there is a lack of a comparative advantage in the export of the corresponding commodity or industry. The RCA index can be expressed as: (i) a cardinal measure, i.e. revealing the degree of comparative advantage of a country in a specific commodity; (ii) an ordinal measure, i.e. ranking of countries by their degree of competitiveness in a specific commodity and, lastly, (iii) a dichotomous measure, i.e. differentiating between countries that have comparative advantage in a specific commodity and those that have not (Ballance et al., 1987). In addition, some studies have also used the RCA in econometric analysis, e.g. Galtonian<sup>13</sup> regression analysis. However, despite its frequent use, this measure seems to be problematic when it comes to ordinal and cardinal comparisons of its values (Yeats, 1985, Ballance et al., 1987). To test the consistency between cardinal, ordinal and dichotomous measures, Ballance et al. (1987) proposed a comparison approach of the correlation coefficients for pairs of alternative measures of revealed

<sup>&</sup>lt;sup>13</sup>This regression analysis analyzes the structural changes of trade performance between two different time periods (Sanidas and Shin, 2010).

comparative advantage. The results of these consistency tests<sup>14</sup> in the majority of cases favoured the dichotomous use of indices relative to the former versions. Furthermore, the index has also been been criticised for its incomparability across time and space, which is primarily due to the asymmetry problem. According to Dalum et al. (1998) the RCA index is asymmetric through the origin, i.e. not comparable on both sides of unity. It ranges from zero to one, if a country does not have comparative advantages in a specific commodity or industry, while it ranges from one to infinity, if a country enjoys a distinct comparative advantage in the corresponding commodity or industry. However, it is important to note that, Dalum et al. (1998) have come up with a solution to this problem, i.e. by adjusting the RCA to the 'Revealed Symmetric Comparative Advantage' (RSCA) index.

$$RSCA_{ij} = (RCA_{ij} - 1)/(RCA_{ij} + 1)$$
 (2.4)

An alternative solution to the asymmetry problem has been proposed by Vollrath (1991), involving a logarithmic transformation of the original RCA, though, it is worth noting that the latter could be problematic, particularly in a regression analysis, if a country does not export a given commodity or industry. Another problem associated with RCA and other similar comparative advantage indices is that the trade pattern may be distorted by government interventions, e.g. import restrictions, export subsidies and other protectionist policies. In that case, the revealed comparative advantage would be misrepresenting underlying competitiveness (Utkulu and Seymen, 2004). Pitts et al. (1995). Mlangeni and Seventer (2000) argued that an additional problem associated with these indices is that sometimes, certain countries, due to the specificity of their export structures, tend to generate very large index values, thus distorting cross-country assessments. For instance, if exports of a certain commodity form a large share of a country's total domestic exports, but a very small component of total world exports, then extremely high indicator values will be recorded.

The relative export advantage (RXA) is a modified version of Balassa's RCA index developed by Vollrath (1991) and it has been introduced to overcome the issue of double counting between

<sup>&</sup>lt;sup>14</sup>These tests were conducted to compare alternative RCA indices and assess their consistency in measuring the comparative advantage of countries. For instance, for the cardinal measures a strong correlation coefficient between two alternative indices implied perfectly consistent indices and vice versa (Ballance et al. 1987).

countries and the asymmetry problem. Alternative measures derived from Balassa's original index are, the relative import advantage (RMA) index, and the relative trade advantage (RTA) which is calculated as the difference between relative export advantage (RXA) and relative import advantage (RMA) (Vollrath, 1991).

$$RMA = (M_{ij} / M_{it}) / (M_{nj} / M_{nt})$$
(2.5)

Where *m* represents imports

$$RTA = RXA - RMA = (X_{ij}/X_{it}) / (X_{nj}/X_{nt}) - (M_{ij}/M_{it}) / (M_{nj}/M_{nt})$$
(2.6)

In contrast to Balassa's RCA index, t denotes all commodities other than j; n denotes all countries other than i, thus avoiding double counting. Moreover, as previously emphasised, Vollrath used logarithms to overcome the potential asymmetry problem associated with these indices. Positive values of both, RTA and RXA are an indication of comparative advantage.

Another modified version of Balassa's standard comparative advantage index (*LFI*) is proposed by Lafay (1992). See the equation presented below.

$$LFI_{j}^{i} = 1000 * \left(\frac{x_{j}^{i} - m_{j}^{i}}{x_{j}^{i} + m_{j}^{i}} - \frac{\sum_{j=1}^{N} (x_{j}^{i} - m_{j}^{i})}{\sum_{j=1}^{N} (x_{j}^{i} + m_{j}^{i})}\right) \frac{x_{j}^{i} + m_{j}^{i}}{\sum_{j=1}^{N} (x_{j}^{i} + m_{j}^{i})}$$
(2.7)

 $x_j^i$  and  $m_j^i$  represent exports and imports of product *j* of country *i* with respect to the rest of the world. *N* represents the number of products or industries. The existence of a comparative advantage is revealed by positive values of the index, whilst, negative values indicate a lack of comparative advantage in a given product or industry (Baumann and Di Mauro, 2007). The main difference between the standard index provided by Balassa and Lafay's index is that the latter also accounts for imports. It is based on net trade flows and is therefore claimed to overcome some of Balassa's index shortcomings in measuring international competitiveness.

These and many other attempts have taken place to measure the comparative advantage of a country in a specific commodity or industry. As Vollrath (1991) asserts, there can be as many indices as there are combinations and transformations of trade indicators (Sanidas and Yousun,

2010). Furthermore, all these indices seem to have their own advantages and disadvantages, thus it is essential to take them into account when conducting empirical analyses. However, despite the criticism, particularly in terms of the specification, the decision on selecting measures of comparative advantage should not be based only on statistical criteria. It is not possible to fully specify empirically suitable measures, hence, it is strongly recommended to base the specification of these measures on established theoretical grounds (Ballance et al., 1987).

Another trade indicator frequently used to assess international competitiveness is the export market share (EMS). The actual indicators may be presented in terms of volumes or values. The export market share in volume, is defined as the ratio of a country's export volumes to the weighted average of the import volumes of major trade partners, while, the market share in value terms is defined as the ratio of a country's exports value to an unweighted measure of the value of world exports. Moreover, export market share indicators tend to differ with respect to the measure of world exports used. These indicators can be computed as the share of a country's exports in the total market for exports, or as an indicator that weights the export markets according to their importance in the exports of a given country (ECB, 2005). An alternative share measure which is more likely to capture the relative competitive position of countries is proposed by European Commission and it has been used to construct export market share indicators by Eurostat and OECD. It is defined as the share of a country's exports over the total exports of the world or a particular region. As constructed, this specification is expected to reflect the degree of international competitiveness of a country in relation to a region or the world. That is to say, sustaining and gaining shares in international markets is an indication of a superior competitiveness position relative to other countries. Alternative, more disaggregated indicators used in assessing international competitiveness are the export market share at the industry and firm levels. A potential limitation of the latter indicator per se is that it does not reveal the truth behind the maintained market share. It could be a result of price cutting, which could as a result affect the performance of the firm negatively in the longer term (Buckley, 1988). Another related trade indicator is the net export index (NX/NEI), which is defined as a country's exports less its imports (i.e. net exports) divided by the total value of trade (sum of exports and imports) (Balassa and Noland, 1989, Banterle and Carraresi, 2007).

$$NX_{ij} = \frac{X_{ij} - M_{ij}}{X_{ij} + M_{ij}}$$
(2.8)

Where X denotes exports; M represents imports; while j and i denotes industry/product and country, respectively. The index lies between -1 and 1. If a country imports only, the value of the index will be -1, while, if it exports only, the index will equal to 1. The index will be equal to 0 in the case of equality of imports and exports. The assessment of the relationship between exports and imports appears to be the main advantage of this proxy measure, though the adoption of protective barrier on imports might deteriorate the net export indicators, leading sometimes to very large values of the latter (i.e. 1) (Balassa and Noland, 1989).

The competitive position of countries in international markets has also been assessed through the use of a newly introduced Manufactured Export Competitiveness Index (MECI). MECI focuses on the ability of countries, with special reference to developing ones, to produce manufactures according to world market standards (Wignaraja and Taylor, 2003). It was proposed as a simpler alternative measure to the existing measures of competitiveness performance provided by the World Economic Forum (WEF) and International Institute for Management Development (IMD). The actual index is constructed through a weighted sum of three components of manufactured export performance: manufactured exports per capita, manufactured export growth rate per annum and technology-intensive exports as a percentage of total merchandise *exports*. The construction of MECI follows a similar approach to the Human Development Index (HDI) provided by United Nations Development Programme (see equation 2.9 and 2.10 below). The sample minimum and maximum have been fixed across the main components (sub-indices), a logarithmic transformation has been taken to account for the high values of the manufactured export per capita measure, whereas equal weights of 0.3 have been assigned to the first two components of the index (i.e. manufactured exports per capita and manufactured export growth). Given its potential higher relevance to competitiveness, a higher weight (i.e. 0.4) has been assigned to the third component of the index, i.e. the technology-intensive exports.

$$Sub - index = \frac{Actual Value - Minimum Value}{Maximum Value - Minimum Value}$$
(2.9)

Where the *Actual Value* represents the value of a specific country, *Minimum* and *maximum Values* denote the sample minimum and maximum, respectively.

$$MECI = [Sub-index_1^*weight] + [Sub-index_2^*weight] + [Sub-index_3^*weight]$$
(2.10)

MECI covers the current position of a country in export markets, which is measured by the manufactured export value per capita; the long-term export growth that led to this position, measured by the average manufactured export growth per annum; and the extent to which a country's exports are technology-intensive, measured by technology-intensive manufactures exports as a percentage of total merchandise exports. Accelerated manufactured export growth, in combination with technological upgrading and diversification are regarded as the key features of a competitive economy. The index takes values between 0 and 1 with higher values indicating greater levels of competitiveness at the macro level (Wignaraja and Taylor, 2003). It important to note that the aim of this index was to provide a framework of assessment in the context of developing economies, given the increasing internationalisation and the lack of comprehensive coverage of these countries in previous analyses.

Alternative measures of competitiveness primarily associated with performance indicators such as cost, profitability and productivity have been proposed by the strategic management school (Latruffe, 2010). The domestic resource cost (DRC) ratio compares the opportunity costs of domestic production, i.e. the cost of using domestic resources (land, labour and capital) non-traded inputs to the value added it generates, i.e. value of output minus tradable input costs per unit of output (Tsakok, 1990, Gorton et al., 2001). A DRC ratio less than 1, but greater than 0 indicates an efficient and internationally competitive production; while a DRC greater than 1 shows that the production is not internationally competitive. A DRC ratio lower than 0 (i.e. negative) indicates an unprofitable, loss-making activity. When used to compare countries, a lower positive DRC indicates a more competitive country. However, it is pertinent to note that this measure is sensitive to the choice of domestic prices for non-tradable inputs and changes in international prices (Gorton et al., 2001).

The DRC for the production of output *i* can therefore be defined as:

$$DRC_{i} = \frac{\sum_{j=k+1}^{n} a_{ij} P_{j}^{D}}{P_{i}^{B} - \sum_{j=1}^{k} a_{ij} P_{j}^{B}}$$
(2.11)

Where  $a_{ij}$ , j = 1 to k represents the quantity of traded input j,  $a_{ij}$ , j = k+1 to n denotes the quantity of non-traded input, used to produce one unit of output i,  $P_j^D$  is the domestic (shadow) price of input j,  $P_i^B$  is the border/reference price<sup>15</sup> of output i, while  $P_j^B$  represents the border/reference price of traded input j. This indicator has been frequently used in the agricultural competitiveness literature for CEECs as well as at the farm level (Latruffe, 2010). Note that there are additional cost-related measures that are used in the literature to assess competitiveness at different levels of investigation, e.g. social cost-benefit (SCB) ratio, unit labour cost and costs of production.

A more composite measure of competitiveness, capturing not only the cost dimension but also the revenue is profitability. Profitability is frequently used at the firm and product level, but rarely at the country or industry level due to measurement complexities. There are two distinguishable approaches to measuring profitability, the accounting approach and the economic approach. While, the former reflects differences between revenues and costs, the latter tends to also evaluate the opportunity costs of the engaged resources. Considering that opportunity costs are not easily quantifiable, the accounting approach is more frequently used in the research work and it is frequently regarded to be a key measure of the competitive success (Schornberg and Fischer, 2007). Commonly used measures in the profitability literature are: return on assets, return on sales and value added. However, it worth noting that a few complications tend to arise when firms of different sizes are compared and assessed. For instance, some firms may decide to sacrifice short-run profits for long-run ones, which, in the short term would make them look uncompetitive, even though they are improving their competitive advantages in existing markets (Buckley et al., 1988). Another limitation stems from the complexity of measuring profitability, e.g. the value added measure contains labour costs, which tend to differ considerably across countries, thus making the actual measure imprecise (Schornberg and Fischer, 2007). However,

<sup>&</sup>lt;sup>15</sup> The reference (border) price is: "the world price at fob (free on board) for exports, or at cif (cost, insurance and freight) for imports, converted into domestic currency at the official exchange rate" (Ellis, 1992, p. 75).

in spite of the highlighted limitations, profitability continues to be regarded an important component of competitiveness.

Of the wide range of competitiveness indicators, according to Porter (1990) productivity represents the only meaningful concept of competitiveness at the national level, since the standard of living of a country depends primarily on the productivity of its economy. The latter is measured by the value of goods and services produced per unit of the country's labour and capital. Countries with high levels of productivity, in turn, are able to support high wages, a strong currency and high returns to capital and, thus, assure a higher standard of living for their citizens (Porter, 2002). Similarly, Krugman (1994, p.11) claims that competitiveness is just another way of saying productivity. He also argues that, "Productivity isn't everything, but in the long run it is almost everything. A country's ability to improve its standard of living over time depends almost entirely on its ability to raise its output per worker" (Krugman, 1994, p.11). A firm, an industry, or a country with high levels of productivity tends to be more competitive than its counterparts (McKee and Sessions-Robinson, 1989). However, it is pertinent to note that, despite the extensive promotion of productivity, it has been rarely utilised or associated with the concept of competitiveness in empirical studies (Latruffe, 2010). Productivity is commonly measured by: labour productivity, capital productivity and total factor productivity proxies. The former measure shows how productively labour is used to generate a unit of output and it is commonly represented by two main categories: a gross output, effectively measuring ULC and a value-added proxy (OECD, 2001a). According to Ark (1996), at a country level the value added approach is more valid, while, at an industry level, gross output is more appropriate. At more aggregated levels, the value added approach avoids double counting of intermediate inputs and is easily compared to the domestic product published in national accounts, thus allowing an integration of both primary and secondary source data. The gross output treats equally all engaged inputs, i.e. intermediate inputs, capital and labour; hence, it is to be preferred at the industry level, where the purchases of intermediate inputs from other industries are more dominant than at the country level.

Labour productivity is defined as follows:

#### Quantity index of gross output or Quantity index of value added Quantity index of labour input (2.12)

Labour inputs are commonly approximated by: *hours worked, number of full-time equivalent employed persons and numbers employed. Hours worked* tends to be the most preferred proxy of the labour input, but also the most difficult in terms of data availability and comparability. Countries may differ in their practices of computing these particular measures, and as a consequence their comparison will be inherently more difficult. It is important to note that, labour productivity does not refer only to the skills of employees or the intensity of their effort, but, it also depends on a wide range of other inputs, e.g. changes in capital, intermediate inputs, technical, organizational and efficiency changes, and economies of scale. Hence, it is considered as a partial productivity measure (OECD, 2001a). The measure of capital productivity is computed following the same approach as labour productivity, and it depict how productively capital is used to generate gross-output or value-added. Commonly used measures of capital input are capital services and gross/net stocks of capital.

## Quantity index of gross output or Quantity index of value added(2.13)Quantity index of capital input

A more comprehensive productivity measure is the total factor productivity, also called the multifactor productivity. It describes how productively a combination of inputs (labour, capital, energy, services) is used to generate gross output. However, an inherent drawback of this particular measure relates to the difficulty of computing it since it requires a large amount of data that are generally not readily available (OECD, 2001a).

 $\frac{Quantity index of gross output}{Quantity index of combined inputs (KLEMS)}$ (2.14)

As already postulated, no one indicator is sufficient to assess the broad concept of competitiveness (Henricsson et al., 2004, Latruffe, 2010), hence a joint analysis of its various components is frequently preferred. Supporting this approach, Fischer and Schornberg (2007) constructed a composite measure, called the Industrial Competitiveness Index (ICI) based on

profitability, productivity, and output growth. Profitability was defined as the share of gross operating surplus in turnover, whereas productivity and output growth are measured as the value added per employee and the annual change in the value of production, respectively. They aggregated the three different components of competitiveness into one index by using the same methodology used by United Nations to construct the Human Development Index. The above outlined components were initially transformed into individual indices by using a standardization procedure that transforms absolute measure values into a scale from 0 to 100. The minimum value recorded across countries (i) and industries (j) in a period of time (t) has a zero score for a particular measure (k), while the maximum value will have a score of 100.

$$I_{k}^{tij} = \left(\frac{M_{k}^{tij} - M_{k}^{min}}{M_{k}^{max} - M_{k}^{min}}\right) * 100$$
(2.15)

Where  $I_k^{tij}$  represents the individual index values,  $M_k^{max}$  denotes the maximum values,  $M_k^{min}$  iss the minimum values, while, *i*-countries; *j*-industries; *t*-years; *k*-measures. The composite index (ICI) is constructed by combining simple means of individual indices. This assures that all indices have equal weights, thus reflecting the multidimensional definition of competitiveness (Fischer and Schornberg, 2007). Similarly, Wijnands et al. (2008) assessed competitiveness through the use of five individual indicators, i.e. growth in the real value added of a specific industry in the total food industry, growth of Balassa index (RCA), growth of the export share on the world market, growth of the real labour productivity and growth of real value added. The theory of international economics seems to have laid the foundation for this framework, though, no explicit rationale has been provided for the choice of these sub-indices. The authors, however, make reference to O'Mahoney and Van Ark (2003), and several EU studies, regarding the set of indicators adopted. All these (sub) indicators are standardized so they could have the same mean and the same variance. Standardized indicators can be presented as one single index and their mean can be used to assess the overall competitiveness of a nation. The authors used equal weights for each indicator. Note that a key limitation of this index is the strong dependency on the sample size, i.e. the number of countries and levels of indicators. If any of these features is likely to change, the position of a country will consequently change.

In the same vein, to assess the overall competitiveness of a country, the World Economic Forum (WEF) and the International Institute of Management Development (IMD) have produced composite indices based on a large set of independent measures. The World Economic Forum has introduced a Global Competitiveness Index (GCI), to assess the microeconomic and macroeconomic foundations of a country's competitiveness. The GCI comprises of a weighted average of several different components, each measuring a different aspect of competitiveness. These components are grouped into 12 pillars of competitiveness: Institutions, Infrastructure, Macroeconomic environment, Health and primary education, Higher education and training, Goods market efficiency, Labour market efficiency, Financial market development, Technological readiness, Market size, Business sophistication, and Innovation. The GCI is computed based on aggregations of scores from the indicator level to the overall GCI score. Individual variables are aggregated within a category through an arithmetic mean (WEF, 2012). Similarly, IMD provides the World Competitiveness Yearbook that focuses on the competitiveness of economic environment in which firms operate and compete. The report categorizes 249 measures into eight input factors: domestic economy; internationalisation; government; finance; infrastructure; management; science and technology; and people. Data are standardized and equally weighted in order to compute indices of competitiveness environment for countries analysed (Martin, 2004). The yearbook ranks countries according to their performance in each of these measures. It identifies 47 macro and micro factors, sub-divided by 8 input factors, which are considered as the most important for a competitive environment. Although the report provides a comprehensive representation of various measures, the quantity of variables and the lack of relative weights for the more important ones tends to reduce its analytical value (Martin, 2004).

Having provided an overview of a wide range of concepts and measures, this section highlights the complexity of fully capturing the notion of international competitiveness. In spite of the many indicators developed and/or adopted in the literature, their intended use is not yet clearly determined. Namely, there are studies that have used indicators such as productivity and profitability as measures or components of competiveness, with others treat them as potential determinants. However, in spite of this inconsistency, it is important to note that the international dimension of competitiveness puts emphasis on competition with other countries, whilst many of the outlined indicators (e.g. productivity, profitability and related measures) do not seem to be tied strictly to this notion (i.e. its international element). While, the actual proxies might be regarded as important indicators of a country's well being and economic success, they do not reflect its relative competitive position in the global economy.

# 2.4 Empirical evidence on international competitiveness: micro and macro perspectives

The complexity of defining and measuring the ambiguous and multifaceted concept of international competitiveness at different levels of aggregation has been reflected in the empirical research carried out in this field. Given the variety of theoretical and measurement approaches used and country and time-specific factors, differing results have been presented in studies. Taking these into consideration, two broad categories of empirical studies can be identified. The first category is concentrated on the assessment of international competitiveness per se with particular focus on ranking analysis. The second category, on the other hand, is focused on the investigation of the determinants of international competitiveness through the use of survey analysis, regression analysis and/or simple correlation analysis. The aim of this section is to provide a comprehensive review of the research work from both strands of literature. Studies dealing with the assessment of international competitiveness for the purpose of ranking and comparing the relative competitive positions of firms, industries or countries will be initially presented, followed by a overview of the empirical literature on the main driving factors of competitiveness (see Table 2.1). Distinguishing between two broad strands of this literature, the function of Table 2.1 is to summarize the key features of each empirical research reviewed in this section. Details on the authors of the study, followed by the research time span, methodology adopted, level of aggregation, sample size, measures of international competitiveness and their potential determinants (when available) are presented in this overview table. Furthermore, important notes regarding the potential impact of the choice of competitiveness measures on the final results of these studies have also been added.

This section will start with a review of studies employing mainly trade based indicators, to be followed by a consideration of studies following the strand of research adopting alternative proxies of international competitiveness (e.g. cost and composite measures). Banterle and

Carraresi (2007) used Balassa's revealed comparative advantage index, Vollrath's indices, net export index and the Grubel-Lloyd index<sup>16</sup> to assess the competitiveness of the EU countries in the prepared swine meat sector for the period 1990-2003. With few exceptions, all these indices seem to reveal a similar competitive performance for countries under analysis. In a later study, the same authors examined the international competitiveness of food and agricultural sectors of 15 European countries through the use of several trade based indicators (i.e. RCA, RXA, RMA, EMS, NEI) for the period 1991 – 2006. In addition, they used cluster analysis to classify countries into categories based on their competitiveness performance. Again, similar results were obtained, highlighting the validity and consistency of the employed measurement approaches (Carraresi and Banterle, 2008). Another similar research study assessing the international competitiveness of nations is conducted by Qineti et al. (2009). To analyse the dynamics of the agro-food trade of the Slovak Republic and the EU-27 with Russia and Ukraine, the authors employed a trade dataset made available from the EUROSTAT, for the period 1999 - 2006. Initially, Balassa's index was used to examine the export comparative advantage of these countries. Second, a regression analysis was carried out to check the stability of the index over time. The results indicated comparative advantage only for some commodities while differences across markets were identified. The evidence extracted from the regression analysis revealed declining comparative advantage for both the Slovak Republic and the EU 27, though a few exceptions were marked. An assessment of the competitive position of the agricultural sector in Czech Republic and Bulgaria was carried out by Gorton et al. (2000). The analysis adopted the revealed comparative advantage index (RCA) and the domestic resource cost (DRC) to proxy the competitiveness of these countries relative to EU and other international markets. The overall results of the RCA analysis revealed an uncompetitive position in the agricultural production in both countries, whereas when the domestic resource costs was used as a proxy measure, the cereal producers appeared to be competitive at international market prices as well as at the EU prices. This inconsistency of the results seems to be due to trade restrictions. As the authors explain, limited preferential access to the EU agricultural markets has been given to the selected countries, thus resulting in a low RCA.

<sup>&</sup>lt;sup>16</sup>The Grubel-Lloyd index reveals the structure of an industry trade flows. When the index equals to 0, it indicates inter industry trade flows, while, when it equals to 1, it shows pure intra industry trade flows (Grubel and Lloyd, 1975).

Havrila and Gunawardana (2003), on the other hand, investigated the competitiveness of Australian's textile and clothing sector based on Balassa's and Vollrath's indices using Standard International Trade Classification (SITC) two and three digit level trade data. According to the findings obtained in the actual analysis, Australia appears to exert a comparative disadvantage in textiles and clothing, in all commodities at the aggregate level, though some exceptions were identified. Following the same approach, Fertö and Hubbard (2003) examined the competitiveness of Hungary in agriculture and food processing in relation to the EU, using both, Balassa's and Vollrath's indices of revealed comparative advantage, for the period 1992 - 1998. The empirical findings of the latter investigation reveal a comparative advantage of Hungary in a broad range of agro-food commodities, and furthermore show a stable trend during the course of the transition. Note that the results of the above outlined studies seem to further reinforce the consistency of the comparative advantage based indices. The competitive position of Turkey in the tomato, olive oil, and fruit juice industries in relation to the EU market was investigated by Serin and Civan (2008). The research was carried out for the period 1995-2005 and made use of the revealed comparative advantage (RCA) and the comparative export performance (CEP) indices. It is pertinent to note that the both sets of indicators produced similar evidence in terms of the comparative advantages/disadvantages of Turkey in specific industries. Drescher and Maurer (1999) conducted a similar analysis to determine the competitive position of the German dairy products relative to the corresponding products of other EU countries during the period 1983-1993. In addition to the traditional proxy measures of international competitiveness (i.e. export shares and Revealed Comparative Advantage), the analysis has also adopted a Revealed Comparative Advantage Export Indicator (XRCA) and a Revealed Comparative Advantage Net Export Indicator (NXRCA). The final results obtained from the analysis do not seem to draw clear conclusions about the competitiveness of Germany in these particular products. That is to say, while the XRCA showed a competitive disadvantage in certain products, but these findings were not supported by the NXRCA based analysis. Note that when the period under analysis was divided into two sub-periods, both indicators seem to tell a consistent story (i.e. a revealed competitive disadvantage). Another study focusing its research on trade indicators to evaluate international competiveness is provided by Bojnec and Fertö (2009). The competiveness of the agro-food industry in eight Central European and Balkan countries relative to the EU-15, for the period 1995 to 2007 was assessed using Balassa's and Vollrath's comparative advantage indices.

The ultimate findings of this investigation revealed substantial differences across commodity groups as well as across countries. Superior export specialization in more competitive and niche commodities was suggested by the revealed comparative export advantages (RXA) index, whereas, a relative trade disadvantage in all commodity groups was indicated by the RTA index. In the same vein, the RMA index revealed an import specialization disadvantage in the majority of commodities and countries. The mixed results are attributed to some extent to differences in factor endowments, agricultural structures, barriers to trade, and other potential influencing factors.

The review of studies outlined above shows how the assessment of international competitiveness is commonly carried out through the use of trade-based indicators. However, studies adopting other indicators, mainly of multidimensional nature, are also present in the literature. Fischer and Schornberg (2007) in their research study, constructed a composite indicator to assess the international competitiveness of food and drink manufacturing sector in 13 EU countries for the period 1995-2002. The 'industrial competitiveness index' covering profitability, productivity and output growth enabled competitiveness comparisons across industries and countries over time. Overall, the empirical results show a slight competitiveness enhancement compared to the EU average of the period 1995–1998. Following a similar approach, the competitiveness of the food and beverage manufacturing sector in 18 European countries for the period 2002 - 2007 was examined by Notta and Vlachvei (2011). According to this study, the beverage manufacturing sector appears to be the most competitive sector in Europe. In the same vein, Wijnands et al. (2008) assessed the competitiveness of the EU food industry in relation to Australia, Brazil, Canada, and the United States for the period 1996-2004. The authors constructed a composite index based on five individual indicators, i.e. growth in the real value added of a specific industry in the total food industry, growth of Balassa's index (RCA), growth of the export share on the world market, growth of the real labour productivity and growth of real value added. The findings of this research revealed a weak competitive position of the European food industry visà-vis the United States and Canada, and a comparable degree of competitiveness with Australia and Brazil.

A review of empirical studies adopting the domestic resource cost (DRC) methodology to assess the international competitiveness of agricultural production of Central and East European Countries (CEECs) was provided by Gorton and Davidova (2001). Based on their assessment, the crop production of this group of countries is revealed to be generally more competitive than livestock farming, some variations being identified across countries. However, the authors warn that these results should be treated with particular caution given the acknowledged limitations of DRC ratios (see the discussion presented in section 2.2). Similarly, Bojnec (2003) evaluated the international competitiveness of livestock production in Central and East European countries (CEECs) based on an overview of three concepts of competitiveness: Porter's diamond of competitive advantage, measures based on accountancy data using the Policy Analysis Matrix (PAM) approach<sup>17</sup>, and trade-based competitiveness measures. An overall decline in the size of the livestock production in the former socialist countries of CEE was recorded during the course of transition. Whilst international competitiveness in this sector seemed to have improved over time, the results of this investigation revealed mixed evidence, with few sub-sectors being more competitive than others. Kovacic (2008), on the other hand, examined the competitive position of CEECs in relation to other EU countries by using the WEF of IMD competitiveness indices. Assessed from the Growth Competitiveness Index perspective, Slovenia was ranked on top of the group, while the Czech Republic appeared to be the best performing country in the field of technology. Estonia seemed to have been ranked very high when assessed in the context of marketing and technology-driven industries, whilst the lowest gap with respect to EU, in the white-collar high-skilled occupations, was recorded by Hungary. Additional specific rankings based on the above outlined indices were provided in this study.

The main purpose of this review was to show how research studies have been primarily concerned with the measurement of international competitiveness, through the development of new measures or adoption of existing ones. Considering the multidimensional nature of the concept, there was a tendency to use as many indicators as possible, so, that more supposedly reliable results could be provided. Regarding the theoretical background, most of the reviewed studies were grounded in the traditional neoclassical theories. When the comparative advantage

<sup>&</sup>lt;sup>17</sup> It compares revenues, costs of traded and non-traded intermediary inputs, primary domestic resources, and profitability at private (domestic) and economic (social) prices (Bojnec, 2003).

principle was used to explain and assess international competitiveness, Heckscher – Ohlin theory was predominantly followed, with only few studies adopting Porter's diamond approach. The international competitiveness research work presented in this section was mostly conducted at a country or sector level, using either trade based or composite indices. The main purpose of those studies was to compare the performance and trends of sectors and/or countries in the global market. In spite of their limitations and valid criticisms, the revealed comparative advantage indices developed by Balassa and Vollrath were among the most widely used in the competitiveness literature. Note that these indicators have been criticized for being based on assumptions that do not always apply to industries or countries. The ignored role of domestic demand, domestic market size, and important developments within the market has also been highlighted as a potential drawback of the index (Drescher and Maurer, 1999). Furthermore, an economy's trade patterns are likely to be distorted by government interventions and policies, thus, leading to potentially false comparative advantageous positions (Fertö and Hubbard, 2003). However, given the complexity of fully defining and measuring comparative advantage, Balassa argued that relying on the trade performance of an economy is a sensible indication of its comparative advantage as it reflects the relative costs and differences in non-price factors. By taking this into consideration, the author claims that it is not strictly necessary to account for other potential components of comparative advantage (Balassa, 1965). With respect to the composite indices recently used in the literature, the coverage of many dimensions of competitiveness appears to be their key advantage. However, core shortcomings stem from the difficulty of comparing their findings with those of other empirical studies, and the lack of a solid theoretical basis and aggregation methods (Fischer and Schornberg, 2007, Siggel, 2007). As previously discussed, the focus of this strand of literature was placed on developing or adopting international competitiveness measures with the purpose of ranking and comparing trends across sectors or countries. However, this reveals nothing about the sources and potential determinants of international competitiveness, as well as changes required to enhance the competitiveness of an entity. To account for these, the remainder of this section will present a review of the empirical studies on the potential drivers of international competitiveness conducted at different levels of aggregation. The discussion will be initiated with an overview of country level studies, followed by sector and firm level research analyses.

Fagerberg (1988) was one of the first scholars to investigate the determinants of international competitiveness at a country level. He developed a model to assess the impact of the ability to compete in technology, the ability to compete in price and the ability to compete in delivery on growth in market shares for exports and imports. The model was tested on pooled cross-country and time-series data for 15 industrial countries for the period 1960-1983. The level of technological development was captured by a weighted average of an R&D index (% of GDP) and patent index (i.e. adjusted external patent applications per capita). Growth rates for technological development were also utilized in the regression analysis. The ability to compete in delivery has been represented by investment-based factors, such as gross fixed investment (as a % of GDP), whereas the growth of relative unit labour costs (RULC) was introduced to proxy the price or cost dimension of competitiveness. The evidence obtained from this study highlighted the importance of the technological competitiveness and the ability to compete on delivery as key influencing factors on differences in the growth of markets shares across countries. Alternatively, Guerrieri and Meliciani (2003) examined the determinants of international competitiveness and international specialisation in selected groups of producer services in eleven OECD countries for a period of eight years. Specialisation was measured by the share of exports in a given sector over the total exports of that country, while competitiveness was measured by the share of exports of a given country in a given sector over the total exports of the 11 OECD countries in the same sector. The former reflects comparative advantage, while the latter is perceived to capture the absolute advantage of the country. In addition to the traditional cost factors, the impact of intermediate demand and the impact of national technology advantage were also quantified and assessed in the present study. The share of labour costs in total production costs was introduced to represent the cost dimension, whereas the technological advantage was captured by the information and communication expenditure on GDP. The impact of intermediate demand, on the other hand, was proxied by computing specialisation in manufacturing weighted by the use of services by manufacturing industries. Supporting evidence was found for the positive role of the domestic demand from the manufacturing sector and Information and Communication Technology (ICT) expenditures on international specialisation and international competitiveness. The results appear to be consistent with the theoretical considerations and highlight the key importance of technology on trade patterns and competitiveness (Posner, 1961; Krugman, 1985).

Marconi and Rolli (2007) assessed the relationship between the revealed comparative advantages and competitiveness structure of the domestic manufacturing sector of sixteen developing countries over the period 1985-2000. The former was measured by a modified version of the Lafay index, while, the latter was captured by a set of industry and country factors, i.e. costs, the accumulation of physical capital, the availability of skilled human capital, the acquisition of foreign technology via imports of capital goods, and other potential driving factors. Note that, the model specification was derived from the traditional trade theories and the "new economic geography"<sup>18</sup> approach. The main findings of this study show that low unit labour costs in both, low-tech and medium/high-tech sectors seem to affect positively the revealed comparative advantages (RCA), while the accumulation of physical capital affects positively the RCA in medium-or-high tech sectors only. In line with expectations, human capital endowments appeared to exert a strong and positive impact on the international advantages of countries in the technology-intensive sectors. No supporting evidence, on the other hand, was found for the economic geography approach, since the impact of the latter characteristics on revealed comparative advantage of the manufacturing sector turned out insignificant.

The research paper by Chor (2010) provided a quantitative assessment of the importance of various sources of comparative advantage for the pattern of trade at an industry level. For a sample of 83 countries and 20 manufacturing industries, a model that expresses comparative advantage as function of country and industry characteristics was developed. By applying two estimation methods, OLS and simulated method of moments (SMM), the author examined the impact of distance, Ricardian productivity, factor endowments, and institutional conditions on bilateral trade flows. The Ricardian and Hescksher-Ohlin theories were incorporated in this empirical investigation, using an extended version of the Eaton and Kortum (2002) empirical model. The estimated results of this study highlight the importance of all the assessed potential determinants for a country's trade pattern, thus confirming the usefulness of the adopted modelling framework in explaining bilateral trade flows. In the same vein, Van der Marel (2012) examined the determinants of comparative advantage in the services sector for a group of 23

<sup>&</sup>lt;sup>18</sup> This theory suggests that location characteristics have an important impact on a country's economic performance (Venables, 2006).

OECD countries. To assess the comparative advantage of the sector, this author also adopted the extended version of Eaton and Kortum's (2002) model of comparative advantage developed by Chor (2010). The actual model specification relied on geographical, Heckscher-Ohlin, institutional and regulatory based variables. Moreover, potential variations in the sources of comparative advantage between goods and services were assessed. The empirical findings of the research study suggested that the determinants of competitive advantage for services tend to differ from those of goods. In the former sector, the main sources of comparative advantages were found to be a high skilled labour force, the level of trust enjoyed by importers, and the quality of regulatory governance practiced when liberalizing services sectors. The same factors are also likely to influence the comparative advantage of the goods sector, though, to a lesser extent. No significant differential effects were found for sharing a common border, a similar jurisdiction, decreasing entry barrier and lowering FDI restrictions.

Following the same approach, Kowalski (2011) assessed the role of several sources of comparative advantages on bilateral trade flows, covering a sample of 55 OECD and emerging economies and 44 manufacturing sectors for the period 1990-2009. Physical capital accumulation, human capital accumulation, financial development, energy supply, the business climate, a number of aspects of functioning of labour markets and import tariff policy were regarded as key determinants of comparative advantage this paper. Supporting evidence was found for the positive role of the majority of the assessed determinants (i.e. physical and human capital accumulation, financial development, the business climate, and a number of aspects of labour market institutions). In addition, the obtained results suggested growing differences between OECD and non-OECD countries in terms of physical capital, availability of credit or regulatory quality and more heterogeneity within the non-OECD countries, implying thus high and increasing potential for North-South and South-South trade. It is pertinent to note that the estimated results are consistent with the traditional comparative advantage theoretical framework. Another research analysis assessing the potential sources of comparative advantages, with particular focus on factor endowments, was conducted by Stone et al. (2011). To carry out such an analysis, the authors constructed a measure for the factor content of trade based on the Heckscher-Ohlin-Vanek (HOV) model. Consistent with the neoclassical trade theory, the evidence acquired from the analysis supported the importance of the relative factor endowment
in explaining the pattern of trade. That is to say, countries that possess larger stocks of capital and skilled labour tend to trade more goods and services requiring intensive use of these factors (e.g. OECD countries). While for developing countries that are typically endowed with relatively larger stocks of unskilled labour, the intensive use of these resources in their trade was more common. However, it is worth noting that some contradicting results in the case of the United States and Japan were identified. For instance, a surplus in the unskilled labour trade was recorded in Japan, while a deficit in the capital-intensive trade existed in the United States. When the actual analysis was extended by also including the intermediate trade component, some of the seemingly counterintuitive results reversed. The changing nature of trade is perceived to be a potential explanation for these findings, i.e. trade depending not only on domestic based factors but also on internationally mobile ones. Additional empirical evidence of a positive relationship between a country's factor endowments and its trade pattern is provided by Debaere (2003), Romalis (2004) amongst others.

Olmeda and Varela (2012) in their research study tried to identify the factors that determine the level of competitiveness of the pharmaceutical industry using data provided by the Global Competitiveness Report of the World Economic Forum (WEF). Following Porter's competitiveness diamond approach, through a discriminant analysis, the authors examined the impact of 5 sets of factors, i.e. factor conditions, related and supporting industries, demand conditions, firm structure, strategy and rivalry, government on the competitiveness level of the pharmaceutical industry. Note that each factor category consisted of 6 to 16 independent variables. The empirical findings emerging from this investigation suggested that a country's factor conditions are major drivers of competitiveness. Conversely, government-related determinants, such as property rights, intellectual property protection, burden of government regulation, inflation, and prevalence of trade barriers were not found to exert a significant impact on the level of competitiveness of a country. Also following Porter's diamond model, Shafaei (2009) employed the same assessment framework to measure and explain the competitive performance of four major Iranian, synthetic fibre-manufacturing firms. The determinants of Porter's diamond model used in the analysis comprise of two to six elements, with each element consisting of several independent variables. Questionnaires and interviews were utilised to

collect firm data for the above outlined elements. The Analytical Hierarchy Process (AHP)<sup>19</sup> was employed to assess the competitive performance of firms, an approach commonly adopted when following Porter's competitive advantage diamond. The results emerging from the analysis suggested a low competitive position of the firms under investigation. Factor conditions, such as raw materials, human resources, specialized factors, capital, physical and information infrastructure, administrative and logistical infrastructure, and technology, were found to contribute highly to the competitive performance of these firms. Whereas, the demand conditions (i.e. local market, quality of demand, market share export, related industries, and supporting industries) turned out to exert an insignificant impact on the latter. Note that the actual findings are consistent with those of the export value and RCA analyses for the same industry in Iran and other countries, hence supporting the validity of the utilised approach. Nevertheless, it is also important to note that this approach is regarded as being more useful when identifying potential driving factors, rather than assessing their quantitative effect on competitiveness (Shafaei, 2009). Schiefer and Hartmann (2008) assessed the determinants of competitiveness in the German food processing industry through a nonparametric correlation, and regression analysis. Data used to carry such an analysis were gathered in an online survey. The competitive performance was measured by profitability indicators, such as the relative return on assets and sales (ROA, ROS), relative change in sales (CIS) and a combination of the three. The first two indicators are commonly used to measure the current profitability of a firm, while the relative change in sales was introduced to overcome some of the limitations of current profitability, i.e. not capturing the dynamics of a firm's performance. Moreover, in order to cover the various dimensions of performance, the authors constructed a composite measure, integrating the three indicators together. Technology and production-related variables turned out to exert a stronger impact on firm's competitive performance, whereas the influence of staff qualification was significant only at the management level. Overall, a consistent picture was revealed; few variations in terms of the level of significance were identified across the performance indicators. In line with the "resource-based view" (RBV), firm-specific factors were found to explain a large share of the variation in a firm's competitive performance. Note that the latter theoretical approach highlights the key contribution of a firm's resources to its comparative advantage. However, given that the

<sup>&</sup>lt;sup>19</sup>This approach structures multiple-choice criteria into a hierarchy, evaluates the relative importance of these criteria, compares alternatives and determines an overall ranking of these alternatives.

survey response was not satisfactory; the estimated results from this investigation should be interpreted with caution.

The international competitiveness of the 103 Peruvian SMEs was examined by Peña Vinces and Róldan (2012) using Partial Least Squares Structural Equation Modelling (PLS-SEM). Global strategy<sup>20</sup>, human resources background<sup>21</sup>, firm size, firm age, collaboration of industrial sector, the environment of the home country and the environment of the host country were quantified and their potential impact on the competitive performance of firms was assessed. The investigation was based on questionnaires completed by international operations managers, with five to seven point scales being used to evaluate the variables of interest. The competitiveness dimension was represented by the percentage of local profits over total profits and the percentage of foreign profits over total profits. The results showed that one of the most influential factors on international competitiveness was the use of a global strategy, with human resources background playing a crucial role in utilizing this strategy. In conclusion, all the empirical findings of this study appear to be consistent with the resource based view (RBV) and the industrial economics approach. Arbache and De Negri (2005) looked into the determinants of the competitive advantage of Brazilian exporting firms by employing data on employees and firm characteristics. A probabilistic binomial model was used to examine the impact of education, technology and scale of production on a firm's probability of exporting. Significant differences between exporting and non-exporting firms in terms of their labour force, size, capital ownership and other specific characteristics were revealed by the actual analysis. Economies of scale and technology appeared to play a key role in determining a firm's probability of being an exporter. The quality and efficiency gains from human capital (i.e., schooling, tenure, experience) appear to be valued higher in exporting firms as compared to their counterparts<sup>22</sup>, while, the impact of firm characteristics on competitive performance turned out to be stronger than those of the industry. The results of the study are consistent with the traditional and new trade theories,

 $<sup>^{20}</sup>$  "The set of activities, actions, plans, policies that a firm makes in order to plan its future in local and international markets, with the unique aim of improving its international performance" (p. 6).

<sup>&</sup>lt;sup>21</sup> The set of employee characteristics that helps firms improve their competitive position in international markets (e.g. age, education, fluency in foreign languages, and knowledge and experience of international markets).

<sup>&</sup>lt;sup>22</sup>A more detailed discussion on the link between human capital and international competitiveness, accompanied by a review of empirical studies will be presented in Chapter 4.

suggesting that factor endowments, technology and economies of scale are key influencing factors on trade and firm's probability of exporting.

A study by Dosi et al. (2013) investigated the determinants of international competitiveness of Italian firms with respect to a subset of OECD countries for the period 1989-2006. The focus of the study was on the impact of costs and technology on a firm's decision to enter foreign markets, as well as on the level of export market shares and its growth rate. Supporting evidence was found for the positive role of investment and patents on the probability of being an exporter as well as on the capacity to gain and increase market share. Wage expenditure, (i.e. the average labour cost per employee and the firm's wage over the weighted average of wages across countries) turned out positive and significant in the majority of sectors. In the growth (market share) model specification, the relative unit labour cost was used to capture the cost dimension and it exerted a statistically significant impact only in some sectors. Note that, unit labour cost is regarded as a more appropriate proxy measure than simple wage measures, since it covers the full set of labour costs, not just wages and salaries and furthermore, it potentially accounts for productivity. The present study was also augmented by an analysis focusing on the potential link between cost-technology and export market share at a macro level, for a sample of 15 OECD countries. Technology appeared to be a significant determinant of the pattern of international competitiveness, while costs seemed to matter in specific sectors only. The current empirical evidence is consistent with the theoretical considerations highlighting the key importance of technology on comparative advantages.

| Studies assessing international competitiveness for ranking and comparative purposes |                        |             |                      |                                   |                                                      |                          |                                                                                       |  |  |
|--------------------------------------------------------------------------------------|------------------------|-------------|----------------------|-----------------------------------|------------------------------------------------------|--------------------------|---------------------------------------------------------------------------------------|--|--|
| Authors                                                                              | Period                 | Methodology | Level of aggregation | Sample                            | Competitiveness<br>measure (Dependent<br>variable)   | Independent<br>variables | Comments/Notes                                                                        |  |  |
| Drescher and<br>Maurer (1999)                                                        | 1983-<br>1993          | NA          | Sector               | Germany                           | Export shares,<br>Balassa's index,<br>XRCA, & NXRCA  | NA                       | The use of<br>alternative<br>competitiveness<br>measures yielded<br>mixed results     |  |  |
| Gorton et al.<br>(2000)                                                              | 1994-<br>1996,<br>1997 | NA          | Sector               | Bulgaria and<br>Czech<br>Republic | Balassa's index &<br>Domestic resource<br>cost (DRC) | NA                       | The use of<br>alternative<br>competitiveness<br>measures yielded<br>different results |  |  |
| Gorton and<br>Davidova (2001)                                                        | 1992-<br>1998          | NA          | Sector               | CEECs                             | Domestic resource<br>cost (DRC)                      | NA                       |                                                                                       |  |  |

### Table 2.1 International competitiveness: overview of empirical studies

| Authors                              | Period        | Methodology | Level of aggregation | Sample       | Competitiveness<br>measure (Dependent<br>variable)                                                                           | Independent<br>variables | Comments/Notes                                                                      |
|--------------------------------------|---------------|-------------|----------------------|--------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------------------------------------------|
| Havrila and<br>Gunawardana<br>(2003) | 1965-<br>1996 | NA          | Sector               | Australia    | Balassa's<br>index,Vollrath's<br>indices & Grubel-<br>Loyd index                                                             | NA                       | The use of<br>alternative<br>competitiveness<br>measures yielded<br>similar results |
| Fertö and<br>Hubbard (2003)          | 1992-<br>1998 | NA          | Sector               | Hungary      | Balassa's index &<br>Vollrath's indices                                                                                      | NA                       | The use of<br>alternative<br>competitiveness<br>measures yielded<br>similar results |
| Bojnec (2003)                        | 1989-<br>1998 | NA          | Sector               | CEECs        | Porter's diamond,<br>accounting based<br>measures and Policy<br>Analysis Matrix<br>(PAM) approach, &<br>trade-based measures | NA                       |                                                                                     |
| Banterle and<br>Carraresi (2007)     | 1990-<br>2003 | NA          | Sector               | EU countries | Balassa's index,<br>Vollrath's indices, Net<br>export index, &<br>Grubel-Lloyd index                                         | NA                       | The use of<br>alternative<br>competitiveness<br>measures yielded<br>similar results |

| Authors                             | Period                 | Methodology | Level of aggregation | Sample             | Competitiveness<br>measure (Dependent<br>variable)                                    | Independent<br>variables | Comments/Notes                                                                      |
|-------------------------------------|------------------------|-------------|----------------------|--------------------|---------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------------------------------------------|
| Fischer and<br>Schornberg<br>(2007) | 1995-<br>2002          | NA          | Sector               | 13 EU<br>countries | Industrial competitiveness index                                                      | NA                       |                                                                                     |
| Carraresi and<br>Banterle (2008)    | 1991-<br>2006          | NA          | Sector               | 15 EU<br>countries | Balassa's index,<br>Vollrath's indices,<br>Export market share,<br>& Net export index | NA                       | The use of<br>alternative<br>competitiveness<br>measures yielded<br>similar results |
| Serin and Civan<br>(2008)           | 1995-<br>2005          | NA          | Sector               | Turkey             | Balassa's index &<br>Comparative export<br>performance (CEP)                          | NA                       | The use of<br>alternative<br>competitiveness<br>measures yielded<br>similar results |
| Wijnands et al.<br>(2008)           | 1996-<br>2004          | NA          | Sector               | EU countries       | Composite<br>competitiveness index                                                    | NA                       |                                                                                     |
| Kovacic (2008)                      | 2000,<br>2004-<br>2005 | NA          | Country              | CEECs              | WEF of IMD<br>competitiveness<br>indices                                              | NA                       |                                                                                     |

| Authors                                                                       | Period        | Methodology | Level of aggregation | Sample                                           | Competitiveness<br>measure (Dependent<br>variable) | Independent<br>variables | Comments/Notes                                                                        |  |
|-------------------------------------------------------------------------------|---------------|-------------|----------------------|--------------------------------------------------|----------------------------------------------------|--------------------------|---------------------------------------------------------------------------------------|--|
| Qineti et al.<br>(2009)                                                       | 1999-<br>2006 | NA          | Sector               | Slovak<br>Republic and<br>the EU 27              | Balassa's index                                    | NA                       |                                                                                       |  |
| Bojnec and Fertö<br>(2009)                                                    | 1995-<br>2007 | NA          | Sector               | 8 Central<br>European and<br>Balkan<br>countries | Balassa's index &<br>Vollrath's indices            | NA                       | The use of<br>alternative<br>competitiveness<br>measures yielded<br>different results |  |
| Notta and<br>Vlachvei (2011)                                                  | 2002-<br>2007 | NA          | Sector               | 18 EU<br>countries                               | Industrial competitiveness index                   | NA                       |                                                                                       |  |
| Studies assessing the potential determinants of international competitiveness |               |             |                      |                                                  |                                                    |                          |                                                                                       |  |
| Authors                                                                       | Period        | Methodology | Level of aggregation | Sample                                           | Competitiveness<br>measure (Dependent<br>variable) | Independent<br>variables | Comments/Notes                                                                        |  |

| Fagerberg (1988)                  | 1960-<br>1983 | 2SLS                   | Country | 15 OECD<br>countries    | Growth (export and import) market share | The ability to<br>compete in<br>technology, the<br>ability to compete in<br>price and the ability<br>to compete in<br>delivery                                       |                                                                                      |
|-----------------------------------|---------------|------------------------|---------|-------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Guerrieri and<br>Meliciani (2003) | 1992-<br>1999 | GLS                    | Sector  | 11 OECD<br>countries    | Export market share                     | Traditional cost<br>variables,<br>intermediate<br>demand, and<br>national technology<br>advantage                                                                    | The use of<br>alternative<br>competitiveness<br>measures yielded<br>similar results. |
| Arbache and De<br>Negri (2005)    | 1996-<br>1998 | Logit                  | Firm    | Brazil                  | Firm's probability of exporting         | Education,<br>technology and<br>scale of production                                                                                                                  |                                                                                      |
| Marconi and<br>Rolli (2007)       | 1985-<br>2000 | Cross-country<br>panel | Sector  | 16 developing countries | Lafay index                             | Costs, physical<br>capital<br>accumulation,<br>skilled human<br>capital availability,<br>and foreign<br>technology<br>acquisition via<br>imports of capital<br>goods |                                                                                      |

| Authors                         | Period        | Methodology                              | Level of aggregation | Sample       | Competitiveness<br>measure (Dependent<br>variable)                                                                                  | Independent<br>variables                                                                                                                           | Comments/Notes                                                                       |
|---------------------------------|---------------|------------------------------------------|----------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Schiefer and<br>Hartmann (2008) | 2006          | Nonparametric<br>correlation<br>and OLS  | Firm                 | Germany      | Relative return on<br>assets and sales,<br>relative change in<br>sales, and a composite<br>measure combining<br>the three variables | Technology,<br>production-related<br>variables, and staff<br>qualification                                                                         | The use of<br>alternative<br>competitiveness<br>measures yielded<br>similar results. |
| Shafaei (2009)                  | 2001-<br>2005 | Analytical<br>Hierarchy<br>Process (AHP) | Firm                 | Iran         | Competitive<br>performance index                                                                                                    | Factor conditions,<br>related and<br>supporting<br>industries, demand<br>conditions, firm<br>structure, strategy<br>and rivalry, and<br>government |                                                                                      |
| Chor (2010)                     | 1990          | OLS and<br>SMM                           | Sector               | 83 countries | Bilateral trade flows                                                                                                               | Distance, Ricardian<br>productivity, factor<br>endowments, and<br>institutional<br>conditions                                                      |                                                                                      |

| Authors                          | Period                 | Methodology                             | Level of aggregation | Sample                               | Competitiveness<br>measure (Dependent<br>variable)                                                                     | Independent<br>variables                                                                                                                                                               | Comments/Notes                                                                       |
|----------------------------------|------------------------|-----------------------------------------|----------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Kowalski (2011)                  | 1990-<br>2009          | Conditional<br>Poisson Fixed<br>Effects | Sector               | 55 OECD and<br>emerging<br>economies | Bilateral trade flows                                                                                                  | Physical and human<br>capital<br>accumulation,<br>financial<br>development,<br>energy supply,<br>business climate,<br>labour markets<br>aspects and import<br>tariff policy            |                                                                                      |
| Stone et al. (2011)              | 1997,<br>2001,<br>2004 | NA                                      | Country              | 41 OECD and<br>emerging<br>economies | Factor content of trade                                                                                                | NA                                                                                                                                                                                     |                                                                                      |
| Peña Vinces and<br>Róldan (2012) | 2006-<br>2009          | PLS-SEM                                 | Firm                 | Peru                                 | Percentage of local<br>profits over total<br>profits and the<br>percentage of foreign<br>profits over total<br>profits | Global strategy,<br>human resources<br>background, firm<br>size, firm age,<br>collaboration of<br>industrial sector,<br>and the environment<br>of the home country<br>and host country | The use of<br>alternative<br>competitiveness<br>measures yielded<br>similar results. |

| Authors                     | Period                 | Methodology              | Level of aggregation | Sample                     | Competitiveness<br>measure (Dependent<br>variable)                   | Independent<br>variables                                                                                                                           | Comments/Notes                                                                                                 |
|-----------------------------|------------------------|--------------------------|----------------------|----------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Olmeda and<br>Varela (2012) | 2001,<br>2004,<br>2007 | Discriminant<br>analysis | Sector               | 36 countries               | Competitiveness level                                                | Factor conditions,<br>related and<br>supporting<br>industries, demand<br>conditions, firm<br>structure, strategy<br>and rivalry, and<br>government |                                                                                                                |
| Van der Marel<br>(2012)     | 1999-<br>2005          | OLS and<br>PPML          | Sector               | 23 OECD<br>countries       | Services and Goods trade                                             | Geographical,<br>Heckscher-Ohlin,<br>institutional and<br>regulatory related<br>variables                                                          |                                                                                                                |
| Dosi et al. (2013)          | 1989-<br>2006          | Pooled OLS               | Country and<br>Firm  | 15 OECD<br>countries/Italy | Probability of<br>exporting, level and<br>growth of export<br>shares | Costs and<br>technology related<br>variables                                                                                                       | The use of<br>alternative<br>competitiveness<br>measures yielded<br>similar results, with<br>a few exceptions. |

The overview of papers presented above has shown how the majority of analyses have been carried out at sector and firm level, while lesser attention being given to the country level of aggregation. The ambiguity of the concept of competitiveness at a more aggregated level might be a potential explanation for this. It is pertinent to note that the majority of the reviewed studies in this section do explicitly refer to the concept of international competitiveness and its assessment. There is, on the other hand, a wide range of studies that have tested empirically various potential proxies of international competitiveness (e.g. productivity, profitability, trade patterns) without referring to the concept per se. An important implication of this review is that the measurement approaches adopted in the literature seem to depend highly on the purpose of the undertaken investigation, i.e. whether it aims to assess the competitiveness of an entity or to investigate its hypothesized determinants. While the strand of research dealing with the former tends to provide a thorough discussion of the complexity of defining and measuring competitiveness, as well as its various measures developed/adopted in the literature, studies dealing with the potential determinants of competitiveness in general provide a narrower discussion of the concept. They appear to be mainly focused on the selection of the potential driving factors, without giving much attention to the measurement of competitiveness itself. In this strand of literature, the concept of international competitiveness is commonly tied to the comparative advantage framework and trade patterns. Depending on the theoretical framework adopted as well as the level of aggregation, the impact of different sets of factors on international competitiveness has been assessed. The traditional theories of Ricardo and Heckscher-Ohlin have frequently formed the basis for the underlying analysis, followed by the new trade theory, Porter's diamond of competitive advantage, and the new economic geography approach. In spite of the criticisms outlined above, the findings obtained in the majority of studies provided sufficient evidence to support the validity of the corresponding theories. Though empirical results from studies adopting the new economic geography approach, in general, were inconsistent with the hypothesized role of geographical factors in explaining comparative advantages. Porter's diamond model, on the other hand, due to its qualitative nature, was unable to provide a quantitative assessment of the potential determinants of competitiveness (Shafaei, 2007). In conclusion, considering the variety of traditional and new theories developed in the literature, the strengths and limitations of each, an integrated theoretical framework, i.e. an eclectic approach, is recommended for a more reliable investigation.

The literature review presented in this chapter has emphasized the strengths and limitations of each commonly used measure of international competitiveness, while at the same time acknowledging that there is no single perfect measure. Common shortcomings acknowledged in the literature relate to the lack of appropriate data, specification problems and the lack of a solid theoretical basis. However, in spite of the highlighted limitations and the variety of potential alternative measures, trade based indicators are so far the most widely employed in assessing international competitiveness. The key rationale for relying on this approach stems primarily from its intrinsic connection with the concept per se, well established theoretical grounds and the availability of the required data. The hypothesized link between human capital and international competitiveness, accompanied by a thorough review of studies dealing with the latter nexus will be presented in the next chapter (i.e. Chapter 3).

#### **2.5 Conclusions**

The purpose of this chapter was to provide a review of the research undertaken in the international competitiveness literature with particular emphasis on its meaning and measurement. A comprehensive discussion of its various definitions accompanied by corresponding measurement approaches has been placed at the centre of the chapter. Given the diverse conceptualisation, the term 'international competitiveness' appears to be inherently ambiguous and complex, particularly, when being assessed from a macro level perspective. In spite of the extensive use of the notion in previous research, various scholars have raised doubts about its relevance and importance at the country level, the most prominent opponent being Krugman. The latter author contested the underlying concept of international competitiveness on several grounds. In order to capture the arguably unclear concept of competitiveness, two broad measurement approaches have been distinguished in the literature. The first approach focuses primarily on the international trade dimension, whereas, the structure and strategy of firms seems to have laid the basis for the second approach. The former approach builds off several conventional trade theories and new trade theory models and it has been commonly proxied by the real exchange rate, comparative advantage indices, and export or import indicators. Cost superiority, profitability, and productivity are listed among the key measures of international competitiveness from the strategic management perspective. A set of multidimensional

indicators has also been introduced to the current debate, though; their theoretical basis and aggregation approaches remain questionable.

The diversity of measures has also contributed to a wide range of empirical studies prevailing in the competitiveness literature. Depending on the aim of the undertaken investigation, two broad sets of empirical studies have been identified and presented in this chapter. The first category of research has been mainly concerned with the measurement of competitiveness, where a large number of indicators were developed, modified and/or adopted. Conventional trade theories were used as the theoretical framework, with very few studies relying on alternative frameworks, e.g. Porter's diamond approach. The vast majority of studies from this strand of literature were undertaken at more aggregated levels of investigation, mainly adopting the trade based measurement approach, Balassa's and Vollrath's revealed comparative advantage indices being the most prominent. Ranking and comparative assessments across sectors and countries were at the focus of this body of literature. The second category of research studies reviewed in this chapter placed a key emphasis on the assessment of the potential determinants of international competitiveness. A core feature of the latter set of studies is their prime focus on the choice of potential drivers of competitiveness rather than on its measurement per se. The majority of these studies were conducted at the firm and sector levels, relying mainly on the comparative advantage framework. In general, the evidence generated by these studies was consistent with the hypothesised theoretical underpinnings, with few exceptions regarding some of the newer theoretical approaches.

The overall literature review presented in this chapter has emphasised the lack of agreement on a single measure of international competitiveness, while at the same time recognising the advantages and disadvantages of the most commonly used measurement approaches. Among the main shortcomings surrounding these measures are the lack of solid theoretical basis, specification problems and the lack of appropriate data. The comprehensive and critical assessment presented in this chapter will help us understand the broad concept of international competitiveness, identify and justify the potential proxy measures for our own empirical investigation presented in the later chapters. The theoretical background behind the potential link between human capital endowments and international competitiveness, followed by a

contextualised review of empirical literature will be presented in Chapter 3. Particular emphasis will be placed on a critical review of the main approaches to defining and measuring human capital.

## CHAPTER 3

### HUMAN CAPITAL AND INTERNATIONAL COMPETITIVENESS: THEORY, MEASUREMENT AND EVIDENCE

#### Contents

| 3.1 Introduction                                                                      | 90  |
|---------------------------------------------------------------------------------------|-----|
| 3.2 Theoretical framework                                                             | 90  |
| 3.2.1 Human capital and economic growth                                               | 90  |
| 3.2.2 Human capital and international competitiveness                                 | 94  |
| 3.3 Human capital, productivity, and growth: empirical evidence                       | 98  |
| 3.3.1 Human capital and international competitiveness: a review of the macro evidence | 101 |
| 3.3.2 Human capital and international competitiveness: a review of the micro evidence | 106 |
| 3.4 Human capital: definition and measurement                                         | 128 |
| 3.5 Conclusions                                                                       | 137 |

#### **3.1 Introduction**

In light of the preceding discussions on the link between international competitiveness and the process of transition, its broad range of definitions and measures, this chapter focuses on human capital theory, the key measurement approaches and the underlying mechanisms through which human capital endowments influence international competitiveness. An empirical assessment of the aforementioned link will be carried out using macro and micro level data in the subsequent chapters. Section 3.2 of this chapter provides a review of the key contributions to human capital theory with particular reference to Becker (1964) and Schultz (1961). The central role of human capital for the economic performance of nations is discussed in the light of different schools of thought, followed by a critical assessment of the theoretical mechanisms through which human capital influences innovation, productivity and international competitiveness. The hypothesised causal channels are explained and their relevance for transition economies is assessed. The remainder of this chapter provides an overview of empirical research undertaken on the relationships between human capital, productivity, growth and international competitiveness. The evidence on the human capital and international competitiveness nexus is reviewed from a macro and micro perspective. Following the rationale established in the previous chapter, studies focusing on the export dimension of competitiveness have received a greater attention in the literature review presented in section 3.3. In particular, the choice of human capital measures employed in these studies, the estimation approaches utilised, their key limitations and their relevance to this research investigation are highlighted in this section. Section 3.4 looks at the main approaches to defining and measuring human capital, with special reference to education as one of the most important sources of human capital accumulation. Finally, section 3.5 summarises the main findings of the chapter and concludes.

#### **3.2 Theoretical framework**

#### 3.2.1 Human capital and economic growth

The central role of human capital in determining the economic performance of nations has been recognized since the early work of Petty (1690) and Smith (1776). However, with economies becoming increasingly based on knowledge, it has started to receive even greater attention in recent decades. Although, the importance of human capital accumulation for productivity and

economic growth has been investigated extensively in the literature, different schools of thought have offered different theoretical explanations for the mechanism through which human capital influences growth. While, traditional-neoclassical theories of growth stress the importance of physical capital accumulation, and treat human capital as just another factor input in production (Mankiw et al., 1992), the new endogenous growth theory consider the role of knowledge and human capital investment as crucial for the economic performance of nations (Lucas, 1988, Romer 1990). According to Romer (1990), skilled individuals are more likely to innovate, adopt, and adapt to more sophisticated technologies, thus leading to higher productivity and economic growth. Similarly, Nelson and Phelps (1966) argue that better educated individuals make better innovators and are more likely to successfully adopt new technologies, hence accelerate technological diffusion. Moreover, these authors postulate that the introduction of education, a proxy measure for human capital, as another factor of production, as suggested by the neoclassical theories, may comprise a serious misspecification of its hypothesised relationship with growth. According to Nelson and Phelps's theoretical viewpoint, education is perceived to influence growth through the technology diffusion mechanism, rather than to be treated as just a simple input in production. This may have been one reason why many empirical studies seem to have found inconclusive results on the human capital-growth relationship. This view has been supported by Benhabib and Spiegel (1994), who, following Lucas's (1990) suggestion that poor endowments of human capital might be an explanation for the lack of physical capital flows to less developed countries, argue that human capital may also encourage physical capital accumulation. From all the outlined theoretical perspectives, innovation and technology diffusion emerge as the key channels through which human capital increases productivity and generates growth, thus, making human capital a necessary precondition for these activities to take place (Nelson and Phelps, 1966, Romer, 1990, Aghion and Howitt, 1992).

The potential link between human capital and labour productivity, with particular focus on the main sources of human capital accumulation has been assessed by various schools of thought, one of the most prominent being orthodox human capital theory. Becker as one of its main contributors considers education and on-the-job-training as the key components of human capital development, suggesting that investment in the latter activities increases an individual's labour productivity and earnings (Becker, 1964). In line with these views, Rosenzweig (1995, 1996)

postulates that education develops learning abilities of individuals which in turn, tends to translate into higher labour productivity. The author emphasises two channels through which education may boost labour productivity: "by improving access to information sources such as newspapers or instruction materials, or by improving the ability to decipher new information, whether from external sources or from own experience" (Rosenzweig, 1995, p.153). Through better access to information, educated individuals will know better how to use new technologies and at the same time benefit from their use (Nelson and Phelps, 1966). Furthermore, they will be able to learn and interpret information more quickly and efficiently. Hence, when engaged in the production process they are expected to generate a relatively larger output compared to their less educated counterparts.

In the same vein, Welch (1970) distinguished two key underlying effects of education on labour productivity: the 'worker effect' and the 'allocative effect'. According to the latter, higher levels of education allow workers to perform better with resources at hand, increasing, thus, their final output. Moreover, increased education will improve a worker's ability to select and distribute efficiently inputs between different uses. An extension of the 'allocative effect' was proposed by Ram (1980), who claims that education decreases the marginal costs of gaining useful information for production and increases the marginal benefits of using the current information. The cost decline might come as a result of more educated individuals having better communications skills and superior 'contacts'. Whereas, a rise in marginal benefits tend to come as a result of more educated individuals being more capable of utilizing the acquired information. Hence, education is perceived to raise the level of relevant information acquired by individuals, which, in turn enhances their allocative and productive abilities. A simple implication of this view is that information is an important intermediary between education and allocative competences. Furthermore, the relevance of information and education tends to be more valuable in 'dynamic' rather than 'static' production settings (Schultz, 1964, Welch, 1970, Ram, 1980). Referring to the agricultural sector, Welch (1970) postulates that in a static environment of production, the productive characteristics will be easily understood, and information will flow from one generation to another, leaving, thus, no place for a role of education. A dynamic environment, on the other hand, entails much more diverse production characteristics, primarily related to the changing technology: hence requiring more educated individuals. The transition process in the former socialist countries of CEE and former Soviet Union<sup>23</sup> has been accompanied by several reforms and structural changes in their production settings, thus, highlighting the need for a more educated labour force.

An important implication of Rosenzweig's studies discussed above is that education is likely to have a greater impact on productivity when more learning is required to perform complex tasks, whereas, the effect will be relatively smaller when simpler tasks are to be performed. The latter was supported empirically by Acemoglu and Autor (2012) who suggest that the effect of human capital on growth is subject to the set of tasks in use. Since different types of skills are needed to perform different tasks, workers with a specific set of skills will have comparative advantage in performing skill-specific tasks. Other studies have also supported this view by arguing that the effect of human capital on productivity is determined by the effectiveness of its use. That is to say, if the knowledge and skills acquired throughout education and other human capital enhancing activities do not match with the specific job undertaken, the underlying relationship between the two tends to be insignificant (Australian Workforce and Productivity Agency, 2013). Furthermore, Thurow (1975) argues that productivity is more related to the characteristics of the job rather than to an employee's background. Like Nelson and Phelps (1966) and Romer (1990), Thurow argues that employers hire workers with higher levels of education, because they tend to adapt more quickly to required changes, and can be trained at a lower cost than those with lower levels of education. According to Arrow (1973), Spence (1973) and Stiglitz (1975), education acts as a signalling or screening mechanism for a worker's individual abilities rather than as a direct enhancer of labour productivity.

On the relationship between human capital and technological knowledge, Rosenzweig (1995, 1996) postulates that specific types of skills are mostly useful when combined with specific technologies. Hence, consequently the demand for high skill workers will be in line with the changes in technology. This appears to confirm the complementary link between formal and informal education and technological change. The importance of education for skill development was also supported by Curtin et al. (2011), who argue that more educated individuals are more able to understand, engage and contribute to the production process. Schultz (1975), on the other

<sup>&</sup>lt;sup>23</sup> This group of countries will be empirically assessed in Chapter 6 adopting a micro level perspective.

hand, claims that education improves the ability of individuals to cope with economic disequilibria. Moreover, in an earlier study, the same author introduced two other categories of activities that are likely to affect the size and distribution of human capital: health and migration. Even though the latter has been rarely elaborated in the literature, it is considered as an investment in human capital since it captures workers' mobility to exploit superior job opportunities (Schultz, 1961).

Another important component of human capital expected to influence positively labour productivity is informal education. Following Hanushek and Woessmann (2007), knowledge and skills embedded in an individual's human capital can be developed not only through formal education, but also through the informal dimension of education, on and off-the job training programmes, experience, family, peers, and other human capital accumulation sources. According to Stanwick (2011), vocational education and training enhances the ability of individuals to learn, solve problems and adapt quickly to changing economic conditions, and it is also likely to produce spillover effects. That is to say, highly productive workers, as a result of their superior competencies and skills, are likely to boost the productivity level of other workers as well (Boarini et al., 2012). According to Becker (1962), workers raise their labour productivity by learning new skills and upgrading their existing ones while performing different tasks on the job. The author categorizes the knowledge and skills acquired through training programmes into: general and specific. General characteristics are usually provided by education institutions, while investment on specific knowledge and skills is usually provided by firms on the job. The key difference between these two types lies on the transferability of a worker's human capital across different firms. Knowledge acquired on the job at a specific firm increase a worker's productivity in performing only firm-specific tasks; while general characteristics can be utilized in a broader range of firms.

#### 3.2.2 Human capital and international competitiveness

Following the discussion of the key role of human capital and its main sources of accumulation presented above, this section elaborates the main approaches to modelling empirically the hypothesised relationship between human capital and international competitiveness, by focusing on the links between knowledge and skills, technological diffusion and catch-up and labour productivity. The importance of human capital accumulation for competitiveness and export

performance is generally derived from its intrinsic relation with technological progress, innovation and labour productivity. According to Wakelin (1998a), there are two theoretical approaches that explain the link between innovation and exports. The "neo-endowment" approach, which initially focused on the factor endowments, of labour and capital, has been augmented by including human capital and knowledge as determinants of trade, i.e. the Heckscher-Ohlin theory. The second approach, on the other hand, refers to the technological differences as the principal sources of trade, i.e. the technology gap theory (Posner, 1961) and the product cycle approach (Vernon, 1966). Notwithstanding these differences, most empirical studies referring to either approach treat human capital and technology as crucial drivers of international competitiveness. Accordingly, an increasing level of human capital is expected to play an important role in inducing innovative activities, which, in turn, will impact international competitiveness and export market share by improving the quality of the existing products and supporting the creation of new products that are of superior quality to those of competitors (Grossman and Helpman, 1991, Agénor, 1995). It was Stokey (1991), who argued that an increase in the stock of human capital in less developed countries raises the proportion of high quality goods produced and reduces the share of low quality goods. According to Toner (2011), the skills set required to induce and promote innovation activities tends to depend considerably on the nature of innovation. There are two types of innovation identified in the literature: 'radical' and 'incremental'. The former type involves 'elite scientific, engineering and design occupations, and original management skills' since it deals with major technological modifications, whereas the latter refers to minor changes to existing products, therefore lower level and more generic set of skills are required.

The importance of knowledge and skills for international competitiveness is also supported by the established link between productivity and knowledge-based activities. According to Porter (1990), human capital, as a key determining factor of productivity, is regarded as an important source of the competitive advantage of countries. There is an increasing body of literature that supports the positive link between productivity and export performance. As Melitz (2003) points out, the level of productivity of firms is a key determinant of their export propensity. Only the most productive firms can overcome the additional export-related costs and thus engage in exporting activities. Similarly, Bernard and Jensen (1999), Wagner (2007), Bernard et al. (2007)

have argued that more productive firms are more likely to participate in international markets via exporting. According to a research undertaken by Cassiman et al. (2010) for a sample Spanish firms, it is the product innovation that enhances a firm's productivity, leading, thus to self selection firms into international markets. Similarly, studies assessing the explicit link between innovation and exports have suggested that innovative firms are more globally oriented than their non-innovative counterparts, implying that the innovation level of a firm is positively associated with its export engagement. Besides, not only do these firms export more, they also likely to export to more destinations. Damijan and Kostevc (2008) investigated the relationship between innovation and exporting for Slovenian firms. The results of a bivariate Probit regression suggested a positive relationship between the two, even though the causation direction was not clearly established. Overall, engagement in innovation activities appears to be a major underlying force to exporting, outweighing, thus, the explanatory power of country specific and traditional driving factors such as price-cost (Wakelin, 1998b, Roper and Love, 2002, European Commission, 2008).

However, it is pertinent to note that, in the context of transition economies, a different pattern might prevail given their degree of innovation engagement and level of technological development. For this set of countries, human capital is more likely to facilitate technological catch-up rather than stimulate pure innovation. In accordance with Nelson and Phelps' (1966) model, Benhabib and Spiegel (1994) and Griffith et al. (2004) suggest that countries that are far from the technological frontier but are well endowed with human capital tend to catch up faster with the world leaders. According to Acemoglu et al. (2002) and Vandenbussche et al. (2006), technological adoption is regarded as a potential source of productivity growth in countries that are far from the technological frontier, while, innovation activities tend to be closely linked to productivity in countries closer to the frontier. Similarly, Madsen (2010) suggests that the interaction between educational attainment and distance to the technological frontier is a key determining factor of productivity growth. Distinguishing between skilled and unskilled human capital, Vandenbussche et al. (2006) suggest that a highly skilled labour force is better suited to innovation activities, with less skilled workers being only able to assist with imitation or technical adoption. This implies a relatively greater advantage of the former category in specializing in innovation activities. Similarly, following Toner's (2011) assessment of the

skills-innovation link, we would expect that the current skill formation of transition economies is more likely to induce 'incremental' innovation, i.e. minor changes to the existing products, rather than 'radical' innovation. It should, however, be emphasised that some of the transition economies who are already members of the European Union have started to engage increasingly in innovation activities. Based on their innovation performance, the Innovation Union Scoreboard 2015 ranks Slovenia as among the 'innovator followers'<sup>24</sup>, while, Croatia, the Czech Republic, Estonia, Slovakia, Hungary, Poland, and Lithuania are classified as 'moderate innovators'.<sup>25</sup> The innovation performance of Bulgaria, Latvia and Romania appears to be well below that of the EU average, hence are treated as 'modest innovators'.<sup>26</sup>

In spite of the improvements, R&D activities in the transition region remain low compared to those of developed economies. In contrast to the latter set of countries, the R&D expenditure accounted by firms in transition countries is relatively low compared with that of governments (EBRD, 2014a). The same applies to the percentage of patents held by firms, the quality of the latter also differing across countries. According to the Transition Report 2014 which draws from the latest round of BEEPS data, innovation activities, in many transition economies involve mainly the adoption of existing products, processes and technologies from advanced countries and their adaption to the local environment. This implies that there is a tendency among firms in these countries to 'buy' rather than 'make' knowledge (EBRD, 2014a). Of the total number of firms covered in BEEPS, only 12 percent appear to have introduced a new product in the last three years. Note that the actual percentage dropped significantly when products new to the market were assessed. A third of firms having introduced new products have also engaged in new process innovation activities. The share of surveyed firms introducing new processes but not new products is around 9 percent. The organizational and marketing innovation statistics show that around 28 percent of firms surveyed by BEEPS have adopted new organisational or marketing practices over the previous three years (EBRD, 2014a). All in all, the discussion presented above suggests that, while, for a subset of transition economies, the human capital-

<sup>&</sup>lt;sup>24</sup>This group refers to countries with a performance above to that of the EU average.

<sup>&</sup>lt;sup>25</sup>This group refers to countries with a performance below to that of the EU average.

<sup>&</sup>lt;sup>26</sup>This group refers to countries with a performance well above to that of the EU average.

innovation link might be valid, for the remaining majority of the countries, a more relevant theoretical explanation seems that of human capital-technological catch-up.

#### 3.3 Human capital, productivity, and growth: empirical evidence

In spite of the vast literature assessing the relationship between human capital, productivity and growth, empirical studies do not fully agree on the nature and strength of this relationship. Education based measures appear to have been most frequently used to proxy human capital in cross-country growth models. Early studies, such as Benhabib and Spiegel (1994), and Barro and Sala-i-Martin (1995) found a positive and significant impact of the level of schooling on growth, though; the same was not replicated when changes in schooling were assessed. The lack of robust evidence has been attributed to some extent to the measurement and misspecification errors related to education per se (De la Fuente and Doménech, 2000, Woessmann, 2000, Krueger and Lindahl, 2001). Barro (1991), on the other hand, has found supporting evidence for the hypothesised positive role of school enrolment rates at the primary and secondary levels on the growth rate of real GDP per capita, though, no discussion about potential endogeneity in the latter relationship was provided in the study. In later research studies undertaken by the same author, a positive relationship between the growth rate and years of school attainment of males at the secondary and higher levels was established, while the role of the educational background of females turned out to be statistically insignificant (Barro, 1996, 2001, 2013).

Since neglecting the quality dimension of education is likely to cause a serious specification error (Woessmann, 2000), Barro (2013) in his panel analysis introduced students' performance in international tests as an indicator of the quality of education. In accordance with Hanushek and Kimko's (2000) and Hanushek and Woessmann's (2007) research studies, the impact of the quality of education on growth turned out to be positive and stronger than that of the quantity of education. Other macro level studies that have found a positive relationship between education based measures and growth are: Levin and Renelt (1992), Mankiw et al (1992), Hanushek and Kimko (1995), Gemmel, (1996), Krueger and Lindahl (1999, 2001), De la Fuente and Domenech (2006), Cohen and Soto (2001), Bassanini and Scarpetta (2001), Sianesi and Van Reenen (2003).

The relationship between education based indicators and productivity has also been gaining increased attention in the empirical literature. According to Lynch and Black's (1995) empirical analysis, everything else constant, firms with a better-educated workforce tend to have relatively higher levels of labour productivity. In the same vein, Black and Lynch (2001) found that an increase in the average education level of production employees increases a firm's labour productivity significantly. A positive link between education attainment and labour productivity was also found in Canton (2007). The latter study has also highlighted the importance of human capital stock on improving a country's capacity to absorb new technologies. An empirical investigation carried out by Jones (1999) supported the higher relative productivity of individuals with completed tertiary education as compared to their secondary educated counterparts. The latter, on the other hand, in line with expectations, turned out more productive than individuals with just primary education. However, note that when the development level of countries was accounted for, differences across countries in the final results were identified. According to Gemmell (1996) and Sianesi and Van Reenan (2003), tertiary education is more likely to impact growth in more developed countries, whereas, lower levels of education tend to be more important for growth in developing economies.

In addition to formal schooling, a variety of other factors are perceived to influence human capital development and consequently, boost labour productivity and economic growth. According to Mason et al. (2012), in addition to the hypothesised positive impact of educational attainment, on-the-job training and experience are additional key drivers of labour productivity growth. On-the-job training is an important component of human capital, though; it has not been extensively investigated in this literature, potentially due to restricted availability of adequate data. Given the latter issue, the research literature seems to have been mainly directed towards individual and firm level assessments as compared to the country level of aggregation (Bishop, 1994, Bartel, 1994, Conti, 2005, Deardern et al. 2006, Columbo and Stanca 2008, Bernier et al. 2010, Sala and Silva, 2011). Early studies such as Bartel (1994, 1995) highlighted the positive role of formal training on firm's productivity, particularly in firms with low initial productivity. However, it is important to note that these studies seem to have suffered from estimation bias due to inability to control for unobserved heterogeneity and the potential prevalence of endogeneity. Note that attempts have been made to account for the latter. For instance, utilizing

longitudinal data, Conti (2005) found supporting evidence for the positive hypothesised link between training and productivity. A similar investigation was carried out by Dearden et al. (2000, 2005). A positive and significant association between the proportion of workers trained in an industry and the value added per worker was established in the latter study. According to Zwick (2006) and Columbo and Stanca (2008), training intensity exerts a positive impact on the valued added per worker. Similarly, Sala and Silva (2011) suggested that an extra hour of training per worker is positively associated with productivity growth, and that access to training helps workers benefit from technology development and consequently raises their labour productivity.<sup>27</sup> It is also worth highlighting that training data being restricted only to specific countries has made cross-country assessments more difficult. The lack of comprehensive information on the types and quality of training is another shortcoming evident in the literature. Although, the majority of empirical studies on the impact of human capital flows on productivity growth have relied on neoclassical growth models, there are increasing numbers of studies investigating the relationship between human capital stock and productivity through the underlying mechanism of innovation. The latter approach, in accordance with the endogenous growth view, postulates that high skilled individuals are more likely to adopt and develop new practices and processes than their less skilled counterparts (Australian Workforce and Productivity Agency, 2013).

Reviewing the literature on the human capital-competitiveness nexus is challenging, primarily due to the multidimensional nature of the latter concept. As already discussed in Chapter 2, a variety of measures of international competitiveness have been proposed with no general agreement on the superiority of any given one. Given the large and diverse pool of developed measures, this chapter will provide a review of two broad strands of literature. The first category of empirical research consists of studies that have used performance indicators, such as profitability and productivity to proxy competitiveness while, the second body of literature covers studies that have employed trade based indicators (i.e. comparative advantage indices and other export indicators). It is worth noting that, not all the studies reviewed here have explicitly focused on international competitiveness in their investigation. Even though, the concept has

<sup>&</sup>lt;sup>27</sup>For an extensive review of training studies see the Australian Workforce and Productivity Agency review paper (2013).

attracted widespread interest in the literature, it has been more frequently used for ranking analyses and comparative assessments of the relative competitive positions of entities rather than examining its potential determinants. Hence, the review presented below aims to focus primarily on studies that have assessed the potential impact of human capital endowments on comparative advantage and export performance, at different levels of aggregation. Note that, studies adopting other measurement approaches, i.e. profitability and productivity are also briefly covered in the sub-sections below. The first sub-section provides a review of studies examining the human capital-international competitiveness nexus from a macro level perspective, to be followed by an overview of micro level empirical studies presented in the second sub-section. The overview of studies is also presented in a tabular format. Table 3.1 summarises the key features of these studies by providing details about their authors, time span, methodology, level of aggregation, sample size, measures of international competitiveness and human capital. In addition, it presents any potential human capital related factor assessed in these studies, e.g. technology and innovation based, and relevant notes and comments about their key findings.

## **3.3.1 Human capital and international competitiveness: a review of the macro evidence**

Focusing on labour productivity as a measure of competitiveness, Cörvers (1996) examined the potential impact of the share of intermediate and highly-skilled workers on the level and growth of labour productivity in manufacturing sectors in seven EU countries. The empirical results of this study revealed that highly-skilled workers are more likely to increase the productivity level, whereas, the intermediate workers tend to exert a stronger impact on productivity growth. Marconi and Rolli (2007), on the other hand, investigated the link between revealed comparative advantage and human capital for 16 developing countries, for the period 1985-2000. The results of their cross country panel analysis supported the positive impact of the average years of schooling, a proxy for human capital, on the Lafay Index of international trade specialization(for further details on this index see section 2.3). Similarly, Van der Marel (2012) assessed the importance of human capital for the comparative advantage in the services sector. The relative factor endowments for both high-skilled and mid-skilled turned out to exert a positive impact on the export of services, implying that countries with higher levels of skilled workers are more

likely to exploit comparative advantages in skill-intensive services. A similar study was conducted by Chor (2010) for a sample of 83 countries. The latter author examined the potential impact of factor endowments on bilateral exports at the industry level. The empirical findings supported the key importance of human capital per worker, proxied by average educational attainment, for the comparative advantage of a country. Kowalski (2011) assessed the impact of human capital, distinguishing between secondary, tertiary education attainment and average years of schooling on bilateral trade flows. A novelty of this study was the introduction of interaction terms between industry and country characteristics, e.g. human capital stock variables being interacted with labour skill intensities. The results of this investigation revealed a positive relationship between human capital endowments and trade, with the interaction terms exerting a strong and robust influence. Similarly, Cörvers and Grip (1997) analysed the impact of human capital endowments on the trade performance of 14 industrialized countries. Human capital endowments were proxied by the share of low-skilled<sup>28</sup>, intermediate-skilled<sup>29</sup> and highlyskilled<sup>30</sup> labour and the proportion of R & D workers in a country's labour force, whereas, the revealed comparative advantage in specific sectors<sup>31</sup> was employed to measure the trade performance of a country. The empirical results, in general, suggested that a highly-skilled labour force and high levels of technological knowledge are likely to have a positive impact on the revealed comparative advantage of technology intensive sectors and a negative impact on the revealed comparative advantage of labour-intensive sectors. The labour force with low and intermediate skills, on the other hand, exerted an insignificant impact on either of the sectors. Note that the latter outcome is in accordance with the Heckscher-Ohlin-Vanek (HOV) model, supporting its usefulness in explaining trade flows between developed countries.

Using a cointegration and error correction technique, Chuang (2000) assessed the causal relationship between human capital accumulation and exports for Taiwan during the period 1952-1995. The Granger causality test carried out in this research revealed bidirectional causality

<sup>&</sup>lt;sup>28</sup> The low skilled workers correspond to workers who completed less than ISCED level 3 or level A in the OECD classification <sup>29</sup> The intermediate skilled workers correspond to workers who completed an initial education beyond lower

secondary education (ISCED level 2), but without achieving level D or E.

 $<sup>^{30}</sup>$  The highly-skilled workers correspond to either level D (higher non-university education) or level E (university education) in the OECD classification.

<sup>&</sup>lt;sup>31</sup> Labour-intensive, capital-intensive and technology-intensive sectors.

between exports and higher education attainment. The empirical results suggested that a more skilled labour force is likely to improve the comparative advantage of countries in exporting more superior-skilled intensive products, while, at the same time, expanding trade tends to promote the accumulation of human capital, which in turn impacts a country's long-run growth. Carlin et al. (2001) examined the association between the average years of schooling and export market share in 14 OECD countries during the period 1970-1990. In line with a priori expectations, the results of the investigation revealed a positive and significant impact of the average years of schooling on the export market share of countries under analysis. The evidence appears to be in accordance with theoretical considerations, highlighting the key importance of education in boosting labour productivity and in turn increasing a country's export share in international markets. Gråsjö (2005) examined the impact of human capital endowments on export performance of Swedish municipalities during the period 1993-1999. The author proxied human capital by the number of people with at least three years of university studies, whereas exports were proxied by the value of exports and the number of export products with export price above 1000 SEK per kg. In addition, access to university R&D and company R&D and its impact on exports was empirically tested. Human capital and company R&D were shown to have a significant positive impact on export performance, with the former measure exerting a stronger impact compared to the latter. However, it is worth noting that due to multicollinearity problems the separate effects of these factors were not easily determined. Subsequently, Fraga and Bacha (2011) investigated the impact of the average level of schooling of the employed workforce on export performance of Brazilian states during 1995-2006. The results of their empirical analysis suggested a non-linear relationship between human capital and exports. An increase in the level of schooling was shown to increase exports to certain point, and after that its effect becomes negative. This implies that increases in lower level of human capital have a stronger effect on export performance. A possible explanation for this might be that the group of commodities investigated in this study was not intensive in high skills, e.g. farming, agro-industrial and mineral commodities. A non-linear relationship was also revealed in Contractor and Mudambi's (2008) study. In an assessment of a set of developed and developing countries, the impact of human capital investment appeared to be stronger for the exports of goods and services in the latter subset of countries.

An important aspect that has started to increasingly attract the interest of researchers is the potential impact of human capital on the quality of exports of a country. According to Cavallaro and Mulino (2009), a country's ability to absorb foreign technological knowledge is translated into higher quality exports and greater competitiveness. This view has also been supported by an earlier research conducted by the authors, i.e. Cavallaro and Mulino (2008). The empirical results of the latter study revealed an improved quality content of the exports of 5 CEECs<sup>32</sup> over time, potentially as a result of the technological catching-up following their integration in the European Union. This quality upgrading and its potential positive impact on export competitiveness and market share growth of CEECs has also been discussed in Cavallaro et al. (2012). Skilled human capital, according to the latter study, is considered a key source of higher quality and technological catch-up with more advanced economies. In their assessment of export diversification and sophistication, Cabral and Veiga (2010) found supporting evidence for the positive role of the educational level of the workforce on both export dimensions, the impact being relatively stronger on the latter. This view was also supported by Parketa and Tamberi (2008), who argued that a higher quality human capital is expected to ease the diversification process and the diffusion of innovative activities. However, this analysis failed to determine the underlying link empirically. Expenditure on R&D turned out to be statistically significant and with the expected sign. To capture the "quality" or "sophistication" of a country's export basket, Hausmann et al. (2007) developed an export sophistication index. The authors postulate that countries that specialise in more sophisticated (higher level productivity) export portfolios tend to have better economic performances. While human capital turned out to be positively correlated with export sophistication, the causality direction was not well established. According to Anand et al. (2012), the educational level of the workforce is a key precondition to producing and exporting higher quality/sophisticated goods and services. The results of their research revealed a positive association between the years of schooling in tertiary education, total years of schooling and export sophistication. Similarly, Zhu et al. (2009) found supporting evidence for the positive impact of human capital on export sophistication. The gross tertiary enrolment rate turned out significant for low-income countries, whereas, the R&D based measure appeared to exert a positive and significant impact for high-income economies only. The positive empirical

<sup>&</sup>lt;sup>32</sup>The Czech Republic, Hungary, Poland, Slovakia, and Slovenia.

association between human capital stock and export sophistication has also been supported by Jarreau and Poncet (2009), Weldemicael (2010) and other research studies.

The share of medium and high technology intensive exports is an alternative, more conventional measure, used frequently to capture the quality/sophistication level of exports. Scholec (2007) examined the impact of technological capabilities on export specialization in electronics products for a group of 111 developing countries. The empirical analysis undertaken in this study revealed supporting evidence for the positive impact of the ICT patents per capita, computers per capita, and gross tertiary enrolment on a country's specialization in high-tech products. A positive association between the stock of human capital, R&D expenditure and export specialization in ICT products was also found in a study conducted by Vogiatzoglou (2009). Similarly, Ferragina and Pastore (2007) investigated the impact of human capital on the high technology exports of 84 countries for the period 1994-2003. According to their empirical assessment, human capital proxied by secondary school enrolments exerted a positive impact on the share of high-tech exports. Furthermore, the hypothesised role of R&D expenditure on technology intensive exports was also revealed, confirming the complementary link between the two. It is important to note, however, that enrolment rate is a proxy of flows rather than the stock of human capital, limiting thus, the inference drawn from the analysis. Tebaldi (2011) in his panel analysis suggested a positive effect of the average years of schooling on measures of high-tech exports (i.e. high-tech exports per worker and high-tech exports as a percentage of manufactured exports). The positive role of human capital on the high-tech exports of 15 EU countries during 1995-2010 was also established through a cointegration analysis conducted by Gökmen and Turen (2013). In contrast to the above outlined studies, Sara et al. (2012) found an insignificant relationship between the quality of education and training of a country's labour force and the percentage of hightechnology products as share of manufactured exports. This counterintuitive evidence might be possibly due to the proxy of human capital by a composite index (i.e. Global Competitiveness Report, 2008-2009). Note that such indices tend to be subject to many limitations, one of the main being the lack of solid theoretical grounds. Though Sara et al. (2012) did find evidence on the importance of a country's innovative capabilities for their high-tech export performance.

# 3.3.2 Human capital and international competitiveness: a review of the micro evidence

As previously highlighted, the empirical literature on international competitiveness is quite broad and diverse and this is primarily due to the wide range of indicators adopted. It is pertinent to note, however, that when reviewing the research on the potential driving factors of competitiveness, the tendency to employ export-based indicators was more prevalent. Taking this into consideration, the section below provides an overview of studies examining the impact of human capital on export behaviour undertaken at the micro level of aggregation. Schiefer and Hartmann (2008) assessed the impact of the qualification of staff at the executive and nonexecutive levels on international competitiveness, the latter being proxied by profitability measures such as returns on assets and sales, and relative change in sales. The empirical results revealed supporting evidence for the positive role of the former, while, the latter level of qualification (i.e. of non-executive staff) turned out to exert a less significant impact. It is important to note, however, that due to low survey participation rates, the evidence should be interpreted with great caution. In a similar study, Peña Vinces and Róldan (2012) investigated the impact of employee education, fluency in foreign languages, knowledge and experience in foreign markets and similar human capital characteristics (e.g. experience of other countries and cultures and proficiency in English) on the local and foreign profits of Peruvian SMEs. No evidence was found to support the hypothesized relationships, a potential explanation for their counterintuitive results, according the authors, was the employees' lack of adequate work-related competencies and skills, potentially due to the poor quality of education in Latin American developing countries. However, it is interesting to note that with the exception of the employee education, the other measures are skills-based hence the given explanation does not seem appropriate. Following Porter's diamond model, Shafaei (2009) assessed the competitive performance of four major Iranian firms using the Analytical Hierarchy Process.<sup>33</sup> Factor conditions<sup>34</sup> were revealed to be the main contributors to the performance of firms, i.e. quality of education, on-the-job training, labour productivity, presence of R&D, cooperation of universities with industry and level of applied research, and the presence of national research funds. Note

<sup>&</sup>lt;sup>33</sup>"It involves structuring multiple-choice criteria into a hierarchy, assessing the relative importance of these criteria, comparing alternatives for each and determining an overall ranking of the alternatives" (Shafaei, 2009, p. 24).

<sup>&</sup>lt;sup>34</sup>The interviewees evaluated the importance of each variable by scoring them as highly related, very related, related, less related and not related to the competitiveness of a firm.

that the reliability of the results is subject to the underlying limitations of the methodology adopted, The Analytical Hierarchy Process faces various shortcomings, e.g. the weights assigned to the main components for each index being based on 'expert's' perceptions. Furthermore, the Porter's framework per se, has not been strongly supported in the empirical research.

Van Dijk (2001) investigated the potential impact of the share of skilled employees<sup>35</sup>, the share of training expenditure in output and R&D expenditure to output ratio on the export propensity of Indonesian firms. The assessment was conducted separately for 28 industries at three digit level and it revealed mixed empirical evidence. Employees' skills turned out to exert a positive and significant impact on the exports of supplier dominated<sup>36</sup> firms and a negative impact on scale intensive<sup>37</sup> firms. The impact of the training dimension was relatively small, whereas, the results on R&D expenditure and export propensity differed significantly across industries. A similar relationship was examined empirically by Arbache and De Negri (2005). The authors found a positive association between the average years of schooling, experience and tenure of employees and the probability of exporting in Brazilian firms. Günther and Norbert (1999) examined the impact of employees' human capital on the probability of German firms exporting. The former dimension was proxied by the share of employees with university or college degree, the share of skilled employees without university or college degree and the level of average wages. Out of the three measures employed in this study, only the level of average wages turned out to have a positive and significant impact on export probability. The authors argue that knowledge and skills needed to engage in exporting are mostly acquired through on-the-job training and other activities, thus explaining the lack of significance of the formal education proxies. A positive relationship between the average wage per employee and export propensity and intensity is also found in a study undertaken by Barrios et al. (2001) for a sample of Spanish firms. Moreover, the human capital dimension was augmented by additional potential measures of human capital, i.e. the proportion of non-production and technical employee to total employees, respectively. Overall, the evidence for the latter set of measures turned out positive and significant when export intensity was assessed, though this result was not replicated when

<sup>&</sup>lt;sup>35</sup>It is defined as the sum of four education levels, i.e. college, bachelor, master, and PhD in total employees.

<sup>&</sup>lt;sup>36</sup> In supplier dominated firms, new technology is mainly introduced by suppliers of machinery or other capital goods. Process innovation is relatively more important than product innovation and firms are typically small. Supplier dominated sectors are mature industries such as the textile and food industry" (Van Dijk, 2001, p.7) <sup>37</sup> "Scale intensive firms produce mainly bulk materials such as cement or steel" (Van Dijk, 2001, p.7).

the export propensity of firms was examined. In line with expectations, R&D engagement appeared to play an important role in driving a firm's export behaviour. The impact of average wages, as a proxy for the human capital of the workforce, has also been assessed in studies conducted by Bernard and Jensen (2001) and Wagner (2012). The latter authors found supporting evidence for the positive impact of average wages on the export propensity and intensity of U.S and German firms, respectively. In addition, a positive association between the share of white collar, medium<sup>38</sup> and highly qualified<sup>39</sup> employees and export propensity and intensity was established in both research studies. In line with expectations, the share of highly qualified employees turned out to have a stronger impact on export performance as compared to their less qualified counterparts (i.e. employees with a medium qualification). Another wage based assessment, focusing on the impact of wage expenditure per employee and relative unit labour costs on export propensity, export market share and its growth rate was conducted by Dosi et al. (2013). A firm's decision to engage internationally was positively influenced by wage expenditure, whereas the (negative) impact of relative unit labour costs was significant only in some sectors (i.e. food, textile and chemicals). Overall, supporting evidence was found for the positive role of technology in the export performance of firms.

This review of empirical literature has identified a large set of studies relying primarily on labour cost measures when controlling for the potential impact of human capital endowments on firms' export behaviour.Controlling for potential simultaneity, Arnold and Hussinger (2005) investigated the causal relationship between productivity and the engagement of a sample of manufacturing German firms in international markets via exporting. Given the hypothesised positive correlation between the quality of the labour force and wages, the authors decided to rely on average wages as a proxy measure for the human capital dimension. Employing a Probit estimation approach, two model specifications were analysed. Initially, the entire sample of firms was assessed, to be followed by a separate estimation of a subsample of persistently exporting firms only. In line with the recent firm-level theoretical underpinnings, the results of the analysis found supporting evidence for the causal impact of productivity on exporting rather than vice versa. The human capital dimension, as proxied by average wages, was found to exert an

<sup>&</sup>lt;sup>38</sup> The share of employees with either the high-school diploma or with vocational training.

<sup>&</sup>lt;sup>39</sup>The share of employees with a polytechnic or university degree.
insignificant impact on the export decision of firms in the former model specification. It is, however, pertinent to note that the latter model seems to only assess the export probability of firms, a specific reference to the results for persistent exporters is made. Since the latter assessment does not seem to be explained the obtained empirical evidences in not reported and commented in this review. A positive and significant impact was identified for the R&D intensity on export behaviour, in both specifications, whereas the share of newly introduced products appeared significant only in the specification for persistent exporters. However, it is important to note that, in spite of the potential positive correlation between wages and human capital, the lack of more direct information about the latter dimension reduces the explanatory power of the model and the inference drawn from the latter. With a particular focus on export spillovers from MNE's, Sousa et al. (2000) also explored the potential link between the labour force skills and the export decision and propensity for a sample of UK firms. The skill composition of firms was proxied by the average wage, while the innovation dimension was measured by the domestic and foreign R&D activities, respectively. The latter refers to the R&D expenditure performed in UK by foreign firms. Adopting a Heckman selection model, the study revealed supporting evidence for the hypothesised positive role of skills on both the decision to export and the share of exports over turnover. The effect of foreign R&D activities turned out positive and robust across the two specifications, while the expenditure on R&D performed by domestic firms appeared to exert a significant impact only in the former model.

The determinants of the export behaviour of firms were also investigated by Eickelpasch and Vogel (2009). Using cross-sectional and pooled fractional Probit models, the export behaviour of a sample of German firms in the services sector was empirically assessed. Following many previous studies, the human capital dimension was captured by average wages. It is worth noting that no additional measures potentially related to human capital, such as the technology level or innovation, were adopted in this research analysis. The impact of human capital appeared positive and significant when the cross sectional analysis was undertaken, however its underlying effect disappeared when accounting for the fixed effects (e.g. unobserved heterogeneity). The latter revealed the potential link between the human capital and unobserved characteristics. However, it should be noted that, the prime reliance on wages and the lack of more adequate measures of human capital might have driven the final results. Wages were also

used by Cassiman and Martínez-Ros (2007) and Ruane and Sutherland (2004) to proxy the skill level of the workforce when modelling the export decision and intensity of firms. However, the hypothesised positive link between the two was not empirically established, i.e. overall insignificant or counterintuitive results were found. As previously argued, this might, to some extent, be attributed to remuneration not being an accurate measure of human capital. The potential link between qualification of the workforce and export intensity was empirically tested in an earlier study conducted by Wagner (2001). Overall, supporting evidence was found for the hypothesised role of the percentage of jobs demanding a university or polytechnic degree on the export intensity of German-based firms. Other variables potentially correlated with human capital intensity, such as R&D, patents and product innovation appeared to exert a positive and significant impact on export performance as well. It is worth noting that when an industry classification is introduced to the assessment, mixed evidence was revealed. Another empirical analysis focusing on the human capital-export performance nexus is conducted at the firm level by Alvarez (2007). A novelty of this investigation is the differentiation between non-exporters, sporadic exporters, and permanent exporters for a sample of Chilean manufacturing firms. The human capital dimension was proxied by the share of white and blue collar wages, whereas, the technological innovation level of firms was captured by the expenditure on foreign technical licenses. The results, in general, supported the hypothesised positive influence of human capital endowments on a firm's exports, however the same measures fail to explain the performance differences between permanent and sporadic exporters. Similar research was carried out by Johansson and Pettersson (2010) for Swedish food processing firms for the period 1997-2004. According to their empirical results, the share of employees with at least three years of university education has a positive and stronger impact on the probability of being a permanent exporter relative to the probability of exporting occasionally or not exporting at all.

In the same vein, Kagochi and Jolly (2010) assessed the impact of human capital and R&D expenditure on the export volume of US, Canada, Australia and Brazil's agricultural commodities. Overall, contrary to expectations, human capital proxied by the secondary school enrolment rate turned out to be negative. The arguably inaccurate measurement approach adopted in the current study might be a potential explanation for the counterintuitive result. School enrolment rates are regarded as weaker proxies of the current human capital stock;

therefore, their use might have distorted the findings of the study. In line with expectations, supporting empirical evidence is found for the positive role of domestic R&D expenditure on the exports of agricultural commodities. Employing a multinomial logit approach, Hollenstein (2005) assessed the determinants of a Swiss firm being engaged in international markets via exporting (without direct presence abroad), participating in foreign locations with other activities (in addition to exporting) or serving domestic markets only. This study followed Dunning's 'OLI paradigm' to explain the engagement of firms in international markets, i.e. 'O' representing a firm's ownership specific factors, 'L' denoting location specific characteristics and 'I' representing the internalising advantages. Amongst the three sets of potential determinants, the O-advantages, captured by a firm's key characteristics, such as the share of personnel holding a university degree or similar, R&D activities, the share of firms with high expenditure for product development and the share of firms with product innovations were found to be the key drivers of a firm's level of internationalisation. The impact of the underlying factors appeared to be the strongest for firms engaged in other foreign activities in addition to exports.

Using the Business Environment and Enterprise Performance Survey (BEEPS) undertaken by the World Bank and EBRD, Gashi et al. (2014) assessed the potential impact of human capital and technology-related factors on the export behaviour of SMEs in transition economies. The authors employed both cross section and panel data for the years 2002, 2005 and 2008/2009. The share of employees with higher education was found to exert a positive and significant impact on the export intensity of firms. The empirical evidence on the importance of on-the-job training, the share of skilled workforce and the education of the top managers was generally weak. The hypothethised role of on-the-job training turned out insignificant, whereas top manager's education was statistically significant in only one of the model specifications (the imputed sample). The introduction or upgrading of (new) products and technologies, on the other hand, was revealed to influence positively the export behaviour of firms. To address the issue of missing data, alternative model specifications were estimated using a multiple imputation technique. Overall, consistent empirical evidence was found across the specifications. The export behaviour of firms, with particular focus on the computer services industry was also examined by Falk and Hagsten (2015). A micro perspective was employed to assess the determinants of the export engagement of Swedish SMEs. The results indicated that a higher share of workers with

tertiary education tends to increase the probability of a firm exporting. However, its size and significance appears to decrease considerably when the output to employment (a measure of labour productivity) ratio is added to the explanatory variable list. This might be due to potentially high correlation between the two. To account for potential endogeneity in the estimations, the majority of explanatory variables were lagged one year. Again, it is worth noting that no information about additional sources of human capital accumulation (e.g. on-the-job training) was included in the analysis, neither did it control for related influencing factors, i.e. innovation activities.

| Macro level empirical evidence |           |                                                       |                      |                                       |                                                                                    |                                                                                                                                                                                                                                                          |                                                                              |                |  |  |
|--------------------------------|-----------|-------------------------------------------------------|----------------------|---------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------|--|--|
| Authors                        | Period    | Methodology                                           | Level of aggregation | Sample                                | International<br>Competitiveness<br>measure                                        | Human Capital<br>measure (result)                                                                                                                                                                                                                        | Human Capital -<br>related measures                                          | Comments/Notes |  |  |
| Cörvers<br>(1996)              | 1988-1991 | OLS                                                   | Sector               | 7 EU<br>Countries                     | Competitiveness<br>indicator:<br>Labour<br>productivity (level<br>and growth rate) | The share of intermediate<br>workers (+, productivity<br>growth)<br>The share of highly-<br>skilled workers (+ ,<br>productivity level)                                                                                                                  | NA                                                                           |                |  |  |
| Cörvers and<br>Grip (1997)     | 1985      | OLS                                                   | Country              | 14<br>industrializ<br>ed<br>countries | RCA                                                                                | The share of low-skilled<br>labour in a country's<br>labour force (insig.)<br>The share of<br>intermediate-skilled<br>labour in a country's<br>labour force (insig.)<br>The share of highly-<br>skilled labour in a<br>country's labour force<br>(mixed) | The proportion of<br>R & D workers in<br>a country's labour<br>force (mixed) |                |  |  |
| Chuang<br>(2000)               | 1952-1995 | Cointegration<br>and error<br>correction<br>modelling | Country              | Taiwan                                | Exports                                                                            | Higher education<br>attainment ratio (+)                                                                                                                                                                                                                 | NA                                                                           |                |  |  |

| Authors                            | Period    | Methodology            | Level of<br>aggregation | Sample                        | International<br>Competitiveness<br>measure                  | Human Capital<br>measure (result)                                                            | Human Capital -<br>related measures                                                                                             | Comments/Notes                                                                                                                    |
|------------------------------------|-----------|------------------------|-------------------------|-------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Carlin et al.<br>(2001)            | 1970-1990 | OLS                    | Sector                  | 14 OECD<br>countries          | Export market<br>shares                                      | Average years of<br>schooling (+)                                                            | R&D expenditure<br>to GDP (insig.)<br>Patent applications<br>(insig.)<br>R&D scientists<br>and engineers per<br>worker (insig.) |                                                                                                                                   |
| Ferragina<br>and Pastore<br>(2004) | 1994-2003 | Panel FE and<br>RE     | Country                 | 84<br>countries               | High-technology<br>exports (% of<br>manufactured<br>exports) | Human capital (%<br>secondary school<br>enrolment) (+)                                       | Research and<br>development<br>expenditure (% of<br>GDP) (+)                                                                    |                                                                                                                                   |
| Gråsjö<br>(2005)                   | 1997-1999 | Quantile<br>regression | Municipaliti<br>es      | Sweden                        | Export value<br>Number of high<br>valued export<br>products  | Average of the number of<br>people with at least three<br>years of university studies<br>(+) | University R&D<br>(insig.)<br>Company R&D<br>(+)                                                                                | Due to multicollinearity<br>problems the impact of<br>each measure is not<br>easily determined,<br>when investigated<br>together. |
| Marconi and<br>Rolli (2007)        | 1985-2000 | Cross-country panel    | Sector                  | 16<br>developing<br>countries | Lafay index                                                  | Average years of schooling (+)                                                               |                                                                                                                                 |                                                                                                                                   |
| Haussman et<br>al. (2007)          | 1992-2003 | OLS                    | Country                 | 48-133<br>countries           | Export<br>sophistication<br>index - EXPY                     | Human capital (+)                                                                            | NA                                                                                                                              | The causal direction has<br>not been tested<br>empirically in this<br>analysis                                                    |

| Authors                                | Period    | Methodology          | Level of aggregation | Sample                                            | International<br>Competitiveness<br>measure                                                                                                         | Human Capital<br>measure (result)                                                                                                                            | Human Capital -<br>related measures                                                            | Comments/Notes                                                                                                                                          |
|----------------------------------------|-----------|----------------------|----------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Srholec<br>(2007)                      | 2003      | OLS and<br>2SLS      | Country              | 111<br>Developing<br>countries                    | Export<br>specialization,(exp<br>orts/(exports +<br>imports))                                                                                       | Technological<br>capabilities (composite<br>index): ICT patents per<br>capita, computers per<br>capita, and<br>gross tertiary enrolment<br>(+)               | NA                                                                                             |                                                                                                                                                         |
| Contractor<br>and<br>Mudambi<br>(2008) | 1989-2003 | Hierarchical<br>OLS  | Country              | 25<br>developed<br>and<br>developing<br>countries | Exports of goods<br>and services                                                                                                                    | Average years of<br>schooling (+, non-lin)                                                                                                                   | NA                                                                                             | The impact of human<br>capital investment<br>appeared stronger for<br>the exports of goods<br>and services in the<br>subset of developing<br>countries. |
| Parteka and<br>Tambieri<br>(2008)      | 1985-2004 | Pooled OLS<br>and FE | Country              | 60<br>countries                                   | Export<br>specialization/diver<br>sification:<br>The relative Theil<br>entrophy index<br>(Cowell, 1995)<br>The relative Gini<br>index (Amiti, 1999) | Enrolment in secondary<br>and tertiary education as<br>% of population<br>(insignificant)<br>Illiteracy rate (%<br>population aged 15-24)<br>(insignificant) | Spending on R&D<br>as % of GDP (-)<br>Number of<br>researchers per<br>mln citizens<br>(insig.) | Despite having the<br>expected sign, almost<br>all human capital<br>variables turned out<br>insignificant.                                              |
| Zhu et al<br>(2009)                    | 1992-2006 | GLS and<br>GMM       | Country              | 171<br>countries                                  | Export<br>sophistication<br>index - EXPY                                                                                                            | Gross tertiary enrolment<br>rate (+)                                                                                                                         | The proportion of<br>R&D expenditure<br>in GDP (+)                                             | In order to deal with<br>potential endogeneity,<br>system GMM and IV<br>were used                                                                       |

| Authors                         | Period    | Methodology                                           | Level of aggregation | Sample                                    | International<br>Competitiveness                                | Human Capital<br>measure (result)                                                           | Human Capital -<br>related measures                           | Comments/Notes |
|---------------------------------|-----------|-------------------------------------------------------|----------------------|-------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------|
|                                 |           |                                                       |                      |                                           | measure                                                         |                                                                                             |                                                               |                |
| Jarreau and<br>Poncet<br>(2009) | 1997-2007 | FE Panel                                              | Country              | China                                     | Export<br>sophistication<br>index - EXPY                        | Stock of university<br>graduates over population<br>15+ (+)                                 | NA                                                            |                |
|                                 |           |                                                       |                      |                                           | The share of<br>medium and high-<br>tech products in<br>exports | Secondary education<br>stock (mixed)                                                        |                                                               |                |
| Vogiatzoglo<br>u (2009)         | 2000-2005 | FE Panel                                              | Country              | mixed<br>group of<br>countries            | ICT Export<br>specialization:<br>Balassa Index                  | Human capital stock:<br>Researchers in R&D per<br>million people (+)                        | Research &<br>development<br>expenditure as a %<br>of GDP (+) |                |
| Chor (2010)                     | 1990      | Simulated<br>method of<br>moments<br>(OLS and<br>SMM) | Sector               | 83<br>countries                           | Bilateral exports                                               | Factor endowments:<br>Human capital per<br>worker: average<br>educational attainment<br>(+) | NA                                                            |                |
| Kagochi and<br>Jolly (2010)     | 1971-2006 | Dynamic<br>ordinary least<br>squares<br>(DOLS)        | Commodity            | US,<br>Canada,<br>Australia<br>and Brazil | Export volume                                                   | The fraction of secondary<br>school graduates to the<br>agricultural labour force<br>(-)    | R&D expenditure<br>(+)                                        |                |

| Authors                       | Period          | Methodology                             | Level of aggregation | Sample                                  | International<br>Competitiveness<br>measure                                                                                         | Human Capital<br>measure (result)                                                                                                                                        | Human Capital -<br>related measures | Comments/Notes                                                                                                                                          |
|-------------------------------|-----------------|-----------------------------------------|----------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cabral and<br>Veiga<br>(2010) | 1960 to<br>2005 | Pooled OLS<br>and FE                    | Country              | Sub-<br>Saharan<br>Africa               | Export<br>diversification<br>(ED) - Number<br>equivalent and<br>Theil index<br>Export<br>sophistication (ES)<br>- EXPY and<br>PRODY | Labour force with<br>primary, secondary and<br>tertiary level of education<br>(+)<br>The share of GDP spent<br>in education (+, ED,<br>Insignificant, ES)                | NA                                  | Tertiary education plays<br>a more important role in<br>explaining ES, whereas,<br>primary education is a<br>more important factor<br>in explaining ED. |
| Weldemicae<br>1 (2010)        | 1980-2000       | OLS, 2SLS<br>and GMM                    | Country              | mixed<br>group of<br>countries          | Export<br>sophistication<br>index - EXPY                                                                                            | Average years of<br>schooling (+)                                                                                                                                        |                                     |                                                                                                                                                         |
| Kowalski<br>(2011)            | 1995, 2005      | Conditional<br>Poisson Fixed<br>Effects | Sector               | 55 OECD<br>and<br>emerging<br>economies | Value of exports                                                                                                                    | Secondary<br>schooling*skilled-labour<br>intensity (+)<br>Tertiary<br>schooling*skilled-labour<br>intensity (+)<br>Years of<br>schooling*skilled-labour<br>intensity (+) | NA                                  | The results suggest that<br>differences in<br>secondary schooling<br>had a stronger influence<br>on trade patterns                                      |

| Authors                      | Period    | Methodology                                                                    | Level of<br>aggregation | Sample               | International<br>Competitiveness<br>measure                                                            | Human Capital<br>measure (result)                                                 | Human Capital -<br>related measures | Comments/Notes                                                                      |
|------------------------------|-----------|--------------------------------------------------------------------------------|-------------------------|----------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------|-------------------------------------------------------------------------------------|
| Fraga and<br>Bacha<br>(2011) | 1995-2006 | FE                                                                             | Country                 | Brazil               | Total value of<br>exports                                                                              | Average years of<br>schooling of the<br>workforce (non-lin.)                      | NA                                  | The findings suggest<br>that human capital has a<br>non-linear effect on<br>exports |
| Tebaldi<br>(2011)            | 1980-2008 | Panel FE                                                                       | Country                 | 95<br>countries      | High-technology<br>exports per worker;<br>High-technology<br>exports (% of<br>manufactured<br>exports) | Average years of<br>schooling (+)                                                 | NA                                  |                                                                                     |
| Van der<br>Marel<br>(2012)   | 1999-2005 | Poission<br>Pseudo-Maxi<br>mum<br>Likelihood<br>technique<br>(OLS and<br>PPML) | Sector                  | 23 OECD<br>countries | Export of services                                                                                     | The stock of high-skilled<br>labour (+)<br>The stock of mid-skilled<br>labour (+) | NA                                  |                                                                                     |
| Anand et al.<br>(2012)       | 1990–2008 | Fully<br>Modified<br>Ordinary<br>Least Squares<br>(FMOLS)                      | Country                 | 100<br>countries     | Sophistication of<br>goods and services<br>exports (EXPY)                                              | Total years of schooling,<br>and years of schooling in<br>tertiary education (+)  | NA                                  |                                                                                     |

| Authors                       | Period    | Methodology                                                                                                                     | Level of aggregation | Sample                         | International<br>Competitiveness<br>measure                                            | Human Capital<br>measure (result)                                                               | Human Capital -<br>related measures                                                                                                            | Comments/Notes |
|-------------------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Sara et al.<br>(2012)         | 2008      | NA                                                                                                                              | Country              | 120<br>countries               | High-technology<br>exports (% of<br>manufactured<br>exports)                           | An index of the quality of<br>training and education of<br>a country's labour force<br>(Insig.) | An index of<br>innovative<br>capability of a<br>country (+)<br>An index of the<br>quality of existing<br>technologies in a<br>country (insig.) |                |
| Gökmen and<br>Turen<br>(2013) | 1995-2010 | Panel unit root<br>test;<br>Cointegration<br>test;<br>FMOLS panel<br>long-run<br>estimators;<br>Panel Granger<br>causality test | Country              | EU-15                          | High technology<br>export volume                                                       | Human Development<br>Index Scores (+)                                                           | NA                                                                                                                                             |                |
| Dosi et al.<br>(2013)         | 1989-2006 | Pooled OLS                                                                                                                      | Country and<br>Firm  | 15 OECD<br>countries/<br>Italy | Probability of<br>exporting<br>Level of export<br>shares<br>Growth of export<br>shares | Wage Expenditure (+)<br>Relative Unit labour costs<br>(mixed)                                   | Investment<br>intensity (+)<br>Propensity to<br>patent (+)                                                                                     |                |

|                                  | Micro level empirical evidence |                                      |                         |                   |                                             |                                                                                                                                                                                                                           |                                                                              |                                                                                                                               |  |  |  |
|----------------------------------|--------------------------------|--------------------------------------|-------------------------|-------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Authors                          | Period                         | Methodology                          | Level of<br>aggregation | Sample            | International<br>Competitiveness<br>measure | Human Capital<br>measure (result)                                                                                                                                                                                         | Human Capital -<br>related measures                                          | Comments/Notes                                                                                                                |  |  |  |
| Günther and<br>Norbert<br>(1999) | 1997                           | Simple and<br>Simultaneous<br>Probit | Firm                    | Germany           | Export probability                          | Employees with univ. or<br>college degree/number of<br>employees (Insig.)<br>Skilled employees<br>without univ. or college<br>degree/ number of<br>employees (Insig.)<br>Total labour<br>costs/number of<br>employees (+) | innovation<br>expenditures/sales<br>(+)                                      | Allowing for<br>simultaneity, the results<br>do not support the<br>potential effect of<br>export activities on<br>innovation. |  |  |  |
| Sousa et al.<br>(2000)           | 1992-1996                      | Heckman<br>selection<br>model        | Firm                    | United<br>Kingdom | Export decision and propensity              | Average wages (+)                                                                                                                                                                                                         | Domestic R&D<br>expenditure<br>(insig., +)<br>Foreign R&D<br>expenditure (+) | The main focus of the<br>paper was on the links<br>between MNEs and the<br>export performance of<br>domestic firms.           |  |  |  |
| Bernard and<br>Jensen<br>(2001)  | 1984-1992                      | Linear<br>probability<br>and Probit  | Firm                    | U.S.              | Export propensity                           | Workforce quality:<br>Lagged average wages<br>(+)<br>Ratio of white collar to<br>total employees (+)                                                                                                                      | NA                                                                           |                                                                                                                               |  |  |  |

| Authors                           | Period    | Methodology                                        | Level of aggregation | Sample    | International<br>Competitiveness<br>measure | Human Capital<br>measure (result)                                                                                                            | Human Capital -<br>related measures                                                                                                                                                                              | Comments/Notes                                                                          |
|-----------------------------------|-----------|----------------------------------------------------|----------------------|-----------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Wagner<br>(2001)                  | 1994-1995 | OLS, Tobit,<br>BETA and<br>PW                      | Firm                 | Germany   | Export/sales ratio                          | Percentage of jobs<br>demanding a university or<br>polytech degree (+)                                                                       | R&D/sales ratio<br>(+)<br>Patents (+)<br>Product<br>innovation (+)                                                                                                                                               | When firms by industry<br>were investigated<br>separately, mixed<br>results were found. |
| Van Dijk<br>(2001)                | 1995      | Tobit and<br>Papke and<br>Woolridge<br>models (PW) | Firm                 | Indonesia | Export propensity                           | Share of skilled<br>employees (educational<br>level) (mixed)<br>Share of training<br>expenditures in output<br>(mixed)                       | R&D expenditures<br>to output ratio<br>(mixed)                                                                                                                                                                   | The impact of skilled<br>labour varies between<br>sectors                               |
| Barrios et al.<br>(2001)          | 1990-1998 | Probit and<br>Tobit                                | Firm                 | Spain     | Export propensity<br>Exports/sales ratio    | Average wage per<br>employee (+)<br>Ratio of non-production<br>to total employees<br>(mixed)<br>Percentage of technical<br>employees (mixed) | R&D expenditure<br>/ sales (+)<br>R&D expenditure<br>by domestic firms<br>in sector j / sales<br>by domestic firms<br>in j; (mixed)<br>R&D expenditure<br>by MNEs in sector<br>j / sales by MNEs<br>in j (mixed) |                                                                                         |
| Ruane and<br>Sutherland<br>(2004) | 1991-1998 | Heckman<br>selection<br>model                      | Firm                 | Ireland   | Export decision and intensity               | Average wages                                                                                                                                | R&D expenditure<br>per employee (+)                                                                                                                                                                              |                                                                                         |

| Authors                                    | Period    | Methodology                                 | Level of aggregation | Sample          | International<br>Competitiveness<br>measure                                                                | Human Capital<br>measure (result)                                      | Human Capital -<br>related measures                                                                                                                  | Comments/Notes                                                                                                                                     |
|--------------------------------------------|-----------|---------------------------------------------|----------------------|-----------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Arbache and<br>De Negri<br>(2005)          | 1998      | Logit                                       | Firm                 | Brazil          | The probability of exporting                                                                               | Average years of<br>schooling of the<br>workforce (+)                  | Average<br>experience of<br>workers in the<br>firms (+)<br>Average tenure in<br>the firm (+)                                                         | The probability of<br>exporting grows until<br>some point of<br>schooling, and after that<br>it decreases.                                         |
| Arnold and<br>Hussinger<br>(2005)          | 1992-2000 | Probit                                      | Firm                 | Germany         | Export probability                                                                                         | Average wages (mixed)                                                  | R&D intensity (+)<br>The introduction<br>of new products<br>(mixed)                                                                                  | The estimated results<br>appear to suggest that<br>the direction of<br>causality runs from<br>productivity to<br>exporting, and not vice<br>versa. |
| Hollenstein<br>(2005)                      | 1998      | Multinomial<br>Logit                        | Firm                 | Switzerlan<br>d | The probability to<br>export, engage in<br>other foreign<br>activities or serve<br>the domestic<br>market. | The share of personnel<br>holding university or<br>similar degrees (+) | R&D performing<br>Share (%) of firms<br>with high outlays<br>for product<br>development (+)<br>Share (%) of firms<br>with product<br>innovations (+) | Overall, the estimates<br>of the study are in line<br>with the "OLI<br>paradigm", a theoretical<br>framework proposed by<br>Dunning.               |
| Cassiman<br>and<br>Martínez-<br>Ros (2007) | 1990-1999 | Pooled Probit<br>& Random<br>effects Probit | Firm                 | Spain           | Export decision                                                                                            | Wage intensity (-)                                                     | Product<br>innovation (+)<br>Process innovation<br>(insig.)                                                                                          |                                                                                                                                                    |

| Authors                            | Period    | Methodology                              | Level of aggregation | Sample  | International<br>Competitiveness<br>measure                                                                        | Human Capital<br>measure (result)                                                                                  | Human Capital -<br>related measures                                                                                                                                      | Comments/Notes                                                                                                                                                                |
|------------------------------------|-----------|------------------------------------------|----------------------|---------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Alvarez<br>(2007)                  | 1990-1996 | Multinomial<br>Logit                     | Firm                 | Chile   | Permanent<br>exporters<br>Sporadic exporters<br>Non-exporters                                                      | Labour skills:<br>White-collar wages<br>(mixed)<br>Blue-collar wages<br>(mixed)                                    | R&D - the<br>expenditure on<br>foreign technical<br>licenses<br>normalized by<br>value-added<br>(mixed)                                                                  | Labour skills and<br>technological<br>innovation are<br>positively correlated<br>with exporting, but<br>these factors cannot<br>explain why some firms<br>export permanently. |
| Schiefer and<br>Hartmann<br>(2008) | 2006      | Nonparametri<br>c correlation<br>and OLS | Firm                 | Germany | Relative return on<br>assets and sales,<br>relative change in<br>sales, and a<br>combination of<br>these variables | Staff qualification at the<br>executive level (+)<br>Staff qualification at the<br>non-executive level<br>(insig.) | Product<br>innovation:<br>Share of<br>innovative<br>products in the<br>product range (+)<br>Level of<br>innovation (insig.)<br>Process innovation<br>(+)                 |                                                                                                                                                                               |
| Shafaei<br>(2009)                  | 2001-2005 | Analytical<br>Hierarchy<br>Process (AHP) | Firm                 | Iran    | Competitive<br>performance index<br>- An index based<br>on Porter's diamond<br>of competitive<br>advantage.        | Quality of education (+)<br>On-the-job training (+)<br>Human resource<br>productivity (+)                          | Presence of R & D<br>(+)<br>Cooperation of<br>universities with<br>industry and level<br>of applied research<br>(+)<br>Presence of<br>national research<br>and funds (+) | The CP index reflects<br>how each component<br>(diamond) influences<br>the competitiveness of a<br>firm/country                                                               |

| Authors                                  | Period         | Methodology                                                         | Level of aggregation | Sample                                    | International<br>Competitiveness<br>measure                        | Human Capital<br>measure (result)                                                              | Human Capital -<br>related measures | Comments/Notes                                                                                                                                                    |
|------------------------------------------|----------------|---------------------------------------------------------------------|----------------------|-------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Eickelpasch<br>and Vogel<br>(2009)       | 2003-2005      | Cross-<br>sectional<br>Probit and<br>pooled<br>Fractional<br>Probit | Firm                 | Germany                                   | Export probability<br>and intensity                                | Average wage (mixed)                                                                           | NA                                  | This study adopted a<br>newly introduced<br>approach to estimating<br>the export behaviour,<br>i.e. the so called<br>Fractional Probit.                           |
| Johansson<br>and<br>Pettersson<br>(2010) | 1997 –<br>2004 | Multinomial<br>Logit                                                | Firm                 | Sweden                                    | Permanent<br>exporters<br>Occasional<br>exporters<br>Non-exporters | The share of employees<br>that have at least three<br>years of university<br>education (mixed) | NA                                  | Human capital<br>increases the<br>probability of being a<br>permanent exporter<br>relative to the<br>probability of exporting<br>occasionally or not<br>exporting |
| Kagochi and<br>Jolly (2010)              | 1971-2006      | Dynamic<br>ordinary least<br>squares<br>(DOLS)                      | Commodity            | US,<br>Canada,<br>Australia<br>and Brazil | Export volume                                                      | The fraction of secondary<br>school graduates to the<br>agricultural labour force<br>(-)       | R&D expenditure<br>(+)              |                                                                                                                                                                   |

| Authors                             | Period                       | Methodology                                                                  | Level of aggregation | Sample                  | International<br>Competitiveness                                                                                       | Human Capital<br>measure (result)                                                                                                                                                                                                                     | Human Capital -<br>related measures                                                                                                                          | Comments/Notes                                                                                                                                                                                                                        |
|-------------------------------------|------------------------------|------------------------------------------------------------------------------|----------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D~ V.                               | 2006 2000                    |                                                                              | <b></b>              | D                       | nieasure<br>De terre                                                                                                   |                                                                                                                                                                                                                                                       |                                                                                                                                                              |                                                                                                                                                                                                                                       |
| Peña Vinces<br>and Róldan<br>(2012) | 2006-2009                    | Partial Least<br>Squares<br>Structural<br>Equation<br>Modelling<br>(PLS-SEM) | Firm                 | Peru                    | Percentage of local<br>profits over total<br>profits and the<br>percentage of<br>foreign profits over<br>total profits | Employees age and<br>education<br>Fluency in foreign<br>languages,<br>Experience in foreign<br>markets,<br>Knowledge of foreign<br>markets,<br>Experience in other<br>countries<br>Cultures and English as a<br>means to work in the firm<br>(insig.) | NA                                                                                                                                                           |                                                                                                                                                                                                                                       |
| Wagner<br>(2012)                    | 2006                         | OLS, Probit,<br>Fractional<br>logit                                          | Firm                 | Germany                 | Export propensity<br>Exports/total<br>turnover                                                                         | The shares of medium<br>qualified employees (+)<br>The shares of highly<br>qualified employees (+)<br>The average wage in a<br>firm (+)                                                                                                               | R&D intensity (+)                                                                                                                                            | The study suggests that<br>average wage is a<br>useful proxy for human<br>capital stock of a firm.                                                                                                                                    |
| Gashi et al.<br>(2014)              | 2002, 2005<br>&<br>2008/2009 | Generalised<br>Tobit                                                         | Firm                 | Transition<br>countries | Export intensity                                                                                                       | The share of the<br>workforce with some<br>university or higher<br>education (+)<br>On-the job training<br>(insig.)<br>The share of skilled<br>workers (insig.)                                                                                       | Changes in<br>organizational<br>structures (insig.)<br>Spending in R&D<br>(insig.)<br>The introduction<br>of new products<br>(technologies)/<br>upgrading of | To handle the issue of<br>missing data,<br>alternative model<br>specifications were<br>estimated using a<br>multiple imputation<br>technique. Overall,<br>consistent empirical<br>evidence was found<br>across the<br>specifications. |

|                               |           |                                       |      |        |                    | The education of the top manager (insig.)                                                     | existing products<br>(+)<br>The relative<br>technological level<br>(insig.) |  |
|-------------------------------|-----------|---------------------------------------|------|--------|--------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--|
| Falk and<br>Hagsten<br>(2015) | 2002-2010 | Fixed effects<br>conditional<br>Logit | Firm | Sweden | Export probability | The share of workers<br>with a tertiary education<br>(+)<br>Output to employment<br>ratio (+) | NA                                                                          |  |

As previously argued, international competitiveness has been mainly approximated by trade/export based indicators; hence this review has covered mainly studies examining the determinants of the latter, even when no direct reference to the concept has been made. The determinants of export behaviour (propensity and intensity) of firms have been most frequently assessed, with most of the studies also controlling for the impact of human capital endowments. At the country/sector level, studies have mainly relied on export measures, i.e. revealed comparative advantage indices or export market share indicators. The level of education attainment, years of schooling, enrolment rates and/or average wages have been amongst the most commonly employed measures of human capital, with very few studies also controlling for other specific human capital components (e.g. training incidence). An increasing strand of literature appears to be focusing on the determinants of the quality of exports and the hypothesised positive impact of human capital endowments. Quality or the sophistication of exports has been assessed mainly at the country/sector level and it has been proxied by the relative size of technology intensive exports and/or a newly introduced export sophistication index. It is pertinent to note that one of the main shortcomings of the vast majority of studies reviewed here is the lack of a critical debate regarding potential sources of endogeneity and ways to account for it. In many cases, potential reverse causation between human capital and international competitiveness was not discussed and/or no robustness checks were undertaken to determine the direction of causality. It is well established in the literature that estimating models in the presence of endogeneity yields biased and inconsistent estimates and invalid causal inherence. Hence, an important element of our own investigation will be assessing and addressing, where necessary, potential endogeneity. Another limitation of most of these studies relates to appropriately capturing the broad dimension of human capital. While, various measures related to the quantity of education have been employed, the quality of education as a key dimension of human capital was rarely quantified and tested in any of the above outlined analyses. Given its hypothesised key relevance, particularly when conducting cross-country analyses (i.e. differing qualities of schooling), we will account for this dimension in our research analysis to the greatest possible extent. On-and off-the job training are two other important dimension of human capital accumulation not frequently assessed in the empirical literature.

### 3.4 Human capital: definition and measurement

The aim of this section is to provide a discussion of the main approaches to defining human capital and its measurement, with special reference to education as an important source of human capital accumulation. There is a widespread acceptance that an individual's human capital is based on knowledge and skills obtained by various learning activities. In spite of many definitions of human capital proposed, the one provided by the OECD is currently the most comprehensive and is frequently cited in the literature. It defines human capital as "the knowledge, skills, competencies and attributes embodied in individuals that facilitate the creation of personal, social and economic well-being" (OECD, 2001b, p18). According to Laroche (1999, p. 89), human capital consists of two main components: the innate abilities and the knowledge and skills acquired over an individual's lifetime. Innate abilities are defined as "physical, intellectual and psychological capacities that individuals possess at the time of birth" whereas, the latter component refers to competencies, knowledge and skills that are generally built up throughout education, on-the job training, work experience, and other similar activities. While human capital might seem simple to define, it is inherently more difficult to measure due to its multidimensional nature.

Three key approaches to measuring the stock of human capital have been identified in the literature: the cost-based approach, income-based approach and education-based approach. The first method measures the stock of human capital by looking at the total costs incurred to produce an individual's human capital. This approach was first introduced by Engel (1883) and later augmented by Kendrick (1976) and Eisner (1995). According to Kendrick, human capital costs can be divided into tangible and intangible dimensions. The tangible component refers to the costs needed to produce and rear an individual until a certain age, while the intangible costs are expected to improve the productivity of labour. The latter component refers to costs on health, safety, mobility, education and training, and also the opportunity cost of attending school and training (Oxley et al., 2008). Given the availability of data on public and private costs, the approach appears easily applicable; though it has also been criticized for unjustifiably assuming a positive relationship between investment and the quantity and quality of output produced. The value of human capital does not necessarily depend just on the cost of production, it is more likely to depend on demand and supply for that human capital (Le et al., 2003, Oxley et al.,

2008). This measure tends to become even more problematic under certain circumstances: specific individuals require additional rearing costs (e.g. such as with children with disabilities and health issues), leading to an over-estimated human capital (Oxley et al., 2008, Boarini et al., 2012). Another limitation of this approach stems from the difficulty of precisely distinguishing between investment and consumption costs in the production of human capital. For instance, the expenditure incurred for a student's food and clothes can be considered both consumption and investment expenditure (Boarini et al., 2012). Frequently, an arbitrary division is proposed, making sensitive assumptions, which if not valid, can lead to over or under-estimation of the real value of human capital. An additional drawback relates to the use of different depreciation methods by researchers. Furthermore, this approach appears to completely neglect the potential appreciation of human capital (Oxley et al., 2008).

An alternative measurement method which places greater emphasis on the future rather than past and output as opposed to input, is the income-based approach. The latter focuses on the sum of the discounted values of future income flows that a person expects to earn throughout her/his lifetime. This approach, initially introduced by Petty (1690), was later adopted and extended versions by various researchers. According to Oxley et al. (2008), among the key pioneer contributors to measuring the value of human capital are: Farr (1853), Wittstein (1867), Nicholson (1891), De Foville (1905), and Dublin and Lotka (1930). Later, Jorgenson and Fraumeni (1989) provided an augmented method by simplifying the discounting procedure. Note that relying on this approach as opposed to the historical costs seems more sensible, when the future productivity of an economy is assessed (Oxley et al., 2008). Human capital is valued at market prices, depreciation is implicitly captured, life tables are available and earnings by age and education level can be acquired from various surveys. However, the approach is also subject to various limitations. Initially, the assumption that the wage rate captures productivity capacities does not necessarily hold, since there are other factors highly likely to impact the wages differences, e.g. minimum wage provisions, market conditions, bargaining power, etc. Besides, a subjective judgment has to be made about the discount rate, retirement age, and future income growth rate, which, if not correctly specified, might lead to biased results (Oxley et al., 2008). It is, however, important to note that, a common limitation of the two measurement approaches outlined above is the undervaluation of human capital that comes mainly as a result of neglecting

completely the non-market benefits of human capital investment e.g. improved health, greater civic awareness and participation, and improved social inclusion (Boarini et al., 2012).

The final measurement approach, the most commonly used in the economic literature, rests primarily on education-based indicators. As hypothesised by the conventional human capital theory, education is regarded as a key source of human capital development. Widespread accepted theoretical grounds and general availability of data on education participation and attainment constitute the main rationale behind their frequent use. It is pertinent to note that the choice of which human capital measurement approach to be adopted should depend primarily on the purpose of the investigation. Hence, given that education-based indicators are generally perceived to reflect the knowledge, skills and competences of the potential labour force, employing this approach seems more sensible when assessing the human capital-international competiveness nexus. Besides, not being prone to problems associated with the alternative measures (i.e. valuation, costs) tends to further favour the adoption of this approach. That is to say, the mechanism through which human capital influences international competitiveness relies primarily on productivity, the latter being determined by the knowledge and skills of the individuals/workforce. It important to highlight that, in spite of the widespread use and its intrinsic relevance to our own empirical investigation, this measurement approach is also subject to limitations that will be discussed in more details below. As the human capital theory somewhat reluctantly acknowledges, there are other components of human capital that are of similar importance to productivity and competitiveness and should be taken into account in order to obtain reliable results., e.g. informal education, on-the-job training and experience.

The education-based approach typically estimates human capital generally based on output indicators such as adult literacy rates, and education attainment. One of the commonly used proxies of education is school enrolment rates. Both, gross and net enrolment rates have been proposed in the literature, with the former being more frequently used given the general availability of such data for developing countries. The gross enrolment ratio is defined as "the ratio of all persons enrolled at a given level of schooling to the population of the age group that national regulation or custom dictates should be enrolled at that level". The net enrolment ratio, on the other hand, is defined as "the ratio of students at a given level of schooling in the

designated age group to the total population of that age group" (Barro and Lee, 2001, p.7). These ratios represent today's investment in human capital that will be reflected in the accumulated human capital sometime in the future. However, school enrolment rates are considered to be weaker proxies of the current human capital stock. As a measure of current flows, these rates represent the future level of schooling rather than that of present labour force (Oxley et al., 2008). Another drawback stems from the fact that current level of schooling might not be added to the future human capital stock, if graduates do not participate in the labour force, e.g. due to emigration, unemployment, health conditions and/or if there are significant numbers of grade repetition and dropouts in the current enrolment. While, changes in the stock of human capital over time are a reflection of the differences between the human capital of those who enter the labour market and those who retire, the latter component is not captured by enrolment rates at all (Woessmann, 2003, Oxley et al., 2008). Furthermore, data on enrolment rates sometimes tend to be of poor quality, particularly for developing countries, due to false reporting or inaccurate data. For instance, in some countries schools or municipalities deliberately report exaggerated figures in order to acquire additional resources for their educational institutions (Chapman and Boothroyd, 1988). Besides, this ratio refers only to the registered number of students at the beginning of the year, thus ignoring that the number of students attending school during the years might be significantly lower (Barro and Lee, 1993). It also tends to ignore the differences in the length of both compulsory and actual schooling. Overall, the above outlined limitations question the adequacy of this approach in representing accurately either the current or future flows of human capital.

As opposed to the education flows discussed above, the adult literacy rate is a measurement method that captures the stock of human capital for the adult population. According to UNESCO (1993, p.24), the adult literacy rate is defined as "the percentage of population aged 15 years and over who can both read and write with understanding a short simple statement on his/her everyday life". Although it represents a relevant component of the human capital stock, it focuses only on basic literacy, while neglecting other important fundamentals such as: numeracy, logical and analytical reasoning and scientific and technological knowledge acquisitions. It is worth noting that this measure is not as commonly employed in the research work as enrolment rates, mainly due to censuses and surveys of the adult population being carried out less

frequently and the lack of variation of the literacy rates across time or countries (Barro and Lee, 1993). More importantly, reliance on this proxy assumes that advanced levels of education are irrelevant for the productivity of the labour force. The inappropriateness of this proxy to capture the human capital stock has also been highlighted by Judson (2002). The latter argues that only in countries with little education beyond the first level is this proxy valid, it is inadequate when assessing countries with relatively high levels of education. To overcome some of these shortcomings, newly designed international comparable literacy tests covering more advanced dimensions have been introduced and will be discussed later in this section.

Education attainment is another proxy measure of human capital frequently used, particularly when trying to assess the hypothesised role of the knowledge, skills and competences of the population/potential labour force. As opposed to the previous measures, this proxy captures the total amount of formal education acquired by the potential labour force of an economy, rather than the stock of future labour force (Woessmann, 2003). Education attainment is typically defined as the percentage of population who have successfully completed different levels of education; with average years of schooling being one the most commonly used specification in the research literature (Woessmann, 2003). According to the OECD (1998), education attainment proxies have been found to be positively correlated with direct skills indicators and earnings.

The lack of readily available data on years of education has led several researchers to construct their own estimates. Depending on the estimation methodology used, three sets of studies can be identified, i.e. studies that used census/survey based method, the projection method, and the perpetual inventory method (Oxley et al., 2008). The survey/census estimation method, which focuses on the levels of educational attainment extracted from surveys and censuses, was proposed by Psacharopoulos and Arriagada (1986). Although, the authors collected data on the educational attainment of the labour force for six different levels of education the limited coverage in terms of the time span and countries seems to be one of the main drawbacks of their dataset. In order to overcome some of these limitations, a projection method was developed by Kyriacou (1991). Years of schooling as provided by Psacharopoulos and Arriagada were regressed on lagged gross enrolment ratios obtained from UNESCO databases, to predict average years of schooling in the labour force for additional countries and years. However, in spite of the

improvements, the dataset remained associated with significant measurement errors. This method rests on assumption that lagged enrolment ratios and years of schooling have a stable relationship over time and across countries, which might not be applicable in many cases (Oxley et al., 2008). Alternatively, Lau et al. (1991) proposed the perpetual inventory method that measures the stock of education by computing the sum of enrolment rates at specific grade levels at a specific time and the probability of survival. A shortcoming related to this approach stems from the measurement errors related to enrolment and mortality data, given that earlier periods figures were not available and thus had to be extrapolated. Furthermore, this approach did not take into account dropouts, grade repetition and migration rates when performing the calculations. To address the latter limitation, Nehru et al. (1995) offered a modified version, albeit by keeping the dropouts and repetition rates constant over time and across grade levels. Moreover, the ability to collect data for earlier periods reduced to a large extent the previous issues associated with backwards extrapolation. Yet, the authors decided not to use census data on attainment levels, arguing that the actual data are not necessarily better than those computed using the perpetual inventory method. This, was, however, strongly criticized by De la Fuente and Domenech (2006), who argue that the decision to ignore direct information provided by censuses is irrational.

A composite measurement approach was introduced by Barro and Lee (1993, 1996, 2001, and 2013), who integrated the three methods outlined above to produce education attainment stock data. Using UNESCO, Eurostat, and national sources survey and census data, they constructed measures of educational attainment for a large number of countries at 5-year intervals for the period 1950 to 2010. The dataset presents the distribution of educational attainment of the adult population aged 15 and 25 over across six different categories of education. The dataset was also augmented by additional measures of average years of schooling. Since there was a large number of missing observations on education attainment levels, forward and backward extrapolation were used to fill the gaps. Data on adult illiteracy rates were used to fill the missing values of the no–schooling category, considering the high correlation between the two proxies. Initially, to fill the missing observations for the main categories of education the authors applied a perpetual inventory method, using the census/survey data on the educational attainment of the adult population over age 15 or 25 as benchmark stocks. School enrolment rates and population age

structures were used to estimate changes from the benchmarks. However, given the criticism raised against this approach, a new methodology was later adopted by the authors. In their new dataset, Barro and Lee (2013) used observations in 5-year intervals for the previous or following 5-year periods, thus reducing the measurement error considerably. New estimates, such as survival/mortality rates by age and education, and completion ratios by educational attainment and age were also constructed. The updated estimates appear to have overcome to a large extent the previously acknowledged limitations (Barro and Lee, 2013).

Despite its widespread use and popularity, education attainment proxies have been criticized for reflecting only the formal education output. As postulated by the human capital theory, training represents an important component of human capital accumulation that should be taken into account when quantifying the stock of the human capital. However, in spite of the hypothesised added value, its role has been researched relatively less compared to that of formal schooling. A possible reason behind this might be the complexity of measuring investments in training and the limited availability of data, particularly at more aggregated levels of investigation. Eurostat has started to address the latter issue by carrying out a survey on the continuing vocational training (CVTS). This survey is conducted every five years and up to now there are three waves of data available: 1999, 2005, and 2010. Firm level data on the incidence of on-the job training in the transition region is also provided by BEEPS survey, a joint initiative of EBRD and the World Bank.

Another drawback relates to each additional year of schooling being typically perceived to increase the stock of human capital by an equal amount, regardless of being a person's first or tenth year of schooling. This measurement approach also ignores the quality of the education system, by implicitly assuming that it does not have any significant impact on the human capital stock (Woessmann, 2003). That is to say, by considering the quality of education the same across countries, one year of schooling in a Brazilian Amazon village is perceived to make the same contribution to the stock of human capital as one year of schooling in Belgium. Given that the latter perception is highly likely to be false a cross-country analysis relying only on the quantity of education tends to produce biased and inconsistent results (Hanushek and Woessmann, 2007). By further supporting this view, Hanushek and Woessmann (2009), argue that focusing primarily

on cognitive skills as opposed to years of schooling is inherently advantageous, since it reflects the differences in knowledge that the schooling system aims to produce. In this way, it is likely to capture skills and competencies acquired from various sources, beyond those related to formal schooling. In order to capture latter dimension, Barro and Lee (1996, 2001) introduced the real public educational spending per student, teacher-pupil ratios, estimated real salaries of teachers, length of the school year, as well as repeaters and dropout rates, as input proxies for the quality of education. In spite of the attempts, the existing evidence seems to suggest that the majority of these proxies are weak measures of the quality of education (Hanushek, 1996).

Alternatively, the quality dimension of education across countries has been represented by students' achievements on internationally comparable tests. In this context, international tests in the field of mathematics, science and reading (PISA, TIMSS, PIRLS) have been carried out by the Organisation for Economic Co-operation and Development (OECD), the International Assessment of Educational Progress (IAEP), and the International Association for the Evaluation of Educational Achievement (IEA). By making use of such information Hanushek and Kimko (2000) constructed a single quality index based on primary or secondary students' cognitive achievements on six international tests in mathematics and science for 39 countries. The inability to directly account for the educational capital of the current workforce represents a key limitation of this approach. Furthermore, due to data limitations for the latter dimension, it is difficult to provide an assessment that integrates both the quality and quantity of education. Woessmann (2003) tried to integrate the above mentioned quality measure into the stock of human capital, the latter being proxied by the average years of schooling (extracted by Barro and Lee)and average rates of return to education (Psacharopoulos, 1994). However, given the restricted availability of the data for the quality and rates of return to education this turned out not to be very useful. Furthermore, the weighting procedure for the quality measures was determined in an ad-hoc manner (Woessmann, 2003). In attempt to extend this approach further, Hanushek and Woessmann (2009) included new international tests, additional countries, and other time and country specific elements. The latter cognitive skills measure was constructed by integrating and standardizing mathematics and science test scores for 50 countries, for the period 1964–2003.

Unlike the quality measures discussed so far, the International Adult Literacy surveys were introduced to capture the human capital of the adult labour force. The adult literacy test scores are comparable across countries and reflect specific skills of the adult population, beyond the education related skills (Barro and Lee, 2001). Three main adult literacy surveys have been designed and made available: the International Adult Literacy Survey (IALS), the Adult Literacy and Lifeskills Survey (ALL), and the OECD's Programme for the International Assessment of Adult Competencies (PIAAC) (Thorn, 2009). Statistics Canada in cooperation with OECD and other institutions introduced the International Adult Literacy Survey (IALS). Data were collected for three waves (1994, 1996, 1998) for 22 countries, where three domains of literacy were assessed, prose literacy, document literacy and quantitative literacy. The Adult Literacy and Lifeskills Survey (ALL) was introduced to measure a wider range of adult population skills, though, the country coverage remains quite limited. In the first round (2002-2003), seven countries were covered, while the assessment carried out in 2006introducedanother five countries. This test focused on prose literacy, document literacy, numeracy, and problem solving. Other domains, such as teamwork, practical cognition and working with information technology were initially projected to be part of the survey, but it turned out not to be possible to construct corresponding reliable measures for the latter (Thorn, 2009). To provide an assessment of an advanced range of skills the OECD introduced a programme for the International Assessment of Adult Competencies. The latter survey assessed the skill level of the adult population aged 16 and over, in literacy (combined prose and document), numeracy and problem solving in technology rich environments in 24 countries. Moreover, information on activities related to reading and numeracy, the use of information technology, and other basic skills were also collected. Respondents were also asked if their skills and credentials matched their job requirements (OECD, 2013a). However, despite the advantage of measuring directly labour force skills, these datasets remain very limited in terms of the time span and country coverage. It is pertinent to highlight that, in addition to the skills discussed above; there is another important set of skills that is likely to influence the performance of individuals. It refers to the "set of attitudes, behaviours, and strategies that are thought to underpin success in school and at work, such as motivation, perseverance, and self-control" (Gutman and Schoon, 2013, p.2). These skills are commonly termed as "non-cognitive skills" or "soft skills" and have been less extensively researched in the literature. Despite the hypothesized positive link between non-cognitive skills

and an individual's personal and professional success, the causal empirical evidence is still weak. An important implication is that, in order to obtain more reliable results, non-cognitive skills should be assessed in combination with each other rather than separately (Gutman and Schoon, 2013).

The discussion presented above indicates that the measurement of human capital is very challenging and that there are no flawless measures currently available. Data restrictions and incorrect measurement specifications may be potential reasons why inconsistent results, particularly on the relationship between human capital and economic growth, have prevailed in the empirical literature. However, given their established theoretical grounds, popularity, the general availability of data, and the relationship to be investigated in this research project, the macro level analyses conducted in Chapters 4 and 5 will be based on an integrated approach, using both estimates of the educational attainment developed by Barro and Lee (2013) and the cognitive skills measure proposed by Hanushek and Woessmann (2009). In the micro level analysis conducted in Chapter 6, the human capital dimension will be proxied by the education attainment of a firm's labour force. This analysis will also take into account the training dimension as an important source of human capital accumulation. The latter will be captured by a dichotomous measure, i.e. whether a firm has offered formal training programmes for its permanent, full-time employees or not. In addition, the potential impact of the percentage of skilled workers and the level of education and years of experience of the top manager will be also assessed in this research analysis. Note that, the choice of human capital measures to be employed in this firm-level analysis is ultimately determined by the specificity of data made availability by BEEPS.

### **3.5 Conclusions**

In this chapter, the importance of human capital endowments for productivity and economic growth has been elaborated in the light of different schools of thought. It was endogenous growth theory that emphasised the crucial importance of human capital investment for the economic performance of nations. Proponents of this view argue that skilled individuals are more likely to innovate and/or adopt new sophisticated technologies, which consequently increases productivity and generates growth. According to the conventional human capital theory, education and on-the

job training are the main sources of human capital development. Both activities are expected to develop and enhance learning abilities of individuals, which in turn tend to translate into higher labour productivity. Regarding the transmission mechanism, the influence of skills and knowledge on productivity seems to depend on the set of tasks to be performed. The role of informal sources such as on-and off-the job training, and the importance of the quality dimension of education have been also reviewed and critically assessed. Furthermore, the chapter provided a discussion on the main approaches to modelling empirically the relationship between human capital and international competitiveness. Similar to the human capital – growth mechanisms, the importance of human capital accumulation for competitiveness and export performance was generally derived from its relation with technological diffusion and catch up, innovation and labour productivity. The importance of knowledge and skills for international competitiveness was supported by the established link between productivity and knowledge and skill based activities. Human capital, as a key determinant of productivity, is considered an important source of competitiveness. The research reviewed suggests that more productive firms are more likely to participate and remain in international markets as compared to their less productive counterparts. An increasing level of human capital is also expected to play a key role in inducing innovative activities, which, in turn, is likely to enhance international competitiveness. It is pertinent to note that the validity of the above outlined link tends to be also subject to the level of development of countries under analysis. For instance, for many transition economies, given their current degree of innovation engagement and level of technological development, human capital is more likely to facilitate technological catch-up and incremental innovation, rather than stimulate radical innovation. As hypothesised, the skill set required to induce innovation is subject to the nature of innovation. More advanced skills are needed to promote major changes in technology and production processes, whilst, more basic skills may be sufficient to deal with minor process modifications.

In spite of the extensive number of studies having assessed empirically the relationship between human capital, productivity and growth, the results remain inconclusive. To a large extent, the lack of conclusive results has been attributed to measurement and misspecification errors surrounding human capital. Among the three key measurement approaches reviewed in this chapter, the education-based method has been most commonly employed in the economic literature. Its widespread accepted theoretical basis and the availability of data are the main reasons behind its frequent use. Furthermore, in the absence of direct information, education attainment, both formal and informal, is perceived to reflect the knowledge, skills and competences of individuals more adequately than the alternative proxy measures.

To the complexity of measuring precisely human capital is also added the difficulty of quantifying the multidimensional concept of international competitiveness. Regarding the latter, a variety of measures have been proposed in the literature with no agreement on the superiority of any given one, though, a tendency towards trade/export based measures has been identified. Taking these into consideration, a review of empirical studies assessing the potential link between human capital and international competitiveness, the latter being mostly proxied by export based indicators has been presented in this chapter. Overall, the review of micro and macro evidence has revealed that, relative human capital endowment tend to have a positive impact on the international competitiveness of entities. To shed new light on the hypothesised link between human capital endowments and international competitiveness, with special reference to transition economies, a country-industry level analysis using longitudinal data for the period 1995-2010 will be conducted in the following chapter.

# CHAPTER 4

# HUMAN CAPITAL AND INTERNATIONAL COMPETITIVENESS: COUNTRY AND INDUSTRY LEVEL EVIDENCE

## Contents

| 4.1 Introduction                      | . 141 |
|---------------------------------------|-------|
| 4.2 Data and variable specification   | . 142 |
| 4.3 Estimation methodology            | . 156 |
| 4.4 Country level empirical evidence  | . 160 |
| 4.5 Industry level empirical evidence | . 174 |
| 4.6 Conclusions                       | . 179 |

#### **4.1 Introduction**

The aim of this chapter is to investigate the impact of human capital endowments on the international competitiveness of a group of European countries, with special reference to transition economies. This investigation is based on country and industry level estimations using longitudinal data for the period 1995-2010. The choice of the model specification is derived from the discussion on the theoretical mechanisms through which human capital influences international competitiveness presented in Chapter 3. As argued in the previous chapter, the stock of human capital is likely to impact international competitiveness through the following underlying channels: technological diffusion, innovation and labour productivity. The new endogenous growth theory postulates that more educated and higher skilled individuals are more likely to innovate and/or adopt new sophisticated technologies, which consequently tends to boost labour productivity. In turn, more productive firms and countries are more likely to maintain and/or enhance their international competitiveness. In this investigation, following the discussions in the previous two chapters, international competitiveness is represented by the export market share and a measure of relative export advantage, whereas, human capital is proxied by education attainment, quality of education, and participation in vocational training. In line with the human capital theoretical underpinnings, the education and training are considered crucial to developing the knowledge, skills and competences of individuals. The remaining parts of this chapter are organized as follows: section 4.2 discusses variable specification, their functional transformations, data sources, and presents key descriptive statistics. The following section (4.3) provides discussions of the main estimation methodologies employed for panel data analysis, their key advantages and disadvantages, the issue of omitted time invariant variables and ways to handle it. Section 4.4 and 4.5 present and interpret the country and industry level empirical findings obtained from the preferred baseline estimation method as well as the alternative estimators. The issue of endogeneity bias is assessed and accounted for in all the specified models following an instrumental variable (IV) approach, using lagged values of the potentially endogenous variables as instruments. Finally, section 4.6 summaries the main findings and concludes.

#### 4.2 Data and variable specification

As elaborated in Chapter 2, international competitiveness is regarded as a complex and ambiguous notion, and this is reflected in the many measurement approaches proposed in the literature. That Chapter provided a comprehensive assessment of its main definitions and proxy measures, accompanied by a review of empirical research; that analysis established the basis for the specification of international competitiveness in the empirical investigation presented in this and the following chapters. In spite of the variety of measures being developed/adopted in the economic literature, there was a distinct tendency among researchers to rely on trade/export based indicators. Hence, given the widely accepted theoretical basis and data availability, international competitiveness in this empirical analysis is initially represented by export market share (*emsh*). This variable is defined as the ratio of each country's exports of goods to the total exports of goods of EU-28. As constructed, it is expected to reflect the degree of competitiveness of each country relative to this set of countries. Data are taken from UNCTAD's database: Goods and services trade openness indicators, annual, 1980-2011. It is important to note that, alternative specification of this measure has also been considered to proxy international competitiveness, i.e. exports of goods of country *i* over the total imports of goods of EU-28.<sup>40</sup> Even though, the latter might be regarded a sensible measure of the export share of a country in a particular market, in this investigation, we are more interested in measuring the competitiveness of a country by comparing its exports with the exports of specific group of countries (e.g. potential competitors). As previously argued, the rationale for using this particular specification of export market share is to be able to capture the degree of importance/competitiveness of a country within the total exports of a region (EU-28). That is to say, if exports of a country increase at a higher rate than the total exports of EU-28, it can be argued that the relative position of that country has improved compared to EU-28, and vice-versa.

In addition to assessing the export market share of these countries, a modified version of Balassa's (1965) revealed comparative advantage index (RCA) has been introduced to capture the degree of international competitiveness at the industry level. Indices are calculated for ten manufacturing industries (grouped), using export data from the OECD's *STAN Bilateral Trade* 

<sup>&</sup>lt;sup>40</sup>For comparison purposes, an alternative regression analysis employing this measure has been conducted in this chapter and the use of the two alternative measures has yielded very similar empirical evidence.

*Database by Industry and End-use Category, edition 2012* (OECD, 2013b). As discussed in Chapter 2, the revealed comparative advantage index (RCA) has been introduced to measure the comparative advantage of a country in a specific industry or product. Despite its widespread use in the literature, it has been subject to various criticisms, i.e. the inability to fully capture the theoretical concept of comparative advantage, as well as its questionable statistical features. The revealed comparative advantage was initially introduced by Balassa (1965) (see equation 4.1) and it has since been modified by numerous scholars with the purpose of overcoming some of its limitations, e.g. inconsistency when compared with alternative comparative advantage measures, asymmetric<sup>41</sup> distribution, and instability across time and countries.

$$RCA_{ij} = (X_{ij} / X_{it}) / (X_{nj} / X_{nt})$$
(4.1)

Where X represents exports, *i* denotes countries, *j* denotes industries *t* represents a set industries and *n* denotes a set of countries. If the value of the index is greater than 1, a given country has a revealed comparative advantage in the export of that specific product or industry. Conversely, if the value is less than 1, there is a lack of a comparative advantage in the export of that specific product or industry. Vollrath (1991) developed a modified specification of the original index, in order to correct for the industry and country double counting and the asymmetry problem, the relative export advantage (RXA). This index, henceforth referred as RXA is defined as the ratio of country *i* exports of industry/product *j* relative to its total exports and to the corresponding exports of EU-28, expressed in logarithmic terms. In contrast to Balassa's RCA index, *t* denotes all products or industries other than *j*; *n* denotes all countries other than *i*. The industry classification used to construct these indices is presented in Table 4.1 below.

Table 4.1 Manufacturing industries according to ISIC rev. 3

| No. |                                                        | ISIC  | Technology intensity |
|-----|--------------------------------------------------------|-------|----------------------|
|     | Manufacturing industries                               | code  |                      |
| 1   | Food products, beverages and tobacco (FBT)             | 15-16 | Low                  |
| 2   | Textiles, textile products, leather and footwear (TLF) | 17-19 | Low                  |
| 3   | Wood and products of wood and cork (PWC)               | 20    | Low                  |

<sup>&</sup>lt;sup>41</sup> The RCA is asymmetric through the origin, i.e. not comparable on both sides of unity. The index ranges from zero to one, if a country does not have a comparative advantage, while it ranges from one to infinity, if a country has a comparative advantage in a specific industry/product.

| 4  | Pulp, paper, paper products, printing and publishing (PPP) | 21-22 | Low                   |
|----|------------------------------------------------------------|-------|-----------------------|
| 5  | Chemical, rubber, plastics and fuel products (CRPF)        | 23-25 | M. low/ M. high/ High |
| 6  | Other non-metallic mineral products (NMM)                  | 26    | M. low                |
| 7  | Basic metals and fabricated metal products (BMF)           | 27-28 | M. low                |
| 8  | Machinery and equipment (ME)                               | 29-33 | M. high/high          |
| 9  | Transport equipment (TE)                                   | 34-35 | M. low/M. high/high   |
| 10 | Manufacturing n.e.c. and recycling (MR)                    | 36-37 | Low                   |

Source: STAN Bilateral Trade Database by Industry and End-use category. Ed. 2012 ISIC Revision 3

Human capital as the primary variable of interest in this investigation is proxied by the education attainment indicators provided by Barro and Lee (2014), and a cognitive skills measure developed by Hanushek and Woessmann (2009). The choice of these measures is derived from the human capital measurement discussion provided in the previous chapter. As previously argued, in the absence of more direct information on the skills and competences of the potential labour force, we have to primarily rely on the attainment of formal education. The formal education based indicators used in this investigation are: the percentage of population aged 15 and over who have attained secondary education, the percentage of population aged 15 and over who have attained tertiary education and the average number of years of schooling for the population aged 15 and over. The first two variables refer not only to the total stock of population who have completed the entire cycle of studies, but also to those who have completed some secondary/tertiary education. That is to say, the first measure reflects the share of population who have completed secondary education as their highest level attained as well as those who have attained part of secondary education, whereas, the share of population who have continued to higher education are reflected in the (total) tertiary education measure. Henceforth, these variables will be referred as the share of population 15 and over who have attained secondary/tertiary education as their highest level.<sup>42</sup> Since these indicators are constructed at 5year intervals, the gaps for the periods in between need to be filled in order to make use of the highest possible number of observations. According to Rizvanolli (2012), interpolation is preferred to multiple imputation since the missing values are more likely to be linked to the existing data values rather than to other variables. By assuming that the education stock changes slowly over time with a possible increasing trend, the author has used linear interpolation based

<sup>&</sup>lt;sup>42</sup> The share of population with no schooling and the share of population who have attained primary education are omitted from the estimations as the total shares would add up to one and the model would suffer from multicollinearity (see Wooldridge (2009) for further explanations).
on the time variable. The same approach has been adopted in several other studies (Chen, 2004; Apergis, 2009; Shirotori et al., 2010, Seck, 2012) and it will be also employed in this empirical assessment.

As already discussed in the previous chapter, in order to overcome some of the drawbacks of focusing entirely on the quantity of education, a proxy for the quality dimension of education has also been introduced to this investigation. To the best of our knowledge, no study so far has assessed the impact of the quality of education on international competitiveness. Given the lack of more direct information on the quality of education, this investigation has been restricted to using students' achievements on internationally comparable tests. Hanushek and Woessmann (2009) proposed a single indicator which is constructed by integrating and standardizing students' test scores for the period 1964–2003. The cognitive skills measure (cskills) is defined as the average test score in mathematics and science, primary through end of secondary school, all years (scaled to the PISA scale divided by 100). According to the authors, the key rationale for averaging the data over a period of 40 years is to try to capture the education quality of the labour force rather than that of students. However, its constant nature seems to rely on the assumption of no or slow changes in the quality of education. To ensure that this assumption holds, students' scores of the main tests included in the calculation of the indicator were assessed and compared. A review of PISA and TIMSS test scores in mathematics and science for the sample of countries covered in this study did not suggest any significant changes in the quality of education over the time period covered. Taking this into account, we decided to make use of the cognitive skills measure beyond its original time span, i.e. until 2010. Note that data on this index are originally averaged until 2003.

Vocational training is another important component of human capital development expected to influence international competitiveness through the productivity mechanism, technology and innovation channels. However, given the data restrictions, this aspect will only be partially assessed in this investigation. Eurostat conducts a survey on continuing vocational training (CVTS) at 5-year intervals and up to now there are only three waves of data available: 1999, 2005, and 2010. Using these datasets, one of the models will be assessing the role of the percentage of employees participating in CVT courses (*emplcvt*) and training enterprises as a

percentage of all enterprises (*trngent*) on the country's export market share. In order to be able to make use of the highest possible number of observations, the same approach as with education attainment data, i.e. linear interpolation to fill the gaps in between was adopted. We are aware of the restrictions that this imposes on the analysis and thus we will be very cautious when making inference about the magnitude and significance of these parameters. Given the theoretical rationale for assessing the role of human capital endowments, this component is expected to exert a significant impact on the international competitiveness of countries under investigation.

A related dimension, of special interest to this assessment, given the highlighted theoretical considerations is the innovation engagement. As argued by many researchers, innovation and technology diffusion are among the major underlying forces of international competitiveness (Wakelin, 1998b, Roper and Love, 2002, European Commission, 2008). In line with this, numerous empirical studies have found a positive correlation between innovation activities and export share, though the causation direction has not been clearly established (Damijan et al., 2008, Cassiman et al., 2010). Three potential innovation measures have been considered for this empirical analysis: research and development expenditure (% GDP), patent grants, and patent applications. The former two have been excluded from the estimations due to the large proportion of missing values. Data on patent applications (*patappr*) are provided by World Bank's World Development Indicators (WDI) database, and refer to the number of patent filings by residents. Consistent with the current empirical evidence, a positive and significant coefficient is expected to be found for this variable.

Subsequently, the current investigation aims to control for other variables that are also likely to explain the export market share/relative export advantage of countries. The choice of control variables is derived from the theoretical framework and literature review presented in the previous two chapters. The foreign direct investment *(FDI)* stock is expected to influence the export performance of host countries through different channels. According to UNCTAD (2002), transnational corporations (TNCs) play an important role in promoting the export share of host countries by providing extra capital, technology and managerial practices, better access to their home markets as well as to other new international markets. Numerous studies have found supporting evidence for the positive and significant impact of inward FDI on the export

performance of different countries (for example: Zhang and Song, 2000, Jensen, 2002, Wang et al., 2007, Kutan and Vukšic, 2007). Taking this into consideration, the potential impact of FDI stock on export market share will be assessed in our own sample of countries. Foreign direct investment (*fdi*) is represented by the inward foreign direct investment stock (% GDP) and it is expected to exert a positive and significant impact. Data used for this variable are taken from UNCTAD.

The level of real GDP per capita (gdpc) is another control variable to be included in the model specification. This indicator is introduced to capture the level of development of countries, while their sizes have been proxied by their total population (*pop*). The values of real GDP per capita are expressed in US Dollars at constant 2005 prices and are derived from the World Bank's World Development Indicators (WDI) database. The population figures come from the Penn World Table 7.1 (Heston et al., 2012). Following the theoretical argumentations behind these relationships, both variables are expected to exert positive effects on export market share/relative export advantage. In accordance with Ricardo's theory of comparative advantage (1817), production cost (e.g. labour cost/unit labour cost) is another potential influential determinant of exporting. Although, the discussion in Chapter 2 revealed that some researchers have used the cost dimension as a measure of competitiveness rather than a determinant, this does not seem to be easily justified as a comprehensive measure. Therefore, given that in this investigation, the degree of international competitiveness is captured by the engagement of countries in international markets, the unit labour cost is likely to have a significant impact. This variable, in our estimations, is proxied by a real unit labour cost index (rulc) and is derived from Eurostat's database. In line with previous research, Amable and Verspagen (1995), Carlin et al. (2001), Laursen and Meliciani (2010) and other empirical studies, labour cost is expected to exert a negative effect on export market share.

The hypothesised importance of the geographical characteristics of a country for its international competitiveness dates back to Adam Smith's "Wealth of Nations", and is has been further supported by the economic geography approach (Krugman, 1991, Krugman and Venables, 1990, Venables and Limão, 2002). Distance is highly likely to influence transportation costs and consequently impact on the international competitiveness of countries. A greater distance to the

exporting market implies higher shipping costs and longer transporting procedures (Radelet And Sachs, 1998, Limao and Venables, 2001, Behar and Venables, 2010). This measure is commonly used in gravity models since data on the bilateral distance between the country of origin and destination are needed. In this analysis, however, given the nature of data the distance from each country's capital city to Brussels will be used, the latter being a proxy for ease of access to the main EU markets. The calculations for this measure are done by CEPII (2014) using the great circle formula and, we expect to find a negative and significant coefficient for the latter. It is important to note that, numerous studies have already found supporting empirical evidence on the negative impact of distance on export performance (e.g. Chor, 2010, Kowalski, 2011, Van der Marel, 2012). Transportation infrastructure and landlocked-ness are additional geographical features that are likely to impact a country's international competitiveness. The extent of rail lines (total route-km) and roads (total network-km) are potential proxies for transport infrastructure but have not been included in the estimations due to lack of adequate data. Landlocked countries are also likely to export less due to higher transportation costs (Limao and Venables, 2001, Clarke et al., 2004, Behar and Venables, 2010). This variable was initially included in the estimations; however, given its low variation, i.e. the majority of countries not being landlocked, it did not seem to make a significant contribution to the analysis. The EU-28 being an important exporting destination for our sample of countries, i.e. around 67 %, on average (1990-2010) (UNCTAD, 2014b) represents another potential reason for not assessing the latter measure.

Since the competitiveness level of transition economies is of primary interest to this investigation, a transition indicator and a transition dummy have been also included in the estimations. The former is defined as an average measure of a set of indicators (large scale privatisation, small scale privatisation, governance and enterprise restructuring, price liberalisation, trade and foreign exchange system, and competition policy) provided by the EBRD (2014b). It represents a country's progress in transition, and it is scaled from 1 to 4.3. Following Hall and Jones (1999) and Eicher and Schreiber (2007), this averaged indicator is normalized to a range from zero to one. Zero denotes the "complete absence of market based economic institutions", whereas one refers to "institutional standard similar to OECD economies" Eicher and Schreiber (2007, p. 4). Note that, since the corresponding data for the

Czech Republic are missing from 2006, due to completion of the transition process, the maximum value, 4.3, which was later normalized to 1.0 has been imputed for the remaining years. A range of governance indicators provided by World Bank – *Control of Corruption, Government Effectiveness, Political Stability and Absence of Violence/Terrorism, Regulatory Quality, Rule of Law, Voice and Accountability* – were initially included in the analysis, but due to the large share of missing values, their potential impact could not be quantified. The transition dummy, on the other hand, represents a dummy variable which equals to 1 if a country has gone through the transition process and 0 otherwise. It is important to note that, although, the transition process has been declared to be completed by the World Bank (2008) for all the Central Eastern European countries analysed in our sample, these are still refered as transition economies in order to differentiate between countries that have gone through the transformation process and those that have not.

The potential link between the level of economic freedom of a country and its export market share and relative export advantage will be also assessed in this investigation. The Heritage Foundation has constructed an economic freedom index based on a set of 10 different factors (including property rights, freedom from corruption, fiscal freedom, government spending, business freedom, labour freedom, and monetary freedom). This is an average measure with equal weights being given to each factor or category. In line with the existing evidence, this indicator is expected to exert a positive impact on international competitiveness.

Another important aspect to be accounted for in this investigation is the phenomenon of labour market mismatch. The initial aim was to introduce a specific measure that captures the degree of mismatch between the knowledge and skills of employees and market needs. This would have allowed us to assess the hypothesis that in the presence of a high degree of skill mismatch the contribution of more educated employees to productivity enhancement and competitiveness would be have been less significant. However, since the degree of skills mismatch is not easily measurable due to the lack of appropriate data, a broader mismatch proxy, i.e., the long term unemployment rate (% of total unemployment) is employed in this investigation. Data for this variable are made available by the World Development Indicators (WDI) - World Bank, and we expect this indicator to exert a negative effect on competitiveness.

Finally, in order to assess the potential impact of the size of the non-tradable sector on the exports share of a country, services, etc., <sup>43</sup> value added as a % of GDP is used, though we are aware that this is not an ideal proxy. This measure represents the value added in wholesale and retail trade, transport, and government, financial, professional, and personal services such as education, health care, and real estate services (% of GDP). It also covers the imputed bank service charges, import duties, and any statistical discrepancies noted by national compilers as well as discrepancies arising from rescaling. However, given the recent changes in the information and communication technology, services are becoming increasingly tradable, though since distinguishing between tradable and non-tradable goods is quite difficult; using the share of services is the only option readily available. Data for this measure are taken from World Bank's World Development Indicators (WDI) database. A higher share of services in a country, holding other factors constant, is likely to reduce its propensity to export; hence, we expect to find a negative coefficient for this variable.

Variable descriptions, labels, the expected signs and data sources are also summarized in Table 4.2 below.<sup>44</sup>

Table 4.2 Variable descriptions

<sup>&</sup>lt;sup>43</sup> This is the World Bank's definition of this indicator and it consists of the above listed categories.

<sup>&</sup>lt;sup>44</sup> A domestic investment measure and a price measure (REER) were initially included in the analysis as control variables but were later excluded since they did not seem to add much value to the explanatory power of models.

| Variable name | Description                                                                                                                                          | Expected sign | <b>Data source</b><br>Own calculations                       |  |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------------------------------------------|--|
| emsh          | Exports of goods of country <i>i</i> over total exports of goods of EU-28 (level)                                                                    | Dep. variable | based on<br>UNCTAD<br>database (2013)                        |  |
| rxa           | The ratio of country <i>i</i> exports of industry <i>j</i> relative to its total exports and to the corresponding exports of EU-28                   | Dep. variable | Own calculations<br>based on OECD<br>STAN database<br>(2012) |  |
| sedut         | The percentage of population aged 15 and over who have attained secondary education                                                                  | +             | Own calculations                                             |  |
| tedut         | The percentage of population aged 15 and over who have attained tertiary education                                                                   | +             | based on Barro<br>and Lee's (2014)                           |  |
| avyrs         | The average number of years of schooling of the population aged 15 and over                                                                          | +             | 2.0)                                                         |  |
| cskills       | Average test score in mathematics and<br>science, primary through end of secondary<br>school, all years (scaled to the PISA scale<br>divided by 100) | +             | Hanushek and<br>Woessmann<br>(2009)                          |  |
| emplcvt       | Percentage of employees (all enterprises) participating in CVT courses                                                                               | +             | Eurostat (2014)                                              |  |
| trngent       | Training enterprises (as % of all enterprises)                                                                                                       | +             | Eurostat (2014)                                              |  |
| patappr       | Number of patent applications by residents                                                                                                           | +             | WDI – World<br>Bank (2014)                                   |  |
| fdi           | Inward foreign direct investment stock (% GDP)                                                                                                       | +             | UNCTAD (2014)                                                |  |
| gdpc          | GDP per capita (constant 2005 US\$)                                                                                                                  | +             | WDI – World<br>Bank (2014)                                   |  |
| рор           | Total population (in thousands)                                                                                                                      | +             | 7.1 (Heston et<br>al., 2012)                                 |  |
| rulc          | Real unit labour cost index (2005=100)                                                                                                               | -             | Eurostat (2014)                                              |  |
| dist          | Distance from capital city to Brussels (in km)                                                                                                       | -             | CEPII (2014)                                                 |  |
| transindN     | Transition indicator (average of a set of single indicators - normalized from 0 to $1$ )                                                             | +             | EBRD (2014)                                                  |  |
| transdummy    | Transition dummy - going through transition (1-Yes, 0-No)                                                                                            | -             | EBRD (2014)                                                  |  |
| ecofree       | Index of Economic Freedom (overall score based on a set of 10 factors)                                                                               | +             | The Heritage<br>Foundation<br>(2014)                         |  |
| unem          | Skills mismatch: Long-term unemployment                                                                                                              | -             | WDI – World 15<br>Bank (2014)                                |  |
|               |                                                                                                                                                      |               |                                                              |  |

|      | (% of total unemployment)                |                            |
|------|------------------------------------------|----------------------------|
| serv | Services, etc., value added (% of GDP) - | WDI – World<br>Bank (2014) |

For the purpose of linearising and normalising the distribution of the variables, the approach of ladder of powers proposed by Tukey (1977) was followed. Its output, in general seems to support the logarithmic transformation of the dependent variable and a number of explanatory variables.<sup>45</sup> For the rest of the variables<sup>46</sup>, no functional transformation is needed or is applicable. The ladder of powers has been computed in Stata by the ladder and gladder commands. The ladder option reports numeric results for several functional transformations, supporting the one with the lowest chi-squared value. Similarly, the gladder command produces nine histograms and it favours the transformation which makes the variable more normally distributed. The results presented in the table and figure below support the logarithmic transformation of the export market share variable. The functional transformations (histograms) of other variables are presented in Figures A4.4.1- A4.5.8, in the appendix section (A4).

| Transformation                    | formula      | chi2(2) | P(chi2) |  |  |  |
|-----------------------------------|--------------|---------|---------|--|--|--|
| cubic                             | emsh^3       |         | 0.000   |  |  |  |
| square                            | emsh^2       |         | 0.000   |  |  |  |
| identity                          | emsh         | •       | 0.000   |  |  |  |
| square root                       | sqrt(emsh)   |         | 0.000   |  |  |  |
| log                               | log(emsh)    | 27.65   | 0.000   |  |  |  |
| 1/(square root)                   | 1/sqrt(emsh) | •       | 0.000   |  |  |  |
| inverse                           | 1/emsh       | •       | 0.000   |  |  |  |
| 1/square                          | 1/(emsh^2)   | •       | 0.000   |  |  |  |
| 1/cubic                           | 1/(emsh^3)   | •       | 0.000   |  |  |  |
| . implies high chi-squared values |              |         |         |  |  |  |

Table 4.3 Export market share (emsh) functional transformation

<sup>&</sup>lt;sup>45</sup> Although there is no functional transformation required for sedut and tedut, a logarithmic transformation has been taken in order to account for potential outlying observations. Furthermore, the use of logged variables seems to capture more closely the relationship(s) we are trying to investigate. <sup>46</sup> Avyrs, cskills, transdummy/transind, unem, serv and dist.



Figure 4.1 Export market share (emsh) functional transformation

The summary statistics for variables expressed in levels show very large standard deviations for *patappr, fdi, gdpc, pop and dist*, implying that data for these variables are spread widely around the mean (see Table A4.3 in Appendix A4). Since we are dealing with countries of different sizes and economic development levels, this level of dispersion is expected. In addition, the means of these variables are larger than their medians, indicating a positively skewed distribution. The logarithmic transformation applied to these variables has made their distribution more symmetrical; thus suggesting that the log based descriptive statistics should be reported rather than their levels (see Table 4.4). The statistics from the table below also show that we are using an unbalanced panel due to missing data for some variables in some years. There is no indication of data missing for a specific reason rather than randomly, therefore this is not expected to influence the reliability of the results.

|            |                        |         |        |       |        | Quanti  | les     |         |
|------------|------------------------|---------|--------|-------|--------|---------|---------|---------|
| Variable   | n                      | Mean    | S.D.   | Min   | .25    | Mdn     | .75     | Max     |
| lnemsh     | 464                    | 0.20    | 1.70   | -3.55 | -1.02  | 0.43    | 1.35    | 3.60    |
| lnrxa      | 4570                   | -0.10   | 0.89   | -5.52 | -0.59  | -0.09   | 0.41    | 3.92    |
| lnsedut    | 464/4640*              | 4.05    | 0.24   | 3.21  | 3.89   | 4.09    | 4.19    | 4.49    |
| lntedut    | 464/4640               | 2.81    | 0.36   | 1.95  | 2.52   | 2.87    | 3.11    | 3.69    |
| avyrs      | 464/4640               | 10.34   | 1.18   | 6.69  | 9.54   | 10.38   | 11.22   | 12.82   |
| Cskills**  | 432/4320               | 4.90    | 0.19   | 4.54  | 4.78   | 4.96    | 5.05    | 5.19    |
| lnpatappr  | 442/4420               | 6.56    | 1.97   | 1.10  | 5.49   | 6.67    | 7.73    | 10.85   |
| lnfdi      | 463/4630               | 3.23    | 1.75   | -9.21 | 2.83   | 3.45    | 3.93    | 5.78    |
| lngdpc     | 464/4640               | 9.83    | 0.83   | 7.76  | 9.19   | 9.99    | 10.48   | 11.38   |
| lnpop      | 464/4640               | 8.94    | 1.38   | 5.93  | 8.23   | 9.01    | 9.71    | 11.32   |
| unem       | 440/4400               | 39.22   | 15.35  | 0.00  | 27.00  | 42.35   | 51.10   | 73.10   |
| lnecofree  | 453/4530               | 4.18    | 0.12   | 3.76  | 4.11   | 4.19    | 4.26    | 4.41    |
| lnrulc     | 431/4310               | 4.62    | 0.04   | 4.52  | 4.60   | 4.61    | 4.64    | 4.86    |
| serv       | 452/4520               | 66.71   | 7.47   | 35.83 | 62.03  | 66.66   | 72.01   | 86.55   |
| dist       | 464/4640               | 1142.02 | 631.97 | 68.44 | 767.16 | 1129.98 | 1601.10 | 2904.98 |
| transdummy | 464/4640               | 0.38    | 0.49   | 0.00  | 0.00   | 0.00    | 1.00    | 1.00    |
| transind   | 153 <sup>†</sup> /1530 | 3.62    | 0.30   | 2.60  | 3.40   | 3.60    | 3.90    | 4.10    |
| emplcvt    | 293 <sup>††</sup>      | 31.95   | 12.86  | 8.00  | 19.20  | 33.00   | 41.00   | 61.00   |
| trngent    | 299                    | 60.92   | 20.43  | 11.00 | 44.00  | 68.00   | 76.00   | 96.00   |

#### Table 4.4 Descriptive statistics

Notes:

(\*) The number of observations for the industry level analysis. Note that the descriptive statistics for the independent variables are the same across the two levels of aggregation.

(\*\*) Data for Croatia and Malta are missing for all years; therefore both countries are excluded from the estimations.

<sup>(†)</sup> The number of observations refers to the sub-sample of transition economies since the transition indicator is applicable only for this group of countries.

<sup>(††)</sup> The number of observations refers to the training sub-analysis which covers the period 1999-2010. The same applies for the *trngent* variable.

The diagnostics presented in the Table 4.5 raise no major concerns regarding the collinearity of explanatory variables, with the exception of GDP per capita, population, transitional dummy and patent applications. Their variance inflation factors (VIFs) are 10 or greater than 10, thus indicating potential problems of multicollinearity. The correlations matrix is another tool that gives insights about the potential collinearity between explanatory variables. Its results indicate quite high degrees of correlation between population and patent application, GDP per capita and transitional indicator, and secondary education attainment and average years of schooling (see

Table A4.3.1 in Appendix A4). The share of population who attained secondary education and average years of schooling are by definition correlated with each other but since these are included in separate models, multicollinearity is not an issue. Dealing with multicollinearity usually involves either increasing the sample size or dropping the potentially problematic variables (Wooldridge, 2009). The former is not always applicable, whereas the latter can lead to omitted variable bias, if relevant variables are excluded. To investigate this further, models with and without the potentially problematic variables were estimated. Even though, some slight changes in the magnitude and significance of some of the estimated coefficients were noticed, the signs remained unchanged. Both, GDP per capita and population are considered of key importance to the model specification and their exclusion would distort the estimated results. Moreover, as Wooldridge (2009) points out, if the degree of correlation between any control variables does not affect, i.e. is not correlated with the variables of interest, the partial effects of the latter can be determined without any difficulties. Hence, taking this into account, the econometric models were estimated with the full set of explanatory variables.

|                                                                      |             | SQRT |           | R-      |          | Cond    |
|----------------------------------------------------------------------|-------------|------|-----------|---------|----------|---------|
| Variable                                                             | VIF         | VIF  | Tolerance | Squared | Eigenval | Index   |
| lnsedut                                                              | 8.07        | 2.84 | 0.1239    | 0.8761  | 5.0035   | 1.0000  |
| lntedut                                                              | 3.70        | 1.92 | 0.2704    | 0.7296  | 2.9259   | 1.3077  |
| avyrs                                                                | 9.19        | 3.03 | 0.1088    | 0.8912  | 2.0887   | 1.5477  |
| cskills                                                              | 2.66        | 1.63 | 0.3765    | 0.6235  | 1.1699   | 2.0680  |
| lnpatappr                                                            | 11.94       | 3.46 | 0.0837    | 0.9163  | 1.0741   | 2.1583  |
| lnfdi                                                                | 1.30        | 1.14 | 0.7683    | 0.2317  | 0.8591   | 2.4134  |
| lngdpc                                                               | 21.28       | 4.61 | 0.0470    | 0.9530  | 0.7325   | 2.6135  |
| lnpop                                                                | 13.37       | 3.66 | 0.0748    | 0.9252  | 0.6245   | 2.8306  |
| unem                                                                 | 2.17        | 1.47 | 0.4603    | 0.5397  | 0.4985   | 3.1682  |
| lnecofree                                                            | 2.86        | 1.69 | 0.3492    | 0.6508  | 0.3252   | 3.9223  |
| lnrulc                                                               | 1.19        | 1.09 | 0.8412    | 0.1588  | 0.2398   | 4.5676  |
| serv                                                                 | 2.72        | 1.65 | 0.3680    | 0.6320  | 0.1995   | 5.0081  |
| dist                                                                 | 3.42        | 1.85 | 0.2928    | 0.7072  | 0.1326   | 6.1424  |
| transdummy                                                           | 22.96       | 4.79 | 0.0436    | 0.9564  | 0.0558   | 9.4660  |
| trngent*                                                             | 7.81        | 2.79 | 0.1280    | 0.8720  | 0.0513   | 9.8752  |
| emplcvt                                                              | 4.17        | 2.04 | 0.2395    | 0.7605  | 0.0190   | 16.2348 |
| Mean VIF                                                             | 7.43        |      |           |         |          |         |
| Condition Number                                                     |             |      |           |         |          | 16.2348 |
| Eigenvalues & Cond Index computed from deviation sscp (no intercept) |             |      |           |         |          |         |
| Det(correla                                                          | ationmatrix | )    |           |         |          | 0.0000  |

Table 4.5 Collinearity diagnostics

Notes: (\*) Training variables, i.e. *trngent* and *emplcvt* are assessed separately therefore multicollinearity is not an issue.

## 4.3 Estimation methodology

Following the data and variable specification discussion presented in section 4.2, the baseline model specification for this empirical analysis is presented below.

$$Y_{i(k)t} = \beta X'_{it} + \alpha_i + \varepsilon_{it},$$
  
*i* = 1, ..., 27, *t* = 1, ..., 16
  
(4.2)

Where  $Y_{i(k)t}$  represents the natural logarithm of export market share/ relative export advantage (RXA),  $X_{it}$  is a vector of explanatory variables,  $\alpha_i$  is the unobserved country specific effect and  $\varepsilon_{it}$  is the error term, *i* denotes countries, *k* denotes industries, and *t* denotes time. All the models in this investigation have been augmented by including a set of time dummies. According to Roodman (2006, p.26), "it is almost always wise to include time dummies in order to remove universal time-related shocks from the errors". Two separate models have been estimated: Model 1 focuses on the impact of the share of population aged 15 and over who have attained secondary and tertiary education, while, Model 2 assesses the effect of the average years of schooling on the export market share/ relative export advantage.

In order to investigate the impact of human capital on international competitiveness, a sample of 27 European countries<sup>47</sup> (EU-27)<sup>48</sup> over the period 1995-2010 will be used. The key focus of this analysis is placed on transition economies.<sup>49</sup> Given the advantages of combining two dimensions of data, time series and cross-section, panel data modelling is widely adopted in the empirical research. The advantages of using panel data analysis are, "more information, more variability, less collinearity among the variables, more degrees of freedom and more efficiency" (Baltagi, 2005, p.5). Moreover, it accounts for heterogeneity across units, and it is better at analyzing the "dynamics of adjustment" (Baltagi, 2005, p.6). The most commonly used methods to estimate panel data are fixed effects (FE) and random effects (RE). One of the key features of the fixed

<sup>&</sup>lt;sup>47</sup> Countries included in our sample are members of the EU, excluding Malta and Croatia (i.e. Austria, Belgium, Bulgaria, Cyprus, Czech Republic, Denmark, Germany, Estonia, Finland, France, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Netherlands, Poland, Portugal, Romania, Slovenia, Slovakia, Spain, Sweden, and United Kingdom) and Norway.

 $<sup>^{48}</sup>$  It is important not to confuse this with EU-28 which represents the reference group of countries in constructing *emsh* and *RXA*.

<sup>&</sup>lt;sup>49</sup> Albania, Croatia, Bosnia and Herzegovina, Kosovo, Macedonia, Montenegro and Serbia are excluded from the investigation due to the lack of available data.

effects estimation is that it allows for correlation between the unobserved effect and explanatory variables in the model. A random effects estimator, on the other hand, is used when the unobserved individual effect is assumed to be uncorrelated with the included explanatory variables (Wooldridge, 2002, Greene, 2002, Baltagi, 2005). Choosing the appropriate estimator does primarily depend on the discussed link between the explanatory variables and unobserved unit effects. If the explanatory variables are correlated with the unobserved effect, the estimates of the RE (GLS<sup>50</sup>) would be inconsistent and biased. As Greene (2002) argues, the assumption of no correlation is hardly justifiable and it usually fails. In the same vein, Wooldridge (2009, p. 450) claims that "in many applications, the whole reason for using panel data is to allow the unobserved effect to be correlated with the explanatory variables". Hausman (1978) has contributed to the aforementioned debate by proposing a specification test that checks if there are systematic differences between the two estimators. A simple interpretation of the results is that the rejection of the null hypothesis suggests that the fixed effects estimator is needed, while a non-rejection favours the use of random effects (Wooldridge, 2002, Baltagi, 2005). This approach was adopted in order to make a decision on choosing the appropriate estimation method for our own empirical analysis. Despite the noted advantages, a main shortcoming of this model is the inability to estimate the coefficients of time-invariant variables. The fixed effects estimator uses a transformation to remove the unobserved specific effect and all the time invariant explanatory variables before estimation (Wooldridge, 2009). Hence, this restricts the investigation given that three of the explanatory variables are constant over time. The cognitive skills measure which is of primary interest to this analysis would be omitted if the standard FE approach is employed. The same applies to the other time invariant explanatory variables, distance and the transitional dummy. To overcome this problem, alternative estimation methods that share similar features with FE but allow for time constant variables have been developed.

Hausman and Taylor (1981) developed an instrumental variable method which is a mixture of fixed effects and random effects. In contrast to the FE and RE's strict assumptions of correlation and no correlation, respectively, this estimator allows for some explanatory variables to be correlated with unobserved specific effects while others not. Variables that are specified as exogenous, both time varying and time invariant, are used as instruments for the endogenous

<sup>&</sup>lt;sup>50</sup> Generalized Least Square

variables. It is important to note that, all the explanatory variables are assumed to be uncorrelated with the error term (Baltagi, 2005, Cameron and Trivedi, 2005). Despite its widespread popularity among researchers, Cameron and Trivedi (2005) and Breusch et al. (2011) argue that identifying the endogeneity or exogeneity of every explanatory variable is not an easy task. Similarly, Plumper and Troeger (2007) claim that this method yields reliable estimates only if the instrumental variables are strongly correlated with the endogenous variables and uncorrelated with the unobserved specific effects and error term. Given the difficulty of specifying these links, the authors introduced an alternative estimation method.

The fixed effects vector decomposition, henceforth referred as FEVD, is a three step procedure that allows for time invariant and rarely changing variables in models estimated with unobserved specific effects. First, a standard fixed effects model is estimated, excluding time invariant variables. In stage two, the unit effects, which is extracted from the regression in the previous stage, is regressed on time invariant and rarely/slowly changing variables. This stage enables the decomposition of unit effects into the unexplained and explained part. The third stage involves a pooled OLS model of time varying, time invariant, rarely changing variables and the unexplained part extracted from step two. The rationale for extending the procedure to the third step, according to the authors, is to correct for the degrees of freedom and hence, adjust the standard errors of the estimated parameters. This procedure can be easily implemented in Stata using the *ado* file provided by the authors. By conducting a series of Monte Carlo simulations, the authors have suggested that their estimator outperforms pooled OLS, random effects and Hausman and Taylor in estimating models with time invariant and/or slowly changing variables. They argue that FEVD has got better finite sample properties and thus, produces more accurate estimates when both time invariant and time varying variables are assumed to be correlated with the unobserved effect. Moreover, they argue that FEVD is more efficient than FE as well, given that its estimates are based on within as well as between variance (Plumper and Troeger, 2007, 2011). Although, it has attracted the attention of many researchers and has been used in many empirical analyses, it has also been criticised by some econometricians. Greene (2011) argues that the new method is the same as the LSDV estimator and that there are no apparent efficiency gains. Moreover, he has strongly criticised step 3 of the procedure by arguing that it produces very small standard errors, and therefore, it should not be carried out. He further suggests that,

subject to the validity of the orthogonality assumption, researchers should only rely on the estimates of step 1 and step 2 (with some additional calculations). If the above outlined condition is not met then the actual estimator, according to Greene (2011), is regarded as inconsistent with a potentially smaller variance compared to its alternative estimation approaches. However, the authors of FEVD claim to have addressed the issue of very small standard errors in their updated Stata *ado* file. According to Breusch et al. (2011), if there is an indication of potential endogeneity, i.e. time invariant variables being correlated with the unobserved effects, the FEVD estimator will be inconsistent. A similar procedure, to the first two steps of FEVD, is the two stage estimator proposed by Hsiao (2003). It assumes no correlation between the time invariant variables and the unobserved fixed effects. However, the consistency of this estimator seems to be subject to the sample size to be investigated. This procedure produces consistent estimates for time invariant variables only when N approaches infinity.

By assuming that there might be some persistence in countries' export market shares, the estimation was further extended by also accounting for the "dynamics of adjustment". As Bond (2002) argues, even when we are not primarily interested in its impact, allowing for dynamics might improve the consistency of the estimates of other coefficients included in the model. A favourable estimation approach that accounts for the past while at the same time allowing for time variant variables is the "system" GMM<sup>51</sup> developed by Arellano and Bover (1995)/Blundell and Bond (1998). A great advantage of estimating GMM models is that it allows for endogenous variables, heteroskedasticity and serial correlation within individuals (Roodman, 2006). "System" GMM, in particular, is more efficient since it uses more information and it performs better for variables that are close to a "random walk" (Bond, 2002, Roodman, 2006). The issue of endogeneity is addressed through the use of internal instruments. However, a main drawback of this estimation approach is the problem of "too many instruments". Although, it is not clearly specified how many instruments are "too many", the *xtabond2*<sup>52</sup> usually gives a warning when it exceeds the number of cross sections (Roodman, 2006). The same author has suggested limiting the number of instruments by restricting the lags or applying the "collapse<sup>53</sup>"</sup> option in xtabond2.

<sup>&</sup>lt;sup>51</sup> Generalized method of moments

<sup>&</sup>lt;sup>52</sup> Xtabond2 is a user written command for STATA that implements both difference and system GMM.

<sup>&</sup>lt;sup>53</sup> "The collapse suboption of gmmstyle() specifies that xtabond2 should create one instrument for each variable and lag distance, rather than one for each time period, variable, and lag distance" (STATA - xtabond2 help).

As predicted, given the small number of cross sections (27) and fairly long time series (16), the problem of "too many instruments" arose in the estimations. Roodman's suggestions were applied to reduce the number of instruments to an "acceptable" figure, however, the specification tests for instrument validity turned out "too good" (p-value = 1.00). The latter implies that a high number of instruments tends to weaken the power of the test itself and its ability to detect the potential invalidity of the instruments (Roodman, 2009). Unless the number of regressors in the model is reduced, the problem seemed to persist. Excluding relevant explanatory variables is not an advisable solution, since this would lead to omitted variable bias. Therefore, given all the above outlined estimation issues, we decided not to proceed further with this particular estimator.

### 4.4 Country level empirical evidence

Following the discussion on the different estimation methodologies presented in the previous section, the empirical results and diagnostic tests from the preferred estimator (s) will be reported in this section. We have started the estimations using the fixed effects (FE) and random effects (RE) and their estimated results are presented in Tables A4.1 (A4.1.1), A4.2 (A4.2.1) in the appendix section (A4). To be able to compare the two estimators and consequently decide on the preferred approach, the Hausman test has been employed. The null hypothesis of no systematic differences between the estimators has been strongly rejected for all the models (p-value =0.000), suggesting that the FE estimator is a more appropriate approach (see Tables A4.1.2 and A4.2.2 or A4.2.2.1, in Appendix A4). Furthermore, given that we are not interested in making any inference outside the sample, i.e. we are already investigating the population of interest, using FE does not represent a drawback in this respect. It is important to note that when comparing these estimators, the default version of Hausman produces a negative chi-square test statistic. This is likely to happen due to different estimates of the error variance being used for the FE and RE. The sigmamore option is recommended to overcome this problem since it specifies that both covariance matrices are based on the estimated disturbance variance from the efficient estimator (Cameron and Trivedi, 2009).

Once the preferred estimation methodology is established, the next step involves checking the key diagnostics of the models. Heteroskedasticity is commonly present in panel data analysis when countries of different sizes and economic development levels are assessed. In the presence

of heteroskedasticity estimates are still consistent but not efficient and their standard errors are biased. This can, however, be easily corrected by using robust standard errors (Baltagi, 2005). Serial correlation and non-normality are also highly likely to be present in panel data estimations. The results of several diagnostic statistics show evidence of groupwise heteroskedasticity, serial correlation and non-normality in the errors in all the econometric models (see Tables A4.1.3 and A4.2.3 or A4.2.3.1, in Appendix A4). To ensure that the statistical inference is valid, the aforementioned specification issues need to be addressed. *xtscc* is a user written command that accounts for heteroskedasticity, serial correlation and cross sectional dependence<sup>54</sup> by producing Driscoll and Kraay (1998) standard errors (Hoechle, 2007). Although, the presence of cross sectional dependence was not tested in this investigation, due to the unbalanced panel, as Hoechle (2007, p.281) argues, "erroneously ignoring possible correlation of regression disturbances over time and between subjects can lead to biased statistical inference".

|           | Model 1    | Model 2    |
|-----------|------------|------------|
| VARIABLES | Inemsh     | Inemsh     |
|           |            |            |
| Insedut   | 0.228**    |            |
|           | (0.109)    |            |
| Intedut   | 0.592***   |            |
|           | (0.117)    |            |
| avyrs     |            | -1.081***  |
|           |            | (0.328)    |
| sqravyrs  |            | 0.0495***  |
|           |            | (0.0148)   |
| Inpatappr | 0.0557**   | 0.0521**   |
|           | (0.0254)   | (0.0218)   |
| Infdi     | -0.00428   | 0.00525**  |
|           | (0.00469)  | (0.00223)  |
| Ingdpc    | 1.224***   | 1.436***   |
|           | (0.122)    | (0.177)    |
| Inpop     | -1.922***  | -1.627***  |
|           | (0.145)    | (0.321)    |
| unem      | 0.00398*** | 0.00278*** |

Table 4.6 Estimated results with Driscoll-Kraay standard errors

|           | (0.00113) | (0.00066) |
|-----------|-----------|-----------|
| Inecofree | -0.0587   | -0.0661   |
|           | (0.162)   | (0.134)   |
| Inrulc    | -0.462    | -0.772**  |
|           | (0.274)   | (0.292)   |
| serv      | -0.00702  | -0.00236  |
|           | (0.006)   | (0.00762) |
| Ν         | 366       | 366       |

Notes: (1) Year dummies are included in the estimations but are not reported in the table

(2) \*\*\*p<0.01, \*\*p<0.05, \*p<0.1; Standard errors in parentheses;

Since within estimators allow for time varying variables only, we had to look for alternative approaches that share similar features with the standard FE model but also produce consistent estimates for the coefficients of time invariant variables.

$$Y_{i(k)t} = \beta X'_{it} + \gamma Z_i' + \alpha_i + \varepsilon_{it}, \qquad (4.3)$$

Where  $Z_i$  is a vector of time invariant variables

The discussion provided in the previous section revealed that Plumper and Troeger's FEVD estimator has been frequently employed in empirical studies. For comparison purposes, both, the three step procedure and the STATA ado file were applied to estimate the models (see Tables A4.1.5 (A4.1.5.1) and A4.2.5 (A4.2.5.1) in the appendix section, A4). The former gives smaller standard errors, hence more significant coefficients, and this has been regarded as the main drawback of this estimator. Although, the authors claim to have accounted for this in their latest ado file, the "adjusted" standard errors, in this analysis turned out very high and there is a big difference between the FEVD and FE standard errors and significance levels for the coefficients of time varying variables as well. An example reflecting these differences is presented in Table A4.9.1 in Appendix A4.

The Hausman and Taylor (HT) is an alternative estimator that handles the issue of omitted time invariant variables. Since it accounts for both within and between variation, it is claimed to be more efficient that within estimation approaches (Hausman and Taylor, 1981). It requires distinguishing between the variables (time varying and time invariant) that are correlated with the unobserved country specific effects and those that are not.

$$Y_{i(k)t} = \beta_1 X'_{1it} + \beta_2 X'_{2it} + \gamma_1 Z_{1i}' + \gamma_2 Z_{2i}' + \alpha_i + \varepsilon_{it}, \qquad (4.4)$$

 $X'_{lit}$  represents the set of variables that are time varying and uncorrelated with  $\alpha_i$ 

 $X'_{2it}$  represents the set of variables that are time varying and correlated with  $\alpha_i$ 

 $Z_{li}$  represents the set of variables that are time invariant and uncorrelated with  $\alpha_i$ 

 $Z_{2i}$  represents the set of variables that are time invariant and correlated with  $\alpha_i$ 

 $\alpha_i$  represents the unobserved country specific effect,  $\varepsilon_{it}$  is the error term, while, *i* denotes countries, and *t* denotes time

Although the distinction is not simple given that the country specific effect component is unobservable, education attainment and cognitive skills measures are perceived to be correlated with the  $\alpha_i$ , whereas other variables are assumed to be uncorrelated. The potential correlation between these variables and  $\alpha_i$  may be related to countries having different attitudes towards education; e.g. higher expenditure on education. Variables treated as exogenous are used as instruments for the potentially endogenous variables (i.e. sedut, tedut, avyrs and ckills). To check the suitability and validity of these instrumental variables, we were guided by the correlation matrix, which shows, generally, acceptable levels of correlation between the instruments and the endogenous variables. The estimated results presented in the table below (Table 4.7) show some differences across the estimators (FEVD and HT), mostly in terms of the levels of significance. While the coefficients of the FEVD model are highly insignificant, the significance of HT estimates corresponds to a large extent to those of FE model (see Tables A4.1.6 & A4.2.6 in the appendix section). Again, the Hausman test has been used to compare the FE with HT estimators and its results seem to favour the use of HT (see Tables A4.1.6.1 & A4.2.6.1 in Appendix A4). Although, the latter model is supposed to be more efficient, the incorrect specification of variables as correlated or uncorrelated with  $\alpha_i$  might lead to inconsistent estimates. Moreover, this approach assumes that the error components are homoskedastic, which is highly unlikely to be true, and there seems to be no available options to correct for it.

|            | Model 1   | Model 2   | Model 1    | Model 2    |
|------------|-----------|-----------|------------|------------|
|            | FEVD      | FEVD      | НТ         | НТ         |
| VARIABLES  | Inemsh    | Inemsh    | Inemsh     | Inemsh     |
|            |           |           |            |            |
| Insedut    | 0.228     |           | 0.292**    |            |
|            | (7.184)   |           | (0.124)    |            |
| Intedut    | 0.592     |           | 0.514***   |            |
|            | (6.514)   |           | (0.125)    |            |
| avyrs      |           | -1.081    |            | -1.058***  |
|            |           | (7.323)   |            | (0.188)    |
| sqravyrs   |           | 0.0495    |            | 0.0483***  |
|            |           | (0.343)   |            | (0.00875)  |
| cskills    | 0.432     | 0.944     | -0.0858    | 0.45       |
|            | (5.456)   | (3.991)   | (5.221)    | (4.661)    |
| Inpatappr  | 0.0557    | 0.0521    | 0.0631**   | 0.0623**   |
|            | (1.45)    | (0.919)   | (0.0274)   | (0.0269)   |
| Infdi      | -0.00428  | 0.00525   | -0.00658   | 0.00205    |
|            | (0.104)   | (0.104)   | (0.00513)  | (0.00499)  |
| Ingdpc     | 1.224     | 1.436     | 1.386***   | 1.551***   |
|            | (10.12)   | (5.551)   | (0.128)    | (0.11)     |
| Inpop      | -1.922    | -1.627    | -1.105***  | -0.901***  |
|            | (3.698)   | (3)       | (0.316)    | (0.283)    |
| unem       | 0.00398   | 0.00278   | 0.00429*** | 0.00301*** |
|            | (0.0209)  | (0.0181)  | (0.00088)  | (0.00092)  |
| Inecofree  | -0.0587   | -0.0661   | -0.00742   | 0.00347    |
|            | (6.537)   | (5.674)   | (0.176)    | (0.172)    |
| Inrulc     | -0.462    | -0.772    | -0.495**   | -0.809***  |
|            | (4.342)   | (4.639)   | (0.194)    | (0.193)    |
| serv       | -0.00702  | -0.00236  | -0.00731*  | -0.00319   |
|            | (0.121)   | (0.104)   | (0.00383)  | (0.00384)  |
| dist       | -0.00117  | -0.00106  | -0.00139   | -0.00125   |
|            | (0.00433) | (0.00284) | (0.00147)  | (0.00131)  |
| transdummy | -0.74     | -0.274    | 0.21       | 0.572      |
|            | (13.4)    | (8.456)   | (1.6)      | (1.43)     |
| Constant   | 5.095     | 7.029     | -1.573     | 1.428      |
|            | (113.9)   | (74.89)   | (26.79)    | (23.94)    |
| Ν          | 366       | 366       | 366        | 366        |

Table 4.7 FEVD and HT estimated results

Notes: (1) Year dummies are included in the estimations but are not reported in the table

(2) \*\*\*p<0.01, \*\*p<0.05, \*p<0.1; Standard errors in parentheses;

Finally, as previously argued, both estimators, FEVD and HT make strong assumptions that if not valid are likely to produce inconsistent estimates. Considering this, the estimated results for the time invariant variables included in these models should be interpreted with considerable caution. The estimated results from the Hsiao (2003) procedure have not been reported in this section given the assumptions of infinite sample properties required for inconsistent estimates, however they can be found in the appendix section (Tables A4.1.7 and A4.2.7).

Another source of estimate inconsistency is the presence of endogenous variables in the model due to potential simultaneity i.e. variables being determined within the system. Education attainment, patent applications and foreign direct investment are suspected to be subject to simultaneous causality in this empirical investigation. A potential feedback effect from exports to education attainment is likely to happen if we assume that the increased demand for more educated workers increases the rate of return from investing in additional schooling and hence raises the proportion of the workforce with higher levels of educational attainment. In a similar manner, a feedback effect may also occur from exports to innovation. As hypothesized in the literature, exporting firms are more likely to engage in innovating activities than their counterparts. Recently, several empirical studies have found supporting evidence for this hypothesis, even though, the latter tends to be limited to specific firms, countries and/or innovation categories (Salomon and Shaver, 2005, Damijan et. al., 2008, Girma et al., 2008, and Van Beveren and Vandenbussche, 2010). FDI is also likely to be influenced by a country's exporting. For instance, a higher degree of openness, commonly measured by export ratios, has been suggested to encourage foreign investment, though the empirical evidence is mixed (Charkrabarti, 2001). Whilst, most of these relationships are highly unlikely to occur simultaneously as it usually takes some time for these feedback effects to take place, it is always better to be cautious about any form of potential endogeneity and use appropriate estimation methods to account for it. Schaffer's (2010) instrumental variable estimation approach (*xtivreg2*) is applied to deal with these potential endogenous variables. Since finding suitable instruments is very difficult, the lagged values (one period) of the potential endogenous variables have been used as internal instruments in this investigation. The endogeneity test implemented by the *xtivreg2* shows mixed evidence with regard to potential endogeneity for the aforementioned variables. Nevertheless, it is never safe to draw any inference by just looking at the test results

since this is rather a theoretical matter and it presence needs to be assessed on a theoretical basis. Moreover, the actual test depends highly on the variables chosen as weak instruments might invalidate the test results. Hence, taking all these issues into account, the estimated results should interpreted with great caution.

|           |           | Model 1   |            |           | Model 2  |            |
|-----------|-----------|-----------|------------|-----------|----------|------------|
|           | EU-27     | ETEs      | N-ETEs     | EU-27     | ETEs     | N-ETEs     |
| VARIABLES | Inemsh    | Inemsh    | Inemsh     | Inemsh    | Inemsh   | Inemsh     |
|           |           |           |            |           |          |            |
| Insedut   | 0.342*    | 1.164***  | 0.0542     |           |          |            |
|           | (0.187)   | (0.43)    | (0.177)    |           |          |            |
| Intedut   | 0.673***  | 0.515*    | 0.290*     |           |          |            |
|           | (0.218)   | (0.283)   | (0.154)    |           |          |            |
| avyrs     |           |           |            | -1.032*** | -0.305   | -0.208     |
|           |           |           |            | (0.295)   | (0.885)  | (0.177)    |
| sqravyrs  |           |           |            | 0.0482*** | 0.0346   | 0.0095     |
|           |           |           |            | (0.0137)  | (0.0353) | (0.00871)  |
| Inpatappr | 0.061     | 0.16      | 0.146**    | 0.0567    | 0.0713   | 0.133**    |
|           | (0.0533)  | (0.105)   | (0.0565)   | (0.0546)  | (0.144)  | (0.0547)   |
| Infdi     | -0.00599  | 0.0553    | 0.0065     | 0.00695   | 0.0395   | 0.0108**   |
|           | (0.00592) | (0.0831)  | (0.0047)   | (0.00503) | (0.073)  | (0.00444)  |
| Ingdpc    | 1.198***  | 0.940***  | 0.0498     | 1.461***  | 0.645**  | 0.0974     |
|           | (0.2)     | (0.284)   | (0.244)    | (0.153)   | (0.252)  | (0.237)    |
| Inpop     | -2.016*** | 5.427***  | -0.115     | -1.771*** | 5.147*   | 0.26       |
|           | (0.572)   | (1.67)    | (0.419)    | (0.503)   | (2.783)  | (0.37)     |
| unem      | 0.00323** | -0.00303  | 0.000703   | 0.00272** | -0.003   | 0.000764   |
|           | (0.0015)  | (0.00205) | (0.00083)  | (0.00124) | (0.002)  | (0.0008)   |
| Inecofree | -0.247    | -0.964*** | -0.139     | -0.168    | -0.958** | -0.21      |
|           | (0.241)   | (0.352)   | (0.225)    | (0.226)   | (0.38)   | (0.23)     |
| Inrulc    | -0.565*   | -0.735*   | -0.556*    | -0.798**  | -0.863** | -0.583**   |
|           | (0.32)    | (0.407)   | (0.289)    | (0.322)   | (0.432)  | (0.281)    |
| serv      | -0.00725  | 0.0167    | -0.0364*** | -0.00362  | 0.0157   | -0.0365*** |
|           | (0.0089)  | (0.0114)  | (0.00508)  | (0.00901) | (0.0113) | (0.005)    |
| transindN |           | 0.274     |            |           | 0.653    |            |
|           |           | (0.47)    |            |           | (0.51)   |            |
| Ν         | 349       | 134       | 215        | 349       | 134      | 215        |

| Table 4.8 IV | estimated | results |
|--------------|-----------|---------|
|--------------|-----------|---------|

Notes: (1) Year dummies are included in the estimations but are not reported in the table

(2) \*\*\*p<0.01, \*\*p<0.05, \*p<0.1; Robust standard errors in parentheses;

The interpretation of the estimated results is based on the instrumental variable (IV) fixed effects estimator for time varying variables and on fixed effects vector decomposition (FEVD) and Hausman and Taylor (HT) for time invariant variables. Although, due to their specific econometric properties, different estimators have been chosen for different purposes, it is important to note that they all seem to provide a consistent story. The overall results suggest that the impact of education attainment on export market share is subject to the level of education investigated, thus, highlighting the importance of distinguishing between different levels. Although, both measures of education attainment seem to have a positive impact on the export market share of EU-27, the share of population who have attained tertiary education exerts a relatively stronger impact. Namely, it is estimated on average holding other factors constant, that an increase of 1 percent in the share of the population aged 15 and over who have attained secondary education increases the export market share by 0.342 percent (significant at 10 %)<sup>55</sup> (see Table 4.8). In economic terms, this effect is not large, as it requires, at least a 10% rise in sedut (from 58.5 to 64.73) to increase export market share by 3.42%, which at the mean value of *emsh* in the sample would be an increase from 4.02 to 4.15. As expected, the effect of tertiary education is stronger in magnitude and in significance, i.e. an increase of 1 percent in the share of population with tertiary education increases the share of exports by 0.673 percent, ceteris paribus. Hence, these findings support the relative importance of tertiary education in explaining export market share compared to secondary education. However, it is important to note that this effect, in economic terms, is not very strong either, as it requires an increase of tedut from 17.64 to 19.40 (10%), to increase export market share by 6.73 %, which expressed in terms of the sample means would be an increase from 4.02 to 4.29.

The relationship between export market share and average years of schooling (Model 2) is of a non-linear nature. For levels up to 10.70 years of schooling, the marginal effect of this variable on export market share is negative, while, for higher levels of schooling, it becomes positive (see Table 4.8). All these results seem to suggest that higher levels of education are relatively more important for international competitiveness, thus supporting the hypothesis that more qualified

<sup>&</sup>lt;sup>55</sup> The effect is calculated as follows:  $\Delta emsh = \beta 1$   $\Delta sedut$ . i.e. if *sedut* increases by 1 percent, we would expect the *emsh* ratio to increase by  $\beta 1$  percent (e.g. 0.342\*1% = 0.342%).

workers are more productive than their counterparts and thus contribute more to the international competitiveness of a country.

A comparison of results between transition economies (ETEs) and non-transition economies (N-ETEs) suggests that the share of population who have attained secondary and tertiary education, respectively, has a positive impact on export market share of ETEs, the impact of the former measure being relatively stronger. It is estimated on average, holding other factors constant, that an increase of 1 percent on the share of population with secondary (tertiary) education increases the export market share of ETEs by 1.164 (0.515) percent. When expressing these effects in terms of our sample means, a rise in *sedut (tedut)* from 68.62 to 75.48 (15.01 to 16.51)<sup>56</sup>, increases the mean value of export market share from 0.73 to 0.81 (0.73 to 0.76). The relative importance of less qualified workforce (which is in abundance in these countries) might be due to the potentially low share of high skill and technologically-intensive goods exported by these countries. As Rosenzweig (1995, 1996) argues, higher levels of education are likely to have a greater impact on productivity when more complex tasks are to be performed, whereas the effect will be relatively smaller for simpler tasks. Since we are not able to make such a distinction given the nature of the data in the current analysis, we will explore this further in our next empirical chapter.

When the N-ETEs are investigated separately, the empirical evidence appears to support the importance of tertiary education in enhancing the international competitiveness of this particular group of countries. An increase of 1 percent on the share of population with tertiary education, ceteris paribus, increases the export market share by 0.290 percent. No supporting evidence is found for the impact of secondary education on the international competitiveness of these countries. Given their stage of development and their potentially higher level of export sophistication, this empirical finding is in accordance with a priori expectations. As Gemmell (1996) and Sianesi and Van Reenan (2003) suggest, tertiary education is more likely to impact growth in more developed countries, whereas, lower levels of education are more important for growth in developing countries. Despite the expected positive sign, is worth noting that the magnitude of the coefficient is not practically large. It requires an increase of 10% in *tedut, i.e.* 

<sup>&</sup>lt;sup>56</sup>A 10 % rise.

from 19.25 to 21.18, to increase export market share by 2.90 %, which at the mean value of *emsh* be an increase from 6.04 to 6.21. Concerning the average year of schooling, when the two samples of countries are investigated separately, the estimated coefficient of this variable (level and squared) becomes statistically insignificant. In the same vein, the quality of education, proxied by a cognitive skills index is found insignificant but with the expected sign (with the exception of Model 1 - HT estimates), see Table 4.7. This result might be attributed to the proxy not being sufficiently strong, its time invariant nature and also the methods (FEVD and HT) used to estimate its coefficient. Hence, taking all these issues into account, we are not able to draw any firm conclusions on the effect of this variable.

From the set of control variables, GDP per capita (*gdpc*), population (*pop*), long term unemployment (*unem*) and unit labour cost (*rulc*) are significant, while the rest are not statistically different from zero, though they have, in general, the expected signs. The empirical results suggest that GDP per capita (*gdpc*) has a positive impact on the export market share of countries for the whole sample. When its impact is investigated separately, the coefficient of this variable remains significant for ETEs only. The coefficient of population (*pop*) is negative for the whole sample, while it turns positive for the ETEs when the two subsamples are investigated separately. Although, country size is generally perceived to exert a positive impact on the share of exports, as bigger countries are expected to produce more output, and thus are more likely to export more, our data does not seem to support this hypothesis. For instance, a summary of shares of exports of countries covered in our sample shows that relatively small countries such as Belgium, have a an export share of 7.25% (on average), whereas, larger countries such as Spain, Norway, Poland and Czech Republic appear to have much smaller shares of exports: 5.2%, 2.4%, 2.1% and 1.6% respectively.

Surprisingly, the coefficient of the mismatch proxy exerts a counterintuitive (positive) impact for the whole sample, while when investigated separately for the two sub-groups of countries, its sign and significance levels appear mixed. Namely, the long term unemployment *(unem)* is negative for ETEs and positive for N-ETEs, however, in both cases it is insignificant. Finally, the estimated results suggest that, in the line with the theory, real unit labour cost *(rulc)* exerts a negative impact on the export market share of total EU-27 when estimated jointly and separately.

The effect of inward FDI stock (*fdi*), patent applications (*patappr*) and the share of services (serv) is generally significant and with expected signs for N-ETEs. The estimated coefficient of economic freedom (ecofree) is negative but insignificant in the total EU-27 and N-ETEs and significant (negative) in the ETEs subsample. Surprisingly, the transition indicator index (transindN) was found to be statistically insignificant thus, suggesting that the progress of countries during transition did not contribute much to their international competitiveness. This might be a reflection of the transition process being completed by the majority of countries included in our sample by 2004. Similarly, the estimated coefficients of the transition dummy (transdummy) and distance (dist) are not statistically different from zero. The sign of the former differs across the two estimators (FEVD and HT), whereas, the latter exerts the expected sign (see Table 4.7). As elaborated in the previous chapter, vocational training is another important component of human capital that is likely to influence the international competitiveness of countries through boosting labour productivity. Given the data restrictions discussed in section 4.2, we were forced to conduct the empirical analysis for a shorter period of time (1999-2010). In addition, due to high collinearity between the percentage of employees participating in CVT courses (emplcvt) and training enterprises as percentage of all enterprises (trngent), the two indicators have been included separately in the regression analysis.

In line with the conventional human capital theory, the estimated results with Driscoll-Kraay standard errors suggest highly significant coefficients for both variables (see Table 4.9). In all models, the percentage of employees participating in CVT courses (*emplcvt*), and training enterprises as percentage of all enterprises (*trngent*) appear to influence positively the international competitiveness of EU countries, proxied by their export market share (see Tables A4.1.4.1/A4.1.4.2 and A4.2.4.1/A4.2.4.2 in Appendix A4). However, no conclusive causation inference can be drawn without checking first for potential endogenity in the hypothesised relationship. Some reverse causation going from export market share to training activities would be expected, since exporting firms might invest more in the latter in order to enhance the productivity of their employees. To correct for potential endogeneity of these variables, the IV approach previously discussed has been followed. The IV estimated coefficient for *emplcvt* remains significance only in Model 2 (at 10% level of significance), whereas, *trngent* is statistically significant at 10 % only in Model 1 (see Table 4.9). No distinction between

transition economies and non-transition economies has been made given the limited sample size. Overall, given the data limitations discussed in the previous sections, these empirical findings should be considered only suggestive. The impact of training activities on international competitiveness will be investigated further with a more disaggregated set of data in Chapter 6.

|           | Model 1   |           | Model 2   |           |  |  |
|-----------|-----------|-----------|-----------|-----------|--|--|
| VARIABLES |           |           |           |           |  |  |
|           | Inemsh    | Inemsh    | Inemsh    | Inemsh    |  |  |
|           |           |           |           |           |  |  |
| Insedut   | 0.00413   | 0.0389    |           |           |  |  |
|           | (0.224)   | (0.246)   |           |           |  |  |
| Intedut   | 0.706***  | 0.729***  |           |           |  |  |
|           | (0.198)   | (0.186)   |           |           |  |  |
| avyrs     |           |           | 0.21      | 0.14      |  |  |
|           |           |           | (0.336)   | (0.345)   |  |  |
| sqravyrs  |           |           | -0.00973  | -0.00581  |  |  |
|           |           |           | (0.016)   | (0.0161)  |  |  |
| emplcvt   | 0.00624   |           | 0.00719*  |           |  |  |
|           | (0.00398) |           | (0.0038)  |           |  |  |
| trngent   |           | 0.00382*  |           | 0.00322   |  |  |
|           |           | (0.00204) |           | (0.00203) |  |  |
| Inpatappr | 0.0649    | 0.0806    | 0.0326    | 0.0689    |  |  |
|           | (0.0634)  | (0.053)   | (0.0659)  | (0.0608)  |  |  |
| Infdi     | -0.0116   | -0.00633  | -0.00213  | 0.00409   |  |  |
|           | (0.00878) | (0.00846) | (0.00764) | (0.00786) |  |  |
| Ingdpc    | 0.872***  | 1.015***  | 1.262***  | 1.482***  |  |  |
|           | -0.218    | -0.231    | (0.241)   | (0.254)   |  |  |
| Inpop     | -2.607*** | -2.710*** | -2.160*** | -2.032*** |  |  |
|           | (0.764)   | (0.618)   | (0.656)   | (0.539)   |  |  |
| unem      | -0.0005   | -0.00044  | 0.000266  | 0.000567  |  |  |
|           | (0.00112) | (0.00118) | (0.00121) | (0.00121) |  |  |
| Inecofree | -0.155    | -0.406    | -0.321    | -0.444    |  |  |
|           | (0.286)   | -0.261    | (0.298)   | (0.292)   |  |  |
| Inrulc    | -0.746*   | -0.972    | -0.699*   | -1.040*   |  |  |
|           | (0.386)   | (0.654)   | (0.381)   | (0.613)   |  |  |
| serv      | -0.00304  | -0.00763  | -0.00385  | -0.0061   |  |  |
|           | (0.0125)  | (0.0153)  | (0.0127)  | (0.0148)  |  |  |
| Ν         | 235       | 245       | 235       | 245       |  |  |

Table 4.9 IV estimated results (training included)

Notes: (1) Year dummies are included in the estimations but are not reported in the table

(2) \*\*\*p<0.01, \*\*p<0.05, \*p<0.1; Robust standard errors in parentheses;

#### Box 4.1 Comparative analysis using two versions of education data

High quality data is an essential requirement for reliable empirical results. Given that measurement errors in data are quite common, particularly when constructing stock estimates, the empirical findings should always be interpreted with great caution. As already discussed in Chapter 3, Barro and Lee have constructed measures of educational attainment based on survey and census data taken from various sources, at 5-year intervals. Since there was a large number of missing observations, they used forward and backward extrapolation to fill in the gaps. Even though they updated their dataset several times since 2010, these changes, in general, were not of significant magnitude, with the exception of the most recent version. In the most recent version of data (2.0) that we used in our previous estimations (see above), the authors updated the estimates of education attainment by using new survey and census data on attainment and also more recent data on enrolment ratios for many countries. To examine the importance of having accurate measures for the variables of interest when conducting empirical analyses, two versions of education attainment data (Versions 1.2 and 2.0)<sup>57</sup> have been used to assess the impact of human capital endowments on the international competitiveness of EU-27. To simplify the comparison, the estimated results from version 1.2 will be henceforth referred as the old version results<sup>58</sup>, while the results from the updated dataset, 2.0, will be referred as the *new version* results.

The interpretation and comparison of the both pairs of results is based on the instrumental variable fixed effects estimator, which accounts for potential endogeneity in the models. The empirical findings suggest that the impact of education attainment on export market share tends to change when different versions of education attainment data are used. The new version results appear to support the relative importance of tertiary education in explaining export market share compared to secondary education for the whole sample of countries. Namely, on average, an increase of 1 percent in the share of population aged 15 and over who have attained tertiary education, holding other factors constant, increases the export market share by 0.673 percent. The share of population who have attained secondary education appears to have a weaker impact, i.e. an increase of 1 percent on *sedut*, ceteris paribus, increases the share of exports, on

<sup>&</sup>lt;sup>57</sup> There is another updated version of data in between the two, 1.3. However, there are no significant difference between this and the previous version, 1.2.

<sup>&</sup>lt;sup>58</sup> A summary of the main results using the old version education dataset can be found in Table A4.9 in appendix A4

average, by 0.342 (10% level of significance). The old version of education attainment estimates, on the other hand, appears to tell a different story. In the latter analysis, it is the share of population who have attained secondary education that appears to be the only education based determinant of the share of exports of EU-27, i.e. an increase of 1 percent on *sedut*, ceteris paribus, increases the export market share by 0.476 percent. In economic terms, the magnitude of the coefficient is not large, as it requires 10% rise in the mean *sedut*, i.e. from 57.03 to 62.73, to increase export market share by 4.76%, which at the mean value of *emsh* in the sample would be an increase from 4.02 to 4.21. The stock of population with tertiary education has a statistically insignificant effect.

The relationship between export market share and average years of schooling is of a non-linear nature in both analyses. However, the turning point differs slightly between the two. The new version results suggest that the marginal effect of this variable is negative up 10.70 years of schooling, and after that point, its effect becomes positive. The turning point for the old version analysis is slightly lower, 10.13, thus suggesting that the positive effect of years of schooling on competitiveness begins at a slightly lower level of education.

The differences in the results tend to persist also when the transition economies (ETEs) and nontransition economies (N-ETEs) are investigated separately. In the old version analysis, both, the stock of population 15 and over who attained secondary and tertiary education appear to have a significant impact on the export market share of ETEs. Specifically, an increase of 1 percent in the share of population who have attained secondary (tertiary) education, ceteris paribus, increases the export market share of ETEs, on average, by 1.937 (0.813) percent. The obtained results appear to also be economically significant, particularly for the share of population who have attained secondary education. Namely, an increase of the mean value of *sedut (tedut)* by 10%, i.e. from 65.90 to 72.49 (13.58 to 14.93), would increase export market share by 19.37% (8.13%), which expressed at the mean value of *emsh* in the sample would be an increase from 0.73 to 0.86 (0.73 to 0.78). No empirical evidence is found for either of the measures when N-ETEs are estimated separately. The new version analysis finds a similar evidence for ETEs, with slightly different levels of significance, i.e. an increase of 1 percent in the share of population who attained secondary (tertiary) education, on average, holding other factors constant, increases the export market share of ETEs by 1.164 (0.515) percent. The economic impact of secondary education appears to be twice as a higher as of tertiary education. In contrast to the old version findings, the coefficient of tertiary education is statistically significant in the N-ETEs subsample (an increase of 1 percent in the share of population who attained tertiary education, ceteris paribus, increases the export market share by 0.290 percent). For further explanations on the economic significance of the new version results see the interpretation section presented above.

Concerning the average years of schooling, when both samples of countries are assessed separately, using the old data set, the average years of schooling appears to have a negative impact up to 8.64 years for N-ETEs, and a positive impact for higher years of schooling. The same measure did not seem exert a significant impact on the export market share of the ETEs subsample. No empirical evidence is found for the role of average years of schooling on international competitiveness of either set of countries, when the new version of the data is used. The inconsistency of these two pairs of findings is clearly a result of the differences in the education attainment estimates used when conducting the empirical analyses.

# 4.5 Industry level empirical evidence

The determinants of the international competitiveness of the EU-27 are further investigated by introducing a new dataset of manufacturing industries. In addition to assessing the export market share of these countries at the country level<sup>59</sup>, a modified version of Balassa's (1965) revealed comparative advantage index (RCA) has been introduced to capture the degree of international competitiveness at the industry level. We are employing the RCA/RXA index to represent the international competitiveness of countries while at the same time assessing its potential determinants. In this empirical analysis, the RXA is used to proxy the international competitiveness, namely, the export performance/specialisation of countries in given industries relative to EU-28. Furthermore, econometric models are established to investigate the potential

<sup>&</sup>lt;sup>59</sup> Note that, in addition to the country level analysis; we have also assessed the export market share at the industry level, but since this was not of primary interest to us, the results are not reported here but can be found summarized in Table A4.8 in Appendix A4. The estimated results obtained from this analysis are consistent with the country level findings, suggesting that a higher level of education attained exerts a stronger impact on export market share of EU-27. That is to say, the impact of the share of population with tertiary education is more significant compared to that of secondary educated counterparts. Average years of schooling seem to reinforce further the hypothesized link between human capital and export market share, when being assessed at the industry level of aggregation.

impact of human capital endowments on the export performance of European countries in a set of ten manufacturing industry groups. These industries contributed 4.64 trillion dollars to the EU-28 real GDP in 2010, accounting for approximately 32% of their GDP. From 1995 to 2010, the share of these industries has increased by approximately 78%.

The statistical limitations of the competitiveness index used here, however, are more worrisome and should be accounted for to ensure the reliability and accuracy of the estimates. One of the main limitations, when used in econometric analysis, is the violation of the normality assumption due to its asymmetric distribution. As previously argued, this can be corrected by either taking the logarithmic of the actual index or using the "Revealed Symmetric Comparative Advantage" (RSCA) developed by Dalum et al. (1998). The index has also been criticised for generating extremely high values for some countries in some specific industries or products. In the analysis undertaken here, the high index values for Albania, Latvia, Cyprus and Malta in some industries are a result of those industries forming a large share of total domestic exports, but a very small component of total EU exports (see tables below). Albania and Malta are excluded from the estimations due to missing data, while the Latvia and Cyprus outliers industries do not seem to influence the estimated results.<sup>60</sup> The problem of inconsistency and instability are more difficult to deal with and hence are more likely to distort the estimated results.

The variables of interest remain the same given the unavailability of education attainment stock data at the industry level and so do the control variables. One might assume that since there are repeated values for the independent variables, this would increase the total number of observations and in turn might influence the significance levels of the parameter estimates. However, our comparative analysis assessing export market share, constructed at both, country and industry levels of aggregation reveals no supporting evidence for this proposition. Both estimation approaches seem to tell a consistent story and no differences in the level of statistical significance of the parameter estimates were found. In contrast to other estimation approaches, fixed effects estimator which represents our main model focuses on within rather than between variation, indicating thus less important implications for the model specification. Besides, fixed

 $<sup>^{60}</sup>$  We estimated the models with and without the outliers and the difference in results were negligible, hence we decided to keep these latter two countries in the analysis.

effects models also account for unobserved individual effects, capturing thus some industrycountry specific factors. It is important to note that in this empirical assessment we are not trying to draw any inference regarding particular sub-industries. While the effect of human capital endowments might be underestimated or overestimated for specific sub-industries, due to unavailability of more disaggregated information, the overall results are not likely to be distorted since those are based on mean values. Classification by technology intensity of these industries will be introduced in the next chapter where the hypothesised impact of human capital endowments on medium and high tech manufactures will be empirically assessed.

In order to estimate the two econometric models, the same methodologies as in the previous section was used: Driscoll-Kraay to correct for heteroskedasticity, serial correlation and cross sectional dependence (see Tables A4.6.1 & A4.7.1 for diagnostic tests – Appendix A4), the Fixed Effects Vector Decomposition (FEVD) and Hausman and Taylor (HT) to estimate the coefficients of time invariant variables, and finally, the country/industry fixed effects instrumental variable (IV) approach to account for potential endogeneity (for further details see Tables A4.6-A4.7.5.2 in the appendix section). While, the link between human capital endowments and export market share remains consistent also at the industry level (see Table A4.8 in Appendix A4), the introduction of the relative export advantage (RXA) as a measure of competitiveness seems to tell a different story. As previously argued, to correct for the asymmetry problem, either the logarithmic transformation of RXA or the RCSA index can be used. Given that both measures yielded similar results, only the outcomes of the logged RXA are reported in the Table 4.10.

The estimated results from Model 1 (Table 4.10) suggest that neither the share of population (15 and over) who have attained secondary education nor the share of population who have attained tertiary education (negative sign) appear to have a significant impact on the relative export advantage of the EU-27. These finding are not in line with a priori expectations and a potential reason for this might be the instability of the index over time and across countries. Another important feature to be noted is that the consistency of the index tends to change when different levels of aggregation are used. The index has been initially introduced by Balassa (1965) to

measure the comparative advantage of countries in specific products but later its use has been extended to more aggregated dimensions of data: industries.

The marginal effect of average years of schooling is positive up to 11.72 year of schooling, and after that point it becomes negative. The estimated coefficients of *sedut* and *tedut* remain statistically insignificant even after distinguishing between the two subsamples of countries (ETEs and N-ETEs), with the exception of secondary education for N-ETEs. The latter appears to have a positive impact on the relative export advantage of these countries at 5% significance level. The average years of schooling, level and squared, are insignificant for both sets of countries, with the exception of the coefficient of the squared term, which is negative and statistically significant at 10 %, in the ETEs subsample.

|           |           | Model 1   |           |           | Model 2   |           |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
|           | EU-27     | ETEs      | N-ETEs    | EU-27     | ETEs      | N-ETEs    |
| VARIABLES | Inrxa     | Inrxa     | Inrxa     | Inrxa     | Inrxa     | Inrxa     |
|           |           |           |           |           |           |           |
| Lnsedut   | 0.0942    | -0.6      | 0.262**   |           |           |           |
|           | (0.108)   | (0.41)    | (0.107)   |           |           |           |
| Lntedut   | -0.122    | -0.113    | 0.00831   |           |           |           |
|           | (0.125)   | (0.287)   | (0.143)   |           |           |           |
| Avyrs     |           |           |           | 0.516***  | 0.901     | 0.0152    |
|           |           |           |           | (0.185)   | (0.635)   | (0.201)   |
| Sqravyrs  |           |           |           | -0.0220** | -0.0448*  | 0.00186   |
|           |           |           |           | (0.00857) | (0.0265)  | (0.00932) |
| Lnpatappr | 0.106***  | -0.0283   | 0.111**   | 0.106***  | 0.11      | 0.137***  |
|           | (0.0339)  | (0.109)   | (0.0454)  | (0.0342)  | (0.112)   | (0.0478)  |
| Lnfdi     | 0.0189*** | 0.0659    | 0.0195*** | 0.0141*** | 0.0801    | 0.0191*** |
|           | (0.00561) | (0.0856)  | (0.00589) | (0.00547) | (0.0814)  | (0.00593) |
| Lngdpc    | -0.0466   | 0.29      | 0.0467    | -0.136    | 0.352     | 0.02      |
|           | (0.135)   | (0.247)   | (0.231)   | (0.109)   | (0.278)   | (0.236)   |
| Lnpop     | -0.616    | -3.026*   | -1.332*** | -0.835**  | -0.169    | -1.712*** |
|           | (0.377)   | (1.595)   | (0.449)   | (0.338)   | (2.036)   | (0.388)   |
| Unem      | -0.00102  | 0.00045   | -0.0005   | -0.00047  | 0.000563  | -0.00054  |
|           | (0.00062) | (0.00136) | (0.00067) | (0.0006)  | (0.00136) | (0.00068) |
| Lnecofree | 0.000329  | 0.263     | 0.104     | 0.00889   | 0.0988    | 0.0896    |
|           | (0.143)   | (0.296)   | (0.169)   | (0.142)   | (0.273)   | (0.168)   |
| Lnrulc    | 0.0255    | 0.24      | -0.0228   | 0.096     | 0.196     | -0.0446   |
|           | (0.176)   | (0.236)   | (0.275)   | (0.173)   | (0.232)   | (0.273)   |
| Serv      | 0.00599*  | -0.00465  | 0.0151*** | 0.00313   | -0.00115  | 0.0132*** |
|           | (0.00345) | (0.00788) | (0.0046)  | (0.00355) | (0.00727) | (0.00465) |
| Transindn |           | -0.385    |           |           | -0.46     |           |
|           |           | (0.424)   |           |           | (0.442)   |           |
| Ν         | 3,450     | 1,330     | 2,120     | 3,450     | 1,330     | 2,120     |

# Table 4.10 IV estimated industry results

Notes: (1) Year dummies are included in the estimations but are not reported in the table

(2) \*\*\*p<0.01, \*\*p<0.05, \*p<0.1; Robust standard errors in parentheses;

|            | Model 1   |           | Model 2   |           |
|------------|-----------|-----------|-----------|-----------|
|            | FEVD      | HT        | FEVD      | HT        |
| VARIABLES  | Inrxa     | Inrxa     | Inrxa     | Inrxa     |
|            |           |           |           |           |
| Cskills    | -0.363    | -0.412    | -0.668    | -0.637    |
|            | (0.572)   | (0.452)   | (0.55)    | (0.564)   |
| Dist       | -0.00014  | 1.49E-05  | -0.0003   | -4.79E-05 |
|            | (0.00048) | (0.00013) | (0.00039) | (0.00016) |
| Transdummy | -0.00874  | 0.399**   | -0.307    | 0.312     |
|            | (1.447)   | (0.16)    | (1.132)   | (0.19)    |
| Ν          | 3,600     | 3,600     | 3,600     | 3,600     |

Notes: (1) Education attainment variables, controls and year dummies are included in the estimations but are not reported in the table

(2) \*\*\*p<0.01, \*\*p<0.05, \*p<0.1; Standard errors in parentheses;

From the set of other explanatory variables, patent applications (*patappr*), the share of inward FDI (*fdi*) are statistically significant in both models, while the share of services (*serv*) and total population (*pop*) appear to be significant (but with counterintuitive signs) in Model 1 and 2, respectively. The importance of these particular determinants appears to be mainly influenced by the domination of non-ETE countries in the sample. When the two sets of countries are estimated separately, their estimated coefficients remain generally significant only in the N-ETEs subsample. The cognitive skills index which has been introduced to the analysis to capture the quality of education turned out to be statistically insignificant. The insignificance of the quality dimension of education might possibly be due to the lack of a more appropriate measure and estimation issues related to the actual index. The other two time invariant variables – *dist* and *transdummy* – are also insignificant with the exception of the latter in Model 1 (HT). For further details see Table 4.11 presented above.

## **4.6 Conclusions**

This empirical chapter has made use of longitudinal data to investigate the impact of human capital on international competitiveness of EU-27, with particular focus on transition economies, for the period 1995-2010. When export market share is used to measure international

competitiveness, in line with the new endogenous growth theories, the empirical findings suggest that human capital endowments exert a significant effect on international competitiveness of countries under investigation. In order to check the robustness of the results, various estimation methods have been employed, and the issue of potential endogeneity has been accounted for by following an instrumental variable approach.

The effects of secondary, tertiary education and average years of schooling have been robust in all models for the whole sample of countries. However, when the two sets of countries, ETEs and N-ETEs are estimated separately, the significance of education attainment levels tends to differ across them. The level of secondary education appears to exert a stronger impact in the ETEs subsample, while the share of population who have attained tertiary education seems to be the only education based determinant of the export share of N-ETEs. These empirical findings are in line with a priori expectations, considering the stage of development and the tendency of the latter group of countries to export more skill and technology intensive goods. The quality of education proxied by an averaged index of students' test scores in mathematics and science was not found to have a significant impact on international competitiveness. This counterintuitive result may be attributed to *cskills* not being a very strong proxy of the quality of education and estimation issues related to the index per se.

The hypothesised positive impact of vocational training on international competitiveness was initially supported, however after accounting for potential endogeneity, the coefficients of the two measures assessed lost some degree of significance. However, given the data restrictions, the latter results should be considered as only suggestive and no conclusive inference can be drawn in this regard. A more comprehensive analysis regarding the relationship between the training dimension of human capital and international competitiveness, at a firm level, will be carried out in Chapter 6. Overall, the obtained findings, when using export market share as a dependent variable, seem to suggest that investment in education as a key source of human capital development can have important effects on boosting the international competitiveness of European countries. However, when the relative export advantage index (RXA) is used to capture the degree of international competitiveness of our sample of countries, the empirical evidence fails to support its underlying hypothesised link with human capital endowments. It has
been already argued that the reliability of the latter empirical findings might be subject to the reliability of the index per se, i.e. its various acknowledged statistical limitations.

To highlight the importance of having accurate measures for the variables of interest, a comparative analysis using two versions of education data has also been conducted. The estimated results using the most recent version of education data appear to tell a different story compared to the ones produced using an older version of the dataset, highlighting the importance of being particularly cautious when interpreting estimation results. To assess the hypothesised positive impact of human capital endowments on international competitiveness, with particular focus on technology intensive exports, a cross industry-country panel analysis for the period 1995-2010 will be conducted in Chapter 5.

# **CHAPTER 5**

## HUMAN CAPITAL AND TECHNOLOGY INTENSIVE EXPORTS: EMPIRICAL EVIDENCE

### Contents

| 5.1. Introduction                                       | 183 |
|---------------------------------------------------------|-----|
| 5.2 Data and variable specification                     | 184 |
| 5.3 Model specification and estimation methodology      | 201 |
| 5.4 Empirical evidence                                  | 204 |
| 5.4.1 Export market share and relative export advantage | 205 |
| 5.4.2 Export sophistication                             | 211 |
| 5.5 Conclusion                                          | 214 |

#### **5.1. Introduction**

The empirical assessment conducted in Chapter 4 indicated that the share of population who have attained secondary education exerts a positive and significant impact on the share of exports of the EU-27<sup>61</sup> and so does the share of population with tertiary education. However, when differentiating between non-transition (N-ETEs) and transition economies (ETEs), the impact of tertiary education turned out to be stronger on the export share of the former set of countries, with the share of population who attained secondary education having a larger effect on the share of exports of ETEs. The different stages of economic development of these countries and their distinct export structures were highlighted as potential reasons for these latter differences. That is to say, there is a higher tendency among developed countries to export more sophisticated, technology-intensive goods, with less advanced economies being more involved in exporting less skill and technology intensive goods. In line with theoretical underpinnings, a higher level of education attained is more likely to enhance productivity of workers when more advanced activities are to be performed. This hypothesis is tested empirically in this chapter using OECD and UNCTAD medium and high tech export data based on ISIC and SITC revision 3 classifications. In addition to proxying international competitiveness by the share of medium and high tech exports, two alternative measures, i.e. export specialization (RXA) and export sophistication (EXPY) are introduced into the empirical analysis. Human capital endowments are captured by the share of population who have attained secondary and tertiary education, the average years of schooling, and a measure of the quality of education. To assess the relative importance of different levels of education on the medium and high technology intensive exports of EU-27, for the period 1995-2010, a range of estimation techniques are employed. The remainder of this chapter is organized as follows: section 5.2 discusses the specification of the dependent variables, their data sources and descriptive statistics. Furthermore, it examines the characteristics and evolution of EU-27's export share, export specialization and sophistication in medium and high technology intensive industries over the period 1995-2010. Section 5.3 provides a brief discussion on the model specification and estimation methodologies. The following section (5.4) reports and interprets the estimated findings extracted from the various empirical assessments conducted in this chapter. In order to address the potential endogeneity in

<sup>&</sup>lt;sup>61</sup> Austria, Belgium, Bulgaria, Cyprus, Czech Republic, Denmark, Germany, Estonia, Finland, France, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Netherlands, Norway, Poland, Portugal, Romania, Slovenia, Slovakia, Spain, Sweden, and the United Kingdom.

the estimations, a fixed effects IV estimation approach was employed, instrumenting the endogenous variables by their lagged values. The last section (5.5) summarizes the main empirical findings and concludes.

#### 5.2 Data and variable specification

As discussed in Chapter 2, several approaches to measuring international competitiveness have been proposed in the literature. Among the wide range of indicators, trade/export based measures appear to have received particular emphasis given their well-established theoretical basis and data availability. In order to assess the relative competitiveness of 27 EU countries in exporting medium and high technology intensive manufactures, three distinct measures are adopted in this empirical assessment: export market share, relative export advantage and export sophistication index.

**Export market share (emshind)** is defined as the share of a country's exports in medium and high tech industries in the exports of same industries in EU-28 measured as percentages, for the period 1995-2010. As constructed, it is expected to reflect the degree of competitiveness of each country relative to this particular set of countries in medium and high tech manufacturing exports. Data used to construct this measure are taken from the *OECD STAN Bilateral Trade Database by Industry and End-use category, edition 2012*, based on 2 digit level, ISIC revision 3 (OECD, 2013b).

Figures below present the trend over the period 1995-2010 for export market share in mediumhigh and high tech manufactures for transition and non-transition European economies. There seem to be large disparity of shares between these two sets of countries, with the average export market share being 0.63 for ETEs and 6.31 for N-ETEs. Based on their relative performance, transition economies can be re-grouped in three distinct categories: low share (Bulgaria, Croatia, Estonia, Latvia, and Lithuania), medium share (Romania, Slovak Republic and Slovenia) and high share (Czech Republic, Hungary, and Poland). The current classification is determined as follows: the low category refers to countries with shares of medium-high and high technology manufactures of less than 0.2%, medium implies shares from 0.2% to 0.8%, whereas, the countries with shares greater than 0.8% are classified as high share performers. Averaged export market shares for 11 transition countries are presented in Figure 5.1. Figure 5.1 Export market share of European transition economies in medium-high and high tech industries, percentages (1995-2010)



Source: Own calculations based on STAN Bilateral Trade Database Ed. 2012 ISIC Revision 3

Figure 5.2 presented below displays the export market share of N-ETEs. Countries with lowest market shares, on average, are Cyprus, Greece, Luxembourg, Malta, Norway and Portugal). Austria, Denmark, Finland, Ireland, Spain and Sweden appear to rank higher in terms of their averaged export market share. Germany is clearly the best performer, followed by France, UK, Italy, Netherlands, and Belgium. In order to check whether the actual figures are driven by the size of the country and its economy, a relative export index is computed and presented below.



Figure 5.2 Export market share of non- transition economies/EU-18 in medium-high and high tech industries, percentages (1995-2010)

Source: Own calculations based on STAN Bilateral Trade Database Ed. 2012 ISIC Revision 3

The relative export index (RXA) represents the relative export advantage of country *i* in industry *k*. It is defined as the ratio of a country's exports of industry *k* relative to its total exports and to the corresponding exports of EU-28. A more detailed explanation for this measure has been provided in Chapters 2 and 4. Data used to construct this index are taken from the OECD's *STAN Bilateral Trade Database by Industry and End-use category, edition 2012*, based on the ISIC<sup>62</sup> revision 3 (OECD, 2013b). The OECD has classified the manufacturing industries into four groups of technological intensity: *low, medium-low, medium-high and high tech*. This classification follows Hatzichronoglou's (1997) approach and it is based on R&D intensity indicators: *R&D expenditures divided by value added, R&D expenditures divided by production and R&D expenditures plus technology embodied in intermediate and capital goods divided by production (OECD Science, Technology and Industry Scoreboard 2003, p. 146). While industries ranked in Table 5.1 as 1, 2, 3, 4, 6, 7 and 10 (i.e. Food products, beverages and* 

<sup>&</sup>lt;sup>62</sup> "The International Standard Industrial Classification of All Economic Activities (ISIC) is the international reference classification of productive activities. Its main purpose is to provide a set of activity categories that can be utilized for the collection and reporting of statistics according to such activities". United Nations (2008, p.iii).

tobacco, Textiles, textile products, leather and footwear, Wood and products of wood and cork, Pulp, paper, paper products, printing and publishing, Other non-metallic mineral products, Basic metals and fabricated metal products and Manufacturing n.e.c. and recycling) are classified as low and medium-low tech, the technology intensity of Chemical, rubber, plastics and fuel products, Machinery and equipment, and Transport equipment (i.e. industries 5, 8, 9) is mixed. Namely, the majority of manufactures pertaining to industry 5 are medium-low tech (e.g. 23, 25) with the exception of Chemicals excluding Pharmaceuticals (i.e. ISIC 24 excluding 2423) which is medium-high tech.<sup>63</sup> Industry 8 is a mixture of medium-high and high tech manufactures, with the share of the latter being relatively higher. Industry 9, on the other hand, covers a mixture of medium-low, medium-high and high tech manufactures. Motor Vehicles, Trailers and Semi-Trailers (i.e. Industry 34) are solely medium-high, whereas, industry 35 covers medium-low, medium-high and high tech manufactures. The share of the medium-high products is relatively higher than the other two.

| No. | Manufacturing industries                             | Abb. | ISIC  | Technology       |
|-----|------------------------------------------------------|------|-------|------------------|
|     |                                                      |      | code  | intensity        |
| 1   | Food products, beverages and tobacco                 | FBT  | 15-16 | Low              |
| 2   | Textiles, textile products, leather and footwear     | TLF  | 17-19 | Low              |
| 3   | Wood and products of wood and cork                   | PWC  | 20    | Low              |
| 4   | Pulp, paper, paper products, printing and publishing | PPP  | 21-22 | Low              |
| 5   |                                                      | CRPF |       | M. low/ M. high/ |
|     | Chemical, rubber, plastics and fuel products         |      | 23-25 | high             |
| 6   | Other non-metallic mineral products                  | NMM  | 26    | M. low           |
| 7   | Basic metals and fabricated metal products           | BMF  | 27-28 | M. low           |
| 8   | Machinery and equipment                              | ME   | 29-33 | M. high/high     |
| 9   |                                                      | TE   |       | M. low/M.        |
|     | Transport equipment                                  |      | 34-35 | high/high        |
| 10  | Manufacturing n.e.c. and recycling                   | MR   | 36-37 | Low              |

Table 5.1 Manufacturing industries according to ISIC rev. 3

Source: STAN Bilateral Trade Database by Industry and End-use category. Ed. 2012 ISIC Revision 3

A more disaggregated classification with special focus on medium-high and high tech manufacturing industries is presented in Table 5.2. Railroad and Transport Equipment, n.e.c (RTE), Motor Vehicles, Trailers and Semi-Trailers (MVTST), Electrical Machinery and Apparatus, n.e.c. (EMA), Machinery and Equipment, n.e.c (ME), and Chemicals excluding

<sup>&</sup>lt;sup>63</sup> The manufacture coded 2423 is high tech.

Pharmaceuticals (ChePh) represent medium-high tech manufactures, whereas, high tech refers to the following categories: Pharmaceuticals (Ph), Office, Accounting and Computing Machinery (OACM), Radio, Television and Communication Equipment (RTCE), Medical, Precision and Optical Instruments (MPOI), and Aircraft and Spacecraft (AS).

| 6 6 6                                                | U                  |                |
|------------------------------------------------------|--------------------|----------------|
| Medium-high and high tech manufactures               | ISIC code          | Tech intensity |
| Chemicals excluding Pharmaceuticals (ChePh)          | 24, excluding 2423 | Medium-high    |
| Pharmaceuticals (Ph)                                 | 2423               | High           |
| Machinery and Equipment, n.e.c (ME)                  | 29                 | Medium-high    |
| Office, Accounting and Computing Machinery (OACM)    | 30                 | High           |
| Electrical Machinery and Apparatus, n.e.c. (EMA)     | 31                 | Medium-high    |
| Radio, Television and Communication Equipment (RTCE) | 32                 | High           |
| Medical, Precision and Optical Instruments (MPOI)    | 33                 | High           |
| Motor Vehicles, Trailers and Semi-Trailers (MVTST)   | 34                 | Medium-high    |
| Aircraft and Spacecraft (AS)                         | 353                | High           |
| Railroad and Transport Equipment, n.e.c (RTE)        | 352+359            | Medium-high    |
|                                                      |                    |                |

Table 5.2 Medium-high and high tech manufacturing industries according to ISIC rev. 3

Source: STAN Bilateral Trade Database by Industry and End-use category. Ed. 2012 ISIC Revision 3

The pattern of export specialization of ETEs and N-ETEs economies in ten different manufacturing industry groups is displayed in the tables below. Their relative export advantage indices (RXAs) are reported in separate Tables, 5.3 and 5.4. A greater value than 1 implies that a given country has a relative export advantage in exporting this specific manufacture and is indicated by a bold font in the table below. The export specialization of these countries in specific medium-high and high tech industries can be found in Tables A5.1 and A5.1.1 in Appendix A5.

|     | (1))3    | 2010)               |         |         |        |         |         |        |
|-----|----------|---------------------|---------|---------|--------|---------|---------|--------|
| No. | Industry | Tech intensity      | Austria | Belgium | Cyprus | Denmark | Finland | France |
| 1   | FBT      | Low                 | 0.70    | 1.15    | 6.30   | 3.69    | 0.26    | 1.44   |
| 2   | TLF      | Low                 | 0.89    | 1.06    | 1.15   | 1.17    | 0.24    | 0.83   |
| 3   | PWC      | Low                 | 3.75    | 0.80    | 0.08   | 1.38    | 5.43    | 0.54   |
| 4   | PPP      | Low                 | 1.91    | 0.69    | 0.51   | 0.62    | 7.32    | 0.72   |
| 5   | CRPF     | M. low/M. high/high | 0.57    | 2.10    | 1.27   | 0.85    | 0.52    | 1.13   |
| 6   | NMM      | M. low              | 1.20    | 0.98    | 0.74   | 0.93    | 0.65    | 0.88   |
| 7   | BMF      | M. low              | 1.61    | 1.14    | 0.30   | 0.66    | 1.37    | 0.90   |
| 8   | ME       | M. high/high        | 0.94    | 0.43    | 0.55   | 1.09    | 1.47    | 0.77   |

Table 5.3 Relative export advantage (RXA) of non-transition economies/EU-18, by industry (1995-2010)

| 9   | TE       | M. low/M. high/high | 0.93       | 0.83   | 0.66     | 0.25  | 0.35      | 1.41  |
|-----|----------|---------------------|------------|--------|----------|-------|-----------|-------|
| 10  | MR       | Low                 | 1.87       | 1.57   | 0.70     | 1.63  | 0.28      | 0.61  |
|     |          |                     |            |        |          |       |           |       |
| No. | Industry | Tech intensity      | Germany    | Greece | Ireland  | Italy | Luxembour | Malta |
|     |          |                     |            |        |          |       | g         |       |
| 1   | FBT      | Low                 | 0.51       | 2.81   | 1.50     | 0.76  | 0.82      | 0.54  |
| 2   | TLF      | Low                 | 0.53       | 3.77   | 0.16     | 3.32  | 0.92      | 1.36  |
| 3   | PWC      | Low                 | 0.55       | 0.44   | 0.31     | 0.46  | 1.49      | 0.02  |
| 4   | PPP      | Low                 | 0.84       | 0.52   | 1.14     | 0.58  | 1.32      | 1.00  |
| 5   | CRPF     | M. low/M. high/high | 0.81       | 1.22   | 3.11     | 0.63  | 0.83      | 0.56  |
| 6   | NMM      | M. low              | 0.74       | 1.98   | 0.27     | 2.10  | 2.08      | 0.13  |
| 7   | BMF      | M. low              | 0.99       | 1.85   | 0.15     | 1.14  | 5.03      | 0.13  |
| 8   | ME       | M. high/high        | 1.29       | 0.31   | 1.51     | 1.08  | 0.63      | 4.08  |
| 9   | TE       | M. low/M. high/high | 1.71       | 0.19   | 0.06     | 0.58  | 0.34      | 0.16  |
| 10  | MR       | Low                 | 0.65       | 0.39   | 0.21     | 2.32  | 0.45      | 1.38  |
|     |          |                     |            |        |          |       |           |       |
| No. | Industry | Tech intensity      | Netherland | Norway | Portugal | Spain | Sweden    | UK    |
|     |          |                     | S          |        |          |       |           |       |
| 1   | FBT      | Low                 | 2.37       | 1.73   | 1.01     | 1.40  | 0.36      | 0.77  |
| 2   | TLF      | Low                 | 0.58       | 0.18   | 4.78     | 1.20  | 0.30      | 0.58  |
| 3   | PWC      | Low                 | 0.29       | 1.30   | 4.40     | 0.72  | 3.87      | 0.16  |
| 4   | PPP      | Low                 | 0.85       | 1.15   | 1.36     | 0.82  | 3.50      | 0.87  |
| 5   | CRPF     | M. low/M. high/high | 1.60       | 1.11   | 0.52     | 0.83  | 0.73      | 1.17  |
| 6   | NMM      | M. low              | 0.42       | 0.44   | 2.37     | 2.03  | 0.49      | 0.61  |
| 7   | BMF      | M. low              | 0.70       | 3.16   | 0.69     | 1.09  | 1.28      | 0.77  |
| 8   | ME       | M. high/high        | 1.23       | 0.67   | 0.57     | 0.48  | 1.25      | 1.23  |
| 9   | TE       | M. low/M. high/high | 0.32       | 0.55   | 0.86     | 1.99  | 0.88      | 1.10  |
| 10  | MR       | Low                 | 0.45       | 0.60   | 1.01     | 0.70  | 0.75      | 0.97  |

Source: Own calculations based on STAN Bilateral Trade Database Ed. 2012 ISIC Revision 3 Note: RXA>1 indicates a relative export advantage in industry *j* 

The table above suggests that for Austria, Greece, Luxembourg and Portugal, the relative export advantage is revealed to be mainly in low and medium-low tech industries. Belgium's relative export advantage is spread across different technology intense industries, i.e. low, medium-low and medium-high, and high, and so is the comparative advantage of Cyprus, Denmark, Finland, France, Ireland, Italy, Malta, Netherlands, Norway, Spain and Sweden. Finally, as expected, Germany and the UK hold relative export advantage in medium-high and high technology intensive industries mainly. Note that the pattern of relative export advantage has changed significantly over time, with some of these countries shifting from low tech to more technology intensive industries. Namely, Austria has gained comparative advantage on numerous mediumhigh tech manufactures (Machinery and Equipment, Electrical Machinery and Apparatus, Motor Vehicles, Trailers and Semi-Trailers, Railroad and Transport Equipment). Similarly, Cyprus has improved its relative position in several medium-high and high tech products (e.g. Pharmaceuticals, Radio, Television and Communication Equipment, Medical, Precision and Optical Instruments). Denmark and Finland have also lost their relative advantage on several low tech industries, while they improved their comparative position in a number of medium-high and high tech manufactures. On the other hand, France, Greece, Ireland, Italy, Luxembourg, Malta, Norway, Portugal, and Sweden have lost some degree of their relative comparative advantage in many manufacturing industries.

Given that our main interest lies in medium-high and high technology rather than low and medium-low industries, the figures below present the average relative export advantage of N-ETEs (EU-18) in the former two categories. It is important to note that the RXA indices are initially calculated for each industry and then are averaged over all medium-high and high tech industries, respectively. The export advantage of each industry within the medium-high and high tech groupings can be found in Tables A5.1 and A5.1.1 in Appendix A5.



Figure 5.3 RXAs of non-transition economies/EU-18 in medium-high and high tech industries (1995-2010)

Source: Own calculations based on STAN Bilateral Trade Database Ed. 2012 ISIC Revision 3

The change in the relative export advantage of N-ETEs from 1995 to 2010 is brought out in Figure 5.4. Some of the industries are excluded from the figure due to extremely high values, e.g. Belgium, Cyprus, Greece, Ireland and Malta. The actual figure shows that many countries have witnessed a significant growth rate in medium-high and high tech exports (including Belgium an outlier), e.g. Austria, Greece, Malta, Norway, Cyprus, Greece, France and Netherlands, respectively. On the other hand, a decreasing trend is evident in several other countries, including some high performers, e.g. UK, Spain, Germany and France.



Figure 5.4 The percentage change in the RXA of non-transition economies (1995-2010)

Source: Own calculations based on STAN Bilateral Trade Database Ed. 2012 ISIC Revision 3

On the other hand, the trend in the relative export advantage of ETEs is displayed in tables and figures below. The results summarized in Table 5.4 indicate that, Albania, Bulgaria, Croatia, Estonia, Latvia, Lithuania, Poland, Romania, Slovak Republic and Slovenia, on average, hold relative export advantage mainly in low and medium-low tech industries. Lithuania and Croatia hold relative advantage in some medium-high tech products as well (e.g. Railroad and Transport equipment and Electrical Machinery and Apparatus, respectively), whereas the Slovak Republic exerts a relative advantage in several medium-high and high tech products: Electrical Machinery and Apparatus, Radio, Television and Communication Equipment, Motor Vehicles, Trailers and Semi-Trailers, Railroad and Transport Equipment. The relative export advantage of Czech

Republic is mixed. The latter appears to have an advantageous position in numerous manufacturing industries, i.e. low tech, medium-low and medium-high and high tech. Hungary exerts an advantageous position in two low tech industries and a number of medium-high and high tech manufactures (e.g. Office, Accounting and Computing Machinery, Electrical Machinery and Apparatus, Motor Vehicles, Trailers and Semi-Trailers, Railroad and Transport Equipment).

| No. | Industry | Tech intensity | Albania | Bulgaria  | Croatia | Czech<br>Republic | Estonia            | Hungary  |
|-----|----------|----------------|---------|-----------|---------|-------------------|--------------------|----------|
| 1   | FBT      | Low            | 0.85    | 1.25      | 1.35    | 0.46              | 1.40               | 0.98     |
| 2   | TLF      | Low            | 33.60   | 4.39      | 2.81    | 0.98              | 2.19               | 1.08     |
| 3   | PWC      | Low            | 1.85    | 1.57      | 4.33    | 1.74              | 9.38               | 0.97     |
| 4   | PPP      | Low            | 0.55    | 0.37      | 0.72    | 0.91              | 0.74               | 0.44     |
| 5   |          | M. low/M.      |         |           |         |                   |                    |          |
|     | CRPF     | high/high      | 0.12    | 1.16      | 1.09    | 0.54              | 0.74               | 0.56     |
| 6   | NMM      | M. low         | 0.81    | 1.50      | 2.23    | 2.40              | 1.10               | 0.87     |
| 7   | BMF      | M. low         | 1.31    | 2.97      | 0.70    | 1.62              | 1.00               | 0.69     |
| 8   | ME       | M. high/high   | 0.11    | 0.40      | 0.49    | 1.23              | 0.86               | 1.83     |
| 9   |          | M. low/M.      |         |           |         |                   |                    |          |
|     | TE       | high/high      | 0.02    | 0.12      | 0.82    | 1.05              | 0.38               | 0.99     |
| 10  | MR       | Low            | 0.87    | 0.71      | 1.27    | 1.36              | 1.71               | 1.16     |
|     |          |                |         |           |         |                   |                    |          |
| No. | Industry | Tech intensity | Latvia  | Lithuania | Poland  | Romania           | Slovak<br>Republic | Slovenia |
| 1   | FBT      | Low            | 1.69    | 1.83      | 1.24    | 0.29              | 0.41               | 0.42     |
| 2   | TLF      | Low            | 2.30    | 2.75      | 1.46    | 6.07              | 1.11               | 1.28     |
| 3   | PWC      | Low            | 32.26   | 4.36      | 3.13    | 3.95              | 1.74               | 2.90     |
| 4   | PPP      | Low            | 0.66    | 0.46      | 0.94    | 0.20              | 1.13               | 1.27     |
| 5   |          | M. low/M.      |         |           |         |                   |                    |          |
|     | CRPF     | high/high      | 0.52    | 1.79      | 0.58    | 0.69              | 0.70               | 0.83     |
| 6   | NMM      | M. low         | 1.23    | 0.79      | 1.47    | 0.95              | 1.45               | 1.45     |
| 7   | BMF      | M. low         | 1.50    | 0.42      | 1.70    | 1.76              | 1.99               | 1.55     |
| 8   | ME       | M. high/high   | 0.31    | 0.39      | 0.60    | 0.55              | 0.84               | 0.88     |
| 9   |          | M. low/M.      |         |           |         |                   |                    |          |
|     | TE       | high/high      | 0.23    | 0.52      | 1.09    | 0.48              | 1.38               | 0.84     |
| 10  | MR       | Low            | 1.70    | 1.48      | 2.57    | 1.75              | 0.94               | 2.27     |

Table 5.4 RXAs of European transition economies, by industry (1995-2010)

Source: Own calculations based on STAN Bilateral Trade Database Ed. 2012 ISIC Revision 3

Note: RXA>1 indicates a relative export advantage in industry j

It is important to emphasise that the export structure of some of these countries has shifted away from low and medium-low industries to medium-high and high tech intensive industries. For instance, the Czech Republic has lost comparative advantage in exporting many low and medium-low tech manufactures, while, it has gained relative advantage in several medium-high and high tech industries. Similarly, the Slovak Republic has lost some of its advantageous position in exporting low and medium-low tech manufactures, while improving its position in some medium-high and high tech industries. Hungary has also improved its position in a number of medium-high and high tech products, though, it lost its advantageous position in most of the manufacturing industries (see Figures 5.5, 5.6 and 5.7 below).



Figure 5.5 RXAs of medium-high and high tech in the Czech Republic, by industry

Figure 5.6 RXAs of medium-high and high tech in Slovak Republic, by industry



Source: Own calculations based on STAN Bilateral Trade Database Ed. 2012 ISIC Revision 3



Figure 5.7 RXAs of medium-high and high tech in Hungary, by industry

Source: Own calculations based on STAN Bilateral Trade Database Ed. 2012 ISIC Revision 3

Additional evidence supporting the relative export advantage of these countries in medium-high and high tech exports is provided in Figures 5.8 and 5.9. Namely, the Czech Republic, Hungary, the Slovak Republic and Slovenia appear to hold an advantageous position in exporting mediumhigh tech manufactures. Hungary exerts relative export advantage on high tech exports as well. Note that some countries (e.g. Estonia, Poland, and Romania) hold advantageous positions on some specific medium-high and high tech industries, but this is not reflected in the actual figure due to averaging.



Figure 5.8 RXAs of European transition economies in medium-high and high tech exports (1995-2010)

Source: Own calculations based on STAN Bilateral Trade Database Ed. 2012 ISIC Revision 3

The change in the relative export advantage (RXA) of ETEs in medium-high and high tech manufactures is brought out in Figure 5.9. The percentage change in the relative export advantage of some countries in some industries has been extremely high, hence a reason for excluding them from the figures below. Outlier industries- countries are: Estonia's medium-high and Czech Republic, Hungary, Poland and Romania's high tech industries. Namely, the relative export advantage of Estonia in medium-high tech industries has increased from 1995 to 2010, by 136%. The percentage change in the RXAs of Czech Republic, Hungary, Poland and Romania in high tech industries is 473%, 258%, 194%, and 541 %, respectively. The actual figure shows that the majority of transition economies (including outliers) have improved their advantageous position in both tech categories.



Figure 5.9 The percentage change in the RXA of European transition economies (1995-2010)

Source: Own calculations based on STAN Bilateral Trade Database Ed. 2012 ISIC Revision 3

**Export sophistication index (EXPY)** is a measure of the sophistication of a country's export basket. This index has been introduced by Hausmann et al. (2007) to capture the productivity level associated with a country's export portfolio. The index covers 89 product groups<sup>64</sup> which have been classified by the Innovation Union Scoreboard (European Commission, 2011) as medium and high tech manufactures.<sup>65</sup> Data used to construct this measure are taken from UNCTAD's database: *Merchandise trade matrix - detailed products, exports in thousands of dollars, annual, 1995-2013, SITC revision 3* (UNCTAD, 2014a). In contrast to the classification used to construct our alternative measures of international competitiveness (sectoral approach), i.e. ISIC, the actual measure is calculated using the product approach - three digit export data according to SITC<sup>66</sup>, rev. 3. It is also important to note that there were some missing data for some product groups for some countries; hence the results should be interpreted with great caution.

<sup>&</sup>lt;sup>64</sup> SITC: 266, 267, 512, 513, 525, 533, 54, 553, 554, 562, 57, 58, 591, 593, 597, 598, 629, 653, 671, 672, 679, 71, 72, 731, 733, 737, 74, 751, 752, 759, 76, 77, 78, 79, 812, 87, 88 and 891.

<sup>&</sup>lt;sup>65</sup> Note that Innovation Union Scoreboard provides no explanation for this classification but this data has been widely used by researchers.

<sup>&</sup>lt;sup>66</sup> "SITC is the Standard International Trade Classification which is a statistical classification of the commodities entering external trade. It is designed to provide the commodity aggregates requited for purposes of economic analysis and to facilitate the international comparison of trade-by-commodity data" (OECD, 2002, p.226).

Construction of the export sophistication index (EXPY):

Stage 1:

Initially, an index called *PRODY* is constructed. It is defined as the weighted average of the per capita GDPs of countries exporting a product, where the weights reflect the revealed comparative advantage of each country in that specific product.

$$PRODY_{k} = \sum_{j} \frac{(x_{jk} / X_{j})}{\sum_{j} (x_{jk} / X_{j})} Y_{j}$$

 $x_{jk}/X_j$  is the share of product k in country j's total exports

 $\sum x_{ik}/X_i$  is the sum of the shares across all countries exporting product k

 $Y_j$  is the per capita GDP of country *j*.

Stage 2:

Subsequently, the export sophistication index (EXPY) is constructed. It is defined as the weighted average of **PRODY** for a country, where the weights reflect the shares of products in country's total exports.

$$EXPY_{i} = \sum_{i} (\frac{X_{i}i}{X_{i}}) PRODY_{i}$$

*i* represents countries, whereas *l* denotes goods

Source: Hausmann et al. (2007)

The pattern of export sophistication across countries, averaged over 1995-2010 is presented in Table 5.5. Although, the **EXPY** index appears to be highly correlated with per capita GDP for the majority of countries (see Table A5.1.2), there are some slight divergences within the sample. For instance, Malta<sup>67</sup> has higher levels of **EXPY** relative to its income level, exceeding the indices of many developed countries. This might be attributed to some extent to the high share of specific product groups on its total domestic exports, e.g. Articles of rubber, n.e.c., Apparatus for electrical circuits; board, panels, Cathode valves and tubes, Ships, boats and floating structures, and Instruments and appliances, n.e.c., for medical, etc. The same seems to apply to some other

<sup>&</sup>lt;sup>67</sup> Malta is excluded from the estimations due to missing data for some of the explanatory variables.

countries as well, e.g. the UK, and to a lesser extent to the Netherlands and Sweden. The opposite holds for Norway, i.e. higher levels of income are not followed by higher levels of **EXPY**, thus ranking Norway lowest in export sophistication.

| Country     | EXPY     | Country      | EXPY         |
|-------------|----------|--------------|--------------|
| Norway      | 3916.801 | Belgium      | 12392.16     |
| Latvia      | 5094.703 | Slovenia     | 12440.93     |
| Bulgaria    | 5620.625 | Spain        | 12799.93     |
| Greece      | 6316.746 | Austria      | 13184.91     |
| Lithuania   | 7052.907 | Finland      | 13192.69     |
| Romania     | 7146.258 | Italy        | 13203.98     |
| Estonia     | 8230.534 | Czech Repub  | lic 13897.19 |
| Croatia     | 9091.67  | Malta        | 14428.62     |
| Portugal    | 9309.66  | Sweden       | 14470.44     |
| Cyprus      | 9632.925 | United Kingd | om 14960.95  |
| Poland      | 9960.49  | France       | 15349.67     |
| Luxembourg  | 10087.11 | Hungary      | 15388.42     |
| Denmark     | 10823.73 | Ireland      | 15413.5      |
| Netherlands | 11661.67 | Germany      | 16673.41     |
| Slovak      |          |              |              |
| Republic    | 11744.59 |              |              |

Table 5.5 Export sophistication index (EXPY), averaged (1995-2010)

Source: Own calculations based on UNCTAD Merchandise trade matrix SITC revision 3

Figure 5.10 presented below shows that the export sophistication of EU-27 (excl. Malta) has risen significantly over time; with extremely high rates for some countries. While, the pattern of export sophistication appears to be quite stable for more developed countries, it has changed rapidly for selected transition economies, e.g. Czech Republic, Hungary, Poland, Romania and Slovak Republic.



Figure 5.10 Export sophistication index (EXPY)

Source: Own calculations based on UNCTAD Merchandise trade matrix SITC revision 3

The export market share and the relative export advantage measures discussed above have been also constructed at the country level, using less disaggregated data:

**MhstechC/mstechC/hstechC** represent the shares of a country's medium and high skill and technology-intensive exports over the exports (the same product group) of EU-28, constructed for each technology category separately and jointly. Data used to construct these measures are taken from the UNCTAD's database: Merchandise trade matrix - product groups, exports in thousands of dollars, annual, 1995-2013 SITC revision 3 (UNCTAD, 2014b).

**RXAmidhigh/RXAmid/RXAhigh** represent the relative export advantage of country *i* in the medium and high-skill and technology-intensive industries, constructed for each tech category separately and jointly. Data used to construct these measures are taken from the UNCTAD's database: Merchandise trade matrix - product groups, exports in thousands of dollars, annual, 1995-2013, SITC revision 3 (UNCTAD, 2014b).

|              |      |       |      |       |       | Quantiles |       |      |
|--------------|------|-------|------|-------|-------|-----------|-------|------|
| Variable     | n    | Mean  | S.D. | Min   | .25   | Mdn       | .75   | Max  |
| lnemshind    | 1371 | -0.13 | 1.99 | -5.35 | -1.61 | -0.17     | 1.32  | 4.01 |
| lnemshmhtech | 4570 | -0.43 | 2.29 | -9.44 | -2.05 | -0.39     | 1.35  | 4.16 |
| lnemshhtech  | 2285 | -0.61 | 2.38 | -9.44 | -2.39 | -0.66     | 1.29  | 4.14 |
| lnemshmtech  | 2285 | -0.26 | 2.18 | -8.78 | -1.69 | -0.16     | 1.40  | 4.16 |
| lnrxa        | 1371 | -0.34 | 0.73 | -3.58 | -0.74 | -0.25     | 0.13  | 1.73 |
| lnrxamhtech  | 4570 | -0.63 | 1.10 | -6.55 | -1.16 | -0.49     | 0.07  | 3.25 |
| lnrxahtech   | 2285 | -0.79 | 1.24 | -6.55 | -1.47 | -0.73     | -0.03 | 3.25 |
| lnrxamtech   | 2285 | -0.46 | 0.91 | -6.24 | -0.81 | -0.35     | 0.13  | 1.86 |
| lnEXPY       | 464  | 9.24  | 0.42 | 7.95  | 9.01  | 9.37      | 9.56  | 9.84 |
| lnmstechC    | 464  | -0.19 | 2.02 | -4.95 | -1.86 | -0.08     | 1.36  | 3.92 |
| lnhstechC    | 464  | -0.13 | 1.92 | -4.13 | -1.72 | -0.49     | 1.26  | 3.49 |
| lnRXAmid     | 464  | -0.46 | 0.71 | -2.18 | -1.04 | -0.38     | 0.19  | 0.69 |
| lnRXAhigh    | 464  | -0.36 | 0.75 | -1.99 | -0.78 | -0.49     | -0.01 | 2.18 |

Table 5.6 Descriptive statistics<sup>68</sup>

The correlation coefficients between the potential measures of competitiveness reveal that the more the disaggregated the data, the more correlated the export market share ratios and relative export advantage indices become (see Table A5.1.3). For comparison purposes the estimated results obtained using both, country and industry aggregated data will be discussed although the main focus of the investigation is placed on the latter dimension.

#### 5.3 Model specification and estimation methodology

The baseline model specification adopted in this analysis is similar to the one used in the previous chapter, with the exception of the dependent variable(s).

$$Y_{ikt} = \beta X'_{it} + \alpha_i + \varepsilon_{it},$$
  
*i* = 1, ..., 27, *t* = 1, ..., 16
  
(5.1)

Where  $Y_{ikt}$  is the export market share (emsh), relative export advantage (*RXA*) and export sophistication (*EXPY*) of medium and high tech manufactures,  $X_{it}$  is a vector of explanatory variables,  $\alpha_{ik}$  is the unobserved industry and country specific effect and  $\varepsilon_{it}$  is the error term, *i* 

<sup>&</sup>lt;sup>68</sup> The descriptive statistics of variables in levels can be found in Table A5.1.4 in appendix A5.

denotes countries, t denotes time, and k denotes industries. For reasons already explained in Chapter 4, all the models are augmented by a set of time dummies.

The variables of interest remain the same as in the previous chapter given the unavailability of education attainment stock data at more disaggregated levels and so do the control variables. The education attainment dimension is, as in the previous chapter, represented by the percentage of population aged 15 and over who have attained secondary education (sedut), the percentage of population aged 15 and over who have attained tertiary education (*tedut*) and the average number of years of schooling for the same group of population (avyrs). A cognitive skills measure introduced by Hanushek and Woessmann (2009) is employed to assess the hypothesised role of the quality of education (cskills). To assess the hypothesised role of innovation, the number of patent filings by residents (patappr) has been introduced to the modelling strategy of this investigation. In line with the theoretical and empirical considerations discussed previously, this variable is expected to exert a positive and significant impact. Note that research and development expenditure (% GDP) and patent grants were left out of the analysis due to large share of missing data. The foreign direct investment (FDI) represented by the inward foreign direct investment stock (% GDP) has been introduced to capture the hypothesised role of transnational corporations (TNCs) on the export engagement of host countries. Additional control variables entail GDP per capita as a measure of the level of development of a country (gdpc), and population as a proxy of its size (pop). Another potential driver of export engagement in tech intensive goods is unit labour cost, which in the present empirical analysis is proxied by a real unit labour cost index (rulc) derived from Eurostat. In line with the existing empirical evidence, a negative coefficient for the latter measure is expected to be found. The hypothesised importance of the geographical characteristics of a country for its international competitiveness will be also assessed through the use of a distance measure. The ease of access to the main EU markets is represented by distance from each country's capital city to Brussels (*dist*). Given the focus of our research, a transition indicator (*transindN*) and a transition dummy (transdummy) have been introduced to the model specification. The former represents a country's progress in transition, covering large scale privatisation, small scale privatisation, governance and enterprise restructuring, price liberalisation, trade and foreign exchange system, and competition policy. The transition dummy equals to 1 if a country has gone through the

transition process and 0 otherwise. The potential impact of the economic freedom level of a country (*ecofree*) is captured by an equal weight index covering property rights, freedom from corruption, fiscal freedom, government spending, business freedom, labour freedom, and monetary freedom. To capture the phenomenon of labour market mismatch, an unemployment measure, i.e. long term unemployment rate (% of total unemployment) has been included in the estimations (*unem*). The potential impact of the size of the non-tradable sector is captured by a World Bank measure, defined as services, etc., value added as a % of GDP (*serv*). A higher share of services in a country, holding everything else fixed, is likely to reduce its propensity to export. A more detailed description of independent variables can be found in Section 4.2.

In principle, employing industry level data for the set of explanatory variables seems more sensible, however, given the unavailability of more disagregated information, and supported by international competitiveness/comparative advantage literature, we do not expect this to have major implications for our model specification. As discussed in Section 4.5, using repeated data for explanatory variables does not appear to influence the significance of the overall parameter estimates. In this Chapter, for comparative purposes, the shares of a country's medium and high technology intensive exports and the relative export advantage of countries in the medium and high technology intensive manufactures were constructed using different levels of aggregation. The final results reveal that irrespective of the level of aggregation used, the link between human capital endowments and international competitiveness remains unchanged.

Hence, we argue that, in spite of the lack of more disaggregated data, the stock of human capital at the national level is still expected to play an important role in explaining the international competitiveness of particular industries. In line with the theoretical consideration discussed in this thesis, a more highly qualified educated labour force is more likely to enhance a country's ability to compete in exporting more technology intensive goods. For instance, building on the theoretical framework of Heckscher-Ohlin-Vanek, Corvers and Grip (1997) suggest that it is the factor endowments measured at the country level that are more likely to explain the industry export patterns. Since countries tend to focus on exporting goods that are produced using their abundant endowments, country characteristics are expected to play an important role in explaining their export patterns at a sectoral level. A more highly skilled labour force was found

to exert a significant and positive impact on the revealed comparative advantage of technologyintensive industries. The key reason for focusing on country specific rather than industry specific determinants, according to the authors is that the national human capital stock tends to depend on country-specific characteristics, i.e. its educational system. By assessing the importance of linking macro and micro theories, with particular focus on the field of sociology, Liska (1990) argues that explanatory variables measured at broader levels are no less significant in testing micro theoretical hypothesis. The author argues that while they might not explain as much of the total variance as less aggregated variables (e.g. individual level variables) they play a key role in linking micro and macro level theories. The argument that aggregated factors have no role in explaining micro level phenomena according to Gräbner and Kapeller (2015) is a "dogmatic fallacy".

Two separate models will be estimated in this Chapter: Model 1 focuses on the impact of the stock of population (15 and over) with secondary (tertiary) education as their highest level attained while, Model 2 assesses the effect of average years of schooling on tech intensive goods exported by EU-27. The empirical methodology employed in this chapter is the same as in the previous chapter: Driscoll-Kraay approach to correct for heteroskedasticity, serial correlation and cross sectional dependence, Fixed Effects Vector Decomposition (FEVD) and Hausman and Taylor (HT) to estimate the coefficients of time invariant variables, and finally, the country and industry fixed effects instrumental variable (IV) approach to account for potential endogeneity. As discussed in Section 4.4, reverse causation from international competitiveness to education, innovation and FDI is likely to occur, hence, instrumenting the potential endogenous variables is required. Although, we have considered competitiveness measures constructed at both industry and country levels, for the emsh and RXA analyses, the industry level findings are of primary interest, given that more disaggregation allows us to make use of a larger number of observations and to also draw a clearer inference about different tech intensive industries separately. Estimated results of Driscoll-Kraay and IV are presented in the section below.

#### 5.4 Empirical evidence

Even though considerable research has been dedicated to the construction of indices to measure international competitiveness, the determinants of their variation across countries and time have

not been profoundly investigated. Hence, to fill in this gap, the impact of human capital endowments on the international competitiveness of EU-27, the latter being proxied by several indices has been assessed in this chapter. The focus of this investigation is placed on ten medium-high and high tech industries based on the ISIC classification, revision 3. Given the variety of model specifications used in the estimations this section is split into two sub-sections. The first sub-section presents and interprets the results when export market share and relative export advantage are used to proxy international competitiveness, whereas, in the second sub-section the findings from the export sophistication index are reported and commented upon.

#### 5.4.1 Export market share and relative export advantage

The empirical findings obtained from the Driscoll-Kraay and IV estimation approaches are presented in Table 5.7 (for further details see Tables A5.2.2, A5.3.2, A5.2.6 and A5.3.6 in Appendix A5). In line with expectations, the fixed effects IV estimated results suggest that, the share of population 15 and over who have attained tertiary education exerts a positive impact on the share of medium-high and high tech goods exported in the sample of countries relative to EU-28. It is estimated on average, that an increase of 1 percent in the share of population with tertiary education increases the export market share of medium-high and high tech manufactures by 0.60 percent, ceteris paribus. In economic terms, however, this effect is not very large as it requires a rise of 10 percent in the mean value of *tedut* (i.e. from 17.64 to 19.40) to increase export market share by 6.0%, i.e. from 4.22 to 4.47. No empirical evidence is found for the impact of the share of population with secondary education and average years of schooling (see columns 2 and 4 in Table 5.7). In addition, the actual analysis has been extended by including another category of technology intensive exports, i.e. medium-low manufactures. The estimated results from the extended analysis are generally consistent with the initial analysis with the exception of the average years of schooling which, in the latter becomes statistically significant. Its marginal effect is negative up to 12.30 years of schooling, and after that point it turns positive.<sup>69</sup> The latter finding is in line with our expectations as we would not expect low levels of education - less than 12 year of schooling - to influence positively the productivity of workers when engaged in producing and exporting medium and high tech intensive manufactures. The quality of education, proxied by the cognitive skills index, developed by Hanushek and

<sup>&</sup>lt;sup>69</sup> A summary of the main results is presented in Tables A5.9 and A5.9.1.

Woessmann (2009), does not appear to exert a significant impact on the share of medium and high tech exports (see columns 1-4 in Table 5.8, and for further details see Tables A5.2.4/ A5.2.5 and A5.3.4/A5.3.5 in the Appendix section). As previously argued, its lack of variation within countries and the limitations of the methodologies adopted to estimate its coefficient might have led to the insignificant effect. From the set of control variables, the GDP per capita (positive sign) and total population (negative sign)<sup>70</sup> are revealed to have a significant impact in both models, (see columns 2 and 4 in Table 5.7). The estimated results from the Hausman and Taylor (HT) approach reveal a significant (positive) coefficient for transition dummy in Model 2 only. No supporting evidence is found in either model when the Fixed Effect Vector Decomposition (FEVD) method is followed (see columns 1-4 in Table 5.8).

In order to discriminate between transition and non-transition economies, two pairs of estimations have been conducted. The full set of results from these separate samples can be found in the Tables A5.2.6.1, A5.2.6.2, A5.3.6.1 and A5.3.6.2. The education attainment indicators do not seem to have any explanatory power in the ETEs model. When N-ETEs are investigated separately, the share of population 15 and over who have attained secondary education exerts a significant impact on the share of medium and high tech exports. Namely, it is estimated on average, holding other factors constant, that 1 percent increase in the share of population with secondary education decreases the export market share by 0.32 percent, ceteris paribus. When expressed in economic terms, an increase of 10 percent in the mean value of sedut (from 52.87 to 58.15) increases export market share by 3.2%, which at its mean value represents an increase from 6.40 to 6.60. Neither the share of population with tertiary education nor the average years of schooling (level and squared) are significant in this particular group of countries. The coefficient of patent applications is significant in both samples of countries, but with different signs, i.e. negative for ETEs and positive for N-ETEs. The contribution of control variables to the explanatory power of model is not very impressive. The unemployment rate exerts a negative impact on the export market share of ETEs only; while, population (negative) and unit labour cost (negative) exert a significant impact on the export market share of N-ETEs.

<sup>&</sup>lt;sup>70</sup> A potential explanation for this result might be that bigger countries have larger domestic markets and in turn are less incentivized to engage in export activities.

When discriminating between medium-high and high tech exports, the stock of population who have attained tertiary education appears to influence the share of both, medium-high and high tech exports of EU-27, when the two categories are estimated separately (see Tables A5.2.6.3 and A5.2.6.4). It is estimated on average, holding everything else constant that an increase of 1 percent in the share of population who have attained tertiary education increases the share of medium-high tech manufactures exported by these countries by 0.40 percent and the share of high tech exports by 0.78. When these effects are applied at the mean values of the measures, the results reveal that a 10 percent increase in *tedut* (i.e. from 17.64 to 19.40) is needed to increase the (mean) share of medium-high (high) tech exports by 4.0% (7.8%), i.e. from 4.20 to 4.37 (4.23 to 4.56). The latter findings indicate that the impact is relatively stronger when more tech intensive manufactures are exported. This further highlights the relative importance of highly educated population when more technology intensive goods are to be produced and exported. The estimated coefficient of the share of population who have attained secondary education, and average years of schooling are statistically insignificant across all models. For further details see Tables A5.2.6.3- A5.2.6.4.2 and A5.3.6.3- A5.3.6.4.2.

On the other hand, there is no empirical evidence that supports the hypothesis that education attainment indicators have a significant impact on international competitiveness when the latter is proxied by the relative export advantage (RXA) of EU-27 in medium-high and high tech manufactures. The coefficients of secondary, tertiary education and cognitive skills are insignificant across all models for the entire sample, while the average years of schooling, level and squared, are significant but with counterintuitive signs, i.e. its marginal effect is positive until 9.60 years of schooling, and after that point it becomes negative (see columns 6 and 8 in Tables 5.7, and for the full set of results see Tables A5.4.2, A5.4.5, A5.5.2 and A5.5.5). The IV estimation results presented in column 6 and 8 (Table 5.7) show that GDP per capita (*GDPc*) and total population (pop) exert a positive and negative impact on the relative export advantage of EU-27, respectively. The coefficient of patent application (*patappr*) is negative in Model 2, while the share of services (*serv*) is positive (10 % significance level) in Model 1. Being a transition country appears to have a positive impact on the relative export advantage, when the analysis is conducted using the Hausman and Taylor (HT) approach. The FEVD estimates show no significant association between the two, when the latter method is employed (see columns 5-8

in Table 5.8). For further details on the latter set of results see Tables A5.4.3/A5.4.4 and A5.5.3/A5.5.4.

The insignificance of secondary and tertiary levels of education in explaining the relative advantage in exporting medium-high and high tech manufactures is also evident in the N-ETEs subsample (see Table A5.4.5.2 in Appendix A5). While, for transition economies, the share of population who have attained tertiary education turns significant but with a negative sign (see Table A5.4.5.1 in the appendix section), the estimated coefficients of the level and squared terms of average years of schooling are insignificant in both subsamples (see Tables A5.5.5.1 and A5.5.5.2 in Appendix A5). No supporting evidence is found for the role of different levels of education attainment either in the RXA of medium-high or high tech exports of EU-27, when the two categories are estimated separately (Tables A5.4.5.3, A5.5.5.3, A5.4.5.4 and A5.5.5.4 in the appendix section). When distinguishing between N-ETEs and ETE-s, tedut appears to exert a negative impact on the share of both, medium-high and high tech exports, only in the ETEs subsample. The marginal effect of average years of schooling on the share of medium-high tech exports is positive up to 10.48 year of schooling and after that point it becomes negative. No supporting evidence is found when high tech exports are estimated instead (for further details see Tables A5.4.5.3.1, A5.4.5.3.2, A5.5.5.3.1, A 5.5.5.3.2, A5.4.5.4.1, A5.4.5.4.2, A5.5.5.4.1 and A5.5.5.4.2 in Appendix A5).

|           | 2              |                |                |                |             |               |             |               |
|-----------|----------------|----------------|----------------|----------------|-------------|---------------|-------------|---------------|
|           |                |                |                |                | Driscoll-   |               | Driscoll-   |               |
| Estimator | Driscoll-Kraay | IV (xtivreg2)  | Driscoll-Kraay | IV (xtivreg2)  | Kraay       | IV (xtivreg2) | Kraay       | IV (xtivreg2) |
| Tech      |                |                |                |                | M. high &   | M. high &     | M. high &   | M. high &     |
| intensity | M. high & high | high        | high          | high        | high          |
| VARIABLES | Inemshmhtech   | Lnemshmhtech   | Inemshmhtech   | Inemshmhtech   | Inrxamhtech | Inrxamhtech   | Inrxamhtech | Inrxamhtech   |
|           |                |                |                |                |             |               |             |               |
| Insedut   | 0.00665        | 0.14           |                |                | 0.0684      | 0.0995        |             |               |
|           | (0.178)        | (0.202)        |                |                | (0.0839)    | (0.194)       |             |               |
| Intedut   | 0.448***       | 0.594**        |                |                | -0.0492     | 0.0685        |             |               |
|           | (0.141)        | (0.238)        |                |                | (0.0951)    | (0.228)       |             |               |
| avyrs     |                |                | -0.897***      | -0.551         |             |               | 0.329**     | 0.616*        |
|           |                |                | (0.22)         | (0.369)        |             |               | (0.167)     | (0.351)       |
| sqravyrs  |                |                | 0.0341***      | 0.0191         |             |               | -0.0195***  | -0.0321**     |
|           |                |                | (0.0102)       | (0.0169)       |             |               | (0.00722)   | (0.0161)      |
| Inpatappr | -0.0673        | -0.0771        | -0.0886***     | -0.109         | -0.0870***  | -0.0846       | -0.103***   | -0.111*       |
|           | (0.0528)       | (0.0691)       | (0.030         | (0.0703)       | (0.0233)    | (0.0668)      | (0.0231)    | (0.0672)      |
| Infdi     | 0.00307        | -0.00298       | 0.0115*        | 0.00942        | 0.00875**   | 0.00723       | 0.00732**   | 0.00567       |
|           | (0.00428)      | (0.00964)      | (0.0065)       | (0.0094)       | (0.00371)   | (0.00967)     | (0.0037)    | (0.00952)     |
| Ingdpc    | 1.542***       | 1.572***       | 1.867***       | 1.983***       | 0.529**     | 0.499**       | 0.577***    | 0.621***      |
|           | (0.273)        | (0.24)         | (0.13)         | (0.181)        | (0.233)     | (0.233)       | (0.207)     | (0.18)        |
| Inpop     | -4.393***      | -4.431***      | -3.764***      | -3.764***      | -1.742***   | -1.995***     | -1.726***   | -1.821***     |
|           | (0.47)         | (0.671)        | (0.393)        | (0.586)        | (0.301)     | (0.654)       | (0.299)     | (0.568)       |
| unem      | 0.00353*       | 0.00206        | 0.00246**      | 0.00204        | -3.80E-05   | -0.000757     | 0.000291    | 9.93E-05      |
|           | (0.00187)      | (0.00133)      | (0.001)        | (0.0013)       | (0.00085)   | (0.00129)     | (0.00079)   | (0.00121)     |
| Inecofree | 0.216          | -0.0612        | 0.222          | 0.0641         | -0.0297     | -0.0937       | 0.0408      | -0.00605      |
|           | (0.305)        | (0.272)        | (0.191)        | (0.274)        | (0.206)     | (0.267)       | (0.167)     | (0.271)       |
| Inrulc    | 0.0191         | -0.0859        | -0.193         | 0.00844        | 0.197       | 0.18          | 0.25        | 0.00914       |
|           | (0.432)        | (0.303)        | (0.215)        | (0.0086)       | (0.274)     | (0.298)       | (0.231)     | (0.00813)     |
| serv      | 0.00578        | 0.00713        | 0.00950**      | -0.195         | 0.0132***   | 0.0132*       | 0.0106***   | 0.277         |

#### Table 5.7 Driscoll-Kraay and IV estimated results

|   | (0.00664) | (0.00845) | (0.0043) | (0.3) | (0.00302) | (0.00792) | (0.00302) | (0.292) |
|---|-----------|-----------|----------|-------|-----------|-----------|-----------|---------|
| Ν | 3,600     | 3,450     | 3,600    | 3,450 | 3,600     | 3,450     | 3,600     | 3,450   |

Notes: (1) Year dummies are included in the estimations but are not reported in the table

(2) \*\*\*p<0.01, \*\*p<0.05, \*p<0.1; Standard errors in parentheses;

#### Table 5.8 FEVD and HT estimated results

|            | FEVD         | FEVD         | HT           | HT           | FEVD        | FEVD        | HT          | HT          |
|------------|--------------|--------------|--------------|--------------|-------------|-------------|-------------|-------------|
|            | MODEL 1      | Model 2      | MODEL 1      | Model 2      | MODEL 1     | Model 2     | MODEL 1     | Model 2     |
| VARIABLES  | Inemshmhtech | Inemshmhtech | Lnemshmhtech | Inemshmhtech | Inrxamhtech | Inrxamhtech | Inrxamhtech | Inrxamhtech |
|            |              |              |              |              |             |             |             |             |
| cskills    | -0.838       | 0.0739       | 0.766        | 1.559        | -0.215      | -0.0846     | 0.533       | 0.704       |
|            | (4.035)      | (2.775)      | (3.109)      | (2.782)      | (1.566)     | (1.205)     | (1.194)     | (1.199)     |
| dist       | -0.00294     | -0.00266     | -0.00133     | -0.00123     | -0.00091    | -0.00095    | 0.000126    | 4.31E-05    |
|            | (0.00335)    | (0.00195)    | (0.00088)    | (0.00079)    | (0.0013)    | (0.00085)   | (0.00034)   | (0.00034)   |
| transdummy | -1.771       | -0.908       | 1.071        | 1.614*       | -0.543      | -0.391      | 0.845**     | 0.970**     |
|            | (10.19)      | (5.696)      | (0.967)      | (0.868)      | (3.955)     | (2.477)     | (0.397)     | (0.398)     |
| Ν          | 3,600        | 3,600        | 3,600        | 3,600        | 3,600       | 3,600       | 3,600       | 3,600       |

Notes: (1) Education attainment variables, controls and year dummies are included in the estimations but are not reported in the table

(2) \*\*\*p<0.01, \*\*p<0.05, \*p<0.1; Standard errors in parentheses;

#### 5.4.2 Export sophistication

In their empirical analysis, Hausmann et al. (2007) introduced human capital as one of the key determinants of the level of export sophistication. Although, their estimated results appear to suggest a positive correlation between the two, the causality direction was not clearly defined, due to potential reverse causation. As the authors themselves claim, there might be a potential causal effect going from export sophistication to human capital. This issue has already been elaborated in the previous empirical chapter, where it was argued that the increased demand for more educated workers increases the rate of return from investing in additional schooling and hence raises the proportion of the workforce with higher levels of educational attainment.<sup>71</sup> Although the feedback effect is highly unlikely to occur simultaneously, it is always advisable to be cautious about it. Hence, to account for potential endogeneity in this relationship, human capital variables were instrumented by their lagged values using the fixed effects instrumental variable approach. As previously discussed in Chapter 3, the positive association between the two has been supported by numerous empirical studies (e.g. Zhu et al., 2009, Jarreau and Poncet, 2009, Weldemicael, 2010, Anand et al., 2012). In contrast, the current investigation finds no evidence that supports the positive impact of human capital endowments on export sophistication when the entire sample of countries is estimated (see columns 2 and 4 in Table 5.9).

Not many of the set of control variables are statistically significant, even though the explanatory power of the models based on their R square is quite high. The level of GDP per capita exerts a robust positive impact in both models, while, the unemployment rate and the share of services appear to have a negative and positive impact on EXPY, in models 1 and 2, respectively (columns 2 and 4). For further details see Table A5.6.2, A5.7.2, A5.6.5 and A5.7.5 in Appendix A5. The significance of the transition dummy differs across estimators (FEVD and Hausman and Taylor). The estimates of the Hausman and Taylor approach suggest that being a transition economy has, other things being equal, a positive impact on the level of export sophistication. This is not empirically supported by the alternative estimator, i.e. FEVD (see columns 1-4 in Table 5.10). When ETEs and N-ETEs are estimated separately, *tedut* is found to exert a statistically significant impact in the N-ETEs subsample. Namely, it is estimated on average,

<sup>&</sup>lt;sup>71</sup> A potential reverse effect is also likely to occur from innovation (patent applications) and FDI to export sophistication.

holding other factors constant, that an increase of 1 percent in the stock of population who have attained tertiary education, increases the export sophistication index by 0.23 percent (10 % significance level). If this effect is interpreted at the mean value, an increase of 10 percent in *tedut*, i.e. from 19.25 to 21.17, increases *EXPY* by 2.3 percent, i.e. from 12,101 to 12,379. This supports the hypothesis that investing in higher levels of education may play an important role in enhancing the export sophistication of this set of countries. The insignificance of the coefficients of the average years of schooling (level and squared) and cognitive skills is persistent across the two samples of countries. The statistical significance of control variables appears to diverge across country groups: the coefficients of GDP per capita (*gdpc*) and long term unemployment (*unem*) rate are statistically significant in the ETEs subsample, while, the share of inward FDI (*fdi*), total population (*pop*), and the share of services (*serv*) appear to have a significant impact on EXPY, only for N-ETEs (see Tables A5.6.5.1, A5.6.5.2, A5.7.5.1 and A5.7.5.2 in Appendix A5).

|           | Driscoll- |               | Driscoll- | IV         |
|-----------|-----------|---------------|-----------|------------|
| Estimator | Kraay     | IV (xtivreg2) | Kraay     | (xtivreg2) |
| VARIABLES | InEXPY    | InEXPY        | InEXPY    | InEXPY     |
|           |           |               |           |            |
| Insedut   | -0.239*   | -0.183        |           |            |
|           | (0.118)   | (0.166)       |           |            |
| Intedut   | 0.028     | 0.0579        |           |            |
|           | (0.0703)  | (0.177)       |           |            |
| avyrs     |           |               | -0.159    | -0.0419    |
|           |           |               | (0.23)    | (0.247)    |
| sqravyrs  |           |               | 0.00344   | -0.00129   |
|           |           |               | (0.0103)  | (0.0111)   |
| Inpatappr | 0.00129   | -0.00874      | -0.0074   | -0.0201    |
|           | (0.00951) | (0.0494)      | (0.0111)  | (0.0481)   |
| Infdi     | 0.00495*  | 0.00555       | 0.00592** | 0.00655    |
|           | (0.00244) | (0.00451)     | (0.00248) | (0.00407)  |
| Ingdpc    | 0.611***  | 0.607***      | 0.714***  | 0.721***   |
|           | (0.0898)  | (0.18)        | (0.078)   | (0.134)    |
| Inpop     | -0.641**  | -0.819*       | -0.320**  | -0.498     |
|           | (0.252)   | (0.433)       | (0.135)   | (0.411)    |
| unem      | 0.000216  | -0.00016      | -7.76E-05 | -0.00017   |
|           | (0.00068) | (0.00086)     | (0.00036) | (0.00086)  |
| Inecofree | 0.0979    | 0.0215        | 0.074     | 0.0165     |

Table 5.9 Driscoll-Kraay and IV estimated results

|      | (0.148)  | (0.219)   | (0.119)   | (0.202)   |
|------|----------|-----------|-----------|-----------|
| rulc | 0.284    | 0.194     | 0.00804** | 0.00922*  |
|      | (0.228)  | (0.274)   | (0.00307) | (0.00551) |
| serv | 0.00640* | 0.00861   | 0.28      | 0.227     |
|      | (0.0032) | (0.00589) | (0.182)   | (0.259)   |
| Ν    | 366      | 349       | 366       | 349       |

Notes: (1) Year dummies are included in the estimations but are not reported in the table

(2) \*\*\*p<0.01, \*\*p<0.05, \*p<0.1; Robust standard errors in parentheses;

| Estimator  | FEVD      | FEVD      | HT        | HT       |
|------------|-----------|-----------|-----------|----------|
|            | MODEL 1   | MODEL 2   | MODEL 1   | MODEL 2  |
| VARIABLES  | InEXPY    | InEXPY    | InEXPY    | InEXPY   |
|            |           |           |           |          |
| cskills    | 0.568     | 0.721     | 0.243     | 0.454    |
|            | (1.68)    | (0.932)   | (1.585)   | (1.063)  |
| dist       | -0.00013  | -4.48E-06 | 0.0001    | 0.000175 |
|            | (0.00133) | (0.00065) | (0.00045) | (0.0003) |
| transdummy | 0.46      | 0.774     | 0.900*    | 1.056*** |
|            | (4.129)   | (1.947)   | (0.503)   | (0.347)  |
| Ν          | 366       | 366       | 366       | 366      |

Table 5.10 FEVD and HT estimated results

Notes: (1) Education attainment variables, controls and year dummies are included in the estimations but are not reported in the table

(2) \*\*\*p<0.01, \*\*p<0.05, \*p<0.1; Standard errors in parentheses;

As previously emphasized, more aggregated data have been used to construct additional measures of international competitiveness, i.e. the shares of a country's medium and high skill and technology-intensive exports relative to EU-28 (*mhstechC/ mstechC/ hstechC*), and the relative export advantage of countries in the medium and high-skill and technology-intensive sector (*RXAmidhigh/RXAmid/RXAhigh*). The key motivation for using different aggregation level measures was to be able to compare the estimated results and see if the aggregation level, particularly for RXA indices, does influence the final results.

The empirical findings suggest that, overall, both aggregation levels tell a consistent story. Given that the new measures cover all medium tech intensive manufactures, i.e. medium-low and medium-high, the estimated results tend to resemble those from the "extended" analysis, discussed briefly above. The share of population 15 and over who have attained tertiary

education appears to have a positive impact on the share of medium and high tech exports of EU-27. No evidence is found for its impact on the high tech exports, when this category is examined separately. The coefficient of the average years of schooling is significant across all models (i.e. medium and high jointly, and medium and high separately). Its marginal effect is negative up to 11.9 for the former two models, and 12.02 for high tech manufactures, and after that point it becomes positive. None of the variables of interest exerts a significant impact on the relative export advantage (RXA) of EU-27. The estimated results for these analyses are summarized in Tables A5.8 and A5.8.1 in Appendix A5.

To summarize, the empirical analyses conducted in this chapter seem to provide sufficient evidence to support the hypothesised positive link between the share of population who have attained tertiary education and the share of medium and high tech exports by EU-27. In line with a priori expectations, the effect is relatively stronger for high tech manufactured exports. No empirical evidence is found for either the share of population who have attained secondary or tertiary education when competitiveness is represented by the relative export advantage index (RXA). The empirical findings from the export sophistication analysis appear to support the importance of the share of population with tertiary education on the export sophistication of non transition economies only (EU-17). No supporting evidence is found for the role of the quality of education, measured by the cognitive skills index, on international competiveness of EU-27 in neither of the empirical models.

#### **5.5 Conclusions**

This chapter examined the impact of human capital endowments on the medium and high tech exports of EU-27, using a cross industry-country panel dataset over the period 1995-2010. In addition to the share of medium and high tech intensive exports, two alternative measures of international competitiveness have been introduced, the relative export advantage index (RXA) and the export sophistication index (EXPY).

According to many schools of thought, education is regarded as a key determining factor of labour productivity, which, in turn is expected to enhance the international competitiveness of countries. In particular, a higher level of education attainment is more likely to enhance the productivity of workers when more advanced activities are to be performed. Hence, this investigation, aimed to assess the impact of the share of population who have attained tertiary education on technology intensive manufactures exported by 27 European countries. In addition, the analysis has made use of another three education based indicators: the share of population who have attained secondary education, average years of schooling and a cognitive skills index. In line with a priori expectations, the empirical findings suggest that the share of population 15 and over who have attained tertiary education has a positive impact on the share of medium and high tech manufactures exported by EU-27. This result is consistent across the two model specifications, i.e. with and without the medium-low tech category included. As expected, the impact appears to be relatively stronger when these countries export high tech manufactures. These findings further reinforce the hypothesis that more educated individuals are more likely to enhance labour productivity and consequently improve the international competitiveness of countries engaged in more sophisticated and technology intensive manufactures When transition (ETEs) and non-transition economies (N-ETEs) are assessed separately, the impact of tertiary education becomes insignificant in both subsamples. The share of population who have attained secondary education is found to exert a negative impact on the share of medium and medium and high tech manufactures exported by N-ETEs.

When international competitiveness is measured by the relative export advantage index (RXA), the estimated human capital results are generally found to be insignificant, with very few exceptions. Namely, in the ETEs subsample, the share of population 15 and over who have attained tertiary education appears to influence negatively the share of medium-high and high tech manufactures exported by these countries. The marginal effect of average years of schooling is subject to the competitiveness measure adopted, though, in the majority of models and subsamples it appears statistically insignificant or with a counterintuitive sign. No supporting evidence is found for the hypothesized influence of the quality of education on the technology intensive exports in any of the model specifications.

The estimated results from the export sophistication analysis are mixed. No supporting evidence is found for the role of education attainment indicators on the export sophistication of all EU countries, while, the estimations of the separate samples of countries appear to find some supporting evidence for the underlying link. In accordance with a priori expectations, the empirical findings suggest that higher levels of export sophistication in non-transition economies are partly determined by higher levels of education. This implies that the higher the share of population who have attained tertiary education, the higher the export sophistication of EU-17.
# **CHAPTER 6**

## HUMAN CAPITAL AND INTERNATIONAL COMPETITIVENESS: A MICRO-LEVEL ANALYSIS

### Contents

| 6.1 Introduction                 | . 218 |
|----------------------------------|-------|
| 6.2 Data and model specification | . 219 |
| 6.2.1 Descriptive statistics     | . 230 |
| 6.3 Estimation methodology       | . 234 |
| 6.4 Empirical evidence           | 244   |
| 6.4.1 Export intensity           | 244   |
| 6.4.2 Export market share        | . 256 |
| 6.5 Conclusion                   | . 260 |

#### **6.1 Introduction**

The aim of this chapter is to investigate the impact of human capital endowments on international competitiveness by employing firm level data for 30 transition<sup>72</sup> European and Central Asian countries. The theoretical framework informing this empirical analysis has been developed in Chapter 3 and it focused on explaining the relationship between human capital and international competitiveness through the underlying mechanism of labour productivity, innovation and technology adoption. As an extension of the country and industry level empirical analyses conducted in the previous chapters, this investigation aims to re-examine this relationship by adopting a micro level perspective. First, the impact of the share of employees with higher education, on-the-job training and years of experience of the top manager on export intensity is assessed. Second, the same set of measures is employed to examine the potential impact of human capital on the export market share of surveyed firms. To empirically test these relationships, a diversified modelling strategy has been adopted: a Tobit model, a Fractional Logit approach, and a Poisson regression model. Furthermore, to check the robustness of the findings, an empirical model using multiple imputation has been estimated. To assess the relative importance of human capital endowments on the export engagement of firms in the sample, a distinction between manufacturing, services and primary goods industries has been introduced. European transition countries as the main group of interest in this investigation are estimated separately and their results are compared and contrasted with those of other transition economies. The remaining parts of this chapter are organized as follows: section 6.2 discusses data, variable specification and descriptive statistics. The subsequent section, 6.3, outlines the empirical modelling strategy, the advantages and disadvantages of each estimation approach and ways to handle missing data, with particular focus on multiple imputation. Section 6.4 reports and interprets the final estimates and marginal effects from the baseline model specification and also briefly summarizes the augmented model outcomes. Finally, section 6.5 summarizes the main estimated findings and concludes.

<sup>&</sup>lt;sup>72</sup> Turkey is also included.

#### 6.2 Data and model specification

This empirical analysis uses firm level data taken from the Business Environment and Enterprise Performance Surveys (BEEPS) conducted by the European Bank for Reconstruction and Development (EBRD) and the World Bank. To the best of our knowledge, there are very few research studies that have used this large scale dataset to investigate the area of international competitiveness. The BEEPS enterprise survey was first undertaken in 1999-2000 and since then there have been five waves of data in total. In this empirical analysis, the latest data survey which was conducted in 2011-2014 will be employed and it covers approximately 16,000 enterprises in 30<sup>73</sup> countries, making it the largest and most comprehensive BEEPS firm-level dataset available.<sup>74</sup> BEEPS provides a wide range of indicators on several business (environment) areas, such as performance measures, competition, access to finance, corruption and infrastructure. Although the main interest lies in the human capital dimension, given the large set of available indicators, this empirical investigation will be able to account for some other relevant competitiveness-enhancing factors. Note that in addition to the cross section data, BEEPS has recently introduced a panel dataset covering three rounds of data (2002-2009). Despite the well-known advantages of undertaking panel analysis, the BEEPS panel component is very restricted and is less likely to produce efficient estimates. One of the initial objectives of this research was to assess the potential impact of human capital on a firm's export persistence (i.e. distinguishing between permanent, sporadic and non-exporters), however, given the data limitations, this analysis was postponed for future research. The present empirical analysis is derived from the theoretical framework and empirical research discussed in Chapter 3. The new endogenous growth theory has been the main theoretical base used in the previous macro level empirical analyses: more educated and higher skilled individuals are more likely to innovate and/or adopt new sophisticated technologies, which consequently boosts labour productivity and raises an economy's competitiveness. A similar approach is adopted for the micro level analysis, where the impact of the quality (human capital) of the labour force on firm's engagement in

<sup>&</sup>lt;sup>73</sup> 17 of these countries belong to Central and Eastern Europe (CEECs) and the remaining 13 are part of the Commonwealth of Independent States (CIS) (excluding Turkey).

<sup>&</sup>lt;sup>74</sup> Recently, BEEPS has provided a combined dataset covering its latest round of data and the Middle East and North Africa Enterprise Surveys. However, this is extended country coverage is beyond the scope of the current investigation.

international markets is explained through its enhancing impact on labour productivity and its close relationship with innovation. More productive firms, in turn, following Melitz's (2003) theoretical framework, as one of the most prominent in the micro level literature, self-select themselves into international markets. A similar contribution to the productivity-export nexus has been made by Bernard et al. (2003). Their theoretical approach has been further extended in the literature, by including other firm characteristics that are likely to influence export behaviour. Two distinct measures have been used to capture the degree of international competitiveness of firms. The first measure, which is defined as the share of exports in firm's total sales, reflects the export intensity of the establishment. The second indicator is constructed using a combined set of BEEPS firm level data and OECD industry/country data and it represents the export market share of the firm within the industry that it operates. This measure is defined as the ratio of exports of firm *i* in industry k over the total exports of EU-28 and EU-28+/EA40<sup>75</sup> in the corresponding industry. Industry k refers to total manufacturing, services and primary goods, respectively. The latter indicator, following the previous discussions, is considered to be a more precise measure of competitiveness, as it reflects the degree of importance of a firm in a specific industry within the industry exports of EU-28. Note that this definition provided by European Commission, was originally used at the country level, however, following Dosi et al. (2013), it was also adopted for the micro level analysis.

As the main component of interest, human capital is represented in this dataset by several proxy measures: the education level of the workforce, the extent of on-the-job training, the share of skilled workers, and top manager's education and experience. The first measure is defined as the percentage of full-time employees who have completed a university degree. The importance of on-the-job training will be captured by a dummy variable, which takes the value of one if the firm has offered formal training programmes for its employees and zero otherwise. The third proxy measure is defined as the percentage of skilled full-time production workers in a firm's total full-time workforce, while the final dimension represents the level of education and years of experience of the top manager in the sector that the establishment operates in.<sup>76</sup> Education of this

<sup>&</sup>lt;sup>75</sup> EA40 refers to EU-28 plus Euro-Asian economies (EA): Albania, Belarus, Georgia, Macedonia FYR, Moldova, Montenegro, Serbia, Bosnia-Herzegovina, Kazakhstan, Russia, Turkey and Ukraine.

<sup>&</sup>lt;sup>76</sup> In BEEPS, this indicator is defined as: "the years of Top Manager's managerial experience in the type of sector that the establishment presently operates. Top Manager refers to the individual who has the highest executive rank.

manager in the original dataset has five categorical responses: primary school or less, secondary school, bachelor, master degree, and doctorate. Since, on theoretical grounds it is expected that a highly educated manager is more likely to influence a firm's engagement in export markets; a dummy variable was constructed, indicating whether the manager had completed higher education. This takes the values of one if the top manager has completed a bachelor, master and/or doctorate degree, and zero, if primary school or less and secondary is his/her highest level of education attained. Due to the very high percentage of missing values, the share of workforce classified as skilled and top manager's level of education are left out of the baseline model specification. These will be taken into account when estimating the imputed model. In line with the theoretical framework discussed in the previous chapters, all these measures are expected to exert significant positive effects on the international competitiveness of the surveyed firms.

As previously emphasized, the positive impact of human capital on export intensity is mainly explained through the mechanism of labour productivity. More skilled and competent employees are more likely to perform better at work, hence, enhancing the productivity level of the firm. Furthermore, a highly qualified labour force tends to be better endowed with skills that are particularly relevant for exporting - foreign languages, intercultural competence - which would facilitate the process of exporting, through creating and maintaining contacts with clients in international markets (Van Dijk, 2002, Eickelpasch and Vogel, 2009). A similar explanation can be adopted for the role of firm's top manager on its export activities. Even though, according to Syverson (2011), the impact of managers on firms' productivity has not been very much explored, a significant positive result is expected to be found in this analysis. As the author argues, managers are "conductors of an input orchestra", as they organize the application of labour, capital and inputs. Similar to a conductor, poor managerial skills could cause "discordant" production processes (p. 336). Moreover, as Nazarov and Akhmedjonov (2011) argue, better managers are more likely to adopt new technologies, employ a more educated workforce and offer more on-the-job training to their workers.

This person may be the owner if he or she works as a senior company official" (see explanation notes on EBRD and World Bank, 2012, p.13).

To shed more light on the predictive power of human capital on international competitiveness, a labour cost measure will be also introduced, the latter being defined as the total cost of labour (including wages, salaries and benefits) divided by the total number of employees. This proxy variable has been extensively used in the literature, mainly due to the lack of better or more direct information on the level of skills and competencies of workers, i.e. education, training and experience. A justification for the use of this measure is that, in competitive markets, the level of compensation proxied by the average wage tends to be highly correlated with the skill structure of the labour force. In his research study, Wagner (2012) argues that average wage per worker can be considered a plausible measure of the intensity of human capital. He estimated export intensity and propensity models by including, separately, the average wage and the share of medium and highly qualified employees, and found that irrespective of the measure used, the results were in line with the expectations. Numerous other studies have used labour cost measures to capture the human capital intensity when modelling firms' engagement in international markets (e.g. Aitken et al., 1997, Wakelin, 1998a, Günther and Nobert, 1999, Barrios et al., 2001, Ruane and Sutherland, 2004, Arnold and Hussinger, 2004, Cassiman and Martínez-Ros, 2007, Dosi et al., 2013).

A significant body of literature has argued that engaging in innovative activities tends to boost firm's labour productivity, which in turn is reflected in more productive firms entering international markets. Among the most recent econometric analyses supporting this hypothesis are Cassiman and Martinez-Ros (2007), Cassiman et al. (2010), Calder (2010), Aw et al. (2011), Cassiman and Golovko, (2011), Becker and Eagger (2013), and Gashi et al. (2014). This hypothesis will be tested by employing two distinct sets of innovation related measures: an input measure represented by R&D spending and several output proxies: introduction of new products/services, new production/supply methods and new organisational/ management practices or structures. In line with previous empirical studies, both innovation output and innovation inputs are expected to exert a positive impact on international competitiveness of firms. There have been various discussions as to which innovation measure is more likely to have a stronger impact. Evidence on the appropriateness of these measures is mixed, there are studies who have found supporting evidence for both approaches. Despite the widespread use of R&D intensity, product and process innovations have been considered as more appropriate proxy

measure by some researchers. For instance, Dosi et al. (2013) argue that R&D can be considered only a partial measure of innovation as it does not account for additional improvements in product and processes, especially in SMEs. Furthermore, Harris and Moffat (2011) claim that R&D activities do not always lead to innovation, and there might be significant time differences between the two. However, the statistically significant parameter for R&D in their investigation has been attributed to its enhancing impact on firm's knowledge assets. In the same vein, Love and Roper (2013) argue that R&D establishes the foundation for innovation through its potential ability to generate new knowledge. In addition, skilled and competent R&D employees tend to enhance firm's ability to absorb external knowledge. Hence, given the ongoing debate in this area, and assisted by the richness of the dataset, the effects of each measure on firms' participation in international markets will be examined in this investigation. A relative measure of technology<sup>77</sup>, i.e. comparing the technology of the firm with its main competitor will be also used in the analysis. This particular measure is based on firms' self-assessment of their technological level by comparing it to that of their main competitor, i.e. less advanced, the same, or more advanced. For practical reasons, this measure is transformed into a binary variable, by grouping similar and more advanced technology compared to the main competitor in one category (i.e. dummy=1), whereas leaving the less advanced technology as the reference category (dummy=0).

The econometric model has been augmented by a set of control variables, which have been derived from various strands of research. Firm size is one of the most investigated characteristics in the literature on firm internationalization. According to Wagner (1995, 2001, 2012), the positive impact of a firm's size on its export activities comes from the ability of larger firms to absorb the fixed costs associated with exporting and efficiency gains from economies of scales in production. Furthermore, larger firms tend to benefit from more specialized management and marketing practices, have higher risk-taking capacities due to their greater diversification, face fewer constraints in accessing finance and have advantages in competing for more qualified workers. In the same vein, Bernard and Jensen (2001) argue that a larger size is a reflection of firm being successful in the past, and it also entails lower average or marginal costs which, in

<sup>&</sup>lt;sup>77</sup> Due to the high share of missing values for this measure, we will only be able to check its potential impact on international competitiveness after imputing the missing data.

turn, are likely to have a positive impact on firm's engagement in international markets. However, there seem to be limits to these advantages, according to Wagner (2012) organization costs increase as the operation scale increases and after some threshold point expansion becomes no longer profitable. Furthermore, as Wakelin (1998a) argues, large firms might have no incentives to penetrate international markets if they exert monopoly power in their domestic markets. Similarly, Cassiman and Martinez-Ros (2007) claim that, after some point, firms might consider foreign direct investment rather than exporting as a way of participating in international markets. In this empirical investigation, size is measured by the number of employees, and to avoid potential endogeneity, its lagged values have been used (i.e. the number of employees three years<sup>78</sup> previous). A similar approach has been followed by Gashi et al. (2014). In line with the arguments above, a squared term of this variable is added to control for potential non-linearity.

The age of the establishment is another plant characteristic perceived to have some explanatory power on firm's engagement in international markets, though it has been less frequently investigated in the empirical literature (Roberts and Tybot, 1997, Barrios et al., 2001, Van Dijk, 2002, Arnold and Hussinger, 2004 Gashi et al., 2014, Wagner, 2014). By capturing the experience of the firm, age is expected to have a positive impact on the firm's international competitiveness. However, the link between these two does not seem to be very clear according to Van Dijk (2002), who argues that although older firms might be more likely to engage in international markets given their business experience, younger firms may be more likely to use new advanced technologies which enhance productivity and product quality. In his recent study, Wagner (2014) found empirical evidence supporting the positive link between the age of the firm and export propensity and intensity. In addition, the number of exporting destinations and products exported appeared to be positively affected by age. Arnold and Hussinger (2004), on the other hand, argue that age might be more important for relatively newer firms and experience gains are likely to be significant only until a certain threshold point. In our analysis, the number of years of experience of the establishment is constructed by subtracting the year of firm's establishment from the year the survey is conducted. Following the discussion above, and in line

<sup>&</sup>lt;sup>78</sup> Given that a certain percentage (4%) of firms had not been in business three years previously, in order to not lose observations, we decided to fill the "missing" values with the number of employees in the earliest year available/last fiscal year. The same approach was followed for other missing values.

with existing empirical research, we test for non-linearities between firm's size and age and export intensity by also introducing these in quadratic terms. Both measures have been transformed to logarithms given their non-normal, skewed distributions.

The ownership structure, with particular emphasis on foreign ownership is considered as another important determinant of international competitiveness (Roberts and Tybout, 1997, Aitken et al., 1997, Bernard and Jensen, 1999, 2001, 2004, Greenaway et al., 2005, Alvarez and Lopez, 2005, Greenaway and Kneller, 2007, Roper et al., 2006, Engelmann and Fuchs, 2008). Foreign-owned firms are more likely to engage in international markets through exporting as they are generally more integrated into international business networks. In addition to having more access to new and more advanced technologies, human capital, management know-how, marketing expertise allows them to produce more efficiently (Van Dijk, 2002, Greenaway et al., 2004, Martínez-Ros, 2007). In the present analysis, foreign ownership is represented by a dummy variable which takes the value of one if more than 50 percent of a firm's assets are foreign-owned, and zero otherwise. Given the major firm ownership transformations carried out during the process of transition in these countries, the presence of state-owned firms is also controlled for. A firm is considered to be state-owned if more than 50 percent of its assets belong to the state. Although the percentage of these firms in the dataset is fairly low, in line with previous empirical studies, the impact of the state ownership dummy is expected to be negative due to underlying inefficiencies of these types of firms. As argued in the EBRD Transition Report (2005), stateowned firms in transition economies perform less efficiently than foreign-owned and private firms.

To consider the influence of access to external finance on international competitiveness, a dummy for firms that have a line of credit or a loan from a financial institution has been included into the model specification. As summarized in Manova (2013), financial constraints tend to have a greater negative impact on export related activities compared to domestic production. This appears to be in line with previous strands of literature which argue that exporting entities are more likely to depend on external finance than domestically engaged firms mainly due to extra fixed and variable costs related to exporting, greater risks, and the larger working capital required. Among the empirical studies that have investigated the relationship between exporting

and firm's finance access and constraints are: Muûls (2008), Bellone et al. (2010), Bernard et al. (2010), Berman and Hericourt (2010), Minetti and Zhu (2011), Feenstra et al. (2011), Eck et al. (2012), Gashi et al. (2014), Alvarez and Lopez (2013). In line with the existing empirical evidence, a positive coefficient for the access to finance proxy measure is expected to be found in this analysis.

Location of the establishment is another measure controlled for in the empirical analysis. Being located in the capital city is expected to exert a positive impact on the firm's international competitiveness as it tends to capture the potential economies of agglomeration.<sup>79</sup> Marshall (1920) was the first who discussed the geographic concentration of firms in the same industry and the underlying benefits of location economies (Fujita et al., 1999). Aitken et al.'s (1997), Becchetti and Rossi's (2000) and Koenig's (2009) studies reveal that co-location, i.e. firms operating close to each other, has a positive and significant impact on firms' propensity to export. Focusing on the innovation-based, agglomeration economies, Dobkins (1996) argued that co-location is likely to positively influence export performance of firms. In their recent study, Cainelli et al. (2014) investigated the impact of localisation economies and related variety<sup>80</sup> on the internationalization of Italian manufacturing firms. Their findings suggest that both forms of agglomeration have a positive influence on firm's export decision, this being consistent with the view that firms benefit from co-location through gaining relevant information about international markets. Different measures of knowledge spillovers linked to agglomeration (e.g. export spillovers from MNEs and other exporters) have been used in the literature, however due to the lack of more comprehensive measures in BEEPS, the modelling is restricted to using location in the capital city as a proxy measure for agglomeration. Following Gashi et al. (2014) a dummy variable which takes the value of 1 if a firm is located in the capital city and zero otherwise has been introduced to the hypothesis testing.

In the same vein, this empirical investigation aims to test the potential impact of a firm's participation in any business association, and foreign material inputs on its international

<sup>&</sup>lt;sup>79</sup> Agglomeration economies are: "the benefits that come when firms and people locate near one another together in cities and industrial clusters" (Glaeser, 2010, p.1).

<sup>&</sup>lt;sup>80</sup> While the localization effect refers to firms being co-located with other firms that operate in the same industry, the related variety effect refers to firms operating in related industries.

competitiveness. Bennett (1998) and Gashi et al. (2014), referring to SMEs, argue that being a member of a business association is crucial for networking and as a consequence it is likely to have a positive influence on competitiveness. The main contribution of being a member of a business association, according to the former author, is "improvement of collective industry standards, through codes of conduct, information, collective events, benchmarking and management seminars" (p. 243).

Another potential determinant investigated in this analysis is the share of imported input materials. It has already been established in previous research that importing foreign intermediate inputs is likely to enhance firm's productivity. Among the studies that have found supporting evidence for this nexus are Kasahara and Rodrigue (2008), Halpern, Koren and Szeidl (2009), Smeets and Warzynski (2010), Bas and Strauss-Kahn (2014). As argued by Feng et al. (2012) the impact of importing intermediate inputs can be even stronger if domestic and foreign input materials complement each other or if the latter are more technologically advanced.<sup>81</sup> Studies that have focused on the relationship between foreign inputs and engaging in exporting activities are scarcer. Bas and Strauss-Kahn (2014) and Bas (2012) have found evidence supporting the positive impact of imported materials on exports. The former study shows that increasing the variety of imported inputs increases the number of exported products, whereas the latter suggests that a reduction in the foreign input tariffs increases the probability of a firm being engaged in export activities. In the same vein, Feng et al. (2012) argue that firms' shares of imported inputs generally exert a positive impact on their export volume and scope, and similar results were found in the context of transition economies by Aristei et al. (2013) and Gashi et al. (2014). Note that due to the issue of missing data, these particular variables will be included only in the imputed model.

Measures of capital intensity or investment activities have also been extensively used in empirical models of export propensity and intensity. Investing in physical assets is expected to be positively associated with a firm's probability of joining international markets and maintaining their market power (Wakelin, 1998a, Sterlacchini, 1999, Hollenstein, 2005,

<sup>&</sup>lt;sup>81</sup> Lo Turco and Maggioni (2013), on the other hand, contradict this view by suggesting that importing intermediate inputs from low income countries exerts a positive impact on firms' export propensity, however, the same does not hold when these inputs are imported from more developed countries.

Greenaway and Kneller 2007, Gashi et al., 2014, among others). As Dosi et al. (2013) argue, as a measure of the degree of a firm's investment in acquiring and renewing machinery, buildings and other physical assets, investment intensity can represent new technologies and innovative processes that would reduce the cost of production and consequently influence export propensity and intensity. The ratio of total capital stock to the number of employees or to total sales could be used to proxy these effects, however, given that data on stock values are rarely available, studies sometimes tend to use flow indicators. However, using flow<sup>82</sup> rather than stock data when calculating capital and/or investment intensities does not accurately capture their effects, hence these are excluded completely from the analysis. It is also worth noting that these flow variables in the BEEPS dataset have a very high incidence of missing data, which would have prevented their inclusion in the main econometric model.

In order to account for industry characteristics, the empirical model has been augmented by a set of industry dummies. Initially, an aggregated industry dummy differentiating between manufacturing, services and primary goods was considered. To be able to control for the technology intensity of goods, the former category has been further disaggregated into low tech, medium-low, medium-high and high-tech intensive goods using ISIC rev. 3 while services and primary goods are grouped in one category. The low and medium-low technology intensive goods have been grouped in one single category given the similarities in the estimated coefficients, whereas, the latter two technology categories (medium-high and high) have been included separately. Finally, the assessment also controls for time invariant country-specific characteristics (e.g. economic, political, cultural and institutional influencing factors) by including country dummies. Variable descriptions are presented in Table 6.1.

| Variable descriptions                       | Variable name                                                           | Expected sign  |  |
|---------------------------------------------|-------------------------------------------------------------------------|----------------|--|
| Direct exports as a % of total annual sales | exp_int                                                                 | Dep. variables |  |
| Export market share                         | exp_share_industryEU28<br>exp_share_industryEA40<br>exp_share_totalEU28 | Dep. variable  |  |

Table 6.1 Variable descriptions

<sup>&</sup>lt;sup>82</sup> The BEEPS dataset offers only flow data on spending on machinery, land and buildings.

|                                                                                                      | exp_share_totalEA40 |   |
|------------------------------------------------------------------------------------------------------|---------------------|---|
| % of full time employees who<br>completed a university degree                                        | emp_edu             | + |
| Provision of formal training programs for permanent employees                                        | emp_trng            | + |
| The share of skilled production workers in a firm's total full-time workforce                        | skilled_emp         | + |
| Top manager's level of formal education completed                                                    | manager_edu_dummy   | + |
| Top manager's number of years of experience working in this sector                                   | manager_exp         | + |
| Labour cost - Average wage*                                                                          | avrg_tlc            | + |
| Spending on R&D (dummy)                                                                              | RD_exp              | + |
| New products/services introduced over the last 3 years (dummy)                                       | new_prod_serv       | + |
| New production/supply methods<br>introduced over the last 3 years                                    | new_methods         | + |
| New organisational/management<br>practices or structures introduced over<br>the last 3 years (dummy) | new_org_str         | + |
| Higher/same level of technology<br>compared to the that of the firm's main<br>competitor (dummy)     | tech_dummy          | + |
| Number of permanent, full-time individuals working 3 fiscal yrs ago                                  | size                | + |
| Size squared                                                                                         | size_sqr            |   |
| Establishment's age/business<br>experience                                                           | age                 | + |
| Age squared                                                                                          | age_sqr             |   |
| Foreign ownership (dummy)                                                                            | foreign             | + |

|                                                      | state                | - |
|------------------------------------------------------|----------------------|---|
| State ownership (dummy)<br>Access to finance (dummy) | credit               | + |
| Location in the capital city (dummy)                 | location             | + |
| Participation in a business association (dummy)      | bus_assoc            | + |
| Foreign material inputs or supplies                  | f_inputs             | + |
| Manufacturing/Tech intensity<br>(dummies):           |                      |   |
| Low tech goods                                       | low tech             |   |
| Medium-low tech goods                                |                      | + |
| Medium-high tech goods                               |                      |   |
| High tech goods                                      | high_tech            |   |
| Country dummies                                      | dcountry1-dcountry30 |   |

Note: (\*) The variable was initially measured in local currency units and has been converted to Euros.

#### **6.2.1 Descriptive statistics**

A summary of descriptive statistics reveals that the percentage of exporting firms in the entire sample is fairly low. Only 16 percent of the firms have been engaged in exporting activities, with an average share of exports of approximately 39%. In line with previous empirical studies (Bernard and Jensen, 1995, 1999, 2001, Bernard and Wagner, 1997, 2001, Girma et al. 2004, etc) exporters appear to have better performance characteristics than non-exporting firms, i.e. exporters are larger, more productive, have more educated and experienced managers, are more inclined to offer training programmes for their employees, are more engaged in innovation activities, are more likely to be foreign-owned, have better access to finance, pay higher wages, and are more likely to produce medium and high tech intensive goods compared to non-exporters. Education of the workforce in our sample is a remarkable exception in this regard. Surprisingly, the descriptive statistics reveal that exporters have, on average, lower shares of employees with higher education. On average, the percentage of employees who completed a university degree is 5.9 percentage points lower for exporting firms compared to non-exporting firms (see Table 6.2). Note that, in order to account for the size differences across firms these averages have been weighted by the number of employees.

In terms of the size, exporters are, on average, 2.5 times larger than non-exporters. The age/experience of exporting firms is approximately 36% longer than of their non exporting counterparts. Concerning on-the-job training, nearly 49.1% of exporting firms seem to have offered formal training programmes compared to 35.5 % of non-exporting firms. They also seem to have more experienced top managers, i.e. the years of experience of the top managers are, on average, 18.6% higher for firms engaged in exporting activities. The share of skilled production workers is the same across these firms, while, exporters seem to have, on average, more highly educated top managers than non-exporters. The same applies to input and output measures of innovation. For instance, about 22.2 % of exporting firms have been engaged in R&D activities, while this share is much lower for firms that sell only domestically (8.2 %). On average, the share of exporting firms that have introduced new products/services, production/supply methods and new organisational/management practices or structures is relatively higher compared to nonexporting firms (around 30%, 37.3% and 28.4% of exporting firms, respectively, have been engaged in these three innovation activities over the three previous years, compared to just 19.4%, 21.5% and 18% of their non-exporting counterparts). Similarly, the share of imported input materials appears to be, on average, 43% higher for exporting firms. The above outlined differences between these two groups of firms are also supported by the t-test and Kruskal-Wallis.

There seem to be negligible differences in terms of whether a firm is located in the capital city or not, its participation in a business association and its technological progress compared to its main competitors. The null hypotheses of Kruskal-Wallis and t-test have not been rejected, suggesting no differences between exporters and non-exporters. In line with previous studies, foreign ownership seems to be significantly higher for exporters. The share of foreign-owed firms among exporters is 12%, whereas, it is as low as 2.8% for domestically engaged firms. Whilst, state ownership is slightly higher amongst non-exporters, an average difference of 7.3%. Although the average wage at first seem to be higher for non-exporting firms, after accounting for two extreme outlier observations<sup>83</sup>, a reverse relationship is revealed. Consistent with previous studies,

<sup>&</sup>lt;sup>83</sup> Immensely large values.

exporting firms in our sample, on average, appear to pay higher wages compared to their counterparts, i.e. the average wage is 89% higher in the exporting set of firms.<sup>84</sup>

|               | Exp  | orters   | Non-exporters |          | t-test               | K. Wallis |
|---------------|------|----------|---------------|----------|----------------------|-----------|
| Variable      | Obs  | Mean     | Obs           | Mean     | p.value              | p. value  |
| emp_edu       | 2532 | 21.73813 | 12589         | 27.68514 | 0.0000               | 0.0001    |
| emp_trng      | 2631 | .4918282 | 13037         | .3551431 | 0.0000               | 0.0001    |
| manager_exp   | 2599 | 19.09504 | 12794         | 16.10489 | 0.0000               | 0.0001    |
| manager_edu_d | 499  | .59318   | 800           | .38625   | 0.0000               | 0.0001    |
| skilled_emp   | 1668 | 58.35299 | 4212          | 58.47339 | 0.9307               | 0.7072    |
| RD_exp        | 2662 | .2227648 | 13090         | .0827349 | 0.0000               | 0.0001    |
| new_org_str   | 2675 | .2990654 | 13120         | .1947409 | 0.0000               | 0.0001    |
| new_prod_s~v  | 2673 | .3737374 | 13124         | .2150259 | 0.0000               | 0.0001    |
| new_methods   | 2670 | .2846442 | 13126         | .1797196 | 0.0000               | 0.0001    |
| location      | 2701 | .2188078 | 13182         | .2103626 | 0.6057               | 0.6010    |
| size          | 2674 | 125.7214 | 13121         | 49.26225 | 0.0000               | 0.0001    |
| age           | 2671 | 18.46069 | 13053         | 13.56094 | 0.0000               | 0.0001    |
| foreign_du~y  | 2650 | .1196226 | 13071         | .028766  | 0.0000               | 0.0001    |
| state_dummy   | 2652 | .010181  | 13068         | .0094888 | 0.9569               | 1.0000    |
| avrg_tlc      | 1886 | 11041.36 | 9354          | 5839.983 | 0.0346 <sup>85</sup> | 0.0001    |
| credit        | 2620 | .519084  | 13004         | .3141341 | 0.0000               | 0.0001    |
| f_inputs      | 1703 | 37.3810  | 4330          | 26.17968 | 0.0000               | 0.0001    |
| tech_dummy    | 425  | .88705   | 853           | .898007  | 0.5657               | 0.5595    |
| bus_assoc     | 246  | .59756   | 507           | .5936884 | 0.8707               | 0.8708    |
| CEEC_dummy    | 2701 | .5386894 | 13182         | .3074647 | 0.0000               | 0.0001    |
| tech_int_l~y  | 2701 | .3054424 | 13180         | .1789074 | 0.0000               | 0.0001    |
| te~mlowdummy  | 2701 | .1780822 | 13180         | .0982549 | 0.0000               | 0.0001    |
| t~mhighdummy  | 2701 | .1480933 | 13180         | .0537936 | 0.0000               | 0.0001    |
| tech_int_h~y  | 2701 | .0303591 | 13180         | .0141882 | 0.0000               | 0.0001    |
| nonclass_t~h  | 2701 | .338023  | 13180         | .6548558 | 0.0000               | 0.0001    |

Table 6.2 Descriptive statistics by export intensity

Notes:

(1) The null hypothesis for the t-test is that there is no difference in the mean values between exporters and non-exporters.

(2) The null hypothesis for Kruskal-Wallis test is that the two groups of firms (i.e. exporters and non-exporters) come from the same population.

<sup>&</sup>lt;sup>84</sup> The differences between these groups of firms are even more evident when we look at firms' total labour costs, rather than labour costs per employee, i.e. total wages paid by exporting firms are, on average, 632.4% higher than those of their non-exporting counterparts. However assessing the average wage measure seems more appropriate as it accounts for the size differences across firms, i.e. it prevents firms with a lower number of employees driving the final results of the former measure.

<sup>&</sup>lt;sup>85</sup> As the t test assumes normality in the data, we have also compared the mean values of the avrg\_tlc in logarithm terms and its p value is 0.0000.

In line with previous findings, a rough measure of productivity<sup>86</sup> seems to reveal that exporters are nearly 33% more productive than their non-exporting counterparts. Access to external finance appears to be higher among exporters as well: 52% of exporters have had a line of credit or a loan from a financial institution compared to 31.4% of non-exporters. A comparison between European transition economies (i.e. CEECs) and non-European transition economies (CIS, including Turkey) reveals that around 53.8 % of exporters belong to the former group of countries. The differences in the share of exported output among these groups of countries do not appear to be significantly large. The summary statistics reveal that Central and East European countries have exported, on average, 4% more output compared to their counterparts. With regard to the technology intensity of produced goods, the average share of low tech, mediumlow, medium-high, and high tech producers is 30.8%, 17.5%, 14.8 and 3% among exporting firms, respectively. The shares of non-exporting firms are much lower, i.e. 17.8%, 9.8%, 5.3% and 1.4%, respectively. Exporters appear to less likely engage in services and primary goods, as compared to their non-exporting counterparts. The differences between exporters and nonexporters are reported in Table 6.2. In addition, the p values of the t-test and Kruskal-Wallis test are reported in the table to assess if there are any significant differences between these two groups of firms. Note that the descriptive statistics for the entire sample are presented in Table A6.1 in the appendix section.

There are some outlier firms that seem to contribute further to the human capital gap between exporters and non-exporters. For instance, there are a number of firms that have a very high share of highly educated workforce (up to 100%) but are not engaged in any exporting activities (services and primary goods mainly). Whereas, on the other hand, there are several firms that export nearly all of their output but have zero percentage of employees with a higher education degree. To explore this further, industry characteristics and the technology intensity level of manufactured goods have also been taken into account. Again, the outcomes are contrary to expectations, since firms that are engaged in exporting services (mostly) and primary goods appear to be better endowed with an educated labour force than their manufacturing counterparts. It is important to note that the majority of firms that are engaged in selling internationally operate in the manufacturing industry and their average share of exports in sales is around 41%. An

<sup>&</sup>lt;sup>86</sup> This measure is constructed as total sales over total number of employees.

additional interesting finding is that even the non-exporting service and primary goods firms have, on average, a higher share of educated labour force compared to both exporting and nonexporting manufacturing firms. A further investigation involves assessing manufacturing firms by their technology intensity level (ISIC rev.3). According to this classification, the majority of manufacturing firms seem to export low-tech goods (45.8%), followed by medium-low (27.2%), medium-high (22.5%) and a very small proportion (4.5%) appear to export high tech goods. This remains true even after distinguishing between European and non-European transition economies. Firms from both groups of countries appear to be more engaged in exporting manufacturing goods, and their exports have been mainly concentrated on low and medium-low tech goods. With regard to their average percentage of highly educated labour force, in line with expectations, high tech exporters seem to have a better educated workforce, followed by medium-high, medium-low and low-tech exporters. However, contrary to expectations, their share of educated workforce remains lower than that of their non-exporting counterparts. With regard to the export market share variable, the summary statistics show that, on average, firms with higher shares<sup>87</sup> of exports in relation to EU-28 and EU-28+/EA40 have higher shares of employees with higher education compared to firms with lower shares of exports. The same applies to on-the-job training, i.e. firms that have higher shares of exports appear to be more inclined to offer formal training programmes to their employees. Surprisingly, the years of experience of the top manager appear to be, on average, lower for higher share exporters compared to their lower share counterparts, although the differences are not very large.

#### 6.3 Estimation methodology

Guided by the theoretical framework discussed earlier in the chapter, an empirical model has been developed to examine the impact of human capital endowments on firms' engagement in international markets through exporting. We make use of a large cross section of firms from 30 European and Euro-Asian transition economies<sup>88</sup> (and Turkey). First, the impact of various dimensions of human capital on firm's share of international sales - export intensity is assessed.

<sup>&</sup>lt;sup>87</sup> The mean value has been used here as a threshold level, i.e. higher and lower than the average export market share.

<sup>&</sup>lt;sup>88</sup> Albania, Armenia, Azerbaijan, Belarus, Bosnia-Herzegovina, Bulgaria, Croatia, Czech Republic, Estonia, Georgia, Hungary, Kazakhstan, Kosovo, Kyrgyzstan, Latvia, Lithuania, FYR Macedonia, Moldova, Mongolia, Montenegro, Poland, Romania, Russia, Serbia, Slovak Republic, Slovenia, Tajikistan, Turkey, Ukraine, and Uzbekistan.

Second, the impact of the level of education, training and experience on firm's export market share is examined. The latter is defined as the share of exports of a firm over the total exports of EU-28 and EU-28+/EA40<sup>89</sup> in the corresponding industry. Firm's share of exports, as explained in section 6.2, is introduced to capture relative international competitiveness. The baseline model specification is presented below:

$$Y_i = \beta_1 X_i + \beta_2 Z_i + u_i,$$
  $i = 1, 2, ..., N firms$  (6.1)

where  $Y_i$  denotes export intensity and export market share, respectively,  $X_i$  is a vector of human capital endowments, whereas,  $Z_i$  represents other firm-specific characteristics explained in more details in the previous section, and  $u_i$  denotes the error term. The baseline model has also been augmented by country and industry specific dummies<sup>90</sup> to capture country-specific characteristics (e.g. economic, political, cultural, institutional and other country unobserved factors) and industry-specific features (for manufacturing, services and primary goods). Furthermore, to account for the technology level of manufacturing goods, different technology intensity categories have been introduced into the model. Interaction terms between human capital and industry/tech intensity dummies have also been included to assess the impact of different dimensions of human capital on international competitiveness of firms engaged in different tech intensive activities. The same set of variables are used to predict both export intensity and export market share, as firm's human capital endowments and other characteristics are expected to have a similar impact on these two competitiveness dimensions. In order to assess any potential collinearity between the predictors in the baseline regression model, the variance inflation factors and the correlation matrix have been computed. The outcomes from both approaches appear to show no warning signs of potential multicollinearity in the data (see Table 6.3). The correlation matrix can be found in Table A6.2.

<sup>&</sup>lt;sup>89</sup> This refers to EU-28 plus Albania, Belarus, Georgia, Macedonia FYR, Moldova, Montenegro, Serbia, Bosnia-Herzegovina, Kazakhstan, Russia, Turkey, and Ukraine.

<sup>&</sup>lt;sup>90</sup> Given the nature of the data, the model does not control for sunk costs and unobserved heterogeneity.

|                                                                       |         | Sqrt  |           | R-      |          | Cond    |
|-----------------------------------------------------------------------|---------|-------|-----------|---------|----------|---------|
| Variable                                                              | VIF     | VIF   | Tolerance | Squared | Eigenval | Index   |
| emp_edu                                                               | 1.29    | 1.14  | 0.7725    | 0.2275  | 8.3050   | 1.0000  |
| emp_trng                                                              | 1.18    | 1.08  | 0.8505    | 0.1495  | 1.4585   | 2.3863  |
| manager_exp                                                           | 1.22    | 1.10  | 0.8209    | 0.1791  | 1.0369   | 2.8300  |
| lnavrg_tlc                                                            | 1.10    | 1.05  | 0.9061    | 0.0939  | 1.0279   | 2.8424  |
| RD_exp                                                                | 1.26    | 1.12  | 0.7915    | 0.2085  | 1.0033   | 2.8771  |
| new_org_str                                                           | 1.44    | 1.20  | 0.6966    | 0.3034  | 0.9472   | 2.9610  |
| new_prod_serv                                                         | 1.44    | 1.20  | 0.6933    | 0.3067  | 0.8209   | 3.1807  |
| new_methods                                                           | 1.57    | 1.25  | 0.6358    | 0.3642  | 0.7540   | 3.3188  |
| location                                                              | 1.05    | 1.02  | 0.9549    | 0.0451  | 0.6464   | 3.5843  |
| lnsize                                                                | 1.36    | 1.17  | 0.7361    | 0.2639  | 0.5987   | 3.7245  |
| lnage                                                                 | 1.36    | 1.16  | 0.7369    | 0.2631  | 0.5232   | 3.9842  |
| foreign_dummy                                                         | 1.08    | 1.04  | 0.9300    | 0.0700  | 0.4659   | 4.2222  |
| state_dummy                                                           | 1.03    | 1.02  | 0.9698    | 0.0302  | 0.4489   | 4.3015  |
| credit                                                                | 1.11    | 1.05  | 0.9035    | 0.0965  | 0.3668   | 4.7581  |
| low_mlow_tech                                                         | 1.18    | 1.09  | 0.8439    | 0.1561  | 0.2828   | 5.4192  |
| mhigh_tech                                                            | 1.10    | 1.05  | 0.9054    | 0.0946  | 0.1731   | 6.9266  |
| high_tech                                                             | 1.04    | 1.02  | 0.9609    | 0.0391  | 0.0818   | 10.0776 |
| CEEC_dummy                                                            | 1.40    | 1.18  | 0.7149    | 0.2851  | 0.0473   | 13.2529 |
| Mean VIF                                                              | 1.23    |       |           |         |          |         |
| Condition Num                                                         | ber     |       |           |         |          | 27.0919 |
| Eigenvalues & Cond Index computed from scaled raw sscp (w/ intercept) |         |       |           |         |          |         |
| Det(correlati                                                         | on matr | ix) 0 | .1301     |         |          |         |
|                                                                       |         |       |           |         |          |         |

Table 6.3 Collinearity diagnostics

To examine the impact of human capital on international competitiveness, a variety of econometric techniques have been used. From the range of estimation approaches commonly employed in the literature, some studies have relied on two stage estimators arguing that the probability of exporting and its intensity are determined by different underlying mechanisms. The Heckman selection approach has been frequently employed in this context and it involves two separate regression models. While this method requires at least one different regressor in the selection equation, there have been cases in the research work that have used the same set of determinants for both models (Cameron and Trivedi, 2009). According to Wagner (2001), two stage estimation approaches do not make sense theoretically in this particular context, as firms do not independently decide on whether to export or not, and how much to export. He argues that firms decide on exporting the quantity of goods that maximizes their profits and this might be zero. Hence, by arguing that the same mechanism is expected to determine both, the probability

of firms engaging in exporting activities and their export intensity and market share, the econometric strategy focuses entirely on one stage estimator methods.

Given that in this sample, export intensity and export market share are zero for a significant number of firms (84%) and positive and roughly continuous for others, a "corner solution model" has been employed in this econometric analysis. A standard Tobit approach (see Wooldridge, 2002 for further details on this approach) will be used to estimate the underlying model. The Tobit estimation relies on the strong assumptions of normality and homoskedasticity, and any departure from these results in inconsistent estimates. Concerning the specification of the model, an informal way of assessing the appropriateness of a Tobit model, according to Wooldridge (2002), is to compare the Tobit estimates with those of Probit after adjusting the former with the estimated standard error of the regression,  $\sigma$  (i.e.  $\beta j/\sigma$ ). If the estimates produced by the two estimators are significantly different, this suggests that the model is not well specified.

Despite its widespread use, Tobit has been criticized for not being an appropriate estimation approach when the dependent variable is by definition bounded by zero and one. While, in the sample, the upper bound is not highly represented, there are a very high number of observations in the lower bound (i.e. non-exporters). To address these criticisms, as a robustness check, we have implemented another estimation approach, which has been designed to account for the bounded nature of data. Quasi-likelihood estimation methods for models with fractional dependent variable have been developed by Papke and Wooldridge (1996). In this analysis a "fractional logit" model, which is modelled by a generalized linear model (GLM) with Binomial distribution and Logit link function will be employed. As outlined above, the key rationale for adopting such an estimator is to account for the bounded nature of the data in our sample. Furthermore, the actual approach does not rely on the assumption of normality, which is likely to be violated in our regression model. However, it is important to note that although the GLM framework has been extensively used in biostatistics, it has not been often employed in econometric studies. Hence, Cameron and Trivedi (2009, p. 321) hesitate to advocate its use in econometric modelling. Wagner (2001, 2012), Van Dijk (2002), and Eickelpasch and Vogel (2009) are among the few studies that have adopted this estimation method when assessing the

determinants of firms' export to sales ratio. It is important to note that, in the first empirical study the obtained estimates were quite consistent across different estimation approaches (e.g. Tobit and Fractional Logit), whereas in the second study some differences in the significance level of the estimated results have been found. Despite some recent applications of this method, it still remains under explored in empirical research, especially in the field of international competitiveness.

To assess the consistency of the estimated results, we have additionally employed a third estimation approach, the Poisson regression model. This model has been designed to model nonnegative, count dependent variables, with its main advantage being its ability to accommodate zero outcome values. In contrast to the Tobit's strong assumption of normality, this approach relies on a Poisson distribution of the dependent variable.<sup>91</sup> It is important to note that a Poisson distribution imposes restrictions on the conditional moments of the dependent variable that are frequently violated, e.g. the variance-mean equality (Wooldridge, 2002). A situation where the conditional variance is greater than the mean is very often observed when modelling count data. This situation is called "overdispersion<sup>92</sup>" and is the opposite of "underdispersion" which occurs when variance is smaller than the mean (Wooldridge, 2002). However, irrespective whether the assumption of a Poisson distribution is satisfied, Wooldridge (2009) argues that we will still be able to obtain consistent and asymptotically normal estimates. If the variance assumption is violated, the produced standard errors are incorrect, thus they should be properly adjusted. In the same vein, Cameron and Trivedi (2009) argue that if the distribution and variance assumptions fail, the quasi-maximum likelihood approach can be applied, which is similar to the Poisson maximum likelihood estimator (MLE) but uses robust variance estimates (p. 560).

Alternative specifications have been adopted in the research literature. For instance, a commonly used approach to dealing with overdispersed count data is the negative binomial regression model (Cameron and Trivedi, 2009). In addition, given that excess zero observations might be a possible cause of overdispersion, zero-inflated Poisson regression models and zero-inflated

<sup>&</sup>lt;sup>91</sup> While, this approach has been primarily designed to model count data, there are research studies that have estimated Poisson regression models with continuous outcomes, as well. As Gourieroux, Monfort and Trognon (1984) and Santos Silva and Tenreyro (2006) argue, data are not required to be Poisson distributed and furthermore, the dependent variable does not need to be an integer for the estimator to produce consistent results.

<sup>&</sup>lt;sup>92</sup> Note that overdispersion is likely to be problematic in GLM models as well.

negative binomial models have been used in various disciplines. However, a key feature of these approaches is the tendency to model zeros and positive values separately, as these are perceived to be determined by different mechanisms. As previously argued, we expect these outcome values to be generated by the same decision-making process, hence making these estimation strategies unsuitable for this current analysis. Hence, in this investigation, following Cameron and Trivedi's suggestion, a Poisson regression model has been employed with the vce (robust) option, to account for any distribution departures and overdispersion.

A prevalent issue when conducting survey-based analyses is missing data, which mainly occur when no responses are given to the survey questions. For the majority of variables in the dataset, the fraction of missing information<sup>93</sup> is fairly low (less than 5%), however, there are some explanatory variables that have high rates of missing data and due to that we were forced to exclude them completely from the baseline model specification.<sup>94</sup> The most common approach to dealing with survey non-response observations is listwise deletion, i.e. excluding missing observations completely from the analysis. If data are perceived to be missing completely at random (MCAR), listwise deletion would still produce consistent estimates but with large standard errors due to less information being used. However, this tends to become particularly problematic when the proportion of explanatory variables with missing data is substantial, as this would shrink considerably the total number of observations, and as a result, would lead to less efficient results (Cameron and Trivedi, 2005). The impact of this approach is more severe when the MCAR assumption does not hold and data are missing at random (MAR) or not at random (MNAR). In this case, the obtained coefficient estimates will be biased. However, as the authors argue, listwise deletion might still be suitable if the probability of missing observations for explanatory variables does not depend on the dependent variable. It also appears to be sensible when the share of incomplete cases, i.e. missing values, is not very large, e.g. five percent or less (Schafer, 1997).

<sup>&</sup>lt;sup>93</sup> Note that all responses coded as: don't know, refused, and does not apply are treated as missing values, given the difficulty of identifying the underlying reasons for those non-responses.

<sup>&</sup>lt;sup>94</sup> avrg\_tlc (29.01%), skilled\_emp (62.95%), f\_inputs (62.02%), tech\_dummy (91.95%), manager\_edu\_dummy (91.82%), bus\_assoc (95.26%)

A more innovative<sup>95</sup> strategy, which has become increasingly popular in handling missing data in survey analysis is the **multiple imputation** technique introduced by Donald Rubin. In order to mitigate the risk of making incorrect inferences from our incomplete data, as a robustness check, the model will be also estimated with imputed data through multiple imputation. According to Rubin (1987), multiple imputation involves replacing each missing observation with a set of *m* plausible values. Each set of imputed values is used to create a complete dataset, resulting in *m* complete datasets, which are then analyzed using any standard analyzing technique. The required number of imputations *m* appears to be subject to the rate of missingness, with 2-10 values being sufficient when there are not many missing values (Rubin, 1987). However, when the rate of missingness is relatively higher, a larger set of imputed values might be required to produce more reliable results. For instance, Schafer and Graham (2002) used 20 imputations for a share of nearly 80% of incomplete data. On the other hand, White et al. (2011) argue that number of imputations should be even higher, e.g. equal to the fraction of missing data. Once the datasets are analyzed, the results are combined<sup>96</sup> in order to produce the final estimates and standard errors.

The ultimate aim of multiple imputation, according to Rubin (1996), is not to generate information through simulated values but to address incomplete data in a way that leads to valid statistical inference. Nonetheless, in order for this approach to produce valid statistical inference, certain requirements must be satisfied. As emphasized in the imputation literature, the assumption about the pattern of missingness is one of the key requirements of this technique. Multiple imputation is generally perceived to produce valid inference when data are missing at random (MAR). In addition, both the model used for imputation and analysis (based on imputed data) should be correctly specified and in some sense, relate to each other (Allison, 2000). However, according to Collins et al. (2001), a slight departure from the MAR assumption, in many cases, has not proved to exert a significant impact on estimates and standard errors. There is no clear practical guidance on how much missing information is too much for multiple imputation to produce valid inference. According to White et al. (2011), subject to the validity of

<sup>&</sup>lt;sup>95</sup> Although, it was introduced in the early 70s, it has received greater attention lately given its easier implementation in various software packages.

<sup>&</sup>lt;sup>96</sup> The combination of estimates is undertaken using Rubin's rules, which are based on a Bayesian asymptotic theory. The combined variance-covariance matrix involves within imputation as well as between imputation variability (White et al., 2011)

MAR and the imputation procedure being applied accurately, any rate of missing data can be imputed. However, they also note that any departure from these is likely to have a stronger impact on estimates when the share of imputed data is larger. Hence, particular attention should be paid when the fraction of missing values is 30 - 50 percent. It is pertinent to note that there are very few empirical studies in the area of international competitiveness that have discussed or used multiple imputation in their investigations (Hollenstein, 2005, Gashi et al. 2013). Concerning the implementation of multiple imputation in Stata, various approaches have been introduced in recent years. The two main methods supported by this statistical software when the missing pattern of data is arbitrary are: multiple imputation using the multivariate normal regression (MVN) and multiple imputation using chained equations (MICE). The first approach relies on a well-established theoretical basis; however, it has been mainly designed to handle normally distributed continuous variables (Schafer, 1997). Given that this is highly likely to be violated in practice, other alternative approaches have been developed. MICE as a more innovative approach, has introduced more flexibility to the process of multiple imputation. Its key feature is the ability to address different types of variables (e.g. continuous, categorical, unordered categorical, ordered categorical) using a broad range of imputation methods (White et al., 2011, Royston and White 2011). It is worth noting that a drawback of this approach is the lack of a strong theoretical rationale. A detailed comparison of multivariate normal imputation (MVN) and multiple imputation using chained equations (MICE) can be found in Lee and Carlin (2010). Considering the need to impute binary and potentially non-normally distributed variables in this empirical analysis, the latter approach is adopted.

An important issue that has received particular attention in this literature is the specification of the imputation model, i.e. which variables to be included in the model. In addition to the variables to be used in the analysis model<sup>97</sup>, Rubin (1996) suggests including as many predictive variables as possible as these might contain potential information about missing data. In the same vein, Collins et al. (2001) argue that it is always beneficial to use a larger number of "auxiliary" variables in the imputation model. According to their assessment, the cost of using more variables is very small compared to the benefits, i.e. a reduced possibility of omitting a relevant cause of missing data and an increased chance of having more efficient and unbiased estimates.

<sup>&</sup>lt;sup>97</sup> This refers to the model used for hypothesis testing. This model is specified using the complete (imputed) dataset.

Similarly, White et al. (2011) argue that variables that are likely to determine the incomplete variable and also determine if that particular variable is missing should be part of the imputation model. Raghunathan et al. (2001) provide some evidence that including more predictor variables can result in relatively smaller standard errors compared to a model with fewer variables used.

As it is not feasible to include the entire BEEPS dataset (too many variables) into the imputation model, it was decided to rely on a less extensive set of potentially predictive variables and the dependent variable. While, the majority of studies seem to emphasize the importance of including the outcome variable in the imputation model (Schafer and Graham 2002, Allison 2002, White et al., 2011), whether imputed values should be retained for estimation is still unclear. For instance, von Hippel (2007) proposed a "multiple imputation, then deletion" method (MID), which excludes the dependent variable imputed values prior to the analysis stage, i.e. these values are not used to produce the ultimate estimates and standard errors. According to the author, the imputed values of the outcome variable add nothing but estimation error, hence they should be excluded from the analysis. Young and Johnson (2010), through the use of an observed dataset, compared the two techniques: when the imputed values of the dependent variable were deleted from the analysis model and when those were retained in the model. They found no major differences in the final results, hence suggesting that it might be sensible to keep these values in the analysis model if the number of datasets created is sufficient. Schafer and Graham (2002) argue that missing values of the dependent variable do not essentially differ from those on independent variables; hence, raising awareness about the potential problems associated with ignoring this type of missing information. Given that the fraction of missing information in the dependent variables is fairly low (1.1%), this is not expected to have any particular impact on the ultimate estimates.

The robustness of the results was also checked by controlling for possible sources of endogeneity in the baseline model. The direction of causality between education, innovation and a firm's engagement in exporting activities might not be very well determined; if it was hypothesized that there might be some feedback effects from the latter to the former measures. For instance, one can argue that exporting firms might be more likely to attract/hire highly educated individuals and are also more likely to engage in innovative activities. However, it is argued that, even if

such a feedback effect is likely to exist, it does not occur simultaneously, but it rather takes some time to materialize. To shed more light on this issue, various robustness checks have been carried out in this chapter. First, an instrumental variable approach has been adopted, by instrumenting education by the average share of educated workforce by industry and country.<sup>98</sup> Second, by making use of the BEEPS panel dataset, the share of employees with higher education has been regressed on lagged values of export intensity. In the former approach, the Wald test<sup>99</sup> from IVTobit fails to reject the null hypothesis of exogeneity of education at 5% and 1% (see Table A6.6.1), whereas in the second approach no supporting evidence is found for the hypothethised impact of lagged values of firm's export intensity on its current share of educated workforce.<sup>100</sup> Furthermore, as noted above, the summary statistics reveal that exporting firms have, on average, lower shares of educated individuals than non-exporters, which suggests that reverse causation is not likely to be present in the analysis.

The second robustness check has also been applied to on-the-job training and the input measure of innovation, R&D expenditure<sup>101</sup>, i.e. these measures have been regressed on lagged values of export intensity, and again, no evidence supporting the presence of endogeneity was found.<sup>102</sup> With regard to the output measures of innovation, we argue that endogeneity is not likely be of concern, as these are not measured in the same period as the dependent variable. These binary values refer to the preceding three year periods and there is no reason to hypothesize that the current values of export intensity could have influenced previous years' innovation activities. Average labour cost, as an alternative measure of human capital, might be thought of being endogenous, if we assume that exporting firms' potentially higher wages might be due to their participation in international markets. However, as Schank et al. (2010) argue, exporting firms are likely to pay higher wages because they are more productive not due to their engagement in export activities. Given that the average labour cost is not a key human capital proxy, no other robustness checks have been conducted to examine the direction of causality.

<sup>&</sup>lt;sup>98</sup> This measure aims to reflect the level of the workforce education required by firms to produce and export.

<sup>&</sup>lt;sup>99</sup> This is also confirmed by a similar test conducted after using IV Poisson (see Table A6.6.2).

<sup>&</sup>lt;sup>100</sup> See Table A6.6 for estimated results.

<sup>&</sup>lt;sup>101</sup> As these are binary variables, it is much harder to detect any potential endogeneity. Furthermore, IV approaches (e.g. ivtobit) do not handle binary endogeneous variables.

See Table A6.6 for a summary of results.

#### **6.4 Empirical evidence**

This section reports and interprets the results drawn from the various estimation methodologies explained in the previous section. Given the variety of model specifications used in the estimations, for practicality, the present section is split into two sub-sections. The first sub-section presents the results when export intensity is used to capture international competitiveness of firms, whereas in the second sub-section, we briefly report and comment on the findings from the export market share model(s).

#### **6.4.1 Export intensity**

The results reported in this section are mainly extracted from the baseline model specification established in section 6.3. In addition, an augmented regression model, which was developed after applying multiple imputation, will be briefly discussed. The entire sample estimates from the three estimation methods used in this analysis are initially reported and discussed. To examine the impact of human capital endowments on the export intensity of firms operating in different industries, with particular focus on the manufacturing sector, interaction terms between human capital proxies and three technological intensity dummies<sup>103</sup> (i.e. low and medium-low, medium-high and high-tech goods) have been introduced. A country group distinction has also been introduced to the modelling strategy. Models for European<sup>104</sup> transition economies, henceforth, referred asCEECs, and Euro-Asian<sup>105</sup> transition economies, henceforth, referred as country and their results are also reported and interpreted in this section. As highlighted in section 6.3, in order to assess the robustness of the results, three different estimation approaches have been adopted, though acknowledging the limitations of each method. Tobit<sup>106</sup>, as one of the most extensively used approaches in the literature, is very sensitive to the violation of non-normality.<sup>107</sup> Furthermore, it has also been criticized by some

<sup>&</sup>lt;sup>103</sup> The reference group being services and primary goods

<sup>&</sup>lt;sup>104</sup> Central and East European countries (CEECs)

<sup>&</sup>lt;sup>105</sup> The Commonwealth of Independent States (CIS) and Turkey

<sup>&</sup>lt;sup>106</sup> As a rough check of the appropriateness of the Tobit model, following Wooldridge (2002), we have compared the adjusted Tobit estimates with those of the Probit. The outcome of this check reveals no significant differences between the two estimation methods, suggesting that the Tobit estimates are consistent (see Table A6.3.6 in the appendix section).

 $<sup>1^{07}</sup>$  The *tobcm* test has been applied to check potential non-normality in our estimations. It is pertinent to note that this test is applicable only for models with zero lower bounds, and no upper limits. In our empirical analysis, we have used both lower and upper limits in Tobit, which makes the test unsuitable, however, given the lack of alternative tests, we had to rely on its outcome. The issue of non-normality in our estimations is likely to be due to

researchers for not being able to model the bounded nature of export intensity properly (Wagner, 2001, Van Dijk, 2002, Eickelpasch and Vogel, 2009, Hobdari et al., 2011). Fractional Logit, on the other hand, has been designed to account for the bounded nature of the data; however, it has not been very much explored in the related research work. Poisson, as an alternative estimator, appears to have its own drawbacks, e.g. overdispersion and sensitivity to the presence of too many zeros in the data. Given that all these methods have their own advantages and disadvantages, instead of choosing a preferred model for interpretation, the estimates from the three models are reported and commented upon jointly.<sup>108</sup>

The estimated results based on the full sample show that, in line with the expectations, and consistent with previous research studies, a higher share of employees with higher education has a positive and significant<sup>109</sup> impact on firm's export intensity (see columns 1, 3, and 5 of Table 6.4). The interpretation of results in Tobit and Fractional Logit is commonly undertaken using marginal or partial effects, while, Poisson estimates can be interpreted as either semi-elasticities or average marginal effects.<sup>110</sup> In Wooldridge (2009, p. 541), two types of partial/marginal effects for Tobit model are discussed: the 'conditional partial' effects for the expected values of the dependent variable (*y*), where y is greater than 0, and 'unconditional marginal' effect, where *E* (*y* | *x*). The main difference between the two is that the former option produces the expected values of y for the sub-population where y is only positive, while the latter covers the zero sub-population as well. In our estimation strategy, we adopt the latter approach for interpretation given that we are interested in examining the effects of variables on the whole population of firms.<sup>111</sup>

According to the Tobit's 'unconditional'<sup>112</sup> marginal effects, holding everything else constant, an increase of 10 percentage points in the share of employees with a university degree (*emp\_edu*) increases the share of international sales in a firm's total sales (*exp\_int*) by 0.2 percentage points

the dependent variable being highly skewed (too many zero values). Note that for the positive values, the variable is normally distributed.

<sup>&</sup>lt;sup>108</sup> A robust estimator of variance (i.e. VCE (robust)) has been used for all estimates

<sup>&</sup>lt;sup>109</sup> The statistical significance of their coefficient estimates is lower in Fractional logit and Poisson (10%)

<sup>&</sup>lt;sup>110</sup> For comparison purposes we have decided to interpret the marginal effects.

<sup>&</sup>lt;sup>111</sup> Current exporting firms and firms that are likely to engage in exporting in the future, i.e. potential exporters.

<sup>&</sup>lt;sup>112</sup> For comparison purposes, the "conditional" marginal effects have been also computed but have not been reported.

(column 1, Table 6.4). If this effect is interpreted at the mean value, an increase of 10 percentage points on *emp edu*, i.e. from 34% to 44%, increase the mean value of *exp int* from 6.24% to 6.44%. The average marginal effects of education in Fractional Logit and Poisson reveal that, ceteris paribus, an increase of 10 percentage points on the share of employees with higher education (*emp\_edu*) increases export intensity by 0.1 percentage points (see columns 3 and 5 of Table 6.4). While, the effect of the quality of workforce appears to be statistically different from zero, its economic effect, similar to the Tobit results, is relatively small, i.e. the mean value of export intensity increases from 6.24% to 6.34%. No supporting empirical evidence is found for the impact of on-the-job training (emp\_trng) and top manager's years of experience (manager exp) on a firm's extent of exporting. The estimates of these two variables are positive but statistically insignificant across the three estimation methods. A possible explanation for this insignificant impact might be that SMEs, which are highly represented in our sample, might be less inclined to offer training programmes compared to larger firms.<sup>113</sup> As Bryan (2006, p. 637) summarizes, "smaller budgets, shallow hierarchies, the lack of understanding of its benefits, higher labour turnover, and greater firm instability" are among the key reasons highlighted in the literature why smaller firms do not engage extensively in on-the-job trainings. As hypothesized, the summary statistics of our sample of firms reveal that SMEs are less involved in offering training programmes compared to large firms. On average, 68 % of large firms in our sample have provided on-the-job training, compared to around 36 % of SMEs. The estimated results reveal supporting evidence for the impact of this dimension of human capital<sup>114</sup> on larger firms' extent of exporting only.

While the top manager's level of education and year of experience might be considered as complementary rather than alternative proxies of his/her human capital, due to very high share of missing information for the former measure, we were forced to rely primarily on the partial effect of manager's years of experience<sup>115</sup> in the sector where the firm operates. The potential

<sup>&</sup>lt;sup>113</sup> The lack of more superior measures (e.g. the quality, frequency and duration of training) might be another potential reason for this insignificant results.

<sup>&</sup>lt;sup>114</sup> The share of educated workforce, on the other hand, appears to have a stronger impact on the export intensity of SMEs compared to large firms.

<sup>&</sup>lt;sup>115</sup> Note that, as reported, this measure contains very large values, implying highly experienced managers. However, some of these values do not seem very plausible, e.g. 60 or 65 years of experience, thus, raising doubts about the accuracy of this measure. Three very large observations (70-100) have been already excluded from the sample

impact of his/her level of education is estimated in the augmented model, discussed below, after using multiple imputation to fill in the missing data. Following previous studies, in an alternative regression model, the average labour cost (*lnavrg\_tlc*) is used as a proxy measure for human capital endowments (columns 1, 3 and 5, Table 6.4). Its coefficient exerted a positive and significant impact on firm's export intensity in the Tobit model, whereas, the Fractional Logit and Poisson models did not produce any statistically significant parameters for this measure.

|                    | To          | Tobit        |            | Fractional Logit |            | isson        |
|--------------------|-------------|--------------|------------|------------------|------------|--------------|
| VARIABLES          | exp_int     | exp_int      | exp_int    | exp_int          | exp_int    | exp_int      |
| emp_edu            | 0.000203*** | 0.000365***  | 0.000136*  | 0.000466***      | 0.000137*  | 0.000476***  |
|                    | (3.78e-05)  | (4.89e-05)   | (7.18e-05) | (0.000102)       | (7.59e-05) | (0.000115)   |
| emp_trng           | 0.00269     | -0.00230     | 0.00104    | -0.00926         | 0.00121    | -0.00660     |
|                    | (0.00193)   | (0.00288)    | (0.00330)  | (0.00601)        | (0.00336)  | (0.00677)    |
| manager_exp        | 6.00e-05    | -0.000250*   | 1.66e-05   | -0.000507*       | 1.97e-05   | -0.000599*   |
|                    | (8.70e-05)  | (0.000150)   | (0.000150) | (0.000307)       | (0.000146) | (0.000350)   |
| int_edu_lowmlow    |             | -0.000500*** |            | -0.000862***     |            | -0.000884*** |
|                    |             | (7.51e-05)   |            | (0.000146)       |            | (0.000161)   |
| int_edu_mhightech  |             | -0.000245**  |            | -0.000394**      |            | -0.000333*   |
|                    |             | (9.56e-05)   |            | (0.000181)       |            | (0.000186)   |
| int_edu_hightech   |             | -0.000273*   |            | -0.000236        |            | -0.000175    |
|                    |             | (0.000161)   |            | (0.000260)       |            | (0.000248)   |
| int_trng_lowmlow   |             | 0.0105**     |            | 0.0136*          |            | 0.0101       |
|                    |             | (0.00467)    |            | (0.00697)        |            | (0.00755)    |
| int trng mhigh     |             | 0.0142**     |            | 0.0266***        |            | 0.0202**     |
| _ 0_ 0             |             | (0.00701)    |            | (0.00911)        |            | (0.00918)    |
| int trng high      |             | -0.00436     |            | -0.00227         |            | -0.00535     |
| _ 0_ 0             |             | (0.00859)    |            | (0.0158)         |            | (0.0148)     |
| int mngexp lowmlow |             | 0.000465**   |            | 0.000644*        |            | 0.000728*    |
| _ 0 1_             |             | (0.000189)   |            | (0.000356)       |            | (0.000389)   |
| int mngexp mhigh   |             | 0.000423*    |            | 0.000711         |            | 0.000783*    |
|                    |             | (0.000245)   |            | (0.000442)       |            | (0.000448)   |
| int mngexn high    |             | 0.000758*    |            | 0.00114          |            | 0.00131*     |
|                    |             | (0.000458)   |            | (0.000815)       |            | (0.000763)   |
| new org str        | 0 00/197**  | 0.00516**    | 0.00663*   | 0.00655*         | 0 00628    | 0.00596      |
| new_org_str        | (0.00245)   | (0.00247)    | (0.00394)  | (0.00394)        | (0.00382)  | (0.00383)    |
| new_prod_serv      | 0.00533**   | 0.00509**    | -0.00449   | -0.00517         | -0.00423   | -0.00481     |

Table 6.4 Full sample estimated results (marginal effects)

estimations. Values greater than 60 were also initially excluded, but given the negligible differences in the final results, they were preserved in the final estimations.

|                             | (0.00226)   | (0.00227)   | (0.00376)  | (0.00377)   | (0.00370)   | (0.00370)   |
|-----------------------------|-------------|-------------|------------|-------------|-------------|-------------|
| new_methods                 | 0.00280     | 0.00287     | 0.00594    | 0.00632     | 0.00563     | 0.00609     |
|                             | (0.00251)   | (0.00254)   | (0.00426)  | (0.00424)   | (0.00414)   | (0.00412)   |
| location                    | -0.00484**  | -0.00443**  | -0.0151*** | -0.0143***  | -0.0135***  | -0.0128***  |
|                             | (0.00216)   | (0.00219)   | (0.00409)  | (0.00413)   | (0.00417)   | (0.00423)   |
| Insize                      | 0.0196***   | 0.0200***   | 0.0305***  | 0.0310***   | 0.0348***   | 0.0355***   |
|                             | (0.00290)   | (0.00288)   | (0.00523)  | (0.00517)   | (0.00541)   | (0.00542)   |
| Insize_sqr                  | -0.000851** | -0.000894** | -0.00151** | -0.00156*** | -0.00203*** | -0.00210*** |
|                             | (0.000360)  | (0.000357)  | (0.000611) | (0.000603)  | (0.000609)  | (0.000610)  |
| Inage                       | 0.00473     | 0.00596     | 0.00848    | 0.00978     | 0.00751     | 0.00897     |
|                             | (0.00508)   | (0.00513)   | (0.00857)  | (0.00854)   | (0.00870)   | (0.00869)   |
| Inage_sqr                   | -0.00155    | -0.00173*   | -0.00325*  | -0.00335**  | -0.00307*   | -0.00319*   |
|                             | (0.000985)  | (0.000991)  | (0.00166)  | (0.00165)   | (0.00164)   | (0.00163)   |
| foreign_dummy               | 0.0571***   | 0.0562***   | 0.0513***  | 0.0508***   | 0.0438***   | 0.0434***   |
|                             | (0.00809)   | (0.00796)   | (0.00526)  | (0.00522)   | (0.00464)   | (0.00462)   |
| state_dummy                 | -0.0104*    | -0.0108*    | -0.0378**  | -0.0378**   | -0.0396**   | -0.0397**   |
|                             | (0.00592)   | (0.00576)   | (0.0157)   | (0.0155)    | (0.0177)    | (0.0174)    |
| credit                      | 0.0109***   | 0.0111***   | 0.00928*** | 0.00942***  | 0.00996***  | 0.0101***   |
|                             | (0.00199)   | (0.00200)   | (0.00310)  | (0.00309)   | (0.00310)   | (0.00310)   |
| low_mlow_tech               | 0.0455***   | 0.0465***   | 0.0582***  | 0.0599***   | 0.0625***   | 0.0649***   |
|                             | (0.00297)   | (0.00747)   | (0.00354)  | (0.00895)   | (0.00397)   | (0.00989)   |
| mhigh_tech                  | 0.0925***   | 0.0802***   | 0.0740***  | 0.0599***   | 0.0765***   | 0.0629***   |
|                             | (0.00718)   | (0.0173)    | (0.00457)  | (0.0119)    | (0.00477)   | (0.0121)    |
| high_tech                   | 0.100***    | 0.0967**    | 0.0821***  | 0.0683***   | 0.0842***   | 0.0679***   |
|                             | (0.0151)    | (0.0428)    | (0.00826)  | (0.0240)    | (0.00778)   | (0.0210)    |
| RD_exp                      | 0.0156***   |             | 0.0123***  |             | 0.0109***   |             |
|                             | (0.00316)   |             | (0.00396)  |             | (0.00379)   |             |
| Inavrg_tlc                  | 0.00282***  |             | 0.00153    |             | 0.00171     |             |
|                             | (0.00101)   |             | (0.00163)  |             | (0.00164)   |             |
| No. of observations: 14,026 |             |             |            |             |             |             |

Notes: (1) Country dummies included but not reported

(2) RD\_exp and lnavrg\_tlc are estimated separately from other innovation and human capital measures, respectively

(3) \*\*\* p<0.01, \*\* p<0.05, \* p<0.1; Robust standard errors in parentheses

Once we distinguish between manufacturing, services and primary good sectors, the following evidence is revealed: the three estimation approaches suggest that a highly educated workforce (*int\_edu\_lowmlow, int\_edu\_mhightech, int\_edu\_hightech*) has a lower impact on export intensity of manufacturing firms compared to those operating in services and primary goods sectors (see columns 2, 4, 6 of the table above). A potential explanation for this, seemingly counterintuitive result, is that manufacturing firms in our sample are mainly engaged in exporting low and medium-low tech goods, where the qualification of the workforce might not be of primary

importance. This explanation is consistent with the interaction terms between medium-high and high-tech goods and education (*int\_edu\_mhightech, int\_edu\_hightech*), i.e. the effect of education on the manufacturing sector exports appears to get smaller or insignificant for more tech intensive goods. The statistics also show that, on average, manufacturing firms in the sample have lower shares of employees with higher education compared to their counterparts. Offering formal training programmes to employees (*int\_trng\_lowmlow, int\_trng\_mhightech, int\_trng\_hightech*), on the other hand, appears to have a stronger impact on a firm's extent of exporting in the manufacturing industry (i.e. medium-low and low and medium-high tech) compared to services and primary goods. Similarly, a stronger positive impact is found for manager's years of experience (*int\_mngexp\_lowmlow, int\_mngexp\_mhightech, int\_mngexp hightech*) in almost all technology intensive goods, although its significance level decreases or disappears in some cases (e.g. interaction with medium-high and high tech goods in Fractional Logit).

A firm's expenditure on R&D (*RD\_exp*) appears to have a positive impact on firm's export intensity. The estimated coefficient of new organisational/management practices or structures introduced over the three previous years (*new\_org\_str*) turned out to be positive and significant across the three models. The introduction of new products and/or services (*new\_prod\_serv*) was found to have a positive and significant impact on the extent of exporting only in the Tobit model, whereas, new methods introduced over the three previous years (*new\_methods*) did not seem to have any statistically significant impact on the export intensity of firms in any of the models. Note that, following previous discussion on whether input or output measures are better proxies of innovation, and also to avoid for potential correlation between the two, we have assessed their influences separately. As outlined in section 6.2, while R&D is highly likely to establish the basis for innovation, it might require some time until an innovation output is generated. Given that the existing evidence in this regard is mixed, assessing the impact of these two dimensions separately seems more sensible.

From the set of control variables, location in the capital city (*location*), which has been introduced to capture potential economies of agglomeration, turned out to have a negative impact on firm's export intensity. Although this result is contrary to expectations, it should be noted that

this is not a very comprehensive measure of potential knowledge spillovers or agglomeration. Furthermore, the data shows a very low concentration of firms in the capital cities. The size of the firm *(lnsize)*, as hypothesized, appears to have a positive impact on firm's share of international sales up to a certain threshold point, and after that it becomes negative *(lnsize\_sqr)*. Weak evidence is found for the potential role of firm's business experience *(lnage)* on its export intensity, its estimated parameter appears to be statistically insignificant (positive sign) up to a certain point and after that it becomes significant with a negative sign *(lnage\_sqr)*. In line with previous studies, the ownership structure appears to be an important determinant of a firm's participation in international markets via exporting. Being foreign-owned *(foreign\_dummy)* tends to positively influence a firm's export intensity compared to being domestic-owned. Whereas, the estimated parameter for state ownership *(state\_dummy)* is significant<sup>116</sup> and negative, suggesting that being owned by the state rather than by a private owner(s) exerts a negative impact on the extent of a firm's engagement in exporting activities.

Given the existing discussion in the literature that exporting firms are more likely to depend on external finance, we have hypothesized a positive coefficient for the access to finance dummy. The results from the three estimators/models suggest that having a line of credit or a loan from a financial institution *(credit)* has a positive impact on firm's export intensity. To account for industry characteristics, we have introduced manufacturing dummies<sup>117</sup> classified by their technology intensity (i.e. low\_mlow\_tech, mhigh\_tech, and high\_tech). Operating in the manufacturing sector seems to have positive impact on firm's share of international sales, with its impact becoming stronger in magnitude for firms producing and exporting medium-high and high-tech goods. Country specific conditions, as captured by country dummies<sup>118</sup> (*dcountry*), are generally found to be statistically significant, implying that economic, institutional, cultural and other country-specific factors explain a firm's extent of exporting. The entire sample results are reported in Tables A6.3, A6.4 and A6.5, whereas, the estimated results from the industry sub-analysis are presented in Tables A6.3.1, A6.4.1 and A6.5.1.

<sup>&</sup>lt;sup>116</sup> With the exception of the Tobit model.

<sup>&</sup>lt;sup>117</sup> The base group is services and primary goods.

<sup>&</sup>lt;sup>118</sup> Country dummies are not reported in the main text but can be found in the corresponding tables in the appendix section.

Following the discussion presented in section 6.3 on the issue of missing values, as a robustness check the full sample model has been estimated through the use of multiple imputation.<sup>119</sup> The estimated results from the imputed baseline model are generally consistent with those of non-imputed model with very few exceptions (see imputed results in Tables A6.3.7 A6.4.6, A6.5.6 in the appendix section). The estimate of the on-the-job training dummy  $(emp\_trng)$  becomes significant at 5% in the imputed Tobit model, while the share of educated workforce in Fractional Logit and Poisson models loses its 10% level of statistical significance. However, an issue of major concern to our empirical analysis has been the inability to include some potential determinants of export intensity (such as, the share of skilled employees, the education level of the top manager, technological progress, etc.) in the main model due to very high fractions of missing data. In order to be able to examine the impact of these variables on a firm's international competitiveness, assisted by the multiple imputation technique, an additional – augmented<sup>120</sup> regression model has been developed.

As discussed in the previous section, there is no strict agreement on the number of imputations to be used. While, there are studies that have used 20 imputations even for higher fractions of missing data, other researchers have suggested using higher number of imputations when the share of missing information is high (e.g. equal to the rate of missingness). Since the rate of missingness for these additional variables is very high, to assess the consistency of the results, we have applied different numbers of imputation, i.e. 45 and 95. Overall, the results are consistent in terms of the sign, while the magnitude and level of statistical significance of estimates appear to slightly change when the number of imputations is increased. For instance, from the additional human capital variables, the education level of the top manager (manager\_edu\_dummy) appears to have a positive and significant (at 10% significance level) impact across the three estimators, when 45 imputations are used, while its statistical significance to 95. The share of skilled workers in a firm's total workforce (skilled\_emp), the technological position compared to the main competitor (tech) and participation in a business

<sup>&</sup>lt;sup>119</sup> Given the relatively low share of missing data in the baseline model, the number of imputations used was 22.

<sup>&</sup>lt;sup>120</sup> In addition to the baseline model regressors, it also includes: the share of skilled production employees, the level of formal education of the top manager, a relative measure of technology, participation in a business association and the share of foreign material inputs.

association (*bus\_assoc*) appear to have no significant impact on a firm's export intensity. The parameter estimate of the share of imported input materials (*f\_inputs*), on the other hand, turned out to be highly significant and with an expected sign. The results from the augmented imputed model are presented in Tables A6.3.8, A6.3.9, A6.4.7, A6.4.8, A6.5.7 and A6.5.8 in the appendix section. Acknowledging that multiple imputation when the share of missing data is high is likely to be more problematic, these results will be interpreted with caution.

Since one of the main objectives of this thesis is to assess the international competitiveness of European transition economies, the actual sample has been split into two country groups, European transition economies (CEECs) and Euro-Asian transition economies (CIS and, Turkey). Again, the estimated results (marginal effects) of Tobit, Fractional Logit and Poisson will be interpreted jointly in order to assess the robustness of our findings (see Table 6.5). Based on the estimated results produced by the Tobit model, the share of employees with higher education appears to have a positive and highly significant impact on the export intensity of firms from both groups of countries. The unconditional marginal effects reveal that, holding everything else constant, an increase of 10 percentage points on firm's share of workforce with higher education (*emp\_edu*), increases its export intensity by 0.3 percentage points if operating in CEECs and 0.1 in CIS. It is important to note that these marginal effects, in economic terms, are not very large. Namely, a 10 percentage points increase in the mean value of *emp\_edu*, in CEECs (i.e. from 20% to 30%) increases the export intensity mean (exp\_int) from 10.01% to 10.31%. When the marginal effect is applied in the latter set of countries (CIS), its economic impact is slightly smaller, i.e. a 10 percentage point increase in the mean value of *emp\_edu* (from 41% to 51%) raises the mean value of export intensity (exp int) from 4.25% to 4.35%.

Note that, the significance level of this variable disappears when the other two alternative estimation methods are adopted. The training dummy, on the other hand, i.e. if a firm has introduced formal training programmes for its employees (*emp\_trng*), seems to have a positive impact on CIS firms' export intensity, while its impact is statistically insignificant for firms operating in CEECs. The results suggest that a discrete change of this variable from 0 to 1 (i.e. having provided trainings) increases the export intensity of CIS firms by 0.6-0.8 percentage points. The years of experience of the top manager in a particular sector (*manager\_exp*) turned
out to be insignificant across the three estimators (sign varies). When average labour cost (*lnavrg\_tlc*) is used to proxy human capital, its estimated coefficient is positive and significant in both sub-samples, however, this result is supported only by the Tobit estimator.

|               | Tobit       |             | Fractional logit |            | Poisson     |            |
|---------------|-------------|-------------|------------------|------------|-------------|------------|
|               | CEECs       | CIS         | CEECs            | CIS        | CEECs       | CIS        |
| VARIABLES     | exp_int,    | exp_int,    | exp_int,         | exp_int,   | exp_int,    | exp_int,   |
| emp_edu       | 0.000352*** | 0.000141*** | 0.000136         | 0.000111   | 0.000168    | 0.000101   |
|               | (0.000113)  | (3.35e-05)  | (0.000165)       | (6.85e-05) | (0.000174)  | (7.27e-05) |
| emp_trng      | -0.00648    | 0.00559***  | -0.0112          | 0.00795**  | -0.0110     | 0.00770**  |
|               | (0.00524)   | (0.00193)   | (0.00703)        | (0.00341)  | (0.00716)   | (0.00350)  |
| manager_exp   | 0.000122    | 8.20e-06    | -1.88e-05        | -9.68e-06  | -5.61e-05   | -8.56e-06  |
|               | (0.000250)  | (8.21e-05)  | (0.000324)       | (0.000153) | (0.000315)  | (0.000150) |
| new_org_str   | 0.0183***   | 0.00118     | 0.0142*          | 0.00345    | 0.0141*     | 0.00383    |
|               | (0.00697)   | (0.00223)   | (0.00840)        | (0.00389)  | (0.00812)   | (0.00377)  |
| new_prod_serv | 0.00626     | 0.00503**   | -0.00832         | -0.00276   | -0.00834    | -0.00204   |
|               | (0.00596)   | (0.00234)   | (0.00771)        | (0.00411)  | (0.00754)   | (0.00410)  |
| new_methods   | 0.0137*     | -0.00118    | 0.0122           | 0.00170    | 0.0117      | 0.00181    |
|               | (0.00718)   | (0.00225)   | (0.00875)        | (0.00448)  | (0.00846)   | (0.00446)  |
| location      | -0.00112    | -0.00551**  | -0.0154*         | -0.0142*** | -0.0125     | -0.0140*** |
|               | (0.00585)   | (0.00219)   | (0.00788)        | (0.00489)  | (0.00803)   | (0.00519)  |
| Insize        | 0.0558***   | 0.0102***   | 0.0619***        | 0.0163***  | 0.0722***   | 0.0198***  |
|               | (0.00864)   | (0.00266)   | (0.0115)         | (0.00535)  | (0.0125)    | (0.00551)  |
| Insize_sqr    | -0.00437*** | -9.85e-05   | -0.00429***      | -0.000458  | -0.00553*** | -0.000885  |
|               | (0.00113)   | (0.000322)  | (0.00142)        | (0.000594) | (0.00148)   | (0.000588) |
| Inage         | 0.00486     | 0.00188     | -0.00637         | 0.0101     | -0.0117     | 0.0105     |
|               | (0.0166)    | (0.00434)   | (0.0206)         | (0.00817)  | (0.0204)    | (0.00848)  |
| Inage_sqr     | -0.00314    | -0.000493   | -0.00262         | -0.00242   | -0.00173    | -0.00252   |
|               | (0.00312)   | (0.000861)  | (0.00389)        | (0.00161)  | (0.00378)   | (0.00164)  |
| foreign_dummy | 0.102***    | 0.0420***   | 0.0784***        | 0.0387***  | 0.0670***   | 0.0361***  |
|               | (0.0160)    | (0.0103)    | (0.0101)         | (0.00651)  | (0.00890)   | (0.00594)  |
| state_dummy   | -0.0407**   | -0.00718*   | -0.192***        | -0.0224*   | -0.230***   | -0.0219*   |
|               | (0.0205)    | (0.00418)   | (0.0418)         | (0.0119)   | (0.0574)    | (0.0125)   |
| credit        | 0.0200***   | 0.00782***  | 0.0126*          | 0.00712**  | 0.0135**    | 0.00700**  |
|               | (0.00523)   | (0.00198)   | (0.00674)        | (0.00313)  | (0.00672)   | (0.00318)  |
| low_mlow_tech | 0.117***    | 0.0193***   | 0.109***         | 0.0250***  | 0.120***    | 0.0277***  |
|               | (0.00796)   | (0.00264)   | (0.00680)        | (0.00400)  | (0.00811)   | (0.00444)  |
| mhigh_tech    | 0.188***    | 0.0497***   | 0.129***         | 0.0377***  | 0.136***    | 0.0398***  |
|               | (0.0179)    | (0.00635)   | (0.00986)        | (0.00471)  | (0.0102)    | (0.00506)  |
| high_tech     | 0.203***    | 0.0551***   | 0.152***         | 0.0375***  | 0.156***    | 0.0409***  |
|               | (0.0421)    | (0.0122)    | (0.0182)         | (0.00789)  | (0.0160)    | (0.00824)  |
| RD_exp        | 0.0360***   | 0.00900***  | 0.0262***        | 0.00473    | 0.0243***   | 0.00476    |
|               | (0.00821)   | (0.00310)   | (0.00817)        | (0.00428)  | (0.00778)   | (0.00414)  |
| Inavrg_tlc    | 0.00554*    | 0.00183**   | 0.00312          | 0.000762   | 0.00351     | 0.000818   |

Table 6.5 Estimated results (marginal effects) by country group

|              | (0.00329) | (0.000847) | (0.00400) | (0.00147) | (0.00403) | (0.00148) |
|--------------|-----------|------------|-----------|-----------|-----------|-----------|
| Observations | 4,836     | 9,190      | 4,836     | 9,190     | 4,836     | 9,190     |

Notes: (1) Country dummies included but not reported

(2) RD\_exp and lnavrg\_tlc are estimated separately from other innovation and human capital measures, respectively

(3) \*\*\* p<0.01, \*\* p<0.05, \* p<0.1; Robust standard errors in parentheses

(4) CIS subsample also covers Turkey

From the set of innovation measures, the introduction of new organisational, management practices or structures ( $new_org_str$ ) appears to exert a positive and significant impact on the export intensity of firms in CEECs only. Little<sup>121</sup> empirical evidence is found for the importance of new products and/or services ( $new_prod_serv$ ) and new methods (( $new_methods$ ) on export intensity in either set of countries. R&D expenditure ( $RD_exp$ ), on the hand, as a measure of input innovation, appears to have a positive and significant impact on the export intensity of firms located in CEECs, but an insignificant impact for those operating in CIS (with the exception of the Tobit model).

The sign of the location estimate (*location*) remains negative, even after splitting the sample in two, though its significance level is not consistent across the estimators. The coefficient on the size of firms (*lnsize*) for both groups of countries remains positive up to a certain threshold point and after that it becomes negative (*lnsize\_sqr*). This is consistent across the three models, though the sign of the quadratic term is insignificant for CIS. The parameter estimates of business experience (*lnage*) and its squared term (*lnage\_sqr*) are insignificant in both sub-samples. The hypothesized importance of ownership structure to firms' participation in international markets, is also confirmed when CEECs and CIS are estimated separately. As we can see from the results in Table 6.5, foreign ownership (*foreign\_dummy*) has a highly significant impact on firm's export intensity, irrespective of the country group it belongs, while state ownership (*state\_dummy*) is negative and significant, with the expectation of the Tobit parameter estimate. The expected positive impact of a firm's access to external finance (*credit*) on its exporting extent is re-established in both sets of countries. Being involved in a manufacturing industry, other things kept unchanged, has a positive impact on a firm's export intensity in all transition countries. Again, the effect is larger for firms that are involved in manufacturing more

<sup>&</sup>lt;sup>121</sup> The coefficient of the former measure of innovation is significant for N-ETEs, only in the Tobit, while the parameter of the latter measure is again significant in ETEs only in the Tobit model.

technology-intensive goods as reflected by the larger parameters of medium-high (*mhigh\_tech*) and high-tech (*high\_tech*) dummies.

Consistent with the full sample estimations, three interaction terms between human capital measures of technology intensity industries have been included in the model(s). While the signs of the interaction parameters are generally consistent, their statistical significance is rather mixed (see Table 6.6). While, in the CEECs sub-sample, the share of workforce with higher education appears to exert a lower impact on the manufacturing industries (i.e. int\_edu\_lowmlow, and *int\_edu\_mhightech*) compared to services and primary goods, the evidence is slightly weaker for CIS. In the latter set of countries, a highly educated workforce exerts a lower impact on the export intensity of low and medium-low tech firms (*int\_edu\_lowmlow*) only. On the hypothesis as to whether offering formal training programmes is of more use for manufacturing firm's export intensity, across the two country groups, evidence is again mixed. The only significant interaction term revealed in the CEECs sub-sample is *int\_trng\_mhigh*, which suggests that firms operating in medium-high tech industries benefit more from training programmes compared to non-manufacturing industries. Insufficient evidence is found for the role of on-the-training across different industries in the CIS. The evidence for the impact of top manager's experience on a firm's extent of exporting appears to be scarce as well. While the signs of the interaction terms between manager's experience and tech intensive industries (int\_mngexp\_lowmlow, int\_mngexp\_mhigh, and int\_mngexp\_high) are positive, their estimated parameters are insignificant, with the exception of Tobit estimates in the CIS sub-sample. The final results for these two groups of countries are also reported in Tables A6.3.2-A6.3.5, A6.4.2-A6.4.5, and A6.5.2-A6.5.5.

|           | Tobit             |                 | Fractional logit  |                 | Poisson           |                 |
|-----------|-------------------|-----------------|-------------------|-----------------|-------------------|-----------------|
| VARIABLES | CEECs<br>exp_int, | CIS<br>exp_int, | CEECs<br>exp_int, | CIS<br>exp_int, | CEECs<br>exp_int, | CIS<br>exp_int, |
| emp_edu   | 0.000621***       | 0.000225***     | 0.000618***       | 0.000271**      | 0.000719***       | 0.000277**      |
|           | (0.000132)        | (4.95e-05)      | (0.000212)        | (0.000117)      | (0.000245)        | (0.000132)      |
| emp_trng  | -0.0103           | 0.00132         | -0.0212*          | 0.000791        | -0.0174           | 0.00184         |
|           | (0.00713)         | (0.00309)       | (0.0116)          | (0.00700)       | (0.0135)          | (0.00781)       |

Table 6.6 Industry estimated results (marginal effects) by country group

| manager exp        | -9.50e-05   | -0.000293*   | -0.000467   | -0.000447   | -0.000761   | -0.000471   |
|--------------------|-------------|--------------|-------------|-------------|-------------|-------------|
|                    | (0.000365)  | (0.000166)   | (0.000569)  | (0.000377)  | (0.000676)  | (0.000422)  |
| int edu lowmlow    | -0.00116*** | -0.000225*** | -0.00158*** | -0.000395** | -0.00169*** | -0.000422** |
|                    | (0.000248)  | (6.95e-05)   | (0.000345)  | (0.000154)  | (0.000379)  | (0.000169)  |
| int edu mhightech  | -0.000672*  | -6.49e-05    | -0.000947*  | -3.90e-05   | -0.000915*  | -3.78e-05   |
| 0                  | (0.000344)  | (8.35e-05)   | (0.000492)  | (0.000172)  | (0.000482)  | (0.000185)  |
| int_edu_hightech   | 0.000120    | -0.000225    | 0.000474    | -0.000257   | 0.000336    | -0.000258   |
|                    | (0.000577)  | (0.000141)   | (0.000567)  | (0.000249)  | (0.000473)  | (0.000271)  |
| int_trng_lowmlow   | 0.00695     | 0.00856*     | 0.0126      | 0.00885     | 0.00719     | 0.00723     |
|                    | (0.0110)    | (0.00491)    | (0.0140)    | (0.00785)   | (0.0153)    | (0.00857)   |
| int_trng_mhigh     | 0.0412*     | 0.00451      | 0.0479**    | 0.0117      | 0.0351*     | 0.00860     |
|                    | (0.0216)    | (0.00565)    | (0.0201)    | (0.00944)   | (0.0192)    | (0.0100)    |
| int_trng_high      | -0.0328     | 0.00442      | -0.0284     | 0.0143      | -0.0261     | 0.0134      |
|                    | (0.0203)    | (0.00983)    | (0.0347)    | (0.0157)    | (0.0298)    | (0.0168)    |
| int_mngexp_lowmlow | 0.000532    | 0.000378**   | 0.000774    | 0.000442    | 0.00103     | 0.000466    |
|                    | (0.000519)  | (0.000193)   | (0.000708)  | (0.000412)  | (0.000779)  | (0.000450)  |
| int_mngexp_mhigh   | 0.000286    | 0.000374*    | 0.000479    | 0.000657    | 0.000750    | 0.000638    |
|                    | (0.000798)  | (0.000227)   | (0.00105)   | (0.000458)  | (0.000968)  | (0.000487)  |
| int_mngexp_high    | 7.94e-05    | 0.000844**   | 0.000534    | 0.00123     | 0.00121     | 0.00120     |
|                    | (0.00165)   | (0.000378)   | (0.00174)   | (0.000821)  | (0.00151)   | (0.000846)  |
| Observations       | 4,836       | 9,190        | 4,836       | 9,190       | 4,836       | 9,190       |

Notes: (1) Control variables and country dummies included but not reported

(2) RD\_exp and lnavrg\_tlc are estimated separately from other innovation and human capital measures, respectively

(3) \*\*\* p<0.01, \*\* p<0.05, \* p<0.1; Robust standard errors in parenthese

(4) CIS subsample also covers Turkey

#### 6.4.2 Export market share

This section reports and comments on the estimated results when an alternative measure of international competitiveness is adopted. In line with the previous country and industry level empirical analyses, an export market share measure has been used to capture the international competitiveness of firms in the sample. In the actual analysis, four different specifications of the dependent variable have been constructed. The first two specifications refer to the share of a firm's exports over the exports of EU-28 and EU-28+/EA40<sup>122</sup> in a particular industry<sup>123</sup>, while, the second two specifications constructed use more aggregated data, i.e. the total rather than industry level exports of EU-28 and EU-28 +. The marginal effects and standard errors from the former two model specifications (i.e. exp\_share\_industryEU28 and exp\_share\_industryEA40) are reported in Table 6.7 while, the final results from the latter two models (i.e.

<sup>&</sup>lt;sup>122</sup> This refers EU-28 + Albania, Belarus, Georgia, Macedonia FYR, Moldova, Montenegro, Serbia, Bosnia-Herzegovina, Kazakhstan, Russia, Turkey, and Ukraine.

<sup>&</sup>lt;sup>123</sup> Manufacturing, Services and Primary goods industries.

exp\_share\_totalEU28 and exp\_share\_totalEA40) are presented in Tables A6.7.6-A6.7.7, A6.8.6-A6.8.7, and A6.9.6-A6.9.7. While in principle the estimators used in the previous analysis, i.e. Tobit, Fractional Logit and Poisson, seem to also be econometrically suitable for the new dependent variables, given that the share values are very small the latter two approaches might be slightly more sensitive than Tobit. As previously argued, Papke and Wooldride (1996) have introduced the Fractional Logit approach to model data that are bounded 0 and 1 (100%). In the actual analysis, this is less of a problem as we have no higher bounds restrictions - the majority of the values are close to zero. However, having many zeros and almost zero values seems to exacerbate the issue of overdispersion in both models (i.e. Fractional logit and Poisson). In this section, the marginal effects from the three estimation methods will be reported but only the Tobit results will be commented upon. Note that, partially due to high share of zero and very small values, non-normality is likely to be violated in the Tobit model. The presence of some outlier observations<sup>124</sup> seems to exacerbate this even further. We are aware of the potential consequences of these on this estimations; hence the final estimates will be interpreted with great caution. For complete Tobit estimate results see Tables A6.7, A6.7.3, whereas for the Fractional Logit and Poisson estimates check Tables, A6.8, A6.8.3, A6.9 and A6.9.3 in the appendix section.

|           | Tobit          |                | Fraction       | al logit <sup>125</sup> | Poisson        |                |
|-----------|----------------|----------------|----------------|-------------------------|----------------|----------------|
| VARIABLES | exp_share_indu | exp_share_indu | exp_share_indu | exp_share_indu          | exp_share_indu | exp_share_indu |
|           | stryEU28       | stryEA40       | stryEU28       | stryEA40                | stryEU28       | stryEA40       |
| emp_edu   | 1.72e-05***    | 2.02e-05***    | 1.29e-07       | 2.40e-07                | 1.29e-07       | 2.41e-07       |
| emp_trng  | (3.632-06)     | (4.17e-06)     | (1.32e-07)     | (1.47e-07)              | (1.33e-07)     | (1.48e-07)     |
|           | 0.000293**     | 0.000298       | -2.34e-06      | -3.30e-06               | -2.35e-06      | -3.30e-06      |
|           | (0.000146)     | (0.000184)     | (2.79e-06)     | (6.01e-06)              | (2.80e-06)     | (6.02e-06)     |

Table 6.7 Full sample estimated results (marginal effects)

<sup>124</sup> Cook (1977) has introduced a tool for detecting influencing observations in linear regression. Cook's distance is a measure of "the change in the regression coefficients that would occur if this case was omitted, thus revealing which cases are most influential in affecting the regression equation" (Stevens, 1984, p.341). Note that, if Cook's distance is revealed to be greater than 4/sample size (N), the observation is perceived to have a high influence, whereas, if the distance is greater than 1, the observation is considered to be a big outlier. In our analysis, according to **Cook's distance measure**, there seem to be quite a few influencing observations, but there is just one big outlier in each model specification. The big outlier observations were initially excluded from the estimations but given that the changes in the ultimate results were negligible, the full sample estimates are reported in this section.

<sup>125</sup> The dependent variable in Tobit is in percentages while, in Fractional Logit and Poisson, we have used proportion data mainly because the former approach does not support values greater than 1. Note that latter becomes an issue due to some outlier observations as otherwise, the share values are very small.

| manager_exp        | -7.49e-06   | -7.81e-06   | -3.55e-07    | -3.48e-07    | -3.56e-07    | -3.48e-07    |
|--------------------|-------------|-------------|--------------|--------------|--------------|--------------|
|                    | (8.24e-06)  | (9.29e-06)  | (3.33e-07)   | (3.21e-07)   | (3.36e-07)   | (3.22e-07)   |
| new_org_str        | 0.000552*** | 0.000418    | 1.06e-05**   | 5.88e-06     | 1.07e-05**   | 5.88e-06     |
|                    | (0.000211)  | (0.000263)  | (4.99e-06)   | (6.71e-06)   | (5.02e-06)   | (6.72e-06)   |
| new_prod_serv      | 0.000827*** | 0.000925*** | -2.86e-06    | -5.46e-07    | -2.90e-06    | -5.59e-07    |
|                    | (0.000221)  | (0.000235)  | (4.64e-06)   | (5.60e-06)   | (4.67e-06)   | (5.61e-06)   |
| new_methods        | -0.000144   | -1.28e-05   | -3.75e-06    | 1.68e-06     | -3.75e-06    | 1.69e-06     |
|                    | (0.000192)  | (0.000280)  | (4.85e-06)   | (7.47e-06)   | (4.87e-06)   | (7.47e-06)   |
| location           | 0.000502**  | 0.000573**  | 7.89e-06     | 1.03e-05     | 7.93e-06     | 1.03e-05     |
|                    | (0.000227)  | (0.000271)  | (1.06e-05)   | (7.58e-06)   | (1.07e-05)   | (7.59e-06)   |
| Insize             | 0.000762**  | 0.00104**   | -1.84e-06    | 8.03e-06     | -1.84e-06    | 8.06e-06     |
|                    | (0.000315)  | (0.000448)  | (6.74e-06)   | (8.07e-06)   | (6.77e-06)   | (8.09e-06)   |
| lnsize_sqr         | 4.11e-05    | 2.27e-05    | 5.85e-07     | -2.19e-07    | 5.86e-07     | -2.21e-07    |
|                    | (4.16e-05)  | (5.75e-05)  | (6.35e-07)   | (6.54e-07)   | (6.37e-07)   | (6.54e-07)   |
| Inage              | 0.000328    | 0.000393    | 4.06e-06     | -7.58e-06    | 4.11e-06     | -7.58e-06    |
|                    | (0.000447)  | (0.000486)  | (1.06e-05)   | (1.01e-05)   | (1.07e-05)   | (1.01e-05)   |
| Inage_sqr          | -5.15e-05   | -6.98e-05   | -6.67e-07    | 1.81e-06     | -6.82e-07    | 1.81e-06     |
|                    | (8.84e-05)  | (9.82e-05)  | (1.84e-06)   | (1.77e-06)   | (1.85e-06)   | (1.77e-06)   |
| foreign_dummy      | 0.00191***  | 0.00226***  | -4.69e-06    | -5.89e-06    | -4.70e-06    | -5.89e-06    |
|                    | (0.000405)  | (0.000540)  | (7.17e-06)   | (6.22e-06)   | (7.20e-06)   | (6.22e-06)   |
| state_dummy        | -0.000766   | -0.000803   | -1.05e-05    | -2.11e-05*   | -1.05e-05    | -2.11e-05*   |
|                    | (0.000511)  | (0.000567)  | (9.11e-06)   | (1.10e-05)   | (9.18e-06)   | (1.10e-05)   |
| credit             | 0.00120***  | 0.00132***  | 1.22e-05*    | 1.36e-05**   | 1.23e-05*    | 1.36e-05**   |
|                    | (0.000184)  | (0.000203)  | (6.56e-06)   | (6.26e-06)   | (6.58e-06)   | (6.27e-06)   |
| low_mlow_tech      | 0.00274***  | 0.00279***  | -2.27e-05*** | -3.07e-05*** | -2.28e-05*** | -3.07e-05*** |
|                    | (0.000213)  | (0.000246)  | (5.66e-06)   | (9.93e-06)   | (5.71e-06)   | (9.96e-06)   |
| mhigh_tech         | 0.00584***  | 0.00599***  | -1.94e-05*** | -2.68e-05**  | -1.95e-05*** | -2.68e-05**  |
|                    | (0.000527)  | (0.000571)  | (5.15e-06)   | (1.26e-05)   | (5.19e-06)   | (1.26e-05)   |
| high_tech          | 0.00612***  | 0.00610***  | -2.58e-05*** | -4.95e-05*** | -2.58e-05*** | -4.95e-05*** |
|                    | (0.00103)   | (0.00110)   | (7.70e-06)   | (1.64e-05)   | (7.74e-06)   | (1.65e-05)   |
| RD_exp             | 0.00141***  | 0.00172***  | 4.54e-06     | 9.37e-06     | 4.54e-06     | 9.38e-06     |
|                    | (0.000277)  | (0.000339)  | (4.40e-06)   | (6.30e-06)   | (4.41e-06)   | (6.31e-06)   |
| Inavrg_tlc         | 0.000363*** | 0.000373*** | 7.82e-07     | 1.50e-06     | 7.89e-07     | 1.51e-06     |
|                    | (7.75e-05)  | (7.60e-05)  | (2.33e-06)   | (1.05e-06)   | (2.35e-06)   | (1.06e-06)   |
| No. of observation | is: 13,711  |             |              |              |              |              |

Notes: (1) Country dummies included but not reported

(2) RD\_exp and lnavrg\_tlc are estimated separately from other innovation and human capital measures, respectively

(3) \*\*\* p<0.01, \*\* p<0.05, \* p<0.1; Robust standard errors in parentheses

The unconditional marginal effects of the Tobit suggest that having a higher share of graduate employees is likely to have a positive impact on a firm's export market share. Holding everything else constant, an increase of 10 percentage points in the share of employees with higher education,  $(emp\_edu)$  increases the share of exports of a firm by 0.000172 and 0.000202

percentage points, respectively. If these effects are applied at the mean values of the measures, the results reveal that, a 10 percentage points increases in *emp edu* (i.e. from 34% to 44%) is reflected in a 23.5% (i.e. from 0.00073% to 0.00090%) and 19.3% (i.e. from 0.00104% to 0.00124%) values *exp\_share\_industryEU28* and increase in the mean of exp share industry EA40, respectively. Offering on-the-job training programmes to employees appears to have a positive and significant impact on a firm's share of exports in the EU-28, but not when EA40 is used as a reference group of countries. Ceteris paribus, a discrete change from 0 to 1 in emp\_trng increases the export market share of firms with reference to EU-28 by 0.000293. The estimate parameter of manager's years of experience (manager\_exp) is not statistically different from zero, implying that there is no evidence that export market share of the firm is determined by the experience of top manager's experience (see columns 1 and 2 of Table 6.7).

The introduction of new products and/or services over the period of three years (*new\_prod\_serv*) appears to have a highly significant impact on export market share, while, the parameter estimate of new organisational/ management practices or structures (new\_org\_str) turned out to be positive and significant only when the first specification of export market share is used (i.e. EU-28). While, the introduction of new methods (new\_methods) turned out statistically insignificant across all model specifications. When, R&D expenditure is estimated separately, its coefficient (RD\_exp) seems to have a positive and highly statistically significant on export market share regardless of the dependent variable specification used. From the set of control variables, in line with expectations, location (location) in the capital city exerts a positive impact on a firm's export market share and so does the size of the firm (*lnsize*). No empirical evidence is found for its squared term (*lnsize\_sqr*), though, implying that the absence of non-linearities in the impact of firm's size on market share. The hypothesis that a firm's business experience (lnage and *lnage\_sqr*) has a significant impact on firm's export market share is not supported empirically. As expected, foreign ownership (*foreign\_dummy*) turned out to have a positive and highly significant impact on a firm's export market share, while the evidence for state ownership (state\_dummy) is mostly insignificant (negative sign). The parameter estimate for credit suggests that having a line of credit or a loan from a financial institution has a positive and significant impact on a firm's share of exports.

Firms engaged in manufacturing industries (*low\_mlow\_tech, mhigh\_tech, and high\_tech*) are found to have larger export market shares, on average, compared to those in services and primary goods; and this difference is particularly strong for more technological intensive goods. The generally significant coefficient estimates of the country dummies show that economic, institutional, cultural and other specific country conditions are highly likely to influence a firm's export market share. After distinguishing between European (CEECs) and Euro-Asian transition economies (CIS), the parameter estimate of the share of employees with higher education (*emp\_edu*) remains highly significant in both sub-samples, however, the parameter estimate of on-the-job training (*emp\_trng*) is positive and significant only in the CIS sub-sample. Top manager's years of experience in a particular sector remains statistically insignificant across the two sub-samples of countries. See Tables A6.7.1, A6.7.2, A6.7.4 and A6.7.5 for Tobit sub-sample estimates, and A6.8.1/ A6.9.1, A6.8.2/ A6.9.2, A6.8.4/ A6.9.4 and A6.8.5/ A6.9.5 for Fractional Logit and Poisson.

#### **6.5 Conclusions**

In this chapter we have examined the impact of human capital endowments on international competitiveness, using a large sample of approximately 16,000<sup>126</sup> firms from 30 transition economies (and Turkey). To assess empirically the above outlined relationship, various estimation methods have been employed: a Tobit model, an innovative approach introduced by Papke and Woolridge (Fractional Logit), and a Poisson regression model. The international competitiveness of firms in the present empirical investigation is represented by their export intensity and export market share.

In line with theoretical underpinnings and existing empirical research, the full sample estimated results suggest that having a more qualified workforce exerts a positive and statistically significant impact on export intensity of firms. No supporting evidence is found for the significance of on-the-job training programmes and years of experience of the top manager. Once industry groups are distinguished, the share of workforce with higher education is revealed to have a lower marginal effect on the export engagement of firms in manufacturing industries

<sup>&</sup>lt;sup>126</sup> Note that due to missing data, the number of firms utilized in the baseline model estimations is 14,026.

compared to those operating in services and primary goods sectors. However, this difference gets smaller when the differences between services and primary goods and more technology-intensive manufacturing goods are considered. On the other hand, on-the-job training programmes and years of experience of the top manager in the sector where the firm operates tend to have an overall stronger impact on a firm's export intensity of manufacturing goods. The country group differentiation shows that, according to the Tobit's final estimates, the share of workforce with higher education has a positive impact on a firm's share of international sales, in both European (CEECs) and Euro-Asian (CIS) transition economies (and Turkey). Offering formal training programmes to employees turned out to have a positive and significant effect on the export intensity of firms in the CIS sub-sample. Although we have raised the issue of potential endogeneity in this relationship, the robustness checks conducted in above, have shown little evidence of its presence in the model. When interaction terms between technological intensity dummies and human capital measures are introduced to the estimations, the empirical evidence for the two sub-samples of countries becomes mixed.

To check the robustness of the empirical findings, multiple imputation has been employed to fill in the gaps in the dataset due to missing information. The overall estimated results from the imputed models are consistent with those from the non-imputed models with a few exceptions (i.e. the parameter estimate of on-the-job training becomes significant in Tobit model, while the share of educated workforce in Fractional Logit and Poisson models loses its 10% level of statistical significance). Furthermore, the adoption of this approach allowed us to develop an augmented model, which, in addition to the main set of explanatory variables, has included the share of skilled employees, the education level of the top manager, the establishment's technological level compared to its competitors, and other potential determinants of export intensity. From the added set of human capital measures, some supporting empirical evidence is found for the importance of the education level of the top manager on export intensity.

When export market share is used to proxy the international competitiveness of firms, supporting evidence is found for the positive impact of the share of employees with a university degree. In the same vein, the positive parameter on the measure of on-the-job training in the model reveals that having provided formal training programmes tends to exert a positive and statistically

significant impact on a firm's export market share. The impact of the share of employees with higher education remains positive and significant when CEECs and CIS are estimated separately, whereas, on-the-job training appears to exert a positive and significant impact only on the CIS sub-sample.

The main conclusions on the impact of human capital endowments on international competitiveness from both macro and micro level empirical analyses will be summarized and synthesised in the next chapter. In addition, the final chapter will identify and discuss the key contributions to knowledge of this research project, its limitations and assess the policy implications of the key findings with particular reference to transition economies.

# Chapter 7

# CONCLUSIONS AND RECOMMENDATIONS

# Contents

| 7.1 Introduction                                        | . 264 |
|---------------------------------------------------------|-------|
| 7.2 Empirical findings                                  | . 266 |
| 7.3 Contributions to knowledge                          | . 273 |
| 7.4 Policy implications                                 | . 275 |
| 7.5 Limitations and recommendations for future research | . 280 |

#### 7.1 Introduction

The effect of human capital endowments on enhancing international competitiveness, with special reference to transition economies, has been assessed in this thesis using macro and micro level data. The transformation from centrally planned economies to market economies has resulted in increased openness and fuller integration of these countries into the global economy. The importance of fully participating in international markets for a country's economic development has become part of a growing economic debate. In a rapidly changing globalized economy, maintaining and increasing their international competitiveness is a major challenge for most countries, particularly for developing and transition economies. The overall export performance of these countries has improved significantly since the beginning of transition, indicating an increasing level of competitiveness. This transition and integration process has also involved significant shifts in the composition of exports, with some of these countries having managed to switch their focus from low skill and technology goods to more a sophisticated basket of exports.

Once the rationale for assessing international competitiveness, its impact on the transition process, and the key research questions were established at the start of this thesis, a discussion on the complex and ambiguous nature of international competitiveness has followed. The multidimensional concept of international competitiveness has been elaborated from micro and macro perspectives, and a critical analysis of the main measurement approaches followed by a comprehensive review of empirical studies was presented in this investigation. Human capital endowments as the main dimension of interest were also assessed in light of the theoretical and empirical literature. The key sources of human capital accumulation, with particular focus on education and training, were thoroughly elaborated followed by a discussion of the underlying mechanisms through which human capital influences labour productivity, economic growth and international competitiveness. The pre-estimation stage was further complemented by an extensive review of empirical studies assessing the link between human capital and international competitiveness at different levels of aggregation and across various countries. Once the theoretical framework was developed, various estimation approaches were adopted to address the three key research questions:

- 1. Do human capital endowments have an impact on the international competitiveness of EU countries, with special reference to transition economies?
- 2. Do human capital endowments have an impact on the relative importance of technology intensive exports of EU countries, with special reference to transition economies?
- 3. Do a firm's human capital resources have an impact on its export intensity and export market share in transition economies?

While the key focus of this thesis is placed on European transition economies, in order to be able to compare and contrast the findings; the main sample of ETEs has been further extended by covering an additional 17 European countries and 13 Euro-Asian<sup>127</sup> transition economies. To assess the robustness of our findings, both macro and micro level data extracted from various sources have been employed. Econometric analyses, at both macro and micro levels, were undertaken to assess the consistency of our results and thus allow us to draw a more conclusive inference. To carry out the hypothesis testing various proxy measures of international competiveness and human capital were adopted, augmented by a number of relevant control variables. Particular attention has been paid to choosing and applying appropriate econometric methods, given the sensitivity of the data and other issues faced during the estimations.

The aim of this concluding chapter is to provide a synthesis of the key findings of the research; establish the contribution to knowledge of these findings; examine their policy implications; identify the main limitations of the research and provide recommendations for future research work. The remaining parts of this chapter are organized as follows: section 7.2 summarises and discusses the main findings of the thesis with particular emphasis on the key research questions. Section 7.3 provides a discussion of the main contributions to knowledge of this research project. Section 7.4 develops the main policy implications emerging from this research and suggests a range of human capital based policy interventions to enhance international competitiveness. Section 7.5 points out the main limitations that have arisen while conducting the empirical analyses and provides recommendations for further research in the future.

<sup>&</sup>lt;sup>127</sup> Including Turkey.

#### 7.2 Empirical findings

To examine whether human capital endowments have an impact on the international competitiveness of EU countries with special reference to selected transition economies, a macro level investigation using both country and industry level panel data for the period 1995-2010 was conducted in Chapter 4. In order to assess the robustness of our results, two proxy measures of international competitiveness were used: export market share and a measure of relative export advantage. The choice of these proxy measures of competiveness was based on their better established theoretical underpinnings and the availability of data. Human capital as the key component of interest in this investigation was proxied by measures of the quantity of education (i.e. education attainment), quality of education, and participation in vocational training. Data on the share of population 15 and over who have attained secondary and tertiary education as their highest level, respectively, provided by Barro and Lee (2014), were used in this empirical analysis. In addition, data on the average years of schooling of the population 15 and over, and students' achievements on internationally comparable tests were employed to complement the initial human capital measures.

The choice of the stock measures for education attainment rather than flow measures stems from their relative superiority in capturing the actual human capital of the labour force. As previously discussed in Chapter 3, school enrolment rates, despite being frequently employed in the research literature, represent the level of schooling and human capital of the future rather than current workforce and, furthermore, they can be distorted by differences in dropout rates, emigration, health, unemployment, and so on. The average student test score measure has been constructed by Hanushek and Woessmann (2009), and although it is not a direct measure of the quality of education of the labour force, to the best of our knowledge, it represents the best proxy measure available. Note that International Adult Literacy surveys have been also introduced in the literature, but that data are limited in terms of both time span and country coverage. Even though the chosen measure represents the test scores of students in mathematics and science, the authors have averaged the data over a period of 40 years in order to better capturethe quality of education of the labour force. Vocational training is another important dimension of human capital development assessed in Chapter 4, though the lack of more detailed information precludes a full investigation. Data on the percentage of employees participating in continuing

vocational training (CVT) and training enterprises as a percentage of all enterprises were used in this macro level analysis. The survey was conducted by Eurostat in 1999, 2005, and 2010 and in order to obtain the values in the years between, a linear interpolation approach has been adopted.

The choice of measures for the stock of human capital in this analysis is derived from the human capital theories discussed in Chapter 3. According to the conventional human capital theory, education and on-the-job-training are the key sources of human capital development and investing in these activities will boost labour productivity and employee earnings (Becker, 1964). To empirically test the impact of human capital on international competitiveness, several estimation techniques were adopted, controlling for different sources of potential estimate inconsistency. Among the wide range of approaches employed in this analysis, an instrumental variable method was used to account for potential endogeneity, and various techniques (e.g. fixed effects vector decomposition (FEVD), Hausman and Taylor, and Hsiao's two stage estimators) were employed to estimate the coefficients of the time invariant variables. The empirical evidence obtained from this macro analysis suggests that, in line with theoretical expectations, the level of education attainment exerts a positive and significant impact on the export market share, at both country and industry level, though this effect is not replicated when the relative export advantage index is taken as a measure of international competitiveness.

While both measures of education attainment, i.e. the share of the population with secondary and tertiary education, are found to have a positive and significant impact on the export market share of EU-27, the effect of the latter is relatively stronger. The relative importance of highly educated individuals has been further reinforced by an assessment of the impact of average years of schooling on export market share. For levels up to 10.7 years of schooling, the marginal effect of this variable on export market share turned out negative, while, for higher levels of schooling it exerted a positive impact. The empirical evidence on the importance of vocational training is limited, whereas no supporting evidence is found for the hypothesised positive role of the quality of education. While the importance of the quality dimension of education has been strongly highlighted, particularly in the growth literature, its insignificance in these estimations might be attributed to the limitations of this measure of education quality. As previously discussed, the quality of education was represented by a standardised index of students' test scores. The lack of variation over time has introduced new challenges to the main estimation methodology. In order

to be able to assess the importance of this dimension, alternative approaches that allow for time invariant variables had to be adopted (e.g. FEVD, Hausman and Taylor, and Hsiao's two stage estimator), despite the acknowledged limitations of these methods. However, in spite of the different assumptions these approaches make, overall they seem to tell a consistent story.

Since measurement errors are quite common when constructing stock estimate data, in order to assess the accuracy and reliability of our results, comparative analysis using two versions of education attainment data (i.e. an older and an updated version of Barro and Lee's dataset) was conducted. The results obtained for these two datasets differ, highlighting the importance of being particularly cautious when interpreting estimation results. As discussed above, the results obtained from the most recent version of the data suggest that the share of population with higher education has a relatively stronger impact on the export market share of EU-27 compared to the share of population with secondary education. On the other hand, the older version of the data suggests that the share of population who have attained secondary education is the only education based determinant of export market share. Slight differences in the results were also identified when the average years of schooling was used as a proxy for human capital. To be able to compare the empirical findings for transition and non-transition economies, the human capitalinternational competitiveness nexus was estimated separately for these two sets of countries. In the former group, both the share of population 15 and over who have attained secondary and tertiary education as their highest level of education were found to exert a positive and significant impact, though the effect of secondary education appears to be stronger. The relative importance of the latter might have been due to the potentially low share of high skill and technologically-intensive goods exported by these countries. In the non-transition set of countries, on the other hand, the only education based indictor remaining statistically significant was the share of population with tertiary education, implying that higher levels of education are the only human capital based source of international competiveness in the EU-17. Again, this result is likely to be a reflection of the different levels of economic development and structure of exports of these countries. In line with several strands of research (e.g. Rosenzweig, 1995, 1996 and Acemoglu and Autor, 2012), it was argued that higher levels of education are more likely to boost labour productivity when more advanced activities are to be performed and completed. Furthermore, more skilled and competent individuals are more likely to induce and stimulate innovation activities compared to their counterparts (see Section 3.2.2 for a more detailed

discussion on human capital, innovation and productivity). Hence, a higher proportion of highly skilled and qualified individuals are required if countries aim to engage in skill and technology intensive exports.

With the purpose of modelling and testing the relative importance of human capital endowments on technology intensive exports of EU countries (the second research question), an industry level analysis using medium and high technology goods export data for the period 1995-2010 was conducted in Chapter 5. This particular dimension of competiveness has been represented by the share of a country's exports in medium and high technology industries over the exports of EU-28 in the corresponding industries, an export specialization measure (RXA) and an export sophistication index (EXPY). RXA was defined as the ratio of a country's exports of industry krelative to its total exports and to the corresponding exports of EU-28, whereas EXPY represents the sophistication of a country's export basket and, according to Hausmann et al. (2007), it captures the productivity level associated with a country's export portfolio. Constrained by the lack of more disaggregated data, human capital endowments are captured by the education attainment and student test scores (i.e. quality of education) measured at the country level. The results, drawn from the various estimation methods employed, suggest that the share of population who have attained tertiary education exerts a positive impact on the share of medium and high tech exports in the exports of the EU-27, the impact being relatively stronger for the high tech category. This finding further reinforces the importance of highly educated individuals when countries are involved in exporting more technology-intensive manufacturing goods. However, no supporting evidence for this link is found when either transition or non-transition economies are assessed separately or when the export specialization measure (RXA) is used to capture international competitiveness. The latter results might be attributed to some extent to the questionable quality of this competitiveness index per se. As discussed in Chapter 2 and Chapter 4, despite its widespread use, the export specialization or relative export advantage index has been criticised by many researchers on several theoretical and statistical grounds. Its statistical shortcomings were evident in our analysis (such as asymmetric distribution, some very high values, inconsistency and instability), though some of these were overcome and/or accounted for by performing adjustments to correct for non-normality and also estimating the models excluding the (extremely high) outlier observations.

When a more innovative measure of competitiveness was used in the analysis, i.e. the export sophistication index introduced by Hausmann et al. (2007), the results appeared to be inconclusive. The full sample estimates reveal no supporting evidence for the key hypothesis, whereas the separate sample estimations suggest that the share of the population who have attained tertiary education has a positive impact on the export sophistication of non-transition economies only (i.e. EU-17). Again, these particular results might be attributed to the more sophisticated composition of exports in these countries compared to their transition counterparts. No supporting evidence is found for the influence of the quality of education in this analysis, irrespective of the international competiveness measure used.

To provide further insights into the link between human capital and international competiveness, the investigation went one step further by adopting a micro level perspective. Using a micro approach enabled us to delve deeper into this relationship and assess how the human capital of their employees influences a firm's international competitiveness. The link between the two can be more directly observed and examined when firms are used as units of analysis. The aim of this investigation is to answer the third research question: whether human capital resources have an impact on the export intensity and export market share of approximately 16,000 firms in 30 transition economies, with particular focus on European transition countries. The human capital dimension is represented by the share of a firm's employees with a university degree, the provision of on-the-job training programmes by the firm, and the level of education and years of experience of the firm's 'top' manager. The importance of on-the-job training was captured by a dummy variable showing whether or not the firm has provided formal training programmes for its employees. A dummy variable was also used for the education level of the top manager indicating whether or not they have completed a degree in higher education. For comparison purposes and as a robustness check, a labour cost measure, defined as the total cost of labour, including wages, salaries and benefits divided by the total number of employees, was used to proxy human capital in an alternative model specification. Furthermore, to assess the robustness of our results several estimation methods were used and the issue of potential endogeneity and missing values was taken into account. The former issue was addressed by performing various robustness checks and also providing theoretical explanations on why reverse causation is not likely to be present in our analysis. The latter involved conducting additional regression analyses after using multiple imputation to fill in the missing information. Overall, the share of missing

observations for the majority of variables used in the estimations is fairly low, though there were some potentially relevant variables that suffered from a higher rate of missingness. In order to be able to model and assess the predictive power of these variables, a multiple imputation approach introduced by Rubin (1987) was employed to fill in the missing observations.

Consistent with the theoretical framework and existing empirical research, the full sample estimates suggest that having a more educated workforce is associated with higher export intensity and export market share of firms in all transition economies. The evidence on the importance of training programmes and year of experience of the top managers was limited. When multiple imputation was adopted to fill in the gaps in the baseline dataset the results appeared to be generally consistent. However, the empirical results from the imputed augmented model revealed some supporting evidence for the role of the education level of the top manager on export intensity. Note that, due to a very high share of missing data, this dimension of human capital was not assessed in the baseline model specification.

To examine the relative importance of human capital endowments on the share of firms' international sales, classification by industry group was introduced into the modelling strategy. The industry level results reveal that highly educated employees have a stronger impact on the export intensity of firms engaged in the services and primary goods sectors compared to manufacturing, though this differences appear to vanish for more technology-intensive goods. As reflected by the interaction terms between industry dummies and education, the relative importance of more educated employees for services and primary goods becomes smaller when compared to more technology-intensive manufacturing goods. A potential explanation for this counterintuitive finding is that the manufacturing firms in this sample are mainly engaged in exporting low and medium-low technology goods where the formal qualifications of the workforce might not be of great importance. In line with theoretical considerations, highly educated employees are likely to be less productive if they are engaged in performing simpler tasks, i.e. producing less skilled and technology intensive goods. On-the-job training programmes and years of experience of the top manager appear to, generally, have stronger influences on firm's international sales in the manufacturing industry compared to firms engaged

in services and primary goods. Some supporting evidence<sup>128</sup> is found for the role of highly educated employees on the export intensity and export market share of firms in European and Euro-Asian transition economies, when the two sub-samples are examined separately. It is worth noting that the economic impact of the share of employees with higher education is slightly higher in the former group of countries, though the effect is not very large in magnitude in either set of countries. Firms that offer training programmes to their employees appear to have, on average, higher international sales and export market shares only in Euro-Asian firms, though the economic effect is not very large in magnitude. The years of experience of the top manager are not found to have any economic or statistical impact in any of the country groups.

The overall findings of this research project reveal that, in line with theoretical expectations, human capital endowments appear to exert a positive and significant impact on export market share at both country and industry levels, though this effect is not obtained when the relative export advantage index is used as the measure of international competitiveness. The share of the population who have attained tertiary education turned out to exert a positive impact on the share of medium and high tech manufactures exported by EU-27, the impact being relatively stronger for the high tech category. No supporting evidence is found for the influence of the quality of education, irrespective of the international competiveness measure used. As previously argued, this finding might be attributed to the limitations of the proxy itself, i.e. it measures the performance of current students (up to the age of 15) rather than the quality of education of the workforce. In the export sophistication sub-analysis, the estimated results suggest that the share of population who have attained tertiary education has a positive impact on the export sophistication only of non-transition economies. Consistent with the macro analysis, the firm level estimated results suggest that having a more educated workforce exerts a positive and statistically significant impact on the export intensity and export market share of firms in the 30 transition economies.

<sup>&</sup>lt;sup>128</sup> While the tobit estimates seem to support the hypothesized link between the two, this was not found to be the case in the alternative estimation approaches.

## 7.3 Contributions to knowledge

While the concept of international competitiveness per se has been elaborated quite extensively in the literature, its potential determinants have received less significant attention, both at a theoretical and empirical level. The impact of human capital endowments, in particular, has been under-researched, especially at more aggregated levels of investigation. The vast majority of research studies investigating the concept of international competitiveness at the macro level have focused on constructing and developing competitiveness indicators and indices with the purpose of ranking and comparing trends across sectors or countries. Research papers examining the determinants of competitiveness, on the other hand, seem to have usually employed only a limited set of influencing factors. Whilst micro level studies have more frequently assessed the importance of human capital endowments in their analyses, they rarely make any reference to international competitiveness and where they do the choice of measures for the latter is usually very restricted. Hence, through addressing the under-theorised and under-researched link between human capital endowments and international competitiveness, this research project aimed at filling these gaps in the research literature, with particular reference to transition economies.

The contributions of this research range from elaborating the theoretical framework that has informed and guided the empirical investigation, to developing models that explain the impact of human capital endowments on international competitiveness and estimating these models using macro and micro level data. The empirical investigation presented in this thesis makes use of various human capital and international competitiveness measures which allows the drawing of more comprehensive inferences. Initially, the discussion on international competitiveness shed new light on the complexity of defining and measuring this concept by reviewing different measures of competitiveness and examining how these have been assessed in the research literature. In this investigation, the choice of measures was determined based on their theoretical considerations as well as the availability of data. To help establish the basis for the modelling stage, the underlying mechanisms through which human capital endowments are likely to influence the international competitiveness of firms and countries have been elaborated in depth. The main approaches to defining human capital and its measurement approaches have also received great attention in this research project. A review of the most commonly used measures

in the literature; their theoretical rationale and the availability of the data have determined the choice of measures for this dimension. Furthermore, this empirical investigation has controlled for a range of potential competitiveness-enhancing factors derived from different macro and micro strands of literature. To highlight the importance of having accurate measures for the variables of interest, a comparative analysis using two versions of education stock data was conducted. The outcome from this particular analysis highlighted the sensitivity of the findings of research studies when stock estimate data are used. Recent research on human capital accumulation has highlighted the importance of focusing on the quality as well as the quantity of education (see Hanushek and Woessmann, 2009); accordingly a measure of the former dimension was also integrated into the regression analysis. No other research study has assessed its potential impact in the field of international competitiveness.

While the main focus of this investigation was placed on European transition economies, the hypothesis testing was expanded by covering additional country groups, i.e. EU-17 and Euro-Asian transition economies (and Turkey). In the firm level analysis, the large cross-country dataset (BEEPS) made available by the World Bank and EBRD, rarely utilized in this area of study, was employed. The extended country coverage has enabled the investigation of the hypothesized differences between each set of countries. Furthermore, in the micro level analysis, the relative importance of human capital endowments for different industries was empirically examined. The human capital dimension was further expanded by including on-the-job training programmes offered by the firm and years of experience of the top manager. In alternative model specifications, the level of education of the top manager and average wages of the employees were also assessed. Note that whilst these potential source of human capital development have been emphasized in the theoretical literature, they have less frequently been examined in the empirical research.

To assess the robustness of the empirical results, a diversified modelling strategy was employed. Furthermore, various estimation approaches to account for potential endogeneity and handle the issue of missing data were adopted. The use of various estimation methods has helped ensure that the findings are consistent and unbiased and hence the inference drawn from these results is more reliable. It is worth noting that very few studies in this field of research have adopted such a wide range of estimation techniques. By providing empirical evidence on the contribution of the key components of human capital on international competitiveness, this investigation can assist policy-makers in designing effective policies that facilitate and promote human capital accumulation and in turn enhance the international competitiveness of this sample of countries. The policy implications derived from this research project and their relationship to the current policy agenda in transition economies will be presented and discussed in the following section.

## 7.4 Policy implications

The empirical evidence obtained in this investigation has potential useful policy implications for European and Euro-Asian countries seeking to sustain and/or increase their international competitiveness. Since competitiveness enhancement in international markets is a key objective of transition economies, the results presented in this thesis can help the policy-making in these countries with respect to human capital development. The macro level evidence obtained in this investigation suggests that increasing the stock of highly educated individuals has important implications for the enhancement of international competitiveness of the EU-27, as proxied by their export market share. Although, the impact of higher levels of education (i.e. tertiary) remains significant when transition and non-transition economies are assessed separately, its effect in the former set of countries is surpassed by that of secondary education. Given the high and rising share of the population who have attained secondary education in transition countries, promoting and raising post-secondary attainment<sup>129</sup> seems more appropriate as it would assist them in the process of catching-up with their non-transition counterparts. Policy interventions in raising the school leaving age in some developed countries were found to have a positive impact also on post-compulsory education participation (see Meghir and Palme, 2004, and Oreopoulos, 2005). The current school leaving age, in transition economies varies from 14 to 16 years, with the exception of few countries that have made school attendance mandatory up to the age of 18. Government action in this regard would, therefore, be likely to increase not only the share of individuals with secondary education, but also those who complete post-secondary education.

It is worth noting that the empirical findings of this research programme are in accordance with a priori expectations given the current stage of development and the relatively lower levels of export sophistication in these countries. Hence, in policy terms, these countries should also try to

<sup>&</sup>lt;sup>129</sup> The tertiary level education attainment appears to be, on average, lower in the European transition economies, compared to their non-transition counterparts; although, it has grown rapidly in many of these countries.

focus on changing their current structure of exports to more knowledge and technology-intensive based goods. The lack of evidence on the role of the quality of education and vocational training, on the other hand, makes it more difficult to suggest any policy recommendations, though it can be argued that the absence of clear findings might have been driven to a large extent by the poor quality of data. The need to improve the quality of data and, more generally, quality assurance mechanisms, both internal and external, is part of the current educational policy debates in transition economies, especially in countries that are struggling to achieve higher quality schooling. According to a World Bank report, many of transition countries are still focused on the measurement of inputs into education rather than on the outputs; hence, policy agendas should try to switch that focus into paying more attention to how much students are learning and if their acquired knowledge and skills are meeting the labour market's demands (Murthi and Sondergaard, 2012).

Since the importance of specializing in high skill and technology intensive goods for economic growth has been elaborated extensively in the recent literature (see, Rodrik, 2006, Hausmann et al., 2007, Jarreau and Poncet, 2012, Anand et al., 2012), public policies in these countries should redirect their focus towards high profile skilled individuals. The positive impact of the share of population with tertiary education on the share of medium-high and high technology goods exported by EU-27 emphasizes the relative importance of higher levels of education for these sectors and in turn, suggests specific policy interventions. Policy makers are advised to place more emphasis on promoting higher education attainment in subjects relevant to their profile of exports, particularly if these countries aim at maintaining and enhancing their competitive positions in more technology-intensive goods. Potential interventions might involve expanding the expenditure on more technology-related study programmes rather than on generic ones. This finding might also have implications for attracting highly-qualified employees from other countries, or in the context of transition economies, attracting back students and emigrants who have undertaken higher education abroad. The large and increasing student flows from many European transition economies to more developed countries have also increased the size and costs of the brain drain. According to Adnett (2010), the provision of educational assistance for students (e.g. scholarship programmes) has contributed significantly to this problem, hence, the financial support should be redirected towards domestic higher education institutions rather than student mobility. Encouraging the mobility of high-quality study programmes and institutions,

rather than of students, via franchising and other forms of delivery is another potential way of minimising the size of the brain drain (OECD and World Bank, 2007). International emigration rates are relatively high in many transition economies, with a substantial number of the emigrants being highly-skilled workers (EBRD, 2013, Arias et al., 2014). Hence, to prevent the loss of actual and potential highly-qualified workers, policy makers in these countries should place more focus on creating the economic conditions that help retain and/or attract back this group. Transition countries should therefore continue the process of reforming their public sectors and labour markets; foster employment through promoting entrepreneurship as key source of job creation; designing adequate integration programmes for migrants to assist and facilitate their incorporation into labour markets; and improve the business climate to encourage returning emigrants to invest.

The absence of supporting evidence for the role of education attainment of the population on the export sophistication of European transition economies makes it more difficult to give any suggestions on potential policy actions. Above it was argued that this lack of evidence might be due to their generally less sophisticated export baskets; hence, policy interventions that encourage these countries to switch to producing and exporting more sophisticated goods might be recommended. Potential policy actions involve encouraging entrepreneurs to engage in more skilled and technology-based goods via subsidizing their investments in the latter activities, supporting technological transfer and accumulation, and attracting foreign direct investment. Human capital development and "tax-favoured" high technology zones, according to Wang and Wei (2008), turned out to be main contributors to the increasing export sophistication of China. Even though the structure of exports in some transition countries has changed significantly in recent years, greater investment in human capital accumulation might still be warranted to help them catch up with their non-transition counterparts.

The micro level evidence provides further evidence in favour of the key sources of human capital development and their impact on firms' engagement in international markets. As the focus of the analysis was placed strictly on transition economies, both European and Euro-Asian, the main findings aimed to shed new light on how policy makers can intervene to promote international competitiveness in these particular groups of countries. The empirical findings could help design human capital development policies which, in turn, would boost labour productivity and drive

the international competitiveness of firms in transition economies. Firms' investments in enhancing their labour productivity through attracting and hiring more skilled and qualified employees can be further supported and facilitated by suitable policy interventions. Implementing policies that encourage and support higher education might have positive implications for firms that aim to enter, remain and increase their export share in international markets. Not only would exporting firms become more productive by hiring more skilled and competent workers, but also raising the supply of tertiary educated individuals would, other things being equal, lower their relative costs and in turn improve the international competitiveness of firms. The absence of robust empirical evidence on the role of on-the-job training programmes and top manager's level of education and years of experience suggests that pursuing policies that focus solely on these dimensions might not be sufficient to improve the international competitiveness of firms. However, it is worth noting that this lack of evidence might be attributed to the lack of more superior measures (e.g. the quality, frequency and duration of training) and the high share of missing data on the level of education of the top manager.

A recent World Bank report on the human capital in transition economies shows that in spite of the relatively high rates of education attainment and satisfactory quality in the early years of schooling, in many of these countries employers have continued to complain about workers lacking suitable skills and competencies (e.g. behavioural skills, socio-emotional skills and similar) (Arias et al., 2014). The system of education and training in these countries appears to be lagging behind in delivering appropriate knowledge and skills in accordance with the market needs (Murthi and Sondergaard, 2012). Hence, the World Bank report emphasizes the need to manage tertiary education expansion by improving the quality assurance system; improving the link between tertiary education curricula and labour market needs; creating stronger harmonization between government, training providers and the business sector; incentivizing firms into offering high-quality on-the-job training programmes for their employees; paying attention to the education and training of the adult labour force, particularly in 'aging countries'; and finally, investing in lifelong learning development (Arias et al., 2014).

It is worth noting that when the industry dimension was accounted for, the role of workforce with a university degree turned out to a have a lower impact on the export intensity of manufacturing firms compared to those operating in services and primary goods sectors. However, as the link between the two appears to vanish when more technology-intensive manufacture goods are observed and estimated, hence again policy actions directed towards supporting technology-related goods are recommended. The key roles of the provision of on-thejob training programmes and top manager's years of experience on export intensity appear to be stronger in the manufacturing sector. Nevertheless, this does not preclude the importance of human capital in raising the export intensity of firms engaged in services. As services are becoming increasingly tradable, fostering this sector should also be part of the policy making agendas in transition economies.

Given that the economic impact of human capital endowments revealed in this investigation is not very large in magnitude in transition economies, policies focusing merely on this source of competitiveness are unlikely to be sufficient; hence they should be complemented by additional complementary, competiveness-enhancing interventions). The latter would include improving the business climate, encouraging entrepreneurship, business start-up, attracting foreign investors promoting R&D and innovation, facilitating technological diffusion, targeting return migrants, and exploiting links with diaspora. Note that the above outlined actions have been the subject of considerable debate amongst researchers and policy-makers. The "behind the border<sup>130</sup>" reforms have been also highlighted as key interventions for transition countries in order to enhance their international competitiveness. Business environment reforms entailing stronger competition, improved governance and increased investment in knowledge, skills and infrastructure are regarded as key requirement to a greater international integration (Mitra, 2008). To induce deeper integration and stronger international competitiveness, Damijan et al. (2008) suggest that transition countries should pay particular attention to their supply capacities, whereas for the less integrated countries (CIS and EU candidate countries), institutional changes, structural reforms and FDI accumulation should be prioritized in their policy agendas.

#### 7.5 Limitations and recommendations for future research

The aim of this section is to highlight the key limitations of this investigation and how these can be addressed in future research work. As previously argued, international competiveness is an

<sup>&</sup>lt;sup>130</sup> This term refers to "domestic structural and institutional reforms" (Broadman, 2005, p. 57).

ambiguous and multidimensional concept, therefore various measuring approaches have been proposed in the literature with no agreement on which is superior. While, the focus of this analysis has been placed on assessing export-based indicators, exploring other competitiveness indicators is recommended for future research work. Concerning the international competitiveness measures used in our analysis, a key limitation is their static nature. A dynamic proxy measure capturing changes over time rather than the current international competitiveness would be worth assessing in the future.

The scarcity of data on the stock of human capital at the macro level is another shortcoming of our research project. Data on education attainment provided by Barro and Lee (2014) are the most comprehensive available, but are still restricted in terms of the time span (no data are available after 2010) and are constructed at 5-year intervals rather than annually. Furthermore, the actual dataset does not distinguish between different types of education acquired. The lack of such information did not allow to control for qualification mismatch, or potential shortages in high profile professions (e.g. science, engineering) in the sample of countries. Limitations stemming from measurement errors in data when constructing stock estimates should be also noted. Given the lack of more direct information on the quality dimension of education, this investigation has made use of students' achievements in different international tests. At the time of the writing, this is the best available proxy measure, though it covers a limited time span and unchanging nature (i.e. lack of variation over time). The impact of the training dimension at the macro level of investigation has also not been fully assessed and that is principally due to data restrictions.

Due to missing information for the main variable of interest, the macro level analyses was constrained in both time span and country coverage. In terms of the former, data on education were not available in the most recent years (i.e. after 2010), while with regard to country coverage some transition economies had to be excluded from the empirical estimations. Although the potential to overcome these constraints is currently rather limited, this can be listed in the agenda for future work. Another limitation concerning the variables of interest is the lack of disaggregated data at the industry level. In the absence of such data, the research question was addressed using information on human capital measured and reported at more aggregated levels (i.e. country level). Again, such a limitation opens up opportunities for further research once

more disaggregated data become available. The main limitation of the micro level analysis, on the other hand, is its cross sectional nature. Note that, recently BEEPS has introduced a longitudinal dataset, but due to the small fraction of participating firms and the short time span, currently only the cross section component is suitable for analysis of the determinants of competitiveness. Apart from the data being collected at a single point in time, which does not allow an assessment of the relationship between human capital and international competitiveness overtime, it also makes it more difficult to control for potential reverse causation. A dataset extension, i.e. a panel covering a larger time span, is required to address this limitation and allow researchers to draw more comprehensive inference from the data. The lack of information on the type and quality of education and on-the-job training is another shortcoming of the micro level analysis. While firms in the sample have reported whether they have offered on-the-job training programmes for their employees, no information on their content/relevance, duration, frequency or quality has been provided. Information on the level of education of the top manager is missing for a large share of firms, whereas there is no measure of the quality of education of the workforce. Although, such information is rarely available in cross country surveys, accounting for these important components, in the future, could provide further insights into the human capital - international competiveness nexus.

## 8. References

- Acemoglu, D. and Autor, D. (2012). What does human capital do? A review of Goldin and Katz's the race between education and technology. *National Bureau of Economic Research Working Paper* No. 17820.
- Acemoglu, D., Aghion, P. and Zilibotti, F. (2002). Distance to Frontier, Selection, and Economic Growth. *National Bureau of Economic Research Working Papers* No. 9066.
- Adnett, N. (2010). The Growth of International Students and Economic Development: Friends or Foes? *Journal of Education Policy*, 25(5) pp. 625-637.
- Agénor, P. (1995). Competitiveness and External Trade Performance of the French Manufacturing Industry. *IMF Working Paper* No. 95/137.
- Aghion, P. and Howitt, P. (1992). A model of growth through creative destruction. *Econometrica*, 60 (2), pp. 323-351.
- Aitken, B., Hanson, G. and Harrison, A. (1997). Spillovers, foreign investment and export behaviour. *Journal of International Economics*, 43 (1-2), pp. 103-132.
- Alam, A., Casero, P., Khan, F. and Udomsaph, Ch. (2008). Unleashing Prosperity: Productivity Growth in Eastern Europe and the Former Soviet Union. Washington, DC: World Bank.
- Aldington Report (1985). *Report from the Select Committee of the House of Lords on Overseas Trade*. London: HMSO.
- Allison, P. (2000). Multiple imputation for missing data: a cautionary tale. Sociological Methods and Research, 28 (3), pp. 301-309.
- Allison, P. (2002). *Missing Data*. Thousand Oaks, CA: Sage.
- Alvarez, R. (2007). Explaining Export Success: Firm Characteristics and Spillover Effects. World Development, 35 (3), pp. 377–393.
- Alvarez, R. and López, R. (2005). Exporting and Performance: Evidence from Chilean Plants. *The Canadian Journal of Economics*, 38 (4), pp. 1384-1400.
- Alvarez, R., and López R. (2013). Financial Development and Exporting in Chilean Plants, *Review of World Economics*, 149 (1), pp. 183-207.
- Amable, B. and Verspagen, B. (1995). The role of technology in market shares. *Applied Economics*, 27(2), pp. 197-204.

- Anand, R., Mishra, S. and Spatafora, N. (2012). Structural Transformation and the Sophistication of Production. *International Monetary FundWorking Papers* No. 12/59.
- Apergis, N. (2009). Technology, Human Capital and Growth: Further Evidence from Threshold Cointegration. *The Open Economics Journal*, 2, pp. 80-86.
- Arbache, J. and De Negri, J. (2005). The determinants of competitive advantage of Brazilian exporting firms. *University of Brasilia Economics Working Paper*.
- Arellano, M. and Bover, O. (1995). Another look at the instrumental variables estimation of error components models. *Journal of Econometrics*, 68, pp. 29–51.
- Arias, O., Sánchez-Páramo, C., Dávalos, M., Santos, I., Tiongson, E., Gruen, C., de Andrade Falcão, N., Saiovici, G. and Cancho, C. (2014). *Back to Work: Growing with Jobs in Europe and Central Asia*. Washington, DC: World Bank.
- Aristei, D., Castellani, D. and Franco, C. (2013). Firms' exporting and importing activities: is there a two-way relationship? *Review of World Economics*. 149 (1), pp. 55-84.
- Ark, Bart van (1996). Issues in Measurement and International Comparison of Productivity – An overview. Groningen Growth and Development Centre, University of Groningen. GGDC Research Memorandum No 199628.
- Arnold, J. and Hussinger, K. (2004). Export Behavior and Firm Productivity in German Manufacturing: A Firm-level Analysis. *The Centre for European Economic Research* (ZEW) Discussion Papers No. 04-12.
- Arrow, K. (1973). Higher education as a filter. *Journal of Public Economics*, 2(3), pp. 193-216.
- Australian Workforce and Productivity Agency (2013). Human capital and productivity. Literature review. *Australian Workforce and Productivity Agency*.Canberra:Commonwealth of Australia.
- Aw, B. Y., Roberts, M. J. and Xu D. Y. (2011). R&D investment, exporting, and productivity dynamics. *American Economic Review*, 101 (4), pp. 1312-1344.
- Balassa, B. (1965). Trade liberalization and revealed comparative advantage. *The Manchester School of Economic and Social Studies*, 33(1), pp. 99-123.
- Balassa, B. and Noland, M. (1989). Revealed Comparative Advantage in Japan and the United States. *Journal of International Economic Integration*. 4(2), pp. 8-22

- Ballance, R. Forstner, H. and Murray, T. (1987). Consistency tests of alternative measures of comparative advantage. *Review of Economics and Statistics*. 69 (1), pp.157-161.
- Baltagi, B. H. (2005). *Econometric Analysis of Panel Data*. Third Edition. Chichester. West Sussex: John Wily & Sons Ltd.
- Banterle, A. and Carraresi, L. (2007). Competitive performance analysis and European Union trade: The case of the prepared swine meat sector. *Food Economics – ActaAgriculturaeScandinavica, Section C.* 4 (3), pp. 159-172.
- Barrios S., Görg H., and Strobl E. (2001). Explaining Firms' Export Behaviour: The Role of R&D and Spillovers. *Globalisation and Economic Policy (GEP)Research PaperNo*. 01/27.
- Barro, R. (1991). Economic Growth in a Cross Section of Countries. *Quarterly Journal of Economics*, 106 (2), pp. 407-443.
- Barro, R. (1996). Determinants of Economic Growth: A Cross-Country Empirical Study. *National Bureau of Economic Research Working Paper* No. 5698.
- Barro, R. (2001). Human Capital and Growth. *American Economic Review*. 91(2), pp. 12-17.
- Barro, R. (2013). Education and Economic Growth. *Annals of Economics and Finance*, 14(2), pp. 301-328.
- Barro, R and Lee, J. (2000). International Data on Educational Attainment: Updates and Implications. *Centre for International Development at Harvard University (CID) Working Paper No. 42.*
- Barro, R and Lee, J. (2014). *Educational Attainment Dataset, Version 2.0.*[Online]. Available from Barro and Lee: <u>http://www.barrolee.com/</u>. [Accessed: 1 December 2014].
- Barro, R. and Lee, J. (1993). International comparisons of educational attainment. *NBER Working Paper Series*, No.4349.
- Barro, R. and Lee. J. (1996). International Measures of Schooling Years and Schooling. *American Economic Review*, 86 (2), pp. 218–223.
- Barro, R. and Lee. J. (2001). International Data on Educational Attainment: Updates and Implications. *Oxford Economic Papers*, 53 (3), pp. 541–563.

- Barro, R. and Lee. J. (2013). A New Data Set of Educational Attainment in the World, 1950–2010. *Journal of Development Economics*. 104 (September), pp. 184–198.
- Barro, R. and Sala-i-Martin, X. (1995). *Economic Growth*. Cambridge MA: MIT Press.
- Bartel, A, (1994). Productivity gains from the implementation of employee training programs. *Industrial Relations: A Journal of Economy and Society*, 33(4), pp. 411-425.
- Bartel, A. (1995). Training, wage growth and job performance: Evidence from a company database. *Journal of Labour Economics*. 13(3), pp. 401–425.
- Bas, M. (2012). Input-trade Liberalization and firm export decisions: Evidence from Argentina. *Journal of Development Economics*, 97(2), pp. 481-493.
- Bas, M. and Strauss-Kahn, V. (2014). Does importing more inputs raise exports? Firm level evidence from France. *Review of World Economics*, 150 (2), pp. 241-275.
- Bassanini, A. and Scarpetta, S. (2001). Does human capital matter for growth in OECD countries? Evidence from pooled mean-group estimates. *OECD Economics Department Working Papers*, No. 282, OECD Publishing.
- Baumann, U. and Di Mauro, F. (2007). Globalisation and euro area trade interactions and challenges. *European Central Bank, Occasional Paper Series* No. 55.
- Becchetti, L. and Rossi, S. (2000). The positive effect of industrial district on the export performance of Italian firms. *Review of Industrial Organization*, 16 (1), pp. 53–68.
- Becker, G. (1964). Human Capital. New York: Columbia University Press.
- Becker, S. and Egger, P. (2013). Endogenous product versus process innovation and a firm's propensity to export. *Empirical Economics*, 44 (1), pp. 329-354.
- Behar, A. and Venables, A. (2010). Transport costs and international trade. University of Oxford, Department of Economics Discussion Paper Series No. 488.
- Belkacem, L. (2002). Meaning and Definitions of Competitiveness. Posting at E-conference on Arab competitiveness. Kuwait: *The Arab Planning Institute*..
- Bellone, F., Musso, P., Nesta, L., and Schiavo, S. (2010). Financial constraints and firm export behaviour. *World Economy*, 33(3), pp. 347-373.
- Benhabib, J. and Spiegel, M. (1994). The Role of Human Capital in Economic Development: Evidence from Aggregate Cross-country Data. *Journal of Monetary Economics*, 34(2), 143-174.

- Bennett, R. J. (1998). Business associations and their potential contribution to the competitiveness of SMEs. *Entrepreneurship & Regional Development: An International Journal*, 10(3), pp. 243–260.
- Berman, N., and Hericourt, J. (2010). Financial factors and the margins of trade: Evidence from cross-country firm-level data. *Journal of Development Economics*, 93(2), pp. 206-217.
- Bernard, A., Eaton, J., Jensen, J., and Kortum, S. (2003). Plants and productivity in international trade. *American Economic Review*, 93(4), pp. 1268-1290.
- Bernard, A. and Jensen, J. (2001). Why some firms export. *National Bureau of Economic Research Working Paper* No. 8349.
- Bernard, A. and Jensen, J. (1999), Exceptional exporter performance: cause, effect, or both?, *Journal of International Economics*, 47(1), pp.1-25.
- Bernard, A. and Jensen, J. (2004). Why Some Firms Export. *Review of Economics & Statistics*, 86(2), pp. 561-569.
- Bernard, A., Jensen, J., Redding, S. and Schott, P. (2007). Firms in international trade. *Journal of Economic Perspectives*, 21(3), pp. 105–130.
- Bernard, A., Stabilito, A., and Yoo, D. J. (2010). Access to Finance and Exporting Behavior in Transition Countries. *Advanced Studies in International Economic Policy Research, Kiel Institute for the World Economy Working PaperNo.456.*
- Bernard, A.B. and Wagner, J. (1997). Exports and success in German manufacturing. *WeltwirtschaftlichesArchiv*, 133, pp.134-157.
- Bernard, A.B. and Wagner, J. (2001). Export Entry and Exit by German Firms. *WeltwirtschaftlichesArchiv*, 137, pp. 105-23.
- Bernier A. and Cousnieau, J. (2010). The impact of training on productivity in Canadian firms: estimating distributed lags from the WES 1995-2005. *International Journal of Interdisciplinary Social Sciences*, 5(7), pp. 231-239.
- Berryman, Sue. (2000). Hidden Challenges to Education Systems in Transition Economies. *A World Free of Poverty series*. Washington, D.C.: The World Bank.
- Bishop, J. (1994). The Impact of Previous Training on Productivity and Wages, in L. Lynch, ed., *Training and the Private Sector: International comparisons*. Chicago: University of Chicago Press, pp. 161-199.

- Black, S. and Lynch, L. (2001). How To Compete: The Impact Of Workplace Practices And Information Technology On Productivity. *The Review of Economics and Statistics*. 83(3), pp. 434–445.
- Blundell, R. and Bond, S. (1998). Initial conditions and moment restrictions in dynamic panel data models. *Journal of Econometrics*, 87, pp. 11–143.
- Boarini, R., d'Ercole, M and Liu, G. (2012). Approaches to Measuring the Stock of Human Capital: A Review of Country Practices. *OECD Statistics Working Papes*, 2012/04, OECD Publishing.
- Bojnec, S. (2003). Three concepts of competitiveness measures for livestock production in Central and Eastern Europe. *Agriculturae Conspectus Scientificus*, 68 (3), pp. 209-220.
- Bojnec, S. and Fertö, I. (2009). Agro-food trade competitiveness of Central European and Balkan countries. *Food Policy*. 34 (5), pp. 417-425.
- Bond, S. (2002). Dynamic panel data models: A guide to micro data methods and practice. *Institute for Fiscal StudiesWorking Paper* No. 09/02.
- Botezat, A. and Seiberlich, R. (2011). How Far is the East? Educational Performance in Eastern Europe. *University of Konstanz Economics Working Paper* No. 2011-15.
- Breusch, T., Ward, M., Nguyen, H. and Kompas, T. (2011). On the fixed-effects vector decomposition. *Political Analysis*, 19, pp. 165–169.
- Brinkman, G. (1987). The competitive position of Canadian agriculture. *Canadian Journal of Agricultural Economics*. 35 (2), pp. 263-288.
- Broadman, H. (2005). From Disintegration to Reintegration: Eastern Europe and the Former Soviet Union in International Trade. Washington, DC: World Bank.
- Brunello, G. Crivellaro, E. and Rocco, L. (2010). Lost in Transition? The Returns to Education Acquired under Communism 15 years after the fall of the Berlin Wall. *Institute for the Study of Labor (IZA) Discussion Paper* No. 5409.
- Buckley, P. Pass, C. and Prescott, K. (1988). Measures of International Competitiveness: A critical survey. *Journal of Marketing Management*, 4(2), pp. 175-200.
- Burda, M. and Schmidt, C. (1997). Getting behind the East-West German wage differential: Theory and Evidence. *The Davidson Institute Working Paper Series* No 105.

- Cabral, M. and Veiga, P. (2010). Determinants of Export Diversification and Sophistication in Sub-Saharan Africa. Universidade Nova de Lisboa, Faculdade de Economia, Working Paper No. wp550.
- Cainelli, G., Di Maria, E., and Ganau, R. (2014). An explanation of firms' internationalisation modes, blending firm heterogeneity and spatial agglomeration: microevidence from Italy. *Environment and Planning A*, 46(4), pp. 943-962.
- Caldera, A. (2010). Innovation and exporting: Evidence from Spanish manufacturing firms. *Review of World Economics*, 146(4), pp. 657-689.
- Cameron, A. and Trivedi, P. (2005). *Microeconometrics: Methods and applications*. New York: Cambridge University Press.
- Cameron, A. and Trivedi, P. (2009). *Microeconometrics using STATA*. Stata Press.
- Canton, E. (2007). Social returns to education: macro evidence. *De Economist*, 155(4), pp. 449-468.
- Carlin, W., Glyn, A. and Reenen, J. (2001). Export market performance of OECD countries: an empirical examination of the role of cost competitiveness. *The Institute for Fiscal Studies, Working Paper Series* No. W99/21.
- Carraresi, L. and Banterle, A. (2008). Measuring Competitiveness in the EU Market: A Comparison Between Food Industry and Agriculture. *Paper presented at the 12th EAAE Congress,* Gent, Belgium, 27-30 August.
- Cassiman, B. and Golovko, E. (2011). Innovation and internationalization through exports. *Journal of International Business Studies*, 42 (1), pp. 56-75.
- Cassiman, B., Golovko, E. and Martínez-Ros, E. (2010). Innovation, Exports and Productivity. *International Journal of Industrial Organization*, 28 (4), pp. 372-376.
- Cassiman, B. and Martinez-Ros, E. (2007). Product innovation and exports. Evidence from Spanish manufacturing. *IESE Working Paper*.
- Cavallaro, E., Esposito, P., Matano, A. and Mulino, M. (2012). Technological catching up, quality of exports and competitiveness: a sectoral perspective. *University of Rome La Sapienza, Department of Public Economics, Working Paper* No. 158.
- Cavallaro, E. and Mulino, M. (2008). Vertical Innovation and Catching-Up: Implications of EU Integration for CEECs-5.*International Advances in Economic Research*, 14(3), pp.265–279.
- Cavallaro, E. and Mulino, M. (2009). Technological catching up, competitiveness and growth. *The Journal of International Trade & Economic Development*. 18(4), pp. 505– 525.
- CEPII Centre d'Etudes Prospectivesetd'InformationsInternationales (2014). Bilateral distance data (dist\_cepii) available at <u>http://www.cepii.fr</u>.
- Chapman, D. and Roger, B. (1988). Threats to Data Quality in Developing Country Settings. *Comparative Education Review*, 32(4), pp. 416-429.
- Charkrabarti, A. (2001). The Determinants of Foreign Direct Investment: Sensitivity Analyses of Cross-Country Regressions. *Kyklos-International Review for Social Sciences*, 54(1), pp. 89-114.
- Chen, D. (2004). Gender Equality and Economic Development: The Role for Information and Communication Technologies. *The Knowledge for Development Program*. *Washington: The World Bank*
- Chor, D. (2010). Unpacking Sources of Comparative Advantage: A Quantitative Approach. *Journal of International Economics*, 82 (2), pp. 152-167.
- Choudhri, E. and Hakura, D. (2000). International Trade and Productivity Growth: Exploring the Sectoring Effects for Developing Countries. *IMF Working Paper*, *WP/00/17*.
- Chowdhury, M. (2005). Real Exchange Rates and International Competitiveness of SAAR Countries, 1960-2000. *International Journal of Applied Econometrics and Quantitative Studies*. 2 (4), pp. 5-18.
- Chuang, Y. (2000). Human capital, Exports, and Economic Growth: A causality Analysis for Taiwan, 1952-1995. *Review of International Economics*, 8(4), pp.712-720.
- Clarke, X. Dollar, D. and Micco, A. (2004). Port efficiency, maritime transport costs, and bilateral trade. *Journal of Development Economics*. 75, pp. 417–450.
- Cohen, D. and Soto, M. (2001). Growth and Human Capital: Good Data, Good Results. *CEPR Discussion Paper* No. 3025.
- Collins, L., Schafer J. and Kam, Ch. (2001). A comparison of inclusive and restrictive strategies in modern missing data procedures. *Psychological Methods*, 6(4), pp. 330-351.

- Columbo, L. and Stanca, E. (2008). The impact of training on productivity: evidence from a large panel of firms. *Working Papers* No. 134, University of Milano-Bicocca, Department of Economics.
- Conti, G. (2005). Training, productivity and wages in Italy. *Labour Economics*. 12 (4), pp. 557–576.
- Contractor, F. and Mudambi, S. (2008). The Influence of Human Capital Investment on the Exports of Services and Goods: An Analysis of the Top 25 Services Outsourcing Countries. *Management International Review*, 48(4), pp. 433-446.
- Cook, R.D. (1977). Detection of Influential Observation in Linear Regression. *Technometrics*, 19 (1), pp. 15-18.
- Corvers, F. and Grip, A. (1997). Explaining trade in industrialized countries by country-specific human capital endowments. *Economic Modelling*, 14 (3), pp. 395-416.
- Curtin, P., Stanwick, J. and Beddie, F. (2011) Fostering enterprise: the innovation and skills nexus — research readings. Adelaide: National Centre for Vocational Education Research.
- Dalum, B. Laursen, K. and Villumsen, G. (1998). Structural Change in OECD Export Specialisation Patterns: De-specialisation and 'Stickiness. *International Review of Applied Economics*. 12 (3), pp. 447-467.
- Damijan, J. and Kostevc, C. (2008). Causal Link between Exporting and Innovation Activity. Evidence from Slovenian Firms. *Economic and Social Research Institute (ESRI) Working Paper* No. DYNREG22.
- Damijan, J., Kostevc, C. and Polanec, S. (2008). From innovation to exporting or vice versa? Causal link between innovation activity and exporting in Slovenian microdata. *LICOS-Centre for Institutions and Economic Performance Discussion Paper* No. 202/2008.
- Damijan, J., Rojec, M. and Ferjančič, M. (2008). Growing export performance of transition economies: EU market access versus supply capacity factors. *LICOS-Centre* for Institutions and Economic Performance Discussion Paper No. 202/2008.

- De la Fuente, A. and Doménech, R. (2000). Human capital in growth regressions: how much difference does data quality make? *OECD Economics Department Working Paper* No. 262.
- De la Fuente, A. and Domenech, R. (2006). Human capital in growth regressions: how much difference does data quality make? *Journal of the European Economic Association* 4(1), pp. 1-36.
- Dearden, L., Reed, H. and Van Reenen, J. (2000). Who gains when workers train? Institute of Fiscal Studies, WP 00/04, UK.
- Dearden, L., Reed, H. and Van Reenan, J. (2005). The impact of training on productivity and wages, Evidence from British Panel Data. *Centre for Economic Performance*, *Discussion Paper* No. 674.
- Dearden, L., Reed, H. and Van Reenen, J. (2006). The impact of training on productivity and wages: Evidence from British Panel Data. Oxford Bulletin of Economics and Statistics, 68(4), pp. 397-421.
- Debaere, P. (2003). Relative Factor Abundance and Trade. *Journal of Political Economy*. 111 (3), pp. 589-610.
- Department of Trade and Industry (DTI) (1998). *The 1998 Competitiveness White Paper*. London: Department of Trade and Industry.
- Di Bella, G. Lewis, M. And Martin, A. (2007). Assessing Competitiveness and Real Exchange Rate Misalignment in Low-Income Countries. *IMF Working Papers* No. 07/201.
- Dijk, M. (2001). The Determinants of Export Performance in Developing Countries: The Case of Indonesian Manufacturing. *Eindhoven Center for Innovation Studies (ECIS)*, *Working Paper* No. 02.01.
- Dobkins, L. (1996). Location, innovation and trade: the role of localisation and nationbased externalities. *Regional Science and Urban Economics*, 26 (6), pp. 591-612.
- Dosi, G. Grazzi, M. and Moschella, D. (2013). The determinants of international competitiveness: a firm level perspective. 4<sup>th</sup> International Conference on "Economics of Global Interactions: New Perspectives on Trade, Factor Mobility and Development". Bari (Italy), 17-18 September.

- Drescher, K. and Maurer, O. (1999). Competitiveness of the European dairy industries. *Agribusiness.* 15 (2), pp. 163-177.
- Eaton, J. and Kortum, S. (1996). Trade in ideas: productivity and patenting in the OECD. *Journal of International Economics*, 40 (3-4), pp. 251-278.
- EBRD (2003). *Transition report 2003: Integration and regional cooperation*. London: European Bank for Reconstruction and Development (EBRD).
- EBRD (2005). *Transition report: Business in transition*. London: European Bank for Reconstruction and Development.
- EBRD (2013). *Transition report 2013. Stuck in Transition?* London: European Bank for Reconstruction and Development.
- EBRD (2014a). *Transition report 2014. Innovation in transition.* London: European Bank for Reconstruction and Development.
- EBRD (2014b). *Transition indicators database*. London: European Bank for Reconstruction and Development.
- EBRD and World Bank (2012). *World Bank's and EBRD's Business Environment and Enterprise Performance Survey (BEEPS): Understanding the Questionnaire*. London: European Bank for Reconstruction and Development and World Bank.
- EBRD and WORLD BANK (2014). *The Business Environment and Enterprise Performance Survey (BEEPS): Round five of data (2012-2014)*.London: European Bank for Reconstruction and Development and World Bank.
- Eck, K., Engemann, M., and Schnitzer, M. (2012). How trade credits foster international trade. *Centre for Economic Policy Research Discussion Paper No. DP8954*.
- Edwards, S. (1989). Real Exchange Rates in the Developing Countries: Concepts and Measurement. *National Bureau of Economic Research Working Papers* No. 2950.
- Eicher, T. and Schreiber, T. (2007). Institutions and Growth: Time Series Evidence from Natural Experiments. *University of Washington, Department of Economics*, Working Paper No. UWEC-2007-15.
- Eickelpasch, A. and Vogel. (2009). Determinants of the export behaviour of German business services companies. *Deutsches Institut f
  ür Wirtschaftsforschung (DIW) Berlin Discussion Paper* No. 876.

- Ellis, F. (1992) Agricultural Policies in Developing Countries. Wye Studies in Agricultural and Rural Development. Cambridge: Cambridge University Press.
- European Central Bank (2005). Competitiveness and the export performance of the euro area. *ECB Occasional Paper Series No. 30*.
- European Commission (2003). *European Competitiveness Report 2003*. Brussels: European Commission.
- European Commission-Enterprise and Industry (2008). *European Competitiveness Report*. Luxembourg: Office for Official Publications of the European Communities.
- Eurostat (2014). The Continuing vocational training survey (CVTS). [Online]. Data available from Eurostat.
   <u>http://ec.europa.eu/eurostat/data/database?node\_code=trng\_cvts02</u>. [Accessed: 31 August 2014].
- Eurydice (2012). *Key Data on Education in Europe 2012*. Education, Audiovisual and Culture Executive Agency (EACEA P9 Eurydice).
- Fagerberg, J. (1988). International Competitiveness. *The Economic Journal*. 98(2), pp. 355–374.
- Falk, M. and Hagsten, E. (2015). Export behaviour of SMEs in the Swedish computer service industry. *Kiel Institute for the World Economy (IfW), Economics Discussion Papers* 2015-14.
- Feenstra, C. R., Li, Z., and Yu, M. (2011). Exports and credit constraints under incomplete information: Theory and evidence from China. *National Bureau of Economic Research Working Paper* No. 16940.
- Feng, L., Zhiyuan, L., and Deborah, L.S. (2012). The connection between imported intermediate inputs and exports: evidence from Chinese firms. *National Bureau of Economic Research Working Paper* No.18260.
- Ferragina, A. and Pastore, F. (2007). High tech export performance: which role for diversification? *Ninth Annual Conference 13-15 September*, Athens University of Economics and Business.
- Fertö, I. and Hubbard, L. (2003). Revealed comparative advantage and competitiveness in Hungarian agri-food sectors. *World Economy*. 26 (2), pp. 247-259.

- Fischer, C. and Schornberg, S. (2007). Assessing the competitiveness situation of EU food and drink manufacturing industries: An index-based approach. *Agribusiness*. 23(4), pp. 473-495.
- Fraga, G. and Bacha, C. (2011). The Non-linearity of the Relationship between Human Capital and Exports in Brazil – evidences of regional differences. European Regional Science Association (ERSA) Conference Paper No. ersa11p1016.
- Frohberg, K. and Hartmann, M. (1997). Comparing Measures of Competitiveness. DiscussionPaper No.2, *Institute of Agricultural Development in Central and Eastern Europe (IAMO)*, Halle(Saale), Germany.
- Fujita, M., Krugman, P. R., and Venables, A. J. (1999). *The spatial economy: Cities, regions, and international trade*. Cambridge: MIT Press.
- Gashi, P., Hashi, I., and Pugh, G. (2014). Export behaviour of SMEs in transition countries. *Small Business Economics*, 42(2), pp. 407-435.
- Gemmell, N. (1996). Evaluating the Impacts of Human Capital Stocks and Accumulation on Economic Growth: Some New Evidence. *Oxford Bulletin of Economics and Statistics*. Department of Economics, University of Oxford. 58(1), pp. 9-28.
- Girma, S., Görg, H. and Hanley, A. (2008). R&D and exporting: a comparison of British and Irish firms". *Review of World Economics*, 144(4), pp. 750-773.
- Girma, S., Greenaway, D. and Kneller, R. (2004). Does exporting lead to better performance? A microeconometric analysis of matched firms. *Review of International Economics*, 12 (5), pp. 855-866.
- Glaeser, E. (2010). *Agglomeration Economics*. Chicago and London: National Bureau of Economic Research/The University of Chicago Press.
- Gökmen, Y. and Turen, U. (2013). The Determinants of High Technology Exports Volume: A Panel Data Analysis of EU-15 Countries. *International Journal of Management, Economics and Social Sciences*, 2(3), pp. 217–232.
- Gorton, M. and Davidova, S. (2001). The international competitiveness of CEEC agriculture. *World Economy*. 24(2), pp. 185-200.
- Gorton, M., Davidova, S. and Ratinger, T. (2000). The competitiveness of agriculture in Bulgaria and the Czech Republic vis-à-vis the European Union. *Comparative Economic Studies*. 42 (1), pp. 59-86.

- Gourieroux, C., Monfort, A. and Trognon, A. (1984). Pseudo Maximum Likelihood Methods: Theory. *Econometrica*, 52 (3), pp. 681-700.
- Günther, E. and Norbert, J. (1999). Export and innovation activities in the German service sector: empirical evidence at the firm level. *The Centre for European Economic Research (ZEW) Discussion Papers* No. 99-53.
- Gråsjö, U. (2005). Human Capital, R&D and Regional Export Performance. *Centre of Excellence for Science and Innovation Studies (CESIS)*. Working Paper Series in Economics and Institutions of Innovation No. 50.
- Gräbner, C. and Kapeller, J. (2015). The Micro-Macro Link in Heterodox Economics. *Institute for comprehensive analysis of economy (ICAE) Working Paper Series* No. 37.
- Greenaway, D. and Kneller, R. (2004). Firm Heterogeneity, Exporting and Foreign Direct Investment: A Survey. *Globalisation, Productivity and Technology Research Paper* 2005/32. The University of Nottingham.
- Greenaway, D., Gullstrand, J., and Kneller, R. (2005). Exporting may not always boost firm productivity. *Review of World Economics*, 141(4), pp. 561-582.
- Greenaway, D. and Kneller, R. (2007). Firm heterogeneity, exporting, and foreign direct investment. *Economic Journal*, 117 (517), pp. F134-F161.
- Greene, W. (2002). *Econometric Analysis*. Fifth Edition. Upper Saddle River, New Jersey: Prentice Hall.
- Greene, W. (2011). Fixed Effects Vector Decomposition: A Magical Solution to the Problem of Time-Invariant Variables in Fixed Effects Models? *Political Analysis*, 19, pp. 135–146.
- Griffith, R. Redding, S. and Van Reenen, J. (2004). Mapping the Two Faces of R&D: Productivity Growth in a Panel of OECD Industries. *The Review of Economics and Statistics*, 86(4), pp. 883–895.
- Grossman, G. M. and Helpman, E. (1991).*Innovation and growth in the global economy*. Cambridge MA: The MIT Press.
- Guerrieri, P. and Meliciani, V. (2003). International competitiveness in producer services. *Paper prepared for the SETI Meeting in Rome*, May.
- Günther, E. and Norbert, J. (1999). Export and innovation activities in the German service sector: empirical evidence at the firm level. Zentrum für Europäische

Wirtschaftsforschung/ Center for European Economic Research (ZEW) Discussion Papers, No. 99-53.

- Gutman, L. and Schoon, I. (2013). The impact of non-cognitive skills on outcomes for young people: Literature review. *Institute of Education, University of London*.
- Hall, R. and Jones, Ch. (1999). Why Do Some Countries Produce So Much More Output Per Worker Than Others? *Quarterly Journal of Economics*, 114 (1), pp. 83 – 116.
- Halpern, L., Koren, M., and Szeidl, A., (2009). Imported Inputs and Productivity. *Center* for Firms in the Global Economy (CeFiG)Working Papers No. 8.
- Hanushek, E. (1996). Measuring Investment in Education. Journal of Economic Perspectives, 10 (4), pp. 9–30.
- Hanushek, K. and Kim, D. (1995). Schooling, Labor Force Quality, and Economic Growth. *NBER Working Paper* No. 5399.
- Hanushek, E. and Kimko, D. (2000). Schooling, labour force quality, and the growth of nations. *American Economic Review*, 90 (5), pp. 1184–1208.
- Hanushek, E. and Woessmann, L. (2007). The role of education quality for economic growth. *World Bank Policy Research Working Paper* No.4122.
- Hanushek, E. and Woessmann, L. (2009). Do Better Schools Lead to More Growth? Cognitive Skills, Economic Outcomes, and Causation. *NBER Working Paper* No. 14633.
- Harberger. A. (2004). The Real Exchange Rate: issues of concept and measurement. *Paper Prepared for a Conference In Honour Of Michael Mussa*. University of California, Los Angeles.
- Harris, R. and Moffatt, J. (2011). R&D, Innovation and Exporting. Spatial Economics Research Centre (SERC) Discussion Paper No. 73.
- Harrison, R. and Kennedy, L. (1997). A neoclassical economic and strategic management approach to evaluating global agribusiness competitiveness. *Competitiveness Review*. 7 (1) pp. 14-25.
- Hatzichronoglou, T. (1996). Globalisation and Competitiveness: Relevant Indicators, *OECD Science, Technology and Industry Working Papers, 1996/5, Paris: Organisation for Economic Co-operation and Development.*

- Hatzichronoglou, T. (1997). Revision of the High-Technology Sector and Product Classification. *OECD Science, Technology and Industry Working Paper*, 1997/02, OECD Publishing.
- Hausman. J. (1978). Specification Tests in Econometrics. *Econometrica*, 46 (6), pp. 1251-1271.
- Hausman, J. and Taylor, W. (1981). Panel data and unobservable individual effects. Econometrica, 49 (6), pp. 1377-1398.
- Hausmann, R., Hwang, J. and Rodrik, D. (2007). What You Export Matters. *Journal of Economic Growth*. 12(1), pp. 1–25.
- Havrila, I. and Gunawardana, P. (2003). Analysing comparative advantage and competitiveness: an application to Australia's textile and clothing industries. *Australian Economic Papers*. 42 (1), pp. 103-117.
- Heckman, J. (1999). Policies to foster human capital. *National Bureau of Economic Research (NBER) Working Paper* No. 7288.
- Henricsson, J. Ericsson, S. Flanagan, R. and Jewell, C. (2004). Rethinking competitiveness for the construction industry. In: Khosrowshahi, F (Ed.), 20th Annual ARCOM Conference, 1-3 September.
- Heston, A., Summers, R. and Aten, B. (2012). Penn World Table Version 7.1, *Centre for International Comparisons of Production, Income and Prices at the University of Pennsylvania.*
- Hobdari, B., Gregoric, A. and Sinani, E. (2009). The role of firm ownership on internationalization: Evidence from two transition economies. *Journal of Management and Governance*, 15(3), pp. 393-413.
- Hoechle, D. (2007). Robust Standard Errors for Panel Regressions with Cross-Sectional Dependence. *The Stata Journal*, 7(3), pp. 281-312.
- Hollanders, H., Nordine, E. and Kanerva, Minna. (2014). Innovation Union Scoreboard 2015. Maastricht Economic and Social Research Institute on Innovation and Technology (UNU-MERIT), European Commission.
- Hollenstein, H. (2005). Determinants of international activities: Are SME's different? *Small Business Economics*, 24 (5), pp. 431-450.

- Horn, D. (2013). Workplace-Based Vocational Training in Central and Eastern Europe Evidence on the School to Work Transition of Hungarian Apprentices. *GRINCOH Working Papers*; *WP 4.3 P4.8*. Centre for Economic and Regional Studies, Hungarian Academy of Sciences, Budapest.
- Hsiao, Ch. (2003). Analysis of panel data. Cambridge: Cambridge University Press.
- Jarreau, J. and Poncet, S. (2012). Export sophistication and economic growth: Evidence from China. *Journal of Development Economics*. 97 (2012) pp. 281–292.
- Jarreau, J. and Poncet, J. (2009). Sophistication of China's exports and foreign spillovers. *The Centred'EtudesProspectivesetd'InformationsInternationales(CEPII), Working Paper* No. 0917.
- Jensen, C. (2002). Foreign Direct Investment, Industrial Restructuring and the Upgrading of Polish Exports. *Applied Economics*, 34, pp. 207-217.
- Johansson, S. and Pettersson, L. (2010). Export behavior of firms in urban and rural regions. *Nordic Rural Futures: pressures and possibilities, May 3-5 2010*, Uppsala, Sweden.
- Jones, P. (1999). Are Educated Really Workers More Productive? Journal of Development Economics, 64(1), pp. 57-79.
- Judson, R. (2002). Measuring human capital like physical capital: what does it tell us? Bulletin of Economic Research, 54 (3), pp. 209–231.
- Kagochi, J. and Jolly, C. (2010). R&D Investments, Human Capital, and the Competitiveness of Selected U.S. Agricultural Export Commodities. *International Journal of Applied Economics*, 7(1), pp. 58-77.
- Kasahara, H. and Rodrigue, J. (2008). Does the use of imported intermediates increase productivity? Plant-level evidence. *Journal of Development Economics*, 87(1), pp. 106-118.
- Kertesi, G. and Köllö, J. (1999). Economic transformation and the return to human capital. *Budapest Working Papers on the Labour Market*, 1999/1996. Institute of Economics, Budapest University of Economics, Budapest.
- Kertesi, G. and Köllö, J. (2002). Economic transformation and the revaluation of human capital Hungary, 1986–1999, in Andries de Grip, Jasper van Loo, Ken Mayhew (eds.)

*The Economics of Skills Obsolescence (Research in Labour Economics, Volume 21)* Bingley:Emerald Group Publishing Limited, pp. 235 – 273.

- Kipici, A. and Kesryyeli, M. (1997). The REER definitions and calculations. *Central Bank of Turkey, Research Department, Publication* No. 97/1.
- Koenig, P. (2009). Agglomeration and the export decisions of French firms. *Journal of Urban Economics*, 66 (3), pp. 186-195.
- Kogan, I., Gebel, M., and Noelke, C. (2008). Europe Enlarged: A Handbook of Education, Labour and Welfare Regimes in Central and Eastern Europe. Bristol: Policy Press at the University of Bristol.
- Kovačič, A. (2008). The Competitiveness Evaluation of CEE Countries. *Romanian Economic Journal*. 11 (29), pp. 3-26.
- Kowalski, P. (2011). Comparative Advantage and Trade Performance: Policy Implications. *OECD Trade Policy Papers*, No. 121.
- Krueger, A. and Lindahl, M. (1999). Education for Growth in Sweden and the World, Swedish Economic Policy Review. 6 (2), pp. 289–339.
- Krueger, A. and Lindahl, M. (2001). Education for Growth: Why and For Whom? *Journal of Economic Literature*, 39, pp. 1101-1136.
- Krugman P. and Venables A.J. (1990). Integration and the competitiveness of peripheral industry. [in:] Bliss, C. and Braga de Macedo, J. (eds.). Unity with diversity in the Europeaneconomy: the Community's southern frontier. Cambridge: Cambridge University Press.
- Krugman, P. (1979). Increasing returns, monopolistic competition, and international trade. *Journal of International Economics*. 9(7) pp. 469-479.
- Krugman, P. (1990). The Age of Diminished Expectations. MIT Press: Cambridge, Mass.
- Krugman, P. (1991) Increasing returns and economic geography. *Journal of Political Economy*, 99 (3), pp. 483–499.
- Krugman, P. (1994). Competitiveness: A Dangerous Obsession. Foreign Affairs 73 (Mar./Apr.) pp. 28–44.
- Krugman, P. and Hatsopoulus G. (1987). The problem of US competitiveness in manufacturing. *New England Economic Review (Federal Reserve Bank of Boston)*. January. pp. 18-29.

- Kutan, A. and Vukšic, G. (2007). Foreign Direct Investment and Export Performance: Empirical Evidence. *Comparative Economic Studies*, 49, pp. 430-445.
- Kyriacou, G. (1991). Level and growth effects of human capital: a cross-country study of the convergence hypothesis. *Economic Research Reports*, No. 91–26. C.V. Starr Centre for Applied Economics, New York University.
- Laroche, M., Merette, M. and Ruggeri, G. (1999). On the concept and dimensions of human capital in a knowledge-based economy context. *Canadian Public Policy – Analyse de Politiques*, 25 (1), pp. 87–100.
- Lassibille, G. (2005). International Assessment Surveys of Educational Achievement in Developing Countries: Why Education Economists Should Care. *Comparative Economic Studies*. 57 (4), pp. 655-668.
- Latruffe, L. (2010). Competitiveness, Productivity and Efficiency in the Agricultural and Agri-Food Sectors. *OECD Food, Agriculture and Fisheries Working Papers*, No. 30, OECD Publishing.
- Lau, L., Jamison, D. and Louat, F. (1991). Education and productivity in developing countries: an aggregate production function approach. *Policy Research Working Paper Series*, No. 612. Washington, DC: World Bank.
- Laursen, K. (1998). Revealed comparative advantage and the alternatives as measures of international specialisation. *DRUID Working Paper*No 98-30.
- Laursen, K. and Meliciani, V. (2010). The role of ICT knowledge flows for international market share dynamics. *Research Policy*, 39(5), pp. 687–697.
- Le, T., Gibson, J. and Oxley, L. (2003), Cost- and income-based measuresof human capital. *Journal of Economic Surveys*, 17 (3), pp. 271–307.
- Lee, K. and Carlin. J. (2010). Multiple imputation for missing data: Fully conditional specification versus multivariate normal imputation. *American Journal of Epidemiology*, 171(5), pp. 624-632.
- Levine, R. and Renelt, D. (1992). A sensitivity analysis of cross-country growth regressions. *The American Economic Review*. 82 (4), pp. 942-963.
- Liefert, W. (2002). Comparative (dis?) advantage in Russian agriculture. *American Journal of Agricultural Economics*. 84 (3), pp. 762-767.

- Limao, N and Venables, A. (2001). Infrastructure, Geographical Disadvantage, Transport Costs and Trade. *World Bank Economic Review*, 15 (3), pp. 451-479.
- Lipschitz, L. and McDonald, D. (1991). Real Exchange Rates and Competitiveness: a clarification of concepts and some measurements for Europe. *IMF Working Paper* No. 91/25.
- Liska, A. (1990). The Significance of Aggregate Dependent Variables and Contextual Independent Variables for Linking Macro and Micro Theories. *American Sociological Association, Social Psychology Quarterly*, 53 (4), pp. 292-301.
- Lo Turco, A. and Maggioni, D. (2013). On the Role of Imports in Enhancing Manufacturing Exports. *The World Economy*, 36(1), pp. 93-120.
- Love, J. and Rober, S. (2013). SME innovation, exporting and growth. *Enterprise Research Centre (ERC) White Paper* No.5.
- Lucas, R. (1988). On the mechanics of economic development. *Journal of Monetary Economics*, 22(1), pp. 3-42.
- Lucas, R. (1990). Why Doesn't Capital Flow from Rich to Poor Countries? *The American Economic Review*, 80(2), pp. 92-96.
- Lynch, L. and Black, S. (1995). Beyond the Incidence of Training: Evidence from a National Employers Survey. *NBER Working Papers* No. 5231.
- Maastricht Economic and Social Research Institute on Innovation and Technology -UNU-MERIT (2012). *Innovation Union Scoreboard 2011*. European Commission.
- Madsen, J. (2010). The anatomy of growth in the OECD since 1870. *Journal of Monetary Economics.* 57 (6), pp. 753–767.
- Mankiw, G. Romer, D. and Weil, D. (1992). A contribution to the empirics of economic Growth. *Quarterly Journal of Economics*, 107 (2), pp. 407-437.
- Manova, K. (2013). Credit Constraints, Heterogeneous Firms, and International Trade. *The Review of Economic Studies*, 80, pp.711-744.
- Marconi, D and Rolli, V. (2007). Comparative advantage patterns and domestic determinants in emerging countries: an analysis with a focus on technology. *Bank of Italy, Temi di discussion Working Paper* No. 638.

- Martin, R. (2004). A study on the factors of regional competitiveness a draft final report for the European Commission Directorate-General Regional Policy. Cambridge: Cambridge University Press.
- Mason, G. O'Leary, B. and Vecchi, M. (2012). Certified and uncertified skills and productivity growth performance: Cross-country evidence at industry level. *Labour Economics*, 19 (3). pp. 351–360.
- McKee, K. And Sessions-Robinson, C. (1989). Manufacturing Productivity and Competitiveness. *Journal of Manufacturing*, No.3, pp 35-9.
- Meghir, C. and Palme, M. (2004). Educational Reform, Ability and Family Background. London: *Institute for Fiscal Studies*.
- Melitz, M. (2003). The impact of trade on intra-industry reallocations and aggregate industry productivity. *Econometrica*. 71 (6), pp. 1695-1725.
- Minetti, R., and Zhu, S. (2011). Credit constraints and firm export: Microeconomic evidence from Italy. *Journal of International Economics*, 83(2), pp. 109-125.
- Mitra, P. (2008). Innovation, inclusion, and integration: from transition to convergence in Eastern Europe and the Former Soviet Union. Europe and Central Asia reports. Washington, DC: World Bank.
- Mlangeni, E. and van Seventer, D. (2000). Revealed comparative advantage in SADC economies, *Southern African Update*, Vol. 5.
- Mojsoska-Blazevski, N. (2006). *The Public Employment Service, Education and Labour Markets in Macedonia*. PhD thesis. Staffordshire University.
- Munich, D. Svejnar, J. and Terrell, K. (2005). *Returns to human capital under the communist wage grid and during the transition to a market economy. The Review of Economics and Statistics*, 87(1) pp. 100-123.
- Murthi, M. and Sondergaard, L. (2012). *Skills, Not Just Diplomas: The Path for Education Reforms in Eastern Europe and Central Asia.* Washington, DC: World Bank.
- Muûls, M. (2008). Exporters and credit constraints. A firm-level approach. *National Bank of Belgium Working Paper* No. 139.
- Nazarov, Z and Akhmedjonov, A. (2011). Education, Training and Innovation in Transition Economies. Is there a Link? *RAND Working paper* WR-776-1.

- Nehru, V. Swanson, E. and Dubey, A. (1995). A new database in human capital stock in developing industrial countries: Sources, methodology and results. *Journal of Development Economics*, 46 (2), pp. 379–401.
- Nelson, R. and Phelps, E. (1966). Investment in humans, technological diffusion, and economic growth. *The American Economic Review*, 56(1/2), pp. 69-75.
- Notta, O. and Vlachvei, A. (2011). Competitiveness in food and beverage manufacturing industries. *International Conference on Applied Economics ICOAE*.
- OECD (1998). *Human Capital Investment: An international comparison*. Paris: Centre for Educational Research and Innovation.
- OECD (2001a). Measuring Productivity: Measurement of aggregate and industry-level productivity growth. *OECD Manual*. Paris: OECD.
- OECD (2001b). The Well-being of Nations: The Role of Human and Social Capital. Paris: OECD.
- OECD (2002). Measuring the Non-Observed Economy: A Handbook. Paris: OECD.
- OECD (2003). OECD Science, Technology and Industry Scoreboard 2003. Paris: OECD.
- OECD (2011a).Competitiveness and Private Sector Development: Eastern Europe and South Caucasus 2011: Competitiveness Outlook, Paris: OECD Publishing.
- OECD (2011b). Skills for Innovation and Research. Paris: OECD
- OECD (2013a). OECD Skills Outlook 2013: First Results from the Survey of Adult Skills. Paris: OECD
- OECD (2013b). STAN Bilateral Trade Database by Industry and End-use category (BTDIxE), edition 2012, ISIC revision 3.Paris: OECD.
- OECD and World Bank. (2007). Cross-border Tertiary Education: A Way towards Capacity Development. Paris: OECD
- Olemda, G. and Varela, J. (2012). Determinants of International Competitiveness in the Pharmaceutical Industry. *Esic Market Economic and Business Journal*. 43(2) May-August pp. 371-385.
- Oreopoulos, P. (2005). Stay in school: new lessons on the benefits of raising the legal school-leaving age. Toronto: *C.D. Howe Institute*.

- Oxley, L., Le, T. and Gibson, J. (2008). Measuring human capital: alternative methods and international evidence. *The Korean Economic Review*, 24(2), pp. 283-344.
- Papke, L. and Wooldridge, J. (1996). Econometric methods for fractional response variables with an application to 401(k) plan participation rates. *Journal of Applied Econometrics*, 11(4), pp. 619-632.
- Parteka, A. and Tamberi M. (2008). Determinants of export diversification: an empirical investigation. Universita' Politecnicadelle Marche (I), Dipartimento di ScienzeEconomiche e Sociali, Working Paper No. 327.
- Peña-Vinces, J. and Róldan, J. (2012). Factors determining of international competitiveness of the Latin American Peruvians-SMEs. *Congreso de la AsociaciónCientífica de Economía y Dirección de la Empresa (ACEDE)*, Cádiz(Spain).
- Petty, W. (1690). *Political Arithmetik, or a Discourse Conceirning the Extent and Value of Lands, People, Buildings*. Reprinted in C.H. Hull (1899) The Economic Writings of Sir William Petty. Cambridge: Cambridge University Press.
- Pitts, E. Viaene, J. Traill, B. and Gellynk, X. (1995). Measuring Food Industry Competitiveness. Structural Change in the European Food Industries. A Concerted Action project within the EU AAIR Programme, University of Reading, UK, Discussion Paper Series, No. 7.
- Plumper, T. and Troeger, V. (2007). Efficient estimation of time-invariant and rarely changing variables in finite sample panel analyses with unit fixed effects. *Political Analysis*, 15, pp. 124–139.
- Plumper, T. and Troeger, V. (2011). Fixed-Effects Vector Decomposition: Properties, Reliability, and Instruments. *Political Analysis* 19, pp. 147–164.
- Porter, M. (1990). The Competitive Advantage of Nations. London: MacMillan
- Porter, M. (2002). Building the Microeconomic Foundations of Prosperity: Findings from the Microeconomic Competitiveness Index. In: *World Economic Forum (WEF). The Global Competitiveness Report*. Geneva: World Economic Forum.
- Posner, M. (1961). International trade and technical change. *Oxford Economic Papers*, 13(3), pp. 323-341.

- Potter, J. and Proto, A. (2005). Promoting Entrepreneurship in South East Europe: Policies and Tools. Paris: Organisation for Economic Co-Operation and Development (OECD).
- Programme for International Student Assessment (PISA) database. [Online]. Available from: OECD. <u>http://www.oecd.org/pisa/pisaproducts/[Accessed: 20 February 2016]</u>.
- Psacharopoulos, G. and Arriagada, A. M. (1986). The educational composition of the labour force: An international comparison. *International Labour Review*, 125(5), pp. 561–574.
- Qineti, A. Rajcaniova, M. and Matejkova, E. (2009). The competitiveness and comparative advantage of the Slovak and the EU agri-food trade with Russia and Ukraine. *Agricultural Economics Czech*. 55 (8), pp. 375-383.
- Radelet, S. and Sachs, J. (1998). Shipping costs, manufactured exports, and economic growth. *Harvard Institute for International Development (HIID) Papers*. Presented at the American Economics Association annual meeting.
- Radó, P. (2001). Transition in Education. *The Open Society Institute. Institute for Educational Policy.*
- Raghunathan, T., Lepkowski, J., Hoewyk, J. and Solenberger P. (2001). A multivariate technique for multiply imputing missing values using a sequence of regression models. *Survey Methodology*, 27(1), pp. 85-95.
- Ram, R. (1980). Role of Education in Production: A Slightly New Approach. *The Quarterly Journal of Economics*, 95(2), pp. 365-373.
- Ricardo, David. (1817). *On the Principles of Political Economy and Taxation*. London: John Murray.
- Rizvanolli, A. (2012). *The effect of human capital on FDI in European transition economies*. PhD Thesis, Staffordshire University: UK.
- Roaf, J., Atoyan, R., Joshi, B., Krogulski, K. and an IMF Staff Team. (2014). 25 Years of Transition Post-Communist Europe and the IMF. Washington, DC: International Monetary Fund.
- Roberts, M. and Tybout, J (1997). The decision to export in Colombia: An empirical model of entry with sunk costs. *American Economic Review*, 87 (4), pp. 545–64.

- Rodrik, D. (2006). What's so special about China's Exports? *NBER Working Paper* No. 11947.
- Romalis, J. (2004). Factor Proportions and the Structure of Commodity Trade. *The American Economic Review*. 94 (1), pp. 67-97.
- Romer, P. (1990). Endogenous technological change. *Journal of Political Economy*, 98(5), part 2, pp. S71-S102.
- Roodman, D. (2006). How to do xtabond2: An Introduction to "Difference" and "System" GMM in STATA. *Centre for Global Development Working Paper* No. 103.
- Roodman, D. (2009) How to do xtabond2: An introduction to difference and system GMM in Stata. *The Stata Journal*, 9(1) pp.86-136.
- Roper, S. and Love, J. (2002). Innovation and export performance: evidence from the UK and German manufacturing plants. *Research Policy*, 31 (7), pp. 1087-1102.
- Roper, S., Love, J. H., and Higon, D.A. (2006). The Determinants of Export Performance: Evidence for Manufacturing Plants in Ireland and Northern Ireland. *Scottish Journal of Political Economy*, 53(5), pp. 586-615.
- Rosenzweig, M. (1995). Why Are There Returns to Schooling? American Economic Review, 85(2), pp. 153-158.
- Rosenzweig, M. (1996). When Investing in Education Matters and When It Does Not. Challenge. 39 (2), pp. 22-29.
- Royston, P. and White, I. (2011). Multiple Imputation by Chained Equations (MICE): Implementation in Stata. *Journal of Statistical Software*, 45 (4), pp. 1-20.
- Ruane, F. and Sutherland J. (2004). Foreign Direct Investment and Export Spillovers: How Do Export Platforms Fare?,*IIIS Discussion Paper* No.58.
- Ruane, F. and Sutherland J. (2004). Foreign Direct Investment and Export Spillovers: How Do Export Platforms Fare? *The Institute for International Integration Studies (IIIS) Discussion Paper* No.58.
- Rubin, D. (1987). Multiple Imputation for Nonresponse in Surveys. New York: Wiley.
- Rubin, D. (1996). Multiple imputation after 18+ years. *Journal of the American Statistical Association*, 91(434), pp. 473-489.
- Rutkowski, J. (1996). High skills pay off: The changing wage structure during economic transition in Poland. *Economics of Transition*, 4(1), pp. 89–112.

- Sala, H. and Silva, J. (2011). Labour productivity and vocational training: evidence from Europe. *Institute of the Study of Labour (IZA) Discussion Paper 6171*.
- Salomon, R. and Shaver, J. (2005). Learning by Exporting: New Insights from Examining Firm Innovation. *Journal of Economics and Management Strategy*, 14 (2), pp. 431-460.
- Sanidas, E. and Yousun, S. (2010). Comparison of Revealed Comparative Advantage Indices with Application to Trade Tendencies of East Asian Countries. *Department of Economics, Seoul National University.*
- Santos Silva, J.M.C. and Tenreyro, S. (2006). The Log of Gravity. *The Review of Economics and Statistics*, 88(4), pp. 641–658.
- Sara, T., Jackson, F. and Upchurch, L. (2012). Role of Innovation in Hi-Tech-Exports of a Nation, *International Journal of Business and Management*, 7(7), pp. 85-93.
- Schafer, J. (1997). Analysis of Incomplete Multivariate Data. London: Chapman & Hall.
- Schafer, J. and Graham, J. (2002). Missing Data: Our View of the State of the Art. *Psychological Methods*, 7 (2), pp. 147-177.
- Schaffer, M. (2010). xtivreg2: Stata module to perform extended IV/2SLS, GMM and AC/HAC, LIML and k-class regression for panel data models. http://ideas.repec.org/c/boc/bocode/s456501.html.
- Schiefer, J. and Hartman, M. (2008). Determinants of competitive advantage for German food processors. *Agribusiness*. 24(3), pp. 306-319.
- Schultz, T. (1961). Investment in Human Capital. *American Economic Review*, 51(1), pp. 1-17.
- Schultz, T. (1964). *Transforming Traditional Agriculture*. New Haven, Conn.: Yale University Press.
- Schultz, T. (1975). The value of the ability to deal with disequilibria. Journal *of Economic Literature*, 13(3), pp. 827-846.
- Schwab, K. (2014). *The Global Competitiveness Report 2014–2015*. Geneva: World Economic Forum.
- Scott, B. and Lodge, G. (1985). U.S. Competitiveness in the World Economy. Boston: Harvard Business School Press.

- Seck, A. (2012). International Technology Diffusion and Economic Growth: Explaining the Spillover Benefits to Developing Countries. *Structural Change and Economic Dynamics*, 23 (4), pp. 437-451.
- Serin, V. and Civan, A. (2008). Revealed Comparative Advantage and Competitiveness: A Case Study for Turkey towards the EU. *Journal of Economic and Social Research*. 10(2), pp. 25-41.
- Shafaei, R. (2009). An analytical approach to assessing the competitiveness in the textile industry. *Journal of Fashion Marketing and Management*, 13 (1), pp.20 36.
- Sheard, N. (2014). Learning to Export and the Timing of Entry to Export Markets. *Review of International Economics*, 22 (3), pp.536-560.
- Shirotori et al. (2010). Revealed factor intensity indices at the product level. UNCTAD, Policy issues in international trade and commodities study series No. 44.
- Sianesi, B. and van Reenen, J. (2003). The returns to education: macroeconomics. *Journal of Economic Surveys.* 17 (2), pp. 157-200.
- Siggel, E. (2006). International competitiveness and comparative advantage: A survey and a proposal for measurement. *Journal of Industry, Competition and Trade*. 6(2), pp. 137-159.
- Smeets, V. and Warzynski, F. (2010). Learning by Exporting, Importing or Both? Estimating productivity with multi-product firms, pricing heterogeneity and the role of international trade. *Aarhus University, Department of Economics Working Papers 10-13*.
- Smith, A. (1776). An Inquiry into the Nature and Causes of the Wealth of Nations, Vol. I ed. R. H. Campbell and A. S. Skinner, vol. II of the Glasgow Edition of the Works and Correspondence of Adam Smith. Indianapolis: Liberty Fund, 1981.
- Sousa, N., Greenaway, D. and Wakelin, K. (2000). Multinationals and Export Spillovers. *Centre for research on globalisation and labour markets, Research Paper* 2000/14.
- Spence, M. (1973). Job Market Signalling. *Quarterly Journal of Economics*, 87(3), pp. 355-374.
- Srholec, M. (2007). High-tech exports from developing countries: A symptom of technology spurts or statistical illusion? *Review of World Economics/WeltwirtschaftlichesArchiv*, 143(2), pp. 227–255.

- Stanwick, J. (2011). *Innovation: its links with productivity and skill development*. Adelaide: National Centre for Vocational Education Research.
- Sterlacchini, A. (1999). Do innovative activities matter to small firms in non-R&Dintensive industries. An application to export performance. *Research Policy*, 28 (8) pp.819-832.
- Stevens, J.P. (1984). Outliers and Influential Data Points in Regression Analysis, *Psychological Bulletin*, 95 (2), pp. 334-344.
- Stiglitz, J. (1975). The Theory of 'Screening,' Education, and the Distribution of Income. *The American Economic Review*, 65 (3), pp. 283–300.
- Stokey, N. (1991). The Volume and Composition of Trade between Rich and Poor Countries. *The Review of Economic Studies*. 58 (1), pp. 63-80.
- Stone, S. Cavazos Cepeda, R. and Jankowska, A. (2011). The Role of Factor Content in Trade: Have Changes in Factor Endowments Been Reflected in Trade Patterns and on Relative Wages? *OECD Trade Policy Working Papers*, No. 109.
- Storper, M. (1997). *The Regional World: Territorial Development in a Global Economy*. New York: Guilford Press.
- Syverson, C. (2011). What determines productivity? *Journal of Economic Literature*, 49 (2), pp. 326-365.
- Tebaldi, E. (2011). The Determinants of High-Technology Exports: A Panel Data Analysis. *Atlantic Economic Journal*, 39 (4), pp 343-353.
- The Heritage Foundation. (2014). *Explore the Data: Index of Economic Freedom*. Washington: The Heritage Foundation.
- The International Bank for Reconstruction and Development and World Bank. (2008). *Doing business in landlocked economies 2009.* Washington: World Bank.
- Thorn, W. (2009). International Adult Literacy and Basic Skills Surveys in the OECD Region. *OECD Education Working Papers*, No. 26, OECD Publishing.
- Thurow, L. (1975). *Generating Inequality*. London: The MacMillan Press.
- Toner, P. (2011). Tradespeople and technicians in innovation, in fostering enterprise: The innovation and skills nexus—research readings, Eds Curtin P, Stanwick J and Beddie F, Adelaide: National Centre for Vocational Education Research.

- Trends in International Mathematics and Science Study (TIMSS) and Progress in International Reading Literacy Study (PIRLS) database. [Online]. Available from: IEA TIMSS and PIRLS – International Study Centre, Boston College's Lynch School of Education. <u>http://timssandpirls.bc.edu/#</u>. [Accessed: 19 February 2016].
- Tsakok, I. (1990). Agricultural Price Policy: A Practitioner's Guide to Partial-Equilibrium Analysis, Ithaca and London: Cornell University Press.
- Tukey, J. (1977). *Exploratory Data Analysis*. Reading, MA: Addison–Wesley.
- Tyson, L. (1992) *Who's bashing whom? Trade conflicts in High-technologyindustries.* Washington DC: The Institute for International Economics.
- UNCTAD (2002). World Investment Report 2002: Transnational Corporations and Export Competitiveness. New York: United Nations.
- UNCTAD. (2013). Goods and services trade openness indicators(1980-2011). New York: United Nations. Available from UNTACD. http://unctadstat.unctad.org/wds/ReportFolders/reportFolders.aspx.
- UNCTAD (2014a). Merchandise trade matrix database: detailed products, exports in thousands of dollars, annual, 1995-2013, SITC revision 3. New York: United Nations.
- UNCTAD. (2014b). Merchandise trade matrix product groups, exports in thousands of dollars, annual, 1995-2013. New York: United Nations. Available from UNTACD.<u>http://unctadstat.unctad.org/wds/ReportFolders/reportFolders.aspx</u>.
- UNCTAD. (2016a). Trade matrix by product groups, exports in thousands of dollars, annual, 1995-2014.New York: United Nations. Available from UNTACD. <u>http://unctadstat.unctad.org/wds/TableViewer/tableView.aspx?ReportId=24739</u>. [Accessed: 25 January 2016].
- UNCTAD (2016b). Goods and Services (BPM5): Exports and imports of goods and services, annual, 1980-2013.New York: United Nations. Available from UNTACD. <u>http://unctadstat.unctad.org/wds/TableViewer/tableView.aspx?ReportId=25116</u>. [Accessed: 20 January 2016].
- UNdata (2016). Compulsory Education, Duration. [Online]. Available from: The United Nations Statistics Division (UNSD). New York: United Nations. Available from <u>http://data.un.org/Data.aspx?d=UNESCO&f=series%3ACEDUR\_1</u>. [Accessed: 17 February 2016].

- UNESCO (1993). World Education Report. Paris: UNESCO Publishing.
- United Nations (2008). The International Standard Industrial Classification of All Economic Activities (ISIC), Rev. 4. Department of Economic and Social Affairs, Statistics Division. Statistical papers Series M No. 4/Rev.4. New York.
- Utkulu, U. and Seymen, D. (2004). Revealed Comparative Advantage and Competitiveness: Evidence for Turkey vis-à-vis the EU/15. *European Trade Study Group* 6th Annual Conference ETSG 2004, Nottingham.
- Van Beveren, I. and Vandenbussche, H. (2010). Product and Process Innovation and Firms' Decision to Export, *Journal of Economic Policy Reform*, 13, pp. 3-24.
- Van Buuren, S., Boshuizen, H. and Knook, D. (1999). Multiple imputation of missing blood pressure covariates in survival analysis. *Statistics in Medicine*, 18(6), pp. 681-694.
- Van der Marel, E. (2012). Determinants of Comparative Advantage in Services. *ForschungsschwerpunktInternationaleWirtschaft (FIW) Working Paper Series* No. 087.
- Van Dijk, M. (2001). The Determinants of Export Performance in Developing Countries: the Case of Indonesian Manufacturing. *Eindhoven Centre for Innovation Studies Working Paper* No. 02/01.
- Vandenbussche, J., Aghion, P. and Meghir, C. (2006). Growth, distance to frontier and composition of human capital. *Journal of Economic Growth*. 11 (2), pp 97-127.
- Vecernik, J. (1995). Changing earnings distribution in the Czech Republic: Survey evidence from 1988–1994. *Economics of Transition*, 3(3), pp. 355–371.
- Venables, A. and Limão, N. (2002). Geographical disadvantage: a Hecksher-Ohlin-von Thünen model of international specialization. *Journal of International Economics*, 58(2), pp. 239–263.
- Vernon, V. (1966). International investment and international trade in the product cycle. *The Quarterly Journal of Economics*, 80 (2), pp.190-207.
- Vogiatzoglou, K. (2009). Determinants of Export Specialization in ICT Products: A Cross-Country Analysis. *International Network for Economic Research*, Working Papers No. 2009.3.
- Vollrath, T. (1991). A theoretical evaluation of alternative trade intensity measures of revealed comparative advantage. *WeltwirtschaftlichesArchiv*, 127 (2) pp. 265-280.

- Von Hippel, P. (2007). Regression With Missing Y's: An Improved Strategy for Analyzing Multiply Imputed Data. *Sociological Methodology*, 37(1), pp. 83-117.
- Wagner, J. (1995). Exports, Firm Size, and Firm Dynamics. *Small Business Economics*, 7(1), pp. 29-39.
- Wagner, J. (2001). A note on the firm size-export relationship. Small Business Economics. 17(4), pp. 229–237. Institute for the Study of Labor (IZA), Discussion Papers No. 6274.
- Wagner, J. (2007). Exports and Productivity: A Survey of the Evidence from Firm-Level Data, *World Economy*, 30 (1), pp. 60-82.
- Wagner, J. (2012). Average Wage, Qualification of the Workforce and Export Performance in German Enterprises: Evidence from KombiFiD Data. *Institute for the Study of Labor (IZA) Discussion Paper* No. 6274.
- Wagner, J. (2014). A note on firm age and the margins of exports: First evidence from Germany. *University of Lüneburg Working Paper Series in Economics*No. 303.
- Wakelin, K. (1998a). Innovation and Export Behaviour at the Firm Level. *Research Policy*, 26 (7-8), pp. 829-841.
- Wakelin, K. (1998b). The role of innovation in bilateral OECD trade performance. *Applied Economics*, 30 (10), pp. 1335-1346.
- Wang, Ch., Buckley, P., Clegg, J. and Kafouros, M. (2007). The impact of inward foreign direct investment on the nature and intensity of Chinese manufacturing exports. *Transnational Corporations*, 16 (2), pp. 123-140.
- Wang, Z. and Wei, S. (2008). What Accounts for the Rising Sophistication of China's Exports? *NBER Working Paper*No. 13771.
- Welch, F. (1970). Education in Production. *Journal of Political Economy*, 78(1), pp. 35-59.
- Weldemicael, E. (2010). Determinants of Export Sophistication. *The University of Melbourne*.
- West, J. (2013). Vocational Education and Training in Eastern Europe: Transition and Influence. *Centre for Learning and Life Chances in Knowledge Economies and Societies* (*LLAKES*). Institute of Education, University of London.

- White, I., Royston, P. and Wood, A. (2011). Multiple imputation using chained equations: Issues and guidance for practice. *Statistics in Medicine*, 30 (4), pp. 377-399.
- Wijnands, J. Bremmers, H. van der Meulen, B. and Poppe, K. (2008). An economic and legal assessment of the EU food industry's competitiveness. *Agribusiness*. 24(4), pp. 417-439.
- Woessmann, L. (2000). Specifying Human Capital: A Review, Some Extensions, and Development Effects. *Kiel Institute for the World Economy, Working Paper* No. 1007.
- Woessmann, L. (2003). Specifying human capital. *Journal of Economic Surveys*, 17 (3), pp. 239–270.
- Wooldridge, J. (2002). *Econometric Analysis of Cross Section and Panel Data*. London: The MIT Press.
- Wooldridge, J. (2009). *Introductory Econometrics*. Fourth Edition. Mason: South Western Cengage Learning.
- World Bank (2008). Unleashing Prosperity: Productivity Growth in Eastern Europe and the Former Soviet Union. Washington: World Bank.
- World Bank (2010). BEEPS At-A-Glance 2008 Cross Country Report. Washington, DC: World Bank.
- World Bank (2014). World Development Indicators Database. Washington: World Bank.
- World Bank (2016a). Exports of goods and services, constant 2005 US\$ [Online]. Available from World Bank: <u>http://data.worldbank.org/indicator/NE.EXP.GNFS.KD</u>. [Accessed: 15 January 2016].
- World Bank (2016b). *Exports of goods and service* % of GDP. [Online]. Available from World Bank: <u>http://data.worldbank.org/indicator/NE.EXP.GNFS.ZS</u>. [Accessed: 15 January 2016].
- World Bank (2016c). *High-technology exports, current US\$*. [Online]. Available from World Bank: <u>http://data.worldbank.org/indicator/NE.EXP.GNFS.KD</u>. [Accessed: 16 January 2016].
- World Bank (2016d). *High-technology exports % of manufactured exports*. [Online].Available from World Bank: <u>http://data.worldbank.org/indicator/TX.VAL.TECH.MF.ZS</u>.[Accessed: 17 January 2016].

- World Bank (2016e). Labour force with primary/secondary/tertiary education (% of total) database. [Online]. Available fromWorld Development Indicators (WDI), World Bank. <u>http://data.worldbank.org/indicator/</u>. [Accessed: 15 February 2016].
- World Economic Forum (2012). *The Global Competitiveness Report2012–2013*. Geneva: World Economic Forum.
- Yeats, A. (1985). On the Appropriate Interpretation of the Revealed Comparative Advantage Index: Implications of a Methodology Based on Industry Sector Analysis. *Weltwirtschaftliches Archives*. 121(1) pp. 61-73.
- Young, R, and Johnson, D. (2010). Imputing the missing Y's: implications for survey producers and survey users. *In Proceedings of American Association for Public Opinion Research*, pp. 6242–6248.
- Zhang, K.H. and Song, Sh. (2000). Promoting exports: the role of inward FDI in China. *China Economic Review*, 11, pp. 385-396.
- Zhu, Sh., Fu, X., Lai, M. and Xuan, J. (2009). What Drives the Export Sophistication of Countries? University of Oxford, Department of International Development. SLPTMD Working Paper Series No. 033.
- Zwick, T. (2006). The Impact of Training Intensity on Establishment Productivity, Industrial Relations: *A Journal of Economy and Society*. 45(1), pp. 26–46.

# Appendix - A4

# Contents

| Table A4.1 Model 1 - Fixed effects estimated results                   |  |
|------------------------------------------------------------------------|--|
| Table A4.1.1 Model 1 - Random effects estimated results                |  |
| Table A4.1.2 Model 1 - Fixed effects versus Random effects             |  |
| Table A4.1.3 Model 1- Diagnostic tests                                 |  |
| Table A4.1.4 Model 1 - Driscoll-Kraay estimated results                |  |
| Table A4.1.4.1 Model 1 - Driscoll-Kraay estimated results              |  |
| Table A4.1.4.2 Model 1 - Driscoll-Kraay estimated results              |  |
| Table A4.1.5 Model 1 - FEVD estimated results (STATA ado file)         |  |
| Table A4.1.5.1 Model 1- FEVD estimated results (three stage procedure) |  |
| Table A4.1.6 Model 1 - Hausman and Taylor estimated results            |  |
| Table A4.1.6.1 Model 1 - Fixed effects versus Hausman and Taylor       |  |
| Table A4.1.7 Model 1 - Hsiao 2 step procedure                          |  |
| Table A4.1.8 Model 1 - IV estimated results                            |  |
| Table A4.1.8.1 Model 1 - IV estimated results (ETEs)                   |  |
| Table A4.1.8.2 Model 1 - IV estimated results (N-ETEs)                 |  |
| Table A4.1.8.3 Model 1 - IV estimated results                          |  |
| Table A4.1.8.4 Model 1 - IV estimated results                          |  |
| Table A4.2 Model 2 - Fixed effects estimated results                   |  |
| Table A4.2.1 Model 2 - Random effects estimated results                |  |
| Table A4.2.2 Model 2 - Fixed effects versus Random effects             |  |
| Table A4.2.2.1 Models 1& 2 - Fixed effects versus Random effects       |  |
| Table A4.2.3 Model 2 - Diagnostic tests                                |  |
| Table A4.2.3.1 Models 1&2 - Diagnostic tests                           |  |
| Table A4.2.4 Model 2 - Driscoll-Kraay estimated results                |  |
| Table A4.2.4.1 Model 2 - Driscoll-Kraay estimated results              |  |
| Table A4.2.4.2 Model 2 - Driscoll-Kraay estimated results              |  |

| Table A4.2.5 Model 2 - FEVD estimated results (STATA ado file)          |     |
|-------------------------------------------------------------------------|-----|
| Table A4.2.5.1 Model 2 - FEVD estimated results (Three stage procedure) | 341 |
| Table A4.2.6 Model 2 - Hausman and Taylor estimated results             | 342 |
| Table A4.2.6.1 Model 2 - Fixed effects versus Hausman and Taylor        |     |
| Table A4.2.7 Model 2 - Hsiao 2 step procedure                           | 344 |
| Table A4.2.8 Model 2 - IV estimated results                             |     |
| Table A4.2.8.1 Model 2 - IV estimated results (ETEs)                    |     |
| Table A4.2.8.2 Model 2 - IV estimated results (N-ETEs)                  |     |
| Table A4.2.8.3 Model 2 - IV estimated results                           |     |
| Table A4.2.8.4 Model 2 - IV estimated results                           | 350 |
| Table A4.3 Descriptive statistics (Variables in levels)                 |     |
| Table A4.3.1 Correlation matrix                                         | 352 |
| Figure A4.4 Functional transformations for all explanatory variables    | 352 |
| Figure A4.4.1 Functional transformation for sedut                       |     |
| Figure A4.4.2 Functional transformation for <i>tedut</i>                |     |
| Figure A4.4.3 Functional transformation for <i>avyrs</i>                | 354 |
| Figure A4.4.4 Functional transformation for <i>cskills</i>              | 354 |
| Figure A4.4.5 Functional transformation for <i>patappr</i>              |     |
| Figure A4.4.6 Functional transformation for <i>fdi</i>                  |     |
| Figure A4.4.7 Functional transformation for <i>gdpc</i>                 |     |
| Figure A4.4.8 Functional transformation for <i>unem</i>                 |     |
| Figure A4.4.9 Functional transformation for <i>ecofree</i>              | 357 |
| Figure A4.5.1 Functional transformation for <i>rulc</i>                 |     |
| Figure A4.5.2 Functional transformation for serv                        |     |
| Figure A4.5.3 Functional transformation for pop                         |     |
| Figure A4.5.4 Functional transformation for <i>trandinN</i>             |     |
| Figure A4.5.5 Functional transformation for <i>dist</i>                 |     |
| Figure A4.5.6 Functional transformation for transdummy                  |     |
| Figure A4.5.7 Functional transformation for <i>emplcvt</i>              |     |
| Figure A4.5.8 Functional transformation for trngent                     |     |
| Table A4.6 Model 1 - Fixed effects estimated results                    |     |
| Table A4.6.1 Model 1 - Diagnostic tests                                 |     |

| Table A4.6.2 Model 1 - Driscoll-Kraay estimated results              |  |
|----------------------------------------------------------------------|--|
| Table A4.6.3 Model 1 - FEVD estimated results                        |  |
| Table A4.6.4 Model 1 - Hausman and Taylor estimated results          |  |
| Table A4.6.5 Model 1 - IV estimated results                          |  |
| Table A4.6.5.1 Model 1 - IV estimated results (ETEs)                 |  |
| Table A4.6.5.2 Model 1 - IV estimated results (N-ETEs)               |  |
| Table A4.7 Model 2 - Fixed effects estimated results                 |  |
| Table A4.7.1 Model 2 - Diagnostic tests                              |  |
| Table A4.7.2 Model 2 - Driscoll-Kraay estimated results              |  |
| Table A4.7.3 Model 2 - FEVD estimated results                        |  |
| Table A4.7.4 Model 2 - Hausman and Taylor estimated results          |  |
| Table A4.7.5 Model 2 - IV estimated results                          |  |
| Table A4.7.5.1 Model 2 - IV estimated results (ETEs)                 |  |
| Table A4.7.5.2 Model 2 - IV estimated results (N-ETEs)               |  |
| Table A4.8 Model 1&2 - IV estimated results – emsh at industry level |  |
| Table A4.9 Model 1& 2 - Estimation results – old version dataset     |  |
| Table A4.9.1 Model 1 - FE standard errors vs FEVD standard errors    |  |

| Table A4.1 M                                                                                                            | <b>Iodel 1 - Fix</b>                                                                            | ed effects e                                                                                    | estimate                                                                  | ed resul                                | ts                                               |                                              |                  |
|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------|----------------------------------------------|------------------|
| <pre>xtreg lnemsh l<br/>lnrulc serv di<br/>year2002 year2<br/>note: cskills<br/>note: dist omi<br/>note: transdum</pre> | nsedut lnted<br>st transdumm<br>2003 year2004<br>omitted beca<br>itted because<br>nmy omitted b | ut cskills in<br>y year1996 ye<br>year2005 yea<br>use of collin<br>of collinea:<br>ecause of co | npatappr<br>ear1997 <u>y</u><br>ar2006 ye<br>nearity<br>rity<br>llinearit | lnfdi ln<br>vear1998<br>ear2007 y<br>ey | ugdpc lnpop un<br>year1999 year<br>ear2008 year2 | nem lnecofre<br>r2000 year20<br>2009 year201 | e<br>01<br>0, fe |
| Fixed-effects<br>Group variable                                                                                         | (within) reg<br>e: country                                                                      | ression                                                                                         |                                                                           | Number<br>Number                        | of obs =<br>of groups =                          | = 366<br>= 27                                |                  |
| R-sq: within<br>betweer<br>overall                                                                                      | = 0.7141<br>n = 0.2692<br>L = 0.2043                                                            |                                                                                                 |                                                                           | Obs per                                 | group: min =<br>avg =<br>max =                   | = 5<br>= 13.6<br>= 16                        |                  |
| corr(u_i, Xb)                                                                                                           | = -0.9233                                                                                       |                                                                                                 |                                                                           | F(25,31<br>Prob >                       | .4) =<br>F =                                     | = 31.38<br>= 0.0000                          |                  |
| lnemsh                                                                                                                  | Coef.                                                                                           | Std. Err.                                                                                       | t                                                                         | P> t                                    | [95% Conf                                        | . Interval]                                  |                  |
| lnsedut  <br>lntedut  <br>cskills                                                                                       | .2278381<br>.5918861<br>(omitted)                                                               | .1265099<br>.1272115                                                                            | 1.80<br>4.65                                                              | 0.073<br>0.000                          | 0210761<br>.3415915                              | .4767523<br>.8421807                         |                  |
| lnpatappr  <br>  lnfdi  <br>  lngdpc                                                                                    | .0557272<br>0042827<br>1.223514                                                                 | .0277064<br>.0052079<br>.1357031                                                                | 2.01<br>-0.82<br>9.02                                                     | 0.045<br>0.412<br>0.000                 | .0012136<br>0145294<br>.9565112                  | .1102408<br>.005964<br>1.490516              |                  |
| lnpop  <br>unem  <br>lnecofree                                                                                          | -1.921913<br>.0039765<br>.0586927                                                               | .3773957<br>.0008909<br>.1780905                                                                | -5.09<br>4.46<br>-0.33                                                    | 0.000<br>0.000<br>0.742                 | -2.664457<br>.0022237<br>4090943                 | -1.179369<br>.0057293<br>.2917088            |                  |
| lnrulc  <br>serv  <br>dist                                                                                              | 4617832<br>0070245<br>(omitted)                                                                 | .1959859<br>.0038653                                                                            | -2.36<br>-1.82                                                            | 0.019<br>0.070                          | 8473949<br>0146297                               | 0761716<br>.0005808                          |                  |
| transdummy  <br>year1996  <br>year1997                                                                                  | (omitted)<br>.0036437<br>0374412                                                                | .0460969<br>.0471993                                                                            | 0.08<br>-0.79                                                             | 0.937<br>0.428                          | 0870542<br>1303081                               | .0943416<br>.0554257                         |                  |
| year1998  <br>year1999  <br>year2000                                                                                    | 0658051<br>0985383<br>1153523                                                                   | .0484716<br>.051051<br>.051616                                                                  | -1.36<br>-1.93<br>-2.23                                                   | 0.176<br>0.054<br>0.026                 | 1611753<br>1989835<br>2169092                    | .0295651<br>.0019069<br>0137954              |                  |
| year2001  <br>year2002  <br>year2003                                                                                    | 1413013<br>1694559<br>1953327                                                                   | .0535384<br>.0571088<br>.0600268                                                                | -2.64<br>-2.97<br>-3.25                                                   | 0.009<br>0.003<br>0.001                 | 2466406<br>2818202<br>3134383                    | 035962<br>0570916<br>0772271                 |                  |
| year2004  <br>year2005  <br>year2006                                                                                    | 2446844<br>258355<br>3265143                                                                    | .0630965<br>.0675741<br>.0710035                                                                | -3.88<br>-3.82<br>-4.60                                                   | 0.000<br>0.000<br>0.000                 | 3688297<br>3913103<br>466217                     | 1205391<br>1253997<br>1868116                |                  |
| year2007  <br>year2008  <br>year2009                                                                                    | 3612019<br>3272289<br>2355773                                                                   | .0738698<br>.0760833<br>.0777604                                                                | -4.89<br>-4.30<br>-3.03                                                   | 0.000<br>0.000<br>0.003                 | 5065442<br>4769265<br>3885746                    | 2158595<br>1775312<br>0825799                |                  |
| year2010  <br>cons                                                                                                      | 2733546<br>5.727365                                                                             | .0791745<br>4.460174                                                                            | -3.45<br>1.28                                                             | 0.001<br>0.200                          | 4291342<br>-3.048241                             | 1175751<br>14.50297                          |                  |
| sigma_u  <br>sigma_e  <br>rho                                                                                           | 3.7994624<br>.12173099<br>.99897455                                                             | (fraction d                                                                                     | of variar                                                                 | nce due t                               | ou_i)                                            |                                              |                  |
| F test that al                                                                                                          | Ll u i=0:                                                                                       | F(26, 314) :                                                                                    | = 54.6                                                                    | 58                                      | Prob >                                           | F = 0.0000                                   |                  |

# Table A4.1.1 Model 1 - Random effects estimated results

xtreg lnemsh lnsedut lntedut cskills lnpatappr lnfdi lngdpc lnpop unem lnecofree lnrulc serv dist transdummy year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010, re

| Random-effects GLS regression<br>Group variable: country |                                    |           |           |           | of obs =<br>of groups =        | = 366<br>= 27         |
|----------------------------------------------------------|------------------------------------|-----------|-----------|-----------|--------------------------------|-----------------------|
| R-sq: within<br>betweer<br>overall                       | = 0.6589<br>n = 0.9505<br>= 0.9396 |           |           | Obs per   | group: min =<br>avg =<br>max = | = 5<br>= 13.6<br>= 16 |
|                                                          |                                    |           |           | Wald ch   | i2(28) =                       | = 1280.84             |
| corr(u_i, X)                                             | = 0 (assumed                       | 1)        |           | Prob >    | chi2 =                         | = 0.0000              |
| lnemsh                                                   | Coef.                              | Std. Err. | Z         | P> z      | [95% Conf.                     | Interval]             |
| lnsedut                                                  | .3441857                           | .1295316  | 2.66      | 0.008     | .0903083                       | .598063               |
| lntedut                                                  | .3270771                           | .1184489  | 2.76      | 0.006     | .0949216                       | .5592326              |
| cskills                                                  | .3950799                           | .395629   | 1.00      | 0.318     | 3803387                        | 1.170499              |
| lnpatappr                                                | .0749434                           | .0291072  | 2.57      | 0.010     | .0178943                       | .1319925              |
| lnfdi                                                    | 0113765                            | .0056464  | -2.01     | 0.044     | 0224432                        | 0003097               |
| lngdpc                                                   | 1.606786                           | .112462   | 14.29     | 0.000     | 1.386364                       | 1.827208              |
| lnpop                                                    | .8760211                           | .0619248  | 14.15     | 0.000     | .7546507                       | .9973915              |
| unem                                                     | .0053651                           | .0009695  | 5.53      | 0.000     | .003465                        | .0072653              |
| lnecofree                                                | .276913                            | .1905637  | 1.45      | 0.146     | 0965849                        | .6504109              |
| lnrulc                                                   | 527893                             | .2156944  | -2.45     | 0.014     | 9506462                        | 1051398               |
| serv                                                     | 0110863                            | .004056   | -2.73     | 0.006     | 0190359                        | 0031368               |
| dist                                                     | 0002422                            | .0001267  | -1.91     | 0.056     | 0004905                        | 6.01e-06              |
| transdummy                                               | 1.204635                           | .2045135  | 5.89      | 0.000     | .8037962                       | 1.605475              |
| year1996                                                 | .0325913                           | .0513396  | 0.63      | 0.526     | 0680325                        | .1332152              |
|                                                          | 0201704                            | .0524968  | -0.38     | 0.701     | 1230622                        | .0827214              |
|                                                          | 0426018                            | .0536586  | -0.79     | 0.427     | 1477708                        | .0625672              |
|                                                          | 0828063                            | .0560612  | -1.48     | 0.140     | 1926842                        | .0270716              |
|                                                          | 1178102                            | .056196   | -2.10     | 0.036     | 2279524                        | 0076679               |
|                                                          | 1606278                            | .0578137  | -2.78     | 0.005     | 2739406                        | 047315                |
|                                                          | 1963685                            | .0611303  | -3.21     | 0.001     | 3161816                        | 0765553               |
| _<br>year2003                                            | 2249339                            | .0639232  | -3.52     | 0.000     | 350221                         | 0996467               |
| _<br>year2004                                            | 2987946                            | .0661558  | -4.52     | 0.000     | 4284576                        | 1691316               |
|                                                          | 3293725                            | .0698847  | -4.71     | 0.000     | 466344                         | 1924011               |
|                                                          | 4220311                            | .0723107  | -5.84     | 0.000     | 5637575                        | 2803048               |
|                                                          | 4697669                            | .0743196  | -6.32     | 0.000     | 6154306                        | 3241031               |
| year2008                                                 | 4370662                            | .0762374  | -5.73     | 0.000     | 5864888                        | 2876436               |
| year2009                                                 | 2971298                            | .0798667  | -3.72     | 0.000     | 4536655                        | 140594                |
| year2010                                                 | 3507957                            | .0807714  | -4.34     | 0.000     | 5091047                        | 1924867               |
| _cons                                                    | -26.29119                          | 2.592463  | -10.14    | 0.000     | -31.37232                      | -21.21005             |
| sigma u                                                  | .27328966                          |           |           |           |                                |                       |
| sigma e l                                                | .12173099                          |           |           |           |                                |                       |
| rho                                                      | .83444141                          | (fraction | of variar | nce due t | oui)                           |                       |
|                                                          |                                    |           |           |           |                                |                       |

# Table A4.1.2 Model 1 - Fixed effects versus Random effects

hausman FE RE, sigmamore Note: the rank of the differenced variance matrix (17) does not equal the number of coefficients being tested (25); be sure this is what you expect, or there may be problems computing the test. Examine the output of your estimators for

| anythi          | ng unexpected  | and possibly     | consider scaling   | your variables so that the |
|-----------------|----------------|------------------|--------------------|----------------------------|
| coefficients a: | re on a simila | r scale.         |                    |                            |
|                 |                |                  |                    |                            |
|                 | Coeffi         | cients           |                    |                            |
|                 | (b)            | (B)              | (b-B)              | sqrt(diag(V_b-V_B))        |
|                 | FE             | RE               | Difference         | S.E.                       |
| +               |                |                  |                    |                            |
| lnsedut         | .2278381       | .3441857         | 1163476            | .0568188                   |
| lntedut         | .5918861       | .3270771         | .264809            | .0787351                   |
| lnpatappr       | .0557272       | .0749434         | 0192162            | .0106003                   |
| lnfdi           | 0042827        | 0113765          | .0070938           | .0014219                   |
| lngdpc          | 1.223514       | 1.606786         | 3832724            | .1018454                   |
| lnpop           | -1.921913      | .8760211         | -2.797934          | .4173818                   |
| unem            | .0039765       | .0053651         | 0013886            | .0002285                   |
| lnecofree       | 0586927        | .276913          | 3356057            | .057728                    |
| lnrulc          | 4617832        | 527893           | .0661097           | .0386154                   |
| serv            | 0070245        | 0110863          | .0040619           | .001492                    |
| year1996        | .0036437       | .0325913         | 0289477            | .0045296                   |
| year1997        | 0374412        | 0201704          | 0172708            | .0053786                   |
| year1998        | 0658051        | 0426018          | 0232034            | .0075995                   |
| year1999        | 0985383        | 0828063          | 015732             | .0107256                   |
| year2000        | 1153523        | 1178102          | .0024579           | .0131305                   |
| year2001        | 1413013        | 1606278          | .0193265           | .0155138                   |
| year2002        | 1694559        | 1963685          | .0269126           | .0184401                   |
| year2003        | 1953327        | 2249339          | .0296012           | .0204462                   |
| year2004        | 2446844        | 2987946          | .0541102           | .0244966                   |
| year2005        | 258355         | 3293725          | .0710176           | .028709                    |
| year2006        | 3265143        | 4220311          | .0955169           | .0327614                   |
| year2007        | 3612019        | 4697669          | .108565            | .0360254                   |
| year2008        | 3272289        | 4370662          | .1098373           | .0377362                   |
| year2009        | 2355773        | 2971298          | .0615525           | .0343512                   |
| year2010        | 2733546        | 3507957          | .0774411           | .0362226                   |
|                 |                |                  |                    |                            |
| 5               | a              | = consistent     | t under Ho and Ha; | obtained from xtreg        |
| B :             | = inconsistent | under Ha, et     | fficient under Ho; | ; optained from xtreg      |
| Test: Ho:       | difference i   | n coefficient    | ts not systematic  |                            |
|                 |                |                  |                    |                            |
|                 | chi2(17) =     | (b-B) ' [ (V_b-V | V_B)^(-1)](b-B)    |                            |
|                 | Droblahi? -    | 0 0000           |                    |                            |
|                 | rrop/cniz =    | 0.0000           | dofinita           |                            |
|                 | st a_v-a_v)    | not positive     | derinite)          |                            |

# Table A4.1.3 Model 1- Diagnostic tests

### Groupwise heteroskedasticity

```
xttest3
Modified Wald test for groupwise heteroskedasticity
in fixed effect regression model
H0: sigma(i)^2 = sigma^2 for all i
chi2 (27) = 1583.88
Prob>chi2 = 0.0000
```

#### Autocorrelation in panel data

```
xtserial lnemsh lnsedut lntedut cskills lnpatappr lnfdi lngdpc lnpop unem lnecofree
lnrulc serv dist transdummy year1996 year1997 year1998 year1999 year2000 year2001
year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010
Wooldridge test for autocorrelation in panel data
H0: no first order autocorrelation
F(1, 26) = 62.329
Prob > F = 0.0000
```

#### Normality of residuals

pantest2 lnemsh lnsedut lntedut cskills lnpatappr lnfdi lngdpc lnpop unem lnecofree lnrulc serv dist transdummy year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010, fe Test for serial correlation in residuals Null hypothesis is either that rho=0 if residuals are AR(1) or that lamda=0 if residuals are MA(1) Following tests only approximate for unbalanced panels LM= 66.572906 which is asy. distributed as chisq(1) under null, so: Probability of value greater than LM is 3.372e-16 LM5= 8.1592221 which is asy. distributed as N(0,1) under null, so: Probability of value greater than abs(LM5) is 2.220e-16 Test for significance of fixed effects F= 54.684067 Probability>F= 1.84e-100 Test for normality of residuals Skewness/Kurtosis tests for Normality ----- joint -----Variable | Obs Pr(Skewness) Pr(Kurtosis) adj chi2(2) Prob>chi2 -----+----+ \_\_00000B | 366 0.0001 0.0000 58.08 0.0000

| Table A4.1.4 Model 1 - Driscoll-Kraay estimated results                                                                                                                                                                                                       |           |             |        |         |                                                        |                                            |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------|--------|---------|--------------------------------------------------------|--------------------------------------------|--|--|
| xtscc lnemsh lnsedut lntedut cskills lnpatappr lnfdi lngdpc lnpop unem lnecofree<br>lnrulc serv dist transdummy year1996 year1997 year1998 year1999 year2000 year2001<br>year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010, fe |           |             |        |         |                                                        |                                            |  |  |
| Regression with Driscoll-Kraay standard errors<br>Method: Fixed-effects regression<br>Group variable (i): country<br>maximum lag: 2                                                                                                                           |           |             |        |         | of obs =<br>of groups =<br>26) =<br>F =<br>R-squared = | 366<br>27<br>158584.82<br>0.0000<br>0.7141 |  |  |
|                                                                                                                                                                                                                                                               |           | Drisc/Kraav |        |         |                                                        |                                            |  |  |
| lnemsh                                                                                                                                                                                                                                                        | Coef.     | Std. Err.   | t      | P> t    | [95% Conf.                                             | Interval]                                  |  |  |
| lnsedut                                                                                                                                                                                                                                                       | .2278381  | .1088336    | 2.09   | 0.046   | .0041274                                               | .4515488                                   |  |  |
| lntedut                                                                                                                                                                                                                                                       | .5918861  | .1166649    | 5.07   | 0.000   | .352078                                                | .8316942                                   |  |  |
| cskills                                                                                                                                                                                                                                                       | (omitted) |             |        |         |                                                        |                                            |  |  |
| lnpatappr                                                                                                                                                                                                                                                     | .0557272  | .0254298    | 2.19   | 0.038   | .0034554                                               | .107999                                    |  |  |
| Infdi                                                                                                                                                                                                                                                         | 0042827   | .0046884    | -0.91  | 0.369   | 0139198                                                | .0053544                                   |  |  |
| Ingdpc                                                                                                                                                                                                                                                        | 1.223514  | .1221395    | 10.02  | 0.000   | .9724522                                               | 1.4/45/5                                   |  |  |
| Inpop                                                                                                                                                                                                                                                         | -1.921913 | .1450437    | -13.25 | 0.000   | -2.220055                                              | -1.623//1                                  |  |  |
| unem                                                                                                                                                                                                                                                          | .0039765  | .001135     | 3.50   | 0.002   | .0016436                                               | .0063094                                   |  |  |
| Inecoiree                                                                                                                                                                                                                                                     | 0586927   | .1618869    | -0.36  | 0.720   | 3914559                                                | .2/40/05                                   |  |  |
| Inruic                                                                                                                                                                                                                                                        | 461/832   | .2/44321    | -1.68  | 0.104   | -1.025886                                              | .1023199                                   |  |  |
| serv                                                                                                                                                                                                                                                          | 0070245   | .005997     | -1.1/  | 0.252   | 0193515                                                | .0053026                                   |  |  |
| alst                                                                                                                                                                                                                                                          | .00553    | .0021728    | 2.55   | 0.01/   | .0010638                                               | .0099961                                   |  |  |
| transdummy                                                                                                                                                                                                                                                    | (ONILLED) | 0100101     | 0 00   | 0 0 0 0 | 0205020                                                | 0277002                                    |  |  |
| year1996                                                                                                                                                                                                                                                      | .0036437  | .0106121    | 0.22   | 0.828   | 0305029                                                | .0377902                                   |  |  |
| year199/                                                                                                                                                                                                                                                      | 03/4412   | .0145314    | -2.58  | 0.016   | 06/311                                                 | 00/5/14                                    |  |  |
| year1998                                                                                                                                                                                                                                                      | 0658051   | .021/18/    | -3.03  | 0.005   | 1104486                                                | 021161/                                    |  |  |
| year1999                                                                                                                                                                                                                                                      | 0985383   | .02809/1    | -3.51  | 0.002   | 1562928                                                | 040/838                                    |  |  |
| year2000                                                                                                                                                                                                                                                      | 1153523   | .0295056    | -3.91  | 0.001   | 1/6002                                                 | 054/026                                    |  |  |
| year2001                                                                                                                                                                                                                                                      | 1413013   | .0330164    | -4.28  | 0.000   | 20916/5                                                | 0/34351                                    |  |  |
| year2002                                                                                                                                                                                                                                                      | 1694559   | .0380976    | -4.45  | 0.000   | 2477667                                                | 0911451                                    |  |  |

| year2003 | 1953327   | .0432281 | -4.52 | 0.000 | 2841894 | 106476  |  |
|----------|-----------|----------|-------|-------|---------|---------|--|
| year2004 | 2446844   | .0473835 | -5.16 | 0.000 | 3420825 | 1472863 |  |
| year2005 | 258355    | .0525528 | -4.92 | 0.000 | 3663789 | 1503311 |  |
| year2006 | 3265143   | .0596868 | -5.47 | 0.000 | 4492023 | 2038263 |  |
| year2007 | 3612019   | .0633378 | -5.70 | 0.000 | 4913946 | 2310091 |  |
| year2008 | 3272289   | .0647013 | -5.06 | 0.000 | 4602244 | 1942333 |  |
| year2009 | 2355773   | .063774  | -3.69 | 0.001 | 3666665 | 104488  |  |
| year2010 | 2733546   | .0681064 | -4.01 | 0.000 | 4133493 | 1333599 |  |
| _cons    | (omitted) |          |       |       |         |         |  |
|          |           |          |       |       |         |         |  |

#### Table A4.1.4.1 Model 1 - Driscoll-Kraay estimated results xtscc lnemsh lnsedut lntedut cskills lnpatappr lnfdi lngdpc lnpop unem lnecofree lnrulc serv dist transdummy emplcvt year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010 if year>=1999, fe Regression with Driscoll-Kraay standard errors Number of obs 261 Number of groups = Method: Fixed-effects regression 27 Group variable (i): country F(25, 26) = 17330.34 maximum lag: 2 Prob > F = 0.0000 within R-squared = 0.7693 \_\_\_\_\_ Drisc/Kraay 1 t P>|t| [95% Conf. Interval] lnemsh | Coef. Std. Err. \_\_\_\_\_+\_\_\_\_ lnsedut | -.0001417 .1212394 -0.00 0.999 -.2493529 .2490694 .1896257 lntedut | .4874158 .1448727 3.36 0.002 .7852058 cskills | (omitted) .0675709 .0246628 lnpatappr | 2.74 0.011 .0168758 .118266 .0042458 0.330 -.0042138 lnfdi | -0.99 -.0129412 .0045135 0.000 1.052187 6.80 lngdpc | .1547232 .7341488 1.370225 -2.505562 .4119352 0.000 -3.352307 lnpop | -6.08 -1.658817 .000228 .0005474 0.680 .0013533 0.42 unem | -.0008973 lnecofree | -.2121704 .09718 -2.18 0.038 -.4119267 -.0124141lnrulc | -.7199074 .3481213 -2.07 0.049 -1.435481 -.0043338 serv | -.0090782 .0098606 -0.92 0.366 -.0293471 .0111906 dist | .014422 .0040647 3.55 0.002 .0060669 .0227771 transdummy | (omitted) emplcvt | .0054245 .0017876 3.03 0.005 .0017501 .009099 0.209 year2000 | -.0104548 .008113 -.0271314 .0062218 -1.29 0.086 -.0458678 .0032529 year2001 | -.0213074 .0119484 -1.78 0.175 .0161473 year2002 | -.0339452 .0243696 -1.39 -.0840377 .0304751 year2003 | -.042481 -1.39 0.175 -.1051233 .0201614 .0386084 year2004 | -.0814902 -2.11 0.045 -.1608509 -.0021295 0.073 year2005 | -.0888033 .047552 -1.87 -.1865479 .0089414 .0571763 0.014 year2006 | -.1498734 -2.62 -.2674009 -.0323459 year2007 | -.1877568 .0613344 0.005 -3.06 -.3138314 -.0616822 -.165777 .0633924 0.015 year2008 | -2.62 -.296082 -.0354719year2009 | -.0989989 .0650548 -1.52 0.140 -.232721 .0347232 year2010 | -.1085966 .068193 -1.59 0.123 -.2487694 .0315762 \_cons | (omitted) \_\_\_\_\_

#### Table A4.1.4.2 Model 1 - Driscoll-Kraay estimated results

xtscc lnemsh lnsedut lntedut cskills lnpatappr lnfdi lngdpc lnpop unem lnecofree lnrulc serv dist transdummy trngent year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010, fe

| Regression with Driscoll-Kraay standard errors | Number of obs =    | 271 |
|------------------------------------------------|--------------------|-----|
| Method: Fixed-effects regression               | Number of groups = | 27  |

| Group variable (i): country<br>maximum lag: 2 |                      |                          |       | F( 25,<br>Prob ><br>withir | 26) =<br>F =<br>n R-squared = | = 54935.03<br>= 0.0000<br>= 0.7652 |
|-----------------------------------------------|----------------------|--------------------------|-------|----------------------------|-------------------------------|------------------------------------|
| <br>  lnemsh                                  | Coef.                | Drisc/Kraay<br>Std. Err. | t     | P> t                       | [95% Conf.                    | Interval]                          |
| lnsedut                                       | 0226812              | .1197222                 | -0.19 | 0.851                      | 2687738                       | .2234114                           |
| lntedut                                       | .4869711             | .1511451                 | 3.22  | 0.003                      | .176288                       | .7976542                           |
| cskills                                       | (omitted)            |                          |       |                            |                               |                                    |
| lnpatappr                                     | .0771079             | .0199564                 | 3.86  | 0.001                      | .0360869                      | .1181289                           |
| lnfdi                                         | 0001828              | .0037157                 | -0.05 | 0.961                      | 0078205                       | .007455                            |
| lngdpc                                        | 1.205036             | .1556221                 | 7.74  | 0.000                      | .88515                        | 1.524922                           |
| lnpop                                         | -2.54841             | .4470838                 | -5.70 | 0.000                      | -3.467403                     | -1.629416                          |
| unem                                          | .0003372             | .0005965                 | 0.57  | 0.577                      | 000889                        | .0015634                           |
| lnecofree                                     | 3083823              | .0922264                 | -3.34 | 0.003                      | 4979563                       | 1188083                            |
| lnrulc                                        | 9417257              | .434806                  | -2.17 | 0.040                      | -1.835482                     | 0479693                            |
| serv                                          | 0110808              | .0108595                 | -1.02 | 0.317                      | 0334028                       | .0112412                           |
| dist                                          | .0156204             | .0046311                 | 3.37  | 0.002                      | .0061011                      | .0251397                           |
| transdummy                                    | (omitted)            |                          |       |                            |                               |                                    |
| trngent                                       | .0037935             | .0009122                 | 4.16  | 0.000                      | .0019185                      | .0056685                           |
| year2000                                      | 0322841              | .0090107                 | -3.58 | 0.001                      | 0508058                       | 0137624                            |
| year2001                                      | 0405786              | .0153211                 | -2.65 | 0.014                      | 0720715                       | 0090858                            |
| year2002                                      | 0511925              | .0236809                 | -2.16 | 0.040                      | 0998693                       | 0025157                            |
| year2003                                      | 0658759              | .0305714                 | -2.15 | 0.041                      | 1287163                       | 0030356                            |
| year2004                                      | 1094283              | .0374161                 | -2.92 | 0.007                      | 1863382                       | 0325184                            |
| year2005                                      | 1281449              | .0467443                 | -2.74 | 0.011                      | 2242291                       | 0320607                            |
| year2006                                      | 1935653              | .0584784                 | -3.31 | 0.003                      | 3137693                       | 0733612                            |
| year2007                                      | 2361966              | .0631359                 | -3.74 | 0.001                      | 3659742                       | 1064189                            |
| year2008                                      | 2072109              | .0637127                 | -3.25 | 0.003                      | 3381742                       | 0762476                            |
| year2009                                      | 1161116              | .0646503                 | -1.80 | 0.084                      | 2490022                       | .016779                            |
| year2010<br>  cons                            | 1339737<br>(omitted) | .0715373                 | -1.87 | 0.072                      | 2810207                       | .0130733                           |

## Table A4.1.5 Model 1 - FEVD estimated results (STATA ado file)

xtfevd lnemsh lnsedut lntedut cskills lnpatappr lnfdi lngdpc lnpop unem lnecofree lnrulc serv dist transdummy year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010, invariant (cskills dist transdummy)

panel fixed effects regression with vector decomposition

| degrees of freed<br>mean squared err<br>root mean square<br>Residual Sum of<br>Total Sum of Squ<br>Estimation Sum o | om fevd<br>or<br>d error<br>Squares<br>ares<br>f Squares            | = 311<br>= .0127131<br>= .1127523<br>= 4.652988<br>= 861.6282<br>= 856.9752 | 311<br>27131<br>27523<br>52988<br>.6282<br>.9752 |                                                    | of obs<br>311)<br>F<br>ed<br>squared                                    | = 366<br>= 3.860252<br>= 1.84e-09<br>= .9945998<br>= .9936621       |
|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------|
| lnemsh                                                                                                              | Coef.                                                               | fevd<br>Std. Err.                                                           | t                                                | P> t                                               | [95% Conf                                                               | . Interval]                                                         |
| lnsedut  <br>lntedut  <br>lnpatappr  <br>lnfdi  <br>lngdpc  <br>lnpop                                               | .227838<br>.5918861<br>.0557272<br>0042827<br>1.223514<br>-1.921913 | 7.1843<br>6.513698<br>1.449755<br>.1037668<br>10.12053<br>3.697784          | 0.03<br>0.09<br>0.04<br>-0.04<br>0.12<br>-0.52   | 0.975<br>0.928<br>0.969<br>0.967<br>0.904<br>0.604 | -13.90814<br>-12.2246<br>-2.796841<br>2084564<br>-18.68985<br>-9.197751 | 14.36382<br>13.40838<br>2.908295<br>.199891<br>21.13688<br>5.353926 |

| unem       | .0039765 | .0209349 | 0.19  | 0.849 | 0372154   | .0451684 |  |
|------------|----------|----------|-------|-------|-----------|----------|--|
| lnecofree  | 0586931  | 6.536864 | -0.01 | 0.993 | -12.92077 | 12.80338 |  |
| lnrulc     | 4617832  | 4.341907 | -0.11 | 0.915 | -9.005011 | 8.081444 |  |
| serv       | 0070245  | .1210407 | -0.06 | 0.954 | 2451866   | .2311377 |  |
| year1996   | .0036437 | .9742373 | 0.00  | 0.997 | -1.913286 | 1.920574 |  |
| year1997   | 0374412  | 1.368525 | -0.03 | 0.978 | -2.73018  | 2.655297 |  |
| year1998   | 0658051  | 1.511183 | -0.04 | 0.965 | -3.039241 | 2.907631 |  |
| year1999   | 0985383  | 1.54311  | -0.06 | 0.949 | -3.134794 | 2.937718 |  |
| year2000   | 1153523  | 1.621689 | -0.07 | 0.943 | -3.306223 | 3.075518 |  |
| year2001   | 1413013  | 1.814489 | -0.08 | 0.938 | -3.711529 | 3.428926 |  |
| year2002   | 1694559  | 1.95121  | -0.09 | 0.931 | -4.008699 | 3.669787 |  |
| year2003   | 1953327  | 2.230428 | -0.09 | 0.930 | -4.583969 | 4.193304 |  |
| year2004   | 2446844  | 2.291952 | -0.11 | 0.915 | -4.754377 | 4.265008 |  |
| year2005   | 258355   | 2.506411 | -0.10 | 0.918 | -5.190022 | 4.673312 |  |
| year2006   | 3265143  | 2.427469 | -0.13 | 0.893 | -5.102853 | 4.449824 |  |
| year2007   | 3612018  | 2.86382  | -0.13 | 0.900 | -5.996115 | 5.273712 |  |
| year2008   | 3272288  | 2.945501 | -0.11 | 0.912 | -6.122859 | 5.468401 |  |
| year2009   | 2355773  | 2.74702  | -0.09 | 0.932 | -5.640672 | 5.169518 |  |
| year2010   | 2733546  | 2.72262  | -0.10 | 0.920 | -5.630439 | 5.08373  |  |
| cskills    | .4322903 | 5.456129 | 0.08  | 0.937 | -10.3033  | 11.16789 |  |
| dist       | 0011707  | .0043279 | -0.27 | 0.787 | 0096863   | .007345  |  |
| transdummy | 7400727  | 13.40416 | -0.06 | 0.956 | -27.11439 | 25.63425 |  |
| eta        | .9999999 | •        |       | •     | •         | •        |  |
| _cons      | 5.095233 | 113.8573 | 0.04  | 0.964 | -218.9328 | 229.1233 |  |

| Table A4.1.5.1 Model 1- FEVD estimated results (t | three stage procedu | re) |
|---------------------------------------------------|---------------------|-----|
|---------------------------------------------------|---------------------|-----|

regress lnemsh lnsedut lntedut cskills lnpatappr lnfdi lngdpc lnpop unem lnecofree lnrulc serv dist transdummy res1 year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010

| Source                | SS                    | df                  | MS                       |       | Number of obs         | = 366<br>= 2118 71               |
|-----------------------|-----------------------|---------------------|--------------------------|-------|-----------------------|----------------------------------|
| Model  <br>  Residual | 856.942<br>4.68619351 | 29 29.5<br>336 .013 | 29.5497241<br>.013947004 |       | Prob > F<br>R-squared | = 0.0000<br>= 0.9946<br>= 0.9941 |
| Total                 | 861.628194            | 365 2.36            | 365 2.36062519           |       | Root MSE              | = .1181                          |
| lnemsh                | Coef.                 | Std. Err.           | t                        | P> t  | [95% Conf.            | Interval]                        |
| lnsedut               | .2071703              | .0436335            | 4.75                     | 0.000 | .1213411              | .2929995                         |
| lntedut               | .5554104              | .0306641            | 18.11                    | 0.000 | .4950926              | .6157281                         |
| cskills               | .3878305              | .0514466            | 7.54                     | 0.000 | .2866325              | .4890285                         |
| lnpatappr             | .0736929              | .0104674            | 7.04                     | 0.000 | .0531031              | .0942828                         |
| lnfdi                 | 0030968               | .0043417            | -0.71                    | 0.476 | 0116373               | .0054436                         |
| lngdpc                | 1.25244               | .0345189            | 36.28                    | 0.000 | 1.18454               | 1.320341                         |
| lnpop                 | -1.85638              | .0683355            | -27.17                   | 0.000 | -1.990799             | -1.721961                        |
| unem                  | .0035821              | .0006194            | 5.78                     | 0.000 | .0023636              | .0048006                         |
| lnecofree             | 0318772               | .0872249            | -0.37                    | 0.715 | 2034529               | .1396986                         |
| lnrulc                | 4294586               | .1540345            | -2.79                    | 0.006 | 7324521               | 1264652                          |
| serv                  | 0105273               | .0013637            | -7.72                    | 0.000 | 0132098               | 0078447                          |
| dist                  | 0011424               | .0000251            | -45.44                   | 0.000 | 0011919               | 0010929                          |
| transdummy            | 6593765               | .0554173            | -11.90                   | 0.000 | 7683849               | 550368                           |
| resl                  | .9980148              | .0256981            | 38.84                    | 0.000 | .9474653              | 1.048564                         |
| year1996              | .011923               | .0435878            | 0.27                     | 0.785 | 0738163               | .0976622                         |
| year1997              | 0291207               | .0441826            | -0.66                    | 0.510 | 11603                 | .0577887                         |
| year1998              | 0544739               | .0439682            | -1.24                    | 0.216 | 1409615               | .0320137                         |
| year1999              | 0832359               | .0441412            | -1.89                    | 0.060 | 1700638               | .0035921                         |
| year2000              | 1022648               | .0434881            | -2.35                    | 0.019 | 1878081               | 0167215                          |
| year2001              | 1278523               | .0440573            | -2.90                    | 0.004 | 2145151               | 0411894                          |
| year2002              | 1532446               | .0450221            | -3.40                    | 0.001 | 2418053               | 0646839                          |
| year2003              | 1753686               | .0455765            | -3.85                    | 0.000 | 2650198               | 0857174                          |
| year2004 | 2249091  | .0460832 | -4.88 | 0.000 | 315557   | 1342612  |  |
|----------|----------|----------|-------|-------|----------|----------|--|
| year2005 | 237147   | .0467276 | -5.08 | 0.000 | 3290625  | 1452316  |  |
| year2006 | 3066745  | .0477151 | -6.43 | 0.000 | 4005324  | 2128166  |  |
| year2007 | 3432312  | .0479909 | -7.15 | 0.000 | 4376315  | 2488308  |  |
| year2008 | 3119111  | .0479121 | -6.51 | 0.000 | 4061566  | 2176656  |  |
| year2009 | 2138779  | .0485361 | -4.41 | 0.000 | 3093509  | 1184049  |  |
| year2010 | 2490618  | .0486258 | -5.12 | 0.000 | 3447111  | 1534124  |  |
| _cons    | 4.407886 | 1.116067 | 3.95  | 0.000 | 2.212528 | 6.603245 |  |
|          |          |          |       |       |          |          |  |

### Table A4.1.6 Model 1 - Hausman and Taylor estimated results

xthtaylor lnemsh lnsedut lntedut cskills lnpatappr lnfdi lngdpc lnpop unem dist lnecofree lnrulc serv transdummy year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010, endog (lnsedut lntedut cskills)

| Hausman-Taylor<br>Group variable | estimation<br>country |           | Number<br>Number | of obs =<br>of groups = | 366<br>27                      |                  |
|----------------------------------|-----------------------|-----------|------------------|-------------------------|--------------------------------|------------------|
|                                  |                       |           |                  | Obs per                 | group: min =<br>avg =<br>max = | 5<br>13.6<br>16  |
| Random effects                   | s u_i ~ i.i.d.        |           |                  | Wald ch<br>Prob >       | i2(28) =<br>chi2 =             | 786.95<br>0.0000 |
| lnemsh                           | Coef.                 | Std. Err. | Z                | P> z                    | [95% Conf.                     | Interval]        |
| TVexogenous                      |                       |           |                  |                         |                                |                  |
| Inpatappr                        | .0631056              | .027384   | 2.30             | 0.021                   | .0094338                       | .1167773         |
| lnfdi                            | 0065782               | .0051293  | -1.28            | 0.200                   | 0166314                        | .0034749         |
| lngdpc                           | 1.385903              | .1283267  | 10.80            | 0.000                   | 1.134387                       | 1.637418         |
| lnpop                            | -1.105387             | .3164936  | -3.49            | 0.000                   | -1.725703                      | 485071           |
| unem                             | .0042882              | .0008794  | 4.88             | 0.000                   | .0025646                       | .0060117         |
| lnecofree                        | 0074174               | .1759922  | -0.04            | 0.966                   | 3523558                        | .3375211         |
| lnrulc                           | 4952554               | .1939962  | -2.55            | 0.011                   | 875481                         | 1150299          |
| serv                             | 0073103               | .0038279  | -1.91            | 0.056                   | 0148129                        | .0001922         |
| year1996                         | .0076572              | .0456625  | 0.17             | 0.867                   | 0818397                        | .0971541         |
| year1997                         | 0385679               | .0467632  | -0.82            | 0.410                   | 1302221                        | .0530863         |
| year1998                         | 0675467               | .0480213  | -1.41            | 0.160                   | 1616666                        | .0265732         |
| year1999                         | 1057184               | .0505448  | -2.09            | 0.036                   | 2047844                        | 0066525          |
| year2000                         | 1293869               | .0510169  | -2.54            | 0.011                   | 2293782                        | 0293956          |
| year2001                         | 1606703               | .0528233  | -3.04            | 0.002                   | 2642021                        | 0571384          |
| year2002                         | 1930174               | .0562756  | -3.43            | 0.001                   | 3033155                        | 0827194          |
| year2003                         | 2213432               | .0591173  | -3.74            | 0.000                   | 3372111                        | 1054754          |
| year2004                         | 2796166               | .0619099  | -4.52            | 0.000                   | 4009578                        | 1582754          |
| year2005                         | 3007994               | .0661188  | -4.55            | 0.000                   | 4303899                        | 171209           |
| year2006                         | 3777091               | .0692003  | -5.46            | 0.000                   | 5133391                        | 242079           |
| year2007                         | 4184051               | .0718101  | -5.83            | 0.000                   | 5591503                        | 27766            |
| year2008                         | 3856482               | .0739841  | -5.21            | 0.000                   | 5306544                        | 240642           |
| year2009                         | 2787041               | .0762871  | -3.65            | 0.000                   | 428224                         | 1291842          |
| year2010                         | 321286                | .0775318  | -4.14            | 0.000                   | 4/32455                        | 1693265          |
| TVendogenous                     |                       |           |                  |                         |                                |                  |
| Insedut                          | .291828               | .1243184  | 2.35             | 0.019                   | .0481684                       | .5354876         |
| lntedut                          | .5139196              | .1245018  | 4.13             | 0.000                   | .2699006                       | .7579385         |
| 'l'1exogenous                    | 0010001               | 0014655   | 0 05             | 0 0 4 0                 | 0040640                        | 0014007          |
| dist                             | 0013921               | .0014657  | -0.95            | 0.342                   | 0042648                        | .001480/         |
| transdummy                       | .20960/6              | 1.600302  | 0.13             | 0.896                   | -2.926926                      | 3.346142         |
| Tiendogenous                     | 005700                | F 000701  | 0.00             | 0 007                   | 10 01010                       | 10 1466          |
| cskills                          | 085789                | 5.220704  | -0.02            | 0.987                   | -10.31818                      | 10.1466          |

|          | _cons                     | -1.573235                           | 26.79117    | -0.06     | 0.953     | -54.08297 | 50.9365 |
|----------|---------------------------|-------------------------------------|-------------|-----------|-----------|-----------|---------|
| si<br>si | gma_u  <br>gma_e  <br>rho | 3.6341621<br>.11715643<br>.99896182 | (fraction   | of varian | .ce due t | o u_i)    |         |
| Note:    | TV refer                  | s to time va                        | rying; TI r | efers to  | time inv  | ariant.   |         |

### Table A4.1.6.1 Model 1 - Fixed effects versus Hausman and Taylor

| nausman FE HT         |                                |                                           |                                                 |                                                              |
|-----------------------|--------------------------------|-------------------------------------------|-------------------------------------------------|--------------------------------------------------------------|
|                       | Coeffi                         | cients                                    |                                                 |                                                              |
|                       | (b)                            | (B)                                       | (b-B)                                           | sqrt(diag(V_b-V_B))                                          |
|                       | FE                             | HT                                        | Difference                                      | S.E.                                                         |
| lnsedut               | .2278381                       | .291828                                   | 0639899                                         | .0234452                                                     |
| lntedut               | .5918861                       | .5139196                                  | .0779665                                        | .0261165                                                     |
| lnpatappr             | .0557272                       | .0631056                                  | 0073784                                         | .0042138                                                     |
| lnfdi                 | 0042827                        | 0065782                                   | .0022955                                        | .0009015                                                     |
| lngdpc                | 1.223514                       | 1.385903                                  | 162389                                          | .0441316                                                     |
| lnpop                 | -1.921913                      | -1.105387                                 | 8165259                                         | .2055707                                                     |
| unem                  | .0039765                       | .0042882                                  | 0003117                                         | .0001427                                                     |
| lnecofree             | 0586927                        | 0074174                                   | 0512753                                         | .0272572                                                     |
| lnrulc                | 4617832                        | 4952554                                   | .0334722                                        | .0278561                                                     |
| serv                  | 0070245                        | 0073103                                   | .0002859                                        | .0005367                                                     |
| year1996              | .0036437                       | .0076572                                  | 0040135                                         | .0063136                                                     |
| _<br>year1997         | 0374412                        | 0385679                                   | .0011267                                        | .0064015                                                     |
| -<br>year1998         | 0658051                        | 0675467                                   | .0017416                                        | .0065921                                                     |
| -<br>year1999         | 0985383                        | 1057184                                   | .0071801                                        | .0071711                                                     |
| <br>year2000          | 1153523                        | 1293869                                   | .0140346                                        | .007841                                                      |
|                       | 1413013                        | 1606703                                   | .0193689                                        | .0087208                                                     |
| -<br>year2002         | 1694559                        | 1930174                                   | .0235615                                        | .0097198                                                     |
| year2003              | 1953327                        | 2213432                                   | .0260106                                        | .0104095                                                     |
| year2004              | 2446844                        | 2796166                                   | .0349322                                        | .0121789                                                     |
|                       | 258355                         | 3007994                                   | .0424445                                        | .0139487                                                     |
|                       | 3265143                        | 3777091                                   | .0511948                                        | .0159002                                                     |
|                       | 3612019                        | 4184051                                   | .0572033                                        | .0173222                                                     |
| year2008              | 3272289                        | 3856482                                   | .0584194                                        | .017749                                                      |
| year2009              | 2355773                        | 2787041                                   | .0431268                                        | .0150654                                                     |
| year2010              | 2733546                        | 321286                                    | .0479314                                        | .0160443                                                     |
| year2010  <br>B = inc | 2733546<br>b<br>consistent und | 321286<br>= consistent<br>ler Ha, efficie | .0479314<br>under Ho and Ha<br>ent under Ho; ok | .0160443<br>a; obtained from xtreg<br>otained from xthtaylor |
| Test: Ho:             | difference i                   | n coefficients                            | not systematic                                  |                                                              |
|                       | chi2(25) = =                   | (b-B)'[(V_b-V_<br>15.80                   | _B)^(-1)](b-B)                                  |                                                              |
|                       | Prob>chi2 =                    | 0.9206                                    |                                                 |                                                              |

### Table A4.1.7 Model 1 - Hsiao 2 step procedure

### Step 1

xtreg lnemsh lnsedut lntedut cskills lnpatappr lnfdi lngdpc lnpop unem lnecofree lnrulc serv dist transdummy year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010, fe note: cskills omitted because of collinearity note: dist omitted because of collinearity note: transdummy omitted because of collinearity

Fixed-effects (within) regression

Number of obs

366

=

| roup variable: country |                |              |                | Number of groups = 27 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|------------------------|----------------|--------------|----------------|-----------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| R-sa: within           | = 0.7141       |              |                | Obs per               | aroup: min =   | . 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| between                | = 0.2692       |              |                |                       | avg =          | 13.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| overall                | = 0.2043       |              |                |                       | max =          | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                        |                |              |                | F(25 31)              | 4) =           | : 31 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| corr(u i. Xb)          | = -0.9233      |              |                | Prob > 1              | F =            | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                        | 0.9200         |              |                | 1100 / 1              | L              | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                        |                |              |                |                       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Inemsh<br>++           | Coet.          | Std. Err.    | t<br>          | P> t                  | [95% Coni.<br> | Interval]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| lnsedut                | .2278381       | .1265099     | 1.80           | 0.073                 | 0210761        | .4767523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| lntedut                | .5918861       | .1272115     | 4.65           | 0.000                 | .3415915       | .8421807                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| cskills                | (omitted)      |              |                |                       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| lnpatappr              | .0557272       | .0277064     | 2.01           | 0.045                 | .0012136       | .1102408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| lnfdi                  | 0042827        | .0052079     | -0.82          | 0.412                 | 0145294        | .005964                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| lngdpc                 | 1.223514       | .1357031     | 9.02           | 0.000                 | .9565112       | 1.490516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| lnpop                  | -1.921913      | .3773957     | -5.09          | 0.000                 | -2.664457      | -1.179369                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| unem                   | .0039765       | .0008909     | 4.46           | 0.000                 | .0022237       | .0057293                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| lnecofree              | 0586927        | .1780905     | -0.33          | 0.742                 | 4090943        | .2917088                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| lnrulc                 | 4617832        | .1959859     | -2.36          | 0.019                 | 8473949        | 0761716                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| serv                   | 0070245        | .0038653     | -1.82          | 0.070                 | 0146297        | .0005808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| dist                   | (omitted)      |              |                |                       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| transdummv             | (omitted)      |              |                |                       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| vear1996               | .0036437       | .0460969     | 0.08           | 0.937                 | 0870542        | .0943416                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| vear1997               | - 0374412      | 0471993      | -0 79          | 0 428                 | - 1303081      | 0554257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| vear1998               | - 0658051      | 0484716      | -1 36          | 0 176                 | - 1611753      | 0295651                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| vear1999               | - 0985383      | 051051       | -1 93          | 0 054                 | - 1989835      | 0019069                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| yearroop               | 1152502        | .051051      | 1.20           | 0.034                 | .1909033       | 0127054                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| year2000               | 1135325        | .031010      | -2.23          | 0.026                 | 2109092        | 0137934                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| year2001               | 1413013        | .0535384     | -2.64          | 0.009                 | 2466406        | 035962                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| year2002               | 1694559        | .05/1088     | -2.97          | 0.003                 | 2818202        | 0570916                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| year2003               | 1953327        | .0600268     | -3.25          | 0.001                 | 3134383        | 0//22/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| year2004               | 2446844        | .0630965     | -3.88          | 0.000                 | 3688297        | 1205391                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| year2005               | 258355         | .0675741     | -3.82          | 0.000                 | 3913103        | 1253997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| year2006               | 3265143        | .0710035     | -4.60          | 0.000                 | 466217         | 1868116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| year2007               | 3612019        | .0738698     | -4.89          | 0.000                 | 5065442        | 2158595                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| year2008               | 3272289        | .0760833     | -4.30          | 0.000                 | 4769265        | 1775312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| year2009               | 2355773        | .0777604     | -3.03          | 0.003                 | 3885746        | 0825799                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| year2010               | 2733546        | .0791745     | -3.45          | 0.001                 | 4291342        | 1175751                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| _cons                  | 5.727365       | 4.460174     | 1.28           | 0.200                 | -3.048241      | 14.50297                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| sigma u                | 3.7994624      |              |                |                       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| sigma e l              | .12173099      |              |                |                       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| rho                    | .99897455      | (fraction    | of variar      | ice due to            | o u_i)         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| +est that al           | 1 11 i=0·      | F(26 314)    | = 5 <i>1</i> 6 |                       | Proh \         | $\mathbf{F} = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 $ |  |
|                        | <u> </u>       | 1 (20) 311)  | 51.0           |                       | 1100 /         | 1 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| tep 2.                 | o cekille di   | at transdumm | v ho           |                       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Actor rearce           | sion (regress  | sion on grou | r meanel       | Number                | of obs -       | 366                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| roup variable          | · country      | sion on grou |                | Numbor                | of arouns -    | . 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| roub variable          | • Country      |              |                | MUNDET (              | or groups =    | . 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| -sq: within            | = .            |              |                | Obs per               | group: min =   | - 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| between                | = 0.1082       |              |                | T                     | ava =          | 13.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| overall                | = 0.0606       |              |                |                       | max =          | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                        |                |              |                | - (0, 00)             |                | o o -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                        |                |              |                | F(3,23)               | _ =            | 0.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| d(u_i + avg(e          | $(_i.)) = 3.8$ | 3149         |                | Prob > 1              | F =            | 0.4421                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                        |                |              |                |                       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| residfe                | Coef.          | Std. Err.    | t              | P> t                  | [95% Conf.     | Interval]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| +                      |                |              |                |                       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |

| cskills    | .1157208 | 4.721369 | 0.02  | 0.981 | -9.651175 | 9.882616 |     |
|------------|----------|----------|-------|-------|-----------|----------|-----|
| dist       | 0018337  | .0014197 | -1.29 | 0.209 | 0047707   | .0011032 |     |
| transdummy | 3347728  | 1.594482 | -0.21 | 0.836 | -3.633209 | 2.963664 |     |
| _cons      | 1.520285 | 23.93124 | 0.06  | 0.950 | -47.98525 | 51.02582 |     |
|            |          |          |       |       |           |          | · — |

### Table A4.1.8 Model 1 - IV estimated results xtivreq2 lnemsh cskills lnqdpc lnpop unem lnecofree serv lnrulc dist transdummy year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010 (lnsedut lntedut lnpatappr lnfdi = lnsedutlag1 lntedutlag1 lnpatapprlag1 lnfdilag1), fe endog (lnsedut lntedut lnpatappr lnfdi) small robust bw(3) Warning - collinearities detected Vars dropped: cskills dist transdummy year1997 FIXED EFFECTS ESTIMATION \_\_\_\_\_ Number of groups = 27 Obs per group: min = 3 12.9 avg = max = 15 IV (2SLS) estimation \_\_\_\_\_ Estimates efficient for homoskedasticity only Statistics robust to heteroskedasticity and autocorrelation kernel=Bartlett; bandwidth=3 time variable (t): year group variable (i): country Number of obs = 349 20.26 F(24, 298) = 20.26 Prob > F = 0.0000 Centered R2 = 0.7260Total (centered) SS = 14.63220443 Total (uncentered) SS = 14.63220443 Uncentered R2 = 0.7260Residual SS = 4.009426721 Root MSE = .116 \_\_\_\_\_ 1 Robust lnemsh | Coef. Std. Err. t P>|t| [95% Conf. Interval] \_\_\_\_\_+ lnsedut | .3424256 .1872516 1.83 0.068 -.0260774 .7109286 lntedut | .6733095 .2179679 3.09 0.002 .2443581 1.102261 .1658485 lnpatappr | .0610218 .0532667 1.15 0.253 -.0438048 .0059154 0.312 0.000 lnfdi | -.0059936 -.0176348 -1.01 .0056476 .1997254 1.197576 6.00 .8045254 1.590627 lngdpc | .5715912 0.000 -3.141281 lnpop | -2.016415 -3.53 -.891548 0.032 .0032295 unem | .0015005 2.15 .0002766 .0061823 -.247174 .2410619 -1.03 0.306 -.7215733 .2272253 lnecofree | serv | -.0072541 .0088983 -0.82 0.416 -.0247656 .0102574 lnrulc | -.5650038 .0657222 .320498 -1.76 0.079 -1.19573 year1996 | .0413185 .0413735 1.00 0.319 -.0401028 .1227398 year1998 | -.0275463 .028259 -0.97 0.330 -.0831588 .0280663 year1999 | -.0637151 .0368149 -1.73 0.085 -.1361653 .008735 year2000 | -.0807552 .0452444 -1.78 0.075 -.1697942 .0082837 year2001 | -.1060222 .0474109 -2.24 0.026 -.1993249 -.0127195 -2.55 0.011 -.030674 year2002 | -.1346071 .0528127 -.2385403 year2003 | -.1565867 .055701 -.0469695 -2.81 0.005 -.2662039 year2004 | -.2146719 .0619406 year2005 | -.2315709 .0666623 year2006 | -.2965732 .0712968

-3.47 0.001

-4.16 0.000

0.001

-3.47

-.3365683

-.3627594

-.4368822

-.0927756

-.1003824

-.1562643

year2007 | -.3355562 .07638 -4.39 0.000 -.4858688 -.1852436 year2008 | -.3020992 .0833971 -3.62 0.000 -.466221 -.1379774 year2009 | -.2113287 .0943561 -2.24 0.026 -.3970174 -.0256401 year2010 | -.2487715 .0924033 -2.69 0.007 -.4306171 -.0669258 Underidentification test (Kleibergen-Paap rk LM statistic): 15.718 Chi-sq(1) P-val = 0.0001\_\_\_\_\_ ------Weak identification test (Cragg-Donald Wald F statistic): 63.507 (Kleibergen-Paap rk Wald F statistic): 15.880 Stock-Yogo weak ID test critical values: <not available> \_\_\_\_\_ Hansen J statistic (overidentification test of all instruments): 0.000 (equation exactly identified) -endog- option: Endogeneity test of endogenous regressors: 5.551 Chi-sq(4) P-val = 0.2353lnsedut lntedut lnpatappr lnfdi Regressors tested: \_\_\_\_\_ Instrumented: Insedut Intedut Inpatappr Infdi Included instruments: lnqdpc lnpop unem lnecofree serv lnrulc year1996 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010 Excluded instruments: lnsedutlag1 lntedutlag1 lnpatapprlag1 lnfdilag1 Dropped collinear: cskills dist transdummy year1997 \_\_\_\_\_ ------

Table A4.1.8.1 Model 1 - IV estimated results (ETEs)

xtivreg2 lnemsh cskills lngdpc lnpop unem lnecofree serv lnrulc dist transdummy transindN year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010 (lnsedut lntedut lnpatappr lnfdi = lnsedutlag1 lntedutlag1 lnpatapprlag1 lnfdilag1) if transdummy==1, fe endog (lnsedut lntedut lnpatappr lnfdi) small robust bw(3) Warning - collinearities detected Vars dropped: cskills dist transdummy year1997 FIXED EFFECTS ESTIMATION \_\_\_\_\_ Obs per group: min = 7 avg = 13.4 Number of groups = 10 max = 1.5 IV (2SLS) estimation Estimates efficient for homoskedasticity only Statistics robust to heteroskedasticity and autocorrelation kernel=Bartlett; bandwidth=3 time variable (t): year group variable (i): country Number of obs = 134 F(25, 99) = 46.34 F(25, 99) = 46.34 Prob > F = 0.0000 Total (centered) SS = 12.71853745 Centered R2 = 0.8988 Total (uncentered) SS = 12.71853745 Uncentered R2 = 0.8988 Residual SS = 1.286640963 Root MSE = .114 \_\_\_\_\_ Robust Coef. Std. Err. t P>|t| [95% Conf. Interval] lnemsh |

| +              | +              |             |           |                    |                                                    |                     |  |
|----------------|----------------|-------------|-----------|--------------------|----------------------------------------------------|---------------------|--|
| lnsedut        | 1.164194       | .4304078    | 2.70      | 0.008              | .3101716                                           | 2.018216            |  |
| lntedut        | .5152809       | .2828284    | 1.82      | 0.071              | 0459121                                            | 1.076474            |  |
| lnpatappr      | .1603175       | .1053727    | 1.52      | 0.131              | 0487648                                            | .3693998            |  |
| lnfdi          | .0553047       | .0830858    | 0.67      | 0.507              | 1095555                                            | .2201649            |  |
| lngdpc         | .9404404       | .2837797    | 3.31      | 0.001              | .37736                                             | 1.503521            |  |
| lnpop          | 5.42684        | 1.669529    | 3.25      | 0.002              | 2.114132                                           | 8.739547            |  |
| unem           | 0030287        | .0020472    | -1.48     | 0.142              | 0070909                                            | .0010334            |  |
| lnecofree      | 9639629        | .3522358    | -2.74     | 0.007              | -1.662875                                          | 2650505             |  |
| serv           | .0167495       | .0114201    | 1.47      | 0.146              | 0059104                                            | .0394095            |  |
| lnrulc         | 7353934        | .4065713    | -1.81     | 0.074              | -1.542119                                          | .0713324            |  |
| transindN      | .2737753       | .4697199    | 0.58      | 0.561              | 6582508                                            | 1.205801            |  |
| year1996       | 003413         | .0596975    | -0.06     | 0.955              | 1218658                                            | .1150397            |  |
| year1998       | 0003758        | .054672     | -0.01     | 0.995              | 1088569                                            | .1081053            |  |
| year1999       | 1015828        | .08178      | -1.24     | 0.217              | 2638521                                            | .0606865            |  |
| year2000       | 0531393        | .094359     | -0.56     | 0.575              | 2403681                                            | .1340894            |  |
| year2001       | 0324937        | .1117421    | -0.29     | 0.772              | 2542142                                            | .1892268            |  |
| year2002       | 0731176        | .1579314    | -0.46     | 0.644              | 3864878                                            | .2402525            |  |
| year2003       | 0527558        | .1686321    | -0.31     | 0.755              | 3873585                                            | .2818469            |  |
| year2004       | 0422034        | .1970161    | -0.21     | 0.831              | 433126                                             | .3487193            |  |
| year2005       | 018774         | .216989     | -0.09     | 0.931              | 4493273                                            | .4117793            |  |
| year2006       | 0391536        | .2364381    | -0.17     | 0.869              | 508298                                             | .4299909            |  |
| year2007       | 0540033        | .2546519    | -0.21     | 0.832              | 5592879                                            | .4512813            |  |
| year2008       | 0126152        | .2614469    | -0.05     | 0.962              | 5313825                                            | .5061521            |  |
| year2009       | 0361056        | .2709823    | -0.13     | 0.894              | 5737933                                            | .5015821            |  |
| year2010       | .0936595       | .2549561    | 0.37      | 0.714              | 4122287                                            | .5995477            |  |
| Underidentific | cation test (K | leibergen-P | aap rk LN | 1 statist<br>Chi-  | sq(1) P-val =                                      | 13.033<br>0.0003    |  |
| Wook idoptific | ation tost (C  | rage-Depald | Wold F    |                    | ····                                               | 13 500              |  |
| weak identiiit | (K             | lajbargan-P | aan rk Wa | ald F eta          | / ·                                                | 11 159              |  |
| Stock-Yogo wea | ak ID test cri | tical value | s:        |                    | <not< td=""><td>available&gt;</td><td></td></not<> | available>          |  |
| Hansen J stati | lstic (overide | ntification | test of   | all inst<br>(equat | ruments):<br>ion exactly i                         | 0.000<br>dentified) |  |
| -endog- optior | n:             |             |           |                    | 1                                                  | •                   |  |
| Endogeneity te | est of endogen | ous regress | ors:      | ~1 ·               |                                                    | 11.502              |  |
| Regressors tes | sted: lnsed    | ut lntedut  | lnpatappı | Chi-<br>c lnfdi    | -sq(4) P-val =                                     | 0.0215              |  |
|                |                |             |           |                    |                                                    |                     |  |
| Instrumented:  | lnsed          | ut lntedut  | lnpatappi | r lnfdi            |                                                    |                     |  |
| Included instr | ruments: lngdp | c lnpop une | m lnecofi | ree serv           | lnrulc transi                                      | ndN year1996        |  |
|                | yearl          | 998 year199 | 9 year200 | )0 year20          | 01 year2002 y                                      | ear2003             |  |
|                | year2          | 004 year200 | 5 year200 | 06 year20          | 07 year2008 y                                      | ear2009             |  |
| _ , ,          | year2          | 010         |           |                    |                                                    |                     |  |
| Excluded instr | ruments: Insed | utiagi inte | αut⊥agl l | Lnpatappr          | lagi intdilag                                      | T                   |  |
| uropped collir | near: cskil    | is dist tra | nsaummy y | /ear199/           |                                                    |                     |  |
|                |                |             |           |                    |                                                    |                     |  |

### Table A4.1.8.2 Model 1 - IV estimated results (N-ETEs)

xtivreg2 lnemsh cskills lngdpc lnpop unem lnecofree serv lnrulc dist transdummy year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010 (lnsedut lntedut lnpatappr lnfdi = lnsedutlag1 lntedutlag1 lnpatapprlag1 lnfdilag1) if transdummy==0, fe endog (lnsedut lntedut lnpatappr lnfdi) small robust bw(3) Warning - collinearities detected Vars dropped: cskills dist transdummy year1997

FIXED EFFECTS ESTIMATION

| Number of grou         | ups =         | 17                           |           | Obs pe   | er group: min =<br>avg =<br>max =            | 3<br>12.6<br>15 |
|------------------------|---------------|------------------------------|-----------|----------|----------------------------------------------|-----------------|
| TV (2SLS) esti         | mation        |                              |           |          |                                              |                 |
|                        |               |                              |           |          |                                              |                 |
| Estimates effi         | cient for ho  | moskedastici                 | tv onlv   |          |                                              |                 |
| Statistics rob         | oust to heter | oskedasticit                 | y and aut | cocorre  | lation                                       |                 |
| kernel=Bartl           | ett; bandwid  | th=3                         |           |          |                                              |                 |
| time variabl           | e (t): year   | +                            |           |          |                                              |                 |
| group variad           | ore (r): coun | Lry                          |           |          |                                              |                 |
|                        |               |                              |           |          | Number of obs =                              | 215             |
|                        |               |                              |           |          | F(24, 174) =                                 | 12.74           |
|                        | 1) 22         | 1 01000000                   |           |          | Prob > F =                                   | 0.0000          |
| Total (centere         | (d) SS =      | 1.913666985                  |           |          | Centered R2 =                                | 0.6394          |
| Residual SS            | ====          | 6901324152                   |           |          | Root MSE =                                   | 0.6394          |
| itestadar 55           |               | .0901921192                  |           |          |                                              | .00290          |
|                        |               |                              |           |          |                                              |                 |
| lnemsh                 | Coef          | Robust<br>Std Frr            | +         | P> +     | [95% Conf                                    | Intervall       |
| ++                     |               |                              | ر<br>     |          |                                              |                 |
| lnsedut                | .0542098      | .1768283                     | 0.31      | 0.760    | 2947946                                      | .4032142        |
| lntedut                | .2900513      | .153847                      | 1.89      | 0.061    | 0135952                                      | .5936978        |
| lnpatappr              | .1458985      | .0565263                     | 2.58      | 0.011    | .0343331                                     | .2574639        |
| Infdi                  | .0064967      | .0047006                     | 1.38      | 0.169    | 0027807                                      | .0157742        |
| Ingapc                 | .0497715      | .2443512                     | 0.20      | 0.839    | 4325025                                      | .5320454        |
| Inpop                  | 1153604       | .418653                      | -0.28     | 0.783    | 9416522                                      | ./109314        |
| unem  <br>lnocofroo    | .000/031      | .0008257                     | 0.85      | 0.396    | 0009266                                      | .0023329        |
| Inecolree              | - 0363652     | .2254544                     | -0.61     | 0.540    | 5835295                                      | .3064255        |
| lnrulc                 | - 5557825     | 2887582                      | -1 92     | 0.000    | -1 125702                                    | 014137          |
| vear1996               | 0225266       | 0223163                      | 1 01      | 0.000    | - 0215189                                    | 0665721         |
| vear1998               | 0119614       | .019957                      | -0.60     | 0.550    | 0513503                                      | .0274274        |
| year1999               | .0168608      | .0295942                     | 0.57      | 0.570    | 041549                                       | .0752705        |
| year2000               | 0149168       | .0408226                     | -0.37     | 0.715    | 0954881                                      | .0656545        |
| -<br>year2001          | 0025398       | .0439587                     | -0.06     | 0.954    | 0893007                                      | .084221         |
| year2002               | .0113951      | .0458121                     | 0.25      | 0.804    | 0790239                                      | .1018141        |
| year2003               | .0257112      | .0471422                     | 0.55      | 0.586    | 067333                                       | .1187554        |
| year2004               | .0007732      | .0544692                     | 0.01      | 0.989    | 1067322                                      | .1082785        |
| year2005               | 0009511       | .059345                      | -0.02     | 0.987    | 1180798                                      | .1161775        |
| year2006               | 0472057       | .067034                      | -0.70     | 0.482    | 1795102                                      | .0850988        |
| year2007               | 0581055       | .0704246                     | -0.83     | 0.410    | 1971019                                      | .0808908        |
| year2008               | 0439293       | .0744593                     | -0.59     | 0.556    | 190889                                       | .1030303        |
| year2009  <br>vear2010 | - 0227341     | .0751072                     | -0.30     | 0.021    | - 1709725                                    | 1255044         |
| year2010               | .0227341      |                              |           |          |                                              | .1255044        |
| Underidentific         | ation test (  | Kleibergen-P                 | aap rk LM | 1 stati: | stic):                                       | 10.068          |
|                        |               |                              |           | Ch       | i-sq(1) P-val =                              | 0.0015          |
| Weak identific         | ation test (  | Cragg-Donald                 | Wald F s  | tatist   |                                              | 26 140          |
| Weak Idenciiic         | acion test (  | Clagg Donaid<br>Kleibergen-P | aap rk Wa | ald F s  | tatistic):                                   | 6.543           |
| Stock-Yogo wea         | .k ID test cr | itical value                 | s:        |          | <not a<="" td=""><td>vailable&gt;</td></not> | vailable>       |
| Hansen J stati         |               | entification                 | test. of  | all in:  | struments):                                  | 0.000           |
|                        |               |                              |           | (equ     | ation exactly id                             | entified)       |
| -endog- option         | st of endogo  | nous regress                 | ors       |          |                                              | 6 698           |
| Lindogenercy te        | Se or endoye  | nous regress                 | 0±0.      | Ch       | i-sq(4) P-val =                              | 0.1527          |
| Regressors tes         | ted: lnse     | dut lntedut                  | lnpatappr | : lnfdi  | 1.,                                          |                 |
|                        |               |                              |           |          |                                              |                 |

| Instrumented:         | lnsedut lntedut lnpatappr lnfdi                           |  |  |  |  |  |
|-----------------------|-----------------------------------------------------------|--|--|--|--|--|
| Included instruments: | lngdpc lnpop unem lnecofree serv lnrulc year1996 year1998 |  |  |  |  |  |
|                       | year1999 year2000 year2001 year2002 year2003 year2004     |  |  |  |  |  |
|                       | year2005 year2006 year2007 year2008 year2009 year2010     |  |  |  |  |  |
| Excluded instruments: | lnsedutlag1 lntedutlag1 lnpatapprlag1 lnfdilag1           |  |  |  |  |  |
| Dropped collinear:    | cskills dist transdummy year1997                          |  |  |  |  |  |
|                       |                                                           |  |  |  |  |  |

### Table A4.1.8.3 Model 1 - IV estimated results

xtivreg2 lnemsh cskills lngdpc lnpop unem lnecofree lnrulc dist transdummy serv year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010 (lnsedut lntedut lnpatappr lnfdi emplcvt = lnsedutlag1 lntedutlag1 lnpatapprlag1 lnfdilag1 emplcvtlag1), fe endog (lnsedut lntedut lnpatappr lnfdi emplcvt) small robust bw(3) Warning - singleton groups detected. 1 observation(s) not used. Warning - collinearities detected Vars dropped: cskills dist transdummy year2000 FIXED EFFECTS ESTIMATION Obs per group: min = avg = \_\_\_\_\_ 24 Number of groups = 4 4 9.8 max = 11 IV (2SLS) estimation \_\_\_\_\_ Estimates efficient for homoskedasticity only Statistics robust to heteroskedasticity and autocorrelation kernel=Bartlett; bandwidth=3 time variable (t): year group variable (i): country Number of obs = 235 32.26 F(21, 190) =Prob > F = 0.0000 Total (centered) SS = 6.433845401 Centered R2 = 0.7520Total (uncentered) SS = 6.433845401 Residual SS = 1.595568495 Uncentered R2 = 0.7520 Root MSE .09164 Robust lnemsh | Coef. Std. Err. t P>|t| [95% Conf. Interval] \_\_\_\_\_+\_\_\_\_+\_\_\_\_\_\_ lnsedut | .0041323 .22372 0.02 0.985 -.4371617 .4454264 lntedut | .7064749 .1975416 3.58 0.000 .3168185 1.096131 lnpatappr | .064873 .0633813 1.02 0.307 -.0601483 .1898944 lnfdi | -.0115761 .0087805 -1.32 0.189 -.0288959 .0057437 1.57 0.118 -.0016083 emplcvt | .0062403 .003979 .014089 lngdpc | .8719175 .2177042 4.01 0.000 .4424899 1.301345 -3.41 0.001 -4.114526 lnpop | -2.607213 .764153 -1.0999 unem | -.0004969 .0011179 lnecofree | -.1552381 .2861278 .0017082 -0.44 0.657 -.0027019 -.7196332 -0.54 0.588 .409157 .3855491 0.055 0.808 lnrulc | -.7457831 -1.93 -1.50629 .0147234 .0125194 serv | -.003039 -0.24 -.0277337 .0216558 year2001 | -.0182529 .0244279 year2002 | -.0312823 .0439965 year2003 | -.0441282 .0497434 -.0182529 0.456 -0.75 -.0664376 .0299318 -.1180666 -0.71 0.478 .0555019 -0.89 0.376 -.1422485 .0539921 vear2004 | -.0793621 .0650195 .0488907 -1.22 0.224 -.2076149 year2005 | -.0877043 .0753256 -1.16 0.246 -.2362862 .0608775 year2006 | -.1479297 .0820927 -1.80 0.073 -.3098598 .0140004

year2007 | -.1847118 .0896442 -2.06 0.041 -.3615374 -.0078861 year2008 | -.1700239 .0935857 -1.82 0.071 -.3546244 .0145766 year2009 | -.1401614 .0968861 -1.45 0.150 -.331272 .0509492 year2010 | -.1422623 .0900442 -1.58 0.116 -.3198771 .0353525 Underidentification test (Kleibergen-Paap rk LM statistic): 11.836 Chi-sq(1) P-val = 0.0006\_\_\_\_\_ Weak identification test (Cragg-Donald Wald F statistic): 19.557 (Kleibergen-Paap rk Wald F statistic): 4.253 Stock-Yogo weak ID test critical values: <not available> \_\_\_\_\_ Hansen J statistic (overidentification test of all instruments): 0.000 (equation exactly identified) -endog- option: Endogeneity test of endogenous regressors: 11,212 Chi-sq(5) P-val = 0.0473lnsedut lntedut lnpatappr lnfdi emplcvt Regressors tested: \_\_\_\_\_ Instrumented: Insedut Inpatappr Infdi emplcvt Included instruments: lnqdpc lnpop unem lnecofree lnrulc serv year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010 Excluded instruments: lnsedutlag1 lntedutlag1 lnpatapprlag1 lnfdilag1 emplcvtlag1 Dropped collinear: cskills dist transdummy year2000 \_\_\_\_\_

### Table A4.1.8.4 Model 1 - IV estimated results

```
xtivreg2 lnemsh cskills lngdpc lnpop unem lnecofree lnrulc dist transdummy serv
year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010 (lnsedut lntedut lnpatappr lnfdi trngent = lnsedutlag1 lntedutlag1
lnpatapprlag1 lnfdilag1 trngentlag1), fe endog (lnsedut lntedut lnpatappr lnfdi
trngent) small robust bw(3)
Warning - singleton groups detected. 1 observation(s) not used.
Warning - collinearities detected
Vars dropped: cskills dist transdummy year2000
FIXED EFFECTS ESTIMATION
_____
                                                       Obs per group: min = 3
avg = 9.4
max = 11
Number of groups = 26
IV (2SLS) estimation
_____
Estimates efficient for homoskedasticity only
Statistics robust to heteroskedasticity and autocorrelation
kernel=Bartlett; bandwidth=3
time variable (t): year
 group variable (i): country
                                                                                   245
                                                             Number of obs =
                                                              \begin{array}{rcl} \text{Number Of ODS} &=& 243 \\ \text{F(21, 198)} &=& 27.22 \\ \text{Prob} > \text{F} &=& 0.0000 \\ \text{Centered R2} &=& 0.7390 \\ \text{Uncentered R2} &=& 0.7390 \\ \end{array} 
Total (centered) SS = 5.84702702
Total (uncentered) SS = 5.84702702
                                                            Uncentered R2 =
                                                                                  0.7390
                  = 1.526256904
Residual SS
                                                             Root MSE =
                                                                                  .0878
_____
                                 Robust
```

| lnemsh                                                                                         | Coef.                | Std. Err.                    | t               | P> t               | [95% Conf.                                                       | Interval]           |  |  |
|------------------------------------------------------------------------------------------------|----------------------|------------------------------|-----------------|--------------------|------------------------------------------------------------------|---------------------|--|--|
| lnsedut.                                                                                       | .038942              | .2458555                     | 0.16            | 0.874              | 4458894                                                          | .5237734            |  |  |
| lntedut                                                                                        | .7287337             | .1855638                     | 3.93            | 0.000              | .3627987                                                         | 1.094669            |  |  |
| lnpatappr                                                                                      | .0805568             | .0529975                     | 1.52            | 0.130              | 0239552                                                          | .1850688            |  |  |
| lnfdi                                                                                          | 0063252              | .0084588                     | -0.75           | 0.455              | 0230062                                                          | .0103558            |  |  |
| trngent                                                                                        | .0038247             | .0020429                     | 1.87            | 0.063              | 000204                                                           | .0078534            |  |  |
| lngdpc                                                                                         | 1.015105             | .2310175                     | 4.39            | 0.000              | .5595341                                                         | 1.470675            |  |  |
| lnpop                                                                                          | -2.710436            | .6179533                     | -4.39           | 0.000              | -3.92905                                                         | -1.491821           |  |  |
| unem                                                                                           | 0004413              | .0011823                     | -0.37           | 0.709              | 0027727                                                          | .0018902            |  |  |
| lnecofree                                                                                      | 4056694              | .2610385                     | -1.55           | 0.122              | 9204418                                                          | .109103             |  |  |
| lnrulc                                                                                         | 9715607              | .653951                      | -1.49           | 0.139              | -2.261164                                                        | .3180422            |  |  |
| serv                                                                                           | 0076349              | .0153137                     | -0.50           | 0.619              | 0378339                                                          | .0225641            |  |  |
| year2001                                                                                       | 009719               | .0255515                     | -0.38           | 0.704              | 0601071                                                          | .0406691            |  |  |
| year2002                                                                                       | 0192922              | .0396138                     | -0.49           | 0.627              | 0974114                                                          | .058827             |  |  |
| year2003                                                                                       | 0374682              | .0468478                     | -0.80           | 0.425              | 1298529                                                          | .0549166            |  |  |
| year2004                                                                                       | 0792914              | .0568401                     | -1.39           | 0.165              | 191381                                                           | .0327983            |  |  |
| year2005                                                                                       | 1002742              | .0659989                     | -1.52           | 0.130              | 2304253                                                          | .0298768            |  |  |
| year2006                                                                                       | 1633208              | .0758433                     | -2.15           | 0.032              | 312885                                                           | 0137565             |  |  |
| year2007                                                                                       | 2057542              | .0824314                     | -2.50           | 0.013              | 3683104                                                          | 043198              |  |  |
| year2008                                                                                       | 1787355              | .0846388                     | -2.11           | 0.036              | 3456447                                                          | 0118263             |  |  |
| year2009                                                                                       | 1212402              | .0907268                     | -1.34           | 0.183              | 3001551                                                          | .0576747            |  |  |
| year2010                                                                                       | 1361013              | .08405                       | -1.62           | 0.107              | 3018494                                                          | .0296467            |  |  |
| Underidentification test (Kleibergen-Paap rk LM statistic): 14.951<br>Chi-sq(1) P-val = 0.0001 |                      |                              |                 |                    |                                                                  |                     |  |  |
| Weak identific                                                                                 | cation test (0       | Cragg-Donald                 | Wald F s        | statistic          | c):                                                              | 26.381              |  |  |
| Stock-Yogo wea                                                                                 | (F<br>ak ID test cri | Kleibergen-P<br>itical value | aap rk Wa<br>s: | ald F sta          | atistic):<br><not< td=""><td>5.995<br/>available&gt;</td></not<> | 5.995<br>available> |  |  |
| Hansen J stati                                                                                 | istic (overide       | entification                 | test of         | all inst<br>(equat | truments):<br>tion exactly i                                     | 0.000<br>dentified) |  |  |
| -endog- optior                                                                                 | 1:                   |                              |                 | -                  | -                                                                |                     |  |  |
| Endogeneity te                                                                                 | est of endoger       | nous regress                 | ors:            |                    |                                                                  | 3.291               |  |  |
|                                                                                                |                      |                              |                 | Chi-               | -sq(5) P-val =                                                   | 0.6553              |  |  |
| Regressors tes                                                                                 | sted: lnsed          | dut lntedut                  | lnpatappr       | r lnfdi t          | rngent                                                           |                     |  |  |
|                                                                                                |                      |                              |                 |                    |                                                                  |                     |  |  |
| Instrumented:                                                                                  | lnsed                | dut lntedut                  | lnpatappr       | : lnfdi t          | rngent                                                           |                     |  |  |
| Included inst                                                                                  | ruments: lngdg       | pc lnpop une                 | m lnecofr       | cee lnrul          | lc serv year20                                                   | 01 year2002         |  |  |
|                                                                                                | year2                | 2003 year200                 | 4 year200       | )5 year20          | 006 year2007 y                                                   | ear2008             |  |  |
|                                                                                                | year2                | 2009 year201                 | 0               |                    |                                                                  |                     |  |  |
| Excluded inst                                                                                  | ruments: lnsed       | dutlag1 lnte                 | dutlag1 l       | Inpatappr          | lagl lnfdilag                                                    | 1                   |  |  |
|                                                                                                | trnge                | entlag1                      |                 |                    |                                                                  |                     |  |  |
| Dropped collir                                                                                 | near: cskil          | lls dist tra                 | nsdummy y       | /ear2000           |                                                                  |                     |  |  |
|                                                                                                |                      |                              |                 |                    |                                                                  |                     |  |  |

### Table A4.2 Model 2 - Fixed effects estimated results

xtreg lnemsh avyrs sqravyrs cskills lnpatappr lnfdi lngdpc lnpop unem lnecofree lnrulc serv dist transdummy year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010, fe note: cskills omitted because of collinearity note: dist omitted because of collinearity note: transdummy omitted because of collinearity Fixed-effects (within) regression Number of obs 366 = Number of groups = Group variable: country 27 R-sq: within = 0.7227Obs per group: min = 5 between = 0.182413.6 avg = overall = 0.1238max = 16

| cr(u_i, Xb) | = -0.8914        |           |          | F(25,314)<br>Prob > F |              | 32.74<br>0.0000 |
|-------------|------------------|-----------|----------|-----------------------|--------------|-----------------|
| lnemsh      | Coef.            | Std. Err. | t        | P> t                  | [95% Conf.   | Interval]       |
| avyrs       | -1.080913        | .1899696  | -5.69    | 0.000                 | -1.454688    | 707139          |
| sqravyrs    | .049501          | .0088414  | 5.60     | 0.000                 | .032105      | .0668969        |
| cskills     | (omitted)        |           |          |                       |              |                 |
| lnpatappr   | .0520743         | .0273091  | 1.91     | 0.057                 | 0016577      | .1058062        |
| lnfdi       | .0052473         | .0051033  | 1.03     | 0.305                 | 0047936      | .0152882        |
| lngdpc      | 1.435969         | .114614   | 12.53    | 0.000                 | 1.21046      | 1.661477        |
| lnpop       | -1.627357        | .3371254  | -4.83    | 0.000                 | -2.290667    | 9640471         |
| unem        | .0027774         | .0009256  | 3.00     | 0.003                 | .0009563     | .0045985        |
| lnecofree   | 0661197          | .1742631  | -0.38    | 0.705                 | 4089908      | .2767513        |
| lnrulc      | 7721936          | .1953689  | -3.95    | 0.000                 | -1.156591    | 3877959         |
| serv        | 0023586          | .0038857  | -0.61    | 0.544                 | 010004       | .0052867        |
| dist        | (omitted)        |           |          |                       |              |                 |
| ransdummy   | (omitted)        |           |          |                       |              |                 |
| year1996    | .027878          | .0451139  | 0.62     | 0.537                 | 0608857      | .1166418        |
| year1997    | .0037678         | .0459997  | 0.08     | 0.935                 | 0867388      | .0942745        |
| year1998    | 0090401          | .0466186  | -0.19    | 0.846                 | 1007643      | .0826842        |
| year1999    | 0435811          | .0485319  | -0.90    | 0.370                 | 1390699      | .0519077        |
| year2000    | 0603345          | .0485849  | -1.24    | 0.215                 | 1559276      | .0352586        |
| year2001    | 0579877          | .0499644  | -1.16    | 0.247                 | 156295       | .0403196        |
| year2002    | 0755238          | .052998   | -1.43    | 0.155                 | 1797998      | .0287522        |
| year2003    | 0853357          | .0552017  | -1.55    | 0.123                 | 1939476      | .0232762        |
| year2004    | 1256662          | .0581086  | -2.16    | 0.031                 | 2399976      | 0113347         |
| year2005    | 1277923          | .0621234  | -2.06    | 0.041                 | 2500231      | 0055616         |
| year2006    | 1856784          | .0658082  | -2.82    | 0.005                 | 3151592      | 0561977         |
| year2007    | 216428           | .0682483  | -3.17    | 0.002                 | 3507098      | 0821462         |
| year2008    | 1621321          | .0694706  | -2.33    | 0.020                 | 2988189      | 0254453         |
| year2009    | 051436           | .0687749  | -0.75    | 0.455                 | 186754       | .0838819        |
| year2010    | 0729625          | .0711878  | -1.02    | 0.306                 | 2130279      | .067103         |
| _cons       | 10.47527         | 4.159338  | 2.52     | 0.012                 | 2.291572     | 18.65896        |
| sigma u     | +<br>  3.3868244 |           |          |                       |              |                 |
| sigma e     | .11988634        |           |          |                       |              |                 |
| rho         | .99874856        | (fraction | of varia | nce due t             | o u_i)       |                 |
|             |                  |           |          |                       |              |                 |
| lest that   | F(26 314)        | = 5/ 87   |          | Proh                  | > F = 0 0000 |                 |
| <u> </u>    | r(20, 314)       | - 54.07   |          | LIOD                  | 0.0000       |                 |

xtreg lnemsh avyrs sqravyrs cskills lnpatappr lnfdi lngdpc lnpop unem lnecofree Inrulc serv dist transdummy year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010, re Random-effects GLS regression Number of obs = 366 Group variable: country Number of groups = 27 R-sq: within = 0.67145 Obs per group: min = between = 0.955213.6 avg = overall = 0.9420max = 16 Wald chi2(28) = 1295.23 Prob > chi2 = 0.0000 corr(u i, X) = 0 (assumed) Prob > chi2 \_\_\_\_\_ lnemsh | Coef. Std. Err. z P>|z| [95% Conf. Interval] \_\_\_\_\_+

| avyrs      | 9914933   | .1972637  | -5.03     | 0.000     | -1.378123 | 6048635   |   |
|------------|-----------|-----------|-----------|-----------|-----------|-----------|---|
| sqravyrs   | .0444612  | .0092536  | 4.80      | 0.000     | .0263245  | .0625979  |   |
| cskills    | .7907957  | .4022904  | 1.97      | 0.049     | .002321   | 1.579271  |   |
| lnpatappr  | .0861025  | .0285853  | 3.01      | 0.003     | .0300764  | .1421287  |   |
| lnfdi      | 0041766   | .0053651  | -0.78     | 0.436     | 014692    | .0063387  |   |
| lngdpc     | 1.685165  | .1050948  | 16.03     | 0.000     | 1.479183  | 1.891147  |   |
| lnpop      | .8401194  | .0627301  | 13.39     | 0.000     | .7171707  | .9630681  |   |
| unem       | .003811   | .0010001  | 3.81      | 0.000     | .0018508  | .0057711  |   |
| lnecofree  | .3034713  | .183776   | 1.65      | 0.099     | 056723    | .6636656  |   |
| lnrulc     | 8209565   | .2117368  | -3.88     | 0.000     | -1.235953 | 4059599   |   |
| serv       | 0075803   | .0040364  | -1.88     | 0.060     | 0154914   | .0003309  |   |
| dist       | 0002765   | .0001276  | -2.17     | 0.030     | 0005265   | 0000264   |   |
| transdummy | 1.453597  | .2040162  | 7.12      | 0.000     | 1.053733  | 1.853461  |   |
| year1996   | .0620547  | .0496083  | 1.25      | 0.211     | 0351759   | .1592853  |   |
| year1997   | .0267563  | .050603   | 0.53      | 0.597     | 0724237   | .1259363  |   |
| year1998   | .022597   | .0511335  | 0.44      | 0.659     | 0776229   | .1228169  |   |
| year1999   | 0143912   | .0530314  | -0.27     | 0.786     | 1183308   | .0895485  |   |
| year2000   | 0431238   | .05291    | -0.82     | 0.415     | 1468255   | .0605779  |   |
| year2001   | 0613037   | .0541036  | -1.13     | 0.257     | 1673449   | .0447374  |   |
| year2002   | 085015    | .0570435  | -1.49     | 0.136     | 1968183   | .0267882  |   |
| year2003   | 0962515   | .0591477  | -1.63     | 0.104     | 2121788   | .0196758  |   |
| year2004   | 1587686   | .0614396  | -2.58     | 0.010     | 279188    | 0383491   |   |
| year2005   | 1747637   | .0648842  | -2.69     | 0.007     | 3019344   | 047593    |   |
| year2006   | 25754     | .0676374  | -3.81     | 0.000     | 3901069   | 124973    |   |
| year2007   | 3011292   | .0692934  | -4.35     | 0.000     | 4369418   | 1653166   | I |
| year2008   | 2566167   | .0700356  | -3.66     | 0.000     | 3938841   | 1193494   | l |
| year2009   | 1116414   | .0712873  | -1.57     | 0.117     | 2513618   | .0280791  | I |
| year2010   | 1491276   | .073015   | -2.04     | 0.041     | 2922345   | 0060208   |   |
| _cons      | -20.1145  | 2.8937    | -6.95     | 0.000     | -25.78605 | -14.44295 |   |
| sigma_u    | .28379644 |           |           |           |           |           |   |
| sigma_e    | .11988634 |           |           |           |           |           |   |
| rho        | .84856961 | (fraction | of variar | nce due t | to u i)   |           |   |

### Table A4.2.2 Model 2 - Fixed effects versus Random effects

hausman FE RE, sigmamore

Note: the rank of the differenced variance matrix (17) does not equal the number of coefficients being tested (25); be sure this is what you expect, or there may be problems computing the test. Examine the output of your estimators for anything unexpected and possibly consider scaling your variables so that the coefficients are on a similar scale.

|           |   | Coeff     | icients  |            |                     |
|-----------|---|-----------|----------|------------|---------------------|
|           |   | (b)       | (B)      | (b-B)      | sqrt(diag(V_b-V_B)) |
|           |   | FE        | RE       | Difference | S.E.                |
|           | + |           |          |            |                     |
| avyrs     |   | -1.080913 | 9914933  | 08942      | .0714703            |
| sqravyrs  |   | .049501   | .0444612 | .0050398   | .0031184            |
| lnpatappr |   | .0520743  | .0861025 | 0340283    | .0096228            |
| lnfdi     |   | .0052473  | 0041766  | .0094239   | .0017274            |
| lngdpc    |   | 1.435969  | 1.685165 | 2491961    | .0705616            |
| lnpop     |   | -1.627357 | .8401194 | -2.467477  | .3670156            |
| unem      |   | .0027774  | .003811  | 0010335    | .0002118            |
| lnecofree |   | 0661197   | .3034713 | 369591     | .057176             |
| lnrulc    |   | 7721936   | 8209565  | .0487629   | .04155              |
| serv      |   | 0023586   | 0075803  | .0052216   | .0014579            |
| year1996  |   | .027878   | .0620547 | 0341767    | .0046524            |
| year1997  |   | .0037678  | .0267563 | 0229885    | .0045192            |
| year1998  |   | 0090401   | .022597  | 0316371    | .0060299            |
| year1999  |   | 0435811   | 0143912  | 02919      | .0077935            |
| year2000  |   | 0603345   | 0431238  | 0172107    | .0089376            |

| 31        |
|-----------|
| 45        |
| 69        |
| 85        |
| 49        |
| 62        |
| 37        |
| 62        |
| 22        |
|           |
| rom ytrog |
| IOM ALLEY |
|           |
|           |
|           |
|           |
|           |
|           |
|           |

### Table A4.2.2.1 Models 1& 2 - Fixed effects versus Random effects

| Hausman<br>test | χ²    | p-<br>value | Null Hypothesis                           | Decision | Estimate      |
|-----------------|-------|-------------|-------------------------------------------|----------|---------------|
| Model 1         | 81.69 | 0.0000      | Difference in coefficients not systematic | Reject   | Fixed effects |
| Model 2         | 75.27 | 0.0000      | Difference in coefficients not systematic | Reject   | Fixed effects |

### Table A4.2.3 Model 2 - Diagnostic tests

### Groupwise heteroskedasticity

```
xttest3
Modified Wald test for groupwise heteroskedasticity
in fixed effect regression model
H0: sigma(i)^2 = sigma^2 for all i
chi2 (27) = 4430.56
Prob>chi2 = 0.0000
```

### Autocorrelation in panel data

. xtserial lnemsh avyrs sqravyrs cskills lnpatappr lnfdi lngdpc lnpop unem lnecofree lnrulc serv dist transdummy year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010 Wooldridge test for autocorrelation in panel data H0: no first order autocorrelation

F( 1, 26) = 74.686 Prob > F = 0.0000

### Normality of residuals

pantest2 lnemsh avyrs sqravyrs cskills lnpatappr lnfdi lngdpc lnpop unem lnecofree lnrulc serv dist transdummy year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010 Test for serial correlation in residuals Null hypothesis is either that rho=0 if residuals are AR(1) or that lamda=0 if residuals are MA(1) Following tests only approximate for unbalanced panels LM= 71.975981 which is asy. distributed as chisq(1) under null, so:

| Probability of val<br>LM5= 8.4838659                                                                                                                                                                           | Probability of value greater than LM is 2.178e-17<br>LM5= 8.4838659 |                |                |             |           |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------|----------------|-------------|-----------|--|--|--|--|--|
| <pre>which is asy. distributed as N(0,1) under null, so:<br/>Probability of value greater than abs(LM5) is 0<br/>Test for significance of fixed effects<br/>F= 54.867683<br/>Probability&gt;F= 1.21e-100</pre> |                                                                     |                |                |             |           |  |  |  |  |  |
| FIODADITICy/F= 1.2                                                                                                                                                                                             | - IE IU                                                             |                |                |             |           |  |  |  |  |  |
| Test for normality                                                                                                                                                                                             | y of r                                                              | esiduals       |                |             |           |  |  |  |  |  |
|                                                                                                                                                                                                                | Ske                                                                 | wness/Kurtosis | tests for Norm | ality       |           |  |  |  |  |  |
|                                                                                                                                                                                                                |                                                                     |                | Du (Marsharda) |             | joint     |  |  |  |  |  |
| Variable                                                                                                                                                                                                       | UDS                                                                 | Pr(Skewness)   | Pr(Kurtosis)   | adj Chiz(2) | Prob>ch12 |  |  |  |  |  |
| 00000B                                                                                                                                                                                                         | 366                                                                 | 0.0000         | 0.0000         | 65.01       | 0.0000    |  |  |  |  |  |

# Table A4.2.3.1 Models 1&2 - Diagnostic tests

|    |                                  | Tost statistic |               | n valua   | N                   |                   | Decicion         |  |  |
|----|----------------------------------|----------------|---------------|-----------|---------------------|-------------------|------------------|--|--|
|    |                                  |                |               | p-value   | IN                  | iun Hypothesis    | Decision         |  |  |
| ~  |                                  |                | <b>2)</b>     | 0 0000    |                     |                   | Defect           |  |  |
| G  | roupwise 2428.06 & 4430.56 0.000 |                |               |           | Н                   | omoskedasticity   | Reject           |  |  |
| he | eteroskedasticity                |                |               |           |                     |                   |                  |  |  |
| Αι | utocorrelation in                | 68.172 & 74.   | 686           | 0.0000    | N                   | lo first order    | Reject           |  |  |
| ра | anel data                        |                |               |           | а                   | utocorrelation    |                  |  |  |
| N  | ormality of                      | 54.23 & 65.0   | 1             | 0.0000    | R                   | esiduals normally | V Reiect         |  |  |
| re | ,<br>siduals                     |                |               |           | b                   | istributed        | , ,              |  |  |
|    | Table 1124                       | Madal 2 D      |               | actima    | tod nor             |                   |                  |  |  |
|    | 1 able A4.2.4                    | Model Z - D    | riscoll-Kraa  | y estima  | tea res             | suits             |                  |  |  |
|    | . xtscc lnemsh                   | n avyrs sqrav  | yrs cskills ? | lnpatappr | lnfdi .             | lngdpc lnpop u    | nem lnecofree    |  |  |
|    | lnrulc serv di                   | st transdumm   | y year1996 ye | ear1997 y | ear1998             | year1999 year     | 2000 year2001    |  |  |
|    | year2002 year2                   | 2003 year2004  | year2005 yea  | ar2006 ye | ar2007 <u>:</u>     | year2008 year2    | 009 year2010, fe |  |  |
|    |                                  |                |               | ,         |                     | <b>C</b> 1        |                  |  |  |
|    | Regression wit                   | n Driscoll-K   | raay standar  | d errors  | Number of obs = 366 |                   |                  |  |  |
|    | Group variable                   | (i). country   | 2551011       |           | F(28, 26) = 8007.38 |                   |                  |  |  |
|    | maximum lag. 2                   |                | Ŷ             |           | Proh                | , 20) –           | 0 0000           |  |  |
|    | maximum rug. 2                   | -              |               |           | withi               | n R-squared =     | 0.7227           |  |  |
|    |                                  |                |               |           |                     | n n oquaroa       | 0.,22,           |  |  |
|    |                                  |                |               |           |                     |                   |                  |  |  |
|    | I                                |                | Drisc/Kraay   |           |                     |                   |                  |  |  |
|    | lnemsh                           | Coef.          | Std. Err.     | t         | P> t                | [95% Conf.        | Interval]        |  |  |
|    | avvrs                            | -1.080913      | .3278661      | -3.30     | 0.003               | -1.754852         | 4069749          |  |  |
|    | sqravyrs                         | .049501        | .0147577      | 3.35      | 0.002               | .0191662          | .0798358         |  |  |
|    | cskills                          | (omitted)      |               |           |                     |                   |                  |  |  |
|    | lnpatappr                        | .0520743       | .0217595      | 2.39      | 0.024               | .007347           | .0968015         |  |  |
|    | lnfdi                            | .0052473       | .0022308      | 2.35      | 0.027               | .0006619          | .0098327         |  |  |
|    | lngdpc                           | 1.435969       | .1769305      | 8.12      | 0.000               | 1.072283          | 1.799655         |  |  |
|    | lnpop                            | -1.627357      | .3206984      | -5.07     | 0.000               | -2.286562         | 9681523          |  |  |
|    | unem                             | .0027774       | .000661       | 4.20      | 0.000               | .0014188          | .0041361         |  |  |
|    | lnecofree                        | 0661197        | .1340637      | -0.49     | 0.626               | 3416915           | .2094521         |  |  |
|    | lnrulc                           | 7721936        | .2917213      | -2.65     | 0.014               | -1.371835         | 1725519          |  |  |
|    | serv                             | 0023586        | .0076249      | -0.31     | 0.760               | 0180319           | .0133147         |  |  |
|    | dist                             | .0101142       | .0054         | 1.87      | 0.072               | 0009857           | .0212142         |  |  |
|    | transdummy                       | (omitted)      |               |           |                     |                   |                  |  |  |
|    | year1996                         | .027878        | .0134806      | 2.07      | 0.049               | .0001683          | .0555877         |  |  |
|    | year1997                         | .0037678       | .0133087      | 0.28      | 0.779               | 0235887           | .0311243         |  |  |
|    | year1998                         | 0090401        | .0171144      | -0.53     | 0.602               | 0442193           | .0261391         |  |  |
|    | year1999                         | 0435811        | .0252326      | -1.73     | 0.096               | 0954474           | .0082851         |  |  |

| year2000 | 0603345   | .0312892 | -1.93 | 0.065 | 1246504 | .0039814 |  |
|----------|-----------|----------|-------|-------|---------|----------|--|
| year2001 | 0579877   | .0324698 | -1.79 | 0.086 | 1247304 | .008755  |  |
| year2002 | 0755238   | .0381843 | -1.98 | 0.059 | 1540128 | .0029652 |  |
| year2003 | 0853357   | .0407983 | -2.09 | 0.046 | 1691978 | 0014737  |  |
| year2004 | 1256662   | .0471177 | -2.67 | 0.013 | 2225181 | 0288143  |  |
| year2005 | 1277923   | .0542486 | -2.36 | 0.026 | 2393019 | 0162828  |  |
| year2006 | 1856784   | .0630953 | -2.94 | 0.007 | 3153727 | 0559842  |  |
| year2007 | 216428    | .0683356 | -3.17 | 0.004 | 3568939 | 0759621  |  |
| year2008 | 1621321   | .0692881 | -2.34 | 0.027 | 3045558 | 0197084  |  |
| year2009 | 051436    | .0592759 | -0.87 | 0.393 | 1732794 | .0704074 |  |
| year2010 | 0729625   | .0619239 | -1.18 | 0.249 | 2002488 | .0543239 |  |
| cons     | (omitted) |          |       |       |         |          |  |
|          |           |          |       |       |         |          |  |

### Table A4.2.4.1 Model 2 - Driscoll-Kraay estimated results

xtscc lnemsh avyrs sqravyrs cskills lnpatappr lnfdi lngdpc lnpop unem lnecofree lnrulc serv dist transdummy emplcvt year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010, fe

| Regression with Driscoll-Kraay standard errors<br>Method: Fixed-effects regression<br>Group variable (i): country<br>maximum lag: 2 |                                                                                         |                                                                                  |                                                   |                                                             | of obs =<br>of groups =<br>26) =<br>F =<br>R-squared =                       | 261<br>27<br>28610.48<br>0.0000<br>0.7539                                        |
|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| <br>  lnemsh                                                                                                                        | Coef.                                                                                   | Drisc/Kraay<br>Std. Err.                                                         | t                                                 | P> t                                                        | [95% Conf.                                                                   | Interval]                                                                        |
| avyrs  <br>sqravyrs  <br>cskills  <br>lnpatappr  <br>lnfdi  <br>lngdpc                                                              | 1091938<br>.0043597<br>(omitted)<br>.0508035<br>.0010466<br>1.368132                    | .1650686<br>.0075474<br>.0376878<br>.0029138<br>.1924679                         | -0.66<br>0.58<br>1.35<br>0.36<br>7.11             | 0.514<br>0.568<br>0.189<br>0.722<br>0.000                   | 4484971<br>0111543<br>0266649<br>0049428<br>.9725087                         | .2301096<br>.0198737<br>.1282718<br>.007036<br>1.763755                          |
| lnpop  <br>unem  <br>lnecofree  <br>lnrulc  <br>serv  <br>dist                                                                      | -1.920067<br>.0005136<br>2914959<br>7267018<br>0085993<br>.0089111                      | .393501<br>.0006747<br>.1112297<br>.3523537<br>.0111456<br>.0046604              | -4.88<br>0.76<br>-2.62<br>-2.06<br>-0.77<br>1.91  | 0.000<br>0.453<br>0.014<br>0.049<br>0.447<br>0.067          | -2.72892<br>0008733<br>5201318<br>-1.450975<br>0315095<br>0006684            | -1.111214<br>.0019004<br>0628599<br>0024285<br>.0143109<br>.0184906              |
| transdummy  <br>emplcvt  <br>year2000  <br>year2001  <br>year2003  <br>year2004  <br>year2005                                       | (omitted)<br>.0053224<br>0155423<br>0136744<br>0221831<br>0257974<br>0625157<br>0682145 | .0019968<br>.0114992<br>.0128546<br>.0290177<br>.0348675<br>.0444105<br>.0557052 | 2.67<br>-1.35<br>-1.06<br>-0.76<br>-0.74<br>-1.41 | 0.013<br>0.188<br>0.297<br>0.451<br>0.466<br>0.171<br>0.232 | .0012179<br>0391792<br>0400974<br>0818298<br>0974687<br>1538027<br>- 1827182 | .0094269<br>.0080947<br>.0127485<br>.0374636<br>.0458739<br>.0287714<br>.0462891 |
| year2006  <br>year2007  <br>year2008  <br>year2009  <br>year2010  <br>cons                                                          | 1274935<br>1659385<br>127027<br>0258184<br>0278897<br>(omitted)                         | .0633694<br>.0689101<br>.0713717<br>.0724126<br>.0734327                         | -2.01<br>-2.41<br>-1.78<br>-0.36<br>-0.38         | 0.055<br>0.023<br>0.087<br>0.724<br>0.707                   | 2577512<br>3075852<br>2737335<br>1746645<br>1788328                          | .0027641<br>0242918<br>.0196796<br>.1230277<br>.1230534                          |

| <b>Table A4.2.4.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 Model 2 - 1                                                                                                                                                                                                                                    | Driscoll-Kra                                                                                                                                                                                                                   | ay <mark>estim</mark>                                                                                                                                            | ated re                                                                                                                                                                 | sults                                                                                                                                                                                                               |                                                                                                                                                                                                                        |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| xtscc lnemsh avyrs sqravyrs cskills lnpatappr lnfdi lngdpc lnpop unem lnecofreelnrulc serv dist transdummy trngent year2000 year2001 year2002 year2003 year2004year2005 year2006 year2007 year2008 year2009 year2010 , feRegression with Driscoll-Kraay standard errorsNumber of obs = 271Method: Fixed-effects regressionNumber of groups = 27Group variable (i): country $F(25, 26) = 4523.15$ maximum lag: 2Prob > F = 0.0000within R-squared = 0.7496 |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                |                                                                                                                                                                  |                                                                                                                                                                         |                                                                                                                                                                                                                     |                                                                                                                                                                                                                        |  |  |
| lnemsh                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Coef.                                                                                                                                                                                                                                            | Drisc/Kraay<br>Std. Err.                                                                                                                                                                                                       | t                                                                                                                                                                | P> t                                                                                                                                                                    | [95% Conf.                                                                                                                                                                                                          | Interval]                                                                                                                                                                                                              |  |  |
| avyrs<br>sqravyrs<br>cskills<br>lnpatappr<br>lnfdi<br>lngdpc<br>lnpop<br>unem<br>lnecofree<br>lnrulc<br>serv<br>dist<br>transdummy<br>trngent<br>year2000<br>year2001<br>year2002<br>year2003<br>year2004<br>year2005<br>year2006                                                                                                                                                                                                                         | 2194707<br>.0096823<br>(omitted)<br>.0648301<br>.0052982<br>1.541499<br>-1.897898<br>.0006527<br>3432416<br>-1.01032<br>0090949<br>.0094917<br>(omitted)<br>.0035154<br>0384295<br>0386158<br>048629<br>0602386<br>1038608<br>1210933<br>1860541 | .177504<br>.0081556<br>.0319264<br>.0024287<br>.1907944<br>.4483206<br>.0006814<br>.0842891<br>.4184818<br>.0119118<br>.0053851<br>.0007499<br>.0117839<br>.0169544<br>.0285709<br>.0357699<br>.0438171<br>.054921<br>.0653044 | -1.24<br>1.19<br>2.03<br>2.18<br>8.08<br>-4.23<br>0.96<br>-4.07<br>-2.41<br>-0.76<br>1.76<br>4.69<br>-3.26<br>-2.28<br>-1.70<br>-1.68<br>-2.37<br>-2.20<br>-2.85 | 0.227<br>0.246<br>0.053<br>0.038<br>0.000<br>0.000<br>0.347<br>0.000<br>0.023<br>0.452<br>0.090<br>0.000<br>0.003<br>0.031<br>0.101<br>0.104<br>0.025<br>0.037<br>0.008 | 5843354<br>0070817<br>0007955<br>.000306<br>1.149315<br>-2.819434<br>0007479<br>5165004<br>-1.870522<br>0335799<br>0015775<br>.0019739<br>0626517<br>0734661<br>1073574<br>1337646<br>1939282<br>2339849<br>3202893 | .145394<br>.0264464<br>.1304557<br>.0102905<br>1.933682<br>9763613<br>.0020533<br>1699828<br>1501184<br>.0153901<br>.0205609<br>.0050568<br>0142074<br>0037656<br>.0100994<br>.0132874<br>0137934<br>0082016<br>051819 |  |  |
| year2007<br>year2008<br>year2009<br>year2010<br>                                                                                                                                                                                                                                                                                                                                                                                                          | 2304448<br>1853523<br>0609674<br>0737697<br>(omitted)                                                                                                                                                                                            | .0713404<br>.0722031<br>.0732318<br>.0782099                                                                                                                                                                                   | -3.23<br>-2.57<br>-0.83<br>-0.94                                                                                                                                 | 0.003<br>0.016<br>0.413<br>0.354                                                                                                                                        | 3770872<br>3337679<br>2114975<br>2345324                                                                                                                                                                            | 0838025<br>0369367<br>.0895628<br>.0869929                                                                                                                                                                             |  |  |

### Table A4.2.5 Model 2 - FEVD estimated results (STATA ado file)

xtfevd lnemsh avyrs sqravyrs cskills lnpatappr lnfdi lngdpc lnpop unem lnecofree lnrulc serv dist transdummy year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010, invariant (cskills dist transdummy) panel fixed effects regression with vector decomposition degrees of freedom fevd = 311 = number of obs 366 mean squared error = .0123307 root mean squared error = .1110437 F( 30, 311) = 1.916721 = .0043369 Prob > F Residual Sum of Squares = 4.513039 Total Sum of Squares = 861.6282 R-squared = .9947622 R-squared = .9947622 adj. R-squared = .9938527 Estimation Sum of Squares = 857.1152 \_\_\_\_\_ fevd Coef. Std. Err. t P>|t| [95% Conf. Interval] lnemsh |

|            | +         |          |       |       |           |          |
|------------|-----------|----------|-------|-------|-----------|----------|
| avyrs      | -1.080913 | 7.32284  | -0.15 | 0.883 | -15.48949 | 13.32766 |
| sqravyrs   | .049501   | .3433536 | 0.14  | 0.885 | 6260888   | .7250908 |
| lnpatappr  | .0520743  | .9192366 | 0.06  | 0.955 | -1.756635 | 1.860784 |
| lnfdi      | .0052473  | .1039506 | 0.05  | 0.960 | 199288    | .2097826 |
| lngdpc     | 1.435969  | 5.551273 | 0.26  | 0.796 | -9.486834 | 12.35877 |
| lnpop      | -1.627357 | 3.000251 | -0.54 | 0.588 | -7.530715 | 4.276    |
| unem       | .0027774  | .0181445 | 0.15  | 0.878 | 0329241   | .038479  |
| lnecofree  | 0661196   | 5.673922 | -0.01 | 0.991 | -11.23025 | 11.09801 |
| lnrulc     | 7721935   | 4.638977 | -0.17 | 0.868 | -9.899943 | 8.355556 |
| serv       | 0023586   | .1043572 | -0.02 | 0.982 | 2076941   | .2029768 |
| year1996   | .027878   | .946997  | 0.03  | 0.977 | -1.835453 | 1.891209 |
| year1997   | .0037678  | 1.250233 | 0.00  | 0.998 | -2.456218 | 2.463753 |
| year1998   | 0090401   | 1.267724 | -0.01 | 0.994 | -2.503441 | 2.485361 |
| year1999   | 0435812   | 1.133639 | -0.04 | 0.969 | -2.274152 | 2.18699  |
| year2000   | 0603345   | 1.085334 | -0.06 | 0.956 | -2.19586  | 2.075191 |
| year2001   | 0579877   | 1.215693 | -0.05 | 0.962 | -2.45001  | 2.334035 |
| year2002   | 0755238   | 1.237765 | -0.06 | 0.951 | -2.510976 | 2.359929 |
| year2003   | 0853358   | 1.451805 | -0.06 | 0.953 | -2.941938 | 2.771266 |
| year2004   | 1256662   | 1.542291 | -0.08 | 0.935 | -3.16031  | 2.908977 |
| year2005   | 1277924   | 1.759571 | -0.07 | 0.942 | -3.589962 | 3.334377 |
| year2006   | 1856785   | 1.795801 | -0.10 | 0.918 | -3.719135 | 3.347778 |
| year2007   | 2164281   | 2.118943 | -0.10 | 0.919 | -4.385705 | 3.952849 |
| year2008   | 1621322   | 2.149305 | -0.08 | 0.940 | -4.391149 | 4.066885 |
| year2009   | 0514361   | 1.898269 | -0.03 | 0.978 | -3.78651  | 3.683637 |
| year2010   | 0729626   | 1.923868 | -0.04 | 0.970 | -3.858405 | 3.71248  |
| cskills    | .9437148  | 3.991406 | 0.24  | 0.813 | -6.909859 | 8.797289 |
| dist       | 0010556   | .0028443 | -0.37 | 0.711 | 0066521   | .0045409 |
| transdummy | 2740663   | 8.45568  | -0.03 | 0.974 | -16.91164 | 16.36351 |
| eta        | 1         |          |       | •     |           |          |
| _cons      | 7.028601  | 74.89124 | 0.09  | 0.925 | -140.329  | 154.3862 |

### Table A4.2.5.1 Model 2 - FEVD estimated results (Three stage procedure)

. regress lnemsh avyrs sqravyrs cskills lnpatappr lnfdi lngdpc lnpop unem lnecofree lnrulc serv dist transdummy res1 year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010

| Source              | SS                       | df                  | MS                 |       | Number of obs<br>F(29, 336) | = 366<br>= 2189.62               |
|---------------------|--------------------------|---------------------|--------------------|-------|-----------------------------|----------------------------------|
| Model  <br>Residual | 857.092946<br>4.53524822 | 29 29.5<br>336 .013 | 5549292<br>3497763 |       | Prob > F<br>R-squared       | = 0.0000<br>= 0.9947<br>= 0.9943 |
| Total               | 861.628194               | 365 2.36            | 5062519            |       | Root MSE                    | = .11618                         |
| lnemsh              | Coef.                    | Std. Err.           | t                  | P> t  | [95% Conf.                  | Interval]                        |
| avyrs               | -1.110924                | .0686678            | -16.18             | 0.000 | -1.245996                   | 9758507                          |
| sqravyrs            | .0509864                 | .0034117            | 14.94              | 0.000 | .0442753                    | .0576974                         |
| cskills             | .8907606                 | .0484429            | 18.39              | 0.000 | .7954711                    | .9860502                         |
| lnpatappr           | .0676452                 | .0107093            | 6.32               | 0.000 | .0465794                    | .088711                          |
| lnfdi               | .0062892                 | .0041998            | 1.50               | 0.135 | 0019719                     | .0145504                         |
| lngdpc              | 1.441092                 | .0388593            | 37.08              | 0.000 | 1.364654                    | 1.51753                          |
| lnpop               | -1.59816                 | .0606314            | -26.36             | 0.000 | -1.717425                   | -1.478895                        |
| unem                | .0023633                 | .0006191            | 3.82               | 0.000 | .0011455                    | .0035811                         |
| lnecofree           | 0504342                  | .0857356            | -0.59              | 0.557 | 2190802                     | .1182119                         |
| lnrulc              | 7429245                  | .1522684            | -4.88              | 0.000 | -1.042444                   | 4434051                          |
| serv                | 0051168                  | .0014251            | -3.59              | 0.000 | 00792                       | 0023136                          |
| dist                | 0010461                  | .000023             | -45.51             | 0.000 | 0010913                     | 0010009                          |
| transdummy          | 2404452                  | .055581             | -4.33              | 0.000 | 3497758                     | 1311146                          |

|          | 000001   | 0056100  | 00.05 | 0 0 0 0 | 0.450005 | 1 0 4 0 0 7 |  |
|----------|----------|----------|-------|---------|----------|-------------|--|
| resi     | .9976891 | .0256122 | 38.95 | 0.000   | .9473087 | 1.04807     |  |
| year1996 | .033311  | .0428003 | 0.78  | 0.437   | 0508794  | .1175014    |  |
| year1997 | .0089998 | .0433315 | 0.21  | 0.836   | 0762354  | .094235     |  |
| year1998 | 0018857  | .0430688 | -0.04 | 0.965   | 0866042  | .0828328    |  |
| year1999 | 0336484  | .0431863 | -0.78 | 0.436   | 118598   | .0513012    |  |
| year2000 | 0524368  | .0424717 | -1.23 | 0.218   | 1359808  | .0311072    |  |
| year2001 | 0505214  | .0428856 | -1.18 | 0.240   | 1348794  | .0338366    |  |
| year2002 | 0665169  | .043755  | -1.52 | 0.129   | 1525852  | .0195513    |  |
| year2003 | 0740781  | .044117  | -1.68 | 0.094   | 1608583  | .0127022    |  |
| year2004 | 1148623  | .0444593 | -2.58 | 0.010   | 2023158  | 0274087     |  |
| year2005 | 1164443  | .0449142 | -2.59 | 0.010   | 2047926  | 0280959     |  |
| year2006 | 1755587  | .0457345 | -3.84 | 0.000   | 2655208  | 0855966     |  |
| year2007 | 2081536  | .0459151 | -4.53 | 0.000   | 2984708  | 1178363     |  |
| year2008 | 1574952  | .0457141 | -3.45 | 0.001   | 2474171  | 0675732     |  |
| year2009 | 0445535  | .046506  | -0.96 | 0.339   | 1360331  | .0469261    |  |
| year2010 | 0639115  | .0463097 | -1.38 | 0.168   | 1550049  | .027182     |  |
| _cons    | 6.982916 | 1.219102 | 5.73  | 0.000   | 4.584883 | 9.380949    |  |
|          | <br>     |          |       |         |          |             |  |

# Table A4.2.6 Model 2 - Hausman and Taylor estimated results

xthtaylor lnemsh avyrs sqravyrs cskills lnpatappr lnfdi lngdpc lnpop unem dist lnecofree lnrulc serv transdummy year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010,endog (avyrs sqravyrs cskills)

| Hausman-Taylor<br>Group variable | estimation e: country |           | Number<br>Number | of obs<br>of groups | = 366<br>= 27            |                       |
|----------------------------------|-----------------------|-----------|------------------|---------------------|--------------------------|-----------------------|
|                                  |                       |           |                  | Obs per             | group: min<br>avg<br>max | = 5<br>= 13.6<br>= 16 |
| Random effects                   | s u_i ~ i.i.d.        |           |                  | Wald ch<br>Prob >   | i2(28)<br>chi2           | = 823.27<br>= 0.0000  |
| lnemsh                           | Coef.                 | Std. Err. | Z                | P> z                | [95% Conf                | . Interval]           |
| TVexogenous                      |                       |           |                  |                     |                          |                       |
| lnpatappr                        | .0622833              | .0269314  | 2.31             | 0.021               | .0094987                 | .1150679              |
| lnfdi                            | .0020501              | .004994   | 0.41             | 0.681               | 007738                   | .0118382              |
| lngdpc                           | 1.551464              | .1098438  | 14.12            | 0.000               | 1.336174                 | 1.766754              |
| lnpop                            | 9008545               | .2827201  | -3.19            | 0.001               | -1.454976                | 3467332               |
| unem                             | .0030139              | .000915   | 3.29             | 0.001               | .0012205                 | .0048074              |
| lnecofree                        | .003472               | .1717828  | 0.02             | 0.984               | 3332161                  | .34016                |
| lnrulc                           | 8091059               | .1933035  | -4.19            | 0.000               | -1.187974                | 4302379               |
| serv                             | 0031934               | .0038426  | -0.83            | 0.406               | 0107247                  | .004338               |
| year1996                         | .0348935              | .0446596  | 0.78             | 0.435               | 0526376                  | .1224247              |
| year1997                         | .0061083              | .0455654  | 0.13             | 0.893               | 0831982                  | .0954148              |
| year1998                         | 0054072               | .0461729  | -0.12            | 0.907               | 0959044                  | .0850899              |
| year1999                         | 0433342               | .0480743  | -0.90            | 0.367               | 1375581                  | .0508898              |
| year2000                         | 0645864               | .0481132  | -1.34            | 0.179               | 1588865                  | .0297138              |
| year2001                         | 0684398               | .0494221  | -1.38            | 0.166               | 1653053                  | .0284257              |
| year2002                         | 0892914               | .0523821  | -1.70            | 0.088               | 1919584                  | .0133756              |
| year2003                         | 1010051               | .054536   | -1.85            | 0.064               | 2078937                  | .0058834              |
| year2004                         | 1494594               | .0572492  | -2.61            | 0.009               | 2616658                  | 037253                |
| year2005                         | 157931                | .0610715  | -2.59            | 0.010               | 2776289                  | 0382331               |
| year2006                         | 2246655               | .0644567  | -3.49            | 0.000               | 3509984                  | 0983327               |
| year2007                         | 2611275               | .066679   | -3.92            | 0.000               | 3918159                  | 130439                |
| year2008                         | 2100643               | .0677713  | -3.10            | 0.002               | 3428935                  | 077235                |
| year2009                         | 0877591               | .0675169  | -1.30            | 0.194               | 2200898                  | .0445716              |

| year2010                                          | 1147225   | .0697404 | -1.64 | 0.100 | 2514112   | .0219662 |  |  |  |
|---------------------------------------------------|-----------|----------|-------|-------|-----------|----------|--|--|--|
| IVendogenous                                      |           |          |       |       |           |          |  |  |  |
| avyrs                                             | -1.057891 | .1880327 | -5.63 | 0.000 | -1.426428 | 6893534  |  |  |  |
| sqravyrs                                          | .0482889  | .0087508 | 5.52  | 0.000 | .0311375  | .0654402 |  |  |  |
| FIexogenous                                       |           |          |       |       |           |          |  |  |  |
| dist                                              | 0012541   | .0013075 | -0.96 | 0.337 | 0038168   | .0013086 |  |  |  |
| transdummy                                        | .5717101  | 1.429772 | 0.40  | 0.689 | -2.230592 | 3.374012 |  |  |  |
| FIendogenous                                      |           |          |       |       |           |          |  |  |  |
| cskills                                           | .4497035  | 4.660743 | 0.10  | 0.923 | -8.685184 | 9.584591 |  |  |  |
|                                                   |           |          |       |       |           |          |  |  |  |
| _cons                                             | 1.427867  | 23.94151 | 0.06  | 0.952 | -45.49662 | 48.35236 |  |  |  |
| +                                                 |           |          |       |       |           |          |  |  |  |
| sigma_u                                           | 3.2447554 |          |       |       |           |          |  |  |  |
| sigma_e                                           | .1153811  |          |       |       |           |          |  |  |  |
| rho   .99873714 (fraction of variance due to u i) |           |          |       |       |           |          |  |  |  |

Table A4.2.6.1 Model 2 - Fixed effects versus Hausman and Taylor

| hausman FE HT |                |                 |                  |                        |
|---------------|----------------|-----------------|------------------|------------------------|
|               | Coeffi         | cients          |                  |                        |
|               | (b)            | (B)             | (b-B)            | sqrt(diag(V_b-V_B))    |
|               | FE             | HT              | Difference       | S.E.                   |
| avyrs         | -1.080913      | -1.057891       | 0230226          | .0270586               |
| sqravyrs      | .049501        | .0482889        | .0012121         | .0012624               |
| lnpatappr     | .0520743       | .0622833        | 010209           | .0045261               |
| lnfdi         | .0052473       | .0020501        | .0031972         | .0010504               |
| lngdpc        | 1.435969       | 1.551464        | 1154953          | .0327219               |
| lnpop         | -1.627357      | 9008545         | 7265028          | .1836378               |
| unem          | .0027774       | .0030139        | 0002365          | .0001393               |
| lnecofree     | 0661197        | .003472         | 0695917          | .0292971               |
| lnrulc        | 7721936        | 8091059         | .0369123         | .028333                |
| serv          | 0023586        | 0031934         | .0008348         | .0005775               |
| year1996      | .027878        | .0348935        | 0070155          | .0063865               |
| year1997      | .0037678       | .0061083        | 0023405          | .0063066               |
| year1998      | 0090401        | 0054072         | 0036328          | .006431                |
| year1999      | 0435811        | 0433342         | 000247           | .0066484               |
| year2000      | 0603345        | 0645864         | .0042519         | .0067536               |
| year2001      | 0579877        | 0684398         | .0104521         | .0073414               |
| year2002      | 0755238        | 0892914         | .0137676         | .0080562               |
| year2003      | 0853357        | 1010051         | .0156694         | .008547                |
| year2004      | 1256662        | 1494594         | .0237932         | .0099568               |
| year2005      | 1277923        | 157931          | .0301387         | .0113838               |
| year2006      | 1856784        | 2246655         | .0389871         | .0132683               |
| year2007      | 216428         | 2611275         | .0446995         | .0145513               |
| year2008      | 1621321        | 2100643         | .0479322         | .0152716               |
| year2009      | 051436         | 0877591         | .0363231         | .0130943               |
| year2010      | 0729625        | 1147225         | .04176           | .0142822               |
|               | b              | = consistent    | under Ho and Ha  | a; obtained from xtreg |
| B = inc       | consistent und | er Ha, efficie  | ent under Ho; ob | otained from xthtaylor |
| Test: Ho:     | difference i   | n coefficients  | s not systematic | 2                      |
|               | chi2(25) =     | (b-B) '[(V_b-V_ | _B)^(-1)](b-B)   |                        |
|               | =              | 15.68           |                  |                        |
|               | Prob>chi2 =    | 0.9240          |                  |                        |

# Table A4.2.7 Model 2 - Hsiao 2 step procedure

| Step 1                           |                              |              |                   |          |               |             |          |
|----------------------------------|------------------------------|--------------|-------------------|----------|---------------|-------------|----------|
| xtreg lnemsh a                   | vyrs sqravyr                 | s cskills ln | patappr l         | nfdi lng | dpc lnpop une | m lnecofree | e lnrulc |
| serv dist tran                   | sdummy yearl                 | 996 year1997 | year1998          | year199  | 9 year2000 ye | ar2001 year | 2002     |
| year2003 year2                   | 004 year2005                 | year2006 ye  | ar2007 ye         | ar2008 y | ear2009 year2 | 2010, fe    |          |
| note: cskills                    | omitted beca                 | use of colli | nearity           |          |               |             |          |
| note: dist omi                   | tted because                 | of collinea  | rity<br>llipoprit |          |               |             |          |
| note: transdum                   | my omitted b                 | ecause of co | llinearit         | ·У       |               |             |          |
| Fixed-effects                    | (within) req                 | ression      |                   | Number   | of obs =      | 366         |          |
| Group variable                   | : country                    |              |                   | Number   | of groups =   | 27          |          |
|                                  |                              |              |                   |          |               |             |          |
| R-sq: within                     | = 0.7227                     |              |                   | Obs per  | group: min =  | - 5         |          |
| between                          | = 0.1824                     |              |                   |          | avg =         | = 13.6      |          |
| overall                          | = 0.1238                     |              |                   |          | max =         | = 16        |          |
|                                  |                              |              |                   | F(25.31  | 4) =          | 32.74       |          |
| corr(u i, Xb)                    | = -0.8914                    |              |                   | Prob >   | F =           | 0.0000      |          |
|                                  |                              |              |                   |          |               |             |          |
| lnemsh                           | Coef.                        | Std. Err.    | <br>t             | <br>P> t | [95% Conf.    | Interval]   |          |
| +                                |                              |              |                   |          |               |             |          |
| avyrs                            | -1.080913                    | .1899696     | -5.69             | 0.000    | -1.454688     | 707139      |          |
| sqravyrs                         | .049501                      | .0088414     | 5.60              | 0.000    | .032105       | .0668969    |          |
| CSKILLS                          | (OMITTED)                    | 0272001      | 1 0 1             | 0 057    | 0016577       | 1050062     |          |
| lipatappi  <br>lnfdi             | .0520743                     | 0051033      | 1 03              | 0.037    | - 0010377     | .1050002    |          |
| lnadoc l                         | 1 435969                     | 114614       | 12 53             | 0.000    | 1 21046       | 1 661477    |          |
| lnpop                            | -1.627357                    | .3371254     | -4.83             | 0.000    | -2.290667     | 9640471     |          |
| unem                             | .0027774                     | .0009256     | 3.00              | 0.003    | .0009563      | .0045985    |          |
| lnecofree                        | 0661197                      | .1742631     | -0.38             | 0.705    | 4089908       | .2767513    |          |
| lnrulc                           | 7721936                      | .1953689     | -3.95             | 0.000    | -1.156591     | 3877959     |          |
| serv                             | 0023586                      | .0038857     | -0.61             | 0.544    | 010004        | .0052867    |          |
| dist                             | (omitted)                    |              |                   |          |               |             |          |
| transdummy                       | (omitted)                    | 0451120      | 0 60              | 0 5 2 7  | 0.00057       | 1100410     |          |
| year1996  <br>waar1997           | .02/8/8                      | .0451139     | 0.62              | 0.035    | 0608857       | .1106418    |          |
| year1998                         | - 0090401                    | 0455557      | -0.19             | 0.935    | - 1007643     | .0942743    |          |
| vear1999                         | 0435811                      | .0485319     | -0.90             | 0.370    | 1390699       | .0519077    |          |
| vear2000                         | 0603345                      | .0485849     | -1.24             | 0.215    | 1559276       | .0352586    |          |
| year2001                         | 0579877                      | .0499644     | -1.16             | 0.247    | 156295        | .0403196    |          |
| -<br>year2002                    | 0755238                      | .052998      | -1.43             | 0.155    | 1797998       | .0287522    |          |
| year2003                         | 0853357                      | .0552017     | -1.55             | 0.123    | 1939476       | .0232762    |          |
| year2004                         | 1256662                      | .0581086     | -2.16             | 0.031    | 2399976       | 0113347     |          |
| year2005                         | 1277923                      | .0621234     | -2.06             | 0.041    | 2500231       | 0055616     |          |
| year2006                         | 1856784                      | .0658082     | -2.82             | 0.005    | 3151592       | 0561977     |          |
| year2007                         | 216428                       | .0682483     | -3.17             | 0.002    | 3507098       | 0821462     |          |
| year2008                         | 1621321                      | .0694/06     | -2.33             | 0.020    | 2988189       | 0254453     |          |
| year2009                         | 051436                       | .068//49     | -0.75             | 0.455    | 186/54        | .0838819    |          |
| year2010                         | 0729625                      | .0/118/8     | -1.02             | 0.306    | 2130279       | 18 65896    |          |
|                                  |                              | 4.159556     |                   |          |               | 10.05090    |          |
| sigma u                          | 3.3868244                    |              |                   |          |               |             |          |
| sigma e                          | .11988634                    |              |                   |          |               |             |          |
| rho                              | .99874856                    | (fraction    | of varian         | ce due t | o u_i)        |             |          |
| F test that al                   | l u_i=0:                     | F(26, 314)   | = 54.8            | 7        | Prob >        | F = 0.0000  |          |
|                                  |                              |              |                   |          |               |             |          |
| step 2.                          |                              | ict transdom | mu ha             |          |               |             |          |
| . XLIEY TESIDI<br>Between regros | ez CSKIIIS Q<br>sion (regros | ISU ULANSOUM | my, be            | Number   | of obs -      | 366         |          |
| Group variable                   | : country                    | Sion on grou | p means)          | Number   | of groups =   | = 27        |          |

| R-sq: within<br>between<br>overall | = 0.0000<br>= 0.1104<br>= 0.0547 |                                 |                       | Obs per                 | group: min =<br>avg =<br>max =    | 5<br>13.6<br>16                  |
|------------------------------------|----------------------------------|---------------------------------|-----------------------|-------------------------|-----------------------------------|----------------------------------|
| sd(u_i + avg(e                     | _i.))= 3.39                      | 6431                            |                       | F(3,23)<br>Prob >       | =<br>F =                          | 0.95<br>0.4324                   |
| residfe2                           | Coef.                            | Std. Err.                       | t                     | P> t                    | [95% Conf.                        | Interval]                        |
| cskills  <br>dist                  | .6554133<br>0016271<br>.0847174  | 4.203466<br>.001264<br>1.419577 | 0.16<br>-1.29<br>0.06 | 0.877<br>0.211<br>0.953 | -8.040118<br>0042419<br>-2.851902 | 9.350945<br>.0009877<br>3.021337 |

| <b>Table A4.2.8</b>                                                                                                                        | Model 2 - I                                                                                                | V estimated                                                                                            | results                                                         | 5                                                                             |                                                                                                                                                                                    |     |
|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| <pre>xtivreg2 lnems<br/>year1996 year1<br/>year2005 year2<br/>=avyrslag1 sqr<br/>lnfdi) small r<br/>Warning - coll<br/>Vars dropped:</pre> | h cskills ln<br>997 year1998<br>006 year2007<br>avyrslag1 ln<br>obust bw(3)<br>inearities d<br>cskills dis | gdpc lnpop un<br>year1999 yea<br>year2008 yea<br>patapprlag1 l<br>etected<br>t transdummy              | em lnecc<br>r2000 ye<br>r2009 ye<br>nfdilag1<br>year1997        | ofree se<br>ear2001<br>ear2010<br>.), fe e                                    | erv lnrulc dist transdummy<br>year2002 year2003 year2004<br>(avyrs sqravyrs lnpatappr lnf<br>endog (avyrs sqravyrs lnpatappr                                                       | Edi |
| FIXED EFFECTS                                                                                                                              | ESTIMATION                                                                                                 |                                                                                                        |                                                                 |                                                                               |                                                                                                                                                                                    |     |
| Number of grou                                                                                                                             | aps =                                                                                                      | 27                                                                                                     |                                                                 | Obs pe                                                                        | er group: min = 3<br>avg = 12.9<br>max = 15                                                                                                                                        |     |
| IV (2SLS) esti                                                                                                                             | mation                                                                                                     |                                                                                                        |                                                                 |                                                                               |                                                                                                                                                                                    |     |
| Estimates effi<br>Statistics rok<br>kernel=Bartl<br>time variabl<br>group variab                                                           | cient for ho<br>bust to heter<br>hett; bandwid<br>he (t): year<br>ble (i): coun                            | moskedasticit<br>oskedasticity<br>th=3<br>try                                                          | y only<br>and aut                                               | cocorre                                                                       | Number of $obs = 349$                                                                                                                                                              |     |
| Total (centere<br>Total (uncente<br>Residual SS                                                                                            | ed) SS =<br>ered) SS =<br>=                                                                                | 14.63220443<br>14.63220443<br>4.036497757                                                              |                                                                 |                                                                               | F(24, 298) = 15.72<br>Prob > F = 0.0000<br>Centered R2 = 0.7241<br>Uncentered R2 = 0.7241<br>Root MSE = .1164                                                                      |     |
| lnemsh                                                                                                                                     | Coef.                                                                                                      | Robust<br>Std. Err.                                                                                    | t                                                               | P> t                                                                          | [95% Conf. Interval]                                                                                                                                                               |     |
| avyrs  <br>sqravyrs  <br>lnpatappr  <br>lnfdi  <br>lngdpc  <br>lnpop  <br>unem  <br>lnecofree                                              | -1.031575<br>.0482362<br>.0567323<br>.0069452<br>1.460736<br>-1.771418<br>.002719<br>1675852<br>-0036182   | .2948954<br>.013676<br>.0545946<br>.005033<br>.1528232<br>.5034151<br>.0012378<br>.2264491<br>.0090052 | -3.50<br>3.53<br>1.04<br>1.38<br>9.56<br>-3.52<br>2.20<br>-0.74 | 0.001<br>0.000<br>0.300<br>0.169<br>0.000<br>0.001<br>0.029<br>0.460<br>0.688 | -1.6119164512335<br>.0213225 .07515<br>0507075 .164172<br>0029595 .0168499<br>1.159987 1.761485<br>-2.7621187807194<br>.0002832 .0051549<br>6132272 .2780567<br>- 0213402 .0141037 |     |

lnrulc | -.7975026 .3216266 -2.48 0.014 -1.43045 -.1645554 vear1996 | .0295505 .0383195 0.77 0.441 -.0458607 .1049616 .0402726 year1998 | -.0134661 .0273068 -0.49 0.622 -.0672048 year1999 | -.044812 .0355406 -1.26 0.208 -.1147544 .0251304 year2000 | -.0695808 .0472118 -1.47 0.142 -.1624916 .0233299 .0295265 year2001 | -.066127 .0486055 -1.36 0.175 -.1617805 year2002 | -.0863375 .0521045 -1.66 0.099 -.1888769 .016202 year2003 | -.0930256 .0535988 -1.74 0.084 -.1985058 .0124545 year2004 | -.1421195 .0612433 -2.32 0.021 -.2626437 -.0215952 year2005 | -.1480621 .0684107 -2.16 0.031 -.2826914 -.0134328 year2006 | -.2065023 .0753484 -2.74 0.007 -.3547847 -.0582198 0.003 0.034 year2007 | -.2432144 .0818328 -2.97 -.4042577 -.082171 year2008 |-.1857263.0870564-2.130.034year2009 |-.0707786.0862203-0.820.412year2010 |-.0958456.0867498-1.100.270 -.3570495 -.014403 .0988992 -.2404564 -.2665655 .0748743 -Underidentification test (Kleibergen-Paap rk LM statistic): 13 890 Chi-sq(1) P-val = 0.0002 \_\_\_\_\_ Weak identification test (Cragg-Donald Wald F statistic): 63.586 (Kleibergen-Paap rk Wald F statistic): 14.375 Stock-Yogo weak ID test critical values: <not available> \_\_\_\_\_ Hansen J statistic (overidentification test of all instruments): 0 000 (equation exactly identified) -endog- option: Endogeneity test of endogenous regressors: 4.288 Chi-sq(4) P-val = 0.3684 Regressors tested: avyrs sqravyrs lnpatappr lnfdi \_\_\_\_\_ Instrumented: avyrs sqravyrs lnpatappr lnfdi Included instruments: lngdpc lnpop unem lnecofree serv lnrulc year1996 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010 Excluded instruments: avyrslag1 sqravyrslag1 lnpatapprlag1 lnfdilag1 Dropped collinear: cskills dist transdummy year1997 Table A4.2.8.1 Model 2 - IV estimated results (ETEs) xtivreq2 lnemsh cskills lnqdpc lnpop unem lnecofree serv lnrulc dist transindN year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010 (avyrs sqravyrs lnpatappr lnfdi = avyrslag1 sqravyrslag1 lnpatapprlag1 lnfdilag1) if transdummy==1, fe endog (avyrs sqravyrs lnpatappr lnfdi) small robust bw(3) Warning - collinearities detected Vars dropped: cskills dist year1997 FIXED EFFECTS ESTIMATION \_\_\_\_\_ Number of groups = 10 Obs per group: min = 7 avg = 13.4 max = 15 IV (2SLS) estimation \_\_\_\_\_ Estimates efficient for homoskedasticity only Statistics robust to heteroskedasticity and autocorrelation kernel=Bartlett; bandwidth=3 time variable (t): year group variable (i): country Number of obs = 134 F(25, 99) = 57.06

| Total (centere<br>Total (uncente<br>Residual SS   | d) SS =<br>red) SS =<br>=                                               | 12.71853745<br>12.71853745<br>1.140768854                                                 |                                                              |                                         | Prob > F =<br>Centered R2 =<br>Uncentered R2 =<br>Root MSE =                   | 0.0000<br>0.9103<br>0.9103<br>.1073 |
|---------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------|-------------------------------------|
| <br> <br>lnemsh                                   | Coef.                                                                   | Robust<br>Std. Err.                                                                       | t                                                            | P> t                                    | [95% Conf.                                                                     | Interval]                           |
| avvrs                                             |                                                                         | 8846765                                                                                   | -0 35                                                        | 0 731                                   | -2 060646                                                                      | 1 450134                            |
| sgravyrs                                          | .0346494                                                                | .0352968                                                                                  | 0.98                                                         | 0.329                                   | 035387                                                                         | .1046858                            |
| lnpatappr                                         | .0713089                                                                | .1435895                                                                                  | 0.50                                                         | 0.621                                   | 2136038                                                                        | .3562215                            |
| lnfdi                                             | .0395134                                                                | .0730237                                                                                  | 0.54                                                         | 0.590                                   | 1053815                                                                        | .1844083                            |
| lngdpc                                            | .645078                                                                 | .2519814                                                                                  | 2.56                                                         | 0.012                                   | .1450922                                                                       | 1.145064                            |
| lnpop                                             | 5.147192                                                                | 2.782861                                                                                  | 1.85                                                         | 0.067                                   | 3746081                                                                        | 10.66899                            |
| unem                                              | 0030045                                                                 | .0019977                                                                                  | -1.50                                                        | 0.136                                   | 0069684                                                                        | .0009594                            |
| lnecofree                                         | 9577257                                                                 | .3796993                                                                                  | -2.52                                                        | 0.013                                   | -1.711131                                                                      | 2043199                             |
| serv                                              | .0156958                                                                | .0112817                                                                                  | 1.39                                                         | 0.167                                   | 0066896                                                                        | .0380811                            |
| lnrulc                                            | 862894                                                                  | .4321943                                                                                  | -2.00                                                        | 0.049                                   | -1.720461                                                                      | 0053267                             |
| transindN                                         | .6528614                                                                | .5101366                                                                                  | 1.28                                                         | 0.204                                   | 3593603                                                                        | 1.665083                            |
| year1996                                          | .0176631                                                                | .0602031                                                                                  | 0.29                                                         | 0.770                                   | 1017929                                                                        | .1371192                            |
| year1998                                          | 0041615                                                                 | .0535936                                                                                  | -0.08                                                        | 0.938                                   | 1105027                                                                        | .1021797                            |
| year1999                                          | 1299999                                                                 | .0809781                                                                                  | -1.61                                                        | 0.112                                   | 2906781                                                                        | .0306783                            |
| year2000                                          | 0755349                                                                 | .092034                                                                                   | -0.82                                                        | 0.414                                   | 2581503                                                                        | .1070806                            |
| year2001                                          | 0359315                                                                 | .1050194                                                                                  | -0.34                                                        | 0.733                                   | 2443128                                                                        | .1724498                            |
| year2002                                          | 0701535                                                                 | .1506527                                                                                  | -0.47                                                        | 0.642                                   | 3690812                                                                        | .2287743                            |
| year2003                                          | 0589288                                                                 | .1520536                                                                                  | -0.39                                                        | 0.699                                   | 3606362                                                                        | .2427785                            |
| year2004                                          | 0418056                                                                 | .1747348                                                                                  | -0.24                                                        | 0.811                                   | 3885174                                                                        | .3049061                            |
| year2005                                          | 029688                                                                  | .1901875                                                                                  | -0.16                                                        | 0.876                                   | 4070612                                                                        | .3476852                            |
| year2006                                          | 0421618                                                                 | .2052132                                                                                  | -0.21                                                        | 0.838                                   | 4493493                                                                        | .3650257                            |
| year2007                                          | 0415037                                                                 | .2187794                                                                                  | -0.19                                                        | 0.850                                   | 4756095                                                                        | .3926022                            |
| year2008                                          | .0053018                                                                | .2250431                                                                                  | 0.02                                                         | 0.981                                   | 4412324                                                                        | .4518361                            |
| year2009                                          | 0440012                                                                 | .2413103                                                                                  | -0.18                                                        | 0.856                                   | 5228131                                                                        | .4348107                            |
| year2010                                          | .0716051                                                                | .2245842                                                                                  | 0.32                                                         | 0./51                                   | 3/4018/                                                                        | .51/2288                            |
| Underidentific                                    | ation test (1                                                           | Kleibergen-Pa                                                                             | ap rk LM                                                     | I statis                                | stic):                                                                         | 13.904                              |
|                                                   |                                                                         |                                                                                           |                                                              | Chi                                     | i-sq(1) P-val =                                                                | 0.0002                              |
| Weak identific                                    | ation test (0                                                           | Cragg-Donald<br>Kleibergen-Pa                                                             | Wald F s<br>ap rk Wa                                         | tatisti<br>ld F st                      | ic):<br>tatistic):                                                             | 10.793<br>7.841                     |
| Stock-Yogo wea                                    | k ID test cr:                                                           | itical values                                                                             | 3:                                                           |                                         | <not a<="" td=""><td>vailable&gt;</td></not>                                   | vailable>                           |
| Hansen J stati                                    | stic (overide                                                           | entification                                                                              | test of                                                      | all ins<br>(equa                        | struments):<br>ation exactly id                                                | 0.000<br>entified)                  |
| -endog- option<br>Endogeneity te                  | :<br>st of endogen                                                      | nous regresso                                                                             | ors:                                                         |                                         |                                                                                | 10.118                              |
| Regressors tes                                    | ted: avyr:                                                              | s sqravyrs lr                                                                             | npatappr                                                     | Ch:<br>lnfdi                            | i-sq(4) P-val =                                                                | 0.0385                              |
| Instrumented:<br>Included instr<br>Excluded instr | avyr:<br>uments: lngdy<br>year<br>year<br>year<br>year<br>uments: avyr: | s sqravyrs in<br>oc inpop unem<br>1998 year1999<br>2004 year2005<br>2010<br>slag1 sqravyr | npatappr<br>n lnecofr<br>9 year200<br>5 year200<br>cslag1 lr | lnfdi<br>ree serv<br>0 year2<br>6 year2 | y lnrulc transing<br>2001 year2002 yea<br>2007 year2008 yea<br>rlag1 lnfdilag1 | dN year1996<br>ar2003<br>ar2009     |
| Dropped collin                                    | ear: cskil                                                              | lls dist year                                                                             | 1997                                                         |                                         |                                                                                |                                     |

### Table A4.2.8.2 Model 2 - IV estimated results (N-ETEs)

xtivreg2 lnemsh cskills lngdpc lnpop unem lnecofree serv lnrulc dist year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010 (avyrs sqravyrs lnpatappr lnfdi = avyrslag1

sqravyrslaq1 lnpatapprlaq1 lnfdilaq1) if transdummy==0, fe endoq (avyrs sqravyrs lnpatappr lnfdi) small robust bw(3) Warning - collinearities detected Vars dropped: cskills dist year1997 FIXED EFFECTS ESTIMATION \_\_\_\_\_ Number of groups = 17 Obs per group: min = 3 3 avg = 12.6 max = IV (2SLS) estimation \_\_\_\_\_ Estimates efficient for homoskedasticity only Statistics robust to heteroskedasticity and autocorrelation kernel=Bartlett; bandwidth=3 time variable (t): year group variable (i): country Number of obs = 215 11.89 F(24, 174) =Prob > F = 0.0000Centered R2 = 0.6429 Total (centered) SS = 1.913666985 Total (uncentered) SS = 1.913666985 Residual SS = .6833586415 0.6429 Uncentered R2 = Root MSE = .06267 \_\_\_\_\_ Robust 1 lnemsh | Coef. Std. Err. t P>|t| [95% Conf. Interval] \_\_\_\_\_+\_\_\_\_ avyrs | -.208023 .1765125 -1.18 0.240 -.5564043 .1403582 
 sqravyrs
 .0094988
 .0087071
 1.09
 0.277
 -.0076863

 lnpatappr
 .1328604
 .0547323
 2.43
 0.016
 .0248358
 .0266839 .2408851 2.43 0.016 0.41 0.682 lnfdi | .0107908 .0044414 .0020248 .0195568 lngdpc | .5657928 .097354 .2373415 -.3710848 
 0.70
 0.484
 -.4710621

 0.96
 0.338
 -.000805

 -0.91
 0.363
 -.6638025

 -7.30
 0.000
 -.0463383

 lnpop |
 .2600111
 .3704091

 unem |
 .0007636
 .0007947

 cofree |
 -.2097773
 .2300386

 serv |
 -.0364731
 .0049984
 .9910843 .0023322 lnecofree | .2442479 Local -.0364731 .0049984 lnrulc | -.5832545 .2811184 ear1996 | .0160154 .021723 ear1998 | .016 -.0266079 -2.07 0.039 -1.138096 -.0284136 0.74 0.462 .0588898 vear1996 | -.026859 year1998 | -.0042814 .0184336 -0.23 0.817 -.0406636 .0321008 year1999 | .0302899 .0270154 .0836099 1.12 0.264 -.0230301 .0804059 year2000 | .0032514 .0390915 0.08 0.934 -.0739031 year2001 | .02505 .040151 0.62 0.534 -.0541956 .1042956 year2002 | .0407288 .0408543 1.00 0.320 .1213627 -.039905 1.49 0.139 -.0189874 .1352796 year2003 | .0581461 .0390808 year2004 | .0356136 .0452288 0.79 0.432 -.0536542 .1248813 year2004 |.0330130.04322880.790.432-.0530342.1248813year2005 |.0348479.05050010.690.491-.0648237.1345195year2006 |-.0037839.0572327-0.070.947-.1167436.1091759year2007 |-.0101578.0598228-0.170.865-.1282297.107914year2008 |.0162896.06192830.260.793-.1059377.1385168year2009 |.1058635.05871011.800.073-.0100121.2217391year2010 |.0510753.06014960.850.397-.0676414.169792 -\_\_\_\_\_ Underidentification test (Kleibergen-Paap rk LM statistic): 9.188 Chi-sq(1) P-val = 0.0024\_\_\_\_\_ \_\_\_\_\_ Weak identification test (Cragg-Donald Wald F statistic): 24,479 (Kleibergen-Paap rk Wald F statistic): 5.733 Stock-Yogo weak ID test critical values: <not available> \_\_\_\_\_

Hansen J statistic (overidentification test of all instruments): 0.000 (equation exactly identified) -endog- option: Endogeneity test of endogenous regressors: 4.448 Chi-sq(4) P-val = 0.3488Regressors tested: avyrs sgravyrs lnpatappr lnfdi \_\_\_\_\_ Instrumented: avyrs sqravyrs lnpatappr lnfdi Included instruments: lngdpc lnpop unem lnecofree serv lnrulc year1996 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010 Excluded instruments: avyrslag1 sqravyrslag1 lnpatapprlag1 lnfdilag1 Dropped collinear: cskills dist year1997 \_\_\_\_\_

### Table A4.2.8.3 Model 2 - IV estimated results

xtivreg2 lnemsh cskills lngdpc lnpop unem lnecofree lnrulc dist transdummy serv year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010 (avyrs sqravyrs lnpatappr lnfdi emplcvt = avyrslag1 sqravyrslag1 lnpatapprlag1 lnfdilag1 emplcvtlag1), fe endog (avyrs sqravyrs lnpatappr lnfdi emplcvt) small robust bw(3) Warning - singleton groups detected. 1 observation(s) not used. Warning - collinearities detected Vars dropped: cskills dist transdummy FIXED EFFECTS ESTIMATION \_\_\_\_\_ Number of groups = 24 Obs per group: min = 4 avg = 9.8max = 11 IV (2SLS) estimation \_\_\_\_\_ Estimates efficient for homoskedasticity only Statistics robust to heteroskedasticity and autocorrelation kernel=Bartlett; bandwidth=3 time variable (t): year group variable (i): country Number of obs = 235 24.53 235 F(21, 190) = Prob > F = 0.0000 Centered R2 = 0.7331 Total (centered) SS = 6.433845401 Total (uncentered) SS = 6.433845401 Residual SS = 1.717345961 0.7331 Uncentered R2 = Root MSE = .09507 \_\_\_\_\_ Robust lnemsh | Coef. Std. Err. t P>|t| [95% Conf. Interval] \_\_\_\_\_ avyrs | .2100002 .3363832 0.62 0.533 -.4535253 .8735256 sqravyrs | -.0097267 .0159883 -0.61 0.544 -.041264 .0218105 lnpatappr | .0326035 .0658534 0.50 0.621 -.0972942 .1625011 lnfdi | -.0021279 .0076413 -0.28 0.781 -.0172006 .0129449 1.89 0.060 -.0002959 emplcvt | .0071931 .0037966 .0146821 lngdpc | 1.262157 .2413452 5.23 0.000 .7860963 1.738217 lnpop |-2.16032.6562217-3.290.001-3.454736unem |.0002655.00121390.220.827-.002129lnecofree |-.3205598.2980319-1.080.283-.9084362lnrulc |-.698581.3806397-1.840.068-1.449404 -.8659043 .0026601 .2673166 .0522416

serv | -.0038473 .0126986 -0.30 0.762 -.0288957 .0212011 year2001 | -.001364 .0237684 -0.06 0.954 -.0482478 year2002 | -.0096716 .0390855 -0.25 0.805 -.0867688 .0455197 .0674255 year2003-.0164771.045483-0.360.718-.1061937year2004-.0477635.0599382-0.800.427-.1659932 .0732395 .0704663 year2005 | -.0533026 .0729129 -0.73 0.466 -.1971253 .0905202 year2006 | -.1110718 .0798245 -1.39 0.166 -.268528 .0463844 year2007 | -.1465777 .0878638 -1.67 0.097 -.3198914 .0267361 .0666487 year2008 | -.1078058 .0884421 -1.22 0.224 -.2822604 year2009 | -.029549 .0879184 -0.34 0.737 -.2029705 year2010 | -.0251925 .0790725 -0.32 0.750 -.1811652 .1438725 .1307803 ------Underidentification test (Kleibergen-Paap rk LM statistic): 11.639 Chi-sq(1) P-val = 0.0006\_\_\_\_\_ Weak identification test (Cragg-Donald Wald F statistic): 19.378 (Kleibergen-Paap rk Wald F statistic): 4.006 Stock-Yogo weak ID test critical values: <not available> \_\_\_\_\_ Hansen J statistic (overidentification test of all instruments): 0.000 (equation exactly identified) -endog- option: Endogeneity test of endogenous regressors: 15.343 Chi-sq(5) P-val = 0.0090 Regressors tested: avyrs sqravyrs lnpatappr lnfdi emplcvt \_\_\_\_\_ -----Instrumented: avyrs sqravyrs lnpatappr lnfdi emplcvt Included instruments: lngdpc lnpop unem lnecofree lnrulc serv year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010 Excluded instruments: avyrslag1 sqravyrslag1 lnpatapprlag1 lnfdilag1 emplcvtlag1 Dropped collinear: cskills dist transdummy \_\_\_\_\_

### Table A4.2.8.4 Model 2 - IV estimated results

xtivreg2 lnemsh cskills lngdpc lnpop unem lnecofree lnrulc dist transdummy serv year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010 (avyrs sqravyrs lnpatappr lnfdi trngent = avyrslag1 sqravyrslag1 lnpatapprlag1 lnfdilag1 trngentlag1), fe endog (avyrs sqravyrs lnpatappr lnfdi trngent) small robust bw(3) Warning - singleton groups detected. 1 observation(s) not used. Warning - collinearities detected Vars dropped: cskills dist transdummy FIXED EFFECTS ESTIMATION \_\_\_\_\_ 3 Number of groups = 2.6 Obs per group: min = avg = 9.4 max = 11 IV (2SLS) estimation \_\_\_\_\_ Estimates efficient for homoskedasticity only Statistics robust to heteroskedasticity and autocorrelation kernel=Bartlett; bandwidth=3 time variable (t): year group variable (i): country Number of obs = 245 F(21, 198) =18.04

| Total (centere<br>Total (uncente<br>Residual SS                                                                                                              | ed) SS =<br>ered) SS =<br>=                                                                                                                                              | 5.84702702<br>5.84702702<br>1.665167772                                                                                                                                         |                                                                                                                               | F<br>C<br>U<br>F                                                                                                                    | Prob > F<br>Centered R2<br>Incentered R2<br>Root MSE                                                                                                                   | = 0.0000<br>= 0.7152<br>= 0.7152<br>= .09171                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <br> <br>lnemsh                                                                                                                                              | Coef.                                                                                                                                                                    | Robust<br>Std. Err.                                                                                                                                                             | t                                                                                                                             | <br>P> t                                                                                                                            | [95% Conf.                                                                                                                                                             | Interval]                                                                                                                                                                       |
| avyrs<br>sqravyrs<br>lnpatappr<br>lnfdi<br>trngent<br>lngdpc<br>lnpop<br>unem<br>lnecofree<br>lnrulc<br>serv<br>year2001<br>year2002<br>year2003<br>year2004 | .1402249<br>005806<br>.0689269<br>.0040889<br>.0032168<br>1.482311<br>-2.032036<br>.0005673<br>4444192<br>-1.04007<br>0061007<br>0010207<br>0139329<br>0280595<br>072281 | .3446741<br>.016073<br>.0608204<br>.0078644<br>.0020315<br>.2542142<br>.5385296<br>.0012097<br>.2923973<br>.6129938<br>.0147592<br>.0262829<br>.0389911<br>.0471727<br>.0582493 | 0.41<br>-0.36<br>1.13<br>0.52<br>1.58<br>5.83<br>-3.77<br>0.47<br>-1.52<br>-1.70<br>-0.41<br>-0.04<br>-0.36<br>-0.59<br>-1.24 | 0.685<br>0.718<br>0.258<br>0.604<br>0.115<br>0.000<br>0.000<br>0.640<br>0.130<br>0.091<br>0.680<br>0.969<br>0.721<br>0.553<br>0.216 | 5394785<br>0375022<br>051012<br>0114198<br>0007894<br>.980996<br>-3.094026<br>0018182<br>-1.021032<br>-2.248904<br>0352061<br>0528511<br>0908241<br>1210848<br>1871496 | .8199284<br>.0258902<br>.1888658<br>.0195977<br>.0072229<br>1.983626<br>9700463<br>.0029528<br>.1321933<br>.1687648<br>.0230047<br>.0508097<br>.0629582<br>.0649659<br>.0425875 |
| year2005<br>year2006<br>year2007<br>year2008<br>year2009<br>year2010<br>Underidentific                                                                       | 0950734<br>1570947<br>2007215<br>1510465<br>0420551<br>05491                                                                                                             | .0704682<br>.0812154<br>.0893234<br>.0892068<br>.088853<br>.0831786                                                                                                             | -1.35<br>-1.93<br>-2.25<br>-1.69<br>-0.47<br>-0.66<br>                                                                        | 0.179<br>0.055<br>0.026<br>0.092<br>0.637<br>0.510<br>4 statist<br>Chi-                                                             | 2340378<br>317253<br>3768687<br>3269639<br>2172748<br>2189397<br>                                                                                                      | .0438911<br>.0030635<br>0245742<br>.024871<br>.1331646<br>.1091196<br>                                                                                                          |
| Weak identific<br>Stock-Yogo wea                                                                                                                             | cation test (C<br>(K<br>Ak ID test cri                                                                                                                                   | Cragg-Donald<br>Cleibergen-Pa<br>tical values                                                                                                                                   | Wald F a<br>aap rk Wa                                                                                                         | statistic<br>ald F sta                                                                                                              | c):<br>atistic):<br>                                                                                                                                                   | 26.245<br>5.553<br>available>                                                                                                                                                   |
| Hansen J stati<br>-endog- optior<br>Endogeneity te<br>Regressors tes                                                                                         | istic (overide<br>n:<br>est of endoger<br>sted: avyrs                                                                                                                    | entification<br>nous regresso<br>s sqravyrs lr                                                                                                                                  | test of<br>prs:                                                                                                               | all inst<br>(equat<br>Chi-<br>lnfdi tr                                                                                              | ruments):<br>ion exactly i<br>sq(5) P-val =                                                                                                                            | 0.000<br>dentified)<br>4.380<br>0.4961                                                                                                                                          |
| Instrumented:<br>Included instr<br>Excluded instr<br>Dropped collir                                                                                          | avyrs<br>cuments: lngdp<br>year2<br>year2<br>cuments: avyrs<br>hear: cskil                                                                                               | s sqravyrs lr<br>oc lnpop uner<br>2003 year2004<br>2009 year2010<br>2009 sear2010<br>2009 sear2010<br>2009 sear2010                                                             | npatappr<br>n lnecof:<br>4 year200<br>cslag1 ln<br>nsdummy                                                                    | lnfdi tr<br>ree lnrul<br>05 year20<br>npatapprl                                                                                     | rngent<br>.c serv year20<br>006 year2007 y<br>.agl lnfdilag1                                                                                                           | 01 year2002<br>ear2008<br>trngentlag1                                                                                                                                           |

# Table A4.3 Descriptive statistics (Variables in levels)

|          |     |       |       |       | Quantiles |       |       |       |  |  |  |
|----------|-----|-------|-------|-------|-----------|-------|-------|-------|--|--|--|
| Variable | n   | Mean  | S.D.  | Min   | .25       | Mdn   | .75   | Max   |  |  |  |
| emsh     | 464 | 4.02  | 6.66  | 0.03  | 0.36      | 1.54  | 3.84  | 36.60 |  |  |  |
| sedut    | 464 | 58.85 | 12.95 | 24.67 | 48.99     | 59.77 | 66.10 | 88.99 |  |  |  |

| tedut      | 464 | 17.64    | 6.01     | 7.05    | 12.46   | 17.72    | 22.40    | 40.09    |  |
|------------|-----|----------|----------|---------|---------|----------|----------|----------|--|
| avyrs      | 464 | 10.34    | 1.18     | 6.69    | 9.54    | 10.38    | 11.22    | 12.82    |  |
| cskills    | 432 | 4.90     | 0.19     | 4.54    | 4.78    | 4.96     | 5.05     | 5.19     |  |
| patappr    | 442 | 3883.05  | 9421.06  | 3.00    | 242.00  | 788.00   | 2274.00  | 51736.00 |  |
| fdi        | 463 | 42.14    | 40.54    | 0.00    | 16.92   | 31.46    | 50.84    | 322.19   |  |
| gdpc       | 464 | 24993.55 | 17580.37 | 2353.99 | 9766.65 | 21877.45 | 35600.00 | 87716.73 |  |
| pop        | 464 | 17208.14 | 22010.91 | 376.89  | 3751.43 | 8168.71  | 16531.04 | 82504.55 |  |
| unem       | 440 | 39.22    | 15.35    | 0.00    | 27.00   | 42.35    | 51.10    | 73.10    |  |
| ecofree    | 453 | 66.00    | 7.56     | 42.90   | 61.20   | 66.20    | 70.80    | 82.60    |  |
| rulc       | 431 | 101.85   | 4.72     | 91.90   | 99.20   | 100.70   | 103.80   | 129.10   |  |
| serv       | 452 | 66.71    | 7.47     | 35.83   | 62.03   | 66.66    | 72.01    | 86.55    |  |
| dist       | 464 | 1142.02  | 631.97   | 68.44   | 767.16  | 1129.98  | 1601.10  | 2904.98  |  |
| transdummy | 464 | 0.38     | 0.49     | 0.00    | 0.00    | 0.00     | 1.00     | 1.00     |  |
| transind   | 153 | 3.62     | 0.30     | 2.60    | 3.40    | 3.60     | 3.90     | 4.10     |  |
| emplcvt    | 293 | 31.95    | 12.86    | 8.00    | 19.20   | 33.00    | 41.00    | 61.00    |  |
| trngent    | 299 | 60.92    | 20.43    | 11.00   | 44.00   | 68.00    | 76.00    | 96.00    |  |
|            |     |          |          |         |         |          |          |          |  |

# Table A4.3.1 Correlation matrix

|            | lnsedut | lntedut  | avyrs    | cskills | lnpata~r | lnfdi   | lngdpc  | lnpop   | unem    | lnecof~e | lnrulc  | serv    |
|------------|---------|----------|----------|---------|----------|---------|---------|---------|---------|----------|---------|---------|
| lnsedut    | 1.0000  |          |          |         |          |         |         |         |         |          |         |         |
| lntedut    | -0.1898 | 1.0000   |          |         |          |         |         |         |         |          |         |         |
| avyrs      | 0.7791  | 0.2618   | 1.0000   |         |          |         |         |         |         |          |         |         |
| cskills    | 0.3873  | 0.2768   | 0.5145   | 1.0000  |          |         |         |         |         |          |         |         |
| lnpatappr  | 0.0129  | 0.0110   | 0.0814   | 0.2640  | 1.0000   |         |         |         |         |          |         |         |
| lnfdi      | 0.1000  | 0.2076   | 0.1876   | 0.2012  | -0.0142  | 1.0000  |         |         |         |          |         |         |
| lngdpc     | -0.3071 | 0.3748   | -0.0579  | 0.1422  | 0.3725   | -0.0887 | 1.0000  |         |         |          |         |         |
| lnpop      | -0.0529 | -0.1600  | -0.0330  | 0.0578  | 0.8469   | 0.0859  | 0.0445  | 1.0000  |         |          |         |         |
| unem       | 0.1729  | -0.3365  | 0.0465   | -0.0613 | -0.1863  | 0.0534  | -0.5836 | 0.1064  | 1.0000  |          |         |         |
| lnecofree  | -0.0699 | 0.5145   | 0.1859   | 0.3242  | 0.0295   | 0.0596  | 0.5584  | -0.1503 | -0.4274 | 1.0000   |         |         |
| lnrulc     | 0.0232  | 0.1993   | 0.0506   | 0.1189  | 0.0002   | -0.0404 | 0.0665  | -0.1168 | -0.2238 | 0.0900   | 1.0000  |         |
| serv       | -0.3474 | 0.3865   | -0.2229  | -0.1627 | -0.0162  | -0.0230 | 0.5457  | -0.1276 | -0.2590 | 0.4688   | 0.0413  | 1.0000  |
| dist       | -0.2377 | -0.1341  | -0.3058  | -0.3781 | -0.3444  | -0.0031 | -0.5491 | -0.1562 | 0.1228  | -0.3996  | -0.1135 | -0.3484 |
| transdummy | 0.6041  | -0.3048  | 0.4061   | 0.0719  | -0.4544  | 0.0797  | -0.8622 | -0.2724 | 0.4846  | -0.3987  | -0.0275 | -0.5735 |
| transindN  | 0.6126  | -0.2843  | 0.4374   | 0.1075  | -0.4520  | 0.0941  | -0.8382 | -0.2680 | 0.4818  | -0.3497  | -0.0287 | -0.5616 |
| emplcvt    | 0.0029  | 0.2191   | 0.2893   | 0.3706  | 0.2795   | 0.0738  | 0.6576  | 0.0005  | -0.3365 | 0.3705   | 0.0504  | 0.1841  |
| trngent    | 0.0707  | 0.3980   | 0.2836   | 0.5694  | 0.3368   | 0.0371  | 0.7259  | -0.0454 | -0.4934 | 0.6284   | 0.1329  | 0.2670  |
| I          | dist    | transd~y | transi~N | emplcvt | trngent  |         |         |         |         |          |         |         |
| dist       | 1.0000  |          |          |         |          |         |         |         |         |          |         |         |
| transdummy | 0.3101  | 1.0000   |          |         |          |         |         |         |         |          |         |         |
| transindN  | 0.2948  | 0.9944   | 1.0000   |         |          |         |         |         |         |          |         |         |
| emplcvt    | -0.5515 | -0.4186  | -0.3912  | 1.0000  |          |         |         |         |         |          |         |         |
| trngent    | -0.5781 | -0.4991  | -0.4742  | 0.7532  | 1.0000   |         |         |         |         |          |         |         |

Figure A4.4 Functional transformations for all explanatory variables



### Figure A4.4.1 Functional transformation for sedut

### Figure A4.4.2 Functional transformation for tedut





# Figure A4.4.3 Functional transformation for avyrs

### Figure A4.4.4 Functional transformation for cskills





### Figure A4.4.5 Functional transformation for patappr

# Figure A4.4.6 Functional transformation for *fdi*





# Figure A4.4.7 Functional transformation for gdpc







# Figure A4.4.9 Functional transformation for ecofree

## **Figure A4.5.1 Functional transformation for** *rulc*





### Figure A4.5.2 Functional transformation for serv

# Figure A4.5.3 Functional transformation for pop





# Figure A4.5.4 Functional transformation for trandinN







# Figure A4.5.6 Functional transformation for *transdummy*






#### Figure A4.5.8 Functional transformation for trngent

#### **Industry level analysis**

| Table A4.6 Model 1 - Fixed effects estimated results                                                                                                                                                                                                                                                                                                                                                                            |               |           |       |         |            |     |           |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------|-------|---------|------------|-----|-----------|--|--|
| <pre>xtreg lnrxa lnsedut lntedut cskills lnpatappr lnfdi lngdpc lnpop unem lnecofree<br/>lnrulc serv dist transdummy year1996 year1997 year1998 year1999 year2000 year2001<br/>year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010, fe<br/>note: cskills omitted because of collinearity<br/>note: dist omitted because of collinearity<br/>note: transdummy omitted because of collinearity</pre> |               |           |       |         |            |     |           |  |  |
| Fixed-effects                                                                                                                                                                                                                                                                                                                                                                                                                   | (within) regr | ression   |       | Number  | of obs     | =   | 3600      |  |  |
| Group variable: cn_ind Number of groups = 270                                                                                                                                                                                                                                                                                                                                                                                   |               |           |       |         |            |     |           |  |  |
| R-sq: within                                                                                                                                                                                                                                                                                                                                                                                                                    | = 0.0274      |           |       | Obs per | group: min | =   | 5         |  |  |
| between                                                                                                                                                                                                                                                                                                                                                                                                                         | = 0.0000      |           |       |         | avg        | =   | 13.3      |  |  |
| overall = 0.0024 max = 16                                                                                                                                                                                                                                                                                                                                                                                                       |               |           |       |         |            |     |           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |           |       | F(25,33 | 05)        | =   | 3.72      |  |  |
| corr(u_i, Xb)                                                                                                                                                                                                                                                                                                                                                                                                                   | = -0.5586     |           |       | Prob >  | F          | =   | 0.0000    |  |  |
| lnrxa                                                                                                                                                                                                                                                                                                                                                                                                                           | Coef.         | Std. Err. | <br>t | P> t    | [95% Conf  | . : | Interval] |  |  |
| lnsedut                                                                                                                                                                                                                                                                                                                                                                                                                         | .1234209      | .0684403  | 1.80  | 0.071   | 0107688    |     | .2576106  |  |  |
| lntedut                                                                                                                                                                                                                                                                                                                                                                                                                         | 1546624       | .0690227  | -2.24 | 0.025   | 2899941    | -   | 0193308   |  |  |
| cskills                                                                                                                                                                                                                                                                                                                                                                                                                         | (omitted)     |           |       |         |            |     |           |  |  |
| lnpatappr                                                                                                                                                                                                                                                                                                                                                                                                                       | .0679651      | .0150417  | 4.52  | 0.000   | .0384731   |     | .097457   |  |  |
| lnfdi                                                                                                                                                                                                                                                                                                                                                                                                                           | .0142454      | .0032775  | 4.35  | 0.000   | .0078193   |     | .0206714  |  |  |
| lngdpc                                                                                                                                                                                                                                                                                                                                                                                                                          | .0150208      | .076413   | 0.20  | 0.844   | 1348007    |     | .1648423  |  |  |
| lnpop                                                                                                                                                                                                                                                                                                                                                                                                                           | 5476247       | .2176893  | -2.52 | 0.012   | 9744442    | -   | 1208051   |  |  |
| unem                                                                                                                                                                                                                                                                                                                                                                                                                            | 0011066       | .0004864  | -2.28 | 0.023   | 0020601    |     | 000153    |  |  |
| lnecofree                                                                                                                                                                                                                                                                                                                                                                                                                       | 113683        | .0961946  | -1.18 | 0.237   | 30229      |     | .074924   |  |  |

| lnrulc                                                         | .0473726  | .1067171  | 0.44     | 0.657     | 1618658  | .2566109 |
|----------------------------------------------------------------|-----------|-----------|----------|-----------|----------|----------|
| serv                                                           | .0055433  | .0020919  | 2.65     | 0.008     | .0014418 | .0096448 |
| dist                                                           | (omitted) |           |          |           |          |          |
| transdummy                                                     | (omitted) |           |          |           |          |          |
| year1996                                                       | .0056938  | .0267864  | 0.21     | 0.832     | 0468259  | .0582135 |
| year1997                                                       | .0015589  | .0271223  | 0.06     | 0.954     | 0516193  | .0547371 |
| year1998                                                       | 0012644   | .0277959  | -0.05    | 0.964     | 0557633  | .0532345 |
| year1999                                                       | 0374796   | .0288172  | -1.30    | 0.193     | 0939809  | .0190217 |
| year2000                                                       | 0415794   | .0291777  | -1.43    | 0.154     | 0987875  | .0156287 |
| _<br>year2001                                                  | 0272956   | .0302586  | -0.90    | 0.367     | 0866231  | .0320319 |
| year2002                                                       | 0325108   | .0322816  | -1.01    | 0.314     | 0958048  | .0307831 |
| year2003                                                       | 0140008   | .0338229  | -0.41    | 0.679     | 0803167  | .0523152 |
| year2004                                                       | 0238826   | .0355823  | -0.67    | 0.502     | 0936481  | .0458829 |
| year2005                                                       | 0273414   | .0380414  | -0.72    | 0.472     | 1019285  | .0472457 |
| year2006                                                       | 0158675   | .0400352  | -0.40    | 0.692     | 0943638  | .0626287 |
| year2007                                                       | 0233036   | .0416941  | -0.56    | 0.576     | 1050524  | .0584452 |
| year2008                                                       | 0417289   | .0428789  | -0.97    | 0.331     | 1258007  | .0423429 |
| year2009                                                       | 0551752   | .0435849  | -1.27    | 0.206     | 1406312  | .0302809 |
| year2010                                                       | 0389955   | .0444093  | -0.88    | 0.380     | 126068   | .048077  |
| _cons                                                          | 4.146145  | 2.583454  | 1.60     | 0.109     | 9191861  | 9.211477 |
| sigma u                                                        | .99724611 |           |          |           |          |          |
| sigma e l                                                      | .20753679 |           |          |           |          |          |
| rho l                                                          | .95848814 | (fraction | of varia | nce due t | coui)    |          |
|                                                                |           |           |          |           |          |          |
| F test that all u_i=0: F(269, 3305) = 185.25 Prob > F = 0.0000 |           |           |          |           |          |          |

#### Table A4.6.1 Model 1 - Diagnostic tests

#### Groupwise heteroskedasticity xttest3

Modified Wald test for groupwise heteroskedasticity
in fixed effect regression model
H0: sigma(i)^2 = sigma^2 for all i
chi2 (270) = 3.4e+05
Prob>chi2 = 0.0000

#### Autocorrelation in panel data

xtserial lnrxa lnsedut lntedut cskills lnpatappr lnfdi lngdpc lnpop unem lnecofree lnrulc serv dist transdummy year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010 Wooldridge test for autocorrelation in panel data H0: no first order autocorrelation

F( 1, 269) = 256.882 Prob > F = 0.0000

#### Normality of residuals

pantest2 lnrxa lnsedut lntedut cskills lnpatappr lnfdi lngdpc lnpop unem lnecofree lnrulc serv dist transdummy year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010, fe Test for serial correlation in residuals Null hypothesis is either that rho=0 if residuals are AR(1) or that lamda=0 if residuals are MA(1) Following tests only approximate for unbalanced panels LM= 1670.2717 which is asy. distributed as chisq(1) under null, so: Probability of value greater than LM is 0 LM5= 40.868958 which is asy. distributed as N(0,1) under null, so: Probability of value greater than abs(LM5) is 0 Test for significance of fixed effects F= 185.25419 Probability>F= 0 Test for normality of residuals Skewness/Kurtosis tests for Normality ------ joint -----Variable | Obs Pr(Skewness) Pr(Kurtosis) adj chi2(2) Prob>chi2 -------\_\_\_00000B | 3.6e+03 0.0020 0.0000 . 0.0000

| Table A4.6.2 Model 1 - Driscoll-Kraay estimated results                                                                                                                                                                                                      |                                                  |                        |          |                                               |                                                           |                                            |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------|----------|-----------------------------------------------|-----------------------------------------------------------|--------------------------------------------|--|--|--|
| xtscc lnrxa lnsedut lntedut cskills lnpatappr lnfdi lngdpc lnpop unem lnecofree lnrulc<br>serv dist transdummy year1996 year1997 year1998 year1999 year2000 year2001 year2002<br>year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010, fe |                                                  |                        |          |                                               |                                                           |                                            |  |  |  |
| Regression wit<br>Method: Fixed-<br>Group variable<br>maximum lag: 2                                                                                                                                                                                         | th Driscoll-Kn<br>effects regre<br>e (i): cn_ind | raay standar<br>ession | d errors | Number<br>Number<br>F(28,<br>Prob ><br>within | r of obs =<br>of groups =<br>269) =<br>F =<br>R-squared = | 3600<br>270<br>6606.68<br>0.0000<br>0.0274 |  |  |  |
|                                                                                                                                                                                                                                                              |                                                  | Drigg/Kraau            |          |                                               |                                                           |                                            |  |  |  |
| lnrxa                                                                                                                                                                                                                                                        | Coef.                                            | Std. Err.              | t        | P> t                                          | [95% Conf.                                                | Interval]                                  |  |  |  |
| lnsedut                                                                                                                                                                                                                                                      | .1234209                                         | .0398783               | 3.09     | 0.002                                         | .0449076                                                  | .2019343                                   |  |  |  |
| Intedut                                                                                                                                                                                                                                                      | 1546624                                          | .0433464               | -3.57    | 0.000                                         | 2400038                                                   | 0693211                                    |  |  |  |
| cskills                                                                                                                                                                                                                                                      | (omitted)                                        |                        |          |                                               |                                                           |                                            |  |  |  |
| lnpatappr                                                                                                                                                                                                                                                    | .0679651                                         | .0151777               | 4.48     | 0.000                                         | .0380828                                                  | .0978473                                   |  |  |  |
| lnfdi                                                                                                                                                                                                                                                        | .0142454                                         | .0013518               | 10.54    | 0.000                                         | .0115839                                                  | .0169069                                   |  |  |  |
| lngdpc                                                                                                                                                                                                                                                       | .0150208                                         | .0819883               | 0.18     | 0.855                                         | 1463995                                                   | .1764411                                   |  |  |  |
| lnpop                                                                                                                                                                                                                                                        | 5476247                                          | .156811                | -3.49    | 0.001                                         | 8563575                                                   | 2388918                                    |  |  |  |
| unem                                                                                                                                                                                                                                                         | 0011066                                          | .0003679               | -3.01    | 0.003                                         | 0018309                                                   | 0003822                                    |  |  |  |
| lnecofree                                                                                                                                                                                                                                                    | 113683                                           | .0358397               | -3.17    | 0.002                                         | 184245                                                    | 043121                                     |  |  |  |
| lnrulc                                                                                                                                                                                                                                                       | .0473726                                         | .0727631               | 0.65     | 0.516                                         | 0958851                                                   | .1906302                                   |  |  |  |
| serv                                                                                                                                                                                                                                                         | .0055433                                         | .0022764               | 2.44     | 0.016                                         | .0010615                                                  | .0100251                                   |  |  |  |
| dist                                                                                                                                                                                                                                                         | .0039818                                         | .0018959               | 2.10     | 0.037                                         | .0002491                                                  | .0077145                                   |  |  |  |
| transdummy                                                                                                                                                                                                                                                   | (omitted)                                        |                        |          |                                               |                                                           |                                            |  |  |  |
| year1996                                                                                                                                                                                                                                                     | .0056938                                         | .0062413               | 0.91     | 0.362                                         | 0065943                                                   | .0179818                                   |  |  |  |
| year1997                                                                                                                                                                                                                                                     | .0015589                                         | .0059499               | 0.26     | 0.794                                         | 0101554                                                   | .0132731                                   |  |  |  |
| year1998                                                                                                                                                                                                                                                     | 0012644                                          | .0072446               | -0.17    | 0.862                                         | 0155278                                                   | .012999                                    |  |  |  |
| year1999                                                                                                                                                                                                                                                     | 0374796                                          | .0094535               | -3.96    | 0.000                                         | 0560919                                                   | 0188674                                    |  |  |  |
| year2000                                                                                                                                                                                                                                                     | 0415794                                          | .0097198               | -4.28    | 0.000                                         | 0607159                                                   | 0224429                                    |  |  |  |
| year2001                                                                                                                                                                                                                                                     | 0272956                                          | .0111549               | -2.45    | 0.015                                         | 0492576                                                   | 0053335                                    |  |  |  |
| year2002                                                                                                                                                                                                                                                     | 0325108                                          | .0128895               | -2.52    | 0.012                                         | 0578881                                                   | 0071336                                    |  |  |  |
| year2003                                                                                                                                                                                                                                                     | 0140008                                          | .0156999               | -0.89    | 0.373                                         | 0449111                                                   | .0169096                                   |  |  |  |
| year2004                                                                                                                                                                                                                                                     | 0238826                                          | .0179897               | -1.33    | 0.185                                         | 059301                                                    | .0115359                                   |  |  |  |
| year2005                                                                                                                                                                                                                                                     | 0273414                                          | .0208688               | -1.31    | 0.191                                         | 0684284                                                   | .0137456                                   |  |  |  |
| year2006                                                                                                                                                                                                                                                     | 0158675                                          | .0241009               | -0.66    | 0.511                                         | 063318                                                    | .0315829                                   |  |  |  |
| year2007                                                                                                                                                                                                                                                     | 0233036                                          | .0271546               | -0.86    | 0.392                                         | 0767661                                                   | .0301589                                   |  |  |  |
| year2008                                                                                                                                                                                                                                                     | 0417289                                          | .0274523               | -1.52    | 0.130                                         | 0957776                                                   | .0123198                                   |  |  |  |
| year2009                                                                                                                                                                                                                                                     | 0551752                                          | .0234714               | -2.35    | 0.019                                         | 1013862                                                   | 0089641                                    |  |  |  |
| year2010                                                                                                                                                                                                                                                     | 0389955                                          | .024281                | -1.61    | 0.109                                         | 0868004                                                   | .0088094                                   |  |  |  |
| _cons                                                                                                                                                                                                                                                        | (omitted)                                        |                        |          |                                               |                                                           |                                            |  |  |  |

#### Table A4.6.3 Model 1 - FEVD estimated results

xtfevd lnrxa lnsedut lntedut cskills lnpatappr lnfdi lngdpc lnpop unem lnecofree lnrulc serv dist transdummy year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010, invariant(cskills dist transdummy)

panel fixed effects regression with vector decomposition

| degrees of free<br>mean squared e<br>root mean squa<br>Residual Sum of<br>Total Sum of S<br>Estimation Sum | eedom fevd<br>error<br>ared error<br>of Squares<br>Squares<br>a of Squares | = 3302<br>= .039542<br>= .1988518<br>= 142.3514<br>= 2390.695<br>= 2248.343 |       | number<br>F( 30,<br>Prob ><br>R-squan<br>adj. R- | of obs<br>3302)<br>F<br>ced<br>-squared | = 3600<br>= 2.572316<br>= .0000113<br>= .9404561<br>= .9351004 |
|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------|--------------------------------------------------|-----------------------------------------|----------------------------------------------------------------|
| lnrxa                                                                                                      | Coef.                                                                      | fevd<br>Std. Err.                                                           | t.    | P> t.                                            | [95% Conf.                              | Intervall                                                      |
| +                                                                                                          |                                                                            |                                                                             |       |                                                  |                                         |                                                                |
| lnsedut                                                                                                    | .1234209                                                                   | .4874045                                                                    | 0.25  | 0.800                                            | 8322247                                 | 1.079067                                                       |
| lntedut                                                                                                    | 1546624                                                                    | .7953648                                                                    | -0.19 | 0.846                                            | -1.71412                                | 1.404796                                                       |
| npatappr                                                                                                   | .067965                                                                    | .1371675                                                                    | 0.50  | 0.620                                            | 2009769                                 | .336907                                                        |
| lnfdi                                                                                                      | .0142454                                                                   | .0295928                                                                    | 0.48  | 0.630                                            | 0437767                                 | .0722675                                                       |
| lngdpc                                                                                                     | .0150208                                                                   | 1.088136                                                                    | 0.01  | 0.989                                            | -2.118469                               | 2.14851                                                        |
| lnpop                                                                                                      | 5476247                                                                    | .3725321                                                                    | -1.47 | 0.142                                            | -1.278042                               | .1827927                                                       |
| unem                                                                                                       | 0011066                                                                    | .001808                                                                     | -0.61 | 0.541                                            | 0046514                                 | .0024383                                                       |
| lnecofree                                                                                                  | 113683                                                                     | .4776359                                                                    | -0.24 | 0.812                                            | -1.050175                               | .8228095                                                       |
| lnrulc                                                                                                     | .0473725                                                                   | .4302181                                                                    | 0.11  | 0.912                                            | 7961486                                 | .8908937                                                       |
| serv                                                                                                       | .0055433                                                                   | .0128854                                                                    | 0.43  | 0.667                                            | 0197209                                 | .0308076                                                       |
| year1996                                                                                                   | .0056938                                                                   | .1110193                                                                    | 0.05  | 0.959                                            | 2119799                                 | .2233674                                                       |
| year1997                                                                                                   | .0015589                                                                   | .1293945                                                                    | 0.01  | 0.990                                            | 2521426                                 | .2552604                                                       |
| year1998                                                                                                   | 0012644                                                                    | .1412976                                                                    | -0.01 | 0.993                                            | 2783041                                 | .2757753                                                       |
| year1999                                                                                                   | 0374796                                                                    | .1186475                                                                    | -0.32 | 0.752                                            | 2701097                                 | .1951505                                                       |
| year2000                                                                                                   | 0415794                                                                    | .1258059                                                                    | -0.33 | 0.741                                            | 2882448                                 | .2050859                                                       |
| year2001                                                                                                   | 0272956                                                                    | .152776                                                                     | -0.18 | 0.858                                            | 3268409                                 | .2722498                                                       |
| year2002                                                                                                   | 0325108                                                                    | .1518988                                                                    | -0.21 | 0.831                                            | 3303362                                 | .2653145                                                       |
| year2003                                                                                                   | 0140008                                                                    | .1615578                                                                    | -0.09 | 0.931                                            | 3307643                                 | .3027628                                                       |
| year2004                                                                                                   | 0238826                                                                    | .1577766                                                                    | -0.15 | 0.880                                            | 3332325                                 | .2854673                                                       |
| year2005                                                                                                   | 0273414                                                                    | .174896                                                                     | -0.16 | 0.876                                            | 3702569                                 | .3155741                                                       |
| year2006                                                                                                   | 0158676                                                                    | .1694724                                                                    | -0.09 | 0.925                                            | 3481491                                 | .316414                                                        |
| year2007                                                                                                   | 0233036                                                                    | .205376                                                                     | -0.11 | 0.910                                            | 4259807                                 | .3793735                                                       |
| year2008                                                                                                   | 0417289                                                                    | .1978709                                                                    | -0.21 | 0.833                                            | 4296909                                 | .3462331                                                       |
| year2009                                                                                                   | 0551752                                                                    | .1987421                                                                    | -0.28 | 0.781                                            | 4448454                                 | .3344951                                                       |
| year2010                                                                                                   | 0389955                                                                    | .2021095                                                                    | -0.19 | 0.847                                            | 4352682                                 | .3572771                                                       |
| cskills                                                                                                    | 3629372                                                                    | .5723603                                                                    | -0.63 | 0.526                                            | -1.485154                               | .7592796                                                       |
| dist                                                                                                       | 0001364                                                                    | .0004756                                                                    | -0.29 | 0.774                                            | 0010688                                 | .0007961                                                       |
| transdummy                                                                                                 | 0087393                                                                    | 1.446683                                                                    | -0.01 | 0.995                                            | -2.845226                               | 2.827747                                                       |
| eta                                                                                                        | 1                                                                          | •                                                                           | •     | •                                                | •                                       | •                                                              |
| _cons                                                                                                      | 6.078501                                                                   | 11.31066                                                                    | 0.54  | 0.591                                            | -16.09812                               | 28.25512                                                       |

#### Table A4.6.4 Model 1 - Hausman and Taylor estimated results

xthtaylor lnrxa lnsedut lntedut cskills lnpatappr lnfdi lngdpc lnpop unem lnecofree lnrulc serv dist transdummy year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010, endog (lnsedut lntedut cskills)

| Hausman-Taylor estimation   | Number of obs      | =   | 3600  |
|-----------------------------|--------------------|-----|-------|
| Group variable: cn_ind      | Number of groups   | =   | 270   |
|                             | Obs per group: min | n = | 5     |
|                             | avg                | g = | 13.3  |
|                             | max                | g = | 16    |
| Random effects u_i ~ i.i.d. | Wald chi2(28)      | =   | 94.01 |

|             |           |           |          | Prob >    | chi2 =     | = 0.0000    |
|-------------|-----------|-----------|----------|-----------|------------|-------------|
| lnrxa       | Coef.     | Std. Err. | <br>Z    | P> z      | [95% Conf. | . Interval] |
| Vexogenous  |           |           |          |           |            |             |
| lnpatappr   | .0685678  | .0145664  | 4.71     | 0.000     | .0400182   | .0971173    |
| lnfdi       | .013809   | .0032239  | 4.28     | 0.000     | .0074902   | .0201277    |
| lnadpc      | .1093974  | .0598297  | 1.83     | 0.067     | 0078667    | .2266615    |
| lnpop       | 0939836   | .0527848  | -1.78    | 0.075     | 1974399    | .0094727    |
| unem        | 0008941   | .00047    | -1.90    | 0.057     | 0018153    | .0000271    |
| lnecofree   | 0921139   | .0934604  | -0.99    | 0.324     | 2752928    | .091065     |
| lnrulc      | .0312761  | .1048266  | 0.30     | 0.765     | 1741803    | .2367325    |
| serv        | .0055438  | .0020324  | 2.73     | 0.006     | .0015603   | .0095273    |
| year1996    | .0046537  | .0263899  | 0.18     | 0.860     | 0470695    | .0563769    |
| year1997    | 0011457   | .0266708  | -0.04    | 0.966     | 0534195    | .0511281    |
| vear1998    | 0038903   | .0273055  | -0.14    | 0.887     | 0574081    | .0496276    |
| vear1999    | 0422605   | .0282025  | -1.50    | 0.134     | 0975365    | .0130155    |
| vear2000    | 0498774   | .0283101  | -1.76    | 0.078     | 1053641    | .0056094    |
| vear2001    | 0378999   | .0291346  | -1.30    | 0.193     | 0950027    | .0192028    |
| vear2002    | 0456874   | .030842   | -1.48    | 0.139     | 1061367    | .0147618    |
| vear2003    | 0287572   | .0322045  | -0.89    | 0.372     | 0918769    | .0343625    |
| vear2004    | 0432241   | .0333396  | -1.30    | 0.195     | 1085684    | .0221203    |
| vear2005    | 0506457   | .0352089  | -1.44    | 0.150     | 1196538    | .0183624    |
| vear2006    | 0436607   | .0364289  | -1.20    | 0.231     | 11506      | .0277387    |
| vear2007    | 0544594   | .0374901  | -1.45    | 0.146     | 1279386    | .0190198    |
| vear2008    | 0724745   | .0386098  | -1.88    | 0.061     | 1481484    | .0031994    |
| vear2009    | 0770145   | .0406726  | -1.89    | 0.058     | 1567313    | .0027024    |
| vear2010    | 0633935   | .0411285  | -1.54    | 0.123     | 1440038    | .0172168    |
| Vendogenous |           |           |          |           |            |             |
| lnsedut     | .1446695  | .0650882  | 2.22     | 0.026     | .0170989   | .2722401    |
| lntedut     | 2070473   | .0632375  | -3.27    | 0.001     | 3309905    | 0831041     |
| lexogenous  |           |           |          |           |            |             |
| dist        | .0000149  | .00013    | 0.11     | 0.909     | 0002399    | .0002696    |
| transdummy  | .3989881  | .1596994  | 2.50     | 0.012     | .085983    | .7119931    |
| Iendogenous |           |           |          |           |            |             |
| cskills     | 4118763   | .4520302  | -0.91    | 0.362     | -1.297839  | .4740867    |
| _cons       | .9925833  | 2.485329  | 0.40     | 0.690     | -3.878573  | 5.863739    |
| sigma u     | 1.0202289 |           |          |           |            |             |
| sigma_e     | .20675628 |           |          |           |            |             |
| rho         | .96055042 | (fraction | of varia | nce due t | o u_i)     |             |

#### Table A4.6.5 Model 1 - IV estimated results

xtivreg2 lnrxa cskills lngdpc lnpop unem lnecofree serv lnrulc dist transdummy year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010 (Insedut Intedut Inpatappr lnfdi = lnsedutlag1 lntedutlag1 lnpatapprlag1 lnfdilag1), fe endog (lnsedut lntedut lnpatappr lnfdi) small robust bw(3) Warning - collinearities detected Vars dropped: cskills dist transdummy year2009 FIXED EFFECTS ESTIMATION \_\_\_\_\_ Number of groups = 270 Obs per group: min = 3

avg = max = 12.8

| Estimates effi<br>Statistics rob<br>kernel=Bartl<br>time variabl<br>group variab | cient for hom<br>ust to hetero<br>ett; bandwidt<br>e (t): year<br>le (i): cn_ir | noskedastici<br>oskedasticit<br>th=3<br>nd | ty only<br>y and aut   | cocorre             | lation                                                                               |                                                                 |
|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------|------------------------|---------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| Total (centere<br>Total (uncente<br>Residual SS                                  | d) SS =<br>red) SS =<br>=                                                       | 129.2441112<br>129.2441112<br>126.0740867  |                        |                     | Number of obs<br>F(24, 3156)<br>Prob > F<br>Centered R2<br>Uncentered R2<br>Root MSE | = 3450<br>= 1.85<br>= 0.0073<br>= 0.0245<br>= 0.0245<br>= .1999 |
| <br> <br>  lnrxa                                                                 | Coef.                                                                           | Robust<br>Std. Err.                        | t                      | P> t                | [95% Conf.                                                                           | Interval]                                                       |
| + lnsedut                                                                        | .0942457                                                                        | .1083871                                   | 0.87                   | 0.385               | 1182707                                                                              | .306762                                                         |
| lntedut                                                                          | 122198                                                                          | .1254647                                   | -0.97                  | 0.330               | 3681986                                                                              | .1238027                                                        |
| lnpatappr                                                                        | .1062714                                                                        | .03392                                     | 3.13                   | 0.002               | .039764                                                                              | .1727789                                                        |
| lnfdi                                                                            | .018941                                                                         | .0056111                                   | 3.38                   | 0.001               | .0079393                                                                             | .0299428                                                        |
| lngdpc                                                                           | 0465591                                                                         | .1352415                                   | -0.34                  | 0.731               | 3117293                                                                              | .2186111                                                        |
| lnpop                                                                            | 6157787                                                                         | .3767464                                   | -1.63                  | 0.102               | -1.354471                                                                            | .122914                                                         |
| unem                                                                             | 0010206                                                                         | .0006243                                   | -1.63                  | 0.102               | 0022446                                                                              | .0002035                                                        |
| lnecofree                                                                        | .0003291                                                                        | .143375                                    | 0.00                   | 0.998               | 2807886                                                                              | .2814468                                                        |
| serv                                                                             | .0059893                                                                        | .0034451                                   | 1.74                   | 0.082               | 0007657                                                                              | .0127442                                                        |
| lnrulc                                                                           | .0255151                                                                        | .1757974                                   | 0.15                   | 0.885               | 3191736                                                                              | .3702038                                                        |
| year1996                                                                         | .0808597                                                                        | .0522539                                   | 1.55                   | 0.122               | 0215954                                                                              | .1833148                                                        |
| year1997                                                                         | .0721762                                                                        | .0481352                                   | 1.50                   | 0.134               | 0222033                                                                              | .1665556                                                        |
| year1998                                                                         | .0674149                                                                        | .0437543                                   | 1.54                   | 0.123               | 0183747                                                                              | .1532046                                                        |
| year1999                                                                         | .0345248                                                                        | .0422973                                   | 0.82                   | 0.414               | 0484081                                                                              | .11/45//                                                        |
| year2000                                                                         | .029319                                                                         | .0379832                                   | 0.77                   | 0.440               | 0451553                                                                              | .1037934                                                        |
| year2001                                                                         | .0413628                                                                        | .0335962                                   | 1.23                   | 0.218               | 0245097                                                                              | .10/2354                                                        |
| year2002                                                                         | .0312/39                                                                        | .03121/3                                   | 1.00                   | 0.31/               | 0299343                                                                              | .0924822                                                        |
| year2003                                                                         | .04/9855                                                                        | .0300909                                   | 1.59                   | 0.111               | 0110143                                                                              | .1069853                                                        |
| year2004                                                                         | .0454566                                                                        | .0291213                                   | 1.56                   | 0.119               | 011642                                                                               | .1025552                                                        |
| year2005                                                                         | .0448666                                                                        | .02/6/05                                   | 1.62                   | 0.105               | 0093873                                                                              | .0991205                                                        |
| year2006                                                                         | .052851/                                                                        | .028987                                    | 1.82                   | 0.068               | 0039837                                                                              | .109687                                                         |
| year2007                                                                         | .04/14/4                                                                        | .0283721                                   | 1.66                   | 0.097               | 0084823                                                                              | .102///1                                                        |
| year2000  <br>year2010                                                           | .0148231                                                                        | .020202                                    | 0.98                   | 0.232               | 0147166                                                                              | .0443629                                                        |
| Jnderidentific                                                                   | ation test (F                                                                   | (leibergen-P                               | aap rk LN              | 1 stati:<br>Chi     | stic):<br>i-sq(1)                                                                    | 155.757<br>0.0000                                               |
| Neak identific                                                                   | ation test (C                                                                   | Cragg-Donald<br>Cleibergen-P               | Wald F s<br>aap rk Wa  | statist:<br>ald F s | ic):<br>tatistic):                                                                   | 698.597<br>169.991                                              |
| Stock-Yogo wea                                                                   | k ID test cri                                                                   | tical value                                | s:                     | -                   | <not< td=""><td>available&gt;</td></not<>                                            | available>                                                      |
| Hansen J stati                                                                   | stic (overide                                                                   | entification                               | test of                | all in:<br>(equa    | struments):<br>ation exactly i                                                       | 0.000<br>dentified)                                             |
| -endog- option<br>Indogeneity te                                                 | :<br>st of endoger                                                              | nous regress                               | ors:                   |                     |                                                                                      | 10.987                                                          |
| Regressors tes                                                                   | ted: lnsec                                                                      | dut lntedut                                | lnpatappi              | Ch:<br>c lnfdi      | i-sq(4)                                                                              | 0.0267                                                          |
| Instrumented:<br>Included instr                                                  | lnsec<br>uments: lngdr                                                          | dut lntedut<br>oc lnpop une                | lnpatappi<br>m lnecofi | nfdi<br>ce ser      | v lnrulc year19                                                                      | 96 year1997                                                     |

Excluded instruments: lnsedutlag1 lntedutlag1 lnpatapprlag1 lnfdilag1 Dropped collinear: cskills dist transdummy year2009

#### Table A4.6.5.1 Model 1 - IV estimated results (ETEs)

xtivreg2 lnrxa cskills lngdpc lnpop unem lnecofree serv lnrulc dist transdummy transindn vear1996 vear1997 vear1998 vear1999 vear2000 vear2001 vear2002 vear2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010 (Insedut Intedut lnpatappr lnfdi = lnsedutlag1 lntedutlag1 lnpatapprlag1 lnfdilag1) if transdummy==1, fe endog (lnsedut lntedut lnpatappr lnfdi) small robust bw(3) Warning - collinearities detected Vars dropped: cskills dist transdummy year2009 FIXED EFFECTS ESTIMATION \_\_\_\_\_ 7 avg = 13.3 max = 17 Number of groups = 100 Obs per group: min = 7 IV (2SLS) estimation \_\_\_\_\_ Estimates efficient for homoskedasticity only Statistics robust to heteroskedasticity and autocorrelation kernel=Bartlett; bandwidth=3 time variable (t): year group variable (i): cn\_ind Number of obs = 1330 1.05 F(25, 1205) =Prob > F = 0.4013 Centered R2 = 0.0401 Total (centered) SS = 82.13284054 Total (uncentered) SS = 82.13284054Uncentered R2 = 0.0401= 78.84137663 Residual SS Root MSE = .2558 \_\_\_\_\_ 1 Robust lnrxa | Coef. Std. Err. t P>|t| [95% Conf. Interval] \_\_\_\_\_ lnsedut | -.600155 .4101264 -1.46 0.144 -1.404796 .2044862 lntedut | -.1129637 .2867444 -0.39 0.694 -.6755374 .4496101 .1849483 lnpatappr | -.0282684 .1086767 -0.26 0.795 -.2414851 lnfdi | .0659424 .0855849 -.1019696 .2338544 0.77 0.441 lngdpc | .289886 .2465175 lnpop | -3.025744 1.594587 unem | .0004501 .001359 1.18 0.240 -1.90 0.058 -.1937653 lngdpc | .7735373 -1.90 -6.15422 .1027313 0.33 0.741 -.0022162 .0031164 0.89 0.373 .2634736 .2958641 -.3169925 lnecofree | .8439396 serv | -.0046543 .0078829 -0.59 0.555 -.02012 .0108115 .7043513 .2403688 .2364923 1.02 0.310 -.2236138 lnrulc | transindn | -.3848616 .4236559 -0.91 0.364 -1.216047 .4463236 year1996 | .2569396 .2772193 0.93 0.354 -.2869465 .8008258 .6958389 year1997 | .2190671 .2430111 0.90 0.368 -.2577047 year1998 | .1904372 .2203951 0.86 0.388 -.2419637 .622838 year1999 | .1141801 .2036971 .5138205 0.56 0.575 -.2854604 0.74 0.457 year2000 | .1339896 .1800903 -.2193358 .4873151 .4373066 year2001 | .1323446 .1554394 0.85 0.395 -.1726174 year2001.1323446.13343940.830.393-.1726174.4373066year2002.1408549.11884071.190.236-.0923027.3740126year2003.0937076.1117930.840.402-.1256229.3130382year2004.061726.09024320.680.494-.1153252.2387772year2005.0640983.07681060.830.404-.086599.2147956year2006.0287601.06758690.430.671-.103841.1613612year2007-.006462.059547-0.110.914-.1232894.1103653

year2008 |-.0220229.0455857-0.480.629-.1114591.0674133year2010 |.0052942.03694750.140.886-.0671944.0777828 -Underidentification test (Kleibergen-Paap rk LM statistic): 122.763 Chi-sq(1) P-val = 0.0000\_\_\_\_\_ Weak identification test (Cragg-Donald Wald F statistic): 160.445 (Kleibergen-Paap rk Wald F statistic): 122.493 Stock-Yogo weak ID test critical values: <not available> Hansen J statistic (overidentification test of all instruments): 0.000 (equation exactly identified) -endog- option: Endogeneity test of endogenous regressors: 2.367 Chi-sq(4) P-val = 0.6686Regressors tested: lnsedut lntedut lnpatappr lnfdi \_\_\_\_\_ Instrumented: lnsedut lntedut lnpatappr lnfdi Included instruments: lnqdpc lnpop unem lnecofree serv lnrulc transindn year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2010 Excluded instruments: lnsedutlag1 lntedutlag1 lnpatapprlag1 lnfdilag1 Dropped collinear: cskills dist transdummy year2009 

#### Table A4.6.5.2 Model 1 - IV estimated results (N-ETEs)

xtivreg2 lnrxa cskills lngdpc lnpop unem lnecofree serv lnrulc dist transdummy year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010 (Insedut Intedut Inpatappr lnfdi = lnsedutlaq1 lntedutlaq1 lnpatapprlaq1 lnfdilaq1) if transdummy==0, fe endoq (lnsedut lntedut lnpatappr lnfdi) small robust bw(3) Warning - collinearities detected Vars dropped: cskills dist transdummy year2009 FIXED EFFECTS ESTIMATION \_\_\_\_\_ Number of groups = 170 Obs per group: min = 3 avg = 12.5 max = 15 IV (2SLS) estimation \_\_\_\_\_ Estimates efficient for homoskedasticity only Statistics robust to heteroskedasticity and autocorrelation kernel=Bartlett; bandwidth=3 time variable (t): year group variable (i): cn ind 2120 Number of obs =  $\begin{array}{rcl} F(24, 1926) = & 2.31\\ Frob > F & = & 0.0003\\ Centered R2 & = & 0.0594 \end{array}$ Total (centered) SS = 47.11127063 Total (uncentered) SS = 47.11127063 Residual SS = 44.31271944 Uncentered R2 = 0.0594 Root MSE .1517 = \_\_\_\_\_ Robust Coef. Std. Err. t P>|t| [95% Conf. Interval] lnrxa | \_\_\_\_\_+

| lnsedut        | .2617736                                              | .1072878     | 2.44      | 0.015             | .0513611                                      | .4721861          |  |  |  |
|----------------|-------------------------------------------------------|--------------|-----------|-------------------|-----------------------------------------------|-------------------|--|--|--|
| lntedut        | .0083084                                              | .1431877     | 0.06      | 0.954             | 2725108                                       | .2891276          |  |  |  |
| lnpatappr      | .1107816                                              | .0453566     | 2.44      | 0.015             | .0218284                                      | .1997348          |  |  |  |
| lnfdi          | .0194609                                              | .0058887     | 3.30      | 0.001             | .007912                                       | .0310098          |  |  |  |
| lngdpc         | .0467309                                              | .2310044     | 0.20      | 0.840             | 4063141                                       | .4997758          |  |  |  |
| lnpop          | -1.331936                                             | .4488725     | -2.97     | 0.003             | -2.212263                                     | 4516084           |  |  |  |
| unem           | 0004952                                               | .0006731     | -0.74     | 0.462             | 0018153                                       | .0008248          |  |  |  |
| lnecofree      | .1042241                                              | .1694347     | 0.62      | 0.539             | 2280707                                       | .4365189          |  |  |  |
| serv           | .0151488                                              | .0046034     | 3.29      | 0.001             | .0061206                                      | .0241769          |  |  |  |
| lnrulc         | 0227677                                               | .2746152     | -0.08     | 0.934             | 561342                                        | .5158067          |  |  |  |
| year1996       | .1251823                                              | .0743513     | 1.68      | 0.092             | 0206352                                       | .2709998          |  |  |  |
| year1997       | .1174659                                              | .0673052     | 1.75      | 0.081             | 0145329                                       | .2494647          |  |  |  |
| year1998       | .1083894                                              | .0591354     | 1.83      | 0.067             | 0075868                                       | .2243656          |  |  |  |
| year1999       | .0985957                                              | .052567      | 1.88      | 0.061             | 0044985                                       | .2016899          |  |  |  |
| year2000       | .0745485                                              | .0442142     | 1.69      | 0.092             | 0121641                                       | .1612612          |  |  |  |
| year2001       | .0775124                                              | .0396113     | 1.96      | 0.051             | 0001732                                       | .155198           |  |  |  |
| year2002       | .0445962                                              | .0356336     | 1.25      | 0.211             | 0252883                                       | .1144806          |  |  |  |
| year2003       | .0662356                                              | .0334325     | 1.98      | 0.048             | .0006679                                      | .1318033          |  |  |  |
| year2004       | .0598957                                              | .0321401     | 1.86      | 0.063             | 0031373                                       | .1229287          |  |  |  |
| year2005       | .0421549                                              | .029088      | 1.45      | 0.147             | 0148924                                       | .0992023          |  |  |  |
| year2006       | .0552848                                              | .0265654     | 2.08      | 0.038             | .0031848                                      | .1073848          |  |  |  |
| year2007       | .0522269                                              | .0261807     | 1.99      | 0.046             | .0008815                                      | .1035724          |  |  |  |
| year2008       | .0295374                                              | .0201756     | 1.46      | 0.143             | 0100309                                       | .0691056          |  |  |  |
| year2010       | .010323                                               | .0159054     | 0.65      | 0.516             | 0208705                                       | .0415165          |  |  |  |
| Underidentific | cation test (K                                        | leibergen-Pa | aap rk LM | I statist<br>Chi- | ic):<br>sq(1) P-val =                         | 101.470<br>0.0000 |  |  |  |
| Weak identifi  | cation test (C                                        | ragg-Donald  | Wald F s  | tatistic          | :):                                           | 296.127           |  |  |  |
| Hoan IdonoIII  | (K                                                    | leibergen-Pa | aap rk Wa | ld F sta          | tistic):                                      | 73.906            |  |  |  |
| Stock-Yogo wea | ak ID test cri                                        | tical value  | s:        |                   | <not a<="" td=""><td>available&gt;</td></not> | available>        |  |  |  |
| Hansen J stat: | istic (overide                                        | ntification  | test of   | all inst          | ruments):                                     | 0.000             |  |  |  |
|                | ,0,01140                                              |              |           | (equat            | ion exactly id                                | dentified)        |  |  |  |
| -endog- option | n:                                                    |              |           | ,                 |                                               | ,                 |  |  |  |
| Endogeneity te | est of endogen                                        | ous regress  | ors:      |                   |                                               | 7.171             |  |  |  |
| 2110090110109  | obo of ondogon                                        |              | 010.      | Chi-              | $s\sigma(4)$ P-val =                          | 0.1271            |  |  |  |
| Regressors tes | sted: lnsed                                           | ut lntedut i | lnpatappr | lnfdi             |                                               |                   |  |  |  |
| Instrumented:  | lnsed                                                 | ut Intedut   | lnpatappr | lnfdi             |                                               |                   |  |  |  |
| Included inst  | ruments: lnadp                                        | c lnpop uner | m lnecofr | ee serv           | lnrulc year199                                | 96 year1997       |  |  |  |
|                | vear1                                                 | 998 year199  | 9 year200 | 0 year20          | 01 year2002 ve                                | ear2003           |  |  |  |
|                | year2004 year2005 year2006 year2007 year2008 year2010 |              |           |                   |                                               |                   |  |  |  |
| Excluded insta | ruments: lnsed                                        | utlag1 lnted | dutlag1 1 | npatappr          | lag1 lnfdilag1                                | L                 |  |  |  |
| Dropped collin | near: cskil                                           | ls dist tra  | nsdummv v | rear2009          | 5 5 -                                         |                   |  |  |  |
|                |                                                       |              |           |                   |                                               |                   |  |  |  |
|                |                                                       |              |           |                   |                                               |                   |  |  |  |

#### Table A4.7 Model 2 - Fixed effects estimated results

xtreg lnrxa avyrs sqravyrs cskills lnpatappr lnfdi lngdpc lnpop unem lnecofree lnrulc serv dist transdummy year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010, fe note: cskills omitted because of collinearity note: dist omitted because of collinearity note: transdummy omitted because of collinearity 3600 Fixed-effects (within) regression Number of obs = Group variable: cn ind Number of groups = 270 R-sq: within = 0.0310Obs per group: min = 5 between = 0.0000avg = 13.3 overall = 0.001816 max =

| <i>.</i>       |           |               |          | F(25,33   | 305) =         | = 4.23     |
|----------------|-----------|---------------|----------|-----------|----------------|------------|
| corr(u_1, Xb)  | = -0.7634 |               |          | Prob >    | F. =           | = 0.0000   |
| lnrxa          | Coef.     | <br>Std. Err. | t        | <br>P> t  | <br>[95% Conf. | Intervall  |
| +              |           |               |          |           |                |            |
| avyrs          | .4830082  | .1100836      | 4.39     | 0.000     | .2671692       | .6988471   |
| sqravyrs       | 0207875   | .0050919      | -4.08    | 0.000     | 030771         | 0108039    |
| cskills        | (omitted) |               |          |           |                |            |
| lnpatappr      | .069517   | .0150222      | 4.63     | 0.000     | .0400633       | .0989707   |
| lnfdi          | .0106467  | .0032345      | 3.29     | 0.001     | .0043049       | .0169886   |
| lngdpc         | 0939363   | .0649537      | -1.45    | 0.148     | 2212898        | .0334172   |
| lnpop          | 8503491   | .1966108      | -4.33    | 0.000     | -1.23584       | 4648578    |
| unem           | 0005264   | .0005111      | -1.03    | 0.303     | 0015284        | .0004757   |
| lnecofree      | 0702104   | .0954394      | -0.74    | 0.462     | 2573367        | .116916    |
| lnrulc         | .1319793  | .1078344      | 1.22     | 0.221     | 0794497        | .3434084   |
| serv           | .0025944  | .0021369      | 1.21     | 0.225     | 0015953        | .0067842   |
| dist           | (omitted) |               |          |           |                |            |
| transdummy     | (omitted) |               |          |           |                |            |
| year1996       | .0020329  | .0266115      | 0.08     | 0.939     | 0501438        | .0542095   |
| year1997       | 0095525   | .026952       | -0.35    | 0.723     | 0623969        | .0432918   |
| year1998       | 0145711   | .0273733      | -0.53    | 0.595     | 0682415        | .0390992   |
| year1999       | 046926    | .028096       | -1.67    | 0.095     | 1020133        | .0081613   |
| year2000       | 0448797   | .0280785      | -1.60    | 0.110     | 0999327        | .0101732   |
| year2001       | 0389746   | .0289264      | -1.35    | 0.178     | 09569          | .0177408   |
| year2002       | 0455315   | .0306926      | -1.48    | 0.138     | 1057098        | .0146468   |
| year2003       | 0301498   | .0318946      | -0.95    | 0.345     | 0926851        | .0323854   |
|                | 0418106   | .0335868      | -1.24    | 0.213     | 1076636        | .0240424   |
| -<br>year2005  | 0457036   | .0357401      | -1.28    | 0.201     | 1157785        | .0243712   |
|                | 0376922   | .0378847      | -0.99    | 0.320     | 1119721        | .0365877   |
| year2007       | 0443865   | .0393349      | -1.13    | 0.259     | 1215098        | .0327367   |
| year2008       | 0681821   | .0400883      | -1.70    | 0.089     | 1467826        | .0104184   |
| year2009       | 0864546   | .0396743      | -2.18    | 0.029     | 1642433        | 0086659    |
| year2010       | 0778298   | .0409272      | -1.90    | 0.057     | 1580751        | .0024155   |
|                | 4.909063  | 2.420573      | 2.03     | 0.043     | .1630882       | 9.655037   |
| sigma u l      | 1.2867459 |               |          |           |                |            |
| sigma e l      | .20715126 |               |          |           |                |            |
| rho            | .97473745 | (fraction     | of varia | nce due t | o u_i)         |            |
| F test that al | 1 u_i=0:  | F(269, 3305   | ) = 185  | <br>5.44  | Prob >         | F = 0.0000 |

#### Table A4.7.1 Model 2 - Diagnostic tests

#### Groupwise heteroskedasticity

```
xttest3
Modified Wald test for groupwise heteroskedasticity
in fixed effect regression model
H0: sigma(i)^2 = sigma^2 for all i
chi2 (270) = 3.0e+05
Prob>chi2 = 0.0000
```

#### Autocorrelation in panel data

xtserial lnrxa avyrs sqravyrs cskills lnpatappr lnfdi lngdpc lnpop unem lnecofree lnrulc serv dist transdummy year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010 Wooldridge test for autocorrelation in panel data H0: no first order autocorrelation F( 1, 269) = 251.294 Prob > F = 0.0000

#### Normality of residuals

Test for serial correlation in residuals

Null hypothesis is either that rho=0 if residuals are AR(1) or that lamda=0 if residuals are MA(1) Following tests only approximate for unbalanced panels LM= 1669.6988 which is asy. distributed as chisq(1) under null, so: Probability of value greater than LM is 0 LM5= 40.861948 which is asy. distributed as N(0,1) under null, so: Probability of value greater than abs(LM5) is 0 Test for significance of fixed effects F= 185.43749 Probability>F= 0 Test for normality of residuals Skewness/Kurtosis tests for Normality Variable | Obs Pr(Skewness) Pr(Kurtosis) adj chi2(2) Prob>chi2 -----+----+ 00000B | 3.6e+03 0.0026 0.0000 0.0000

#### Table A4.7.2 Model 2 - Driscoll-Kraay estimated results

xtscc lnrxa avyrs sqravyrs cskills lnpatappr lnfdi lngdpc lnpop unem lnecofree lnrulc serv dist transdummy year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010, fe

| Regression wit<br>Method: Fixed-<br>Group variable<br>maximum lag: 2 | th Driscoll-K<br>effects regr<br>(i): cn_ind | raay standard<br>ession | l errors | Number<br>Number<br>F(28,<br>Prob ><br>within | of obs<br>of groups<br>269)<br>F<br>R-squared | = 3600<br>= 270<br>= 974.30<br>= 0.0000<br>= 0.0310 |
|----------------------------------------------------------------------|----------------------------------------------|-------------------------|----------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------------|
|                                                                      |                                              | Drisc/Kraay             |          |                                               |                                               |                                                     |
| lnrxa                                                                | Coef.                                        | Std. Err.               | t        | P> t                                          | [95% Conf                                     | . Interval]                                         |
| avyrs                                                                | .4830082                                     | .0762068                | 6.34     | 0.000                                         | .3329705                                      | .6330458                                            |
| sqravyrs                                                             | 0207875                                      | .003683                 | -5.64    | 0.000                                         | 0280386                                       | 0135363                                             |
| cskills                                                              | (omitted)                                    |                         |          |                                               |                                               |                                                     |
| lnpatappr                                                            | .069517                                      | .0133581                | 5.20     | 0.000                                         | .0432172                                      | .0958168                                            |
| lnfdi                                                                | .0106467                                     | .0007563                | 14.08    | 0.000                                         | .0091577                                      | .0121358                                            |
| lngdpc                                                               | 0939363                                      | .0665949                | -1.41    | 0.160                                         | 2250497                                       | .0371772                                            |
| lnpop                                                                | 8503491                                      | .1638855                | -5.19    | 0.000                                         | -1.17301                                      | 5276877                                             |
| unem                                                                 | 0005264                                      | .0003013                | -1.75    | 0.082                                         | 0011195                                       | .0000668                                            |
| lnecofree                                                            | 0702104                                      | .0276044                | -2.54    | 0.012                                         | 1245584                                       | 0158623                                             |
| lnrulc                                                               | .1319793                                     | .053279                 | 2.48     | 0.014                                         | .0270824                                      | .2368763                                            |
| serv                                                                 | .0025944                                     | .0024943                | 1.04     | 0.299                                         | 0023163                                       | .0075052                                            |
| dist                                                                 | .0047145                                     | .0021526                | 2.19     | 0.029                                         | .0004763                                      | .0089526                                            |
| transdummy                                                           | (omitted)                                    |                         |          |                                               |                                               |                                                     |
| year1996                                                             | .0020329                                     | .0074585                | 0.27     | 0.785                                         | 0126515                                       | .0167172                                            |
| year1997                                                             | 0095525                                      | .0069163                | -1.38    | 0.168                                         | 0231695                                       | .0040644                                            |
| year1998                                                             | 0145711                                      | .0077955                | -1.87    | 0.063                                         | 0299191                                       | .0007768                                            |
| year1999                                                             | 046926                                       | .010038                 | -4.67    | 0.000                                         | 0666891                                       | 027163                                              |
| year2000                                                             | 0448797                                      | .010839                 | -4.14    | 0.000                                         | 0662199                                       | 0235396                                             |
| year2001                                                             | 0389746                                      | .0115259                | -3.38    | 0.001                                         | 061667                                        | 0162822                                             |
| year2002                                                             | 0455315                                      | .0133886                | -3.40    | 0.001                                         | 0718913                                       | 0191717                                             |
| year2003                                                             | 0301498                                      | .0155421                | -1.94    | 0.053                                         | 0607494                                       | .0004498                                            |
| year2004                                                             | 0418106                                      | .0171901                | -2.43    | 0.016                                         | 0756548                                       | 0079664                                             |
| year2005                                                             | 0457036                                      | .0193466                | -2.36    | 0.019                                         | 0837935                                       | 0076137                                             |
| year2006                                                             | 0376922                                      | .0213753                | -1.76    | 0.079                                         | 0797763                                       | .0043919                                            |
| year2007                                                             | 0443865                                      | .0234229                | -1.90    | 0.059                                         | 0905021                                       | .0017291                                            |
| year2008                                                             | 0681821                                      | .0234934                | -2.90    | 0.004                                         | 1144364                                       | 0219278                                             |
| year2009                                                             | 0864546                                      | .0225943                | -3.83    | 0.000                                         | 1309388                                       | 0419705                                             |

| year2010 | 0778298   | .0230108 | -3.38 | 0.001 | 123134 | 0325256 |  |
|----------|-----------|----------|-------|-------|--------|---------|--|
| _cons    | (omitted) |          |       |       |        |         |  |
|          |           |          |       |       |        |         |  |

# Table A4.7.3 Model 2 - FEVD estimated results xtfevd lnrxa avyrs sqravyrs cskills lnpatappr lnfdi lngdpc lnpop unem lnecofree lnrulc

serv dist transdummy year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010, invariant (cskills dist transdummy)

panel fixed effects regression with vector decomposition

| degrees of fre<br>mean squared e<br>root mean squa<br>Residual Sum of<br>Total Sum of S<br>Estimation Sur | eedom fevd<br>error<br>ared error<br>of Squares<br>Squares<br>n of Squares | = 3302<br>= .0393953<br>= .1984824<br>= 141.823<br>= 2390.695<br>= 2248.872 |       | number of obs<br>F( 30, 3302)<br>Prob > F<br>R-squared<br>adj. R-squared |             | = 3600<br>= 3.870213<br>= 3.55e-11<br>= .9406771<br>= .9353412 |
|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------|--------------------------------------------------------------------------|-------------|----------------------------------------------------------------|
| lnrxa                                                                                                     | Coef.                                                                      | fevd<br>Std. Err.                                                           | t     | P> t                                                                     | [95% Conf   | . Interval]                                                    |
|                                                                                                           | +                                                                          |                                                                             |       |                                                                          | 1 0 0 7 0 0 |                                                                |
| avyrs                                                                                                     | .4830082                                                                   | ./908615                                                                    | 0.61  | 0.541                                                                    | -1.06/62    | 2.033637                                                       |
| sqravyrs                                                                                                  |                                                                            | .03463/3                                                                    | -0.60 | U.548<br>0 510                                                           | 088/003     | .04/1253                                                       |
| Inpatappr                                                                                                 | 0106467                                                                    | .10/8528                                                                    | 0.64  | 0.019                                                                    | 141948      | .2809821                                                       |
| InIdi                                                                                                     | ULU646/                                                                    | .043342                                                                     | 0.20  | 0.000                                                                    | 0/43332     | .UY3626/<br>1 220556                                           |
| Ingape                                                                                                    | 0502401                                                                    | ./300091                                                                    | -0.13 | 0.898                                                                    | -1.526429   | 1174026                                                        |
| Tubob                                                                                                     |                                                                            | .3/3//62                                                                    | -2.28 | 0.023                                                                    | -1.383206   | 11/4920                                                        |
| lnocofroo                                                                                                 |                                                                            | .002190                                                                     | -0.24 | 0.011                                                                    | 0040321     | 1 054172                                                       |
| Inecorree                                                                                                 | 1210702                                                                    | . 3734040                                                                   | -0.12 | 0.903                                                                    | -1.194592   | 1.054172                                                       |
| Inruic                                                                                                    | 0025044                                                                    | .4/15409                                                                    | 0.28  | 0.780                                                                    | /92562/     | 1.030321                                                       |
| serv<br>waar1006                                                                                          | 00203944                                                                   | .0134111                                                                    | 0.19  | 0.847                                                                    | 0237005     | .0288894                                                       |
| year1990                                                                                                  | -0020329                                                                   | 1220022                                                                     | -0.02 | 0.900                                                                    | - 2524494   | .2133204                                                       |
| year1997                                                                                                  | -0145711                                                                   | 13106/3                                                                     | -0.08 | 0.939                                                                    | - 2715467   | 2424045                                                        |
| year1990                                                                                                  |                                                                            | 1/301                                                                       | -0.33 | 0.743                                                                    | - 3073030   | 2334712                                                        |
| year2000                                                                                                  | -0118797                                                                   | 1339905                                                                     | -0.33 | 0.738                                                                    | - 3075926   | 2178331                                                        |
| year2000                                                                                                  | -0389746                                                                   | 1401024                                                                     | -0.28 | 0.730                                                                    | - 3136709   | 2357217                                                        |
| vear2002                                                                                                  | -0455315                                                                   | 1469168                                                                     | -0.31 | 0.757                                                                    | - 3335887   | 2425256                                                        |
| vear2003                                                                                                  | -0301498                                                                   | 1805425                                                                     | -0.17 | 0.757                                                                    | - 3841364   | 3238367                                                        |
| vear2004                                                                                                  | -0418106                                                                   | 2060778                                                                     | -0.20 | 0 839                                                                    | - 4458638   | 3622426                                                        |
| vear2005                                                                                                  | -0457036                                                                   | 2353333                                                                     | -0.19 | 0.846                                                                    | - 5071175   | 4157103                                                        |
| year2005                                                                                                  | -0376922                                                                   | 2428116                                                                     | -0.16 | 0.040                                                                    | - 5137686   | 4383842                                                        |
| vear2007                                                                                                  | -0443865                                                                   | 3021498                                                                     | -0 15 | 0.883                                                                    | - 6368064   | 5480334                                                        |
| vear2008                                                                                                  | -0681821                                                                   | 2949383                                                                     | -0.23 | 0 817                                                                    | - 6464626   | 5100984                                                        |
| vear2009                                                                                                  | -0864546                                                                   | 2650839                                                                     | -0.33 | 0 744                                                                    | - 6062001   | 4332908                                                        |
| vear2010                                                                                                  | -0778298                                                                   | 271283                                                                      | -0.29 | 0 774                                                                    | - 6097296   | 4540701                                                        |
| Cskills                                                                                                   | 6681441                                                                    | .5504917                                                                    | -1 21 | 0.225                                                                    | -1.747484   | . 4111954                                                      |
| dist                                                                                                      | 0003026                                                                    | .0003875                                                                    | -0.78 | 0.435                                                                    | 0010623     | .0004571                                                       |
| transdummy                                                                                                | 3068022                                                                    | 1.131639                                                                    | -0.27 | 0.786                                                                    | -2.525587   | 1,911983                                                       |
| eta                                                                                                       | 1                                                                          |                                                                             | 0.27  |                                                                          | 2.020007    | 1.911900                                                       |
| cons                                                                                                      | 8.630719                                                                   | •<br>9.639938                                                               | 0.90  | 0.371                                                                    | -10.27014   | 27.53158                                                       |

#### Table A4.7.4 Model 2 - Hausman and Taylor estimated results

xthtaylor lnrxa avyrs sqravyrs cskills lnpatappr lnfdi lngdpc lnpop unem lnecofree lnrulc serv dist transdummy year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010, endog (avyrs sqravyrs cskills)

| ausman-Taylor estimation<br>roup variable: cn_ind |                |            | Number<br>Number | of obs<br>of groups | = 3600<br>= 270                |                       |
|---------------------------------------------------|----------------|------------|------------------|---------------------|--------------------------------|-----------------------|
|                                                   |                |            |                  | Obs per             | group: min =<br>avg =<br>max = | = 5<br>= 13.3<br>= 16 |
| Random effects                                    | ; u_i ~ i.i.d. |            |                  | Wald ch<br>Prob >   | i2(28) = :<br>chi2 = :         | = 93.11<br>= 0.0000   |
| lnrxa                                             | Coef.          | Std. Err.  | Z                | P> z                | [95% Conf                      | . Interval]           |
| +<br>IVexogenous                                  |                |            |                  |                     |                                |                       |
| lnpatappr                                         | .0765332       | .0144488   | 5.30             | 0.000               | .048214                        | .1048523              |
| lnfdi                                             | .0091228       | .0031418   | 2.90             | 0.004               | .002965                        | .0152807              |
| lngdpc                                            | .0254856       | .0550361   | 0.46             | 0.643               | 0823833                        | .1333544              |
| lnpop                                             | 1443884        | .0630392   | -2.29            | 0.022               | 2679429                        | 0208339               |
| unem                                              | 0003334        | .0004953   | -0.67            | 0.501               | 0013042                        | .0006375              |
| lnecofree                                         | 0197373        | .0918539   | -0.21            | 0.830               | 1997677                        | .1602931              |
| lnrulc                                            | .0983888       | .1051942   | 0.94             | 0.350               | 107788                         | .3045656              |
| serv                                              | .0021562       | .002065    | 1.04             | 0.296               | 001891                         | .0062035              |
| vear1996                                          | .0023962       | .0260568   | 0.09             | 0.927               | 0486742                        | .0534666              |
| vear1997                                          | 0117681        | .0263657   | -0.45            | 0.655               | 0634439                        | .0399077              |
| vear1998                                          | 0149471        | .0267763   | -0.56            | 0.577               | 0674278                        | .0375336              |
| vear1999                                          | 049337         | .0274523   | -1.80            | 0.072               | 1031425                        | .0044685              |
| vear2000                                          | 0519156        | .0273535   | -1.90            | 0.058               | 1055275                        | .0016963              |
| vear2001                                          | 0509954        | .0280145   | -1.82            | 0.069               | 1059028                        | .003912               |
| vear2002                                          | 0613962        | .0295791   | -2.08            | 0.038               | 1193702                        | 0034222               |
| vear2003                                          | 0480625        | .0306607   | -1.57            | 0.117               | 1081564                        | .0120314              |
| vear2004                                          | 0671229        | .0319063   | -2.10            | 0.035               | 1296581                        | 0045877               |
| vear2005                                          | 0770967        | .0336381   | -2.29            | 0.022               | 1430262                        | 0111673               |
| vear2006                                          | 0771328        | .0351335   | -2.20            | 0.028               | 1459933                        | 0082723               |
| vear2007                                          | 0896413        | .0360916   | -2.48            | 0.013               | 1603797                        | 018903                |
| vear2008                                          | 1156465        | .0366004   | -3.16            | 0.002               | 187382                         | 043911                |
| vear2009                                          | 1230803        | .0371509   | -3.31            | 0.001               | 1958948                        | 0502657               |
| vear2010                                          | 1189885        | .0380092   | -3.13            | 0.002               | 1934852                        | 0444918               |
| Vendogenous                                       |                |            |                  |                     |                                |                       |
| avvrs                                             | .4629558       | .1066994   | 4.34             | 0.000               | .2538288                       | .6720828              |
| sgravvrs                                          | 0202253        | .0049407   | -4.09            | 0.000               | 0299088                        | 0105418               |
| Iexogenous                                        |                |            |                  |                     |                                |                       |
| dist                                              | 0000479        | .000161    | -0.30            | 0.766               | 0003635                        | .0002677              |
| transdummv                                        | .3115623       | .1902851   | 1.64             | 0.102               | 0613895                        | .6845142              |
| 'Iendogenous                                      |                |            |                  |                     |                                |                       |
| cskills                                           | 6371477        | .5638827   | -1.13            | 0.259               | -1.742337                      | .468042               |
| 00/1110                                           |                | .000027    | ±•±0             | 0.202               | 1.12001                        | . 100042              |
| _cons                                             | .4556345       | 3.1143     | 0.15             | 0.884               | -5.648281                      | 6.55955               |
| ++                                                | 1 2877720      |            |                  |                     |                                |                       |
| sigma_u                                           | 1.2011120      |            |                  |                     |                                |                       |
| s⊥gma_e                                           | .2063/22       | (Enception | . E              | ana dua t           | i \                            |                       |
| rno                                               | .9/496133      | (Iraction  | or varia         | ice due t           | o u_1)                         |                       |

#### Table A4.7.5 Model 2 - IV estimated results

. xtivreg2 lnrxa cskills lngdpc lnpop unem lnecofree serv lnrulc dist transdummy
year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004
year2005 year2006 year2007 year2008 year2009 year2010 (avyrs sqravyrs lnpatappr lnfdi
= avyrslag1 sqravyrslag1 lnpatapprlag1 lnfdilag1), fe endog (avyrs sqravyrs lnpatappr
lnfdi) small robust bw(3)

Warning - collinearities detected Vars dropped: cskills dist transdummy year2009 FIXED EFFECTS ESTIMATION \_\_\_\_\_ Number of groups = 270 Obs per group: min = 3 min = 3 avg = 12.8 15 max = IV (2SLS) estimation Estimates efficient for homoskedasticity only Statistics robust to heteroskedasticity and autocorrelation kernel=Bartlett; bandwidth=3 time variable (t): year group variable (i): cn ind 3450 Number of obs = F(24, 3156) = 1.88 Prob > F = 0.0059Total (centered) SS = 129.2441112 Centered R2 = 0.0273Total (uncentered) SS = 129.2441112 Uncentered R2 = 0.0273 .1996 Residual SS = 125.7141955 Root MSE = \_\_\_\_\_ Robust Coef. Std. Err. t P>|t| [95% Conf. Interval] lnrxa | \_\_\_\_\_+\_\_\_+\_\_\_\_\_+ avyrs | .5160941 .1847943 2.79 0.005 .153765 .8784231 sqravyrs | -.0220156 .0085695 -2.57 0.010 -.038818 -.0052133 
 3.11
 0.002
 .0392077

 2.58
 0.010
 .0033783
 lnpatappr | .1061824 .0341583 lnfdi | .0141061 .0054714 .173157 .0248339 -1.25 0.211 -.3497225 .0772278 lngdpc | -.1362473 .1088761 lnpop | -.8348867 .3376568 -2.47 0.013 -1.496936 -.1728376 unem | -.0004697 .0006031 -0.78 0.436 -.0016522 .0007128 lnecofree | .0088918 .1421278 0.06 0.950 -.2697804 .2875641 serv | .0031296 .0035489 0.88 0.378 -.0038288 .0100879 .4357184 lnrulc | .096033 .1732456 0.55 0.579 -.2436524 year1996 |.1093559.04807222.270.023.0150999year1997 |.0946754.04309992.200.028.0101687year1998 |.0875996.03914342.240.025.0108504year1999 |.0549852.03743991.470.142-.0184238year2000 |.0576506.03275641.760.079-.0065753year2001 |.060846.02970572.050.041.0026017 .2036119 .1791822 .1643487 year1999.0549852.03743991.470.142year2000.0576506.03275641.760.079year2001.060846.02970572.050.041year2002.0496195.02721011.820.068 .1283942 .1218766 .1190904 .0026017 1.82 0.068 -.0037318 .1029708 2.350.019.01033722.260.024.0075893 year2003 | .0628701 .0267928 .1154031 .057094 .0252483 2.26 0.024 year2004 | .1065987 year2005 | .0548447 .0239234 2.29 0.022 .0079378 .1017517 .0111268 year2006 | .0595986 .0247215 2.41 0.016 .1080704 year2007 | .0549333 .0240283 2.29 0.022 .0078207 .1020459 year2008 |.0263909.01773251.490.137-.0083774.0611592year2010 |.007029.01491470.470.637-.0222145.0362726 \_\_\_\_\_ Underidentification test (Kleibergen-Paap rk LM statistic): 141.983 Chi-sq(1) P-val = 0.0000\_\_\_\_\_ Weak identification test (Cragg-Donald Wald F statistic): 693.024 (Kleibergen-Paap rk Wald F statistic): 153.911 Stock-Yogo weak ID test critical values: <not available> \_\_\_\_\_ Hansen J statistic (overidentification test of all instruments): 0.000 (equation exactly identified)

```
-endog- option:

Endogeneity test of endogenous regressors:

Chi-sq(4) P-val = 0.0211

Regressors tested: avyrs sqravyrs lnpatappr lnfdi

Instrumented: avyrs sqravyrs lnpatappr lnfdi

Included instruments: lngdpc lnpop unem lnecofree serv lnrulc year1996 year1997

year1998 year1999 year2000 year2001 year2002 year2003

year2004 year2005 year2006 year2007 year2008 year2010

Excluded instruments: avyrslag1 sqravyrslag1 lnpatapprlag1 lnfdilag1

Dropped collinear: cskills dist transdummy year2009
```

#### Table A4.7.5.1 Model 2 - IV estimated results (ETEs)

| <pre>xtivreg2 lnrx<br/>transindN year<br/>year2004 year2<br/>lnpatappr lnfd<br/>endog (avyrs s<br/>&gt; bust bw(3)<br/>Warning - coll<br/>Vars dropped:</pre> | ka cskills lr<br>c1996 year199<br>2005 year2006<br>di = avyrslag<br>sqravyrs lnpa<br>linearities c<br>cskills dis                                  | ngdpc lnpop ur<br>7 year1998 ye<br>5 year2007 yea<br>1 sgravyrslag<br>tappr lnfdi)<br>Netected<br>5t transdummy                                          | em lnecc<br>ear1999 y<br>12008 ye<br>1 lnpata<br>small rc<br>year2009                                    | ofree se<br>rear2009<br>apprlag:                                                                                  | erv lnrulc dist<br>0 year2001 year2<br>year2010 (avyr<br>1 lnfdilag1) if                                                                   | transdummy<br>2002 year2003<br>ss sqravyrs<br>transdummy==1                                                                                             | , fe |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| FIXED EFFECTS                                                                                                                                                 | ESTIMATION                                                                                                                                         |                                                                                                                                                          |                                                                                                          |                                                                                                                   |                                                                                                                                            |                                                                                                                                                         |      |
| Number of grou                                                                                                                                                | ups = 1                                                                                                                                            | .00                                                                                                                                                      |                                                                                                          | Obs pe                                                                                                            | er group: min =<br>avg =<br>max =                                                                                                          | 7<br>13.3<br>15                                                                                                                                         |      |
| IV (2SLS) est                                                                                                                                                 | imation                                                                                                                                            |                                                                                                                                                          |                                                                                                          |                                                                                                                   |                                                                                                                                            |                                                                                                                                                         |      |
| Statistics rol<br>kernel=Bart<br>time variab<br>group variab<br>Total (centere<br>Total (uncentere                                                            | ed) SS =                                                                                                                                           | 82.13284054<br>82.13284054                                                                                                                               | v and aut                                                                                                | cocorre                                                                                                           | Number of obs =<br>F(25, 1205) =<br>Prob > F =<br>Centered R2 =<br>Uncentered R2 =                                                         | = 1330<br>= 1.05<br>= 0.3899<br>= 0.0371<br>= 0.0371                                                                                                    |      |
| Residual SS                                                                                                                                                   | =                                                                                                                                                  | /9.0863/983                                                                                                                                              |                                                                                                          |                                                                                                                   | Root MSE =                                                                                                                                 | • .2562                                                                                                                                                 |      |
| lnrxa                                                                                                                                                         | Coef.                                                                                                                                              | Robust<br>Std. Err.                                                                                                                                      |                                                                                                          | P> t                                                                                                              | [95% Conf.                                                                                                                                 | Interval]                                                                                                                                               |      |
| avyrs<br>sqravyrs<br>lnpatappr<br>lnfdi<br>lngdpc<br>lnpop<br>unem<br>lnecofree<br>serv<br>lnrulc<br>transindN<br>year1996<br>year1997                        | .901425<br>0448221<br>.1103746<br>.0800574<br>.352139<br>1689262<br>.0005633<br>.0987891<br>0011461<br>.1961243<br>4598909<br>.2509804<br>.2244127 | .6347637<br>.0265018<br>.1115165<br>.0813805<br>.2779699<br>2.036301<br>.0013559<br>.2731213<br>.0072724<br>.2322245<br>.4418534<br>.2475202<br>.2095868 | 1.42<br>-1.69<br>0.99<br>0.98<br>1.27<br>-0.08<br>0.42<br>0.36<br>-0.16<br>0.84<br>-1.04<br>1.01<br>1.07 | 0.156<br>0.091<br>0.322<br>0.325<br>0.205<br>0.934<br>0.678<br>0.718<br>0.875<br>0.399<br>0.298<br>0.311<br>0.285 | 34394<br>096817<br>1084134<br>0796058<br>1932198<br>-4.164015<br>0020969<br>437057<br>0154141<br>259485<br>-1.326778<br>2346381<br>1867829 | 2.14679<br>.0071727<br>.3291626<br>.2397207<br>.8974978<br>3.826163<br>.0032235<br>.6346352<br>.0131218<br>.6517335<br>.4069966<br>.7365989<br>.6356083 |      |

.1999283.1849311.080.280-.1628941.1295103.16717370.770.439-.1984736.1506967.14205731.060.289-.1280105 year1998 | .5627508 vear1999 | .4574942 year2000 | .4294039 vear2001 | .1350756 .1232174 1.10 0.273 -.106669 .3768201 vear2002 | .1236459 .0935996 1.32 0.187 -.0599903 .3072822 year2003 | .0984851 .091039 1.08 0.280 -.0801274 .2770977 .2058375 year2004 | .0611992 .0737223 0.83 0.407 -.0834391 year2005 | .077112 .0661004 1.17 0.244 -.0525726 .2067967 .1609388 year2006 | .0431194 .0600526 0.72 0.473 -.0746999 year2007 | .0023187 .0572929 0.04 0.968 -.1100862 .1147236 year2008-.0146788.0467101-0.310.753year2010.0062926.03632230.170.862 -.1063209 .0769633 .0775546 -.0649695 \_\_\_\_\_ Underidentification test (Kleibergen-Paap rk LM statistic): 130.883 Chi-sq(1) P-val = 0.0000 Weak identification test (Cragg-Donald Wald F statistic): 127.527 (Kleibergen-Paap rk Wald F statistic): 88 593 Stock-Yogo weak ID test critical values: <not available> \_\_\_\_\_ Hansen J statistic (overidentification test of all instruments): 0.000 (equation exactly identified) -endog- option: Endogeneity test of endogenous regressors: 4,480 Chi-sq(4) P-val = 0.3450Regressors tested: avyrs sqravyrs lnpatappr lnfdi \_\_\_\_\_ Instrumented: avyrs sqravyrs lnpatappr lnfdi Included instruments: lngdpc lnpop unem lnecofree serv lnrulc transindN year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2010 Excluded instruments: avyrslag1 sqravyrslag1 lnpatapprlag1 lnfdilag1 Dropped collinear: cskills dist transdummy year2009 \_\_\_\_\_

#### Table A4.7.5.2 Model 2 - IV estimated results (N-ETEs)

xtivreg2 lnrxa cskills lngdpc lnpop unem lnecofree serv lnrulc dist transdummy year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010 (avyrs sqravyrs lnpatappr lnfdi = avyrslag1 sqravyrslag1 lnpatapprlag1 lnfdilag1) if transdummy==0, fe endog (avyrs sqravyrs lnpatappr lnfdi) small robust bw(3) Warning - collinearities detected Vars dropped: cskills dist transdummy year2009 FIXED EFFECTS ESTIMATION \_\_\_\_\_ Number of groups = 170 Obs per group: min = 3 avg = 12.5 max = 15 IV (2SLS) estimation \_\_\_\_\_ Estimates efficient for homoskedasticity only Statistics robust to heteroskedasticity and autocorrelation kernel=Bartlett; bandwidth=3 time variable (t): year group variable (i): cn ind Number of obs = 2120 F(24, 1926) =2.33

| Fotal (centere<br>Fotal (uncente<br>Residual SS   | d) SS =<br>red) SS =<br>=                                            | 47.11127063<br>47.11127063<br>44.570932                                                            |                                                                   |                                                                   | Prob > F<br>Centered R2<br>Uncentered R2<br>Root MSE                                   | = 0.0003<br>= 0.0539<br>= 0.0539<br>= .1521   |
|---------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------|
| <br> <br>  lnrxa                                  | Coef.                                                                | Robust<br>Std. Err.                                                                                |                                                                   |                                                                   | [95% Conf.                                                                             | Intervall                                     |
| +                                                 |                                                                      |                                                                                                    |                                                                   |                                                                   |                                                                                        |                                               |
| avyrs                                             | .0151932                                                             | .2013867                                                                                           | 0.08                                                              | 0.940                                                             | 3797656                                                                                | .410152                                       |
| sqravyrs                                          | .0018585                                                             | .0093226                                                                                           | 0.20                                                              | 0.842                                                             | 016425                                                                                 | .020142                                       |
| lnpatappr                                         | .137351                                                              | .0477676                                                                                           | 2.88                                                              | 0.004                                                             | .0436693                                                                               | .2310327                                      |
| lnfdi                                             | .019139                                                              | .0059339                                                                                           | 3.23                                                              | 0.001                                                             | .0075014                                                                               | .0307766                                      |
| lngdpc                                            | .0199618                                                             | .2355933                                                                                           | 0.08                                                              | 0.932                                                             | 442083                                                                                 | .4820065                                      |
| lnpop                                             | -1.711842                                                            | .3878337                                                                                           | -4.41                                                             | 0.000                                                             | -2.47246                                                                               | 951224                                        |
| unem                                              | 0005401                                                              | .0006767                                                                                           | -0.80                                                             | 0.425                                                             | 0018673                                                                                | .000787                                       |
| lnecofree                                         | .0896178                                                             | .1682751                                                                                           | 0.53                                                              | 0.594                                                             | 2404027                                                                                | .4196383                                      |
| serv                                              | .0131628                                                             | .0046487                                                                                           | 2.83                                                              | 0.005                                                             | .0040458                                                                               | .0222799                                      |
| lnrulc                                            | 0445859                                                              | .2727608                                                                                           | -0.16                                                             | 0.870                                                             | 5795235                                                                                | .4903517                                      |
| year1996                                          | .1166062                                                             | .062987                                                                                            | 1.85                                                              | 0.064                                                             | 0069236                                                                                | .2401361                                      |
| year1997                                          | .1105163                                                             | .0571548                                                                                           | 1.93                                                              | 0.053                                                             | 0015755                                                                                | .2226081                                      |
| year1998                                          | .1029511                                                             | .0501197                                                                                           | 2.05                                                              | 0.040                                                             | .0046566                                                                               | .2012456                                      |
| year1999                                          | .0956655                                                             | .0450105                                                                                           | 2.13                                                              | 0.034                                                             | .007391                                                                                | .18394                                        |
| year2000                                          | .0702831                                                             | .0365825                                                                                           | 1.92                                                              | 0.055                                                             | 0014623                                                                                | .1420285                                      |
| year2001                                          | .0769893                                                             | .0343317                                                                                           | 2.24                                                              | 0.025                                                             | .009658                                                                                | .1443206                                      |
| year2002                                          | .0469468                                                             | .0303351                                                                                           | 1.55                                                              | 0.122                                                             | 0125462                                                                                | .1064398                                      |
| year2003                                          | .0725437                                                             | .0291378                                                                                           | 2.49                                                              | 0.013                                                             | .0153987                                                                               | .1296887                                      |
| year2004                                          | .0662835                                                             | .0277865                                                                                           | 2.39                                                              | 0.017                                                             | .0117887                                                                               | .1207784                                      |
| year2005                                          | .048232                                                              | .0251407                                                                                           | 1.92                                                              | 0.055                                                             | 0010738                                                                                | .0975379                                      |
| year2006                                          | .0597444                                                             | .0237764                                                                                           | 2.51                                                              | 0.012                                                             | .0131142                                                                               | .1063746                                      |
| year2007                                          | .0563859                                                             | .024621                                                                                            | 2.29                                                              | 0.022                                                             | .0080993                                                                               | .1046726                                      |
| year2008                                          | .0294778                                                             | .0202292                                                                                           | 1.46                                                              | 0.145                                                             | 0101956                                                                                | .0691512                                      |
| year2010                                          | .0067744                                                             | .0159293                                                                                           | 0.43                                                              | 0.671                                                             | 024466                                                                                 | .0380149                                      |
| Inderidentific                                    | ation test (H                                                        | Kleibergen-Pa                                                                                      | ap rk Ll                                                          | 1 statis<br>Chi                                                   | stic):<br>i-sq(1) P-val =                                                              | 93.323<br>0.0000                              |
| Veak identific<br>Stock-Yogo wea                  | ation test (0<br>(I<br>k ID test cr:                                 | Cragg-Donald<br>Kleibergen-Pa<br>itical values                                                     | Wald F s<br>ap rk Wa                                              | statisti<br>ald F st                                              | ic):<br>tatistic):<br><not< td=""><td>270.658<br/>62.370<br/>available&gt;</td></not<> | 270.658<br>62.370<br>available>               |
| Hansen J stati                                    | stic (overide                                                        | entification                                                                                       | test of                                                           | all ins<br>(equa                                                  | struments):<br>ation exactly i                                                         | 0.000<br>dentified)                           |
| -endog- option<br>Endogeneity te                  | :<br>st of endoger                                                   | nous regresso                                                                                      | ors:                                                              | Chi                                                               | i-sq(4) P-val =                                                                        | 8.806<br>0.0661                               |
| Regressors tes                                    | ted: avyrs                                                           | s sqravyrs ln                                                                                      | patappr                                                           | lnfdi                                                             | -                                                                                      |                                               |
| Instrumented:<br>Included instr<br>Excluded instr | avyrs<br>uments: lngdy<br>year<br>year<br>uments: avyrs<br>ear: cski | s sqravyrs ln<br>oc lnpop unem<br>1998 year1999<br>2004 year2005<br>slag1 sqravyr<br>lls dist tran | ipatappr<br>lnecofi<br>year20(<br>year20(<br>slag1 ln<br>sdummy y | lnfdi<br>cee serv<br>00 year2<br>06 year2<br>1patappi<br>2ear2000 | 7 lnrulc year19<br>2001 year2002 y<br>2007 year2008 y<br>clag1 lnfdilag1               | 96 year199 <sup>-</sup><br>ear2003<br>ear2010 |

| Table A4.8 Model 1&2 - IV estimated results - emsh at industry level |         |         |   |  |
|----------------------------------------------------------------------|---------|---------|---|--|
|                                                                      | Model 1 | Model 2 |   |  |
|                                                                      | IV      | IV      | 1 |  |

|                           | Inemshind       | Inemshind  |
|---------------------------|-----------------|------------|
| Insedut                   | 0.178*          |            |
|                           | (0.105)         |            |
| Intedut                   | 0.444***        |            |
|                           | (0.123)         |            |
| avyrs                     |                 | -0.725***  |
|                           |                 | (0.186)    |
| sqravyrs                  |                 | 0.0329***  |
|                           |                 | (0.00861)  |
| Inpatappr                 | 0.116***        | 0.111***   |
|                           | (0.0328)        | (0.0332)   |
| Infdi                     | 0.00726         | 0.0173***  |
|                           | (0.00552)       | (0.00537)  |
| Ingdpc                    | 0.962***        | 1.170***   |
|                           | (0.129)         | (0.101)    |
| Inpop                     | -3.121***       | -2.864***  |
|                           | (0.359)         | (0.324)    |
| unem                      | 0.00147**       | 0.00109*   |
|                           | (0.00068)       | (0.000624) |
| Inecofree                 | 0.0285          | 0.0817     |
|                           | (0.141)         | (0.139)    |
| Inrulc                    | -0.194          | -0.350**   |
|                           | (0.166)         | (0.166)    |
| serv                      | 0.000506        | 0.00325    |
|                           | (0.00357)       | (0.00363)  |
| Ν                         | 3,450           | 3,450      |
| Year dummies included b   | ut not reported |            |
| Robust standard errors in | parentheses     |            |
| *** p<0.01, ** p<0.05, *  | p<0.1           |            |

|           | Model 1 |          |         |           | Model 2  |           |
|-----------|---------|----------|---------|-----------|----------|-----------|
|           | EU-27   | ETEs     | N-ETEs  | EU-27     | ETEs     | N-ETEs    |
| VARIABLES | Inemsh  | Inemsh   | Inemsh  | Inemsh    | Inemsh   | Inemsh    |
| Insedut   | 0.476** | 1.937*** | 0.179   |           |          |           |
|           | (0.212) | (0.595)  | (0.166) |           |          |           |
| Intedut   | 0.116   | 0.813*** | 0.113   |           |          |           |
|           | (0.194) | (0.299)  | (0.092) |           |          |           |
| avyrs     |         |          |         | -1.060*** | -0.0247  | -0.325*   |
|           |         |          |         | (0.25)    | (0.704)  | (0.177)   |
| sqravyrs  |         |          |         | 0.0523*** | 0.0194   | 0.0188**  |
|           |         |          |         | (0.012)   | (0.0305) | (0.00854) |

| Inpatappr      | 0.0268           | 0.137      | 0.121**    | 0.08      | 0.0328    | 0.162***   |
|----------------|------------------|------------|------------|-----------|-----------|------------|
|                | (0.0597)         | (0.088)    | (0.0576)   | (0.0555)  | (0.0896)  | (0.0578)   |
| Infdi          | 0.000724         | 0.217***   | 0.0107**   | 0.00496   | 0.296***  | 0.0128**   |
|                | (0.00499)        | (0.0734)   | (0.00457)  | (0.00505) | (0.0931)  | (0.00524)  |
| Ingdpc         | 1.605***         | 0.906***   | 0.0371     | 1.463***  | 0.823***  | 0.218      |
|                | (0.168)          | (0.253)    | (0.236)    | (0.172)   | (0.258)   | (0.244)    |
| Inpop          | -1.429***        | 4.792***   | 0.346      | -1.589*** | 5.020***  | 0.0701     |
|                | (0.531)          | (1.272)    | (0.352)    | (0.522)   | (1.518)   | (0.34)     |
| unem           | 0.00421***       | -0.00125   | 0.000662   | 0.00331** | -0.00207  | 0.000497   |
|                | (0.0013)         | (0.002)    | (0.000895) | (0.00136) | (0.0023)  | (0.00089)  |
| Inecofree      | -0.105           | -0.36      | -0.172     | -0.0244   | -0.0972   | -0.193     |
|                | (0.238)          | (0.307)    | (0.238)    | (0.217)   | (0.316)   | (0.233)    |
| serv           | -0.00775         | 0.0128     | -0.0365*** | -0.00104  | 0.00192   | -0.0325*** |
|                | (0.0094)         | (0.0102)   | (0.00506)  | (0.00939) | (0.00861) | (0.00477)  |
| Inrulc         | -0.597*          | -0.739*    | -0.583**   | -0.737**  | -0.593    | -0.469*    |
|                | (0.339)          | (0.421)    | (0.281)    | (0.314)   | (0.369)   | (0.261)    |
| transindN      |                  | -0.267     |            |           | -0.574    |            |
|                |                  | (0.378)    |            |           | (0.413)   |            |
| Ν              | 349              | 134        | 215        | 349       | 134       | 215        |
| Year dummies i | included but no  | t reported |            |           |           |            |
| Robust standar | d errors in pare | ntheses    |            |           |           |            |
| *** p<0.01, ** | p<0.05, * p<0.1  |            |            |           |           |            |

| Table A4.9.1 Model 1 - FE standard errors vs FEVD standard errors |                 |           |                 |           |  |  |  |
|-------------------------------------------------------------------|-----------------|-----------|-----------------|-----------|--|--|--|
| Independent                                                       |                 | FE        | FE              | VD        |  |  |  |
| Variables                                                         | Standard Errors | P. values | Standard Errors | P. values |  |  |  |
| Insedut                                                           | .1265099        | 0.073     | 7.1843          | 0.975     |  |  |  |
| Intedut                                                           | .1272115        | 0.000     | 6.513698        | 0.928     |  |  |  |
| Inpatappr                                                         | .0277064        | 0.045     | 1.449755        | 0.969     |  |  |  |
|                                                                   |                 |           | 100=000         |           |  |  |  |

| Inpatappr | .0277064 | 0.045 | 1.449755 | 0.969 |
|-----------|----------|-------|----------|-------|
| Infdi     | .0052079 | 0.412 | .1037668 | 0.967 |
| Ingdpc    | .1357031 | 0.000 | 10.12053 | 0.904 |
| Inpop     | .3773957 | 0.000 | 3.697784 | 0.604 |
| unem      | .0008909 | 0.000 | .0209349 | 0.849 |
| Inecofree | .1780905 | 0.742 | 6.536864 | 0.993 |
| Inrulc    | .1959859 | 0.019 | 4.341907 | 0.915 |
| serv      | .0038653 | 0.070 | .1210407 | 0.954 |

# Appendix – A5

#### Contents

| Table A5.1. Relative export advantage (RXA) of ETEs in medium-high and high tech sub-industries . 383 |
|-------------------------------------------------------------------------------------------------------|
| Table A5.1.1 Relative export advantage (RXA) of EU -18 in medium-high and high tech sub-industries    |
|                                                                                                       |
| Table A5.1.2 Correlation between Export sophistication and GDP per capita         385                 |
| Table A5.1.3 Correlation matrix between potential measures of international competitiveness 385       |
| Table A5.1.4 Descriptive statistics for variables in levels         386                               |
| Table A5.2 Model 1 - Fixed effects estimated results (medium-high and high tech)                      |
| Table A5.2.1 Model 1 - Diagnostic tests       388                                                     |
| Table A5.2.2 Model 1 - Driscoll-Kraay estimated results (medium-high and high tech)                   |
| Table A5.2.4 Model 1 - FEVD estimated results (medium-high and high tech)                             |
| Table A5.2.5 Model 1 - Hausman and Taylor estimated results (medium-high and high tech)               |
| Table A5.2.6 Model 1 - IV estimated results (medium-high and high tech)                               |
| Table A5.2.6.1 Model 1 - IV estimated results - ETEs (medium-high and high tech)                      |
| Table A5.2.6.2 Model 1 - IV estimated results –N-ETEs (medium-high and high tech)                     |
| Table A5.2.6.3 Model 1 - IV estimated results (high tech)       395                                   |
| Table A5.2.6.3.1 Model 1 - IV estimated results - ETEs (high tech)                                    |
| Table A5.2.6.3.2 Model 1 - IV estimated results – N-ETEs (high tech)                                  |
| Table A5.2.6.4 Model 1 - IV estimated results (medium-high tech)                                      |
| Table A5.2.6.4.1 Model 1 - IV estimated results – ETEs (medium-high tech)                             |
| Table A5.2.6.4.2 Model 1 - IV estimated results – N-ETEs (medium-high tech)                           |
| Table A5.3 Model 2 - Fixed effects estimated results (medium-high and high tech)                      |
| Table A5.3.1 Model 2 - Diagnostic tests                                                               |
| Table A5.3.2 Model 2 - Driscoll-Kraay estimated results (medium-high and high tech)                   |
| Table A5.3.4 Model 2 - FEVD estimated results (medium-high and high tech)                             |
| Table A5.3.5 Model 2 - Hausman and Taylor estimated results (medium-high and high tech) 406           |
| Table A5.3.6 Model 2 - IV estimated results (medium-high and high tech)                               |
| Table A5.3.6.1 Model 2 - IV estimated results - ETEs (medium-high and high tech)                      |
| Table A5.3.6.2 Model 2 - IV estimated results – N-ETEs (medium-high and high tech)                    |

| Table A5.3.6.3 Model 2 - IV estimated results (high tech)                               | 412 |
|-----------------------------------------------------------------------------------------|-----|
| Table A5.3.6.3.1 Model 2 - IV estimated results – ETEs (high tech)                      | 413 |
| Table A5.3.6.3.2 Model 2 - IV estimated results - N-ETEs (high tech)                    | 414 |
| Table A5.3.6.4 Model 2 - IV estimated results (medium-high tech)                        | 416 |
| Table A5.3.6.4.1 Model 2 - IV estimated results – ETEs (medium-high tech)               | 417 |
| Table A5.3.6.4.2 Model 2 - IV estimated results – N-ETEs (medium-high tech)             | 418 |
| Table A5.4 Model 1 - Fixed effects estimated results (medium-high and high tech)        | 420 |
| Table A5.4.1 Model 1 - Diagnostic tests                                                 | 421 |
| Table A5.4.2 Model 1 - Driscoll-Kraay estimated results (medium-high and high tech)     | 421 |
| Table A5.4.3 Model 1 - FEVD estimated results (medium-high and high tech)               | 422 |
| Table A5.4.4 Model 1 - Hausman and Taylor estimated results (medium-high and high tech) | 423 |
| Table A5.4.5 Model 1 - IV estimated results (medium-high and high tech)                 | 424 |
| Table A5.4.5.1 Model 1 - IV estimated results - ETEs (medium-high and high tech)        | 425 |
| Table A5.4.5.2 Model 1 - IV estimated results – N-ETEs (medium-high and high tech)      | 427 |
| Table A5.4.5.3 Model 1 - IV estimated results (high tech)                               | 428 |
| Table A5.4.5.3.1 Model 1 - IV estimated results - ETEs (high tech)                      | 429 |
| Table A5.4.5.3.2 Model 1 - IV estimated results – N-ETEs (high tech)                    | 431 |
| Table A5.4.5.4 Model 1 - IV estimated results (medium-high tech)                        | 432 |
| Table A5.4.5.4.1 Model 1 - IV estimated results – ETEs (medium-high tech)               | 433 |
| Table A5.4.5.4.2 Model 1 - IV estimated results – N-ETEs (medium-high tech)             | 435 |
| Table A5.5 Model 2 - Fixed effects estimated results (medium-high and high tech)        | 436 |
| Table A5.5.1 Model 2 - Diagnostic tests                                                 | 437 |
| Table A5.5.2 Model 2 - Driscoll-Kraay estimated results (medium-high and high tech)     | 438 |
| Table A5.5.3 Model 2 - FEVD estimated results (medium-high and high tech)               | 438 |
| Table A5.5.4 Model 1 - Hausman and Taylor estimated results (medium-high and high tech) | 439 |
| Table A5.5.5 Model 2 - IV estimated results (medium-high and high tech)                 | 440 |
| Table A5.5.5.1 Model 2 - IV estimated results –ETEs (medium-high and high tech)         | 441 |
| Table A5.5.5.2 Model 2 - IV estimated results –N-ETEs (medium-high and high tech)       | 443 |
| Table A5.5.5.3 Model 2 - IV estimated results (high tech)                               | 444 |
| Table A5.5.5.3.1 Model 2 - IV estimated results - ETEs (high tech)                      | 445 |
| Table A5.5.5.3.2 Model 2 - IV estimated results – N-ETEs (high tech)                    | 447 |
| Table A5.5.5.4 Model 2 - IV estimated results (medium-high tech)                        | 448 |

| Table A5.5.5.4.1 Model 2 - IV estimated results -ETEs (medium-high tech)                   | 450 |
|--------------------------------------------------------------------------------------------|-----|
| Table A5.5.5.4.2 Model 2 - IV estimated results –N-ETEs (medium-high tech)                 | 451 |
| Table A5.6 Model 1 - Fixed effects estimated results                                       | 452 |
| Table A5.6.1 Model 1 - Diagnostic tests                                                    | 453 |
| Table A5.6.2 Model 1 - Driscoll-Kraay estimated results                                    | 454 |
| Table A5.6.3 Model 1 - FEVD estimated results                                              | 455 |
| Table A5.6.4 Model 1 - Hausman and Taylor estimated results                                | 455 |
| Table A5.6.5 Model 1 - IV estimated results                                                | 457 |
| Table A5.6.5.1 Model 1 - IV estimated results - ETEs                                       | 458 |
| Table A5.6.5.2 Model 1 - IV estimated results – N-ETEs                                     | 459 |
| Table A5.7 Model 2 - Fixed effects estimated results                                       | 461 |
| Table A5.7.1 Model 2 - Diagnostic tests                                                    | 462 |
| Table A5.7.2 Model 2 - Driscoll-Kraay estimated results                                    | 462 |
| Table A5.7.3 Model 2 - FEVD estimated results                                              | 463 |
| Table A5.7.4 Model 2 - Hausman and Taylor estimated results                                | 464 |
| Table A5.7.5 Model 2 - IV estimated results                                                | 465 |
| Table A5.7.5.1 Model 2 - IV estimated results – ETEs                                       | 466 |
| Table A5.7.5.2 Model 2 - IV estimated results – N-ETEs                                     | 468 |
| Table A5.8 Driscoll-Kraay and IV estimated results (export market share)                   | 470 |
| Table A5.8.1. Driscoll-Kraay and IV estimated results (relative export advantage, RXA)     | 471 |
| Table A5.9 IV estimated results (medium-low, medium-high and high tech)                    | 472 |
| Table A5.9.1 FEVD & Hausman and Taylor estimated results (medium-low, medium-high and high |     |
| tech)                                                                                      | 474 |

Table A5.1. Relative export advantage (RXA) of ETEs in medium-high and high tech sub-industries

| Industry | Tech<br>intensity | Bulgaria | Croatia   | Czech<br>Republic | Estonia | Hungary            | Latvia   |
|----------|-------------------|----------|-----------|-------------------|---------|--------------------|----------|
| ChePH    | High              | 0.93     | 0.73      | 0.53              | 0.60    | 0.51               | 0.43     |
| Ph       | M. high           | 0.48     | 0.87      | 0.22              | 0.18    | 0.53               | 0.78     |
| ME       | M. high           | 0.58     | 0.48      | 1.06              | 0.37    | 0.61               | 0.36     |
| OACM     | High              | 0.14     | 0.15      | 1.63              | 0.31    | 1.99               | 0.29     |
| EMA      | M. high           | 0.80     | 1.20      | 1.96              | 1.19    | 2.12               | 0.59     |
| RTCE     | High              | 0.26     | 0.60      | 1.02              | 2.49    | 3.62               | 0.37     |
| MPOI     | High              | 0.29     | 0.31      | 0.47              | 0.51    | 0.58               | 0.26     |
| MVTST    | M. high           | 0.05     | 0.12      | 1.26              | 0.42    | 1.29               | 0.21     |
| AS       | High              | 0.07     | 0.09      | 0.24              | 0.04    | 0.02               | 0.08     |
| RTE      | M. high           | 0.81     | 0.51      | 2.15              | 1.00    | 1.08               | 1.47     |
| Industry | Tech<br>intensity |          | Lithuania | Poland            | Romania | Slovak<br>Republic | Slovenia |
| ChePH    | High              |          | 0.91      | 0.58              | 0.58    | 0.55               | 0.64     |
| Ph       | M. high           |          | 0.32      | 0.20              | 0.10    | 0.19               | 1.35     |
| ME       | M. high           |          | 0.37      | 0.61              | 0.55    | 0.70               | 1.28     |
| OACM     | High              |          | 0.22      | 0.24              | 0.20    | 0.40               | 0.14     |
| EMA      | M. high           |          | 0.60      | 1.34              | 1.54    | 1.38               | 1.44     |
| RTCE     | High              |          | 0.70      | 0.85              | 0.51    | 1.79               | 0.37     |
| MPOI     | High              |          | 0.41      | 0.24              | 0.16    | 0.25               | 0.75     |
| MVTST    | M. high           |          | 0.44      | 1.03              | 0.39    | 1.73               | 1.04     |
| AS       | High              |          | 0.24      | 0.17              | 0.13    | 0.06               | 0.06     |
| RTE      | M. high           |          | 1.30      | 1.19              | 1.73    | 1.89               | 1.08     |

Source: Own calculations based on STAN Bilateral Trade Database Ed. 2012 ISIC Revision 3 Notes: RXA>1 indicates a relative export advantage in industry *j* 

| Table A5            | Table A5.1.1 Relative export advantage (RXA) of EU -18 in medium-high and high |         |         |        |         |         |        |  |  |  |
|---------------------|--------------------------------------------------------------------------------|---------|---------|--------|---------|---------|--------|--|--|--|
| tech sub-industries |                                                                                |         |         |        |         |         |        |  |  |  |
| Industry            | Tech<br>intensity                                                              | Austria | Belgium | Cyprus | Denmark | Finland | France |  |  |  |
| ChePH               | High                                                                           | 0.42    | 2.06    | 0.27   | 0.51    | 0.52    | 1.23   |  |  |  |
| Ph                  | M. high                                                                        | 0.78    | 2.01    | 2.01   | 1.73    | 0.22    | 1.06   |  |  |  |
| ME                  | M. high                                                                        | 1.25    | 0.54    | 0.37   | 1.17    | 1.03    | 0.72   |  |  |  |
| OACM                | High                                                                           | 0.36    | 0.45    | 0.30   | 0.54    | 0.35    | 0.59   |  |  |  |
| EMA                 | M. high                                                                        | 1.24    | 0.50    | 0.37   | 1.27    | 1.22    | 1.03   |  |  |  |
| RTCE                | High                                                                           | 0.73    | 0.46    | 1.30   | 0.83    | 3.29    | 0.90   |  |  |  |

| MPOI     | High              | 0.71        | 0.52   | 1.08     | 1.44  | 0.80           | 0.96  |
|----------|-------------------|-------------|--------|----------|-------|----------------|-------|
| MVTST    | M. high           | 1.02        | 1.06   | 0.76     | 0.19  | 0.25           | 1.03  |
| AS       | High              | 0.40        | 0.16   | 0.30     | 0.18  | 0.09           | 3.64  |
| RTE      | M. high           | 2.77        | 0.68   | 0.10     | 0.59  | 0.21           | 0.82  |
| Industry | Tech<br>intensity | Germany     | Greece | Ireland  | Italy | Luxembour<br>g | Malta |
| ChePH    | High              | 0.94        | 0.63   | 2.96     | 0.51  | 0.60           | 0.15  |
| Ph       | M. high           | 0.76        | 0.82   | 4.44     | 0.65  | 0.08           | 0.61  |
| ME       | M. high           | 1.58        | 0.34   | 0.18     | 2.13  | 0.71           | 0.23  |
| OACM     | High              | 0.68        | 0.16   | 6.68     | 0.25  | 0.49           | 0.35  |
| EMA      | M. high           | 1.33        | 0.64   | 0.49     | 0.81  | 0.72           | 1.18  |
| RTCE     | High              | 0.79        | 0.38   | 1.37     | 0.40  | 0.99           | 17.03 |
| MPOI     | High              | 1.45        | 0.29   | 1.87     | 0.69  | 0.40           | 1.11  |
| MVTST    | M. high           | 1.92        | 0.10   | 0.03     | 0.54  | 0.36           | 0.08  |
| AS       | High              | 1.14        | 0.57   | 0.26     | 0.42  | 0.39           | 0.57  |
| RTE      | M. high           | 0.82        | 0.22   | 0.07     | 2.06  | 0.71           | 0.04  |
|          |                   |             |        |          |       |                |       |
| Industry | Tech<br>intensity | Netherlands | Norway | Portugal | Spain | Sweden         | UK    |
| ChePH    | High              | 1.58        | 0.42   | 0.45     | 0.79  | 0.43           | 1.09  |
| Ph       | M. high           | 0.87        | 0.56   | 0.23     | 0.63  | 1.23           | 1.41  |
| ME       | M. high           | 0.55        | 0.88   | 0.43     | 0.57  | 1.15           | 0.86  |
| OACM     | High              | 4.22        | 0.37   | 0.27     | 0.27  | 0.37           | 1.76  |
| EMA      | M. high           | 0.59        | 0.72   | 1.28     | 0.89  | 0.91           | 0.89  |
| RTCE     | High              | 1.31        | 0.56   | 1.09     | 0.52  | 2.34           | 1.48  |
| MPOI     | High              | 1.52        | 0.87   | 0.29     | 0.37  | 1.02           | 1.40  |
| MVTST    | M. high           | 0.31        | 0.17   | 1.04     | 2.27  | 1.01           | 0.78  |
| AS       | High              | 0.28        | 0.58   | 0.23     | 0.56  | 0.52           | 3.08  |
| RTE      | M. high           | 0.74        | 0.34   | 0.83     | 1.54  | 0.68           | 0.72  |

Source: Own calculations based on STAN Bilateral Trade Database Ed. 2012 ISIC Revision 3 Notes: RXA>1 indicates a relative export advantage in industry *j* 

| Table A5.1              | .2 Correl | ation betv | veen Expo          | rt sophis | tication an     | d GDP pe          | r capita          |         |
|-------------------------|-----------|------------|--------------------|-----------|-----------------|-------------------|-------------------|---------|
| Country                 | Austria   | Belgium    | Bulgaria           | Croatia   | Cyprus          | Czech<br>Republic | Denmark           | Estonia |
| Correlation coefficient | 0.9783    | 0.9332     | 0.8702             | 0.9189    | 0.8988          | 0.8719            | 0.9237            | 0.8479  |
| Country                 | Finland   | France     | Germany            | Greece    | Hungary         | Ireland           | Italy             |         |
| Correlation coefficient | 0.9055    | 0.9741     | 0.8513             | 0.9673    | 0.8455          | 0.9488            | 0.9324            |         |
| Country                 | Latvia    | Lithuania  | Luxembo<br>urg     | Malta     | Netherlan<br>ds | Norway            | Poland            |         |
| Correlation coefficient | 0.8092    | 0.9192     | 0.8865             | 0.2808    | 0.6448          | -0.2094           | 0.9537            |         |
| Country                 | Portugal  | Romania    | Slovak<br>Republic | Slovenia  | Spain           | Sweden            | United<br>Kingdom |         |
| Correlation coefficient | 0.9181    | 0.9511     | 0.8836             | 0.8743    | 0.936           | 0.6995            | 0.2603            |         |

Table A5.1.3 Correlation matrix between potential measures of international competitiveness

| Medium-low, medium-high and high tech measures |                    |                       |    |  |  |  |  |  |
|------------------------------------------------|--------------------|-----------------------|----|--|--|--|--|--|
|                                                | lnemsh~d           | lnrxa                 |    |  |  |  |  |  |
| lnemshind<br>lnrxa                             | 1.0000<br>0.5624   | 1.0000                |    |  |  |  |  |  |
| Medium-high a                                  | nd high tec        | h measure<br>lnrxam~h | es |  |  |  |  |  |
| lnemshmhtech<br>lnrxamhtech                    | 1.0000<br>0.7050   | 1.0000                |    |  |  |  |  |  |
| High tech meas                                 | High tech measures |                       |    |  |  |  |  |  |
|                                                | lnemsh~h           | lnrxah~t              |    |  |  |  |  |  |
| <pre>lnemshhtech   lnrxahtech  </pre>          | 1.0000<br>0.7241   | 1.0000                |    |  |  |  |  |  |

#### Medium-high tech measures

|                           |             | lnemsh~m         | lnrxam~t |
|---------------------------|-------------|------------------|----------|
| lnemshmtech<br>lnrxamtech | +·<br> <br> | 1.0000<br>0.6838 | 1.0000   |

Medium and high tech measures (country level analysis)

| lnEXPY    |   | 1.0000 |        |        |         |        |
|-----------|---|--------|--------|--------|---------|--------|
| lnmstechC |   | 0.5895 | 1.0000 |        |         |        |
| lnhstechC |   | 0.6371 | 0.9291 | 1.0000 |         |        |
| lnRXAmid  | 1 | 0.6319 | 0.6577 | 0.4147 | 1.0000  |        |
| lnRXAhigh | 1 | 0.6770 | 0.1849 | 0.4788 | -0.0449 | 1.0000 |

| Table A5.1.4 Descriptive statistics for variables in levels |      |          |         |         |         |          |          |          |  |
|-------------------------------------------------------------|------|----------|---------|---------|---------|----------|----------|----------|--|
| Quantiles                                                   |      |          |         |         |         |          |          |          |  |
| Variable                                                    | n    | Mean     | S.D.    | Min     | .25     | Mdn      | .75      | Max      |  |
| emshind                                                     | 1371 | 4.17     | 8.17    | 0.00    | 0.20    | 0.84     | 3.74     | 55.39    |  |
| emshmhtech                                                  | 4570 | 4.22     | 8.70    | 0.00    | 0.13    | 0.68     | 3.86     | 63.94    |  |
| emshhtech                                                   | 2285 | 4.23     | 8.71    | 0.00    | 0.09    | 0.52     | 3.65     | 62.75    |  |
| emshmtech                                                   | 2285 | 4.20     | 8.68    | 0.00    | 0.19    | 0.85     | 4.04     | 63.94    |  |
| rxa                                                         | 1371 | 0.90     | 0.65    | 0.03    | 0.48    | 0.78     | 1.13     | 5.66     |  |
| rxamhtech                                                   | 4570 | 0.89     | 1.30    | 0.00    | 0.31    | 0.61     | 1.07     | 25.76    |  |
| rxahtech                                                    | 2285 | 0.93     | 1.73    | 0.00    | 0.23    | 0.48     | 0.97     | 25.76    |  |
| rxamtech                                                    | 2285 | 0.85     | 0.62    | 0.00    | 0.45    | 0.70     | 1.14     | 6.39     |  |
| EXPY                                                        | 464  | 11154.73 | 3896.00 | 2848.85 | 8155.45 | 11685.00 | 14117.84 | 18723.78 |  |
| mstechC                                                     | 464  | 4.17     | 8.97    | 0.01    | 0.16    | 0.93     | 3.88     | 50.49    |  |
| hstechC                                                     | 464  | 3.98     | 6.80    | 0.02    | 0.18    | 0.61     | 3.51     | 32.78    |  |
| RXAmid                                                      | 464  | 0.79     | 0.48    | 0.11    | 0.35    | 0.69     | 1.21     | 1.99     |  |
| RXAhigh                                                     | 464  | 1.01     | 1.35    | 0.14    | 0.46    | 0.61     | 0.99     | 8.82     |  |

#### Industry level analysis

Г

| Table A5.2 I<br>tech)                                                                                                   | Model 1 - Fi                                                                                        | xed effect                                                                               | s estima                                                                | ted res                            | ults (mediu                                       | m-high an                                    | d high                 |
|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------|---------------------------------------------------|----------------------------------------------|------------------------|
| <pre>xtreg lnemshmh<br/>lnrulc serv di<br/>year2002 year2<br/>note: cskills<br/>note: dist omi<br/>note: transdum</pre> | itech lnsedut<br>st transdummy<br>2003 year2004<br>omitted becau<br>itted because<br>nmy omitted be | Intedut csk<br>vyear1996 y<br>year2005 ye<br>use of colli<br>of collines<br>ecause of cc | ills lnpa<br>/ear1997 y<br>ar2006 ye<br>.nearity<br>arity<br>ollinearit | itappr ln<br>vear1998<br>≷ar2007 y | fdi lngdpc ln<br>year1999 year2<br>ear2008 year20 | oop unem lne<br>2000 year200<br>309 year2010 | ecofree<br>)1<br>), fe |
| Fixed-effects (within) regressionNumber of obs=3600Group variable: cn_indNumber of groups=270                           |                                                                                                     |                                                                                          |                                                                         |                                    |                                                   |                                              |                        |
| R-sq: within<br>between<br>overall                                                                                      | = 0.2889<br>1 = 0.3573<br>L = 0.2967                                                                |                                                                                          |                                                                         | Obs per                            | group: min =<br>avg =<br>max =                    | 5<br>13.3<br>16                              |                        |
| corr(u_i, Xb)                                                                                                           | = -0.9699                                                                                           |                                                                                          |                                                                         | F(25,33<br>Prob >                  | 05) =<br>F =                                      | 53.71<br>0.0000                              |                        |
| lnemshmhtech                                                                                                            | Coef.                                                                                               | Std. Err.                                                                                | t                                                                       | P> t                               | [95% Conf.                                        | Interval]                                    |                        |
| Insedut  <br>Intedut  <br>Cskills                                                                                       | .0066473<br>.4480713                                                                                | .1371567<br>.1383239                                                                     | 0.05<br>3.24                                                            | 0.961<br>0.001                     | 2622733<br>.1768622                               | .2755679<br>.7192804                         |                        |
| lnpatappr  <br>lnfdi                                                                                                    | 0673167<br>  .0030749                                                                               | .030144<br>.0065681                                                                      | -2.23<br>0.47                                                           | 0.026                              | 1264195<br>0098031                                | 0082139<br>.0159529                          |                        |
| lnpop  <br>unem                                                                                                         | -4.392801<br>.0035325                                                                               | .4362566                                                                                 | -10.07<br>3.62                                                          | 0.000                              | -5.248162                                         | -3.537441<br>.0054435                        |                        |
| lnrulc  <br>serv  <br>dist                                                                                              | .0190662<br>.0057841<br>(omitted)                                                                   | .1927771<br>.2138647<br>.0041922                                                         | 0.09<br>1.38                                                            | 0.202<br>0.929<br>0.168            | 4002544<br>0024355                                | .4383868<br>.0140037                         |                        |
| transdummy  <br>year1996  <br>year1997  <br>vear1998                                                                    | (omitted)<br>.1284116<br>.0904508<br>.0375129                                                       | .0536809<br>.054354<br>0557039                                                           | 2.39<br>1.66<br>0.67                                                    | 0.017<br>0.096<br>0.501            | .0231604<br>0161201<br>- 0717048                  | .2336629<br>.1970217<br>1467306              |                        |
| year1999  <br>year2000  <br>year2001                                                                                    | 0272276<br>0653485<br>066461                                                                        | .0577506<br>.058473<br>.0606392                                                          | -0.47<br>-1.12<br>-1.10                                                 | 0.637<br>0.264<br>0.273            | 1404581<br>1799954<br>1853552                     | .0860029<br>.0492985<br>.0524333             |                        |
| year2002  <br>year2003  <br>year2004                                                                                    | 1089596<br>1310579<br>1309639                                                                       | .0646934<br>.0677822<br>.071308                                                          | -1.68<br>-1.93<br>-1.84                                                 | 0.092<br>0.053<br>0.066            | 2358028<br>2639573<br>2707763                     | .0178835<br>.0018415<br>.0088485             |                        |
| year2003  <br>year2006  <br>year2007  <br>vear2008                                                                      | 1344219<br>2081729<br> 204008<br> 1381461                                                           | .0762303<br>.0802318<br>.0835563<br>.0859307                                             | -2.03<br>-2.59<br>-2.44<br>-1.61                                        | 0.043<br>0.010<br>0.015<br>0.108   | 3654819<br>3678353<br>3066288                     | 0508639<br>0401807<br>.0303366               |                        |
| year2009  <br>year2010  <br>_cons                                                                                       | 0594517<br>1484804<br>22.33965                                                                      | .0873455<br>.0889977<br>5.177327                                                         | -0.68<br>-1.67<br>4.31                                                  | 0.496<br>0.095<br>0.000            | 2307084<br>3229766<br>12.18856                    | .1118051<br>.0260159<br>32.49074             |                        |
| sigma_u  <br>sigma_e  <br>rbo                                                                                           | 7.4539724                                                                                           | (fraction                                                                                | of variar                                                               |                                    |                                                   |                                              |                        |
|                                                                                                                         |                                                                                                     |                                                                                          |                                                                         |                                    |                                                   |                                              |                        |

#### Table A5.2.1 Model 1 - Diagnostic tests

#### Groupwise heteroskedasticity

```
xttest3
Modified Wald test for groupwise heteroskedasticity
in fixed effect regression model
H0: sigma(i)^2 = sigma^2 for all i
chi2 (270) = 3.4e+06
Prob>chi2 = 0.0000
```

#### Autocorrelation in panel data

. xtserial lnemshmhtech lnsedut lntedut cskills lnpatappr lnfdi lngdpc lnpop unem lnecofree lnrulc serv dist transdummy year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010 Wooldridge test for autocorrelation in panel data

```
H0: no first order autocorrelation

F( 1, 269) = 95.964

Prob > F = 0.0000
```

#### Normality of residuals

pantest2 lnemshmhtech lnsedut lntedut cskills lnpatappr lnfdi lngdpc lnpop unem lnecofree lnrulc serv dist transdummy year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010, fe Test for serial correlation in residuals Null hypothesis is either that rho=0 if residuals are AR(1) or that lamda=0 if residuals are MA(1) Following tests only approximate for unbalanced panels LM= 1147.6511 which is asy. distributed as chisg(1) under null, so: Probability of value greater than LM is 1.45e-251 LM5= 33.876999 which is asy. distributed as N(0,1) under null, so: Probability of value greater than abs(LM5) is 0 Test for significance of fixed effects F= 64.545133 Probability>F= 0 Test for normality of residuals

#### Skewness/Kurtosis tests for Normality

| Variable   |  | Obs    | Pr(Skewness) | Pr(Kurtosis) | adj chi2(2) | Prob>chi2 |
|------------|--|--------|--------------|--------------|-------------|-----------|
| <br>00000B |  | 3.6e+0 | 3 0.0000     | 0.0000       | · ·         | 0.0000    |

### Table A5.2.2 Model 1 - Driscoll-Kraay estimated results (medium-high and high tech)

xtscc lnemshmhtech lnsedut lntedut cskills lnpatappr lnfdi lngdpc lnpop unem lnecofree lnrulc serv dist transdummy year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010,fe

| Regression with Driscoll-Kraay standard errors | Number of obs    | = | 3600     |
|------------------------------------------------|------------------|---|----------|
| Method: Fixed-effects regression               | Number of groups | = | 270      |
| Group variable (i): cn_ind                     | F(28, 269)       | = | 85535.10 |
| maximum lag: 2                                 | Prob > F         | = | 0.0000   |
|                                                | within R-squared | = | 0.2889   |

|              |           | Drisc/Kraay |       |       |            |           |
|--------------|-----------|-------------|-------|-------|------------|-----------|
| lnemshmhtech | Coef.     | Std. Err.   | t     | P> t  | [95% Conf. | Interval] |
| lnsedut      | .0066473  | .1782427    | 0.04  | 0.970 | 3442809    | .3575755  |
| lntedut      | .4480713  | .1414963    | 3.17  | 0.002 | .1694902   | .7266524  |
| cskills      | (omitted) |             |       |       |            |           |
| lnpatappr    | 0673167   | .0527501    | -1.28 | 0.203 | 1711722    | .0365388  |
| lnfdi        | .0030749  | .0042777    | 0.72  | 0.473 | 0053472    | .011497   |
| lngdpc       | 1.541684  | .2733236    | 5.64  | 0.000 | 1.003559   | 2.07981   |
| lnpop        | -4.392801 | .4697144    | -9.35 | 0.000 | -5.317585  | -3.468017 |
| unem         | .0035325  | .0018687    | 1.89  | 0.060 | 0001467    | .0072117  |
| lnecofree    | .216126   | .3049482    | 0.71  | 0.479 | 3842628    | .8165148  |
| lnrulc       | .0190662  | .4318098    | 0.04  | 0.965 | 8310904    | .8692229  |
| serv         | .0057841  | .006645     | 0.87  | 0.385 | 0072987    | .0188669  |
| dist         | .0214541  | .00571      | 3.76  | 0.000 | .0102122   | .032696   |
| transdummy   | (omitted) |             |       |       |            |           |
| year1996     | .1284116  | .0246588    | 5.21  | 0.000 | .0798629   | .1769603  |
| year1997     | .0904508  | .0186104    | 4.86  | 0.000 | .0538102   | .1270914  |
| year1998     | .0375129  | .0242462    | 1.55  | 0.123 | 0102235    | .0852494  |
| year1999     | 0272276   | .029337     | -0.93 | 0.354 | 0849869    | .0305317  |
| year2000     | 0653485   | .0296372    | -2.20 | 0.028 | 1236988    | 0069982   |
| year2001     | 066461    | .0361776    | -1.84 | 0.067 | 1376881    | .0047662  |
| year2002     | 1089596   | .0427393    | -2.55 | 0.011 | 1931057    | 0248135   |
| year2003     | 1310579   | .0462134    | -2.84 | 0.005 | 222044     | 0400719   |
| year2004     | 1309639   | .0610153    | -2.15 | 0.033 | 2510922    | 0108357   |
| year2005     | 1544219   | .0710363    | -2.17 | 0.031 | 2942797    | 0145641   |
| year2006     | 2081729   | .0901684    | -2.31 | 0.022 | 3856983    | 0306475   |
| year2007     | 204008    | .0992636    | -2.06 | 0.041 | 3994404    | 0085756   |
| year2008     | 1381461   | .1069378    | -1.29 | 0.198 | 3486876    | .0723954  |
| year2009     | 0594517   | .089528     | -0.66 | 0.507 | 2357164    | .116813   |
| year2010     | 1484804   | .0944648    | -1.57 | 0.117 | 3344647    | .037504   |
| _cons        | (omitted) |             |       |       |            |           |

#### Table A5.2.4 Model 1 - FEVD estimated results (medium-high and high tech)

xtfevd lnemshmhtech lnsedut lntedut cskills lnpatappr lnfdi lngdpc lnpop unem lnecofree lnrulc serv dist transdummy year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010, invariant (cskills dist transdummy)

panel fixed effects regression with vector decomposition

| edom fevd<br>rror<br>red error<br>f Squares<br>quares<br>of Squares                          | = 3302<br>= .1588067<br>= .3985056<br>= 571.7042<br>= 15982.06<br>= 15410.35     |                                                                                                                                                                                                                                                                                                                                      | number of<br>F(30, 1<br>Prob > 1<br>R-square<br>adj. R-1                                                                                                                                                                                                                                                                                                                         | of obs<br>3302)<br>F<br>ed<br>squared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | = 3600<br>= 5.300627<br>= 7.15e-18<br>= .9642284<br>= .9610109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Coef.                                                                                        | fevd<br>Std. Err.                                                                | t                                                                                                                                                                                                                                                                                                                                    | P> t                                                                                                                                                                                                                                                                                                                                                                             | [95% Conf.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Interval]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| .0066473<br>.4480712<br>0673167<br>.0030749<br>1.541684<br>-4.392801<br>.0035325<br>.2161257 | 3.396927<br>5.591645<br>.9623298<br>.2075636<br>7.661675<br>2.624321<br>.0124319 | 0.00<br>0.08<br>-0.07<br>0.01<br>0.20<br>-1.67<br>0.28                                                                                                                                                                                                                                                                               | 0.998<br>0.936<br>0.944<br>0.988<br>0.841<br>0.094<br>0.776                                                                                                                                                                                                                                                                                                                      | -6.653648<br>-10.51537<br>-1.95414<br>4038915<br>-13.48043<br>-9.538261<br>0208424                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.666942<br>11.41151<br>1.819507<br>.4100413<br>16.5638<br>.7526586<br>.0279074                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                              | edom fevd<br>rror<br>red error<br>f Squares<br>of Squares<br>                    | edom fevd = 3302<br>rror = .1588067<br>red error = .3985056<br>f Squares = 571.7042<br>quares = 15982.06<br>of Squares = 15410.35<br>fevd<br>Coef. Std. Err.<br>.0066473 3.396927<br>.4480712 5.591645<br>0673167 .9623298<br>.0030749 .2075636<br>1.541684 7.661675<br>-4.392801 2.624321<br>.0035325 .0124319<br>.2161257 3.333812 | edom fevd = 3302<br>rror = .1588067<br>red error = .3985056<br>f Squares = 571.7042<br>quares = 15982.06<br>of Squares = 15410.35<br>fevd<br>Coef. Std. Err. t<br>.0066473 3.396927 0.00<br>.4480712 5.591645 0.08<br>0673167 .9623298 -0.07<br>.0030749 .2075636 0.01<br>1.541684 7.661675 0.20<br>-4.392801 2.624321 -1.67<br>.0035325 .0124319 0.28<br>.2161257 3.333812 0.06 | edom fevd       =       3302       number of the second | edom fevd       =       3302       number of obs         rror       =       .1588067       F( 30, 3302)         red error       =       .3985056       Prob > F         f Squares       =       571.7042       R-squared         quares       =       15982.06       adj. R-squared         of Squares       =       15410.35       adj. R-squared         fevd         Coef. Std. Err.       t       P> t        [95% Conf.         .0066473       3.396927       0.00       0.998       -6.653648         .480712       5.591645       0.08       0.936       -10.51537        0673167       .9623298       -0.07       0.944       -1.95414         .0030749       .2075636       0.01       0.988      4038915         1.541684       7.661675       0.20       0.841       -13.48043         -4.392801       2.624321       -1.67       0.094       -9.538261         .0035325       .0124319       0.28       0.776      0208424         .2161257       3.333812       0.06       0.948       -6.320422 |

| lnrulc     |  | .0190664  | 2.964983 | 0.01  | 0.995 | -5.794325 | 5.832458 |
|------------|--|-----------|----------|-------|-------|-----------|----------|
| serv       |  | .0057841  | .0906264 | 0.06  | 0.949 | 1719056   | .1834738 |
| year1996   |  | .1284116  | .7631332 | 0.17  | 0.866 | -1.36785  | 1.624674 |
| year1997   |  | .0904508  | .895325  | 0.10  | 0.920 | -1.664997 | 1.845899 |
| year1998   |  | .0375129  | .9795663 | 0.04  | 0.969 | -1.883106 | 1.958132 |
| year1999   |  | 0272276   | .8164943 | -0.03 | 0.973 | -1.628114 | 1.573659 |
| year2000   |  | 0653485   | .8669077 | -0.08 | 0.940 | -1.765079 | 1.634382 |
| year2001   |  | 066461    | 1.058072 | -0.06 | 0.950 | -2.141005 | 2.008083 |
| year2002   |  | 1089596   | 1.050027 | -0.10 | 0.917 | -2.16773  | 1.94981  |
| year2003   |  | 1310579   | 1.1172   | -0.12 | 0.907 | -2.321532 | 2.059416 |
| year2004   |  | 1309639   | 1.089502 | -0.12 | 0.904 | -2.267132 | 2.005205 |
| year2005   |  | 1544219   | 1.212068 | -0.13 | 0.899 | -2.530902 | 2.222058 |
| year2006   |  | 2081729   | 1.17328  | -0.18 | 0.859 | -2.508603 | 2.092257 |
| year2007   |  | 204008    | 1.430642 | -0.14 | 0.887 | -3.009042 | 2.601026 |
| year2008   |  | 1381461   | 1.375258 | -0.10 | 0.920 | -2.83459  | 2.558298 |
| year2009   |  | 0594517   | 1.376848 | -0.04 | 0.966 | -2.759014 | 2.64011  |
| year2010   |  | 1484804   | 1.399729 | -0.11 | 0.916 | -2.892905 | 2.595944 |
| cskills    |  | 8379719   | 4.035411 | -0.21 | 0.836 | -8.750132 | 7.074188 |
| dist       |  | 0029434   | .0033539 | -0.88 | 0.380 | 0095193   | .0036325 |
| transdummy |  | -1.771144 | 10.18861 | -0.17 | 0.862 | -21.74778 | 18.20549 |
| eta        |  | 1         |          |       | •     | •         |          |
| _cons      |  | 30.20459  | 79.61571 | 0.38  | 0.704 | -125.8966 | 186.3057 |

# Table A5.2.5 Model 1 - Hausman and Taylor estimated results (medium-high and high tech)

xthtaylor lnemshmhtech lnsedut lntedut cskills lnpatappr lnfdi lngdpc lnpop unem lnecofree lnrulc serv dist transdummy year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010,endo (lnsedut lntedut cskills)

| Hausman-Taylor estimation<br>Group variable: cn_ind |          |           |       |         | of obs =<br>of groups =        | = 3600<br>= 270       |
|-----------------------------------------------------|----------|-----------|-------|---------|--------------------------------|-----------------------|
|                                                     |          |           |       | Obs per | group: min =<br>avg =<br>max = | = 5<br>= 13.3<br>= 16 |
| Random effects u_i ~ i.i.d.                         |          |           |       |         | i2(28) =<br>chi2 =             | = 1316.19<br>= 0.0000 |
| lnemshmhtech                                        | Coef.    | Std. Err. | Z     | P> z    | [95% Conf                      | . Interval]           |
| TVexogenous                                         |          |           |       |         |                                |                       |
| lnpatappr                                           | 0402285  | .0293262  | -1.37 | 0.170   | 0977068                        | .0172499              |
| lnfdi                                               | .0004914 | .0064159  | 0.08  | 0.939   | 0120835                        | .0130663              |
| lngdpc                                              | 2.24496  | .1328334  | 16.90 | 0.000   | 1.984611                       | 2.505308              |
| lnpop                                               | 9964431  | .2729665  | -3.65 | 0.000   | -1.531448                      | 4614387               |
| unem                                                | .0049675 | .0009426  | 5.27  | 0.000   | .00312                         | .006815               |
| lnecofree                                           | .3991721 | .1875633  | 2.13  | 0.033   | .0315548                       | .7667894              |
| lnrulc                                              | 0626792  | .2088904  | -0.30 | 0.764   | 4720968                        | .3467385              |
| serv                                                | .0043484 | .0040916  | 1.06  | 0.288   | 003671                         | .0123677              |
| year1996                                            | .1176501 | .0524684  | 2.24  | 0.025   | .0148139                       | .2204862              |
| year1997                                            | .0646099 | .0530752  | 1.22  | 0.223   | 0394156                        | .1686354              |
| year1998                                            | .0103687 | .0543855  | 0.19  | 0.849   | 0962248                        | .1169622              |
| year1999                                            | 0699946  | .0562891  | -1.24 | 0.214   | 1803192                        | .0403301              |
| year2000                                            | 1384423  | .0567016  | -2.44 | 0.015   | 2495755                        | 0273092               |
| year2001                                            | 1616747  | .0585354  | -2.76 | 0.006   | 2764021                        | 0469474               |
| year2002                                            | 2265004  | .0621804  | -3.64 | 0.000   | 3483717                        | 1046291               |
| year2003                                            | 2601939  | .0650354  | -4.00 | 0.000   | 3876608                        | 1327269               |
| year2004                                            | 2979283  | .0677657  | -4.40 | 0.000   | 4307467                        | 1651099               |

| year2005     | 353316    | .0719421                                       | -4.91 | 0.000 | 4943199   | 2123121  |  |  |
|--------------|-----------|------------------------------------------------|-------|-------|-----------|----------|--|--|
| year2006     | 4448567   | .074952                                        | -5.94 | 0.000 | 5917598   | 2979536  |  |  |
| year2007     | 4673665   | .0775325                                       | -6.03 | 0.000 | 6193274   | 3154057  |  |  |
| year2008     | 4054393   | .0798445                                       | -5.08 | 0.000 | 5619316   | 248947   |  |  |
| year2009     | 2635684   | .0829911                                       | -3.18 | 0.001 | 426228    | 1009088  |  |  |
| year2010     | 3726656   | .0841737                                       | -4.43 | 0.000 | 537643    | 2076881  |  |  |
| TVendogenous |           |                                                |       |       |           |          |  |  |
| lnsedut      | .2496374  | .1318766                                       | 1.89  | 0.058 | 008836    | .5081108 |  |  |
| lntedut      | .1309138  | .1313395                                       | 1.00  | 0.319 | 126507    | .3883345 |  |  |
| TIexogenous  |           |                                                |       |       |           |          |  |  |
| dist         | 0013344   | .0008806                                       | -1.52 | 0.130 | 0030603   | .0003916 |  |  |
| transdummy   | 1.071381  | .9672452                                       | 1.11  | 0.268 | 8243851   | 2.967146 |  |  |
| TIendogenous |           |                                                |       |       |           |          |  |  |
| cskills      | .7655087  | 3.109235                                       | 0.25  | 0.806 | -5.328479 | 6.859496 |  |  |
|              |           |                                                |       |       |           |          |  |  |
| _cons        | -18.81571 | 16.20514                                       | -1.16 | 0.246 | -50.5772  | 12.94579 |  |  |
| +            |           |                                                |       |       |           |          |  |  |
| sigma_u      | 7.160894  |                                                |       |       |           |          |  |  |
| sigma_e      | .4143464  |                                                |       |       |           |          |  |  |
| rho          | .99666312 | <pre>2 (fraction of variance due to u_i)</pre> |       |       |           |          |  |  |

Table A5.2.6 Model 1 - IV estimated results (medium-high and high tech) xtivreg2 lnemshmhtech cskills lngdpc lnpop unem lnecofree serv lnrulc dist transdummy year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010 (lnsedut lntedut lnpatappr lnfdi = lnsedutlag1 lntedutlag1 lnpatapprlag1 lnfdilag1), fe endog (lnsedut lntedut lnpatappr lnfdi) small robust bw(3) Warning - collinearities detected Vars dropped: cskills dist transdummy year2009 FIXED EFFECTS ESTIMATION \_\_\_\_\_ Number of groups = 270 Obs per group: min = 3 avg = 12.8 max = 15 IV (2SLS) estimation \_\_\_\_\_ Estimates efficient for homoskedasticity only Statistics robust to heteroskedasticity and autocorrelation kernel=Bartlett; bandwidth=3 time variable (t): year group variable (i): cn ind Number of obs = 3450 15.66 F(24, 3156) = Prob > F = Centered R2 = 0.0000 Total (centered) SS = 687.4382722 Total (uncentered) SS = 687.4382722 Residual SS = 476.9999837 0.3061 Uncentered R2 = 0.3061 = Root MSE .3888 \_\_\_\_\_ Robust lnemshmhtech | Coef. Std. Err. t P>|t| [95% Conf. Interval] \_\_\_\_\_+\_\_\_\_+\_\_\_\_\_\_\_ lnsedut | .1399436 .2024388 0.69 0.489 -.2569813 .5368685 lntedut | .5940303 .2378455 2.50 0.013 .1276829 1.060378 lnpatappr | -.0771282 .06909 -1.12 0.264 -.2125939 .0583376 lnfdi | -.0029849 .009637 -0.31 0.757 -.0218803 .0159106

| lnadna                                                                                                                                                                                                                                                                                                                                             | 1 571574      | 2401647     | 6 54     | 0 000                          | 1 100679                                           | 2 042469                           |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------|----------|--------------------------------|----------------------------------------------------|------------------------------------|--|
| lnnon                                                                                                                                                                                                                                                                                                                                              | -4 431126     | 6706334     | -6 61    | 0.000                          | -5 746048                                          | -3 116204                          |  |
| unem                                                                                                                                                                                                                                                                                                                                               | 0020621       | 0013306     | 1 55     | 0.121                          | - 0005468                                          | 0046709                            |  |
| lnecofree                                                                                                                                                                                                                                                                                                                                          | - 0611914     | 2724328     | -0 22    | 0 822                          | - 5953548                                          | 4729719                            |  |
| serv                                                                                                                                                                                                                                                                                                                                               | .0071299      | .0084514    | 0.84     | 0.399                          | 009441                                             | .0237007                           |  |
| lnrulc                                                                                                                                                                                                                                                                                                                                             | 0859437       | .3031814    | -0.28    | 0.777                          | 6803962                                            | .5085088                           |  |
| vear1996                                                                                                                                                                                                                                                                                                                                           | .2401015      | .0990599    | 2.42     | 0.015                          | .0458733                                           | .4343298                           |  |
| vear1997                                                                                                                                                                                                                                                                                                                                           | .2021264      | .0910967    | 2.22     | 0.027                          | .0235115                                           | .3807412                           |  |
| vear1998                                                                                                                                                                                                                                                                                                                                           | .1480505      | .0835859    | 1.77     | 0.077                          | 0158376                                            | .3119387                           |  |
| vear1999                                                                                                                                                                                                                                                                                                                                           | .0695011      | .0782203    | 0.89     | 0.374                          | 0838666                                            | .2228688                           |  |
| year2000                                                                                                                                                                                                                                                                                                                                           | .0337942      | .0728581    | 0.46     | 0.643                          | 1090598                                            | .1766482                           |  |
| year2001                                                                                                                                                                                                                                                                                                                                           | .0309833      | .0632898    | 0.49     | 0.624                          | 09311                                              | .1550765                           |  |
| year2002                                                                                                                                                                                                                                                                                                                                           | 0119223       | .0579409    | -0.21    | 0.837                          | 1255279                                            | .1016833                           |  |
| year2003                                                                                                                                                                                                                                                                                                                                           | 0097416       | .0553357    | -0.18    | 0.860                          | 1182391                                            | .0987559                           |  |
| year2004                                                                                                                                                                                                                                                                                                                                           | 0541639       | .0533582    | -1.02    | 0.310                          | 1587841                                            | .0504563                           |  |
| year2005                                                                                                                                                                                                                                                                                                                                           | 0869496       | .0515353    | -1.69    | 0.092                          | 1879957                                            | .0140966                           |  |
| year2006                                                                                                                                                                                                                                                                                                                                           | 1316133       | .053001     | -2.48    | 0.013                          | 2355333                                            | 0276934                            |  |
| year2007                                                                                                                                                                                                                                                                                                                                           | 1353721       | .0517302    | -2.62    | 0.009                          | 2368003                                            | 0339439                            |  |
| year2008                                                                                                                                                                                                                                                                                                                                           | 0831214       | .0376148    | -2.21    | 0.027                          | 1568734                                            | 0093694                            |  |
| year2010                                                                                                                                                                                                                                                                                                                                           | 0848502       | .0313313    | -2.71    | 0.007                          | 1462819                                            | 0234184                            |  |
| <br>Weak identific                                                                                                                                                                                                                                                                                                                                 | ation test (C | ragg-Donald | Wald F s | Chi-<br>statistic<br>ald F sta | <pre>sq(1) P-val =</pre>                           | = 0.0000<br><br>698.597<br>169.991 |  |
| Stock-Yogo wea                                                                                                                                                                                                                                                                                                                                     | k ID test cri | tical value | s:       |                                | <not< td=""><td>available&gt;</td><td></td></not<> | available>                         |  |
| Hansen J stati                                                                                                                                                                                                                                                                                                                                     | stic (overide | ntification | test of  | all inst<br>(equat             | ruments):                                          | 0.000<br>identified)               |  |
| -endog- option<br>Endogeneity te                                                                                                                                                                                                                                                                                                                   | st of endogen | ous regress | ors:     | Chi-                           | sq(4) P-val =                                      | 18.858<br>= 0.0008                 |  |
| Regressors tes                                                                                                                                                                                                                                                                                                                                     | ted: lnsed    | ut lntedut  | lnpatapp | r lnfdi                        |                                                    |                                    |  |
| Instrumented:<br>Included instruments: lngdpc lnpop unem lnecofree serv lnrulc year1996 year1997<br>year1998 year1999 year2000 year2001 year2002 year2003<br>year2004 year2005 year2006 year2007 year2008 year2010<br>Excluded instruments: lnsedutlag1 lntedutlag1 lnpatapprlag1 lnfdilag1<br>Dropped collinear: cskills dist transdummy year2009 |               |             |          |                                |                                                    |                                    |  |
|                                                                                                                                                                                                                                                                                                                                                    |               |             |          |                                |                                                    |                                    |  |

| Table A5.2.6.1 Model 1                                                                                                                                                                                 | - IV estimated resu                                                                                                                                                       | ults - ETEs (1                                                                   | medium-h                                                | igh and high                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|
| tech)                                                                                                                                                                                                  |                                                                                                                                                                           |                                                                                  |                                                         |                                                        |
| <pre>xtivreg2 lnemshmhtech cs} year1996 year1997 year1998 year2005 year2006 year2007 lnfdi = lnsedutlag1 lntedu (lnsedut lntedut lnpatappn Warning - collinearities of Vars dropped: cskills dis</pre> | kills lngdpc lnpop uner<br>8 year1999 year2000 yea<br>7 year2008 year2009 yea<br>utlag1 lnpatapprlag1 ln<br>r lnfdi) small robust b<br>detected<br>st transdummy year2009 | m lnecofree ser<br>ar2001 year2002<br>ar2010 (lnsedu<br>nfdilag1) if tr<br>bw(3) | rv lnrulc d.<br>2 year2003<br>ut lntedut<br>ransdummy== | ist transdummy<br>year2004<br>lnpatappr<br>l, fe endog |
| FIXED EFFECTS ESTIMATION                                                                                                                                                                               |                                                                                                                                                                           |                                                                                  |                                                         |                                                        |
| Number of groups = 1                                                                                                                                                                                   | 100                                                                                                                                                                       | Obs per group:                                                                   | : min =<br>avg =<br>max =                               | 7<br>13.3<br>15                                        |
| IV (2SLS) estimation                                                                                                                                                                                   |                                                                                                                                                                           |                                                                                  |                                                         |                                                        |

| Estimatos offi                        | cient for hom  | nekedastici  | ty only   |                |                                           |              |
|---------------------------------------|----------------|--------------|-----------|----------------|-------------------------------------------|--------------|
| Statistics rob                        | ust to beter   | skedasticit  | v and aut | tocorre        | lation                                    |              |
| kernel=Bartl                          | ett: bandwidt  | h=3          | y and au  | 0000110.       |                                           |              |
| time variabl                          | .e (t): vear   |              |           |                |                                           |              |
| group variab                          | ole (i): cn ir | nd           |           |                |                                           |              |
| 5 - 1                                 | _              |              |           |                |                                           |              |
|                                       |                |              |           |                | Number of obs                             | = 1330       |
|                                       |                |              |           |                | F(24, 1206)                               | = 19.54      |
|                                       |                |              |           |                | Prob > F                                  | = 0.0000     |
| otal (centere                         | ed) SS =       | 555.6833217  |           |                | Centered R2                               | = 0.4378     |
| otal (uncente                         | ered) SS =     | 555.6833217  |           |                | Uncentered R2                             | = 0.4378     |
| esidual SS                            | - =            | 312.3973365  |           |                | Root MSE                                  | = .509       |
|                                       |                |              |           |                |                                           |              |
|                                       |                |              |           |                |                                           |              |
| , , , , , , , , , , , , , , , , , , , | ~ ~ ~          | Robust       |           |                | 5050 g G                                  |              |
| nemshmhtech                           | Coef.          | Std. Err.    | t<br>t    | P> t           | [95% Cont                                 | . Interval]  |
| lnsedut                               | .1952297       | .6618024     | 0.29      | 0.768          | -1.103182                                 | 1.493642     |
| lntedut                               | 7948303        | .4962951     | -1.60     | 0.110          | -1.768528                                 | .1788675     |
| lnpatappr                             | 4790029        | .1921727     | -2.49     | 0.013          | 8560328                                   | 101973       |
| lnfdi l                               | 1334717        | .1566632     | -0.85     | 0.394          | 4408344                                   | .173891      |
| lnadpc                                | .5816821       | .4227933     | 1.38      | 0.169          | 24781                                     | 1.411174     |
| l gogul                               | 2.372562       | 2.910227     | 0.82      | 0.415          | -3.337108                                 | 8.082232     |
| unem                                  | 0086893        | .0025283     | -3.44     | 0.001          | 0136498                                   | 0037289      |
| lnecofree                             | .1294825       | .5211792     | 0.25      | 0.804          | 8930362                                   | 1.152001     |
| serv                                  | .0005366       | .0141007     | 0.04      | 0.970          | 0271281                                   | .0282013     |
| lnrulc                                | .5205598       | .4480107     | 1.16      | 0.245          | 3584072                                   | 1.399527     |
| vear1996                              | -1.571125      | .4189215     | -3.75     | 0.000          | -2.393021                                 | 7492292      |
| vear1997                              | -1.44155       | .3753862     | -3.84     | 0.000          | -2.178033                                 | 7050675      |
| vear1998                              | -1.391926      | .3501737     | -3.97     | 0.000          | -2.078944                                 | 7049088      |
| vear1999                              | -1.430992      | .3247988     | -4.41     | 0.000          | -2.068225                                 | 7937583      |
| year2000                              | -1.328463      | .2942554     | -4.51     | 0.000          | -1.905772                                 | 7511536      |
| vear2001                              | -1.096504      | .2545619     | -4.31     | 0.000          | -1.595937                                 | 5970707      |
| vear2002                              | 9002179        | .2024752     | -4.45     | 0.000          | -1.297461                                 | 5029751      |
| vear2003                              | 7976994        | .1834149     | -4.35     | 0.000          | -1.157547                                 | 4378516      |
| vear2004                              | 5931634        | .1496387     | -3.96     | 0.000          | 8867444                                   | 2995823      |
| year2005                              | 5092432        | .1390069     | -3.66     | 0.000          | 7819655                                   | 2365209      |
| vear2006                              | 3769978        | .1222872     | -3.08     | 0.002          | 616917                                    | 1370786      |
| vear2007                              | 1939025        | .1065175     | -1.82     | 0.069          | 4028826                                   | .0150777     |
| year2008                              | 0711946        | .0905889     | -0.79     | 0.432          | 248924                                    | .1065349     |
| year2010                              | .1303283       | .0756506     | 1.72      | 0.085          | 0180931                                   | .2787497     |
|                                       |                |              |           |                |                                           |              |
| Inderidentific                        | ation test (P  | Kleibergen-P | aap rk LN | M stati        | stic):                                    | 115.494      |
|                                       |                |              |           | Ch             | i-sq(1) P-val =                           | = 0.0000     |
| leak identific                        | ation test (C  | Cragg-Donald | Wald F s  | statist:       | ic):                                      | 177.500      |
|                                       | (F             | Kleibergen-P | aap rk Wa | ald F s        | tatistic):                                | 128.890      |
| tock-Yogo wea                         | k ID test cri  | tical value. | s:        |                | <not< td=""><td>available&gt;</td></not<> | available>   |
| ansen J stati                         | stic (overide  | entification | test of   | all in:        | struments):                               | 0.000        |
|                                       |                |              |           | (equa          | ation exactly :                           | identified)  |
| endog- option                         | 1:<br>         |              |           |                |                                           | 00.045       |
| naogeneity te                         | est of endoger | lous regress | ors:      | ~`             |                                           | 20.04/       |
| aarassars taa                         | ted. lnear     | lut lntodut  | lnnatanna | Ch:<br>r lnfdi | 1-sq(4) P-val =                           | = 0.0005     |
| eyressors les                         | Insec          | IILEAUC      |           |                |                                           |              |
| instrumented:                         | lnsec          | lut lntedut  | lnpatappi | r lnfdi        |                                           |              |
| included instr                        | uments: lnqdp  | oc lnpop une | m lnecofi | ree ser        | v lnrulc year19                           | 996 year1997 |
|                                       | vearl          | .998 year199 | 9 year200 | 00 year:       | 2001 year2002 v                           | year2003     |
|                                       | vear2          | 2004 year200 | 5 year200 | )6 year:       | 2007 year2008 v                           | year2010     |
| xcluded instr                         | uments: Insec  | utlag1 lnte  | dutlag1 1 | Inpatap        | orlag1 lnfdilad                           | g1           |

Dropped collinear: cskills dist transdummy year2009

## Table A5.2.6.2 Model 1 - IV estimated results –N-ETEs (medium-high and high tech)

xtivreg2 lnemshmhtech cskills lngdpc lnpop unem lnecofree serv lnrulc dist transdummy year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010 (lnsedut lntedut lnpatappr lnfdi = lnsedutlaq1 lntedutlaq1 lnpatapprlaq1 lnfdilaq1) if transdummy==0, fe endoq (lnsedut lntedut lnpatappr lnfdi) small robust bw(3) Warning - collinearities detected Vars dropped: cskills dist transdummy year2009 FIXED EFFECTS ESTIMATION \_\_\_\_\_ Number of groups = 170 Obs per group: min = 3 avg = 12.5 max = 15 IV (2SLS) estimation Estimates efficient for homoskedasticity only Statistics robust to heteroskedasticity and autocorrelation kernel=Bartlett; bandwidth=3 time variable (t): year group variable (i): cn ind 2120 Number of obs = F(24, 1926) =3.91 Prob > F = 0.0000Centered R2 = 0.1022Total (centered) SS = 131.7549505 Total (uncentered) SS = 131.7549505 Uncentered R2 = 0.1022= 118.2914517 .2478 Residual SS Root MSE = \_\_\_\_\_ Robust lnemshmhtech | Coef. Std. Err. t P>|t| [95% Conf. Interval] \_\_\_\_\_+ Insedut |-.3280825.1565764-2.100.036-.6351596-.0210053Intedut |.2917022.23402891.250.213-.1672744.7506788Inpatappr |.1233427.0666531.850.064-.0073769.2540623Infdi |.0115541.00936321.230.217-.006809.0299172 lntedut | lnpatappr | lngdpc | -.4715698 .3389591 -1.39 0.164 -1.136335 .1931956 lnpop | -2.701889 .6122162 -4.41 0.000 -3.902565 -1.501213 unem | -.0003338 .001271 -0.26 0.793 -.0028264 .0021588 lnecofree | -.0768207 .2653024 -0.29 0.772 -.5971309 .4434895 serv | -.0117376 .0071989 -1.63 0.103 -.025856 .0023809 lnrulc | -.8860703 .4119562 -2.15 0.032 -1.693997 -.0781433year1996 | -.1153767 .1118698 -1.03 0.303 -.3347753 .1040219 .1018004 year1997 | -.0993442 .1025621 -0.97 0.333 -.3004887 year1998 | -.1163879 .0907828 year1999 | -.0987693 .0824043 0.200 0.231 .0616551 -1.28 -.2944308 -.1002267 .071510 -.05550 -.2603804 -1.20 .0628418 -.0585931 .0611050 -.044015 0.161 .0400351 year2000 | -1.40 -.2404884 -0.96 0.338 -.1785892 year2001 | .061403 year2002 | -.0443178 .0557202 -0.80 0.427 -.1535961 .0649605 year2003 | -.0049112 .0513555 -0.10 0.924 .095807 -.1056294 year2004 | -.0154307 .049206 -0.31 0.754 .081072 -.1119333 vear2005 | -.0251745 .044828 -0.56 0.574 -.1130909 .0627419 year2006 | -.0370108 .0406477 -0.91 0.363 -.1167288 .0427073 year2007 | -.0195811 .0401961 -0.49 0.626 -.0984135 .0592513 year2008 | -.0203023 .0312567 -0.65 0.516 -.0816028 .0409983

year2010 | -.0611201 .0244465 -2.50 0.012 -.1090644 -.0131758 \_\_\_\_\_ Underidentification test (Kleibergen-Paap rk LM statistic): 101.470 Chi-sq(1) P-val = 0.0000\_\_\_\_\_ Weak identification test (Cragg-Donald Wald F statistic): 296.127 (Kleibergen-Paap rk Wald F statistic): 73.906 Stock-Yogo weak ID test critical values: <not available> \_\_\_\_\_ Hansen J statistic (overidentification test of all instruments): 0.000 (equation exactly identified) -endog- option: Endogeneity test of endogenous regressors: 4.588 Chi-sq(4) P-val = 0.3323 Regressors tested: Insedut Intedut Inpatappr Infdi \_\_\_\_\_ \_\_\_\_\_ Instrumented: Insedut Intedut Inpatappr Infdi Included instruments: lngdpc lnpop unem lnecofree serv lnrulc year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2010 Excluded instruments: lnsedutlag1 lntedutlag1 lnpatapprlag1 lnfdilag1 Dropped collinear: cskills dist transdummy year2009 \_\_\_\_\_

Table A5.2.6.3 Model 1 - IV estimated results (high tech)

xtivreg2 lnemshmhtech cskills lngdpc lnpop unem lnecofree serv lnrulc dist transdummy year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010 (lnsedut lntedut lnpatappr lnfdi = lnsedutlag1 lntedutlag1 lnpatapprlag1 lnfdilag1) if mhtechintens==1, fe endog (lnsedut lntedut lnpatappr lnfdi) small robust bw(3) Warning - collinearities detected Vars dropped: cskills dist transdummy year2009 FIXED EFFECTS ESTIMATION \_\_\_\_\_ Number of groups = 135 Obs per group: min = 3 avg = 12.8 max = 15 IV (2SLS) estimation \_\_\_\_\_ Estimates efficient for homoskedasticity only Statistics robust to heteroskedasticity and autocorrelation kernel=Bartlett; bandwidth=3 time variable (t): year group variable (i): cn ind 1725 6.57 Number of obs = F(24, 1566) =Prob > F = 0.0000Centered R2 = 0.2450 Total (centered) SS = 493.2394608 Total (uncentered) SS = 493.2394608 Residual SS = 372.3798637 Uncentered R2 = 0.2450 Root MSE = .4876 \_\_\_\_\_ Robust lnemshmhtech | Coef. Std. Err. t P>|t| [95% Conf. Interval] \_\_\_\_\_+ lnsedut | .4473376 .3491348 1.28 0.200 -.2374834 1.132159 Intedut |.7832476.4314231.820.070-.062981.629475Inpatappr |-.2173787.1219136-1.780.075-.4565097.0217523

| lnfdi                                                               | 0122058                                                                    | .0167072                                                                                 | -0.73                                                                      | 0.465                                                                  | 0449766                                                          | .0205651                                   |
|---------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------|
| lngdpc                                                              | 1.793507                                                                   | .4206616                                                                                 | 4.26                                                                       | 0.000                                                                  | .9683873                                                         | 2.618626                                   |
| lnpop                                                               | -3.423159                                                                  | 1.123148                                                                                 | -3.05                                                                      | 0.002                                                                  | -5.626191                                                        | -1.220126                                  |
| unem                                                                | .0035996                                                                   | .0024182                                                                                 | 1.49                                                                       | 0.137                                                                  | 0011436                                                          | .0083427                                   |
| lnecofree                                                           | .0590562                                                                   | .4855697                                                                                 | 0.12                                                                       | 0.903                                                                  | 8933791                                                          | 1.011492                                   |
| serv                                                                | .013172                                                                    | .0150688                                                                                 | 0.87                                                                       | 0.382                                                                  | 0163852                                                          | .0427292                                   |
| lnrulc                                                              | .2416909                                                                   | .5202102                                                                                 | 0.46                                                                       | 0.642                                                                  | 778691                                                           | 1.262073                                   |
| year1996                                                            | .3567661                                                                   | .172619                                                                                  | 2.07                                                                       | 0.039                                                                  | .0181773                                                         | .6953549                                   |
| year1997                                                            | .3349443                                                                   | .1605689                                                                                 | 2.09                                                                       | 0.037                                                                  | .0199916                                                         | .6498969                                   |
| year1998                                                            | .2483239                                                                   | .1482803                                                                                 | 1.67                                                                       | 0.094                                                                  | 0425249                                                          | .5391727                                   |
| year1999                                                            | .1284968                                                                   | .1401919                                                                                 | 0.92                                                                       | 0.360                                                                  | 1464868                                                          | .4034803                                   |
| year2000                                                            | .1040232                                                                   | .1300797                                                                                 | 0.80                                                                       | 0.424                                                                  | 1511255                                                          | .3591719                                   |
| year2001                                                            | .0751594                                                                   | .1122336                                                                                 | 0.67                                                                       | 0.503                                                                  | 1449846                                                          | .2953033                                   |
| year2002                                                            | .0204579                                                                   | .1027182                                                                                 | 0.20                                                                       | 0.842                                                                  | 1810219                                                          | .2219376                                   |
| year2003                                                            | .0171007                                                                   | .0982833                                                                                 | 0.17                                                                       | 0.862                                                                  | 17568                                                            | .2098814                                   |
| year2004                                                            | 0468091                                                                    | .0948619                                                                                 | -0.49                                                                      | 0.622                                                                  | 2328789                                                          | .1392607                                   |
| year2005                                                            | 1050729                                                                    | .0913715                                                                                 | -1.15                                                                      | 0.250                                                                  | 2842963                                                          | .0741505                                   |
| year2006                                                            | 1660474                                                                    | .0937589                                                                                 | -1.77                                                                      | 0.077                                                                  | 3499535                                                          | .0178587                                   |
| year2007                                                            | 1625663                                                                    | .0918048                                                                                 | -1.77                                                                      | 0.077                                                                  | 3426396                                                          | .0175071                                   |
| year2008                                                            | 0878096                                                                    | .0667486                                                                                 | -1.32                                                                      | 0.189                                                                  | 2187356                                                          | .0431164                                   |
| year2010                                                            | 1183215                                                                    | .0565171                                                                                 | -2.09                                                                      | 0.036                                                                  | 2291787                                                          | 0074644                                    |
| <br>Weak identific                                                  | cation test (C                                                             | <br>ragg-Donald                                                                          | <br>Wald F s                                                               | -Chi-<br>statistic                                                     | sq(1) P-val =                                                    | = 0.0000<br>                               |
| Stock-Yogo wea                                                      | (K<br>ak ID test cri                                                       | leibergen-P<br>tical value                                                               | aap rk Wa<br>s:                                                            | ald F sta                                                              | tistic):<br><not< td=""><td>84.349<br/>available&gt;</td></not<> | 84.349<br>available>                       |
| Hansen J stati                                                      | stic (overide                                                              | entification                                                                             | test of                                                                    | all inst<br>(equat                                                     | ruments):<br>ion exactly i                                       | 0.000<br>Identified)                       |
| Endogeneity te                                                      | st of endoger                                                              | INIS FATARS                                                                              | ors                                                                        |                                                                        |                                                                  | 13 641                                     |
| indogeneity te                                                      | sse or endoyer                                                             | ious regress                                                                             | 013.                                                                       | Chi-                                                                   | sa(4) P-val =                                                    | = 0.0085                                   |
| Regressors tes                                                      | sted: lnsed                                                                | lut lntedut                                                                              | lnpatapp                                                                   | r lnfdi                                                                | i var -                                                          |                                            |
| Instrumented:<br>Included instr<br>Excluded instr<br>Dropped collir | lnsed<br>ruments: lngdr<br>year1<br>year2<br>ruments: lnsed<br>hear: cskil | lut lntedut<br>oc lnpop une<br>998 year199<br>004 year200<br>lutlag1 lnte<br>ls dist tra | lnpatappi<br>m lnecofi<br>9 year200<br>5 year200<br>dutlag1 1<br>nsdummy y | r lnfdi<br>ree serv<br>)0 year20<br>)6 year20<br>Inpatappr<br>year2009 | lnrulc year19<br>01 year2002 y<br>07 year2008 y<br>1ag1 lnfdilag | 996 year1997<br>year2003<br>year2010<br>g1 |
|                                                                     |                                                                            |                                                                                          |                                                                            |                                                                        |                                                                  |                                            |

#### Table A5.2.6.3.1 Model 1 - IV estimated results - ETEs (high tech)

\_\_\_\_\_
| Estimates effi<br>Statistics rok<br>kernel=Bart1<br>time variab1<br>group variak | icient for h<br>bust to hete<br>lett; bandwi<br>le (t): yea<br>ble (i): cn | nomoskedastici<br>eroskedasticit<br>.dth=3<br>ar<br>_ind | ty only<br>y and aut                   | cocorrel                         | lation                                                                                |                                      |
|----------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------|----------------------------------|---------------------------------------------------------------------------------------|--------------------------------------|
|                                                                                  |                                                                            |                                                          |                                        |                                  | Number of obs $F(25, 590)$ Prob > F                                                   | = 665<br>= 9.42<br>= 0.0000          |
| Total (centere                                                                   | ed)SS =                                                                    | 401.3177204                                              |                                        |                                  | Centered R2                                                                           | = 0.4230                             |
| Total (uncente                                                                   | ered) SS =                                                                 | 401.3177204                                              |                                        |                                  | Uncentered R2                                                                         | = 0.4230                             |
| Residual SS                                                                      | =                                                                          | = 231.5427102                                            |                                        |                                  | Root MSE                                                                              | = .6265                              |
|                                                                                  |                                                                            |                                                          |                                        |                                  |                                                                                       |                                      |
| lnemshmhtech                                                                     | Coef.                                                                      | Robust<br>Std. Err.                                      | t                                      | P> t                             | [95% Conf.                                                                            | Interval]                            |
| lnsedut                                                                          | .198904                                                                    | 1.280211                                                 | 0.16                                   | 0.877                            | -2.315421                                                                             | 2.713229                             |
| lntedut                                                                          | -1.251518                                                                  | .8483557                                                 | -1.48                                  | 0.141                            | -2.917683                                                                             | .4146463                             |
| lnpatappr                                                                        | 9870772                                                                    | .3430659                                                 | -2.88                                  | 0.004                            | -1.660856                                                                             | 3132982                              |
| lnfdi                                                                            | 1711796                                                                    | .2875938                                                 | -0.60                                  | 0.552                            | 7360118                                                                               | .3936526                             |
| lngdpc                                                                           | 0285719                                                                    | .7144161                                                 | -0.04                                  | 0.968                            | -1.43168                                                                              | 1.374536                             |
| lnpop                                                                            | 5.02204                                                                    | 5.299476                                                 | 0.95                                   | 0.344                            | -5.386092                                                                             | 15.43017                             |
| unem                                                                             | 0123027                                                                    | .0045496                                                 | -2.70                                  | 0.007                            | 021238                                                                                | 0033673                              |
| lnecofree                                                                        | .5824788                                                                   | .9035067                                                 | 0.64                                   | 0.519                            | -1.192002                                                                             | 2.35696                              |
| serv                                                                             | 0138461                                                                    | .0261494                                                 | -0.53                                  | 0.597                            | 0652033                                                                               | .0375112                             |
| lnrulc                                                                           | 1.482213                                                                   | .7813957                                                 | 1.90                                   | 0.058                            | 0524425                                                                               | 3.016869                             |
| transindn                                                                        | .104459                                                                    | 1.456044                                                 | 0.07                                   | 0.943                            | -2.755202                                                                             | 2.96412                              |
| year1997                                                                         | .19873                                                                     | .2359112                                                 | 0.84                                   | 0.400                            | 264598                                                                                | .6620579                             |
| year1998                                                                         | .2495063                                                                   | .2791831                                                 | 0.89                                   | 0.372                            | 2988073                                                                               | .7978199                             |
| year1999                                                                         | .2308803                                                                   | .3071002                                                 | 0.75                                   | 0.452                            | 3722624                                                                               | .834023                              |
| year2000                                                                         | .3684242                                                                   | .3485211                                                 | 1.06                                   | 0.291                            | 3160688                                                                               | 1.052917                             |
| year2001                                                                         | .713691                                                                    | .3960203                                                 | 1.80                                   | 0.072                            | 0640893                                                                               | 1.491473                             |
| year2002                                                                         | 1.086806                                                                   | .4918969                                                 | 2.21                                   | 0.028                            | .1207237                                                                              | 2.052888                             |
| year2003                                                                         | 1.226051                                                                   | .5121049                                                 | 2.39                                   | 0.017                            | .2202803                                                                              | 2.231821                             |
| year2004                                                                         | 1.532979                                                                   | .5730116                                                 | 2.68                                   | 0.008                            | .4075884                                                                              | 2.65837                              |
| year2005                                                                         | 1.623036                                                                   | .6135215                                                 | 2.65                                   | 0.008                            | .4180838                                                                              | 2.827988                             |
| year2006                                                                         | 1.85954                                                                    | .6783466                                                 | 2.74                                   | 0.006                            | .5272725                                                                              | 3.191808                             |
| year2007                                                                         | 2.180718                                                                   | .724708                                                  | 3.01                                   | 0.003                            | .7573966                                                                              | 3.604039                             |
| year2008                                                                         | 2.415822                                                                   | .7339488                                                 | 3.29                                   | 0.001                            | .9743517                                                                              | 3.857292                             |
| year2009                                                                         | 2.507309                                                                   | .7820675                                                 | 3.21                                   | 0.001                            | .9713335                                                                              | 4.043284                             |
| year2010                                                                         | 2.68994                                                                    | .8245002                                                 | 3.26                                   | 0.001                            | 1.070628                                                                              | 4.309252                             |
| Underidentific                                                                   | cation test                                                                | (Kleibergen-P                                            | aap rk LM                              | 1 statis<br>Chi                  | stic):<br>i-sq(1) P-val =                                                             | 61.383<br>= 0.0000                   |
|                                                                                  |                                                                            |                                                          |                                        |                                  |                                                                                       |                                      |
| Weak identific<br>Stock-Yogo wea                                                 | ation test<br>ak ID test d                                                 | Cragg-Donald)<br>(Kleibergen-P)<br>critical value        | l Wald F s<br>Yaap rk Wa<br>es:        | ald F st                         | LC):<br>tatistic):<br><not< td=""><td>/8.55/<br/>59.978<br/>available&gt;</td></not<> | /8.55/<br>59.978<br>available>       |
|                                                                                  |                                                                            |                                                          |                                        |                                  |                                                                                       |                                      |
| Hansen J stati                                                                   | istic (overi                                                               | dentification                                            | test of                                | all ins<br>(equa                 | struments):<br>ation exactly i                                                        | 0.000<br>dentified)                  |
| -endog- optior<br>Endogeneity te                                                 | n:<br>est of endog                                                         | genous regress                                           | ors:                                   | Ch                               | i-sq(4) P-val =                                                                       | 17.344                               |
| Regressors tes                                                                   | sted: lns                                                                  | edut lntedut                                             | lnpatappr                              | lnfdi                            |                                                                                       |                                      |
| Instrumented.                                                                    | <br>]n:                                                                    | sedut Intedut                                            | lnnatannr                              | lnfdi                            |                                                                                       |                                      |
| Included instr                                                                   | ruments: lng<br>yea<br>yea                                                 | gdpc lnpop une<br>ar1998 year199<br>ar2004 year200       | em lnecofr<br>99 year200<br>15 year200 | ree serv<br>)0 year2<br>)6 year2 | 7 lnrulc transi<br>2001 year2002 y<br>2007 year2008 y                                 | ndn year1997<br>vear2003<br>vear2009 |
| Excluded instr                                                                   | yea<br>ruments: lns                                                        | ar2010<br>sedutlag1 lnte                                 | dutlag1 l                              | npatapp                          | orlag1 lnfdilag                                                                       | <b>1</b>                             |

| Dropped | collinear: | cskills | dist | transdummy | year1996 |
|---------|------------|---------|------|------------|----------|
|         |            |         |      |            |          |

| <b>Table A5.2.6</b>                                                                                                                        | .3.2 Model 1                                                                                                                                      | l - IV estima                                                                                                                                        | ated rea                                                                                                     | sults – 🛛                                                                                                         | N-ETEs (high tech)                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <pre>xtivreg2 lnems<br/>transindn year<br/>year2004 year2<br/>lnpatappr lnfd<br/>fe endog (lnse<br/>Warning - coll<br/>Vars dropped:</pre> | hmhtech cski<br>1996 year1997<br>005 year2006<br>i = lnsedutla<br>dut lntedut l<br>inearities de<br>cskills dist                                  | lls lngdpc l<br>year1998 ye<br>year2007 yea<br>agl lntedutla<br>npatappr lnf<br>etected<br>transdummy                                                | npop une<br>ear1999 g<br>ar2008 ge<br>agl lnpa<br>Edi) sma<br>transine                                       | em lnecc<br>year2000<br>ear2009<br>tapprlag<br>11 robus<br>dn year2                                               | ofree serv lnrulc dist transdummy<br>) year2001 year2002 year2003<br>year2010 (lnsedut lntedut<br>1 lnfdilag1) if transdummy==0,<br>tt bw(3)                                                                                                                         |
| FIXED EFFECTS                                                                                                                              | ESTIMATION                                                                                                                                        |                                                                                                                                                      |                                                                                                              |                                                                                                                   |                                                                                                                                                                                                                                                                      |
| Number of grou                                                                                                                             | ps = 6                                                                                                                                            | 35                                                                                                                                                   |                                                                                                              | Obs pe                                                                                                            | er group: min = 3<br>avg = 12.5<br>max = 15                                                                                                                                                                                                                          |
| IV (2SLS) esti:                                                                                                                            | mation                                                                                                                                            |                                                                                                                                                      |                                                                                                              |                                                                                                                   |                                                                                                                                                                                                                                                                      |
| Estimates effi<br>Statistics rob<br>kernel=Bartl<br>time variabl<br>group variab                                                           | cient for hom<br>ust to heterc<br>ett; bandwidt<br>e (t): year<br>le (i): cn_ir                                                                   | noskedasticit<br>pskedasticity<br>h=3<br>nd                                                                                                          | y only<br>7 and au                                                                                           | tocorrel                                                                                                          | ation                                                                                                                                                                                                                                                                |
| Total (centere<br>Total (uncente<br>Residual SS                                                                                            | d) SS =<br>red) SS =<br>=                                                                                                                         | 91.9217385<br>91.9217385<br>86.545734                                                                                                                |                                                                                                              |                                                                                                                   | Number of obs = 1060<br>F(24, 951) = 1.46<br>Prob > F = 0.0727<br>Centered R2 = 0.0585<br>Uncentered R2 = 0.0585<br>Root MSE = .3017                                                                                                                                 |
| lnemshmhtech                                                                                                                               | Coef.                                                                                                                                             | Robust<br>Std. Err.                                                                                                                                  | t                                                                                                            | P> t                                                                                                              | [95% Conf. Interval]                                                                                                                                                                                                                                                 |
| <pre>lnsedut   lntedut   lnpatappr   lnfdi   lngdpc   lnpop   unem   lnecofree   serv   lnrulc   year1996   year1997   year1998  </pre>    | 3375307<br>.3103843<br>.1504939<br>.0091923<br>3710433<br>-1.437164<br>.0015189<br>027151<br>0077963<br>9998117<br>0263008<br>.0089463<br>0280909 | .273709<br>.4258358<br>.1167502<br>.0160264<br>.5602907<br>.965156<br>.0020722<br>.4676405<br>.0119496<br>.69037<br>.1874509<br>.1721086<br>.1544092 | -1.23<br>0.73<br>1.29<br>0.57<br>-0.66<br>-1.49<br>0.73<br>-0.06<br>-0.65<br>-1.45<br>-0.14<br>0.05<br>-0.18 | 0.218<br>0.466<br>0.198<br>0.566<br>0.508<br>0.137<br>0.464<br>0.954<br>0.514<br>0.148<br>0.888<br>0.959<br>0.856 | 8746741 .1996128<br>525302 1.146071<br>0786238 .3796117<br>0222588 .0406435<br>-1.470592 .7285056<br>-3.331245 .4569179<br>0025477 .0055856<br>9448776 .8905757<br>0312469 .0156544<br>-2.354636 .3550129<br>394166 .3415643<br>3288103 .3467029<br>3311131 .2749313 |
| year1999  <br>year2000  <br>year2001  <br>year2002  <br>year2003  <br>year2004  <br>year2005  <br>year2006  <br>year2007  <br>year2008     | 0354209<br>0152459<br>.0226422<br>.0308054<br>.0765164<br>.0541268<br>.0403186<br>0031439<br>.0020158<br>0191508                                  | .1415122<br>.1232223<br>.1043773<br>.0949041<br>.0873999<br>.0844058<br>.0744287<br>.0684843<br>.0681561<br>.0533456                                 | -0.25<br>-0.12<br>0.22<br>0.32<br>0.88<br>0.64<br>0.54<br>-0.05<br>0.03<br>-0.36                             | 0.802<br>0.902<br>0.828<br>0.746<br>0.382<br>0.522<br>0.588<br>0.963<br>0.976<br>0.720                            | 3131332 .2422913<br>2570648 .226573<br>1821942 .2274787<br>1554402 .2170511<br>0950026 .2480355<br>1115164 .21977<br>1057448 .186382<br>1375418 .1312539<br>1317378 .1357694<br>1238396 .085538                                                                      |

year2010 | -.0773921 .0413598 -1.87 0.062 -.1585591 .003775 \_\_\_\_\_ Underidentification test (Kleibergen-Paap rk LM statistic): 50.735 Chi-sq(1) P-val = 0.0000\_\_\_\_\_ Weak identification test (Cragg-Donald Wald F statistic): 146.219 (Kleibergen-Paap rk Wald F statistic): 36.492 Stock-Yogo weak ID test critical values: <not available> \_\_\_\_\_ Hansen J statistic (overidentification test of all instruments): 0.000 (equation exactly identified) -endog- option: Endogeneity test of endogenous regressors: 7.379 Chi-sq(4) P-val = 0.1171 Regressors tested: Insedut Intedut Inpatappr Infdi \_\_\_\_\_ \_\_\_\_\_ Instrumented: Insedut Intedut Inpatappr Infdi Included instruments: lngdpc lnpop unem lnecofree serv lnrulc year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2010 Excluded instruments: lnsedutlag1 lntedutlag1 lnpatapprlag1 lnfdilag1 Dropped collinear: cskills dist transdummy transindn year2009 \_\_\_\_\_

Table A5.2.6.4 Model 1 - IV estimated results (medium-high tech)

xtivreg2 lnemshmhtech cskills lngdpc lnpop unem lnecofree serv lnrulc dist transdummy year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010 (lnsedut lntedut lnpatappr lnfdi = lnsedutlag1 lntedutlag1 lnpatapprlag1 lnfdilag1) if mhtechintens==0, fe endog (lnsedut lntedut lnpatappr lnfdi) small robust bw(3) Warning - collinearities detected Vars dropped: cskills dist transdummy year2009 FIXED EFFECTS ESTIMATION \_\_\_\_\_ Number of groups = 135 Obs per group: min = 3 avg = 12.8 max = 15 IV (2SLS) estimation \_\_\_\_\_ Estimates efficient for homoskedasticity only Statistics robust to heteroskedasticity and autocorrelation kernel=Bartlett; bandwidth=3 time variable (t): year group variable (i): cn ind Number of obs = 1725 17.01 F(24, 1566) =Prob > F = 0.0000Centered R2 = 0.5005 Total (centered) SS = 194.1988114 Total (uncentered) SS = 194.1988114 Residual SS = 96.99830811 Uncentered R2 = 0.5005 Root MSE = .2489 \_\_\_\_\_ Robust lnemshmhtech | Coef. Std. Err. t P>|t| [95% Conf. Interval] lnsedut | -.1674505 .1984741 -0.84 0.399 -.5567534 .2218525 Intedut |.4048131.1941792.080.037.0239348.7856913Inpatappr |.0631224.05831331.080.279-.051258.1775028

| lnfdi                                             | .006236                                                     | .0093863                                                                    | 0.66                                                          | 0.507                                                      | 0121749                                                            | .024647                                    |  |
|---------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------|--|
| lngdpc                                            | 1.349641                                                    | .2203114                                                                    | 6.13                                                          | 0.000                                                      | .9175047                                                           | 1.781778                                   |  |
| lnpop                                             | -5.439093                                                   | .6492838                                                                    | -8.38                                                         | 0.000                                                      | -6.71265                                                           | -4.165536                                  |  |
| unem                                              | .0005246                                                    | .0010658                                                                    | 0.49                                                          | 0.623                                                      | 0015659                                                            | .0026151                                   |  |
| lnecofree                                         | 1814391                                                     | .2438059                                                                    | -0.74                                                         | 0.457                                                      | 6596594                                                            | .2967812                                   |  |
| serv                                              | .0010877                                                    | .0072886                                                                    | 0.15                                                          | 0.881                                                      | 0132087                                                            | .0153841                                   |  |
| lnrulc                                            | 4135783                                                     | .3000781                                                                    | -1.38                                                         | 0.168                                                      | -1.002176                                                          | .175019                                    |  |
| year1996                                          | .1234369                                                    | .0948049                                                                    | 1.30                                                          | 0.193                                                      | 062521                                                             | .3093949                                   |  |
| year1997                                          | .0693084                                                    | .08228                                                                      | 0.84                                                          | 0.400                                                      | 0920821                                                            | .230699                                    |  |
| year1998                                          | .0477772                                                    | .07472                                                                      | 0.64                                                          | 0.523                                                      | 0987846                                                            | .194339                                    |  |
| year1999                                          | .0105054                                                    | .0680696                                                                    | 0.15                                                          | 0.877                                                      | 1230118                                                            | .1440227                                   |  |
| year2000                                          | 0364348                                                     | .0644958                                                                    | -0.56                                                         | 0.572                                                      | 162942                                                             | .0900723                                   |  |
| year2001                                          | 0131928                                                     | .0574562                                                                    | -0.23                                                         | 0.818                                                      | 125892                                                             | .0995065                                   |  |
| year2002                                          | 0443024                                                     | .0526282                                                                    | -0.84                                                         | 0.400                                                      | 1475316                                                            | .0589267                                   |  |
| year2003                                          | 0365839                                                     | .0503018                                                                    | -0.73                                                         | 0.467                                                      | 1352499                                                            | .0620821                                   |  |
| year2004                                          | 0615187                                                     | .0487717                                                                    | -1.26                                                         | 0.207                                                      | 1571835                                                            | .0341461                                   |  |
| year2005                                          | 0688262                                                     | .0478742                                                                    | -1.44                                                         | 0.151                                                      | 1627306                                                            | .0250781                                   |  |
| year2006                                          | 0971792                                                     | .0488335                                                                    | -1.99                                                         | 0.047                                                      | 1929651                                                            | 0013933                                    |  |
| year2007                                          | 1081779                                                     | .0471089                                                                    | -2.30                                                         | 0.022                                                      | 2005811                                                            | 0157747                                    |  |
| year2008                                          | 0784331                                                     | .0340115                                                                    | -2.31                                                         | 0.021                                                      | 1451459                                                            | 0117203                                    |  |
| year2010                                          | 0513788                                                     | .0261566                                                                    | -1.96                                                         | 0.050                                                      | 1026845                                                            | 0000731                                    |  |
| Underidentific                                    | cation test (M                                              | Cleibergen-P                                                                | aap rk LM                                                     | 1 statist<br>Chi-                                          | ic):<br>sq(1) P-val =                                              | 77.879                                     |  |
| Weak identific                                    | cation test (C                                              | Cragg-Donald                                                                | Wald F s                                                      | statistic                                                  | c):                                                                | 346.642                                    |  |
| Stock-Yogo wea                                    | ak ID test cri                                              | tical value                                                                 | s:                                                            |                                                            | <pre> <not <="" pre=""></not></pre>                                | available>                                 |  |
| Hansen J stat:                                    | istic (overide                                              | entification                                                                | test of                                                       | all inst<br>(equat                                         | cruments):                                                         | 0.000<br>identified)                       |  |
| -endog- option                                    | n:                                                          |                                                                             |                                                               |                                                            |                                                                    |                                            |  |
| Endogeneity te                                    | est of endogen                                              | lous regress                                                                | ors:                                                          |                                                            |                                                                    | 7.129                                      |  |
|                                                   |                                                             |                                                                             | _                                                             | Chi-                                                       | -sq(4) P-val =                                                     | = 0.1292                                   |  |
| Regressors te                                     | sted: lnsed                                                 | lut lntedut                                                                 | lnpatappr                                                     | : lnfdi                                                    |                                                                    |                                            |  |
| Instrumented:<br>Included inst:<br>Excluded inst: | lnsed<br>ruments: lngdp<br>year1<br>year2<br>ruments: lnsed | dut lntedut<br>oc lnpop une<br>.998 year199<br>2004 year200<br>dutlag1 lnte | lnpatappr<br>m lnecofr<br>9 year200<br>5 year200<br>dutlag1 1 | r lnfdi<br>ree serv<br>00 year20<br>06 year20<br>.npatappr | lnrulc year19<br>001 year2002 y<br>007 year2008 y<br>1ag1 lnfdilag | 996 year1997<br>year2003<br>year2010<br>g1 |  |
| Dropped collin                                    | near: cskil                                                 | ls dist tra                                                                 | nsdummy y                                                     | vear2009                                                   |                                                                    |                                            |  |
|                                                   |                                                             |                                                                             |                                                               |                                                            |                                                                    |                                            |  |

## Table A5.2.6.4.1 Model 1 - IV estimated results - ETEs (medium-high tech)

xtivreg2 lnemshmhtech cskills lngdpc lnpop unem lnecofree serv lnrulc dist transdummy transindn year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010 (lnsedut lntedut Inpatappr Infdi = Insedutlag1 Intedutlag1 Inpatapprlag1 Infdilag1) if transdummy==1, fe endog (Insedut Intedut Inpatappr Infd > i) small robust bw(3) Warning - collinearities detected Vars dropped: cskills dist transdummy year1996 FIXED EFFECTS ESTIMATION \_\_\_\_\_ Number of groups = 50 Obs per group: min = 7 13.3 avg = max = 15 IV (2SLS) estimation \_\_\_\_\_

| Estimates effi<br>Statistics rok<br>kernel=Bart1<br>time variab1<br>group variab | cient for hom<br>bust to hetero<br>lett; bandwidt<br>le (t): year<br>ble (i): cn_ir | noskedastici<br>oskedasticit<br>ch=3<br>nd                          | ty only<br>y and aut                            | cocorrei                                    | lation                                                                  |                                                      |
|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------|
| Total (centere<br>Total (uncente                                                 | ed) SS =<br>ered) SS =                                                              | 154.3655902<br>154.3655902                                          |                                                 |                                             | Number of obs<br>F(25, 590)<br>Prob > F<br>Centered R2<br>Uncentered R2 | = 665<br>= 18.47<br>= 0.0000<br>= 0.6157<br>= 0.6157 |
| Residual SS                                                                      | =                                                                                   | 59.32992162                                                         |                                                 |                                             | Root MSE                                                                | = .3171                                              |
|                                                                                  |                                                                                     | Robust                                                              |                                                 |                                             |                                                                         |                                                      |
| lnemshmhtech                                                                     | Coef.                                                                               | Std. Err.                                                           | t<br>                                           | P> t                                        | [95% Conf.                                                              | Interval]                                            |
| lnsedut                                                                          | .0111428                                                                            | .6243905                                                            | 0.02                                            | 0.986                                       | -1.215156                                                               | 1.237441                                             |
| Intedut                                                                          | 4679169                                                                             | .4650778                                                            | -1.01                                           | 0.315                                       | -1.381326                                                               | .4454926                                             |
| lnpatappr                                                                        | 011925                                                                              | .1867436                                                            | -0.06                                           | 0.949                                       | 3786882                                                                 | .3548381                                             |
| lnfdi                                                                            | 0453126                                                                             | .1348395                                                            | -0.34                                           | 0.737                                       | 3101363                                                                 | .2195111                                             |
| lngdpc                                                                           | 1.201673                                                                            | .3836031                                                            | 3.13                                            | 0.002                                       | .4482793                                                                | 1.955067                                             |
| aoaul                                                                            | 7327731                                                                             | 2.822518                                                            | -0.26                                           | 0.795                                       | -6.276178                                                               | 4.810631                                             |
| 11Dem                                                                            | - 0054929                                                                           | 002273                                                              | -2 42                                           | 0 016                                       | - 009957                                                                | - 0010288                                            |
| lnocofroo                                                                        | - 2000/00                                                                           | 103650                                                              | -0 62                                           | 0.010                                       | -1 249952                                                               | 6500541                                              |
| THECOILEE                                                                        | 2909400                                                                             | .403039                                                             | -0.02                                           | 0.557                                       | -1.2400J2                                                               | .0309341                                             |
| serv                                                                             | .011940/                                                                            | .0140464                                                            | 0.85                                            | 0.396                                       | 0156462                                                                 | .0395276                                             |
| lnrulc                                                                           | 3595579                                                                             | .422086                                                             | -0.85                                           | 0.395                                       | -1.188532                                                               | .469416                                              |
| transindn                                                                        | 8155096                                                                             | .6574322                                                            | -1.24                                           | 0.215                                       | -2.106702                                                               | .4756825                                             |
| year1997                                                                         | .0846869                                                                            | .1111557                                                            | 0.76                                            | 0.446                                       | 1336221                                                                 | .3029959                                             |
| vear1998                                                                         | .1333968                                                                            | .1281721                                                            | 1.04                                            | 0.298                                       | 1183323                                                                 | .3851259                                             |
| yoar1999                                                                         | 0818291                                                                             | 1463964                                                             | 0 56                                            | 0 576                                       | - 2056925                                                               | 3693506                                              |
| yearroop                                                                         | 1/07755                                                                             | 1640261                                                             | 0.00                                            | 0.370                                       | 1751570                                                                 | .3033300                                             |
| year2000                                                                         | .148//55                                                                            | .1049301                                                            | 0.90                                            | 0.367                                       | 1/515/8                                                                 | .4/2/088                                             |
| year2001                                                                         | .285964                                                                             | .1909/51                                                            | 1.50                                            | 0.135                                       | 089109/                                                                 | .6610378                                             |
| year2002                                                                         | .3305668                                                                            | .2389493                                                            | 1.38                                            | 0.167                                       | 1387278                                                                 | .7998615                                             |
| year2003                                                                         | .3958062                                                                            | .2473209                                                            | 1.60                                            | 0.110                                       | 0899302                                                                 | .8815426                                             |
| year2004                                                                         | .5069215                                                                            | .2779604                                                            | 1.82                                            | 0.069                                       | 0389908                                                                 | 1.052834                                             |
| vear2005                                                                         | .603016                                                                             | .2979247                                                            | 2.02                                            | 0.043                                       | .0178939                                                                | 1.188138                                             |
| vear2006                                                                         | 6390865                                                                             | 3279505                                                             | 1 95                                            | 0 052                                       | - 005006                                                                | 1 283179                                             |
| yoar2007                                                                         | 6839278                                                                             | 3522095                                                             | 1 9/                                            | 0 053                                       | - 0078091                                                               | 1 375665                                             |
| year2007                                                                         | .0039270                                                                            | .3322093                                                            | 1 05                                            | 0.055                                       | .0070091                                                                | 1 41(222                                             |
| year2008                                                                         | ./064335                                                                            | .30145/3                                                            | 1.95                                            | 0.051                                       | 0034661                                                                 | 1.410333                                             |
| year2009                                                                         | .7575518                                                                            | .3858116                                                            | 1.96                                            | 0.050                                       | 0001794                                                                 | 1.515283                                             |
| year2010                                                                         | .8530488                                                                            | .4119988                                                            | 2.07                                            | 0.039                                       | .0438862                                                                | 1.662212                                             |
| Underidentific                                                                   | cation test (F                                                                      | (leibergen-P                                                        | aap rk LN                                       | 1 stati:<br>Ch:                             | stic):<br>i-sq(1) P-val =                                               | 61.383<br>0.0000                                     |
| Weak identific                                                                   | cation test (C                                                                      | Cragg-Donald                                                        | Wald F s                                        | statist:<br>ald F st                        | ic):<br>tatistic):                                                      | 78.557<br>59.978                                     |
| Stock-Yogo wea                                                                   | ak ID test cri                                                                      | tical value                                                         | s:                                              |                                             | <pre> <not< td=""><td>available&gt;</td></not<></pre>                   | available>                                           |
| Hansen J stati                                                                   | stic (overide                                                                       | entification                                                        | test of                                         | all ins<br>(equa                            | struments):<br>ation exactly i                                          | 0.000<br>dentified)                                  |
| -endog- optior<br>Endogeneity te                                                 | n:<br>est of endoger                                                                | nous regress                                                        | ors:                                            |                                             |                                                                         | 5.511                                                |
| Regressors tes                                                                   | sted: lnsed                                                                         | dut lntedut .                                                       | lnpatappı                                       | Ch:<br>c lnfdi                              | 1-sq(4) P-val =                                                         | U.238/                                               |
| Instrumented:<br>Included instr                                                  | lnsec<br>ruments: lngdr<br>year1<br>year2<br>year2                                  | dut lntedut<br>oc lnpop uner<br>998 year199<br>2004 year200<br>2010 | lnpatapp<br>m lnecofi<br>9 year200<br>5 year200 | r lnfdi<br>ree serv<br>)0 year2<br>)6 year2 | v lnrulc transi<br>2001 year2002 y<br>2007 year2008 y                   | ndn year1997<br>ear2003<br>ear2009                   |

Excluded instruments: lnsedutlag1 lntedutlag1 lnpatapprlag1 lnfdilag1 Dropped collinear: cskills dist transdummy year1996

### Table A5.2.6.4.2 Model 1 - IV estimated results – N-ETEs (medium-high tech)

xtivreg2 lnemshmhtech cskills lngdpc lnpop unem lnecofree serv lnrulc dist transdummy transindn year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010 (lnsedut lntedut lnpatappr lnfdi = lnsedutlag1 lntedutlag1 lnpatapprlag1 lnfdilag1) if transdummy==0, fe endog (lnsedut lntedut lnpatappr lnfdi) small robust bw(3) Warning - collinearities detected Vars dropped: cskills dist transdummy transindn year2009 FIXED EFFECTS ESTIMATION \_\_\_\_\_ Number of groups = 85 avg = 12.5 max = 15 Obs per group: min = IV (2SLS) estimation \_\_\_\_\_ Estimates efficient for homoskedasticity only Statistics robust to heteroskedasticity and autocorrelation kernel=Bartlett; bandwidth=3 time variable (t): year group variable (i): cn ind 1060 Number of obs = F(24, 951) = 4.36 Prob > F = 0.0000Centered R2 = 0.2532 Total (centered) SS = 39.83321916 Total (uncentered) SS = 39.83321916 Residual SS = 29.74760033 Uncentered R2 = 0.2532 Root MSE = .1769 \_\_\_\_\_ Robust lnemshmhtech | Coef. Std. Err. t P>|t| [95% Conf. Interval] \_\_\_\_\_+ lnsedut | -.318634 .1566759 -2.03 0.042 -.6261044 -.0111636 Intedut | .2730445 .194708 1.40 0.161 -.1090624 .6551514 lnpatappr | .0961931 .0671562 1.43 0.152 -.0355984 .2279847 .0321263 lnfdi | .0139154 .0092796 1.50 0.134 -.0042955 .1481445 lngdpc | -.5721201 .367021 -1.56 0.119 -1.292385 lnpop | -3.966668 .7008103 -5.66 0.000 -5.341981 -2.591354 -.0048691 unem | -.0021867 .0013669 -1.60 0.110 .0004957 .3623022 lnecofree | -.126508 .2490801 -0.51 0.612 -.6153181 .0081918 -1.91 0.056 -1.72 0.086 serv | -.0156783 -.0317544 .0003979 -.7723529 .4490001 -.2044467 .1179135 lnrulc | -1.653498 .1087926 -1.73 0.083 -.4358474 year1996 | .0269539 -.2076314 .1080195 -1.92 0.055 -.4196155 .0043527 year1997 | year1998 | -.2046822 .0913745 -2.24 0.025 -.3840012 -.0253631 year1999 | -.1621109 .0825139 -1.96 0.050 -.3240412 -.0001805 year2000 | -.1852075 .0706913 -2.62 0.009 -.3239366 -.0464785 year2001 | -.139823 .0617644 -2.26 0.024 -.2610332 -.0186127 year2002 | -.1194326 .0564736 -2.11 0.035 -.2302599 -.0086052 .0170267 year2003 | -.0863312 .0526675 -1.64 0.102 -.189689 year2004 | -.0849828 .0499536 -1.70 0.089 -.1830149 .0130492 year2005 | -.0906651 .0499837 -1.81 0.070 -.1887563 .0074261 year2006 | -.0708732 .0436872 .0148612 -1.62 0.105 -.1566076 .0417179 year2007 | -.0411719 .0422376 -0.97 0.330 -.1240616 .0417179 year2008 | -.0214471 .032233 -0.67 0.506 -.0847031 .0418089

year2010 | -.0448439 .0263458 -1.70 0.089 -.0965465 .0068587 \_\_\_\_\_ Underidentification test (Kleibergen-Paap rk LM statistic): 50.735 Chi-sq(1) P-val = 0.0000\_\_\_\_\_ Weak identification test (Cragg-Donald Wald F statistic): 146.219 (Kleibergen-Paap rk Wald F statistic): 36.492 Stock-Yogo weak ID test critical values: <not available> Hansen J statistic (overidentification test of all instruments): 0.000 (equation exactly identified) -endog- option: Endogeneity test of endogenous regressors: 2.508 Chi-sq(4) P-val = 0.6432 lnsedut lntedut lnpatappr lnfdi Regressors tested: \_\_\_\_\_ \_\_\_\_\_ Instrumented: Insedut Intedut Inpatappr Infdi Included instruments: lngdpc lnpop unem lnecofree serv lnrulc year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2010 Excluded instruments: lnsedutlag1 lntedutlag1 lnpatapprlag1 lnfdilag1 Dropped collinear: cskills dist transdummy transindn year2009 \_\_\_\_\_

Table A5.3 Model 2 - Fixed effects estimated results (medium-high and high tech)

xtreg lnemshmhtech avyrs sqravyrs cskills lnpatappr lnfdi lngdpc lnpop unem lnecofree lnrulc serv dist transdummy vear1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010, fe note: cskills omitted because of collinearity note: dist omitted because of collinearity note: transdummy omitted because of collinearity Fixed-effects (within) regression Number of obs = 3600 Number of groups = 270 Group variable: cn ind R-sq: within = 0.2959Obs per group: min = 5 13.3 between = 0.3106avg = overall = 0.2481max = 16 F(25,3305) = 55.57 corr(u i, Xb) = -0.9590Prob > F = 0.0000 \_\_\_\_\_ \_\_\_\_\_ lnemshmhtech | Coef. Std. Err. t P>|t| [95% Conf. Interval] \_\_\_\_\_+\_\_\_\_ avyrs | -.8968393 .2199295 -4.08 0.000 -1.328051 -.4656276 .014177 .0540681 sqravyrs | .0341225 .0101728 3.35 0.001 cskills | (omitted) 

 lnpatappr |
 -.0885896
 .0300119
 -2.95
 0.003
 -.1474334

 lnfdi |
 .0115371
 .0064621
 1.79
 0.074
 -.001133

 lngdpc |
 1.867017
 .1297671
 14.39
 0.000
 1.612585

 lnpop |
 -3.763733
 .392797
 -9.58
 0.000
 -4.533882

 unem |
 .0024554
 .001021
 2.40
 0.016
 .0004535

 lnecofree |
 .2223198
 .1906727
 1.17
 0.244
 -.1515288

 -.0297458 .0242071 2.121449 -2.993583 .0044573 .5961684 lnrulc | -.1933507 .215436 -0.90 0.370 -.6157522 .2290507 serv | .0094993 .0042691 2.23 0.026 .001129 .0178697 dist | (omitted) transdummy | (omitted)

| year1996 | .166084   | .0531655  | 3.12     | 0.002     | .0618433 | .2703247 |
|----------|-----------|-----------|----------|-----------|----------|----------|
| year1997 | .1517407  | .0538459  | 2.82     | 0.005     | .0461661 | .2573154 |
| year1998 | .117544   | .0546875  | 2.15     | 0.032     | .0103192 | .2247689 |
| year1999 | .0568837  | .0561313  | 1.01     | 0.311     | 0531718  | .1669393 |
| year2000 | .0146843  | .0560963  | 0.26     | 0.794     | 0953026  | .1246713 |
| year2001 | .0434266  | .0577902  | 0.75     | 0.452     | 0698817  | .1567349 |
| year2002 | .0185194  | .0613188  | 0.30     | 0.763     | 1017073  | .1387461 |
| year2003 | .0169961  | .0637204  | 0.27     | 0.790     | 1079393  | .1419314 |
| year2004 | .0321439  | .067101   | 0.48     | 0.632     | 0994199  | .1637076 |
| year2005 | .0238619  | .0714029  | 0.33     | 0.738     | 1161365  | .1638603 |
| year2006 | 0170238   | .0756877  | -0.22    | 0.822     | 1654232  | .1313756 |
| year2007 | 0077467   | .0785849  | -0.10    | 0.921     | 1618267  | .1463332 |
| year2008 | .085773   | .0800901  | 1.07     | 0.284     | 0712583  | .2428042 |
| year2009 | .1981758  | .0792629  | 2.50     | 0.012     | .0427664 | .3535853 |
| year2010 | .1323395  | .0817661  | 1.62     | 0.106     | 0279778  | .2926568 |
| _cons    | 21.02575  | 4.835919  | 4.35     | 0.000     | 11.54405 | 30.50744 |
| siqma u  | 6.6546768 |           |          |           |          |          |
| sigma e  | .41385514 |           |          |           |          |          |
| rho l    | .99614729 | (fraction | of varia | nce due t | oui)     |          |

## Table A5.3.1 Model 2 - Diagnostic tests

### **Groupwise heteroskedasticity**

Modified Wald test for groupwise heteroskedasticity in fixed effect regression model H0: sigma(i)^2 = sigma^2 for all i chi2 (270) = 6.6e+05 Prob>chi2 = 0.0000

### Autocorrelation in panel data

```
xtserial lnemshmhtech avyrs sqravyrs cskills lnpatappr lnfdi lngdpc lnpop unem
lnecofree lnrulc serv dist transdummy year1996 year1997 year1998 year1999 year2000
year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009
year2010
Wooldridge test for autocorrelation in panel data
H0: no first order autocorrelation
F(1, 269) = 95.579
Prob > F = 0.0000
```

### Normality of residuals

```
pantest2 lnemshmhtech avyrs sqravyrs cskills lnpatappr lnfdi lngdpc lnpop unem
lnecofree lnrulc serv dist transdummy year1996 year1997 year1998 year1999 year2000
year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009
vear2010
Test for serial correlation in residuals
Null hypothesis is either that rho=0 if residuals are AR(1)
or that lamda=0 if residuals are MA(1)
Following tests only approximate for unbalanced panels
LM= 1118.6225
which is asy. distributed as chisq(1) under null, so:
Probability of value greater than LM is 2.96e-245
LM5= 33.445814
which is asy. distributed as N(0,1) under null, so:
Probability of value greater than abs(LM5) is 0
Test for significance of fixed effects
F= 64.865809
Probability>F= 0
Test for normality of residuals
```

Skewness/Kurtosis tests for Normality

| Variable | Obs P:  | r(Skewness) | Pr(Kurtosis) | <br>adj chi2(2) | joint<br>Prob>chi2 |
|----------|---------|-------------|--------------|-----------------|--------------------|
| 00000B   | 3.6e+03 | 0.0000      | 0.0000       | •               | 0.0000             |

# Table A5.3.2 Model 2 - Driscoll-Kraay estimated results (medium-high andhigh tech)

xtscc lnemshmhtech avyrs sqravyrs cskills lnpatappr lnfdi lnqdpc lnpop unem lnecofree lnrulc serv dist transdummy year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010, fe Regression with Driscoll-Kraay standard errors Number of obs = 3600 Number of groups = 270 Method: Fixed-effects regression F(28, 269) = 147199.17 Prob > F = 0.0000 Group variable (i): cn ind maximum lag: 2 within R-squared = 0.2959 \_\_\_\_\_ IDrisc/Kraaylnemshmhtech ICoef.Std. Err.tP>|t|[95% Conf. Interval] \_\_\_\_\_ avyrs | -.8968393 .501026 -1.79 0.075 -1.88327 .0895917 sqravyrs | .0341225 .0223712 1.53 0.128 -.0099223 .0781674 cskills | (omitted) lnpatappr | -.0885896 .0418109 -2.12 0.035 -.1709078 -.0062715 2.23 0.027 .0013351 5.18 0.000 1.156853 lnfdi | .0115371 .0051818 .0217391 lngdpc | 1.867017 .3607054 2.577182 lnpop | -3.763733 .6856884 -5.49 0.000 -5.113731 -2.413734 2.21 0.028 .0046412 unem | .0024554 .0011102 .0002697 .7055939 lnecofree | .2223198 .2454636 0.91 0.366 -.2609543 lnrulc | -.1933507 .3777967 -0.51 0.609 -.9371652 .5504638 -.0060229 .0250216 serv | .0094993 .007884 1.20 0.229 .011184 dist | .0201923 1.81 0.072 -.001827 .0422115 transdummy | (omitted) .166084 .0168978 .1517407 .0192261 year1996 | 9.83 0.000 .1328152 .1993528 7.89 0.000 year1997 | .1138879 .1895936 .117544 .0227153 .0568837 .0313853 5.17 0.000 .0728216 year1998 | .1622664 year1999 | 1.81 0.071 -.0049082 .1186757 .097121 year2000 | .0146843 .0418711 0.35 0.726 -.0677524 year2001 | .0434266 .0557711 0.78 0.437 -.0663768 .15323 year2002 | .0185194 .0672279 0.28 0.783 -.1138404 .1508793 year2003 | .0169961 .073638 0.23 0.818 -.127984 .1619761 year2004 | .0321439 .0946313 0.34 0.734 -.1541684 .2184561 0.22 0.829 -.1936611 .2413848 year2005 | .0238619 .1104838 year2006 | -.0170238 .1351754 -0.13 0.900 -.2831601 .2491124 year2007 | -.0077467 .1477067 year2008 | .085773 .1545156 year2009 | .1981758 .1191961 year2010 | .1323395 .127525 0.958 -0.05 .2830615 -.298555 0.56 0.579 1.66 0.098 .3899866 -.2184407 -.0365001 .4328517 .127525 0.300 year2010 | .1323395 1.04 -.1187345 .3834135 \_cons | (omitted) \_\_\_\_\_

### Table A5.3.4 Model 2 - FEVD estimated results (medium-high and high tech)

. xtfevd lnemshmhtech avyrs sqravyrs cskills lnpatappr lnfdi lngdpc lnpop unem lnecofree lnrulc serv dist transdummy year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010,invariant (cskills dist transdummy)

panel fixed effects regression with vector decomposition

| degrees of freedom fevd   | = | 3302     | number of obs  | = | 3600     |
|---------------------------|---|----------|----------------|---|----------|
| mean squared error        | = | .157241  | F( 30, 3302)   | = | 5.092318 |
| root mean squared error   | = | .3965362 | Prob > F       | = | 7.15e-17 |
| Residual Sum of Squares   | = | 566.0674 | R-squared      | = | .9645811 |
| Total Sum of Squares      | = | 15982.06 | adj. R-squared | = | .9613953 |
| Estimation Sum of Squares | = | 15415.99 |                |   |          |

|              |           | fevd      |        |       |            |           |
|--------------|-----------|-----------|--------|-------|------------|-----------|
| Inemshmhtech | Coei.     | Std. Err. | t<br>t | P> t  | [95% Conf. | Intervalj |
| avyrs        | 8968394   | 3.979761  | -0.23  | 0.822 | -8.699888  | 6.906209  |
| sgravyrs     | .0341225  | .1741807  | 0.20   | 0.845 | 3073906    | .3756357  |
| lnpatappr    | 0885897   | .5392303  | -0.16  | 0.870 | -1.145849  | .9686697  |
| lnfdi        | .0115371  | .2175439  | 0.05   | 0.958 | 4149974    | .4380716  |
| lngdpc       | 1.867017  | 3.675641  | 0.51   | 0.612 | -5.339749  | 9.073784  |
| lnpop        | -3.763732 | 1.880162  | -2.00  | 0.045 | -7.450134  | 0773306   |
| unem         | .0024554  | .0108626  | 0.23   | 0.821 | 0188427    | .0237535  |
| lnecofree    | .2223195  | 2.868015  | 0.08   | 0.938 | -5.400948  | 5.845587  |
| lnrulc       | 1933509   | 2.3315    | -0.08  | 0.934 | -4.764683  | 4.377981  |
| serv         | .0094993  | .0672242  | 0.14   | 0.888 | 1223061    | .1413047  |
| year1996     | .1660841  | .5306033  | 0.31   | 0.754 | 8742606    | 1.206429  |
| year1997     | .1517408  | .6135297  | 0.25   | 0.805 | -1.051196  | 1.354678  |
| year1998     | .1175441  | .650426   | 0.18   | 0.857 | -1.157735  | 1.392823  |
| year1999     | .0568838  | .7107923  | 0.08   | 0.936 | -1.336754  | 1.450522  |
| year2000     | .0146844  | .6649677  | 0.02   | 0.982 | -1.289106  | 1.318475  |
| year2001     | .0434267  | .6957611  | 0.06   | 0.950 | -1.32074   | 1.407593  |
| year2002     | .0185195  | .7299116  | 0.03   | 0.980 | -1.412606  | 1.449645  |
| year2003     | .0169961  | .9005044  | 0.02   | 0.985 | -1.748607  | 1.782599  |
| year2004     | .032144   | 1.029664  | 0.03   | 0.975 | -1.986701  | 2.050989  |
| year2005     | .023862   | 1.177211  | 0.02   | 0.984 | -2.284276  | 2.332     |
| year2006     | 0170237   | 1.214297  | -0.01  | 0.989 | -2.397876  | 2.363828  |
| year2007     | 0077467   | 1.51455   | -0.01  | 0.996 | -2.977298  | 2.961805  |
| year2008     | .085773   | 1.478059  | 0.06   | 0.954 | -2.812231  | 2.983778  |
| year2009     | .1981759  | 1.326524  | 0.15   | 0.881 | -2.402717  | 2.799069  |
| year2010     | .1323396  | 1.357495  | 0.10   | 0.922 | -2.529277  | 2.793956  |
| cskills      | .0738706  | 2.774635  | 0.03   | 0.979 | -5.366308  | 5.514049  |
| dist         | 0026613   | .0019516  | -1.36  | 0.173 | 0064877    | .0011651  |
| transdummy   | 9081958   | 5.696299  | -0.16  | 0.873 | -12.07683  | 10.26044  |
| eta          | 1         |           |        | •     |            |           |
| _cons        | 23.77879  | 48.47387  | 0.49   | 0.624 | -71.26309  | 118.8207  |
|              |           |           |        |       |            |           |

# Table A5.3.5 Model 2 - Hausman and Taylor estimated results (medium-high and high tech)

xthtaylor lnemshmhtech avyrs sqravyrs cskills lnpatappr lnfdi lngdpc lnpop unem lnecofree lnrulc serv dist transdummy year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010, endo (avyrs sqravyrs cskills)

| Hausman-Taylor estimation | Number of obs    | = | 3600 |
|---------------------------|------------------|---|------|
| Group variable: cn_ind    | Number of groups | = | 270  |

| 5<br>13.3<br>16   | up: min =<br>avg =<br>max = | Obs per g:              |           |           |              |                        |
|-------------------|-----------------------------|-------------------------|-----------|-----------|--------------|------------------------|
| 1371.58<br>0.0000 | 8) =                        | Wald chi2<br>Prob > ch: |           |           | u_i ~ i.i.d. | Random effects         |
| Interval]         | 95% Conf.                   | P> z                    | Z         | Std. Err. | Coef.        | Lnemshmhtech           |
|                   |                             |                         |           |           |              |                        |
| .0076416          | 1062926                     | 0.090 .                 | -1.70     | .0290654  | 0493255      | lnpatappr              |
| .0173057          | 0073269                     | 0.427 .                 | 0.79      | .0062839  | .0049894     | lnfdi                  |
| 2.606709          | .150859                     | 0.000                   | 20.46     | .1162905  | 2.378784     | lngdpc                 |
| 2410054           | .201792                     | 0.003 .                 | -2.94     | .2451031  | 7213987      | lnpop                  |
| .0054688          | 0015789                     | 0.000                   | 3.55      | .0009924  | .0035239     | unem                   |
| .8393514          | 1154632                     | 0.010                   | 2.59      | .1846688  | .4774073     | lnecofree              |
| .1174371          | 7068819                     | 0.161 .                 | -1.40     | .2102893  | 2947224      | lnrulc                 |
| .0142363          | 0020486                     | 0.142                   | 1.47      | .0041544  | .0060939     | serv                   |
| .2674097          | 0636907                     | 0.001                   | 3.19      | .0519701  | .1655502     | year1996               |
| .240072           | 0338385                     | 0.009                   | 2.60      | .0526115  | .1369552     | vear1997               |
| .2137796          | 0042837                     | 0.041                   | 2.04      | .0534438  | .1090316     | vear1998               |
| .14816            | 0667757                     | 0.458                   | 0.74      | .0548316  | .0406922     | vear1999               |
| 0848494           | 1295553                     | 0 683 -                 | -0 41     | 0546961   | - 0223529    | vear2000               |
| 0911172           | 1289383                     | 0 736                   | -0 34     | 0561376   | - 0189106    | vear2001               |
| 0541958           | 1785996                     | 0 295                   | -1 05     | 0593877   | - 0622019    | vear2002               |
| 0479421           | 1936305                     | 0.237                   | -1 18     | 0616268   | - 0728442    | year2003               |
| 0342595           | 2182324                     | 0.153                   | -1 43     | 0644124   | - 0919865    | vear2004               |
| 0061577           | 2609948                     | 0.155                   | _1 87     | 0681524   | - 127/186    | ycar2001  <br>woar2005 |
| - 0657124         | 2009940                     | 0.002                   | -1.07     | 0715727   | - 2050042    | year2005               |
| 0037124           | 2667200                     | 0.004                   | -2.00     | .0713737  | 2039943      | year2000               |
| 077330            | 2007209                     | 0.003                   | -3.01     | .0750200  | 2220334      | year2007               |
| .0062795          | 28//332                     | 0.061                   | -1.88     | .0750102  | 140/3/8      | year2008               |
| .16/2011          | 1284239                     | 0.797                   | 0.26      | .0/54159  | .0193886     | year2009               |
| .0831244          | 22028//                     | 0.3/6                   | -0.89     | .0//4025  | 068581/      | year2010               |
| 4005055           | 250600                      | 0 000                   | 2 07      | 0145400   | 0201001      | venaogenous            |
| 4095955           | .230609                     | 0.000 -                 | -3.8/     | .2145482  | 8301021      | avyrs                  |
| .049/123          | 0108123                     | 0.002                   | 3.05      | .0099237  | .0302623     | sqravyrs               |
|                   | 0007764                     | 0 115                   | 1         | 0000000   | 0010045      | 1exogenous             |
| .0003075          | 0027764                     | 0.117 .                 | -1.57     | .0007867  | 0012344      | dist                   |
| 3.315012          | 0870229                     | 0.063 .                 | 1.86      | .8678819  | 1.613994     | transdummy             |
|                   |                             |                         | _         |           |              | Iendogenous            |
| 7.011718          | 3.89348                     | 0.575                   | 0.56      | 2.781989  | 1.559119     | cskills                |
| 8.94997           | 8.10631                     | 0.179                   | -1.35     | 14.55544  | -19.57817    | _cons                  |
|                   |                             |                         |           |           | 6.406808     | siqma u                |
|                   |                             |                         |           |           | .4122987     | sigma e                |
|                   | i)                          | ce due to 1             | of varian | (fraction | .99587574    | rhol                   |

Table A5.3.6 Model 2 - IV estimated results (medium-high and high tech)

xtivreg2 lnemshmhtech cskills lngdpc lnpop unem lnecofree serv lnrulc dist transdummy year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010 (avyrs sqravyrs lnpatappr ln fdi = avyrslag1 sqravyrslag1 lnpatapprlag1 lnfdilag1), fe endog (avyrs sqravyrs lnpatappr lnfdi) small robust bw(3) Warning - collinearities detected Vars dropped: cskills dist transdummy year2009

FIXED EFFECTS ESTIMATION

| Number of gro                                                                                                        | ups = 2                                                                                                                                   | 70                                                                                                                                                                 |                                                                                                                  | Obs per                                                                                                                    | r group: min =<br>avg =<br>max =                                                                                                         | 3<br>12.8<br>15                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| IV (2SLS) est.                                                                                                       | imation                                                                                                                                   |                                                                                                                                                                    |                                                                                                                  |                                                                                                                            |                                                                                                                                          |                                                                                                                                                |
| Estimates eff.<br>Statistics rol<br>kernel=Bart<br>time variab<br>group varial                                       | icient for ho<br>oust to heter<br>lett; bandwid<br>le (t): year<br>ole (i): cn_i                                                          | moskedastici<br>oskedasticit<br>th=3<br>nd                                                                                                                         | ty only<br>y and aut                                                                                             | cocorrela                                                                                                                  | ation                                                                                                                                    |                                                                                                                                                |
| Total (center<br>Total (uncent<br>Residual SS                                                                        | ed) SS =<br>ered) SS =<br>=                                                                                                               | 687.4382722<br>687.4382722<br>475.8109864                                                                                                                          |                                                                                                                  | 1<br>]<br>]<br>[<br>[<br>]<br>]<br>]<br>]<br>]<br>]<br>]<br>]<br>]<br>]<br>]<br>]<br>]<br>]<br>]                           | Number of obs<br>F(24, 3156)<br>Prob > F<br>Centered R2<br>Jncentered R2<br>Root MSE                                                     | = 3450<br>= 15.88<br>= 0.0000<br>= 0.3078<br>= 0.3078<br>= .3883                                                                               |
| lnemshmhtech                                                                                                         | <br>  Coef.                                                                                                                               | Robust<br>Std. Err.                                                                                                                                                | t                                                                                                                | P> t                                                                                                                       | [95% Conf.                                                                                                                               | Interval]                                                                                                                                      |
| avyrs<br>sqravyrs<br>lnpatappr<br>lnfdi<br>lngdpc<br>lnpop<br>unem<br>lnecofree<br>serv                              | <pre> 5513998<br/>.0191196<br/> 1093611<br/>  .0094212<br/>  1.98332<br/>  -3.763867<br/>  .0020355<br/>  .0640747<br/>  .0084355</pre>   | .3693506<br>.0169249<br>.0702809<br>.0094038<br>.1811352<br>.5857229<br>.0012573<br>.2740392<br>.0085902                                                           | -1.49<br>1.13<br>-1.56<br>1.00<br>10.95<br>-6.43<br>1.62<br>0.23<br>0.98                                         | 0.136<br>0.259<br>0.120<br>0.316<br>0.000<br>0.000<br>0.106<br>0.815<br>0.326<br>0.517                                     | -1.275591<br>0140654<br>247162<br>009017<br>1.628166<br>-4.912303<br>0004297<br>4732383<br>0084074                                       | .1727919<br>.0523046<br>.0284398<br>.0278594<br>2.338475<br>-2.615431<br>.0045008<br>.6013877<br>.0252785                                      |
| year1996<br>year1997<br>year1998<br>year2000<br>year2001<br>year2002<br>year2003<br>year2004<br>year2005<br>year2007 | 1948806<br>.0110139<br>01032<br>0480895<br>1141843<br>1576835<br>132196<br>1594589<br>1382347<br>1665539<br>1830104<br>2198448<br>2178072 | .3003077<br>.0896577<br>.0790476<br>.0732496<br>.0694111<br>.0623588<br>.055883<br>.0499899<br>.0492049<br>.0492049<br>.046023<br>.0444594<br>.0458408<br>.0433901 | -0.63<br>0.12<br>-0.13<br>-0.66<br>-1.65<br>-2.53<br>-2.37<br>-3.19<br>-2.81<br>-3.62<br>-4.12<br>-4.80<br>-5.02 | 0.317<br>0.902<br>0.896<br>0.512<br>0.100<br>0.011<br>0.018<br>0.001<br>0.005<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000 | 1634996<br>1647795<br>16531<br>1917112<br>2502798<br>2799515<br>2417666<br>2574748<br>2347115<br>256792<br>2701828<br>3097257<br>3028828 | .3941374<br>.1868073<br>.1446699<br>.0955322<br>.0219112<br>0354155<br>0226253<br>061443<br>0417579<br>0763158<br>0958381<br>129964<br>1327316 |
| year2008<br>year2010                                                                                                 | 1310017<br> 0658645                                                                                                                       | .0327538<br>.0313051                                                                                                                                               | -4.00<br>-2.10                                                                                                   | 0.000<br>0.035                                                                                                             | 1952227<br>1272449                                                                                                                       | 0667808<br>0044841                                                                                                                             |
|                                                                                                                      | (                                                                                                                                         |                                                                                                                                                                    | aap rk LM                                                                                                        | Chi                                                                                                                        | -sq(1) P-val =                                                                                                                           | 0.0000                                                                                                                                         |
| weak identifi<br>Stock-Yogo we                                                                                       | cation test (<br>(<br>ak ID test cr                                                                                                       | Cragg-Donald<br>Kleibergen-P<br>itical value                                                                                                                       | Wald F s<br>aap rk Wa<br>s:                                                                                      | statistic<br>ald F sta                                                                                                     | c):<br>atistic):<br><not< td=""><td>693.024<br/>153.911<br/>available&gt;</td></not<>                                                    | 693.024<br>153.911<br>available>                                                                                                               |
| Hansen J stat.<br>-endog- optio:<br>Endogeneity to                                                                   | istic (overid<br>n:<br>est of endoge                                                                                                      | entification                                                                                                                                                       | test of<br>ors:                                                                                                  | all inst<br>(equat                                                                                                         | cruments):<br>tion exactly i<br>-sq(4) P-val =                                                                                           | 0.000<br>dentified)<br>5.876<br>0.2086                                                                                                         |

| Instrumented:                               | avyrs sqravyrs lnpatappr lnfdi                                                                                 |
|---------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Included instruments:                       | <pre>lnqdpc lnpop unem lnecofree serv lnrulc year1996 year1997</pre>                                           |
|                                             | year1998 year1999 year2000 year2001 year2002 year2003<br>year2004 year2005 year2006 year2007 year2008 year2010 |
| Excluded instruments:<br>Dropped collinear: | avyrslag1 sqravyrslag1 lnpatapprlag1 lnfdilag1<br>cskills dist transdummy year2009                             |
|                                             |                                                                                                                |

## Table A5.3.6.1 Model 2 - IV estimated results - ETEs (medium-high and high tech)

xtivreg2 lnemshmhtech cskills lngdpc lnpop unem lnecofree serv lnrulc dist transdummy transindn year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010 (avyrs sqravyrs lnpatappr lnfdi = avyrslag1 sqravyrslag1 lnpatapprlag1 lnfdilag1) if transdummy==1, fe endog (avyrs sqravyrs lnpatappr lnfdi) small robust bw(3) Warning - collinearities detected Vars dropped: cskills dist transdummy year2009 FIXED EFFECTS ESTIMATION \_\_\_\_\_ 7 Number of groups = 100 Obs per group: min = avg = 13.3 max = 15 IV (2SLS) estimation \_\_\_\_\_ Estimates efficient for homoskedasticity only Statistics robust to heteroskedasticity and autocorrelation kernel=Bartlett; bandwidth=3 time variable (t): year group variable (i): cn ind Number of obs = 1330 18.34 F(25, 1205) =Prob > F = 0.0000Centered R2 = 0.4388Total (centered) SS = 555.6833217 Total (uncentered) SS = 555.6833217 Uncentered R2 = 0.4388= 311.8640484 Residual SS Root MSE = .5087 \_\_\_\_\_ Robust lnemshmhtech | Coef. Std. Err. t P>|t| [95% Conf. Interval] 

 .4527492
 1.270887
 0.36
 0.722
 -2.040648
 2.946147

 -.0290877
 .0535775
 -0.54
 0.587
 -.1342033
 .0760279

 -.5195308
 .2167962
 -2.40
 0.017
 -.9448707
 -.0941908

 -.0372701
 .1522718
 -0.24
 0.807
 -.3360174
 .2614772

 .5357723
 .4654535
 1.15
 0.250
 -.3774171
 1.448962

 .1910367
 4.084891
 0.05
 0.9623
 7.992355

 \_\_\_\_\_\_ avyrs | sqravyrs | lnpatappr | lnfdi | lngdpc | .1910367 4.084891 0.05 0.963 -7.823253 8.205327 lnpop | -3.28 0.001 unem | -.0086146 .0026244 -.0137635 -.0034656 lnecofree | .2067589 .4994755 0.41 0.679 -.7731794 1.186697 serv | -.009727 .0151936 -0.64 0.522 -.0395359 .0200819 1.69 0.092 -.1274129 lnrulc | .7819756 .4635162 1.691364 1.047254 transindn | -.6665467 .873526 -0.76 0.446 -2.380347 year1996 | -1.454255 .3906169 -3.72 0.000 -2.22062 -.68789 -4.01 0.000 -1.964268 -.6735361 year1997 | -1.318902 .3289437 year1998 | -1.272431 .3008235 -4.23 0.000 -1.862627 -.6822349 0.000 year1999 | -1.289788 .2707054 -4.76 -1.820894 -.7586818 year2000 | -1.175839 .2398671 -4.90 0.000 -1.646442 -.705235

year2001 | -.9742668 .2085044 -4.67 0.000 -1.383339 -.5651949 year2002 | -.788085 .1609791 -4.90 0.000 -1.103915 year2003 | -.7216679 .1551313 -4.65 0.000 -1.026025 -.4722545 -.4173104 year2004 | -.5444631 .1303149 -4.18 0.000 -.8001324 -.2887938 year2005 | -.4641797 .1229394 -3.78 0.000 -.7053789 -.2229806 year2006 | -.3498172 .1118385 -3.13 0.002 -.569237 -.1303975 year2007 | -.184907 .1056377 -1.75 0.080 -.3921613 .0223472 year2008 | -.0574928 .0896721 -0.64 0.522 -.2334237 .118438 .2856686 year2010 | .130977 .0788465 1.66 0.097 -.0237146 · Underidentification test (Kleibergen-Paap rk LM statistic): 130.883 Chi-sq(1) P-val = 0.0000\_\_\_\_\_ Weak identification test (Cragg-Donald Wald F statistic): 127.527 (Kleibergen-Paap rk Wald F statistic): 88.593 Stock-Yogo weak ID test critical values: <not available> \_\_\_\_\_ Hansen J statistic (overidentification test of all instruments): 0 000 (equation exactly identified) -endog- option: Endogeneity test of endogenous regressors: 8.451 Chi-sq(4) P-val = 0.0764 Regressors tested: avyrs sqravyrs lnpatappr lnfdi \_\_\_\_\_ \_\_\_\_\_ Instrumented: avyrs sqravyrs lnpatappr lnfdi Included instruments: lnqdpc lnpop unem lnecofree serv lnrulc transindn year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2010 Excluded instruments: avyrslag1 sqravyrslag1 lnpatapprlag1 lnfdilag1 Dropped collinear: cskills dist transdummy year2009 -----

## Table A5.3.6.2 Model 2 - IV estimated results – N-ETEs (medium-high and high tech)

.xtivreg2 lnemshmhtech cskills lngdpc lnpop unem lnecofree serv lnrulc dist transdummy year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010 (avyrs sqravyrs lnpatappr lnfdi = avyrslag1 sgravyrslag1 lnpatapprlag1 lnfdilag1) if transdummy==0, fe endog (avyrs sqravyrs lnpatappr lnfdi) small robust bw(3) Warning - collinearities detected Vars dropped: cskills dist transdummy year2009 FIXED EFFECTS ESTIMATION \_\_\_\_\_ Number of groups = 170 Obs per group: min = 3 avg = 12.5 max = 15 IV (2SLS) estimation \_\_\_\_\_ Estimates efficient for homoskedasticity only Statistics robust to heteroskedasticity and autocorrelation kernel=Bartlett; bandwidth=3 time variable (t): year group variable (i): cn ind 2120 Number of obs = F(24, 1926) = 4.22 Prob > F = 0.0000

| Total (centere<br>Total (uncente<br>Residual SS                     | ed) SS =<br>ered) SS =<br>=                                          | 131.7549505<br>131.7549505<br>117.8174087                                                          |                                                                  | C<br>U<br>R                                                          | entered R2<br>Incentered R2<br>Loot MSE                                             | = 0.1058<br>= 0.1058<br>= .2473           |
|---------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------|
| <br>lnemshmhtech                                                    | Coef.                                                                | Robust<br>Std. Err.                                                                                | t                                                                | P> t                                                                 | [95% Conf.                                                                          | . Interval]                               |
| avvrs                                                               | 1791761                                                              | 3253691                                                                                            | 0 55                                                             | 0 582                                                                | - 4589365                                                                           | 8172888                                   |
| sgravyrs                                                            | 0118769                                                              | .0148419                                                                                           | -0.80                                                            | 0.424                                                                | 0409848                                                                             | .017231                                   |
| lnpatappr                                                           | .0542478                                                             | .0688315                                                                                           | 0.79                                                             | 0.431                                                                | 0807444                                                                             | .18924                                    |
| lnfdi                                                               | .0150009                                                             | .0094609                                                                                           | 1.59                                                             | 0.113                                                                | 0035538                                                                             | .0335556                                  |
| lngdpc                                                              | 3967788                                                              | .3437401                                                                                           | -1.15                                                            | 0.249                                                                | -1.070921                                                                           | .277363                                   |
| lnpop                                                               | -1.677714                                                            | .5350033                                                                                           | -3.14                                                            | 0.002                                                                | -2.726961                                                                           | 6284679                                   |
| unem                                                                | .0001508                                                             | .0012881                                                                                           | 0.12                                                             | 0.907                                                                | 0023754                                                                             | .002677                                   |
| lnecofree                                                           | 1003462                                                              | .2607965                                                                                           | -0.38                                                            | 0.700                                                                | 6118193                                                                             | .411127                                   |
| serv                                                                | 0105956                                                              | .0072412                                                                                           | -1.46                                                            | 0.144                                                                | 0247969                                                                             | .0036058                                  |
| lnrulc                                                              | 8250945                                                              | .4063667                                                                                           | -2.03                                                            | 0.042                                                                | -1.622059                                                                           | 0281296                                   |
| year1996                                                            | 1682992                                                              | .0910078                                                                                           | -1.85                                                            | 0.065                                                                | 3467833                                                                             | .010185                                   |
| year1997                                                            | 151271                                                               | .0824313                                                                                           | -1.84                                                            | 0.067                                                                | 312935                                                                              | .010393                                   |
| year1998                                                            | 1654227                                                              | .0722505                                                                                           | -2.29                                                            | 0.022                                                                | 3071202                                                                             | 0237252                                   |
| year1999                                                            | 1470391                                                              | .0665014                                                                                           | -2.21                                                            | 0.027                                                                | 2774615                                                                             | 0166168                                   |
| year2000                                                            | 1393508                                                              | .0556556                                                                                           | -2.50                                                            | 0.012                                                                | 2485023                                                                             | 0301993                                   |
| year2001                                                            | 0993544                                                              | .049457                                                                                            | -2.01                                                            | 0.045                                                                | 1963492                                                                             | 0023596                                   |
| year2002                                                            | 0876053                                                              | .0452004                                                                                           | -1.94                                                            | 0.053                                                                | 1762523                                                                             | .0010417                                  |
| year2003                                                            | 0528619                                                              | .0416987                                                                                           | -1.27                                                            | 0.205                                                                | 1346413                                                                             | .0289175                                  |
| year2004                                                            | 060854                                                               | .0405322                                                                                           | -1.50                                                            | 0.133                                                                | 1403456                                                                             | .0186375                                  |
| year2005                                                            | 0682429                                                              | .0378177                                                                                           | -1.80                                                            | 0.071                                                                | 142411                                                                              | .0059251                                  |
| year2006                                                            | 0733571                                                              | .0370786                                                                                           | -1.98                                                            | 0.048                                                                | 1460755                                                                             | 0006387                                   |
| year2007                                                            | 0498415                                                              | .0381405                                                                                           | -1.31                                                            | 0.191                                                                | 1246426                                                                             | .0249596                                  |
| year2008                                                            | 0325552                                                              | .0312694                                                                                           | -1.04                                                            | 0.298                                                                | 0938806                                                                             | .0287701                                  |
| year2010                                                            | 0535569                                                              | .0242903                                                                                           | -2.20                                                            | 0.028                                                                | 101195                                                                              | 0059187                                   |
| Underidentific                                                      | ation test (                                                         | Kleibergen-Pa                                                                                      | .ap rk L1                                                        | 1 statist<br>Chi-                                                    | ic):<br>sq(1) P-val =                                                               | 93.323<br>= 0.0000                        |
| Weak identific<br>Stock-Yogo wea                                    | ation test (<br>(<br>1k ID test cr                                   | Cragg-Donald<br>Kleibergen-Pa<br>itical values                                                     | Wald F s<br>.ap rk Wa<br>:                                       | statistic<br>ald F sta                                               | :):<br>tistic):<br><not< td=""><td>270.658<br/>62.370<br/>available&gt;</td></not<> | 270.658<br>62.370<br>available>           |
| Hansen J stati                                                      | stic (overid                                                         | entification                                                                                       | test of                                                          | all inst<br>(equat                                                   | <pre>ruments):<br/>ion exactly</pre>                                                | 0.000<br>identified)                      |
| -endog- optior<br>Endogeneity te                                    | :<br>est of endoge                                                   | nous regresso                                                                                      | rs:                                                              |                                                                      | -                                                                                   | 3.619                                     |
| Regressors tes                                                      | ted: avyr                                                            | s sqravyrs ln                                                                                      | patappr                                                          | Chi-<br>lnfdi                                                        | sq(4) P-val =                                                                       | = 0.4600                                  |
| Instrumented:<br>Included instr<br>Excluded instr<br>Dropped collir | avyr<br>ruments: lngd<br>year<br>year<br>ruments: avyr<br>lear: cski | s sqravyrs ln<br>pc lnpop unem<br>1998 year1999<br>2004 year2005<br>slag1 sqravyr<br>lls dist tran | patappr<br>lnecofr<br>year200<br>year200<br>slag1 ln<br>sdummy y | lnfdi<br>ree serv<br>)0 year20<br>)6 year20<br>npatapprl<br>year2009 | lnrulc year19<br>01 year2002 y<br>07 year2008 y<br>ag1 lnfdilag2                    | 996 year1997<br>year2003<br>year2010<br>L |

| Table A5.3.6.3 Model 2 - IV estimated results (high tech)                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                 |                                                                                                                                                 |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| <pre>xtivreg2 lnemshmhtech cskills lngdpc lnpop unem lnecofree serv lnrulc dist transdummy<br/>year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004<br/>year2005 year2006 year2007 year2008 year2009 year2010 (avyrs sqravyrs lnpatappr lnfdi<br/>= avyrslag1 sqravyrslag1 lnpatapprlag1 lnfdilag1) if mhtechintens==1, fe endog (avyrs<br/>sqravyrs lnpatappr lnfdi) small robust bw(3)<br/>Warning - collinearities detected<br/>Vars dropped: cskills dist transdummy year2009</pre> |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                 |                                                                                                                                                 |  |  |  |  |  |
| FIXED EFFECTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FIXED EFFECTS ESTIMATION                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                 |                                                                                                                                                 |  |  |  |  |  |
| Number of groups = 135<br>0bs per group: min = 3<br>avg = 12.8<br>max = 15                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                 |                                                                                                                                                 |  |  |  |  |  |
| IV (2SLS) esti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .mation                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                 |                                                                                                                                                 |  |  |  |  |  |
| Estimates effi<br>Statistics rok<br>kernel=Bartl<br>time variabl<br>group variak                                                                                                                                                                                                                                                                                                                                                                                                                                    | cient for hom<br>oust to hetero<br>lett; bandwidt<br>le (t): year<br>ole (i): cn_ir                                                                                                                                                                                        | noskedasticit<br>oskedasticity<br>:h=3<br>nd                                                                                                                                                                                                                                               | y only<br>7 and aut                                                                                                                                                                                                  | cocorrel                                                                                                                                                                                                                                        | lation                                                                                                                                          |  |  |  |  |  |
| Total (centere<br>Total (uncente<br>Residual SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ed) SS =<br>ered) SS =<br>=                                                                                                                                                                                                                                                | 493.2394608<br>493.2394608<br>370.8359457                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                 | Number of obs = $1725$<br>F(24, 1566) = $6.59$<br>Prob > F = $0.0000$<br>Centered R2 = $0.2482$<br>Uncentered R2 = $0.2482$<br>Root MSE = .4866 |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                            | Robust.                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                 |                                                                                                                                                 |  |  |  |  |  |
| lnemshmhtech                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Coef.                                                                                                                                                                                                                                                                      | Std. Err.                                                                                                                                                                                                                                                                                  | t                                                                                                                                                                                                                    | P> t                                                                                                                                                                                                                                            | [95% Conf. Interval]                                                                                                                            |  |  |  |  |  |
| avyrs  <br>sqravyrs  <br>lnpatappr  <br>lnfdi  <br>lngdpc  <br>lnpop  <br>unem  <br>lnecofree  <br>serv  <br>lnrulc  <br>year1996  <br>year1997  <br>year1998  <br>year1999  <br>year2000  <br>year2000  <br>year2001  <br>year2002  <br>year2003  <br>year2004  <br>year2005  <br>year2006  <br>year2008  <br>year2010                                                                                                                                                                                             | 6015589<br>.0187715<br>2651346<br>.0035589<br>2.298096<br>-2.793913<br>.0036252<br>.2991396<br>.013142<br>.0679941<br>0190269<br>0153783<br>0724438<br>1686438<br>1950861<br>1825698<br>209583<br>18154<br>2185546<br>2475542<br>.2959518<br>2804218<br>1553569<br>0924394 | .6357493<br>.0291777<br>.1230322<br>.0164395<br>.3140217<br>.9366174<br>.0022633<br>.4870772<br>.0152987<br>.520302<br>.1572416<br>.1398175<br>.1297551<br>.1243151<br>.1104167<br>.0982752<br>.0876661<br>.0863826<br>.0805262<br>.0773957<br>.0804449<br>.0763812<br>.058051<br>.0563037 | $\begin{array}{c} -0.95\\ 0.64\\ -2.16\\ 0.22\\ 7.32\\ -2.98\\ 1.60\\ 0.61\\ 0.86\\ 0.13\\ -0.12\\ -0.11\\ -0.56\\ -1.36\\ -1.77\\ -1.86\\ -2.39\\ -2.10\\ -2.71\\ -3.20\\ -3.68\\ -3.67\\ -2.68\\ -1.64\end{array}$ | 0.344<br>0.520<br>0.031<br>0.829<br>0.000<br>0.003<br>0.109<br>0.539<br>0.390<br>0.896<br>0.904<br>0.912<br>0.577<br>0.175<br>0.077<br>0.063<br>0.017<br>0.063<br>0.017<br>0.036<br>0.007<br>0.001<br>0.000<br>0.000<br>0.000<br>0.008<br>0.101 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                            |  |  |  |  |  |
| Underidentific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Underidentification test (Kleibergen-Paap rk LM statistic): 70.991                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                 |                                                                                                                                                 |  |  |  |  |  |

\_\_\_\_\_ Weak identification test (Cragg-Donald Wald F statistic): 343.877 (Kleibergen-Paap rk Wald F statistic): 76.371 Stock-Yogo weak ID test critical values: <not available> \_\_\_\_\_ Hansen J statistic (overidentification test of all instruments): 0.000 (equation exactly identified) -endog- option: Endogeneity test of endogenous regressors: 7.460 Chi-sq(4) P-val = 0.1135 avyrs sqravyrs lnpatappr lnfdi Regressors tested: \_\_\_\_\_ -----Instrumented: avyrs sgravyrs lnpatappr lnfdi Included instruments: lnqdpc lnpop unem lnecofree serv lnrulc year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2010 Excluded instruments: avyrslag1 sqravyrslag1 lnpatapprlag1 lnfdilag1 Dropped collinear: cskills dist transdummy year2009 \_\_\_\_\_

### Table A5.3.6.3.1 Model 2 - IV estimated results – ETEs (high tech)

xtivreg2 lnemshmhtech cskills lngdpc lnpop unem lnecofree serv lnrulc dist transdummy transindn year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010 (avyrs sqravyrs lnpatappr lnfdi = avyrslag1 sqravyrslag1 lnpatapprlag1 lnfdilag1) if transdummy==1, fe endog (avyrs sgravyrs lnpatappr lnfdi) small robust bw(3) Warning - collinearities detected Vars dropped: cskills dist transdummy year1996 FIXED EFFECTS ESTIMATION \_\_\_\_\_ Obs per group: min = 7 avg = 13.3 max = 15 Number of groups = 50 IV (2SLS) estimation \_\_\_\_\_ Estimates efficient for homoskedasticity only Statistics robust to heteroskedasticity and autocorrelation kernel=Bartlett; bandwidth=3 time variable (t): year group variable (i): cn ind Number of obs = 9.09 665 F(25, 590) = 665 F(25, 590) = 9.09 Prob > F = 0.0000Centered R2 = 0.4263 Total (centered) SS = 401.3177204 Total (uncentered) SS = 401.3177204 Residual SS = 230.2259456 Uncentered R2 = 0.4263 Root MSE = .6247 \_\_\_\_\_ 1 Robust lnemshmhtech | Coef. Std. Err. t P>|t| [95% Conf. Interval] \_\_\_\_\_\_ avyrs | 1.129014 2.216558 0.51 0.611 -3.224291 5.482319 sqravyrs | -.0620255 .0932789 -0.66 0.506 -.2452246 .1211736 lnpatappr | -.9785358 .3695272 -2.65 0.008 -1.704285 -.2527871 

 lnfdi |
 -.052484
 .2646422
 -0.20
 0.843
 -.5722393
 .4672714

 lngdpc |
 -.1494802
 .7714283
 -0.19
 0.846
 -1.66456
 1.365599

 lnpop |
 3.200568
 7.111602
 0.45
 0.653
 -10.76657
 17.1677

 unem |
 -.0117958
 .0045927
 -2.57
 0.010
 -.0208157
 -.0027758

| lnecofree                                                                                                                                                                                                                                                      | .6488538                                                                                       | .8748078    | 0.74                   | 0.459                 | -1.069262                       | 2.36697             |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------|------------------------|-----------------------|---------------------------------|---------------------|--|--|--|
| serv                                                                                                                                                                                                                                                           | 0272943                                                                                        | .0264002    | -1.03                  | 0.302                 | 079144                          | .0245555            |  |  |  |
| lnrulc                                                                                                                                                                                                                                                         | 1.800013                                                                                       | .7748469    | 2.32                   | 0.021                 | .2782194                        | 3.321807            |  |  |  |
| transindn                                                                                                                                                                                                                                                      | 3797262                                                                                        | 1.523892    | -0.25                  | 0.803                 | -3.37264                        | 2.613187            |  |  |  |
| year1997                                                                                                                                                                                                                                                       | .1879103                                                                                       | .2364596    | 0.79                   | 0.427                 | 2764947                         | .6523152            |  |  |  |
| year1998                                                                                                                                                                                                                                                       | .2362427                                                                                       | .2801832    | 0.84                   | 0.399                 | 314035                          | .7865205            |  |  |  |
| year1999                                                                                                                                                                                                                                                       | .2469435                                                                                       | .3132865    | 0.79                   | 0.431                 | 3683489                         | .862236             |  |  |  |
| year2000                                                                                                                                                                                                                                                       | .4068803                                                                                       | .3544942    | 1.15                   | 0.252                 | 2893438                         | 1.103104            |  |  |  |
| year2001                                                                                                                                                                                                                                                       | .6894817                                                                                       | .3871635    | 1.78                   | 0.075                 | 0709047                         | 1.449868            |  |  |  |
| year2002                                                                                                                                                                                                                                                       | 1.024315                                                                                       | .468258     | 2.19                   | 0.029                 | .1046595                        | 1.94397             |  |  |  |
| year2003                                                                                                                                                                                                                                                       | 1.117352                                                                                       | .4743128    | 2.36                   | 0.019                 | .1858046                        | 2.048898            |  |  |  |
| year2004                                                                                                                                                                                                                                                       | 1.375276                                                                                       | .5190807    | 2.65                   | 0.008                 | .3558054                        | 2.394747            |  |  |  |
| year2005                                                                                                                                                                                                                                                       | 1.452851                                                                                       | .5503804    | 2.64                   | 0.009                 | .3719083                        | 2.533794            |  |  |  |
| year2006                                                                                                                                                                                                                                                       | 1.658479                                                                                       | .6070084    | 2.73                   | 0.006                 | .4663184                        | 2.850639            |  |  |  |
| year2007                                                                                                                                                                                                                                                       | 1.953835                                                                                       | .643251     | 3.04                   | 0.002                 | .6904947                        | 3.217176            |  |  |  |
| year2008                                                                                                                                                                                                                                                       | 2.189779                                                                                       | .6442083    | 3.40                   | 0.001                 | .9245588                        | 3.455               |  |  |  |
| year2009                                                                                                                                                                                                                                                       | 2.253332                                                                                       | .6764657    | 3.33                   | 0.001                 | .9247582                        | 3.581906            |  |  |  |
| year2010                                                                                                                                                                                                                                                       | 2.422991                                                                                       | .7138113    | 3.39                   | 0.001                 | 1.021071                        | 3.824911            |  |  |  |
| Underidentifica                                                                                                                                                                                                                                                | Underidentification test (Kleibergen-Paap rk LM statistic): 65.444<br>Chi-sq(1) P-val = 0.0000 |             |                        |                       |                                 |                     |  |  |  |
| Weak Identifica                                                                                                                                                                                                                                                | (K                                                                                             | layy-Donaiu | aan rk Wa              | ald F eta             | /·<br>tistic)·                  | 43 380              |  |  |  |
| Stock-Yogo weak                                                                                                                                                                                                                                                | ID test cri                                                                                    | tical value | s:                     |                       | <pre><not< pre=""></not<></pre> | available>          |  |  |  |
| Hansen J statis                                                                                                                                                                                                                                                | stic (overide                                                                                  | ntification | test of                | all inst<br>(equat    | ruments):<br>ion exactly i      | 0.000<br>dentified) |  |  |  |
| -endog- option:                                                                                                                                                                                                                                                |                                                                                                |             |                        |                       |                                 |                     |  |  |  |
| Endogeneity tes                                                                                                                                                                                                                                                | st of endogen                                                                                  | ous regress | ors:                   |                       |                                 | 6.910               |  |  |  |
| Regressors test                                                                                                                                                                                                                                                | ed: avyrs                                                                                      | sqravyrs l  | npatappr               | Chi-<br>lnfdi<br>     | sq(4) P-val =                   | 0.1407              |  |  |  |
| Instrumented: avyrs sqravyrs lnpatappr lnfdi<br>Included instruments: lngdpc lnpop unem lnecofree serv lnrulc transindn year1997<br>year1998 year1999 year2000 year2001 year2002 year2003<br>year2004 year2005 year2006 year2007 year2008 year2009<br>year2010 |                                                                                                |             |                        |                       |                                 |                     |  |  |  |
| Excluded instru                                                                                                                                                                                                                                                | uments: avyrs                                                                                  | lagl sqravy | rslagi li<br>nsdummy y | npatapprl<br>vear1996 | agi infdilagi                   |                     |  |  |  |
| Probhed cortine                                                                                                                                                                                                                                                | JUL . CONTI                                                                                    | IS UISC LIA | instructing _          | YCULL))0              |                                 |                     |  |  |  |

### Table A5.3.6.3.2 Model 2 - IV estimated results - N-ETEs (high tech)

.xtivreg2 lnemshmhtech cskills lngdpc lnpop unem lnecofree serv lnrulc dist transdummy year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010 (avyrs sqravyrs lnpatappr lnfdi = avyrslag1 sqravyrslag1 lnpatapprlag1 lnfdilag1) if transdummy==0, fe endog (avyrs sqravyrs lnpatappr lnfdi) small robust bw(3) Warning - collinearities detected Vars dropped: cskills dist transdummy year2009 FIXED EFFECTS ESTIMATION \_\_\_\_\_ Number of groups = 85 Obs per group: min = 3 avg = 12.5 max = 15 IV (2SLS) estimation \_\_\_\_\_ Estimates efficient for homoskedasticity only Statistics robust to heteroskedasticity and autocorrelation

| kernel=Bart]<br>time variab]<br>group variak                                                                                                                                                                                                                                                                                                                                     | lett; bandwidt<br>le (t): year<br>ble (i): cn_in                                                                                                                                                                                                            | h=3<br>nd                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Total (centere<br>Total (uncente<br>Residual SS                                                                                                                                                                                                                                                                                                                                  | ed) SS =<br>ered) SS =<br>=                                                                                                                                                                                                                                 | 91.9217385<br>91.9217385<br>85.89609255                                                                                                                                                                                                                                     |                                                                                                                                                                                                                | 1<br>H<br>C<br>T<br>F                                                                                                                                                                              | Number of obs =<br>F(24, 951) =<br>Prob > F =<br>Centered R2 =<br>Jncentered R2 =<br>Root MSE =                                                                                                                                                                 | = 1060<br>= 1.64<br>= 0.0279<br>= 0.0656<br>= 0.0656<br>= .3005                                                                                                                                                                                                              |
| lnemshmhtech                                                                                                                                                                                                                                                                                                                                                                     | Coef.                                                                                                                                                                                                                                                       | Robust<br>Std. Err.                                                                                                                                                                                                                                                         | t                                                                                                                                                                                                              | P> t                                                                                                                                                                                               | [95% Conf.                                                                                                                                                                                                                                                      | Interval]                                                                                                                                                                                                                                                                    |
| avyrs<br>sqravyrs<br>lnpatappr<br>lnfdi<br>lngdpc<br>lnpop<br>unem<br>lnecofree<br>serv<br>lnrulc<br>year1996<br>year1997<br>year1998<br>year1999<br>year2000<br>year2001<br>year2002<br>year2003<br>year2004<br>year2005<br>year2006<br>year2007<br>year2008                                                                                                                    | 0578471<br>0018724<br>.0840967<br>.0139996<br>2629225<br>3542781<br>.0018903<br>0776557<br>0055884<br>9847564<br>1027469<br>0636419<br>0941684<br>0986003<br>0708602<br>029749<br>0232007<br>.0196011<br>.000375<br>0111933<br>0450525<br>033667<br>0330199 | .5632155<br>.0256329<br>.1199154<br>.0163698<br>.5618005<br>.8256291<br>.00211<br>.4541934<br>.0121497<br>.6867501<br>.1467757<br>.1318912<br>.1175163<br>.1100095<br>.0923614<br>.0809767<br>.0748113<br>.0682753<br>.067864<br>.061194<br>.062826<br>.0649322<br>.0534914 | $\begin{array}{c} -0.10\\ -0.07\\ 0.70\\ 0.86\\ -0.47\\ -0.43\\ 0.90\\ -0.17\\ -0.46\\ -1.43\\ -0.70\\ -0.48\\ -0.80\\ -0.90\\ -0.77\\ -0.31\\ 0.29\\ 0.01\\ -0.18\\ -0.72\\ -0.52\\ -0.52\\ -0.62\end{array}$ | 0.918<br>0.942<br>0.483<br>0.393<br>0.640<br>0.668<br>0.371<br>0.864<br>0.646<br>0.152<br>0.484<br>0.630<br>0.423<br>0.370<br>0.443<br>0.757<br>0.774<br>0.996<br>0.855<br>0.473<br>0.604<br>0.537 | $\begin{array}{c} -1.163136\\0521759\\1512327\\0181256\\ -1.365434\\ -1.974543\\0022505\\9689928\\0294318\\ -2.332477\\3907885\\3224733\\3224733\\3247896\\3144898\\2521159\\1886625\\1700151\\1143867\\1328056\\1312841\\1683461\\1610939\\1379948\end{array}$ | 1.047442<br>.0484311<br>.319426<br>.0461247<br>.8395895<br>1.265987<br>.0060311<br>.8136815<br>.018255<br>.3629643<br>.1852947<br>.1951895<br>.1364528<br>.1172892<br>.1103955<br>.1291646<br>.1236137<br>.1535888<br>.1335555<br>.1088976<br>.078241<br>.0937599<br>.071955 |
| year2010<br><br>Underidentific                                                                                                                                                                                                                                                                                                                                                   | 0683688<br><br>cation test (F                                                                                                                                                                                                                               | .0410737<br><br>Kleibergen-Pa                                                                                                                                                                                                                                               | -1.66<br>                                                                                                                                                                                                      | 0.096<br><br>I statist                                                                                                                                                                             | 1489/43<br>                                                                                                                                                                                                                                                     | 46.662                                                                                                                                                                                                                                                                       |
| Weak identific<br>Stock-Yogo wea                                                                                                                                                                                                                                                                                                                                                 | cation test (C<br>(F<br>ak ID test cri                                                                                                                                                                                                                      | Cragg-Donald<br>Kleibergen-Pa<br>tical values                                                                                                                                                                                                                               | Wald F s<br>ap rk Wa                                                                                                                                                                                           | statistic                                                                                                                                                                                          | c):<br>atistic):<br><not a<="" td=""><td>133.644<br/>30.796<br/>available&gt;</td></not>                                                                                                                                                                        | 133.644<br>30.796<br>available>                                                                                                                                                                                                                                              |
| Hansen J stati                                                                                                                                                                                                                                                                                                                                                                   | lstic (overide                                                                                                                                                                                                                                              | entification                                                                                                                                                                                                                                                                | test of                                                                                                                                                                                                        | all inst<br>(equat                                                                                                                                                                                 | truments):<br>tion exactly ic                                                                                                                                                                                                                                   | 0.000<br>dentified)                                                                                                                                                                                                                                                          |
| -endog- option<br>Endogeneity te<br>Regressors tes                                                                                                                                                                                                                                                                                                                               | n:<br>est of endoger<br>sted: avyrs                                                                                                                                                                                                                         | nous regresso<br>s sqravyrs ln                                                                                                                                                                                                                                              | ors:<br>apatappr                                                                                                                                                                                               | Chi-<br>lnfdi                                                                                                                                                                                      | -sq(4) P-val =                                                                                                                                                                                                                                                  | 5.016<br>0.2857                                                                                                                                                                                                                                                              |
| Instrumented: avyrs sqravyrs lnpatappr lnfdi<br>Included instruments: lngdpc lnpop unem lnecofree serv lnrulc year1996 year1997<br>year1998 year1999 year2000 year2001 year2002 year2003<br>year2004 year2005 year2006 year2007 year2008 year2010<br>Excluded instruments: avyrslag1 sqravyrslag1 lnpatapprlag1 lnfdilag1<br>Dropped collinear: cskills dist transdummy year2009 |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                              |

Chi-sq(1) P-val = 0.0000\_\_\_\_\_ Weak identification test (Cragg-Donald Wald F statistic): 342.660 (Kleibergen-Paap rk Wald F statistic): 76.490 Stock-Yogo weak ID test critical values: <not available> \_\_\_\_\_ Hansen J statistic (overidentification test of all instruments): 0.000 (equation exactly identified) -endog- option: Endogeneity test of endogenous regressors: 1 471 Chi-sq(4) P-val = 0.8317Regressors tested: avyrs sqravyrs lnpatappr lnfdi \_\_\_\_\_ \_\_\_\_\_ avyrs sgravyrs lnpatappr lnfdi Instrumented: Included instruments: lngdpc lnpop unem lnecofree serv lnrulc transindn year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2010 Excluded instruments: avyrslag1 sqravyrslag1 lnpatapprlag1 lnfdilag1 Dropped collinear: cskills dist transdummy year2009 \_\_\_\_\_

Table A5.3.6.4.1 Model 2 - IV estimated results – ETEs (medium-high tech) xtivreg2 lnemshmhtech cskills lngdpc lnpop unem lnecofree serv lnrulc dist transdummy transindn year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010 (avyrs sqravyrs lnpatappr lnfdi = avyrslag1 sqravyrslag1 lnpatapprlag1 lnfdilag1) if transdummy==1, fe endog (avyrs sqravyrs lnpatappr lnfdi) small robust bw(3) Warning - collinearities detected Vars dropped: cskills dist transdummy year1996 FIXED EFFECTS ESTIMATION \_\_\_\_\_ Number of groups = 50 Obs per group: min = 7 avg = 13.3 max = 15 IV (2SLS) estimation \_\_\_\_\_ Estimates efficient for homoskedasticity only Statistics robust to heteroskedasticity and autocorrelation kernel=Bartlett; bandwidth=3 time variable (t): year group variable (i): cn ind Number of obs = 665 F(25, 590) = 18.68 Prob > F = 0.0000Centered R2 = 0.6159 Total (centered) SS = 154.3655902 Total (uncentered) SS = 154.3655902 Residual SS = 59.29914463 0.6159 Uncentered R2 = Root MSE = .317 \_\_\_\_\_ Robust Coef. Std. Err. lnemshmhtech | t P>|t| [95% Conf. Interval] \_\_\_\_\_\_ avyrs | -.2235932 1.11725 -0.20 0.841 -2.417864 1.970678 sqravyrs | .003853 .0460376 0.08 0.933 -.0865644 .0942705 lnpatappr | -.060539 .1991369 -0.30 0.761 -.4516425 .3305644 lnfdi | -.0220598.1250471-0.180.860-.2676514.2235318lngdpc | 1.221033.4409372.770.006.35503562.08703

| lnpop                            | -2.818836                                                                                                                                                                                          | 3.876492                   | -0.73                         | 0.467                 | -10.43224       | 4.794566    |  |  |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------|-----------------------|-----------------|-------------|--|--|
| unem                             | 0054334                                                                                                                                                                                            | .0022646                   | -2.40                         | 0.017                 | 009881          | 0009858     |  |  |
| lnecofree                        | 2353136                                                                                                                                                                                            | .4510029                   | -0.52                         | 0.602                 | -1.12108        | .6504528    |  |  |
| serv                             | .0078397                                                                                                                                                                                           | .0132287                   | 0.59                          | 0.554                 | 0181415         | .0338208    |  |  |
| lnrulc                           | 2360412                                                                                                                                                                                            | .4332825                   | -0.54                         | 0.586                 | -1.087005       | .6149226    |  |  |
| transindn                        | 9533868                                                                                                                                                                                            | .6922261                   | -1.38                         | 0.169                 | -2.312914       | .4061404    |  |  |
| year1997                         | .0827963                                                                                                                                                                                           | .111923                    | 0.74                          | 0.460                 | 1370196         | .3026122    |  |  |
| year1998                         | .1274064                                                                                                                                                                                           | .1288699                   | 0.99                          | 0.323                 | 1256932         | .3805059    |  |  |
| year1999                         | .0819929                                                                                                                                                                                           | .148972                    | 0.55                          | 0.582                 | 210587          | .3745729    |  |  |
| year2000                         | .1499552                                                                                                                                                                                           | .1680655                   | 0.89                          | 0.373                 | 1801243         | .4800346    |  |  |
| year2001                         | .2704991                                                                                                                                                                                           | .1876543                   | 1.44                          | 0.150                 | 0980527         | .6390509    |  |  |
| year2002                         | .3080321                                                                                                                                                                                           | .2267256                   | 1.36                          | 0.175                 | 1372553         | .7533195    |  |  |
| year2003                         | .3478283                                                                                                                                                                                           | .2296858                   | 1.51                          | 0.130                 | 103273          | .7989295    |  |  |
| year2004                         | .4443146                                                                                                                                                                                           | .2524795                   | 1.76                          | 0.079                 | 0515533         | .9401826    |  |  |
| year2005                         | .5273062                                                                                                                                                                                           | .2667497                   | 1.98                          | 0.049                 | .0034117        | 1.051201    |  |  |
| year2006                         | .5504036                                                                                                                                                                                           | .2953291                   | 1.86                          | 0.063                 | 0296207         | 1.130428    |  |  |
| year2007                         | .5848678                                                                                                                                                                                           | .3149429                   | 1.86                          | 0.064                 | 0336778         | 1.203413    |  |  |
| year2008                         | .603752                                                                                                                                                                                            | .3184632                   | 1.90                          | 0.058                 | 0217074         | 1.229211    |  |  |
| year2009                         | .6551889                                                                                                                                                                                           | .3315656                   | 1.98                          | 0.049                 | .0039965        | 1.306381    |  |  |
| year2010                         | .7474848                                                                                                                                                                                           | .3524502                   | 2.12                          | 0.034                 | .0552751        | 1.439695    |  |  |
|                                  | ation tost (                                                                                                                                                                                       |                            |                               | Chi-                  | sq(1) P-val =   | 0.0000      |  |  |
| weak identiiit                   | alion lest (C                                                                                                                                                                                      | lagg-Donald                | aan rk Wa                     | ald E sta             | ;);<br>tistic). | 02.442      |  |  |
| Stock-Yogo wea                   | ak ID test cri                                                                                                                                                                                     | tical value                | s:                            |                       | <pre></pre>     | available>  |  |  |
| Hansen J stati                   | stic (overide                                                                                                                                                                                      | entification               | test of                       | all inst              | ruments):       | 0.000       |  |  |
| -endog- option                   | ı:                                                                                                                                                                                                 |                            |                               | lequat                | TOU ENACCTY I   | acinetited) |  |  |
| Endogeneity te                   | est of endoger                                                                                                                                                                                     | ious regress               | ors:                          |                       |                 | 3.835       |  |  |
| 2110090110101                    | of of ondogor                                                                                                                                                                                      | 1040 1091000               | 010.                          | Chi-                  | sq(4) P-val =   | 0.4289      |  |  |
| Regressors tes                   | sted: avyrs                                                                                                                                                                                        | sqravyrs l                 | npatappr                      | lnfdi                 |                 |             |  |  |
| Instrumented:                    | avyrs                                                                                                                                                                                              | sqravyrs l                 | npatappr                      | lnfdi                 | ]]              |             |  |  |
| included instr                   | Included instruments: lngdpc lnpop unem lnecofree serv lnrulc transindn year1997<br>year1998 year1999 year2000 year2001 year2002 year2003<br>year2004 year2005 year2006 year2007 year2008 year2009 |                            |                               |                       |                 |             |  |  |
|                                  | year2                                                                                                                                                                                              | 2010                       |                               |                       |                 |             |  |  |
| Excluded instr<br>Dropped collir | ruments: avyrs<br>near: cskil                                                                                                                                                                      | lagl sqravy<br>ls dist tra | rsiagl lı<br>nsdummy <u>y</u> | npatapprl<br>year1996 | .agl Infdilagl  |             |  |  |
|                                  |                                                                                                                                                                                                    |                            |                               |                       |                 |             |  |  |

## Table A5.3.6.4.2 Model 2 - IV estimated results - N-ETEs (medium-high tech)

| Estimates effi<br>Statistics rob<br>kernel=Bartl<br>time variabl<br>group variab | cient for hom<br>ust to hetero<br>ett; bandwidt<br>e (t): year<br>le (i): cn_in | oskedastici<br>skedasticit<br>h=3<br>d                                 | ty only<br>y and aut                                              | cocorrei                                              | lation                                                                                 |                                                                   |
|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| Total (centere<br>Total (uncente<br>Residual SS                                  | d) SS =<br>red) SS =<br>=                                                       | 39.83321916<br>39.83321916<br>29.52772596                              |                                                                   |                                                       | Number of obs<br>F(24, 951)<br>Prob > F<br>Centered R2<br>Uncentered R2<br>Root MSE    | $= 1060 \\ = 4.45 \\ = 0.0000 \\ = 0.2587 \\ = 0.2587 \\ = .1762$ |
| <br>lnemshmhtech                                                                 | Coef.                                                                           | Robust<br>Std. Err.                                                    | t                                                                 | P> t                                                  | [95% Conf.                                                                             | Interval]                                                         |
| avvrs                                                                            | .4162129                                                                        | .3230949                                                               | 1.29                                                              | 0.198                                                 |                                                                                        | 1.050274                                                          |
| sgravyrs                                                                         | 021882                                                                          | .0148667                                                               | -1.47                                                             | 0.141                                                 | 0510573                                                                                | .0072933                                                          |
| lnpatappr                                                                        | .0243997                                                                        | .0704304                                                               | 0.35                                                              | 0.729                                                 | 1138172                                                                                | .1626167                                                          |
| lnfdi                                                                            | .0160023                                                                        | .0092417                                                               | 1.73                                                              | 0.084                                                 | 0021342                                                                                | .0341387                                                          |
|                                                                                  | - 5306194                                                                       | 3799658                                                                | -1 40                                                             | 0 163                                                 | -1 276288                                                                              | 2150489                                                           |
| lnpop                                                                            | -3.001187                                                                       | .6135748                                                               | -4.89                                                             | 0.000                                                 | -4.205304                                                                              | -1.79707                                                          |
| unem                                                                             | 0015886                                                                         | .0013692                                                               | -1.16                                                             | 0.246                                                 | 0042756                                                                                | .0010983                                                          |
| lnecofree                                                                        | 123056                                                                          | .2528611                                                               | -0.49                                                             | 0.627                                                 | 6192862                                                                                | . 3731742                                                         |
| serv                                                                             | 0156024                                                                         | .0079552                                                               | -1.96                                                             | 0.050                                                 | 0312142                                                                                | 9.29e-06                                                          |
| lnrulc                                                                           | 6654343                                                                         | .4317375                                                               | -1.54                                                             | 0.124                                                 | -1.512703                                                                              | .181834                                                           |
| vear1996                                                                         | 2338446                                                                         | .1028531                                                               | -2.27                                                             | 0.023                                                 | 4356898                                                                                | 0319994                                                           |
| vear1997                                                                         | 2388962                                                                         | .0949609                                                               | -2.52                                                             | 0.012                                                 | 4252534                                                                                | 052539                                                            |
| vear1998                                                                         | 2366741                                                                         | .0793285                                                               | -2.98                                                             | 0.003                                                 | 3923532                                                                                | 080995                                                            |
| vear1999                                                                         | 1954731                                                                         | .072383                                                                | -2.70                                                             | 0.007                                                 | 3375219                                                                                | 0534243                                                           |
| vear2000                                                                         | 2078419                                                                         | .0597177                                                               | -3.48                                                             | 0.001                                                 | 3250356                                                                                | 0906482                                                           |
| vear2001                                                                         | 1689569                                                                         | .0541564                                                               | -3.12                                                             | 0.002                                                 | 2752368                                                                                | 0626769                                                           |
| vear2002                                                                         | 1520052                                                                         | .0483146                                                               | -3.15                                                             | 0.002                                                 | 2468208                                                                                | 0571897                                                           |
| vear2003                                                                         | 1253205                                                                         | .0460571                                                               | -2.72                                                             | 0.007                                                 | 2157058                                                                                | 0349353                                                           |
| vear2004                                                                         | 1220811                                                                         | .043061                                                                | -2.84                                                             | 0.005                                                 | 2065867                                                                                | 0375755                                                           |
| vear2005                                                                         | 1252929                                                                         | .0437517                                                               | -2.86                                                             | 0.004                                                 | 2111539                                                                                | 0394319                                                           |
| year2006                                                                         | - 1016604                                                                       | 0391893                                                                | -2 59                                                             | 0 010                                                 | - 1785679                                                                              | - 0247529                                                         |
| year2007                                                                         | - 0660142                                                                       | 0395378                                                                | -1 67                                                             | 0 095                                                 | - 1436057                                                                              | 0115772                                                           |
| year2008                                                                         | - 032088                                                                        | 0318407                                                                | -1 01                                                             | 0.000                                                 | - 0945742                                                                              | 0303981                                                           |
| vear2010                                                                         | - 0387423                                                                       | 0262428                                                                | -1 48                                                             | 0.140                                                 | - 0902428                                                                              | 0127582                                                           |
|                                                                                  |                                                                                 |                                                                        |                                                                   |                                                       |                                                                                        |                                                                   |
| Underidentific                                                                   | ation test (K                                                                   | leibergen-P                                                            | aap rk LN                                                         | 1 stati:<br>Ch:                                       | stic):<br>i-sq(1)                                                                      | 46.662                                                            |
| Weak identific<br>Stock-Yogo wea                                                 | ation test (C<br>(K<br>k ID test cri                                            | ragg-Donald<br>leibergen-P<br>tical value                              | l Wald F s<br>Paap rk Wa<br>es:                                   | statist:<br>ald F st                                  | ic):<br>tatistic):<br><not< td=""><td>133.644<br/>30.796<br/>available&gt;</td></not<> | 133.644<br>30.796<br>available>                                   |
| Hanson I stati                                                                   | stic (overide                                                                   | ntification                                                            | tost of                                                           |                                                       |                                                                                        |                                                                   |
| -endog- option                                                                   | :                                                                               | Incriticación                                                          | i test or                                                         | (equa                                                 | ation exactly i                                                                        | dentified)                                                        |
| Endogeneity te                                                                   | st of endogen                                                                   | ous regress                                                            | sors:                                                             | Ch                                                    | i-sg(4) P-val =                                                                        | 2.673<br>0.6140                                                   |
| Regressors tes                                                                   | ted: avyrs                                                                      | sqravyrs l                                                             | npatappr                                                          | lnfdi                                                 |                                                                                        |                                                                   |
| Instrumented:<br>Included instr<br>Excluded instr                                | avyrs<br>uments: lngdp<br>year1<br>year2<br>uments: avyrs                       | sqravyrs l<br>c lnpop une<br>998 year199<br>004 year200<br>lag1 sqravy | .npatappr<br>em lnecofi<br>99 year200<br>95 year200<br>95 year200 | lnfdi<br>ree serv<br>)0 year2<br>)6 year2<br>npatapp: | v lnrulc year19<br>2001 year2002 y<br>2007 year2008 y<br>rlag1 lnfdilag1               | 96 year1997<br>ear2003<br>ear2010                                 |
| Dropped collin                                                                   | ear: cskil                                                                      | ls dist tra                                                            | insdummy y                                                        | year200                                               | 9                                                                                      |                                                                   |

| <br> |
|------|
|      |

# Table A5.4 Model 1 - Fixed effects estimated results (medium-high and high tech)

| <pre>xtreg lnrxamht<br/>lnrulc serv d:<br/>year2002 year2<br/>note: cskills<br/>note: dist om:<br/>note: transdur</pre> | tech lnsedut 1<br>ist transdummy<br>2003 year2004<br>omitted becau<br>itted because<br>nmy omitted be | Intedut cski<br>y year1996 ye<br>year2005 ye<br>ise of colline<br>of collinea<br>ecause of co | lls lnpat<br>ear1997 <u>y</u><br>ar2006 ye<br>nearity<br>rity<br>llinearit | cappr lnf<br>year1998<br>ear2007 y<br>cy | di lngdpc ln<br>year1999 yea<br>ear2008 year | pop unem lne<br>r2000 year20<br>2009 year201 | ecofree<br>001<br>.0, fe |
|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------|----------------------------------------------|----------------------------------------------|--------------------------|
| Fixed-effects<br>Group variable                                                                                         | (within) reg<br>e: cn_ind                                                                             | ression                                                                                       |                                                                            | Number<br>Number                         | of obs<br>of groups                          | = 3600<br>= 270                              |                          |
| R-sq: within<br>between<br>overall                                                                                      | = 0.0598<br>n = 0.0326<br>L = 0.0298                                                                  |                                                                                               |                                                                            | Obs per                                  | group: min<br>avg<br>max                     | = 5<br>= 13.3<br>= 16                        |                          |
| corr(u_i, Xb)                                                                                                           | = -0.9350                                                                                             |                                                                                               |                                                                            | F(25,33<br>Prob >                        | 05)<br>F                                     | = 8.41<br>= 0.0000                           |                          |
| lnrxamhtech                                                                                                             | Coef.                                                                                                 | Std. Err.                                                                                     | <br>t                                                                      | P> t                                     | [95% Conf                                    | . Interval]                                  |                          |
| lnsedut                                                                                                                 | .0684092                                                                                              | .1310535                                                                                      | 0.52                                                                       | 0.602                                    | 188545                                       | .3253634                                     |                          |
| lntedut                                                                                                                 | 0491646                                                                                               | .1321687                                                                                      | -0.37                                                                      | 0.710                                    | 3083054                                      | .2099763                                     |                          |
| cskills                                                                                                                 | (omitted)                                                                                             |                                                                                               |                                                                            |                                          |                                              |                                              |                          |
| lnpatappr                                                                                                               | 0870021                                                                                               | .0288026                                                                                      | -3.02                                                                      | 0.003                                    | 1434749                                      | 0305292                                      |                          |
| lnfdi                                                                                                                   | .0087483                                                                                              | .0062759                                                                                      | 1.39                                                                       | 0.163                                    | 0035567                                      | .0210533                                     |                          |
| lngdpc                                                                                                                  | .529116                                                                                               | .1463199                                                                                      | 3.62                                                                       | 0.000                                    | .2422292                                     | .8160029                                     |                          |
| lnpop                                                                                                                   | -1.742003                                                                                             | .416844                                                                                       | -4.18                                                                      | 0.000                                    | -2.559302                                    | 9247047                                      |                          |
| unem                                                                                                                    | 000038                                                                                                | .0009313                                                                                      | -0.04                                                                      | 0.967                                    | 0018639                                      | .001788                                      |                          |
| lnecofree                                                                                                               | 0297467                                                                                               | .1841989                                                                                      | -0.16                                                                      | 0.872                                    | 3909022                                      | .3314087                                     |                          |
| lnrulc                                                                                                                  | .196702                                                                                               | .2043481                                                                                      | 0.96                                                                       | 0.336                                    | 2039597                                      | .5973636                                     |                          |
| serv                                                                                                                    | .0132255                                                                                              | .0040057                                                                                      | 3.30                                                                       | 0.001                                    | .0053716                                     | .0210793                                     |                          |
| dist                                                                                                                    | (omitted)                                                                                             |                                                                                               |                                                                            |                                          |                                              |                                              |                          |
| transdummy                                                                                                              | (omitted)                                                                                             |                                                                                               |                                                                            |                                          |                                              |                                              |                          |
| year1996                                                                                                                | .0587531                                                                                              | .0512922                                                                                      | 1.15                                                                       | 0.252                                    | 0418147                                      | .1593208                                     |                          |
| year1997                                                                                                                | .0485495                                                                                              | .0519354                                                                                      | 0.93                                                                       | 0.350                                    | 0532792                                      | .1503782                                     |                          |
| year1998                                                                                                                | .0257366                                                                                              | .0532252                                                                                      | 0.48                                                                       | 0.629                                    | 0786211                                      | .1300943                                     |                          |
| year1999                                                                                                                | 0114175                                                                                               | .0551808                                                                                      | -0.21                                                                      | 0.836                                    | 1196094                                      | .0967744                                     |                          |
| year2000                                                                                                                | 0416281                                                                                               | .0558711                                                                                      | -0.75                                                                      | 0.456                                    | 1511735                                      | .0679173                                     |                          |
| year2001                                                                                                                | 0243133                                                                                               | .0579409                                                                                      | -0.42                                                                      | 0.675                                    | 137917                                       | .0892904                                     |                          |
| year2002                                                                                                                | 0518795                                                                                               | .0618147                                                                                      | -0.84                                                                      | 0.401                                    | 1730784                                      | .0693194                                     |                          |
| year2003                                                                                                                | 0716304                                                                                               | .064766                                                                                       | -1.11                                                                      | 0.269                                    | 198616                                       | .0553552                                     |                          |
| year2004                                                                                                                | 0326971                                                                                               | .068135                                                                                       | -0.48                                                                      | 0.631                                    | 1662881                                      | .1008939                                     |                          |
| year2005                                                                                                                | 0563684                                                                                               | .0728439                                                                                      | -0.77                                                                      | 0.439                                    | 1991921                                      | .0864553                                     |                          |
| year2006                                                                                                                | 0596159                                                                                               | .0766616                                                                                      | -0.78                                                                      | 0.437                                    | 209925                                       | .0906931                                     |                          |
| year2007                                                                                                                | 0318939                                                                                               | .0798382                                                                                      | -0.40                                                                      | 0.690                                    | 1884313                                      | .1246434                                     |                          |
| year2008                                                                                                                | .0091779                                                                                              | .0821069                                                                                      | 0.11                                                                       | 0.911                                    | 1518076                                      | .1701635                                     |                          |
| year2009                                                                                                                | .0124326                                                                                              | .0834588                                                                                      | 0.15                                                                       | 0.882                                    | 1512036                                      | .1760688                                     |                          |
| year2010                                                                                                                | 0260488                                                                                               | .0850375                                                                                      | -0.31                                                                      | 0.759                                    | 1927803                                      | .1406827                                     |                          |
| _cons                                                                                                                   | 8.829708                                                                                              | 4.946946                                                                                      | 1.78                                                                       | 0.074                                    | 8696791                                      | 18.5291                                      |                          |
| sigma_u<br>sigma_e                                                                                                      | +<br>  2.7889395<br>  .39740336                                                                       |                                                                                               |                                                                            |                                          |                                              |                                              |                          |
| rho                                                                                                                     | .9800999                                                                                              | (fraction                                                                                     | of variar                                                                  | nce due t                                | o u_i)                                       |                                              |                          |
| F test that a                                                                                                           | ll u_i=0:                                                                                             | F(269, 3305                                                                                   | ) = 67                                                                     | 7.24                                     | Prob >                                       | F = 0.0000                                   |                          |

### Table A5.4.1 Model 1 - Diagnostic tests

### Groupwise heteroskedasticity

Modified Wald test for groupwise heteroskedasticity in fixed effect regression model H0: sigma(i)^2 = sigma^2 for all i chi2 (270) = 2.6e+06 Prob>chi2 = 0.0000

### Autocorrelation in panel data

xtserial lnrxamhtech lnsedut lntedut cskills lnpatappr lnfdi lngdpc lnpop unem lnecofree lnrulc serv dist transdummy year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010 Wooldridge test for autocorrelation in panel data H0: no first order autocorrelation F( 1, 269) = 85.147 Prob > F = 0.0000

### Normality of residuals

pantest2 lnrxamhtech lnsedut lntedut cskills lnpatappr lnfdi lngdpc lnpop unem lnecofree lnrulc serv dist transdummy year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year201

> 0, fe

Test for serial correlation in residuals Null hypothesis is either that rho=0 if residuals are AR(1) or that lamda=0 if residuals are MA(1) Following tests only approximate for unbalanced panels LM= 1581.0459 which is asy. distributed as chisq(1) under null, so: Probability of value greater than LM is 0 LM5= 39.762368 which is asy. distributed as N(0,1) under null, so: Probability of value greater than abs(LM5) is 0

Test for significance of fixed effects F= 67.240915 Probability>F= 0 Test for normality of residuals

### Skewness/Kurtosis tests for Normality

| Variable | Obs     | Pr(Skewness) | Pr(Kurtosis) | adj chi2(2) | joint<br>Prob>chi2 |
|----------|---------|--------------|--------------|-------------|--------------------|
| 00000B   | 3.6e+03 | 3 0.0000     | 0.0000       | ··          | 0.0000             |

# Table A5.4.2 Model 1 - Driscoll-Kraay estimated results (medium-high andhigh tech)

xtscc lnrxamhtech lnsedut lntedut cskills lnpatappr lnfdi lngdpc lnpop unem lnecofree lnrulc serv dist transdummy year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010, fe

| Regression with Driscoll-Kraay standard errors | Number of obs    | = | 3600     |
|------------------------------------------------|------------------|---|----------|
| Method: Fixed-effects regression               | Number of groups | = | 270      |
| Group variable (i): cn_ind                     | F(28, 269)       | = | 17518.72 |
| maximum lag: 2                                 | Prob > F         | = | 0.0000   |
|                                                | within R-squared | = | 0.0598   |

|             |           | Drisc/Kraay |       |       |            |           |
|-------------|-----------|-------------|-------|-------|------------|-----------|
| lnrxamhtech | Coef.     | Std. Err.   | t     | P> t  | [95% Conf. | Interval] |
| lnsedut     | .0684092  | .083937     | 0.82  | 0.416 | 0968477    | .2336662  |
| lntedut     | 0491646   | .0951096    | -0.52 | 0.606 | 2364185    | .1380893  |
| cskills     | (omitted) |             |       |       |            |           |
| lnpatappr   | 0870021   | .0233325    | -3.73 | 0.000 | 1329396    | 0410645   |
| lnfdi       | .0087483  | .0037076    | 2.36  | 0.019 | .0014487   | .0160479  |
| lngdpc      | .529116   | .2333677    | 2.27  | 0.024 | .0696565   | .9885755  |
| lnpop       | -1.742003 | .3014533    | -5.78 | 0.000 | -2.335511  | -1.148495 |
| unem        | 000038    | .0008504    | -0.04 | 0.964 | 0017122    | .0016363  |
| lnecofree   | 0297467   | .2064144    | -0.14 | 0.886 | 4361399    | .3766464  |
| lnrulc      | .196702   | .2736492    | 0.72  | 0.473 | 3420646    | .7354685  |
| serv        | .0132255  | .0030248    | 4.37  | 0.000 | .0072702   | .0191808  |
| dist        | .0084797  | .0043825    | 1.93  | 0.054 | 0001486    | .017108   |
| transdummy  | (omitted) |             |       |       |            |           |
| year1996    | .0587531  | .0108313    | 5.42  | 0.000 | .0374283   | .0800779  |
| year1997    | .0485495  | .0112585    | 4.31  | 0.000 | .0263836   | .0707154  |
| year1998    | .0257366  | .0161208    | 1.60  | 0.112 | 0060024    | .0574755  |
| year1999    | 0114175   | .0224486    | -0.51 | 0.611 | 0556148    | .0327798  |
| year2000    | 0416281   | .0265766    | -1.57 | 0.118 | 0939528    | .0106966  |
| year2001    | 0243133   | .030679     | -0.79 | 0.429 | 0847147    | .0360881  |
| year2002    | 0518795   | .0362151    | -1.43 | 0.153 | 1231806    | .0194217  |
| year2003    | 0716304   | .0413304    | -1.73 | 0.084 | 1530027    | .0097418  |
| year2004    | 0326971   | .0504501    | -0.65 | 0.517 | 1320244    | .0666302  |
| year2005    | 0563684   | .0590427    | -0.95 | 0.341 | 172613     | .0598761  |
| year2006    | 0596159   | .0693482    | -0.86 | 0.391 | 1961502    | .0769183  |
| year2007    | 0318939   | .0764777    | -0.42 | 0.677 | 1824649    | .118677   |
| year2008    | .0091779  | .0781229    | 0.12  | 0.907 | 1446321    | .1629879  |
| year2009    | .0124326  | .0622809    | 0.20  | 0.842 | 1101874    | .1350526  |
| year2010    | 0260488   | .0644465    | -0.40 | 0.686 | 1529326    | .100835   |
| _cons       | (omitted) |             |       |       |            |           |
|             |           |             |       |       |            |           |

## Table A5.4.3 Model 1 - FEVD estimated results (medium-high and high tech)

xtfevd lnrxamhtech lnsedut lntedut cskills lnpatappr lnfdi lngdpc lnpop unem lnecofree lnrulc serv dist transdummy year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010,invariant (cskills dist transdummy)

panel fixed effects regression with vector decomposition

| degrees of fre<br>mean squared e<br>root mean squa<br>Residual Sum o<br>Total Sum of S<br>Estimation Sum | edom fevd<br>rror<br>red error<br>f Squares<br>quares<br>of Squares         | = 3302<br>= .144988<br>= .3807729<br>= 521.9568<br>= 3908.013<br>= 3386.056      |                                                          | number of obs<br>F( 30, 3302)<br>Prob > F<br>R-squared<br>adj. R-squared |                                                                                  | = 3600<br>= 5.313432<br>= 6.20e-18<br>= .8664393<br>= .8544262                   |
|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| <br> lnrxamhtech                                                                                         | Coef.                                                                       | fevd<br>Std. Err.                                                                | t                                                        | P> t                                                                     | [95% Conf.                                                                       | Interval]                                                                        |
| Insedut  <br>Intedut  <br>Inpatappr  <br>Infdi  <br>Ingdpc  <br>Inpop  <br>unem                          | .0684092<br>0491646<br>087002<br>.0087483<br>.529116<br>-1.742003<br>000038 | 1.324926<br>2.172454<br>.3742291<br>.0807259<br>2.974658<br>1.018675<br>.0048786 | 0.05<br>-0.02<br>-0.23<br>0.11<br>0.18<br>-1.71<br>-0.01 | 0.959<br>0.982<br>0.816<br>0.914<br>0.859<br>0.087<br>0.994              | -2.52935<br>-4.308658<br>8207465<br>1495296<br>-5.303245<br>-3.739301<br>0096034 | 2.666169<br>4.210329<br>.6467425<br>.1670262<br>6.361477<br>.2552944<br>.0095275 |

| lnecofree  | 0297465  | 1.299436 | -0.02 | 0.982 | -2.577528 | 2.518035 |  |
|------------|----------|----------|-------|-------|-----------|----------|--|
| lnrulc     | .196702  | 1.162341 | 0.17  | 0.866 | -2.082279 | 2.475683 |  |
| serv       | .0132255 | .0352034 | 0.38  | 0.707 | 0557972   | .0822481 |  |
| year1996   | .0587531 | .299522  | 0.20  | 0.845 | 5285146   | .6460207 |  |
| year1997   | .0485495 | .3503511 | 0.14  | 0.890 | 6383778   | .7354769 |  |
| year1998   | .0257366 | .3829817 | 0.07  | 0.946 | 725169    | .7766421 |  |
| year1999   | 0114175  | .3202995 | -0.04 | 0.972 | 6394232   | .6165882 |  |
| year2000   | 0416281  | .3398695 | -0.12 | 0.903 | 7080043   | .6247481 |  |
| year2001   | 0243133  | .413865  | -0.06 | 0.953 | 8357711   | .7871446 |  |
| year2002   | 0518795  | .411068  | -0.13 | 0.900 | 8578535   | .7540945 |  |
| year2003   | 0716304  | .4372932 | -0.16 | 0.870 | 9290236   | .7857627 |  |
| year2004   | 0326972  | .4267279 | -0.08 | 0.939 | 8693752   | .8039809 |  |
| year2005   | 0563684  | .4739582 | -0.12 | 0.905 | 9856501   | .8729132 |  |
| year2006   | 0596159  | .459004  | -0.13 | 0.897 | 9595772   | .8403453 |  |
| year2007   | 0318939  | .5581275 | -0.06 | 0.954 | -1.126205 | 1.062417 |  |
| year2008   | .0091779 | .5370674 | 0.02  | 0.986 | -1.043841 | 1.062197 |  |
| year2009   | .0124326 | .5384776 | 0.02  | 0.982 | -1.043351 | 1.068216 |  |
| year2010   | 0260488  | .5475057 | -0.05 | 0.962 | -1.099534 | 1.047436 |  |
| cskills    | 21452    | 1.565827 | -0.14 | 0.891 | -3.28461  | 2.85557  |  |
| dist       | 0009117  | .0013012 | -0.70 | 0.484 | 003463    | .0016396 |  |
| transdummy | 5432119  | 3.955336 | -0.14 | 0.891 | -8.298371 | 7.211947 |  |
| eta        | 1        |          |       |       |           |          |  |
| _cons      | 11.042   | 30.91505 | 0.36  | 0.721 | -49.57261 | 71.65661 |  |
|            |          |          |       |       |           |          |  |

# Table A5.4.4 Model 1 - Hausman and Taylor estimated results (medium-highand high tech)

xthtaylor lnrxamhtech lnsedut lntedut cskills lnpatappr lnfdi lngdpc lnpop unem lnecofree lnrulc serv dist transdummy year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010, endo (lnsedut lntedut cskills)

| Hausman-Taylor estimation<br>Group variable: cn_ind |              |           |       |         | Number of obs =<br>Number of groups = |           |  |
|-----------------------------------------------------|--------------|-----------|-------|---------|---------------------------------------|-----------|--|
|                                                     |              |           |       | Obs per | group: min =                          | 5         |  |
|                                                     |              |           |       | _       | avg =                                 | 13.3      |  |
|                                                     |              |           |       |         | max =                                 | 16        |  |
| Random effects                                      | u i ~ i.i.d. |           |       | Wald ch | i2(28) =                              | 203.57    |  |
|                                                     | _            |           |       | Prob >  | chi2 =                                | 0.0000    |  |
| lnrxamhtech                                         | Coef.        | Std. Err. | Z     | P> z    | [95% Conf.                            | Interval] |  |
| TVexogenous                                         |              |           |       |         |                                       |           |  |
| lnpatappr                                           | 0713658      | .0275886  | -2.59 | 0.010   | 1254384                               | 0172931   |  |
| lnfdi                                               | .0072799     | .0060729  | 1.20  | 0.231   | 0046227                               | .0191825  |  |
| lngdpc                                              | .903275      | .1156017  | 7.81  | 0.000   | .6766999                              | 1.12985   |  |
| lnpop                                               | .1224206     | .132223   | 0.93  | 0.355   | 1367318                               | .381573   |  |
| unem                                                | .0007312     | .0008869  | 0.82  | 0.410   | 0010071                               | .0024695  |  |
| lnecofree                                           | .0798291     | .1766995  | 0.45  | 0.651   | 2664955                               | .4261537  |  |
| lnrulc                                              | .1508803     | .1976039  | 0.76  | 0.445   | 2364163                               | .5381769  |  |
| serv                                                | .0124967     | .0038525  | 3.24  | 0.001   | .004946                               | .0200475  |  |
| year1996                                            | .0527059     | .0496916  | 1.06  | 0.289   | 044688                                | .1500997  |  |
| year1997                                            | .0342405     | .050234   | 0.68  | 0.495   | 0642163                               | .1326973  |  |
| year1998                                            | .0106676     | .0514525  | 0.21  | 0.836   | 0901774                               | .1115126  |  |
| year1999                                            | 0349863      | .053182   | -0.66 | 0.511   | 1392211                               | .0692486  |  |
| year2000                                            | 0817057      | .0534192  | -1.53 | 0.126   | 1864054                               | .0229939  |  |
| year2001                                            | 0768772      | .0550061  | -1.40 | 0.162   | 1846872                               | .0309327  |  |
| year2002                                            | 1168202      | .0582764  | -2.00 | 0.045   | 2310398                               | 0026006   |  |

| year2003     | 1428977   | .0608794  | -2.35    | 0.019     | 262219    | 0235763   |
|--------------|-----------|-----------|----------|-----------|-----------|-----------|
| year2004     | 1246676   | .0630912  | -1.98    | 0.048     | 2483242   | 0010111   |
| year2005     | 1657058   | .0666955  | -2.48    | 0.013     | 2964266   | 034985    |
| year2006     | 1897018   | .0690768  | -2.75    | 0.006     | 3250899   | 0543138   |
|              | 1764892   | .0711542  | -2.48    | 0.013     | 3159489   | 0370295   |
|              | 1381005   | .0733068  | -1.88    | 0.060     | 2817793   | .0055783  |
|              | 1014571   | .0771307  | -1.32    | 0.188     | 2526305   | .0497163  |
| year2010     | 1508886   | .0780279  | -1.93    | 0.053     | 3038204   | .0020432  |
| IVendogenous |           |           |          |           |           |           |
| lnsedut      | .2037041  | .1233412  | 1.65     | 0.099     | 0380402   | .4454483  |
| lntedut      | 2134415   | .1210888  | -1.76    | 0.078     | 4507712   | .0238881  |
| TIexogenous  |           |           |          |           |           |           |
| dist         | .0001264  | .000342   | 0.37     | 0.712     | 0005439   | .0007967  |
| transdummy   | .8448319  | .3972765  | 2.13     | 0.033     | .0661843  | 1.62348   |
| TIendogenous |           |           |          |           |           |           |
| cskills      | .5334601  | 1.193932  | 0.45     | 0.655     | -1.806604 | 2.873524  |
|              |           |           |          |           |           |           |
| _cons        | -15.26586 | 6.418311  | -2.38    | 0.017     | -27.84552 | -2.686204 |
| +siama u     | 2.758089  |           |          |           |           |           |
| sigma e      | .3959088  |           |          |           |           |           |
|              | 97981094  | (fraction | of varia | nce due t | oui)      |           |

Table A5.4.5 Model 1 - IV estimated results (medium-high and high tech) xtivreg2 lnrxamhtech cskills lngdpc lnpop unem lnecofree serv lnrulc dist transdummy year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010 (Insedut Intedut Inpatappr lnfdi= lnsedutlag1 lntedutlag1 lnpatapprlag1 lnfdilag1), fe endog (lnsedut lntedut lnpatappr lnfdi) small robust bw(3) Warning - collinearities detected Vars dropped: cskills dist transdummy year2009 FIXED EFFECTS ESTIMATION \_\_\_\_\_ avg = 3 max = 12.8 Number of groups = 270 Obs per group: min = IV (2SLS) estimation ------Estimates efficient for homoskedasticity only Statistics robust to heteroskedasticity and autocorrelation kernel=Bartlett; bandwidth=3 time variable (t): year group variable (i): cn ind 3450 Number of obs = F(24, 3156) = 2.53 Prob > F = 0.0001Centered R2 = 0.0649 Total (centered) SS = 474.7834512 Total (uncentered) SS = 474.7834512 Uncentered R2 = 0.0649 = 443.9596097 Residual SS .3751 Root MSE = \_\_\_\_\_ Robust lnrxamhtech | Coef. Std. Err. t P>|t| [95% Conf. Interval] \_\_\_\_\_+\_\_\_\_+\_\_\_\_\_\_\_ lnsedut | .0995346 .1939387 0.51 0.608 -.2807241 .4797932 -.378735 .5157235 lntedut | .0684942 .2280949 0.30 0.764

| lnpatappr                                                                                                                                                                                 | 0845821                                                                                         | .0667826     | -1.27     | 0.205              | 2155237                                       | .0463596            |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------|-----------|--------------------|-----------------------------------------------|---------------------|--|--|--|--|
| Infdi                                                                                                                                                                                     | .007232                                                                                         | .009672      | 0.75      | 0.455              | 0117319                                       | .026196             |  |  |  |  |
|                                                                                                                                                                                           | 4993471                                                                                         | 2329709      | 2.14      | 0.032              | .0425574                                      | . 9561368           |  |  |  |  |
|                                                                                                                                                                                           | -1.995353                                                                                       | .6539367     | -3.05     | 0.002              | -3.277537                                     | 7131687             |  |  |  |  |
| unem                                                                                                                                                                                      | 0007574                                                                                         | .0012856     | -0.59     | 0.556              | 0032782                                       | .0017634            |  |  |  |  |
| lnecofree                                                                                                                                                                                 | 0936801                                                                                         | .2668952     | -0.35     | 0.726              | 6169857                                       | . 4296256           |  |  |  |  |
| serv                                                                                                                                                                                      | .0132192                                                                                        | .0079244     | 1.67      | 0.095              | 0023182                                       | .0287567            |  |  |  |  |
| lnrulc                                                                                                                                                                                    | .1802852                                                                                        | .2980351     | 0.60      | 0.545              | 4040769                                       | .7646473            |  |  |  |  |
| vear1996                                                                                                                                                                                  | 0733332                                                                                         | 0944003      | 0 78      | 0 437              | - 111759                                      | 2584253             |  |  |  |  |
| vear1997                                                                                                                                                                                  | .0632403                                                                                        | .0880788     | 0.72      | 0.473              | 1094571                                       | .2359377            |  |  |  |  |
| vear1998                                                                                                                                                                                  | .0388113                                                                                        | .0803739     | 0.48      | 0.629              | 1187792                                       | .1964018            |  |  |  |  |
| vear1999                                                                                                                                                                                  | 0033112                                                                                         | .075303      | -0.04     | 0.965              | 1509591                                       | .1443366            |  |  |  |  |
| vear2000                                                                                                                                                                                  | 030571                                                                                          | .0697098     | -0.44     | 0.661              | 1672521                                       | .1061102            |  |  |  |  |
| vear2001                                                                                                                                                                                  | - 0156013                                                                                       | 060508       | -0.26     | 0 797              | - 1342403                                     | 1030376             |  |  |  |  |
| vear2002                                                                                                                                                                                  | 0437111                                                                                         | .0554716     | -0.79     | 0.431              | 1524752                                       | .0650531            |  |  |  |  |
| year2003                                                                                                                                                                                  | 0399871                                                                                         | .0525468     | -0.76     | 0.447              | 1430165                                       | .0630423            |  |  |  |  |
| vear2004                                                                                                                                                                                  | 0348189                                                                                         | .0506626     | -0.69     | 0.492              | 1341538                                       | .064516             |  |  |  |  |
| vear2005                                                                                                                                                                                  | - 0608427                                                                                       | 0489231      | -1 24     | 0 214              | - 156767                                      | 0350817             |  |  |  |  |
| year2006                                                                                                                                                                                  | - 0575511                                                                                       | 0504597      | -1 14     | 0 254              | - 1564883                                     | 0413862             |  |  |  |  |
| year2007                                                                                                                                                                                  | - 0338404                                                                                       | 0492986      | -0.69     | 0 492              | - 130501                                      | 0628201             |  |  |  |  |
| year2008                                                                                                                                                                                  | - 0029349                                                                                       | 0360492      | -0.08     | 0 935              | - 0736173                                     | 0677474             |  |  |  |  |
| year2010                                                                                                                                                                                  | - 0359769                                                                                       | 0309577      | -1 16     | 0 245              | - 0966761                                     | 0247223             |  |  |  |  |
| Underidentific<br><br>Weak identific                                                                                                                                                      | Underidentification test (Kleibergen-Paap rk LM statistic): 155.757<br>Chi-sq(1) P-val = 0.0000 |              |           |                    |                                               |                     |  |  |  |  |
|                                                                                                                                                                                           | (14                                                                                             | leibergen-P  | aap rk Wa | ld F sta           | tistic):                                      | 169.991             |  |  |  |  |
| Stock-Yogo wea                                                                                                                                                                            | k ID test cri                                                                                   | tical value  | s:        |                    | <not a<="" td=""><td>available&gt;</td></not> | available>          |  |  |  |  |
| Hansen J stati                                                                                                                                                                            | stic (overide                                                                                   | entification | test of   | all inst<br>(equat | cruments):<br>cion exactly ic                 | 0.000<br>dentified) |  |  |  |  |
| -endog- option                                                                                                                                                                            | :                                                                                               |              |           |                    |                                               | 1 0 0 1             |  |  |  |  |
| Endogeneity te                                                                                                                                                                            | st of endoger                                                                                   | lous regress | ors:      |                    |                                               | 1.291               |  |  |  |  |
| Regressors tes                                                                                                                                                                            | ted: lnsed                                                                                      | lut lntedut  | lnpatappr | Chi-<br>lnfdi      | -sq(4) P-val =                                | 0.8629              |  |  |  |  |
|                                                                                                                                                                                           |                                                                                                 |              |           |                    |                                               |                     |  |  |  |  |
| Instrumented: Insedut Intedut Inpatappr Infdi<br>Included instruments: Ingdpc Inpop unem Inecofree serv Inrulc year1996 year1997<br>year1998 year1999 year2000 year2001 year2002 year2003 |                                                                                                 |              |           |                    |                                               |                     |  |  |  |  |
| year2004 year2005 year2006 year2007 year2008 year2010<br>Excluded instruments: lnsedutlag1 lntedutlag1 lnpatapprlag1 lnfdilag1<br>Dropped collinear: cskills dist transdummy year2009     |                                                                                                 |              |           |                    |                                               |                     |  |  |  |  |

# Table A5.4.5.1 Model 1 - IV estimated results - ETEs (medium-high and high tech)

xtivreg2 lnrxamhtech cskills lngdpc lnpop unem lnecofree serv lnrulc dist transdummy year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010 (lnsedut lntedut lnpatappr lnfdi= lnsedutlag1 lntedutlag1 lnpatapprlag1 lnfdilag1) if transdummy==1, fe endog (lnsedut lntedut lnpatappr lnfdi) small robust bw(3) Warning - collinearities detected Vars dropped: cskills dist transdummy year2009 FIXED EFFECTS ESTIMATION \_\_\_\_\_ Number of groups = Obs per group: min = 100 7 avg = 13.3 max = 15

IV (2SLS) estimation

| Ratimatos offi                   | giont for hom   | ookodaatiai  | tu oplu                  |                |                                           |             |
|----------------------------------|-----------------|--------------|--------------------------|----------------|-------------------------------------------|-------------|
| Stillates eili<br>Statistics rob | ust to beter    | oskedasticit | . Ly OILLy<br>Wy and aut | tocorro        | lation                                    |             |
| kernel=Bartl                     | ett: bandwidt   | h=3          | .y ana aut               | LOCOTIC.       |                                           |             |
| time variabl                     | e(t). Vear      | .11 5        |                          |                |                                           |             |
| aroun variah                     | le (i). cn ir   | d            |                          |                |                                           |             |
| group variat                     | ,10 (1). 011_11 | ia -         |                          |                |                                           |             |
|                                  |                 |              |                          |                | Number of obs                             | = 1330      |
|                                  |                 |              |                          |                | F(24 1206)                                | = 3.29      |
|                                  |                 |              |                          |                | Prob > F                                  | - 0 0000    |
| otal (contore                    | - 22 (b         | 356 6827202  | ,                        |                | Contorod P?                               | - 0.1110    |
| otal (unconto                    | (u) $33$ $=$    | 356 6827202  |                          |                | Uncontored P2                             | - 0.1110    |
| ociduol ee                       |                 | 317 1025/00  |                          |                | Doot MCE                                  | - 5120      |
| esiduai 55                       | -               | 517.1025495  | ,                        |                | ROOU MBE                                  | 5120        |
|                                  |                 |              |                          |                |                                           |             |
|                                  |                 | Robust       |                          |                |                                           |             |
| lnrxamhtech                      | Coef.           | Std. Err.    | t                        | P> t           | [95% Conf.                                | . Intervall |
| +                                |                 |              |                          |                |                                           |             |
| lnsedut                          | 9442801         | .6713344     | -1.41                    | 0.160          | -2.261393                                 | .3728331    |
| lnt.edut                         | -1.011508       | .5081643     | -1.99                    | 0.047          | -2.008492                                 | 0145233     |
| Inpatappr                        | 5215919         | .193792      | -2.69                    | 0.007          | 9017988                                   | 1413851     |
| Infdi                            | 1287024         | 1579845      | -0.81                    | 0.415          | - 4386574                                 | .1812525    |
| Inadac I                         | 0166063         | 4281068      | -0 04                    | 0 969          | - 8565231                                 | .8233105    |
| lnnon l                          | -2 954911       | 2 920887     | -1 01                    | 0 212          | -8 685495                                 | 2 775672    |
| qoqiit                           | - 0031771       | 0024949      | _1 27                    | 0.012          | - 0080721                                 | 0017178     |
| lnocofroo                        | .0031771        | 5217102      | 1 70                     | 0.203          | - 13/5336                                 | 1 012587    |
| INECOILEE                        | - 0022495       | 01/0327      | -0 16                    | 0.009          | - 0297806                                 | 0252817     |
| lprulo                           | .0022495        | 1510132      | 1 89                     | 0.073          | - 0315363                                 | 1 7/171     |
| Infuic                           | 1 061462        | 4001761      | 2 49                     | 0.000          | 1 001516                                  | 2014102     |
| year1990                         | -1.001403       | .4201/01     | -2.40                    | 0.013          | -1.901310                                 | 2214103     |
| year1997                         | -1.023364       | .300043      | -2.00                    | 0.000          | -1.702734                                 | 20/9/3      |
| year1998                         | -1.004534       | .3590958     | -2.80                    | 0.005          | -1.709056                                 | 3000126     |
| year1999                         | 9/1986          | .333072      | -2.91                    | 0.004          | -1.020028                                 | 31/3438     |
| year2000                         | 9/32826         | .302517      | -3.22                    | 0.001          | -1.566801                                 | 3/9/646     |
| year2001                         | 8207132         | .2609725     | -3.14                    | 0.002          | -1.332/24                                 | 308/02/     |
| year2002                         | 6655833         | .2075007     | -3.21                    | 0.001          | -1.0/2686                                 | 2584809     |
| year2003                         | 6232196         | .18/98/9     | -3.32                    | 0.001          | 9920393                                   | 2543999     |
| year2004                         | 4/32842         | .1530197     | -3.09                    | 0.002          | //34985                                   | 1/30699     |
| year2005                         | 4482208         | .141531      | -3.1/                    | 0.002          | /258952                                   | 1/05464     |
| year2006                         | 3484128         | .1236612     | -2.82                    | 0.005          | 5910278                                   | 1057978     |
| year2007                         | 1761372         | .1073942     | -1.64                    | 0.101          | 3868374                                   | .0345631    |
| year2008                         | 0838068         | .0915862     | -0.92                    | 0.360          | 2634928                                   | .0958791    |
| year2010                         | .0393881        | .0763687     | 0.52                     | 0.606          | 1104422                                   | .1892183    |
|                                  |                 |              |                          |                |                                           | 115 404     |
| nderidentiit                     | ation test (r   | leibergen-P  | аар гк ш                 | M SLALI:<br>Ch | SLIC):<br>i_ag(1) D_wal -                 | - 0 0000    |
|                                  |                 |              |                          |                |                                           | - 0.0000    |
| eak identific                    | ation test (C   | ragg-Donald  | Wald F s                 | statist        | ic):                                      | 177.500     |
| can idenciiie                    | (K              | leibergen-P  | aan rk Wa                | ald F s        | tatistic).                                | 128 890     |
| cock-Yogo wea                    | k ID test cri   | tical value  | s:                       |                | <not< td=""><td>available&gt;</td></not<> | available>  |
| ansen J stati                    | stic (overide   | ntification  | test of                  | all in:        | struments):                               | 0.000       |
|                                  |                 |              |                          | (equa          | ation exactly i                           | dentified)  |
| endog- option                    | :               |              |                          |                | -                                         |             |
| ndogeneity te                    | st of endoger   | ous regress  | ors:                     |                |                                           | 10.324      |
| _                                | -               |              |                          | Ch             | i-sq(4) P-val =                           | = 0.0353    |
| egressors tes                    | ted: lnsed      | lut lntedut  | lnpatappi                | r lnfdi        | -                                         |             |
|                                  |                 |              |                          |                |                                           |             |
| nstrumented:                     | lnsed           | lut lntedut  | lnpatappi                | r lnfdi        |                                           |             |
| ncluded instr                    | uments: lngdp   | oc lnpop une | m lnecofi                | ree ser        | v lnrulc year19                           | 96 year1997 |
|                                  | yearl           | .998 year199 | 9 year200                | 00 year        | 2001 year2002 y                           | /ear2003    |
|                                  | year2           | 2004 year200 | 5 year200                | 06 year        | 2007 year2008 y                           | /ear2010    |
| xcluded instr                    | uments: lnsed   | lutlag1 lnte | dutlag1 l                | lnpatap        | orlag1 lnfdilad                           | y1          |

Dropped collinear: cskills dist transdummy year2009

## Table A5.4.5.2 Model 1 - IV estimated results – N-ETEs (medium-high and high tech)

xtivreg2 lnrxamhtech cskills lngdpc lnpop unem lnecofree serv lnrulc dist transdummy year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010 (lnsedut lntedut lnpatappr lnfdi= lnsedutlag1 lntedutlag1 lnpatapprlag1 lnfdilag1) if transdummy==0, fe endog (lnsedut lntedut lnpatappr lnfdi) small robu > st bw(3) Warning - collinearities detected Vars dropped: cskills dist transdummy year2009 FIXED EFFECTS ESTIMATION \_\_\_\_\_ Number of groups = 170 Obs per group: min = 3 avg = 12.5max = 15 IV (2SLS) estimation \_\_\_\_\_ Estimates efficient for homoskedasticity only Statistics robust to heteroskedasticity and autocorrelation kernel=Bartlett; bandwidth=3 time variable (t): year group variable (i): cn ind Number of obs = 2120 F(24, 1926) =0.80 Prob > F = 0.7351Total (centered) SS = 118.100731 Centered R2 = 0.01720.0172 Total (uncentered) SS = 118.100731 Uncentered R2 = Residual SS = 116.0732856 Root MSE = .2455 \_\_\_\_\_ Robust lnrxamhtech | Coef. Std. Err. t P>|t| [95% Conf. Interval] -----+-----+ Insedut |.102369.14743840.690.488-.1867866Intedut |.0646693.23415710.280.782-.3945587npatappr |.0306843.06704710.460.647-.1008083 .3915246 lntedut | .5238974 lnpatappr | .1621769 lnfdi | .0138864 .0095354 1.46 0.145 -.0048145 .0325872 lngdpc | -.0994538 .3351943 -0.30 0.767 -.7568357 .5579282 lnpop | -1.364503 .624744 -2.18 0.029 -2.589749 -.1392572 .0021125 unem | -.000348 .0012546 -0.28 0.782 -.0028085 lnecofree | -.2451217 .2607663 -0.94 0.347 -.7565358 .2662923 -.0091706 serv | .0047392 .0070925 0.67 0.504 .018649 lnrulc | .0289567 .4112271 0.07 0.944 -.7775405 .8354538 vear1996 | -.2305054 .2064254 -.01204 .111394 -0.11 0.914 vear1997 | .0046242 .1022433 -.0098131 .0902728 .2051435 0.05 0.964 -.195895 year1998 | -.0098131 .0902728 year1999 | -.0212849 .0818904 year2000 | -.0093495 .0708415 -0.11 0.913 -.1868559 .1672297 0.795 -0.26 -.181888 .1393183 -0.13 0.895 -.1482835 .1295845 .0150988 .0603106 .1333798 year2001 | 0.25 0.802 -.1031823 year2002 | .0055897 .0551598 0.10 0.919 -.1025895 .113769 .0184432 .0508563 0.36 0.717 vear2003 | -.081296 .1181823 year2004 | .0246136 .0489273 0.50 0.615 -.0713424 .1205696 .0860234 year2005 | -.0011153 .0444314 -0.03 0.980 -.0882539 year2006 | .0104431 .0394004 0.27 0.791 -.0668288 .087715 year2007 | .0195957 .038946 0.50 0.615 -.0567851 .0959765

year2008 | .0197894 .030343 0.65 0.514 -.0397192 .079298 year2010 | -.0209648 .0236926 -0.88 0.376 -.0674307 .0255012 \_\_\_\_\_ Underidentification test (Kleibergen-Paap rk LM statistic): 101.470 Chi-sq(1) P-val = 0.0000\_\_\_\_\_ Weak identification test (Cragg-Donald Wald F statistic): 296.127 (Kleibergen-Paap rk Wald F statistic): 73.906 Stock-Yogo weak ID test critical values: <not available> \_\_\_\_\_ Hansen J statistic (overidentification test of all instruments): 0.000 (equation exactly identified) -endog- option: Endogeneity test of endogenous regressors: 1.754 Chi-sq(4) P-val = 0.7809Regressors tested: lnsedut lntedut lnpatappr lnfdi \_\_\_\_\_ Instrumented: lnsedut lntedut lnpatappr lnfdi Included instruments: lnqdpc lnpop unem lnecofree serv lnrulc year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2010 Excluded instruments: lnsedutlag1 lntedutlag1 lnpatapprlag1 lnfdilag1 Dropped collinear: cskills dist transdummy year2009 

Table A5.4.5.3 Model 1 - IV estimated results (high tech)

xtivreg2 lnrxamhtech cskills lngdpc lnpop unem lnecofree serv lnrulc dist transdummy year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010 (lnsedut lnpatappr lnfdi= lnsedutlag1 lntedutlag1 lnpatapprlag1 lnfdilag1) if mhtechintens==1, fe endog (lnsedut lntedut lnpatappr lnfdi) small robust bw(3) Warning - collinearities detected Vars dropped: cskills dist transdummy year2009 FIXED EFFECTS ESTIMATION \_\_\_\_\_ Number of groups = 135 Obs per group: min = 3 avg = max = 12.8 15 IV (2SLS) estimation \_\_\_\_\_ Estimates efficient for homoskedasticity only Statistics robust to heteroskedasticity and autocorrelation kernel=Bartlett; bandwidth=3 time variable (t): year group variable (i): cn ind 1725 Number of obs = F(24, 1566) =1.67 Prob > F = 0.0227Centered R2 = 0.0680 Total (centered) SS = 367.7232203 Total (uncentered) SS = 367.7232203 Residual SS = 342.7277551 Uncentered R2 = 0.0680Root MSE = .4678 \_\_\_\_\_ Robust 1 lnrxamhtech | Coef. Std. Err. t P>|t| [95% Conf. Interval] lnsedut | .4315659 .3292442 1.31 0.190 -.21424 1.077372 0.66 0.509 -.5343188 1.077593 lntedut | .2716371 .4108917

| lnpatappr  2278271       .1166354       -1.95       0.051      4566051       .000951         lngdpc   .7124172       .4020616       1.77       0.883      0354295       .0304745         lngdpc   .7124172       .4020616       1.77       0.077      0762185       1.501053         lnpop  9800767       1.093072       -0.90       0.370       -3.124116       1.163963         unem   .008052       .0023212       0.350       .729      0037478       .0053583         lnecofree   .0253038       .4704199       0.05       0.957      8974154       .948023         serv   .0191616       .0140748       1.366       0.729      4836049       1.481671         year1996   .1953418       1.634296       1.20       0.232      125221       .5159057         year1998   .044337       .1412327       1.02       0.307      1326854       .4213649         year2000   .0441437       .128898       0.36       0.719      1969021       .2851895         year2001   .0324847       .1062159       0.31       0.760      175857       .2408252         year2003  0075433       .0925776       -0.11       0.915      194422       .1717362         year2004   -                                                                                                                                                                    |                                                                                                                                                                                                                      |                |              |          |       |                        |          |          |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------|----------|-------|------------------------|----------|----------|--|--|--|
| <pre>Infdi  0024775 .0167996 -0.15 0.8830354255 .0304745 Ingop  9600767 1.093072 -0.90 0.370 -3.124116 1.163963 unem   .0008052 .0023212 0.35 0.7290037478 .0053583 Inecofree   .0253038 .4704199 0.05 0.9578974154 .948023 serv   .0191616 .0140748 1.36 0.1740084459 .0467691 Inruc   .499033 .509676 1.00 0.3194836049 1.481671 year1996   .1953418 .1634296 1.20 0.2321252221 .5159057 year1997   .2015073 .1537035 1.31 0.1900999791 .5029937 year1998   .1443397 .1412327 1.02 0.3071326854 .4213649 year2001   .0324847 .1062159 0.31 0.7601758557 .2408252 year2001   .0324847 .1062159 0.31 0.7601758557 .2408252 year2002  0075433 .0975658 -0.08 0.9381989166 .18383 year2003  009853 .0925776 -0.11 0.9151914422 .1717362 year2004  0248771 .0391546 -0.28 0.7801987511 .149998 year2005  0756297 .085591 -0.89 0.3732241156 .0916175 year2006  090337 .0881716 -1.02 0.3062623287 .0026082 year2007  0596381 .0664154 -0.69 0.4902291402 .109864 year2008  0054124 .0632003 -0.09 0.9321293786 .1185538 year2010   .0.054124 .0632003 -0.09 0.9321293786 .1185538 year2010  0.69109 .055597 -1.24 0.2141781667 .039487</pre>                                                                                                                                                                                           | lnpatappr                                                                                                                                                                                                            | 2278271        | .1166354     | -1.95    | 0.051 | 4566051                | .000951  |          |  |  |  |
| <pre>lngdpc   .7124172 .4020616 1.77 0.0770762185 1.501053 lnpop  9800767 1.093072 -0.90 0.370 -3.124116 1.163963 unem   .0008052 .0023212 0.35 0.7290037478 .0053583 lnecofree   .0253038 .4704199 0.05 0.9578874154 .948023 serv   .0191616 .0140748 1.36 0.1740084459 .0467691 lnrulc   .499033 .5009676 1.00 0.3194836049 1.481671 year1996   .1953418 .1634296 1.20 0.2321252221 .5159057 year1997   .2015073 .1537035 1.31 0.1900999791 .5029937 year1998   .1443397 .1412327 1.02 0.3071326854 .4213649 year2001   .0324847 .1062159 0.31 0.7601758557 .2408252 year2001   .0324847 .1062159 0.31 0.7601758557 .2408252 year2001   .0324847 .1062159 0.31 0.7601758557 .2408252 year2003  0075433 .0975658 -0.08 0.9381989166 .18383 year2004  0248771 .0891546 -0.28 0.7801997521 .149998 year2005  0762697 .0857921 -0.08 0.3732441569 .0916175 year2006  090387 .0881716 -1.02 0.3062632857 .0826082 year2007  0596381 .0864154 -0.69 0.4902291402 .109864 year2006  0054124 .0632003 -0.09 0.9321293786 .1188538 year2006  069109 .0555977 -1.24 0.2141781667 .0399487 Underidentification test (Kleibergen-Paap rk LM statistic): 77.879</pre>                                                                                                                                                                          | lnfdi                                                                                                                                                                                                                | 0024775        | .0167996     | -0.15    | 0.883 | 0354295                | .0304745 |          |  |  |  |
| <pre>Inpop  9800767 1.093072 -0.30 0.370 -3.124116 1.163963 unem   .0008052 .0023212 0.35 0.7290037478 .0055883 Inecofree   .0253038 .4704199 0.05 0.9578974154 .948023 serv   .0191616 .0140748 1.36 0.1740084459 .0467691 Inruc   .499033 .500876 1.00 0.3194836049 1.481671 year1996   .1953418 .1634296 1.20 0.2321252221 .5159057 year1997   .2015073 .1537035 1.31 0.190099791 .5029937 year1998   .1443397 .1412327 1.02 0.3071326854 .4213649 year1999   .0598277 .1338985 0.45 0.6552028116 .322467 year2001   .0324847 .1062159 0.31 0.7601758557 .2408252 year2001   .0324847 .1062159 0.31 0.7601758557 .2408252 year2001   .0324847 .1062159 0.31 0.7601798557 .2408252 year2003  0075433 .0925776 -0.11 0.9151914422 .1717362 year2004  0248771 .0891546 -0.28 0.7801997521 .149938 year2005  0762697 .0855921 -0.89 0.3732441569 .09816175 year2006  0903387 .0881716 -1.02 0.3062632857 .0826082 year2007  0596381 .0864154 -0.69 0.4902291402 .109864 year2008  0054124 .0632003 -0.09 0.9321293786 .1185538 year2010  069109 .0555997 -1.24 0.2141781667 .0399487</pre>                                                                                                                                                                                                                                           | lngdpc                                                                                                                                                                                                               | .7124172       | .4020616     | 1.77     | 0.077 | 0762185                | 1.501053 |          |  |  |  |
| unem         .0008052         .0023212         0.35         0.729        0037478         .0053583           lnecofree         .0253038         .4704199         0.055         0.957        8374154         .948023           serv         .0191616         .0140748         1.36         0.174        0084459         .0467691           lnruic         .499033         .5009676         1.00         0.319        4836049         1.481671           year1997         .2015073         .1537035         1.31         0.190        099791         .502937           year1998         .1443397         .142327         1.02         0.307        1326854         .4213649           year1999         .0598277         .1338985         0.45         0.655        2028116         .322467           year2001         .0441437         .1228898         0.36         0.719         -1969021         .2851895           year2002        0075433         .0975658         -0.08         0.938        1997521         .149998           year2005        024877         .0891546         -0.28         0.780        2291402         .09864           year2006        0903387         .0881716         -1.02 <td>lnpop</td> <td>9800767</td> <td>1.093072</td> <td>-0.90</td> <td>0.370</td> <td>-3.124116</td> <td>1.163963</td> <td></td> | lnpop                                                                                                                                                                                                                | 9800767        | 1.093072     | -0.90    | 0.370 | -3.124116              | 1.163963 |          |  |  |  |
| lnecofree         .0253038       .4704199       0.05       0.957      8974154       .948023         serv         .0191616       .0140748       1.36       0.174      0084459       .0467691         lnrulc         .499033       .5009676       1.00       0.319      4836049       1.441671         year1996         .1953418       .1634296       1.20       0.232      1522221       .5159057         year1997         .2015073       .1537035       1.31       0.190      0999731       .5029937         year1998         .1443397       .142327       1.02       0.307      1326854       .4213649         year2001         .0548277       .1338985       0.45       0.655      2028116       .322467         year2001         .0324847       .1062159       0.31       0.760      178557       .2408252         year2003        009853       .0925776       -0.11       0.915      1941422       .1717362         year2005        0762697       .0855921       -0.89       0.337      2441569       .0916175         year2006        090387       .0864154       -0.69       0.490      2291402       .108964         year2008                                                                                                                                                                                                | unem                                                                                                                                                                                                                 | .0008052       | .0023212     | 0.35     | 0.729 | 0037478                | .0053583 |          |  |  |  |
| serv         .0191616       .0140748       1.36       0.174      084459       .0467691         lnrulc         .499033       .5009676       1.00       0.319      4836049       1.481671         year1996         .1953418       .1634296       1.20       0.232      1252221       .5159057         year1998         .1443397       .1412377       1.02       0.307      1326854       .4213649         year1999         .0598277       .1338985       0.45       0.655      2028116       .322467         year2000         .0441437       .1228898       0.36       0.719      1969021       .2851895         year2001         .0324847       .1062159       0.31       0.7660      1788577       .2408252         year2003        003853       .0925776       -0.11       0.915      194422       .1717362         year2004        0248771       .081546       -0.28       0.780      2441569       .0916175         year2005        0762697       .0851921       -0.89       0.373      2441569       .0916175         year2007        059387       .088176       -1.02       0.306      2632857       .082682         year2008                                                                                                                                                                                                  | lnecofree                                                                                                                                                                                                            | .0253038       | .4704199     | 0.05     | 0.957 | 8974154                | .948023  |          |  |  |  |
| Inrulc         .499033       .5009676       1.00       0.319      4836049       1.481671         year1996         .1953418       .1634296       1.20       0.232      1252221       .5159057         year1997         .2015073       .1537035       1.31       0.190      0999791       .5029937         year1998         .043397       .1412327       1.02       0.307      1326854       .4213649         year2000         .0441437       .1228898       0.36       0.719      1969021       .2851895         year2002         .0075433       .0975658       -0.08       0.938      1989166       .18383         year2003        009853       .0925776       -0.11       0.915      1914422       .1717362         year2005        0762697       .085921       -0.89       0.373      2441569       .0916175         year2006        0595481       .068104       -0.69       0.490      291402       .109864         year2008        0054124       .0632003       -0.09       0.932      1293786       .185538         year2010        069109       .055997       -1.24       0.214      1781667       .0399487 <td colsp<="" td=""><td>serv</td><td>.0191616</td><td>.0140748</td><td>1.36</td><td>0.174</td><td>0084459</td><td>.0467691</td><td></td></td>                                                                     | <td>serv</td> <td>.0191616</td> <td>.0140748</td> <td>1.36</td> <td>0.174</td> <td>0084459</td> <td>.0467691</td> <td></td>                                                                                          | serv           | .0191616     | .0140748 | 1.36  | 0.174                  | 0084459  | .0467691 |  |  |  |
| year1996   .1953418 .1634296 1.20 0.232252221 .5159057<br>year1997   .2015073 .1537035 1.31 0.1900999791 .5029937<br>year1998   .1443397 .1412327 1.02 0.3071326854 .4213649<br>year1999   .0598277 .1338985 0.45 0.6552028116 .322467<br>year2001   .0324847 .1062159 0.31 0.7601758557 .2408252<br>year2002  0075433 .0975658 -0.08 0.9381989166 .18383<br>year2003  009453 .092576 -0.11 0.9151914422 .1717362<br>year2004  0248771 .0891546 -0.28 0.7801997521 .149998<br>year2005  0762697 .0855921 -0.89 0.3732441569 .0916175<br>year2006  090338 .0885921 -0.69 0.4902291402 .109864<br>year2008  0596381 .0864154 -0.69 0.4902291402 .109864<br>year2010  069109 .0555997 -1.24 0.2141781667 .0399487<br>Underidentification test (Kleibergen-Paap rk LM statistic): 77.879<br>Ch1=sq(1) P-val = 0.0000<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lnrulc                                                                                                                                                                                                               | .499033        | .5009676     | 1.00     | 0.319 | 4836049                | 1.481671 |          |  |  |  |
| <pre>year1997   .2015073 .1537035 1.31 0.1900999791 .502937<br/>year1998   .1443397 .1412327 1.02 0.3071326054 .4213649<br/>year2000   .0441437 .1228986 0.45 0.6552028116 .322467<br/>year2001   .0324847 .1062159 0.31 0.7601758557 .2408252<br/>year2002  0075433 .0975658 -0.08 0.9381989166 .18383<br/>year2003  009853 .0925776 -0.11 0.9151914422 .1717362<br/>year2004  0248771 .0891546 -0.28 0.7801997521 .149998<br/>year2005  0762697 .0855921 -0.89 0.3732441569 .0916175<br/>year2006  0903387 .0881716 -1.02 0.3062632857 .0826082<br/>year2007  0556381 .0864154 -0.69 0.4902291402 .109864<br/>year2008  0054124 .0632003 -0.09 0.9321293786 .1185538<br/>year2010  069109 .0555997 -1.24 0.2141781667 .0399487<br/></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | year1996                                                                                                                                                                                                             | .1953418       | .1634296     | 1.20     | 0.232 | 1252221                | .5159057 |          |  |  |  |
| <pre>year1998   .1443397 .1412327 1.02 0.3071326854 .4213649<br/>year1999   .0598277 .1338985 0.45 0.6552028116 .322467<br/>year2000   .0421437 .1228898 0.36 0.7191969021 .2851895<br/>year2001   .0324847 .1062159 0.31 0.7601758557 .2408252<br/>year2002  0075433 .0975658 -0.08 0.9381989166 .18383<br/>year2003  009853 .0925776 -0.11 0.9151914422 .1717362<br/>year2004  0248771 .0891546 -0.28 0.7801997521 .149998<br/>year2005  0762697 .0855921 -0.89 0.3732441569 .0916175<br/>year2006  0903387 .0881716 -1.02 0.3062632857 .0826082<br/>year2007  0596381 .0864154 -0.69 0.4902291402 .109864<br/>year2008  0054124 .0632003 -0.09 0.9321293786 .1185538<br/>year2010  069109 .0555997 -1.24 0.2141781667 .0399487<br/></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | year1997                                                                                                                                                                                                             | .2015073       | .1537035     | 1.31     | 0.190 | 0999791                | .5029937 |          |  |  |  |
| year1999   .0598277       .1338985       0.45       0.655      2028116       .322467         year2001   .0324847       .1062159       0.31       0.760      1758557       .2408252         year2003   .009533       .0975658       -0.08       0.938      1989166       .18383         year2004   .0075433       .0975658       -0.08       0.938      1989166       .18383         year2004   .00248771       .0891546       -0.28       0.780      1997521       .149998         year2005   .0762697       .0855921       -0.89       0.373      2441569       .0916175         year2007   .009387       .0881716       -1.02       0.306      22391402       .109864         year2010   .0596381       .0864154       -0.69       0.490      2291402       .109864         year2010   .059109       .0555997       -1.24       0.214       .1781667       .039487         Underidentification test (Kleibergen-Paap rk LM statistic):       77.879         Chi-sq(1) P-val =       0.0000         Weak identification test (Cragg-Donald Wald F statistic):       346.642         (Kleibergen-Paap rk Wald F statistic):       346.642         (Chi-sq(4) P-val =       0.3711                                                                                                                                                   | year1998                                                                                                                                                                                                             | .1443397       | .1412327     | 1.02     | 0.307 | 1326854                | .4213649 |          |  |  |  |
| year2000   .0441437       .122898       0.36       0.719      1969021       .2851895         year2001   .0324847       .1062159       0.31       0.760      1758557       .2408252         year2003  009853       .0925776       -0.11       0.915      1914422       .1717362         year2004  0248771       .0891546       -0.28       0.780      1997521       .149998         year2005  0762697       .0855921       -0.89       0.373      2441569       .0916175         year2006  0903387       .0881716       -1.02       0.306      2632857       .0826082         year2008  0054124       .0632003       -0.09       0.932      12293786       .1185538         year2010  069109       .0555997       -1.24       0.214      1781667       .0399487         Chi-sq(1) P-val =       0.0000         Weak identification test (Kleibergen-Paap rk LM statistic):       77.879         Chi-sq(1) P-val =       0.0000         Weak identification test (Cragg-Donald Wald F statistic):       84.349         Stock-Yogo weak ID test critical values:         (Not available>                                                                                                                                                                                                                                               | year1999                                                                                                                                                                                                             | .0598277       | .1338985     | 0.45     | 0.655 | 2028116                | .322467  |          |  |  |  |
| year2001   .0324847       .1062159       0.31       0.760      1758557       .2408252         year2002  0075433       .0925776       -0.11       0.915      1914422       .1717362         year2004  0248771       .0891546       -0.28       0.780      1997521       .149998         year2005  0762697       .0855921       -0.89       0.373      2441569       .0916175         year2006  0903387       .0881716       -1.02       0.306      2632857       .0826082         year2008  0054124       .0632003       -0.09       0.932      1293786       .1185538         year2010  069109       .0555997       -1.24       0.214      1781667       .0399487         Underidentification test (Kleibergen-Paap rk LM statistic):       77.879         Chi-sq(1) P-val =       0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | year2000                                                                                                                                                                                                             | .0441437       | .1228898     | 0.36     | 0.719 | 1969021                | .2851895 |          |  |  |  |
| year2002  0075433       .0975658       -0.08       0.938      1889166       .18383         year2003  009853       .0925776       -0.11       0.915      1914422       .1717362         year2004  0248771       .0891546       -0.28       0.780      1997521       .149988         year2005  0762697       .0855921       -0.89       0.373      2441569       .0916175         year2007  0596381       .0864154       -0.69       0.490      2291402       .109864         year2010  059124       .0632003       -0.09       0.932      1293786       .1185538         year2010  069109       .0555997       -1.24       0.214      1781667       .0399487         Chi-sq(1) P-val =       0.0000         Weak identification test (Kleibergen-Paap rk LM statistic):       77.879         Chi-sq(1) P-val =       0.0000         Weak identification test (Cragg-Donald Wald F statistic):       346.642         (Kleibergen-Paap rk Wald F statistic):       346.642         (Kleibergen-Paap rk Wald F statistic):       0.000                                                                                                                                                                                                                                                                                                  | year2001                                                                                                                                                                                                             | .0324847       | .1062159     | 0.31     | 0.760 | 1758557                | .2408252 |          |  |  |  |
| year2003  009853       .0925776       -0.11       0.915      1914422       .1717362         year2004  0248771       .0891546       -0.28       0.780      1997521       .149998         year2005  076267       .0855921       -0.89       0.373      2441569       .0916175         year2006  0903387       .0881716       -1.02       0.306      2632857       .0826082         year2007  0596381       .0864154       -0.69       0.490      2291402       .109864         year2010  069109       .0555997       -1.24       0.214      1781667       .0399487         Underidentification test (Kleibergen-Paap rk LM statistic):       77.879         Chi-sq(1) P-val =       0.0000         Weak identification test (Cragg-Donald Wald F statistic):       346.642         (Kleibergen-Paap rk Wald F statistic):       346.642         (Kleibergen-Paap rk Wald F statistic):       0.000         Weak identification test critical values: <not available="">         (not available&gt;         Stock-Yogo weak ID test critical values:       <not available="">         (hi-sq(4) P-val =       0.3711         Hansen J statistic (overidentification test of a</not></not>                                                                                                                                              | year2002                                                                                                                                                                                                             | 0075433        | .0975658     | -0.08    | 0.938 | 1989166                | .18383   |          |  |  |  |
| year2004  0248771       .0891546       -0.28       0.780      1997521       .149998         year2005  0762697       .0855921       -0.89       0.373      2441569       .0916175         year2006  090387       .0864154       -0.69       0.490      2291402       .109864         year2008  0054124       .0632003       -0.09       0.932      1293786       .1185538         year2010  069109       .0555997       -1.24       0.214      1781667       .0399487         Underidentification test (Kleibergen-Paap rk LM statistic):       77.879       Chi-sq(1) P-val =       0.0000         Weak identification test (Cragg-Donald Wald F statistic):       346.642         (Kleibergen-Paap rk Wald F statistic):       0.000         (equation exactly identified)         (equation exactly identified)         (equation exactly identified)         <                                                                                                                                                  | year2003                                                                                                                                                                                                             | 009853         | .0925776     | -0.11    | 0.915 | 1914422                | .1717362 |          |  |  |  |
| year2005  0762697       .0855921       -0.89       0.373      2441569       .0916175         year2006  0903387       .0881716       -1.02       0.306      2632857       .0826082         year2008  0054124       .0632003       -0.09       0.932       .1293786       .1185538         year2010  069109       .0555997       -1.24       0.214      1781667       .0399487         Underidentification test (Kleibergen-Paap rk LM statistic):       77.879         Chi-sq(1) P-val =       0.0000         Weak identification test (Cragg-Donald Wald F statistic):       346.642         (Kleibergen-Paap rk Wald F statistic):       84.349         Stock-Yogo weak ID test critical values: <not available=""> </not>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | year2004                                                                                                                                                                                                             | 0248771        | .0891546     | -0.28    | 0.780 | 1997521                | .149998  |          |  |  |  |
| year2006  0903387       .0881716       -1.02       0.306      2632857       .0826082         year2007  0596381       .0864154       -0.69       0.490      2291402       .109864         year2008  0054124       .0632003       -0.09       0.932      1293786       .1185538         year2010  069109       .0555997       -1.24       0.214      1781667       .0399487                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | year2005                                                                                                                                                                                                             | 0762697        | .0855921     | -0.89    | 0.373 | 2441569                | .0916175 |          |  |  |  |
| year2007  0596381       .0864154       -0.69       0.490      2291402       .109864         year2008  0054124       .0632003       -0.09       0.932      1293786       .1185538         year2010  069109       .0555997       -1.24       0.214      1781667       .0399487         Underidentification test (Kleibergen-Paap rk LM statistic):       77.879         Chi-sq(1) P-val =       0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | year2006                                                                                                                                                                                                             | 0903387        | .0881716     | -1.02    | 0.306 | 2632857                | .0826082 |          |  |  |  |
| year2008  0054124.0632003-0.090.9321293786.1185538year2010  069109.0555997-1.240.2141781667.0399487                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | year2007                                                                                                                                                                                                             | 0596381        | .0864154     | -0.69    | 0.490 | 2291402                | .109864  |          |  |  |  |
| year2010  069109.0555997-1.240.2141781667.0399487Underidentification test (Kleibergen-Paap rk LM statistic):77.879<br>Chi-sq(1) P-val =0.0000Weak identification test (Cragg-Donald Wald F statistic):346.642<br>(Kleibergen-Paap rk Wald F statistic):346.642<br>84.349Stock-Yogo weak ID test critical values: <not available=""></not>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | year2008                                                                                                                                                                                                             | 0054124        | .0632003     | -0.09    | 0.932 | 1293786                | .1185538 |          |  |  |  |
| Underidentification test (Kleibergen-Paap rk LM statistic): 77.879<br>Chi-sq(1) P-val = 0.0000<br>Weak identification test (Cragg-Donald Wald F statistic): 346.642<br>(Kleibergen-Paap rk Wald F statistic): 84.349<br>Stock-Yogo weak ID test critical values: <a href="https://www.new.org"></a><br>Hansen J statistic (overidentification test of all instruments): 0.000<br>(equation exactly identified)<br>-endog- option:<br>Endogeneity test of endogenous regressors: 4.267<br>Chi-sq(4) P-val = 0.3711<br>Regressors tested: Insedut Intedut Inpatappr Infdi<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | year2010                                                                                                                                                                                                             | 069109         | .0555997     | -1.24    | 0.214 | 1781667                | .0399487 |          |  |  |  |
| <pre>Weak identification test (Cragg-Donald Wald F statistic): 346.642</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Underidentification test (Kleibergen-Paap rk LM statistic): 77.879<br>Chi-sq(1) P-val = 0.0000                                                                                                                       |                |              |          |       |                        |          |          |  |  |  |
| Hansen J statistic (overidentification test of all instruments): 0.000<br>(equation exactly identified)<br>-endog- option: 4.267<br>Endogeneity test of endogenous regressors: 4.267<br>Chi-sq(4) P-val = 0.3711<br>Regressors tested: Insedut Intedut Inpatappr Infdi<br>Instrumented: Insedut Intedut Inpatappr Infdi<br>Included instruments: Ingdpc Inpop unem Inecofree serv Inrulc year1996 year1997<br>year1998 year1999 year2000 year2001 year2002 year2003<br>year2004 year2005 year2006 year2007 year2008 year2010<br>Excluded instruments: Insedutlag1 Intedutlag1 Inpatapprlag1 Infdilag1<br>Dropped collinear: cskills dist transdummy year2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Weak identification test (Cragg-Donald Wald F statistic): 346.642<br>(Kleibergen-Paap rk Wald F statistic): 84.349<br>Stock-Yogo weak ID test critical values: <a href="https://www.statistic">not available&gt;</a> |                |              |          |       |                        |          |          |  |  |  |
| <pre>-endog- option:<br/>Endogeneity test of endogenous regressors: 4.267<br/>Chi-sq(4) P-val = 0.3711<br/>Regressors tested: Insedut Intedut Inpatappr Infdi<br/></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Hansen J statistic (overidentification test of all instruments): 0.000<br>(equation exactly identified)                                                                                                              |                |              |          |       |                        |          |          |  |  |  |
| Endogeneity test of endogenous regressors:       4.207         Chi-sq(4) P-val =       0.3711         Regressors tested:       Insedut Intedut Inpatappr Infdi         Instrumented:       Insedut Intedut Inpatappr Infdi         Included instruments:       Ingdpc Inpop unem Inecofree serv Inrulc year1996 year1997         year1998 year1999 year2000 year2001 year2002 year2003         year2004 year2005 year2006 year2007 year2008 year2010         Excluded instruments:       Insedutlag1 Intedutlag1 Inpatapprlag1 Infdilag1         Dropped collinear:       cskills dist transdummy year2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -enaog- option                                                                                                                                                                                                       | 1;             |              | 070.     |       |                        | 1 267    |          |  |  |  |
| Regressors tested: Insedut Intedut Inpatappr Infdi<br>Instrumented: Insedut Intedut Inpatappr Infdi<br>Included instruments: Ingdpc Inpop unem Inecofree serv Inrulc year1996 year1997<br>year1998 year1999 year2000 year2001 year2002 year2003<br>year2004 year2005 year2006 year2007 year2008 year2010<br>Excluded instruments: Insedutlag1 Intedutlag1 Inpatapprlag1 Infdilag1<br>Dropped collinear: cskills dist transdummy year2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Endogeneily te                                                                                                                                                                                                       | est of endoger | ious regress | 012:     | Ch -  | $a \alpha (A) D T = -$ | 4.20/    |          |  |  |  |
| Instrumented: Insedut Intedut Inpatappr Infdi<br>Included instruments: Ingdpc Inpop unem Inecofree serv Inrulc year1996 year1997<br>year1998 year1999 year2000 year2001 year2002 year2003<br>year2004 year2005 year2006 year2007 year2008 year2010<br>Excluded instruments: Insedutlag1 Intedutlag1 Inpatapprlag1 Infdilag1<br>Dropped collinear: cskills dist transdummy year2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Chi-sq(4) P-val = 0.3711<br>Regressors tested: Insedut Intedut Inpatappr Infdi                                                                                                                                       |                |              |          |       |                        |          |          |  |  |  |
| Excluded instruments: Insedutlag1 Intedutlag1 Inpatapprlag1 Infdilag1<br>Dropped collinear: cskills dist transdummy year2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Instrumented: Insedut Intedut Inpatappr Infdi<br>Included instruments: Ingdpc Inpop unem Inecofree serv Inrulc year1996 year1997<br>year1998 year1999 year2000 year2001 year2002 year2003                            |                |              |          |       |                        |          |          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | year2004 year2005 year2006 year2007 year2008 year2010<br>Excluded instruments: lnsedutlag1 lntedutlag1 lnpatapprlag1 lnfdilag1<br>Dropped collinear: cskills dist transdummy year2009                                |                |              |          |       |                        |          |          |  |  |  |

## Table A5.4.5.3.1 Model 1 - IV estimated results - ETEs (high tech)

| Estimates effi<br>Statistics rok<br>kernel=Bartl<br>time variabl<br>group variak | cient for hom<br>oust to hetero<br>ett; bandwidt<br>e (t): year<br>ole (i): cn_ir | noskedastici<br>oskedasticit<br>th=3<br>nd  | ty only<br>y and aut                | ocorrel                     | Lation                                                                              |                                                                |
|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------|-----------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------|
| Total (centere<br>Total (uncente<br>Residual SS                                  | ed) SS =<br>ered) SS =<br>=                                                       | 282.1985173<br>282.1985173<br>233.8615182   |                                     |                             | Number of obs<br>F(24, 591)<br>Prob > F<br>Centered R2<br>Uncentered R2<br>Root MSE | = 665<br>= 3.05<br>= 0.0000<br>= 0.1713<br>= 0.1713<br>= .6291 |
| <br>  lnrxamhtech                                                                | Coef.                                                                             | Robust<br>Std. Err.                         | t                                   | P> t                        | [95% Conf.                                                                          | Interval]                                                      |
| lnsedut                                                                          | 9053043                                                                           | 1.158915                                    |                                     | 0.435                       | -3.181398                                                                           | 1.37079                                                        |
| lntedut                                                                          | -1.465818                                                                         | .8562761                                    | -1.71                               | 0.087                       | -3.147532                                                                           | .2158961                                                       |
| lnpatappr                                                                        | -1.047901                                                                         | .3118148                                    | -3.36                               | 0.001                       | -1.660301                                                                           | 4355007                                                        |
| lnfdi                                                                            | 166202                                                                            | .2749374                                    | -0.60                               | 0.546                       | 7061751                                                                             | .3737712                                                       |
| lnadpc                                                                           | 6320686                                                                           | .7243768                                    | -0.87                               | 0.383                       | -2.054735                                                                           | .7905972                                                       |
| lnpop                                                                            | 338424                                                                            | 5.024181                                    | -0.07                               | 0.946                       | -10.20585                                                                           | 9.528998                                                       |
| unem                                                                             | 0068298                                                                           | .0043817                                    | -1.56                               | 0.120                       | 0154355                                                                             | .0017759                                                       |
| lnecofree                                                                        | 1.317612                                                                          | .8932248                                    | 1.48                                | 0.141                       | 4366695                                                                             | 3.071893                                                       |
| serv                                                                             | 0176323                                                                           | .0241093                                    | -0.73                               | 0.465                       | 0649827                                                                             | .029718                                                        |
| lnrulc                                                                           | 1 844057                                                                          | 7537059                                     | 2 45                                | 0 015                       | 3637888                                                                             | 3 324325                                                       |
| vear1997                                                                         | 1128854                                                                           | 2234507                                     | 0 51                                | 0 614                       | - 3259687                                                                           | 5517396                                                        |
| year1998                                                                         | 1354787                                                                           | 2665477                                     | 0.51                                | 0.611                       | - 3880174                                                                           | 6589747                                                        |
| year1999  <br>year1999                                                           | 1893637                                                                           | 2898101                                     | 0.51                                | 0.011                       | - 3798192                                                                           | 7585466                                                        |
| year2000                                                                         | 2250237                                                                           | 3325099                                     | 0.05                                | 0.014                       | - 4280212                                                                           | .7303400                                                       |
| vear2000                                                                         | 494073                                                                            | 3717945                                     | 1 33                                | 0.194                       | - 2361263                                                                           | 1 224272                                                       |
| vear2002                                                                         | 8307532                                                                           | 4505583                                     | 1 84                                | 0.104                       | - 054137                                                                            | 1 715643                                                       |
| year2002                                                                         | 90907932                                                                          | .4303303                                    | 1 89                                | 0.000                       | - 0362068                                                                           | 1 854364                                                       |
| year2004                                                                         | 1 164843                                                                          | 5/1/713                                     | 2 15                                | 0.032                       | 1014008                                                                             | 2 228285                                                       |
| year2004                                                                         | 1 105251                                                                          | 5732441                                     | 2.13                                | 0.032                       | .1014000                                                                            | 2.220205                                                       |
| year2006                                                                         | 1 /01981                                                                          | 6372919                                     | 2.09                                | 0.037                       | 1503486                                                                             | 2.521094                                                       |
| year2000                                                                         | 1 712012                                                                          | 6905002                                     | 2.20                                | 0.020                       | .1303400                                                                            | 2.055015                                                       |
| year2009                                                                         | 1 020144                                                                          | 6070151                                     | 2.40                                | 0.015                       | 5602252                                                                             | 2 271062                                                       |
| year2000                                                                         | 2 025174                                                                          | .0070434                                    | 2.19                                | 0.005                       | . JU922J2                                                                           | 2 169609                                                       |
| year2009                                                                         | 2.023174                                                                          | ·/3499/<br>7657212                          | 2.70                                | 0.000                       | . JOIDJ                                                                             | 2.400090                                                       |
| year2010                                                                         | 2.121111                                                                          | ./03/313                                    | 2.11                                | 0.006                       | .01/2239                                                                            | 5.024997                                                       |
| Underidentific                                                                   | ation test (F                                                                     | Kleibergen-P                                | aap rk LM                           | I statis<br>Chi             | stic):<br>i-sq(1) P-val =                                                           | 57.748<br>0.0000                                               |
| Weak identific                                                                   | ation test (C                                                                     | Cragg-Donald                                | Wald F s                            | tatisti                     | Lc):                                                                                | 86.983                                                         |
| Stock-Yogo wea                                                                   | (F<br>k ID test cri                                                               | Kleibergen-P<br>Ltical value                | aap rk Wa<br>s:                     | ld F st.                    | tatistic):<br><not< td=""><td>63.164<br/>available&gt;</td></not<>                  | 63.164<br>available>                                           |
| Hansen J stati                                                                   | stic (overide                                                                     | entification                                | test of                             | all ins                     | struments):                                                                         | 0.000<br>dentified)                                            |
| -endog- option<br>Endogeneity te                                                 | :<br>st of endoger                                                                | nous regress                                | ors:                                | (७५८८                       |                                                                                     | 12.490                                                         |
| Regressors tes                                                                   | sted: lnsec                                                                       | dut lntedut                                 | lnpatappr                           | Chi<br>lnfdi                | i-sq(4) P-val =                                                                     | 0.0141                                                         |
| Instrumented:<br>Included instr                                                  | lnsec<br>ruments: lngdp<br>year1                                                  | dut Intedut<br>oc Inpop une<br>1999 year200 | Inpatappr<br>m Inecofr<br>0 year200 | Infdi<br>ee serv<br>1 year2 | / lnrulc year19<br>2002 year2003 y                                                  | 97 year1998<br>ear2004                                         |
| Evoluded insta                                                                   | yearz                                                                             | uub year200                                 | o yearzou                           | / year2                     | vuuo yearzuuy y                                                                     | eai2010<br>1                                                   |
| Excluded instr                                                                   | uments: insec                                                                     | uciagi inte                                 | autiagi 1                           | npatapp                     | oriagi intailag<br>-                                                                | T                                                              |
| uroppea collin                                                                   | lear: CSKil                                                                       | ⊥s αist tra                                 | msaummy y                           | ear1996                     | 0                                                                                   |                                                                |

| Table A5.4.5.3.2 Model 1 - IV estimated results - N-ETEs (high tech)                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |                                                                                  |                                                        |                                                             |                                                                                                 |                                                                           |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--|--|--|--|
| <pre>xtivreg2 lnrxamhtech cskills lngdpc lnpop unem lnecofree serv lnrulc dist transdummy<br/>year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004<br/>year2005 year2006 year2007 year2008 year2009 year2010 (lnsedut lntedut lnpatappr<br/>lnfdi = lnsedutlag1 lntedutlag1 lnpatapprlag1 lnfdilag1) if transdummy==0, fe endog<br/>(lnsedut lntedut lnpatappr lnfdi) small robust bw(3)<br/>Warning - collinearities detected<br/>Vars dropped: cskills dist transdummy year2009</pre> |                                                                                     |                                                                                  |                                                        |                                                             |                                                                                                 |                                                                           |  |  |  |  |
| FIXED EFFECTS ESTIMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                     |                                                                                  |                                                        |                                                             |                                                                                                 |                                                                           |  |  |  |  |
| Number of groups =         85         Obs per group: min =         3           avg =         12.5           max =         15                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                     |                                                                                  |                                                        |                                                             |                                                                                                 |                                                                           |  |  |  |  |
| IV (2SLS) esti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mation                                                                              |                                                                                  |                                                        |                                                             |                                                                                                 |                                                                           |  |  |  |  |
| Estimates effi<br>Statistics rob<br>kernel=Bartl<br>time variabl<br>group variab                                                                                                                                                                                                                                                                                                                                                                                                                                    | cient for hom<br>oust to hetero<br>.ett; bandwidt<br>.e (t): year<br>ole (i): cn_ir | noskedastici<br>oskedasticit<br>:h=3<br>nd                                       | ty only<br>y and aut                                   | cocorrel                                                    | ation                                                                                           |                                                                           |  |  |  |  |
| Total (centere<br>Total (uncente<br>Residual SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ed) SS =<br>ered) SS =<br>=                                                         | 85.5247373<br>85.5247373<br>84.38208579                                          |                                                        |                                                             | Number of obs =<br>F(24, 951) =<br>Prob > F =<br>Centered R2 =<br>Uncentered R2 =<br>Root MSE = | 1060<br>0.42<br>0.9942<br>0.0134<br>0.0134<br>.2979                       |  |  |  |  |
| <br> lnrxamhtech                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Coef.                                                                               | Robust<br>Std. Err.                                                              | t                                                      | P> t                                                        | [95% Conf. Int                                                                                  | cerval]                                                                   |  |  |  |  |
| lnsedut  <br> ntedut  <br> npatappr  <br> nfdi  <br> ngdpc  <br> npop  <br>unem                                                                                                                                                                                                                                                                                                                                                                                                                                     | .083057<br>.0823298<br>.0577876<br>.0112644<br>0698795<br>0924936<br>.0014315       | .2503893<br>.4238164<br>.1153689<br>.0163094<br>.5519502<br>.9888848<br>.0020534 | 0.33<br>0.19<br>0.50<br>0.69<br>-0.13<br>-0.09<br>0.70 | 0.740<br>0.846<br>0.617<br>0.490<br>0.899<br>0.925<br>0.486 | 4083224 .<br>7493936 .<br>1686195 .2<br>0207422<br>-1.153061 1<br>-2.033142 1<br>0025983 .0     | 5744365<br>9140533<br>2841946<br>.043271<br>.013302<br>.848155<br>0054613 |  |  |  |  |
| <pre>lnecofree       serv       lnrulc       year1996       year1997       vear1998   </pre>                                                                                                                                                                                                                                                                                                                                                                                                                        | 1765668<br>.0096166<br>194223<br>.0694312<br>.1071826<br>.0751715                   | .4591603<br>.0116731<br>.6803324<br>.1850715<br>.1700884<br>.1524247             | -0.38<br>0.82<br>-0.29<br>0.38<br>0.63<br>0.49         | 0.701<br>0.410<br>0.775<br>0.708<br>0.529<br>0.622          | -1.077651 .<br>0132914 .(<br>-1.529349 1)<br>2937645 .4<br>2266093 .4<br>2239561                | 7245177<br>)325245<br>.140903<br>1326269<br>1409746<br>3742991            |  |  |  |  |
| year1999  <br>year2000  <br>year2001  <br>year2002  <br>year2003                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .0394048<br>.0747285<br>.0971287<br>.0817046<br>.1001245                            | .1401805<br>.1217028<br>.1022445<br>.0935852<br>.0861008                         | 0.28<br>0.61<br>0.95<br>0.87<br>1.16                   | 0.779<br>0.539<br>0.342<br>0.383<br>0.245                   | 235694<br>1641085<br>1035222<br>1019529<br>0688451                                              | 3145036<br>3135655<br>2977797<br>.265362<br>2690941                       |  |  |  |  |
| year2004  <br>year2005  <br>year2006  <br>year2007  <br>year2008  <br>year2010                                                                                                                                                                                                                                                                                                                                                                                                                                      | .0940485<br>.0667097<br>.0460772<br>.0440435<br>.0247016<br>0375521                 | .083194<br>.0725384<br>.0656163<br>.0652328<br>.051506<br>.0400841               | 1.13<br>0.92<br>0.70<br>0.68<br>0.48<br>-0.94          | 0.259<br>0.358<br>0.483<br>0.500<br>0.632<br>0.349          | 0692166 .2<br>0756442 .2<br>0826922 .2<br>0839734 .2<br>0763771 .2<br>1162157 .0                | 2573135<br>2090635<br>L748466<br>L720605<br>L257802<br>D411114            |  |  |  |  |

Underidentification test (Kleibergen-Paap rk LM statistic): 50.735 Chi-sq(1) P-val = 0.0000 Weak identification test (Cragg-Donald Wald F statistic): 146.219 (Kleibergen-Paap rk Wald F statistic): 36.492 Stock-Yogo weak ID test critical values: <not available> \_\_\_\_\_ Hansen J statistic (overidentification test of all instruments): 0.000 (equation exactly identified) -endog- option: Endogeneity test of endogenous regressors: 4.333 Chi-sq(4) P-val = 0.3629 lnsedut lntedut lnpatappr lnfdi Regressors tested: \_\_\_\_\_ Instrumented: Insedut Intedut Inpatappr Infdi Included instruments: lngdpc lnpop unem lnecofree serv lnrulc year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2010 Excluded instruments: lnsedutlag1 lntedutlag1 lnpatapprlag1 lnfdilag1 Dropped collinear: cskills dist transdummy year2009 \_\_\_\_\_

### Table A5.4.5.4 Model 1 - IV estimated results (medium-high tech)

xtivreq2 lnrxamhtech cskills lnqdpc lnpop unem lnecofree serv lnrulc dist transdummy year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010 (lnsedut lntedut lnpatappr Infdi= lnsedutlag1 lntedutlag1 lnpatapprlag1 lnfdilag1) if mhtechintens==0, fe endog (lnsedut lntedut lnpatappr lnfdi) small r > obust bw(3) Warning - collinearities detected Vars dropped: cskills dist transdummy year2009 FIXED EFFECTS ESTIMATION \_\_\_\_\_ avg = 12.8 max = 17 Number of groups = 135 Obs per group: min = IV (2SLS) estimation \_\_\_\_\_ Estimates efficient for homoskedasticity only Statistics robust to heteroskedasticity and autocorrelation kernel=Bartlett; bandwidth=3 time variable (t): year group variable (i): cn ind 1725 Number of obs = F(24, 1566) = 2.37 Prob > F = 0.0002 Centered R2 = 0.1261Total (centered) SS = 107.0602309 Total (uncentered) SS = 107.0602309 Residual SS = 93.55857671 Uncentered R2 = 0.1261 Root MSE .2444 = \_\_\_\_\_ \_\_\_\_\_ Robust lnrxamhtech | Coef. Std. Err. t P>|t| [95% Conf. Interval] \_\_\_\_\_+ lnsedut | -.2324968 .1973697 -1.18 0.239 -.6196335 .1546399 lntedut | -.1346487 .1914078 -0.70 0.482 -.5100913 .2407939 .1717472 lnpatappr | .0586629 .0576525 1.02 0.309 -.0544214 1.80 0.072 -.0015096 .0353927 lnfdi | .0169415 .0094068
| lngdpc                           | .286277                              | .2236042                                  | 1.28                            | 0.201                  | 1523181                                                                              | .7248721                        |
|----------------------------------|--------------------------------------|-------------------------------------------|---------------------------------|------------------------|--------------------------------------------------------------------------------------|---------------------------------|
| lnpop                            | -3.010629                            | .6309527                                  | -4.77                           | 0.000                  | -4.24823                                                                             | -1.773028                       |
| unem                             | 00232                                | .0010579                                  | -2.19                           | 0.028                  | 004395                                                                               | 000245                          |
| lnecofree                        | 2126639                              | .2485274                                  | -0.86                           | 0.392                  | 7001455                                                                              | .2748176                        |
| serv                             | .0072769                             | .0068847                                  | 1.06                            | 0.291                  | 0062274                                                                              | .0207811                        |
| lnrulc                           | 1384627                              | .311796                                   | -0.44                           | 0.657                  | 7500443                                                                              | .473119                         |
| year1996                         | 0486755                              | .0918292                                  | -0.53                           | 0.596                  | 2287967                                                                              | .1314457                        |
| year1997                         | 0750267                              | .0821374                                  | -0.91                           | 0.361                  | 2361376                                                                              | .0860842                        |
| _<br>year1998                    | 0667171                              | .0741512                                  | -0.90                           | 0.368                  | 2121633                                                                              | .078729                         |
| year1999                         | 0664502                              | .0675804                                  | -0.98                           | 0.326                  | 1990078                                                                              | .0661075                        |
| year2000                         | 1052856                              | .0647496                                  | -1.63                           | 0.104                  | 2322906                                                                              | .0217194                        |
| year2001                         | 0636874                              | .0569227                                  | -1.12                           | 0.263                  | 1753402                                                                              | .0479654                        |
| year2002                         | 0798788                              | .0518504                                  | -1.54                           | 0.124                  | 1815823                                                                              | .0218246                        |
| year2003                         | 0701213                              | .0492302                                  | -1.42                           | 0.155                  | 1666854                                                                              | .0264428                        |
| year2004                         | 0447607                              | .0481483                                  | -0.93                           | 0.353                  | 1392027                                                                              | .0496813                        |
| year2005                         | 0454157                              | .0476932                                  | -0.95                           | 0.341                  | 138965                                                                               | .0481337                        |
| year2006                         | 0247634                              | .0485351                                  | -0.51                           | 0.610                  | 119964                                                                               | .0704372                        |
| year2007                         | 0080427                              | .0469255                                  | -0.17                           | 0.864                  | 1000862                                                                              | .0840008                        |
| year2008                         | 0004574                              | .0340192                                  | -0.01                           | 0.989                  | 0671854                                                                              | .0662706                        |
| year2010                         | 0028447                              | .0262951                                  | -0.11                           | 0.914                  | 054422                                                                               | .0487326                        |
| Underidentific                   | ation test (K                        | leibergen-P                               | aap rk Ll                       | M statist<br>Chi-      | cic):<br>-sq(1) P-val =                                                              | 77.879<br>• 0.0000              |
| Weak identific<br>Stock-Yogo wea | ation test (C<br>(K<br>k ID test cri | ragg-Donald<br>leibergen-P<br>tical value | l Wald F s<br>Paap rk Wa<br>ss: | statistic<br>ald F sta | c):<br>atistic):<br><not< td=""><td>346.642<br/>84.349<br/>available&gt;</td></not<> | 346.642<br>84.349<br>available> |
| Hanson J stati                   | stic (overide                        | ntification                               | +08+ 0f                         |                        |                                                                                      | 0 0 0 0                         |
| nansen v statt                   | SCIC (OVELIGE                        | IICTICACION                               | LESL UI                         | (                      | ion evactly i                                                                        | dentified)                      |
| -endog- ontion                   |                                      |                                           |                                 | (eyudi                 | LION ENACLLY I                                                                       | aentititea)                     |
| Endogeneity te                   | •<br>st of endoren                   | ous rearess                               | ors:                            |                        |                                                                                      | 2.894                           |
| -magginercy ce                   | st of chaogen                        | .cab regress                              |                                 | Chi-                   | -sq(4) P-val =                                                                       | = 0.5757                        |
| Regressors tes                   | ted: lnsed                           | ut lntedut                                | lnpatapp:                       | r lnfdi                | 54(1) I VAL -                                                                        | 0.0101                          |
|                                  |                                      |                                           |                                 |                        |                                                                                      |                                 |
| Instrumented:                    | lnsed                                | ut lntedut                                | lnpatapp                        | r lnfdi                |                                                                                      |                                 |
| Included instr                   | uments: lngdp                        | c lnpop une                               | m lnecof:                       | ree serv               | lnrulc year19                                                                        | 96 year1997                     |
|                                  | year1                                | 998 year199                               | 9 year20                        | 00 year20              | )01 year2002 y                                                                       | /ear2003                        |
|                                  | year2                                | 004 year200                               | 5 year20                        | 06 year20              | )07 year2008 y                                                                       | vear2010                        |
| Excluded instr                   | uments: lnsed                        | utlag1 lnte                               | dutlag1                         | lnpatappr              | lag1 lnfdilag                                                                        | 1                               |
| Dropped collin                   | ear: cskil                           | ls dist tra                               | nsdummy y                       | year2009               |                                                                                      |                                 |

Table A5.4.5.4.1 Model 1 - IV estimated results – ETEs (medium-high tech) xtivreg2 lnrxamhtech cskills lngdpc lnpop unem lnecofree serv lnrulc dist transdummy transindn year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010 (lnsedut lntedut lnpatappr lnfdi= lnsedutlag1 lntedutlag1 lnpatapprlag1 lnfdilag1) if transdummy==1, fe endog (lnsedut lntedut lnpatappr lnfdi) small robust bw(3) Warning - collinearities detected Vars dropped: cskills dist transdummy year1996 FIXED EFFECTS ESTIMATION \_\_\_\_\_ Obs per group: min = 7 avg = 13.3 Number of groups = 50 max = 15 IV (2SLS) estimation \_\_\_\_\_ Estimates efficient for homoskedasticity only Statistics robust to heteroskedasticity and autocorrelation

| kernel=Bart]<br>time variabl                    | lett; bandwi<br>le (t): vea              | dth=3<br>r                                                                    |                                                  |                                             |                                                                                     |                                                              |
|-------------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------|
| group variab                                    | ole (i): cn_                             | ind                                                                           |                                                  |                                             |                                                                                     |                                                              |
| Total (centere<br>Total (uncente<br>Residual SS | -<br>ed) SS =<br>ered) SS =<br>=         | 74.48418935<br>74.48418935<br>60.3998402                                      |                                                  |                                             | Number of obs<br>F(25, 590)<br>Prob > F<br>Centered R2<br>Uncentered R2<br>Root MSE | = 665<br>= 2.26<br>= 0.0005<br>= 0.1891<br>= 0.1891<br>= .32 |
|                                                 |                                          |                                                                               |                                                  |                                             |                                                                                     |                                                              |
|                                                 |                                          | Robust.                                                                       |                                                  |                                             |                                                                                     |                                                              |
| lnrxamhtech                                     | Coef.                                    | Std. Err.                                                                     | t                                                | P> t                                        | [95% Conf.                                                                          | Interval]                                                    |
| lnsedut                                         | -1.377799                                | .6284355                                                                      | -2.19                                            | 0.029                                       | -2.612042                                                                           | 1435563                                                      |
| lntedut                                         | 8409825                                  | .4808385                                                                      | -1.75                                            | 0.081                                       | -1.785346                                                                           | .103381                                                      |
| lnpatappr                                       | 0849494                                  | .1863563                                                                      | -0.46                                            | 0.649                                       | 4509518                                                                             | .281053                                                      |
| lnfdi                                           | .0191531                                 | .1375068                                                                      | 0.14                                             | 0.889                                       | 2509093                                                                             | .2892154                                                     |
| lngdpc                                          | .6201053                                 | .3831024                                                                      | 1.62                                             | 0.106                                       | 1323052                                                                             | 1.372516                                                     |
| lnpop                                           | -6.56837                                 | 2.799506                                                                      | -2.35                                            | 0.019                                       | -12.06658                                                                           | -1.07016                                                     |
| unem                                            | 0004365                                  | .0022346                                                                      | -0.20                                            | 0.845                                       | 0048252                                                                             | .0039522                                                     |
| lnecofree                                       | .5141365                                 | .4936524                                                                      | 1.04                                             | 0.298                                       | 4553934                                                                             | 1.483666                                                     |
| serv                                            | .0066182                                 | .0139699                                                                      | 0.47                                             | 0.636                                       | 0208186                                                                             | .034055                                                      |
| lnrulc                                          | .0445731                                 | .4357808                                                                      | 0.10                                             | 0.919                                       | 8112972                                                                             | .9004435                                                     |
| transindn                                       | -1.555182                                | .6575679                                                                      | -2.37                                            | 0.018                                       | -2.846641                                                                           | 2637235                                                      |
| year1997                                        | .0123838                                 | .1126383                                                                      | 0.11                                             | 0.912                                       | 2088371                                                                             | .2336047                                                     |
| year1998                                        | .0319799                                 | .1279063                                                                      | 0.25                                             | 0.803                                       | 2192272                                                                             | .2831869                                                     |
| year1999                                        | .0605549                                 | .1451777                                                                      | 0.42                                             | 0.677                                       | 224573                                                                              | .3456828                                                     |
| year2000                                        | .0210509                                 | .1648376                                                                      | 0.13                                             | 0.898                                       | 3026889                                                                             | .3447907                                                     |
| year2001                                        | .0976884                                 | .1912737                                                                      | 0.51                                             | 0.610                                       | 2779718                                                                             | .4733486                                                     |
| year2002                                        | .1262712                                 | .2395391                                                                      | 0.53                                             | 0.598                                       | 344182                                                                              | .5967244                                                     |
| year2003                                        | .1314531                                 | .2489519                                                                      | 0.53                                             | 0.598                                       | 3574867                                                                             | .6203929                                                     |
| year2004                                        | .1951793                                 | .2806788                                                                      | 0.70                                             | 0.487                                       | 3560718                                                                             | .7464304                                                     |
| year2005                                        | .2549542                                 | .3015144                                                                      | 0.85                                             | 0.398                                       | 3372179                                                                             | .8471264                                                     |
| year2006                                        | .2655105                                 | .3319789                                                                      | 0.80                                             | 0.424                                       | 3864937                                                                             | .9175146                                                     |
| year2007                                        | .2987661                                 | .356843                                                                       | 0.84                                             | 0.403                                       | 402071                                                                              | .9996031                                                     |
| year2008                                        | .3028585                                 | .3656184                                                                      | 0.83                                             | 0.408                                       | 4152135                                                                             | 1.020931                                                     |
| year2009                                        | .3659084                                 | .3912617                                                                      | 0.94                                             | 0.350                                       | 4025267                                                                             | 1.134344                                                     |
| year2010                                        | .3869613                                 | .4188367                                                                      | 0.92                                             | 0.356                                       | 435631                                                                              | 1.209554                                                     |
|                                                 |                                          |                                                                               |                                                  |                                             |                                                                                     |                                                              |
| Underidentific                                  | cation test                              | (Kleibergen-Pa                                                                | aap rk LN                                        | 1 statis<br>Chi                             | tic):<br>-sq(1)                                                                     | 61.383<br>0.0000                                             |
|                                                 | · · · ·                                  |                                                                               |                                                  |                                             |                                                                                     |                                                              |
| Weak identific                                  | cation test                              | (Cragg-Donald                                                                 | Wald F s                                         | statisti                                    | c):                                                                                 | 78.557                                                       |
|                                                 |                                          | (Kleibergen-Pa                                                                | aap rk Wa                                        | ald F st                                    | atistic):                                                                           | 59.978                                                       |
| Stock-Yogo wea                                  | ak ID test c                             | ritical values                                                                | s:<br>                                           |                                             | <not -<="" td=""><td>available&gt;</td></not>                                       | available>                                                   |
| Hansen J stati                                  | lstic (overi                             | dentification                                                                 | test of                                          | all ins                                     | truments):<br>tion exactly i                                                        | 0.000<br>dentified)                                          |
| -endog- optior<br>Endogeneity te                | n:<br>est of endog                       | enous regresso                                                                | ors:                                             |                                             |                                                                                     | 3.583                                                        |
| Regressors tes                                  | ted. Ins                                 | adut Intedut '                                                                | Innatann                                         | Chi<br>c lnfdi                              | -sq(4) P-val =                                                                      | 0.4653                                                       |
|                                                 |                                          |                                                                               |                                                  |                                             |                                                                                     |                                                              |
| Instrumented:<br>Included instr                 | lns<br>cuments: lng<br>yea<br>yea<br>yea | edut lntedut 1<br>dpc lnpop uner<br>r1998 year1999<br>r2004 year2009<br>r2010 | Inpatappi<br>n lnecofi<br>9 year200<br>5 year200 | r lnfdi<br>ree serv<br>)0 year2<br>)6 year2 | lnrulc transi<br>001 year2002 y<br>007 year2008 y                                   | ndn year1997<br>ear2003<br>ear2009                           |
| Excluded instr<br>Dropped collir                | ruments: lns<br>hear: csk                | edutlag1 lnteo<br>ills dist trar                                              | dutlag1 1<br>nsdummy y                           | Inpatapp<br>year1996                        | rlag1 lnfdilag                                                                      | 1                                                            |

| <pre>stivreg2 inrxamtech cskills ingdpc impop unem incofree serv inrule dist transdummy<br/>transindh year2005 year2007 year2007 year2001 year2001 year2002 year2003<br/>year2004 year2005 year2006 year2007 year2008 year2010 (insedut intedut<br/>inpatappr Infdie inseductial inpatapprial infdilegi) if transdummy==0, fe<br/>ondog (insedut intedut inpatapprial) small robust bw(3)<br/>Warning - collinearities detected<br/>Vars dropped: cskills dist transdummy transindn year2009<br/>FIXED EFFECTS ESTIMATION<br/></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>Table A5.4.5</b>                                                                                                                                                                                                                                   | .4.2 Model 1                                                                                                                                                                                                                                                               | - IV estima                                                                                                                                                                                                                                                                                 | ated res                                                                                                                                                                                                                                           | ults – N                                                                                                                                                                                                             | N-ETEs (medi                                                                                                                                                                                                                                                          | um-high te                                                                                                                                                                                                                                                                                  | ech)                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| <pre>FIXED EFFECTS ESTIMATION</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | xtivreg2 lnrxa<br>transindn year<br>year2004 year2<br>lnpatappr lnfc<br>endog (lnsedut<br>Warning - coll<br>Vars dropped:                                                                                                                             | amhtech cskill<br>1996 year199<br>2005 year2006<br>di= lnsedutlag<br>1 lntedut lnpa<br>inearities de<br>cskills dist                                                                                                                                                       | ls lngdpc lng<br>7 year1998 ye<br>year2007 yea<br>1 lntedutlag<br>atappr lnfdi)<br>etected<br>transdummy                                                                                                                                                                                    | oop unem<br>ear1999 ye<br>ar2008 ye<br>g1 lnpata<br>small n<br>transing                                                                                                                                                                            | lnecofr<br>year2000<br>apprlag1<br>cobust b<br>dn year2                                                                                                                                                              | ee serv lnrulc<br>year2001 year2<br>year2010 (lnse<br>lnfdilag1) if<br>w(3)<br>009                                                                                                                                                                                    | dist transd<br>2002 year200<br>edut lntedut<br>transdummy=                                                                                                                                                                                                                                  | ummy<br>3<br>=0, fe |
| Number of groups =       85       Obs per group: min =       3<br>avg =       12.5<br>max =       15         IV (25L3) estimation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | FIXED EFFECTS                                                                                                                                                                                                                                         | ESTIMATION                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                             |                     |
| <pre>IV (28LS) estimation</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Number of grou                                                                                                                                                                                                                                        | ups = 8                                                                                                                                                                                                                                                                    | 35                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                    | Obs pe                                                                                                                                                                                                               | r group: min =<br>avg =<br>max =                                                                                                                                                                                                                                      | 3<br>12.5<br>15                                                                                                                                                                                                                                                                             |                     |
| Estimates efficient for homoskedasticity only<br>Statistics robust to heteroskedasticity and autocorrelation<br>kernel=Bartlett; bandwidth=3<br>time variable (i): year<br>group variable (i): cn_ind<br>Number of obs = 1060<br>F(24, 951) = 1.32<br>Prob > F = 0.1395<br>Total (centered) SS = 32.57607307<br>Centered R2 = 0.0902<br>Residual SS = 29.6379555<br>Centered R2 = 0.0902<br>Residual SS = 29.6379555<br>Root MSE = .1765<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IV (2SLS) esti                                                                                                                                                                                                                                        | mation                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                             |                     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Estimates effi<br>Statistics rok<br>kernel=Bart1<br>time variab1<br>group variab                                                                                                                                                                      | cient for hor<br>bust to hetero<br>lett; bandwidt<br>le (t): year<br>ble (i): cn_ir                                                                                                                                                                                        | noskedasticit<br>oskedasticity<br>ch=3<br>nd                                                                                                                                                                                                                                                | y only<br>7 and aut                                                                                                                                                                                                                                | cocorrel                                                                                                                                                                                                             | ation                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                             |                     |
| Inrxamhtech       Coef.       Std. Err.       t       P> t        [95% Conf. Interval]         Inrxamhtech       .1216814       .1593933       0.76       0.445      1911217       .4344845         Intedut       .0470201       .1989672       0.24       0.813      3434454       .4374856         Inpatappr       .0035823       .0711223       0.05       0.960      1359925       .1431571         Infdi       .0165081       .0095334       1.73       0.084      0022009       .035217         Ingdpc      1290177       .3658555       -0.35       0.724      8469952       .5889597         Inpop       -2.636544       .7146087       -3.69       0.000       -4.038936       -1.234152         unem      001275       .001329       -1.60       0.111      0047433       .0004883         Incofree      313683       .2446967       -1.28       0.200      793891       .1665249         serv      0001379       .0082115       -0.02       0.987      0162527       .0159768         Inrulc       .2521338       .4630926       0.54       0.586      6566676       1.160935         year1996      0935057 <td< td=""><td>Total (centere<br/>Total (uncente<br/>Residual SS</td><td>ed) SS =<br/>ered) SS =<br/>=</td><td>32.57607307<br/>32.57607307<br/>29.6379555</td><td></td><td></td><td>Number of obs =<br/>F(24, 951) =<br/>Prob &gt; F =<br/>Centered R2 =<br/>Uncentered R2 =<br/>Root MSE =</td><td>= 1060<br/>= 1.32<br/>= 0.1395<br/>= 0.0902<br/>= 0.0902<br/>= .1765</td><td></td></td<> | Total (centere<br>Total (uncente<br>Residual SS                                                                                                                                                                                                       | ed) SS =<br>ered) SS =<br>=                                                                                                                                                                                                                                                | 32.57607307<br>32.57607307<br>29.6379555                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                      | Number of obs =<br>F(24, 951) =<br>Prob > F =<br>Centered R2 =<br>Uncentered R2 =<br>Root MSE =                                                                                                                                                                       | = 1060<br>= 1.32<br>= 0.1395<br>= 0.0902<br>= 0.0902<br>= .1765                                                                                                                                                                                                                             |                     |
| Insedut       .1216814       .1593933       0.76       0.445      1911217       .4344845         Intedut       .0470201       .1989672       0.24       0.813      3434454       .4374856         Inpatappr       .0035823       .0711223       0.05       0.960      1359925       .1431571         Infdi       .0165081       .0095334       1.73       0.084      0022009       .035217         Ingdpc      1290177       .3658555       -0.35       0.724      8469952       .5889597         Inpop       -2.636544       .7146087       -3.69       0.000       -4.038936       -1.234152         unem      0021275       .0013329       -1.60       0.111      0047433       .0004883         Inecofree      313683       .2446967       -1.28       0.200      793891       .1665249         serv      0001379       .0082115       -0.02       0.987      0162527       .0159768         Inrulc       .2521338       .4630926       0.54       0.586      6566676       1.160935         year1996      0935057       .1199258       -0.78       0.436      328856       .148441         year1998      0947945<                                                                                                                                                                                                                                                                                                                                                                                              | lnrxamhtech                                                                                                                                                                                                                                           | Coef.                                                                                                                                                                                                                                                                      | Robust<br>Std. Err.                                                                                                                                                                                                                                                                         | t                                                                                                                                                                                                                                                  | P> t                                                                                                                                                                                                                 | [95% Conf.                                                                                                                                                                                                                                                            | Interval]                                                                                                                                                                                                                                                                                   |                     |
| year2008   .0148/92 .031/029 0.47 0.639047/3365 .0770948<br>year2010  0043756 .0255327 -0.17 0.8640544826 .0457315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <pre>Insedut   Intedut   Inpatappr   Infdi   Ingdpc   Inpop   Unem   Inecofree   Serv   Inrulc   Year1996   Year1997   Year1998   Year2000   Year2001   Year2002   Year2003   Year2004   Year2005   Year2006   Year2007   Year2008   Year2010  </pre> | .1216814<br>.0470201<br>.0035823<br>.0165081<br>1290177<br>-2.636544<br>0021275<br>313683<br>0001379<br>.2521338<br>0935057<br>0979297<br>0947945<br>0819705<br>0934271<br>0669281<br>0705208<br>0632339<br>044818<br>0689388<br>0251902<br>0048507<br>.0148792<br>0043756 | .1593933<br>.1989672<br>.0711223<br>.0095334<br>.3658555<br>.7146087<br>.0013329<br>.2446967<br>.0082115<br>.4630926<br>.1199258<br>.1100192<br>.0926153<br>.0827093<br>.0705763<br>.0617954<br>.0564374<br>.0528139<br>.0508175<br>.0513617<br>.043472<br>.0421044<br>.0317029<br>.0255327 | 0.76<br>0.24<br>0.05<br>1.73<br>-0.35<br>-3.69<br>-1.60<br>-1.28<br>-0.02<br>0.54<br>-0.78<br>-0.78<br>-0.99<br>-1.02<br>-0.99<br>-1.32<br>-1.08<br>-1.25<br>-1.20<br>-0.88<br>-1.25<br>-1.20<br>-0.88<br>-1.34<br>-0.58<br>-0.12<br>0.47<br>-0.17 | 0.445<br>0.813<br>0.960<br>0.084<br>0.724<br>0.000<br>0.111<br>0.200<br>0.987<br>0.586<br>0.436<br>0.374<br>0.306<br>0.322<br>0.186<br>0.279<br>0.212<br>0.231<br>0.378<br>0.180<br>0.562<br>0.908<br>0.639<br>0.864 | 1911217<br>3434454<br>1359925<br>0022009<br>8469952<br>-4.038936<br>0047433<br>793891<br>0162527<br>6566676<br>3288556<br>3138381<br>2765485<br>2442843<br>2319305<br>1881993<br>1812771<br>1668791<br>1445455<br>1697341<br>1105024<br>0874789<br>0473365<br>0544826 | .4344845<br>.4374856<br>.1431571<br>.035217<br>.5889597<br>-1.234152<br>.0004883<br>.1665249<br>.0159768<br>1.160935<br>.1418441<br>.1179788<br>.0869595<br>.0803432<br>.0450763<br>.0543431<br>.0402354<br>.0404113<br>.0549094<br>.0318566<br>.060122<br>.0777776<br>.0770948<br>.0457315 |                     |

Chi-sq(1) P-val = 0.0000\_\_\_\_\_ Weak identification test (Cragg-Donald Wald F statistic): 146.219 (Kleibergen-Paap rk Wald F statistic): 36.492 Stock-Yogo weak ID test critical values: <not available> \_\_\_\_\_ Hansen J statistic (overidentification test of all instruments): 0.000 (equation exactly identified) -endog- option: Endogeneity test of endogenous regressors: 7.163 Chi-sq(4) P-val = 0.1275Regressors tested: lnsedut lntedut lnpatappr lnfdi \_\_\_\_\_ lnsedut lntedut lnpatappr lnfdi Instrumented: Included instruments: lngdpc lnpop unem lnecofree serv lnrulc year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2010 Excluded instruments: Insedutlag1 lntedutlag1 lnpatapprlag1 lnfdilag1 Dropped collinear: cskills dist transdummy transindn year2009 \_\_\_\_\_

# Table A5.5 Model 2 - Fixed effects estimated results (medium-high and high tech)

xtreq lnrxamhtech avyrs sgravyrs cskills lnpatappr lnfdi lnqdpc lnpop unem lnecofree lnrulc serv dist transdummy year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010, fe note: cskills omitted because of collinearity note: dist omitted because of collinearity note: transdummy omitted because of collinearity Number of obs = 3600 Fixed-effects (within) regression Number of groups = Group variable: cn ind 270 R-sq: within = 0.0636Obs per group: min = 5 13.3 between = 0.0328avg = max = overall = 0.029816 = F(25,3305) 8.98 0.0000 corr(u i, Xb) = -0.9354Prob > F \_\_\_\_\_ lnrxamhtech | Coef. Std. Err. t P>|t| [95% Conf. Interval] \_\_\_\_\_\_ avyrs | .3294195 .2107553 1.56 0.118 -.0838047 .7426437 sqravyrs | -.0194701 .0097484 -2.00 0.046 -.0385837 -.0003566 cskills | (omitted) lnpatappr | -.1027553 .02876 -3.57 0.000 -.1591445 -.0463661 lnfdi | .0073231 .0061925 1.18 0.237 -.0048184 .0194647 

 4.64
 0.000
 .3336491

 -4.58
 0.000
 -2.463783

 0.30
 0.766
 -.0016275

 0.22
 0.823
 -.3174537

 lngdpc |
 .5774677
 .124354

 lnpop |
 -1.725759
 .3764118

 unem |
 .0002908
 .0009784

 cofree |
 .0408001
 .182719

 .8212863 lngdpc | -4.58 -.9877351 0.30 0.22 .0022092 .0408001 .182719 .2498943 .2064493 .399054 lnecofree | .2498943 .2064493 1.21 0.226 .0106243 .004091 2.60 0.009 -.1548871 .6546756 lnrulc | .0026031 serv | .0186455 dist | (omitted) transdummy | (omitted) year1996 | .0765638 .0509478 1.50 0.133 -.0233285 .1764562 year1997 | .0681594 .0515997 1.32 0.187 -.0330113 .1693301 year1998 | .0515029 .0524063 0.98 0.326 -.0512491 .154255 year1999 | .023538 .0537898 0.44 0.662 -.0819267 .1290027

0.01 0.991 -.1047889

year2000 | .0006101 .0537563

.106009

| 0010656                   | 0552206     | 0 20     | 0 701     | 0070161   | 1000474    |
|---------------------------|-------------|----------|-----------|-----------|------------|
| year2001   .0212656       | .0553/96    | 0.38     | 0.701     | 08/3161   | .12984/4   |
| year2002   .0031826       | .058761     | 0.05     | 0.957     | 1120289   | .1183942   |
| year2003  0091338         | .0610623    | -0.15    | 0.881     | 1288576   | .11059     |
| year2004   .0372318       | .064302     | 0.58     | 0.563     | 0888439   | .1633075   |
| year2005   .0225801       | .0684244    | 0.33     | 0.741     | 1115784   | .1567386   |
| year2006   .0220509       | .0725304    | 0.30     | 0.761     | 1201582   | .16426     |
| year2007   .0539607       | .0753068    | 0.72     | 0.474     | 093692    | .2016134   |
| year2008   .1041141       | .0767492    | 1.36     | 0.175     | 0463667   | .254595    |
| year2009   .1227964       | .0759566    | 1.62     | 0.106     | 0261303   | .2717231   |
| year2010   .0886447       | .0783553    | 1.13     | 0.258     | 0649851   | .2422745   |
| _cons   6.725036          | 4.634193    | 1.45     | 0.147     | -2.361143 | 15.81122   |
| +                         |             |          |           |           |            |
| sigma_u   2.80004         |             |          |           |           |            |
| sigma e   .39659157       |             |          |           |           |            |
| rho = 98033327            | (fraction   | of varia | nce due t | -o 11 i)  |            |
|                           |             |          |           | ,<br>     |            |
| F test that all $u = 0$ : | F(269, 3305 | ) = 6'   | 7.68      | Prob >    | F = 0.0000 |

#### Table A5.5.1 Model 2 - Diagnostic tests

#### **Groupwise heteroskedasticity**

```
Modified Wald test for groupwise heteroskedasticity
in fixed effect regression model
H0: sigma(i)^2 = sigma^2 for all i
chi2 (270) = 3.0e+06
Prob>chi2 = 0.0000
```

#### Autocorrelation in panel data

xtserial lnrxamhtech avyrs sqravyrs cskills lnpatappr lnfdi lngdpc lnpop unem lnecofree lnrulc serv dist transdummy year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010 Wooldridge test for autocorrelation in panel data H0: no first order autocorrelation F(1, 269) = 85.213Prob > F = 0.0000

#### Normality of residuals

```
pantest2 lnrxamhtech avyrs sqravyrs cskills lnpatappr lnfdi lngdpc lnpop unem
lnecofree lnrulc serv dist transdummy year1996 year1997 year1998 year1999 year2000
year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009
year2010, fe
Test for serial correlation in residuals
Null hypothesis is either that rho=0 if residuals are AR(1)
or that lamda=0 if residuals are MA(1)
Following tests only approximate for unbalanced panels
LM= 1565.6363
which is asy. distributed as chisq(1) under null, so:
Probability of value greater than LM is 0
LM5= 39.568122
which is asy. distributed as N(0,1) under null, so:
Probability of value greater than abs(LM5) is 0
Test for significance of fixed effects
F= 67.676565
Probability>F= 0
Test for normality of residuals
                   Skewness/Kurtosis tests for Normality
                                                      ----- joint -----
   Variable | Obs Pr(Skewness) Pr(Kurtosis) adj chi2(2) Prob>chi2
                                                       00000B | 3.6e+03 0.0000 0.0000
                                                                 0.0000
```

| Table A5.5.2                                                         | 2 Model 2 ·                                       | Driscoll-K                                     | raay e                          | estimated                                    | l results (r                                    | nedium-high and                                         |
|----------------------------------------------------------------------|---------------------------------------------------|------------------------------------------------|---------------------------------|----------------------------------------------|-------------------------------------------------|---------------------------------------------------------|
| high tech)                                                           |                                                   |                                                | -                               |                                              | _                                               | _                                                       |
| xtscc lnrxamht<br>lnrulc serv di<br>year2002 year2                   | tech avyrs sq<br>st transdummy<br>2003 year2004   | ravyrs cskill<br>y year1996 ye<br>year2005 yea | ls lnpat<br>ear1997<br>ar2006 y | appr lnfd:<br>year1998<br>year2007 ye        | i lngdpc lnpo<br>year1999 yea:<br>ear2008 year2 | op unem lnecofree<br>2000 year2001<br>2009 year2010, fe |
| Regression wit<br>Method: Fixed-<br>Group variable<br>maximum lag: 2 | th Driscoll-K:<br>-effects regre<br>e (i): cn_ind | raay standaro<br>ession                        | d errors                        | Number<br>Number<br>F(28,<br>Prob><br>within | of obs<br>of groups<br>269)<br>F<br>R-squared   | = 3600<br>= 270<br>= 189090.42<br>= 0.0000<br>= 0.0636  |
|                                                                      |                                                   | Drisc/Kraay                                    |                                 |                                              |                                                 |                                                         |
| lnrxamhtech                                                          | Coef.                                             | Std. Err.                                      | t                               | P> t                                         | [95% Conf                                       | . Interval]                                             |
| avyrs  <br>sqravyrs  <br>cskills                                     | .3294195<br>0194701<br>(omitted)                  | .1672355<br>.0072196                           | 1.97<br>-2.70                   | 0.050<br>0.007                               | .0001626<br>0336842                             | .6586763<br>005256                                      |
| lnpatappr                                                            | 1027553                                           | .0231275                                       | -4.44                           | 0.000                                        | 1482892                                         | 0572214                                                 |
| lnfdi                                                                | .0073231                                          | .003697                                        | 1.98                            | 0.049                                        | .0000443                                        | .014602                                                 |
| lngdpc                                                               | .5774677                                          | .2065258                                       | 2.80                            | 0.006                                        | .1708551                                        | .9840803                                                |
| lnpop                                                                | -1.725759                                         | .2990008                                       | -5.77                           | 0.000                                        | -2.314438                                       | -1.13708                                                |
| unem                                                                 | .0002908                                          | .0007878                                       | 0.37                            | 0.712                                        | 0012602                                         | .0018419                                                |
| lnecofree                                                            | .0408001                                          | .1673327                                       | 0.24                            | 0.808                                        | 2886482                                         | .3702485                                                |
| lnrulc                                                               | .2498943                                          | .23119                                         | 1.08                            | 0.281                                        | 2052778                                         | .7050663                                                |
| serv                                                                 | .0106243                                          | .0030153                                       | 3.52                            | 0.001                                        | .0046878                                        | .0165608                                                |
| dist                                                                 | .0064585                                          | .0048509                                       | 1.33                            | 0.184                                        | 003092                                          | .0160089                                                |
| transdummy                                                           | (omitted)                                         |                                                |                                 |                                              |                                                 |                                                         |
| year1996                                                             | .0765638                                          | .0092841                                       | 8.25                            | 0.000                                        | .0582852                                        | .0948425                                                |
| year1997                                                             | .0681594                                          | .0159262                                       | 4.28                            | 0.000                                        | .0368036                                        | .0995152                                                |
| year1998                                                             | .0515029                                          | .0202091                                       | 2.55                            | 0.011                                        | .0117147                                        | .0912911                                                |
| year1999                                                             | .023538                                           | .02/6046                                       | 0.85                            | 0.395                                        | 0308107                                         | .0778866                                                |
| year2000                                                             | .0006101                                          | .0334239                                       | 0.02                            | 0.985                                        | 0651957                                         | .0664159                                                |
| year2001                                                             | .0212656                                          | .0425818                                       | 0.50                            | 0.618                                        | 0625704                                         | .1051017                                                |
| year2002                                                             | .0031826                                          | .0514488                                       | 0.06                            | 0.951                                        | 0981109                                         | .1044762                                                |
| year2003                                                             | 0091338                                           | .0585142                                       | -0.16                           | 0.876                                        | 1243379                                         | .1060703                                                |
| year2004                                                             | .03/2318                                          | .0/11204                                       | 0.52                            | 0.601                                        | 102/916                                         | .1//2552                                                |
| year2005                                                             | .0225801                                          | .0815052                                       | 0.28                            | 0.782                                        | 13/8892                                         | .1830494                                                |
| year2006                                                             | .0220509                                          | .0949559                                       | 0.23                            | 0.817                                        | 1649003                                         | .2090021                                                |
| year200/                                                             | .033960/                                          | .10238                                         | 0.53                            | 0.599                                        | 14/60/2                                         | .200502                                                 |
| year2008                                                             | .1041141                                          | .1036155                                       | 0.99                            | 0.325                                        | 1038241                                         | .3120323                                                |
| year2009                                                             | .122/964                                          | .0881548                                       | 1.39                            | 0.165                                        | 050/646                                         | .2903373                                                |
| year2010                                                             | .U00044/                                          | .0938912                                       | 0.94                            | 0.346                                        | 0962222                                         | .2/33110                                                |
|                                                                      | (OIIIICCEQ)                                       |                                                |                                 |                                              |                                                 |                                                         |

# Table A5.5.3 Model 2 - FEVD estimated results (medium-high and high tech)

xtfevd lnrxamhtech avyrs sqravyrs cskills lnpatappr lnfdi lngdpc lnpop unem lnecofree lnrulc serv dist transdummy year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010, invariant (cskills dist transdummy) papel fixed offects regression with vector decomposition

panel fixed effects regression with vector decomposition  $% \left( {{{\left( {{{\left( {{{\left( {{{\left( {{{c}}} \right)}} \right.} \right.} \right.}} \right)}_{\rm{composition}}} \right)} \right)$ 

| degrees of freedom fevd   | = 3302     | number of obs  | = 3600     |
|---------------------------|------------|----------------|------------|
| mean squared error        | = .1443963 | F( 30, 3302)   | = 5.078067 |
| root mean squared error   | = .3799951 | Prob > F       | = 8.36e-17 |
| Residual Sum of Squares   | = 519.8265 | R-squared      | = .8669844 |
| Total Sum of Squares      | = 3908.013 | adj. R-squared | = .8550203 |
| Estimation Sum of Squares | = 3388.186 |                |            |

|             |           | ford      |       |       |            |           |
|-------------|-----------|-----------|-------|-------|------------|-----------|
| lnrxamhtech | Coef.     | Std. Err. | t     | P> t  | [95% Conf. | Interval] |
| avyrs       | .3294195  | 1.730964  | 0.19  | 0.849 | -3.064452  | 3.723291  |
| sqravyrs    | 0194701   | .0757963  | -0.26 | 0.797 | 1680826    | .1291424  |
| lnpatappr   | 1027553   | .2356341  | -0.44 | 0.663 | 5647589    | .3592483  |
| lnfdi       | .0073231  | .094795   | 0.08  | 0.938 | 1785398    | .193186   |
| lngdpc      | .5774678  | 1.598978  | 0.36  | 0.718 | -2.55762   | 3.712556  |
| lnpop       | -1.725759 | .8179957  | -2.11 | 0.035 | -3.329589  | 1219289   |
| unem        | .0002908  | .0047838  | 0.06  | 0.952 | 0090887    | .0096704  |
| lnecofree   | .0407999  | 1.252996  | 0.03  | 0.974 | -2.415928  | 2.497528  |
| lnrulc      | .2498942  | 1.027078  | 0.24  | 0.808 | -1.76388   | 2.263669  |
| serv        | .0106243  | .0293211  | 0.36  | 0.717 | 0468652    | .0681138  |
| year1996    | .0765638  | .234455   | 0.33  | 0.744 | 383128     | .5362557  |
| year1997    | .0681594  | .2699537  | 0.25  | 0.801 | 4611342    | .5974529  |
| year1998    | .0515029  | .2857617  | 0.18  | 0.857 | 5087851    | .611791   |
| year1999    | .023538   | .3119372  | 0.08  | 0.940 | 588072     | .6351479  |
| year2000    | .0006101  | .2921441  | 0.00  | 0.998 | 5721917    | .5734119  |
| year2001    | .0212656  | .3055254  | 0.07  | 0.945 | 5777728    | .620304   |
| year2002    | .0031826  | .3204229  | 0.01  | 0.992 | 6250651    | .6314303  |
| year2003    | 0091338   | .3941853  | -0.02 | 0.982 | 782006     | .7637384  |
| year2004    | .0372318  | .450154   | 0.08  | 0.934 | 8453773    | .9198408  |
|             | .0225801  | .514225   | 0.04  | 0.965 | 9856519    | 1.030812  |
|             | .0220509  | .5305267  | 0.04  | 0.967 | -1.018144  | 1.062245  |
| year2007    | .0539607  | .6606     | 0.08  | 0.935 | -1.241266  | 1.349188  |
|             | .1041141  | .6447918  | 0.16  | 0.872 | -1.160118  | 1.368346  |
|             | .1227964  | .5792921  | 0.21  | 0.832 | -1.013012  | 1.258604  |
| year2010    | .0886447  | .5928329  | 0.15  | 0.881 | -1.073713  | 1.251002  |
| cskills     | 0846318   | 1.205406  | -0.07 | 0.944 | -2.44805   | 2.278787  |
| dist        | 0009524   | .0008483  | -1.12 | 0.262 | 0026156    | .0007108  |
| transdummy  | 3914323   | 2.47703   | -0.16 | 0.874 | -5.248102  | 4.465238  |
| eta         | 1         | •         |       |       | •          |           |
| _cons       | 8.282433  | 21.09462  | 0.39  | 0.695 | -33.07743  | 49.6423   |

# Table A5.5.4 Model 1 - Hausman and Taylor estimated results (medium-high and high tech)

xthtaylor lnrxamhtech avyrs sqravyrs cskills lnpatappr lnfdi lngdpc lnpop unem lnecofree lnrulc serv dist transdummy year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010, endo (avyrs sqravyrs cskills)

| Hausman-Taylor<br>Group variable                             | estimation<br>: cn_ind                      |                                             |                               | Number c<br>Number c             | f obs<br>f groups                         | =           | 3600<br>270                                 |
|--------------------------------------------------------------|---------------------------------------------|---------------------------------------------|-------------------------------|----------------------------------|-------------------------------------------|-------------|---------------------------------------------|
|                                                              |                                             |                                             |                               | Obs per                          | group: min<br>avg<br>max                  | =<br>=<br>= | 5<br>13.3<br>16                             |
| Random effects                                               | u_i ~ i.i.d.                                |                                             |                               | Wald chi<br>Prob > c             | 2(28)<br>hi2                              | =           | 213.79<br>0.0000                            |
| lnrxamhtech                                                  | Coef.                                       | Std. Err.                                   | Z                             | P> z                             | [95% Coni                                 | f.          | Interval]                                   |
| TVexogenous  <br>lnpatappr  <br>lnfdi  <br>lngdpc  <br>lnpop | 0789832<br>.0034393<br>.8812029<br>.1003167 | .0274345<br>.0059588<br>.104968<br>.1313037 | -2.88<br>0.58<br>8.39<br>0.76 | 0.004<br>0.564<br>0.000<br>0.445 | 1327538<br>0082398<br>.6754695<br>1570337 |             | 0252127<br>.0151183<br>1.086936<br>.3576671 |

| unem         .0009143         .0009388         0.97         0.331        0009277         .0027563           lnrulc         .1856409         .199586         0.93         0.352        2054868         .576785           serv         .0086736         .0039228         2.21         0.027         .009851         .0163622           year1996         .0760551         .049082         1.54         0.124        0207832         .1728933           year1997         .0591605         .049998         1.18         0.237        0388338         .1571549           year1999         .0135529         .0520703         0.26         0.795        088503         .1156089           year2001        0219144         .0518891         -0.42         0.673        1236153         .077764           year2002        045664         .0531536        031         0.757        1206355         .0877227           year2003        0634069         .058157         -1.09         0.276        1774684         .0566547           year2006        0376522         .0605847         -0.62         0.535        156369         .0811187           year2006        0917173         .066763         -1.37 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>                                                                                                                                                               |             |           |           |          |           |           |           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|-----------|----------|-----------|-----------|-----------|
| <pre>lnecofree   .1973001 .1743803 1.13 0.2581444789 .5390792<br/>lnrulc   .1856409 .1995586 0.93 0.3522054868 .5767685<br/>serv   .0086736 .0039228 2.21 0.027 .0009851 .0163622<br/>year1996   .0760551 .049908 1.18 0.2370388338 .1571549<br/>year1997   .0591605 .049908 1.18 0.2370388338 .1571549<br/>year1998   .0462499 .0507809 0.91 0.3620532788 .1457785<br/>year2000  0219144 .0518891 -0.42 0.6731236153 .0797864<br/>year2001  0164564 .0531536 -0.31 0.7571206355 .0877227<br/>year2002  0456664 .0561344 -0.81 0.4161556878 .0643549<br/>year2003  0634069 .0581957 -1.09 0.2761774684 .0506547<br/>year2004  0376252 .0605847 -0.62 0.535156369 .0811187<br/>year2005  0685413 .0638055 -1.07 0.2831937761 .0566934<br/>year2006  0917173 .0667693 -1.37 0.1702225828 .0391482<br/>year2008  0322409 .0695957 -0.46 0.6431286459 .1041642<br/>year2008  0322409 .0695957 -0.46 0.6431287769 .1529013<br/>year2008  0322808 .0722351 -0.45 0.6650174359 .1087973<br/>TVendogenous  <br/>avyrs   .3637942 .202713 1.79 0.0730335159 .7611043<br/>sqravyrs   .20214986 .0093838 -2.29 0.02203989040031067<br/>Tlexogenous  <br/>dist   .0000431 .000342 0.13 0.9000006272 .0007133<br/>transdummy   .9700191 .3978296 2.44 0.015 .1902874 1.749751<br/>Tlendogenous  <br/>cskills   .7038131 1.198758 0.59 0.557 -1.64571 3.053337<br/>i_<br/>cons   -17.26372 6.548996 -2.64 0.008 -30.09951 -4.427918<br/></pre> | unem        | .0009143  | .0009398  | 0.97     | 0.331     | 0009277   | .0027563  |
| <pre>lnrulc   .1856409 .199586 0.93 0.3522054868 .5767685<br/>serv   .0086736 .0039228 2.21 0.027 .0009851 .0163622<br/>year1996   .0760551 .0494082 1.54 0.1240207832 .1728933<br/>year1997   .0591605 .049998 1.18 0.2370388338 .1571549<br/>year1998   .0462499 .0507809 0.91 0.3620532788 .1457785<br/>year1999   .0135529 .052703 0.26 0.795088503 .1156089<br/>year2000  0219144 .0518891 -0.42 0.6731236153 .0797864<br/>year2001  0164564 .0531536 -0.31 0.7571206355 .0877227<br/>year2002  0456664 .0561344 -0.81 0.4161556878 .0643549<br/>year2003  0634069 .0581957 -1.09 0.2761574684 .0506547<br/>year2005  0685413 .0638965 -1.07 0.2831937761 .0566934<br/>year2006  0917173 .0667693 -1.37 0.1702225828 .0391482<br/>year2007  0749394 .0686163 -1.09 0.2752094249 .0595461<br/>year2008  0322409 .0695957 -0.46 0.6431686459 .1041642<br/>year2009   .0145622 .0705825 0.21 0.8371237769 .1529013<br/>year2010  0327808 .0722351 -0.45 0.650174359 .1087973<br/>rVendogenous  <br/>avyrs   .3637942 .202713 1.79 0.0730335159 .7611043<br/>sgravyrs  0214986 .0093838 -2.29 0.02203989040031067<br/>rTexogenous  <br/>dist   .0000431 .000342 0.13 0.9000006272 .0007133<br/>transdummy   .9700191 .3978296 2.44 0.015 .1902874 1.749751<br/>rTendogenous  <br/>ccskills   .7038131 1.198758 0.59 0.557 -1.64571 3.053337<br/>i_cons   -17.26372 6.548996 -2.64 0.008 -30.09951 -4.427918<br/></pre>          | lnecofree   | .1973001  | .1743803  | 1.13     | 0.258     | 1444789   | .5390792  |
| serv         .0086736       .0039228       2.21       0.027       .0009851       .0163622         year1996         .0760551       .049908       1.54       0.124      0207832       .1728933         year1997         .0551605       .049998       1.80       0.237      0388338       .1571549         year1998         .0462499       .0507809       0.91       0.362      0532788       .1457785         year2000        0219144       .051859      042       0.673      1236153       .0797864         year2001        0164564       .0531536       -0.31       0.757      1206355       .0877227         year2003        0634069       .0581957       -1.09       0.276      1774684       .056647         year2004        0376252       .0605847       -0.62       0.535      156369       .0811187         year2005        0685413       .0638965       -1.07       0.283      1937761       .0566934         year2007        074394       .0686163       -1.09       0.275      2094249       .0595461         year2008        0327808       .072251       -0.46       0.643       -1686459       .1041642         y                                                                                                                                                                                                                                                                                                     | lnrulc      | .1856409  | .1995586  | 0.93     | 0.352     | 2054868   | .5767685  |
| <pre>year1996   .0760551 .0494082 1.54 0.1240207832 .1728933 year1997   .0591605 .049998 1.18 0.2370388338 .1571549 year1998   .0462499 .0507809 0.91 0.3620532788 .1457785 year1999   .0135529 .0520703 0.26 0.795088503 .1156089 year2000  0219144 .0518891 -0.42 0.6731236153 .0797864 year2001  0164564 .0531536 -0.31 0.7571206355 .0877227 year2002  0456664 .0561344 -0.81 0.4161556878 .0643549 year2003  0634069 .0581957 -1.09 0.2761774684 .0506547 year2005  0685413 .0638965 -1.07 0.2831937761 .0566934 year2006  0917173 .0667693 -1.37 0.1702225828 .0391482 year2007  0749394 .0686163 -1.09 0.2752094249 .0595461 year2008  0322409 .0695957 -0.46 0.6431866459 .1041642 year2009   .0145622 .0705825 0.21 0.837 -1.237769 .1529013 year2010  0327808 .0722351 -0.45 0.650174359 .1087973 TVendogenous  </pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | serv        | .0086736  | .0039228  | 2.21     | 0.027     | .0009851  | .0163622  |
| <pre>year1997   .0591605 .049998 1.18 0.2370388338 .1571549 year1998   .0462499 .0507809 0.91 0.3620532788 .1457785 year1999   .0135529 .052703 0.26 0.795088503 .1156089 year2000  0219144 .0518891 -0.42 0.6731236153 .0797864 year2001  0164564 .0531536 -0.31 0.7571206355 .0877227 year2002  0636664 .0561344 -0.81 0.4161556878 .0643549 year2003  0634069 .0581957 -1.09 0.2761774684 .0506547 year2005  0685413 .0638965 -1.07 0.2831937761 .0566934 year2006  0917173 .0667693 -1.37 0.1702225828 .0391482 year2006  0917173 .0667693 -1.37 0.1702225828 .0391482 year2008  0322409 .0685957 -0.46 0.6431686459 .1041642 year2009   .0145622 .0705825 0.21 0.8371237769 .1529013 year2010  0327808 .0722351 -0.45 0.650174359 .1087973 'Vendogenous  </pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | year1996    | .0760551  | .0494082  | 1.54     | 0.124     | 0207832   | .1728933  |
| year1998   .0462499 .0507809 0.91 0.3620532788 .1457785<br>year2000   .0135529 .0520703 0.26 0.795088503 .1156089<br>year2001   .0164564 .0518391 -0.42 0.6731236153 .0797864<br>year2002   .0456664 .0561344 -0.81 0.4161556878 .0643549<br>year2003   .0634069 .0581957 -1.09 0.2761774684 .0506547<br>year2004   .0376252 .0605847 -0.62 0.535156369 .0811187<br>year2005   .0685413 .0638965 -1.07 0.2831937761 .0566934<br>year2006   .0917173 .0667693 -1.37 0.1702225828 .0391482<br>year2008   .0322409 .0695957 -0.46 0.4631686459 .1041642<br>year2009   .0145622 .075825 0.21 0.8371237769 .1529013<br>year2010   .0327808 .0722351 -0.45 0.650174359 .1087973<br>Wendogenous  <br>avyrs   .3637942 .202713 1.79 0.0730335159 .7611043<br>sqravyrs   .0000431 .000342 0.13 0.9000006272 .0007133<br>transdummy   .9700191 .3978296 2.44 0.015 .1902874 1.749751<br>Plendogenous  <br>cskills   .7038131 1.198758 0.59 0.557 -1.64571 3.053337<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | year1997    | .0591605  | .049998   | 1.18     | 0.237     | 0388338   | .1571549  |
| year1999   .0135529 .0520703 0.26 0.795088503 .1156089<br>year2000  0219144 .0518891 -0.42 0.6731236153 .0797864<br>year2001  0164564 .0531536 -0.31 0.7571206355 .0877227<br>year2002  0456664 .0561344 -0.81 0.4161556878 .0643549<br>year2003  0634069 .0581957 -1.09 0.2761774684 .0506547<br>year2004  0376252 .0605847 -0.62 0.535156369 .0811187<br>year2005  0685413 .0638965 -1.07 0.2831937761 .0566934<br>year2007  074394 .0686163 -1.09 0.2752094249 .0595461<br>year2008  0322409 .0695957 -0.46 0.6431686459 .1041642<br>year2010  0327808 .0722351 -0.45 0.650174359 .1529013<br>year2010  0327808 .0722351 -0.45 0.650174359 .1529013<br>year2010  0327808 .0722351 -0.45 0.650174359 .1087973<br>'Vendogenous  <br>avyrs   .3637942 .202713 1.79 0.0730335159 .7611043<br>sqravyrs   .3637942 .202713 1.79 0.0730335159 .7611043<br>sqravyrs   .0214986 .0093838 -2.29 0.02203989040031067<br>'Iexogenous  <br>atransdummy   .9700191 .3978296 2.44 0.015 .1902874 1.749751<br>'Iendogenous  <br>cskills   .7038131 1.198758 0.59 0.557 -1.64571 3.053337<br>cons   -17.26372 6.548996 -2.64 0.008 -30.09951 -4.427918<br>sigma_e   .39510006<br>rho   .9800412 (fraction of variance due to u_i)                                                                                                                                                                                                              | year1998    | .0462499  | .0507809  | 0.91     | 0.362     | 0532788   | .1457785  |
| year2000  0219144 .0518891 -0.42 0.6731236153 .0797864<br>year2001  0164564 .0531536 -0.31 0.7571206355 .0877227<br>year2002  0456664 .0561344 -0.81 0.4161556878 .0643549<br>year2003  0634069 .0581957 -1.09 0.2761774684 .0506547<br>year2004  0376252 .0605847 -0.62 0.535156369 .0811187<br>year2005  0685413 .0638965 -1.07 0.2831937761 .0566934<br>year2006  0917173 .0667693 -1.37 0.1702225828 .0391482<br>year2007  0749394 .0685163 -1.09 0.2752094249 .0595461<br>year2008  0322409 .0695957 -0.46 0.6431686459 .1041642<br>year2009   .0145622 .0705825 0.21 0.8371237769 .1529013<br>year2010  0327808 .0722351 -0.45 0.650174359 .1087973<br>'Vendogenous  <br>avyrs   .3637942 .202713 1.79 0.0730335159 .7611043<br>sqravyrs  0214986 .0093838 -2.29 0.02203989040031067<br>'Iexogenous  <br>dist   .0000431 .000342 0.13 0.9000006272 .0007133<br>transdummy   .9700191 .3978296 2.44 0.015 .1902874 1.749751<br>'Iendogenous  <br>cskills   .7038131 1.198758 0.59 0.557 -1.64571 3.053337<br>cons   -17.26372 6.548996 -2.64 0.008 -30.09951 -4.427918<br>sigma_u   2.7686119<br>sigma_e   .39510006<br>rho   .9800412 (fraction of variance due to u_i)                                                                                                                                                                                                                                                    | year1999    | .0135529  | .0520703  | 0.26     | 0.795     | 088503    | .1156089  |
| year2001  0164564 .0531536 -0.31 0.7571206355 .0877227<br>year2002  0456664 .0561344 -0.81 0.4161556878 .0643549<br>year2003  0634069 .0581957 -1.09 0.2761774684 .0506547<br>year2004  0376252 .0605847 -0.62 0.535156369 .0811187<br>year2005  0685413 .0638965 -1.07 0.2831937761 .0566934<br>year2006  0917173 .0667693 -1.37 0.1702225828 .0391482<br>year2007  0749394 .0686163 -1.09 0.2752094249 .0595461<br>year2008  0322409 .0695957 -0.46 0.6431686459 .1041642<br>year2010  03227808 .0722351 -0.45 0.650174359 .1087973<br>Vendogenous  <br>avyrs   .3637942 .202713 1.79 0.0730335159 .7611043<br>sqravyrs   .3637942 .202713 1.79 0.0730335159 .7611043<br>sqravyrs   .000431 .000342 0.13 0.9000006272 .0007133<br>transdummy   .9700191 .3978296 2.44 0.015 .1902874 1.749751<br>Vendogenous  <br>cskills   .7038131 1.198758 0.59 0.557 -1.64571 3.053337<br><br>sigma_u   2.7686119<br>sigma_e   .39510006<br>rho   .9800412 (fraction of variance due to u_i)                                                                                                                                                                                                                                                                                                                                                                                                                                               | year2000    | 0219144   | .0518891  | -0.42    | 0.673     | 1236153   | .0797864  |
| year2002  0456664 .0561344 -0.81 0.4161556878 .0643549<br>year2003  0634069 .0581957 -1.09 0.2761774684 .0506547<br>year2004  0376252 .0605847 -0.62 0.535156369 .0811187<br>year2005  0685413 .0638965 -1.07 0.2831937761 .0566934<br>year2006  0917173 .0667693 -1.37 0.1702225828 .0391482<br>year2007  0743394 .0686163 -1.09 0.2752094249 .0595461<br>year2008  0322409 .0695957 -0.46 0.6431686459 .1041642<br>year2009   .0145622 .0705825 0.21 0.8371237769 .1529013<br>year2010  0327808 .0722351 -0.45 0.650174359 .1087973<br>'Vendogenous  <br>avyrs   .3637942 .202713 1.79 0.0730335159 .7611043<br>sqravyrs   .000431 .000342 0.13 0.9000006272 .0007133<br>transdummy   .9700191 .3978296 2.44 0.015 .1902874 1.749751<br>'Iendogenous  <br>cskills   .7038131 1.198758 0.59 0.557 -1.64571 3.053337<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | year2001    | 0164564   | .0531536  | -0.31    | 0.757     | 1206355   | .0877227  |
| year2003  0634069 .0581957 -1.09 0.2761774684 .0506547<br>year2004  0376252 .0605847 -0.62 0.535156369 .0811187<br>year2005  0685413 .0638965 -1.07 0.2831937761 .0566934<br>year2006  0917173 .0667693 -1.37 0.1702225828 .0391482<br>year2007  0749394 .0686163 -1.09 0.2752094249 .0595461<br>year2008  0322409 .0695957 -0.46 0.6431686459 .1041642<br>year2009   .0145622 .0705825 0.21 0.8371237769 .1529013<br>year2010  0327808 .0722351 -0.45 0.650174359 .1087973<br>Wendogenous  <br>avyrs   .3637942 .202713 1.79 0.0730335159 .7611043<br>sqravyrs  0214986 .0093838 -2.29 0.02203989040031067<br>Plexogenous  <br>dist   .0000431 .000342 0.13 0.9000006272 .0007133<br>transdummy   .9700191 .3978296 2.44 0.015 .1902874 1.749751<br>Plendogenous  <br>cskills   .7038131 1.198758 0.59 0.557 -1.64571 3.053337<br>cons   -17.26372 6.548996 -2.64 0.008 -30.09951 -4.427918<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | year2002    | 0456664   | .0561344  | -0.81    | 0.416     | 1556878   | .0643549  |
| year2004  0376252 .0605847 -0.62 0.535156369 .0811187<br>year2005  0685413 .0638965 -1.07 0.2831937761 .0566934<br>year2006  0917173 .0667693 -1.37 0.1702225828 .0391482<br>year2007  0749394 .0686163 -1.09 0.2752094249 .0595461<br>year2008  0322409 .0695957 -0.46 0.6431686459 .1041642<br>year2010  0327808 .0722351 -0.45 0.650174359 .1087973<br>Vendogenous  <br>avyrs   .3637942 .202713 1.79 0.0730335159 .7611043<br>sqravyrs  0214986 .0093838 -2.29 0.02203989040031067<br>Plexogenous  <br>dist   .0000431 .000342 0.13 0.9000006272 .0007133<br>transdummy   .9700191 .3978296 2.44 0.015 .1902874 1.749751<br>Tendogenous  <br>cskills   .7038131 1.198758 0.59 0.557 -1.64571 3.053337<br>jendogenous  <br>aigma_u   2.7686119<br>sigma_e   .39510006<br>rho   .9800412 (fraction of variance due to u_i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | year2003    | 0634069   | .0581957  | -1.09    | 0.276     | 1774684   | .0506547  |
| <pre>year2005  0685413 .0638965 -1.07 0.2831937761 .0566934<br/>year2006  0917173 .0667693 -1.37 0.1702225828 .0391482<br/>year2007  0749394 .0686163 -1.09 0.2752094249 .0595461<br/>year2008  0322409 .0695957 -0.46 0.6431686459 .1041642<br/>year2009   .0145622 .0705825 0.21 0.8371237769 .1529013<br/>year2010  0327808 .0722351 -0.45 0.650174359 .1087973<br/>Wendogenous  <br/>avyrs   .3637942 .202713 1.79 0.0730335159 .7611043<br/>sqravyrs  0214986 .0093838 -2.29 0.02203989040031067<br/>Plexogenous  <br/>dist   .0000431 .000342 0.13 0.9000006272 .0007133<br/>transdummy   .9700191 .3978296 2.44 0.015 .1902874 1.749751<br/>Plendogenous  <br/>cskills   .7038131 1.198758 0.59 0.557 -1.64571 3.053337<br/>cons   -17.26372 6.548996 -2.64 0.008 -30.09951 -4.427918<br/>sigma_u   2.7686119<br/>sigma_e   .39510006<br/>rho   .9800412 (fraction of variance due to u_i)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | year2004    | 0376252   | .0605847  | -0.62    | 0.535     | 156369    | .0811187  |
| <pre>year2006  0917173 .0667693 -1.37 0.1702225828 .0391482<br/>year2007  0749394 .0686163 -1.09 0.2752094249 .0595461<br/>year2008  0322409 .0695957 -0.46 0.6431686459 .1041642<br/>year2009   .0145622 .0705825 0.21 0.8371237769 .1529013<br/>year2010  0327808 .0722351 -0.45 0.650174359 .1087973<br/>Vendogenous  <br/>avyrs   .3637942 .202713 1.79 0.0730335159 .7611043<br/>sqravyrs  0214986 .0093838 -2.29 0.02203989040031067<br/>Plexogenous  <br/>dist   .0000431 .000342 0.13 0.9000006272 .0007133<br/>transdummy   .9700191 .3978296 2.44 0.015 .1902874 1.749751<br/>Plendogenous  <br/>cskills   .7038131 1.198758 0.59 0.557 -1.64571 3.053337<br/></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | year2005    | 0685413   | .0638965  | -1.07    | 0.283     | 1937761   | .0566934  |
| year2007  0749394 .0686163 -1.09 0.2752094249 .0595461<br>year2008  0322409 .0695957 -0.46 0.6431686459 .1041642<br>year2009   .0145622 .0705825 0.21 0.8371237769 .1529013<br>year2010  0327808 .0722351 -0.45 0.650174359 .1087973<br>EVendogenous  <br>avyrs   .3637942 .202713 1.79 0.0730335159 .7611043<br>sqravyrs  0214986 .0093838 -2.29 0.02203989040031067<br>Elexogenous  <br>dist   .0000431 .000342 0.13 0.9000006272 .0007133<br>transdummy   .9700191 .3978296 2.44 0.015 .1902874 1.749751<br>Elendogenous  <br>cskills   .7038131 1.198758 0.59 0.557 -1.64571 3.053337<br>-<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | year2006    | 0917173   | .0667693  | -1.37    | 0.170     | 2225828   | .0391482  |
| <pre>year2008  0322409 .0695957 -0.46 0.6431686459 .1041642<br/>year2009   .0145622 .0705825 0.21 0.8371237769 .1529013<br/>year2010  0327808 .0722351 -0.45 0.650174359 .1087973<br/>Wendogenous  <br/>avyrs   .3637942 .202713 1.79 0.0730335159 .7611043<br/>sqravyrs  0214986 .0093838 -2.29 0.02203989040031067<br/>Plexogenous  <br/>dist   .0000431 .000342 0.13 0.9000006272 .0007133<br/>transdummy   .9700191 .3978296 2.44 0.015 .1902874 1.749751<br/>Plendogenous  <br/>cskills   .7038131 1.198758 0.59 0.557 -1.64571 3.053337<br/></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | year2007    | 0749394   | .0686163  | -1.09    | 0.275     | 2094249   | .0595461  |
| <pre>year2009   .0145622 .0705825 0.21 0.8371237769 .1529013 year2010  0327808 .0722351 -0.45 0.650174359 .1087973 'Vendogenous  </pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | year2008    | 0322409   | .0695957  | -0.46    | 0.643     | 1686459   | .1041642  |
| year2010  0327808 .0722351 -0.45 0.650174359 .1087973<br>Vendogenous  <br>avyrs   .3637942 .202713 1.79 0.0730335159 .7611043<br>sqravyrs  0214986 .0093838 -2.29 0.02203989040031067<br>Plexogenous  <br>dist   .0000431 .000342 0.13 0.9000006272 .0007133<br>transdummy   .9700191 .3978296 2.44 0.015 .1902874 1.749751<br>Plendogenous  <br>cskills   .7038131 1.198758 0.59 0.557 -1.64571 3.053337<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | year2009    | .0145622  | .0705825  | 0.21     | 0.837     | 1237769   | .1529013  |
| Wendogenous         avyrs   .3637942       .202713       1.79       0.073      0335159       .7611043         sqravyrs  0214986       .0093838       -2.29       0.022      0398904      0031067         Prexogenous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | year2010    | 0327808   | .0722351  | -0.45    | 0.650     | 174359    | .1087973  |
| avyrs   .3637942 .202713 1.79 0.0730335159 .7611043<br>sqravyrs  0214986 .0093838 -2.29 0.02203989040031067<br>Plexogenous  <br>dist   .0000431 .000342 0.13 0.9000006272 .0007133<br>transdummy   .9700191 .3978296 2.44 0.015 .1902874 1.749751<br>Plendogenous  <br>cskills   .7038131 1.198758 0.59 0.557 -1.64571 3.053337<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Vendogenous |           |           |          |           |           |           |
| sqravyrs  0214986 .0093838 -2.29 0.02203989040031067<br>Plexogenous  <br>dist   .0000431 .000342 0.13 0.9000006272 .0007133<br>transdummy   .9700191 .3978296 2.44 0.015 .1902874 1.749751<br>Plendogenous  <br>cskills   .7038131 1.198758 0.59 0.557 -1.64571 3.053337<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | avyrs       | .3637942  | .202713   | 1.79     | 0.073     | 0335159   | .7611043  |
| Plexogenous                 dist       .0000431       .000342       0.13       0.900      0006272       .0007133         transdummy       .9700191       .3978296       2.44       0.015       .1902874       1.749751         Plendogenous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | sqravyrs    | 0214986   | .0093838  | -2.29    | 0.022     | 0398904   | 0031067   |
| dist   .0000431 .000342 0.13 0.9000006272 .0007133<br>transdummy   .9700191 .3978296 2.44 0.015 .1902874 1.749751<br>Plendogenous  <br>cskills   .7038131 1.198758 0.59 0.557 -1.64571 3.053337<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Iexogenous  |           |           |          |           |           |           |
| transdummy   .9700191 .3978296 2.44 0.015 .1902874 1.749751<br>Plendogenous  <br>cskills   .7038131 1.198758 0.59 0.557 -1.64571 3.053337<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | dist        | .0000431  | .000342   | 0.13     | 0.900     | 0006272   | .0007133  |
| <pre>Plendogenous  <br/>cskills   .7038131 1.198758 0.59 0.557 -1.64571 3.053337<br/></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | transdummy  | .9700191  | .3978296  | 2.44     | 0.015     | .1902874  | 1.749751  |
| cskills   .7038131 1.198758 0.59 0.557 -1.64571 3.053337<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Iendogenous |           |           |          |           |           |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | cskills     | .7038131  | 1.198758  | 0.59     | 0.557     | -1.64571  | 3.053337  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |           |           |          |           |           |           |
| sigma_u   2.7686119<br>sigma_e   .39510006<br>rho   .9800412 (fraction of variance due to u_i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _cons       | -17.26372 | 6.548996  | -2.64    | 0.008     | -30.09951 | -4.427918 |
| sigma_e   .39510006<br>rho   .9800412 (fraction of variance due to u_i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | sigma u     | 2.7686119 |           |          |           |           |           |
| rho   .9800412 (fraction of variance due to u_i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | sigma e     | .39510006 |           |          |           |           |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rho         | .9800412  | (fraction | of varia | nce due t | coui)     |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |           |           |          |           |           |           |

### Table A5.5.5 Model 2 - IV estimated results (medium-high and high tech)

. xtivreg2 lnrxamhtech cskills lngdpc lnpop unem lnecofree serv lnrulc dist transdummy year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010 (avyrs sqravyrs lnpatappr lnfdi = avyrslag1 sqravyrslag1 lnpatapprlag1 lnfdilag1), fe endog (avyrs sqravyrs lnpatappr lnfdi) small robust bw(3) Warning - collinearities detected Vars dropped: cskills dist transdummy year2009 FIXED EFFECTS ESTIMATION \_\_\_\_\_ 3 12.8 Number of groups = 270 Obs per group: min = avg = max = IV (2SLS) estimation \_\_\_\_\_ Estimates efficient for homoskedasticity only Statistics robust to heteroskedasticity and autocorrelation kernel=Bartlett; bandwidth=3 time variable (t): year group variable (i): cn\_ind Number of obs = 3450 F(24, 3156) = 2.82

| Total (centered<br>Total (uncented<br>Residual SS                      | d) SS =<br>red) SS =<br>=                                            | 474.7834512<br>474.7834512<br>442.3435879                                                          |                                                                           |                                                                   | Prob > F<br>Centered R2<br>Uncentered R2<br>Root MSE                                                                                        | = 0.0000<br>= 0.0683<br>= 0.0683<br>= .3744           |
|------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
|                                                                        |                                                                      | Robust                                                                                             |                                                                           |                                                                   |                                                                                                                                             |                                                       |
| lnrxamhtech                                                            | Coef.                                                                | Std. Err.                                                                                          | t<br>                                                                     | P> t                                                              | [95% Conf.                                                                                                                                  | Interval]                                             |
| avyrs                                                                  | .6159592                                                             | .3514508                                                                                           | 1.75                                                                      | 0.080                                                             | 073136                                                                                                                                      | 1.305054                                              |
| sqravyrs                                                               | 0320945                                                              | .0161425                                                                                           | -1.99                                                                     | 0.047                                                             | 0637454                                                                                                                                     | 0004436                                               |
| lnpatappr                                                              | 1110618                                                              | .067202                                                                                            | -1.65                                                                     | 0.099                                                             | 2428258                                                                                                                                     | .0207021                                              |
| lnfdi                                                                  | .0056667                                                             | .0095171                                                                                           | 0.60                                                                      | 0.552                                                             | 0129936                                                                                                                                     | .024327                                               |
| lngdpc                                                                 | .6206497                                                             | .180374                                                                                            | 3.44                                                                      | 0.001                                                             | .2669875                                                                                                                                    | .9743119                                              |
| lnpop                                                                  | -1.82075                                                             | .567507                                                                                            | -3.21                                                                     | 0.001                                                             | -2.93347                                                                                                                                    | 70803                                                 |
| unem                                                                   | .0000993                                                             | .0012134                                                                                           | 0.08                                                                      | 0.935                                                             | 0022799                                                                                                                                     | .0024785                                              |
| lnecofree                                                              | 0060476                                                              | .2710259                                                                                           | -0.02                                                                     | 0.982                                                             | 5374524                                                                                                                                     | .5253572                                              |
| serv                                                                   | .0091416                                                             | .0081272                                                                                           | 1.12                                                                      | 0.261                                                             | 0067935                                                                                                                                     | .0250768                                              |
| lnrulc                                                                 | .2765848                                                             | .2923818                                                                                           | 0.95                                                                      | 0.344                                                             | 2966928                                                                                                                                     | .8498624                                              |
| year1996                                                               | 0313309                                                              | .0835702                                                                                           | -0.37                                                                     | 0.708                                                             | 1951883                                                                                                                                     | .1325266                                              |
| vear1997                                                               | 0404453                                                              | .0752436                                                                                           | -0.54                                                                     | 0.591                                                             | 1879767                                                                                                                                     | .1070861                                              |
| vear1998                                                               | 0596778                                                              | .0692807                                                                                           | -0.86                                                                     | 0.389                                                             | 1955176                                                                                                                                     | .076162                                               |
| vear1999                                                               | 0932591                                                              | .0659026                                                                                           | -1.42                                                                     | 0.157                                                             | 2224753                                                                                                                                     | .0359571                                              |
| vear2000                                                               | 1108519                                                              | .059109                                                                                            | -1.88                                                                     | 0.061                                                             | 2267477                                                                                                                                     | .005044                                               |
| vear2001                                                               | 0943692                                                              | .0526779                                                                                           | -1.79                                                                     | 0.073                                                             | 1976556                                                                                                                                     | .0089172                                              |
| vear2002                                                               | 1127343                                                              | .04722                                                                                             | -2.39                                                                     | 0.017                                                             | 2053194                                                                                                                                     | 0201492                                               |
| vear2003                                                               | 1027388                                                              | .0462073                                                                                           | -2.22                                                                     | 0.026                                                             | 1933381                                                                                                                                     | 0121395                                               |
| vear2004                                                               | 0906912                                                              | .0437397                                                                                           | -2.07                                                                     | 0.038                                                             | 1764524                                                                                                                                     | 0049301                                               |
| year2005                                                               | - 1080765                                                            | 0427354                                                                                            | -2 53                                                                     | 0 011                                                             | - 1918684                                                                                                                                   | - 0242846                                             |
| year2006                                                               | - 1040941                                                            | 0442674                                                                                            | -2 35                                                                     | 0 019                                                             | - 1908898                                                                                                                                   | - 0172984                                             |
| year2007                                                               | - 0744521                                                            | 0421562                                                                                            | -1 77                                                                     | 0.017                                                             | - 1571083                                                                                                                                   | 0082042                                               |
| year2008                                                               | - 0308625                                                            | 0319414                                                                                            | -0 97                                                                     | 0.077                                                             | - 0934906                                                                                                                                   | 0317656                                               |
| year2010                                                               | - 0336965                                                            | 030762                                                                                             | -1 10                                                                     | 0.273                                                             | - 0940122                                                                                                                                   | 0266191                                               |
| Underidentifica<br><br>Weak identifica<br>Stock-Yogo weal              | ation test (I<br>ation test (<br>(1<br>k ID test cr:                 | Kleibergen-Pa<br>Cragg-Donald<br>Kleibergen-Pa<br>itical values                                    | Wald F stap rk Wa                                                         | 1 statis<br>Chi<br>statisti<br>ald F st                           | stic):<br>i-sq(1) P-val =<br>ic):<br>tatistic):<br><not< td=""><td>141.983<br/>0.0000<br/>693.024<br/>153.911<br/>available&gt;</td></not<> | 141.983<br>0.0000<br>693.024<br>153.911<br>available> |
| Hansen J statis                                                        | stic (overide                                                        | entification                                                                                       | test of                                                                   | all ins                                                           | struments):                                                                                                                                 | 0.000                                                 |
| -endog- option                                                         | :                                                                    |                                                                                                    |                                                                           | (equa                                                             | ation exactly i                                                                                                                             | dentified)                                            |
| Endogeneity te:                                                        | st of endogen                                                        | nous regresso                                                                                      | ors:                                                                      | Chi                                                               | i-sq(4) P-val =                                                                                                                             | 4.680<br>0.3217                                       |
| Regressors test                                                        | ted: avyr:                                                           | s sqravyrs lr                                                                                      | npatappr                                                                  | lnfdi<br>                                                         |                                                                                                                                             |                                                       |
| Instrumented:<br>Included instru<br>Excluded instru<br>Dropped colling | avyrs<br>uments: lngdy<br>year<br>year<br>uments: avyrs<br>ear: cski | s sqravyrs lr<br>pc lnpop unem<br>1998 year1999<br>2004 year2005<br>slag1 sqravyr<br>11s dist trar | npatappr<br>n lnecofr<br>) year200<br>5 year200<br>cslag1 lr<br>nsdummy y | lnfdi<br>cee serv<br>00 year2<br>06 year2<br>1patappi<br>vear2009 | y lnrulc year19<br>2001 year2002 y<br>2007 year2008 y<br>rlag1 lnfdilag1<br>9                                                               | 96 year1997<br>ear2003<br>ear2010                     |

# Table A5.5.5.1 Model 2 - IV estimated results –ETEs (medium-high and high tech)

. xtivreg2 lnrxamhtech cskills lngdpc lnpop unem lnecofree serv lnrulc dist transdummy transindn year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010 (avyrs sqravyrs

| lnpatappr lnfd:<br>endog (avyrs so<br>Warning - coll:<br>Vars dropped:               | i = avyrslag1<br>qravyrs lnpat<br>inearities de                                 | sqravyrslag<br>appr lnfdi)<br>etected        | 1 lnpata<br>small ro  | pprlag:<br>bust b | l lnfdilag1) if<br>N(3)                                                                          | transdummy==1, f                                                |
|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------|-----------------------|-------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| FIXED EFFECTS I                                                                      | ESTIMATION                                                                      | cransdummy                                   | year2003              | ,                 |                                                                                                  |                                                                 |
|                                                                                      |                                                                                 |                                              |                       |                   |                                                                                                  |                                                                 |
| Number of group                                                                      | ps = 10                                                                         | 0                                            |                       | Obs pe            | er group: min =<br>avg =<br>max =                                                                | 7<br>13.3<br>15                                                 |
| IV (2SLS) estir                                                                      | mation                                                                          |                                              |                       |                   |                                                                                                  |                                                                 |
| Estimates effic<br>Statistics robu<br>kernel=Bartle<br>time variable<br>group variab | cient for hor<br>ust to hetero<br>ett; bandwidt<br>e (t): year<br>le (i): cn_ir | noskedasticit<br>oskedasticity<br>ch=3<br>nd | y only<br>y and aut   | ocorre            | lation                                                                                           |                                                                 |
| Total (centered<br>Total (uncente:<br>Residual SS                                    | d) SS =<br>red) SS =<br>=                                                       | 356.6827202<br>356.6827202<br>311.501085     |                       |                   | Number of obs =<br>F(25, 1205) =<br>Prob > F =<br>Centered R2 =<br>Uncentered R2 =<br>Root MSE = | = 1330<br>= 3.31<br>= 0.0000<br>= 0.1267<br>= 0.1267<br>= .5084 |
|                                                                                      |                                                                                 | Robust                                       |                       |                   |                                                                                                  |                                                                 |
| lnrxamhtech                                                                          | Coef.                                                                           | Std. Err.                                    | t                     | P> t              | [95% Conf.                                                                                       | Interval]                                                       |
| avyrs                                                                                | 1.184516                                                                        | 1.276105                                     | 0.93                  | 0.353             | -1.319119                                                                                        | 3.688151                                                        |
| sqravyrs                                                                             | 077475                                                                          | .0538763                                     | -1.44                 | 0.151             | 1831768                                                                                          | .0282267                                                        |
| lnpatappr                                                                            | 4264457                                                                         | .2162005                                     | -1.97                 | 0.049             | 8506169                                                                                          | 0022745                                                         |
| Infdi                                                                                | .0255854                                                                        | .1540183                                     | 0.1/                  | 0.868             | 2765883                                                                                          | .3277592                                                        |
| Ingapc                                                                               | .211/61/                                                                        | .4666915                                     | 0.45                  | 0.650             | /038564                                                                                          | 1.12/38                                                         |
| Inpop                                                                                | -2.807272                                                                       | 4.094409                                     | -0.69                 | 0.493             | -10.84023                                                                                        | 5.22569                                                         |
| unem                                                                                 | 0035036                                                                         | .0025682                                     | -1.36                 | 0.173             | 0085422                                                                                          | .0015351                                                        |
| lnecofree                                                                            | .7922318                                                                        | .4972095                                     | 1.59                  | 0.111             | 1832608                                                                                          | 1.767724                                                        |
| serv                                                                                 | 0091833                                                                         | .0151252                                     | -0.61                 | 0.544             | 0388581                                                                                          | .0204914                                                        |
| Inrulc                                                                               | 1.18846/                                                                        | .464/462                                     | 2.56                  | 0.011             | .2/6665                                                                                          | 2.100268                                                        |
| transindn                                                                            | -1.564//4                                                                       | .8/6834                                      | -1.78                 | 0.075             | -3.285065                                                                                        | .1555168                                                        |
| year1996                                                                             | -1.0/3142                                                                       | .3927075                                     | -2.73                 | 0.006             | -1.843608                                                                                        | 3026/52                                                         |
| year1997                                                                             | 9/82/8                                                                          | .3338388                                     | -2.93                 | 0.003             | -1.633248                                                                                        | 3233081                                                         |
| year1998                                                                             | 95/4495                                                                         | .3041693                                     | -3.15                 | 0.002             | -1.55421                                                                                         | 3606893                                                         |
| year1999                                                                             | 883684/                                                                         | .2/42248                                     | -3.22                 | 0.001             | -1.421696                                                                                        | 3456/35                                                         |
| year2000                                                                             | 8826555                                                                         | .2421566                                     | -3.64                 | 0.000             | -1.35//51                                                                                        | 40/5601                                                         |
| year2001                                                                             | /622384                                                                         | .210336                                      | -3.62                 | 0.000             | -1.1/4904                                                                                        | 3495/29                                                         |
| year2002                                                                             | 0102/3                                                                          | .1010144                                     | -3.81<br>2 75         | 0.000             | 933/421                                                                                          | 2900030                                                         |
| year2003                                                                             | 5850459                                                                         | .1558562                                     | -3.75                 | 0.000             | 8908254                                                                                          | 2/92663                                                         |
| year2004                                                                             | 4604133                                                                         | .1310225                                     | -3.51                 | 0.000             | /1/4/08                                                                                          | 2033558                                                         |
| year2005                                                                             | 4064333                                                                         | .1238253                                     | -3.28                 | 0.001             | 6493/04                                                                                          | 1034961                                                         |
| year2006                                                                             | 3199922                                                                         | .1122/59                                     | -2.85                 | 0.004             | 5402/01                                                                                          | 099/142                                                         |
| year200/                                                                             | 1809/83                                                                         | .10550/4                                     | -1.12                 | 0.08/             | 30/9/69                                                                                          | .UZOUZU4                                                        |
| year2008  <br>year2010                                                               | 0795048<br>.065579                                                              | .078614                                      | -0.88<br>0.83         | 0.380             | 0886566                                                                                          | .0981364<br>.2198145                                            |
| Underidentifica                                                                      | ation test (P                                                                   | Kleibergen-Pa                                | ap rk LM              | I stati<br>Ch     | stic):<br>i-sq(1) P-val =                                                                        | 130.883<br>0.0000                                               |
| Weak identifica                                                                      | ation test (C<br>(H                                                             | Cragg-Donald<br>Cleibergen-Pa                | Wald F s<br>aap rk Wa | tatist<br>ld F s  | ic):<br>tatistic):                                                                               | 127.527<br>88.593                                               |

```
_____
Hansen J statistic (overidentification test of all instruments): 0.000
                                    (equation exactly identified)
-endog- option:
Endogeneity test of endogenous regressors:
                                                     3.196
                                     Chi-sq(4) P-val = 0.5256
Regressors tested: avyrs sqravyrs lnpatappr lnfdi
_____
                                      Instrumented: avyrs sqravyrs lnpatappr lnfdi
Included instruments: lngdpc lnpop unem lnecofree serv lnrulc transindn year1996
                year1997 year1998 year1999 year2000 year2001 year2002
                year2003 year2004 year2005 year2006 year2007 year2008
                year2010
Excluded instruments: avyrslag1 sgravyrslag1 lnpatapprlag1 lnfdilag1
Dropped collinear: cskills dist transdummy year2009
                                  _____
_____
```

# Table A5.5.5.2 Model 2 - IV estimated results –N-ETEs (medium-high and high tech)

xtivreg2 lnrxamhtech cskills lngdpc lnpop unem lnecofree serv lnrulc dist transdummy transindn year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010 (avyrs sqravyrs lnpatappr lnfdi = avyrslaq1 sqravyrslaq1 lnpatapprlaq1 lnfdilaq1) if transdummy==0, fe endog (avyrs sqravyrs lnpatappr lnfdi) small robust bw(3) Warning - collinearities detected Vars dropped: cskills dist transdummy year2009 FIXED EFFECTS ESTIMATION \_\_\_\_\_ Number of groups = 170 Obs per group: min = avg = 12.5 max = 15 IV (2SLS) estimation Estimates efficient for homoskedasticity only Statistics robust to heteroskedasticity and autocorrelation kernel=Bartlett; bandwidth=3 time variable (t): year group variable (i): cn ind Number of obs = 2120 F(24, 1926) = 0.83Prob > F = 0.7023 Centered R2 = 0.0189 Total (centered) SS = 118.100731 Total (uncentered) SS = 118.100731 Uncentered R2 = 0.0189 = 115.8644161 Residual SS = .2453 Root MSE Robust lnrxamhtech | Coef. Std. Err. t P>|t| [95% Conf. Interval] \_\_\_\_\_+ avyrs |.4303903.32366451.330.184-.2043794sqravyrs |-.0202541.0147481-1.370.170-.0491779lnpatappr |.00581.06899730.080.933-.1295074lnfdi |.011767.00967881.220.224-.007215 1.06516 .0086698 .1411273 lnpatappr | 030749 lngdpc | -.1473983 .3392192 -0.43 0.664 -.8126738 .5178771 lnpop | -1.265435 .5443551 -2.32 0.020 -2.333022 -.1978479 unem | .0000795 .0012682 0.06 0.950 -.0024077 .0025667 lnecofree | -.2872237 .2566781 -1.12 0.263 -.79062 .2161726 serv | .002368 .0071802 0.33 0.742 -.0117138 .0164498

0.19 0.850 lnrulc | .0771994 .4073377 -.7216699 .8760686 year1996 | -.0612756 .0904411 -0.68 0.498 -.2386484 year1997 | -.0445163 .0819084 -0.54 0.587 -.2051547 .1160972 .1161221 year1998 | -.0574464 .0716329 -0.80 0.423 -.1979325 .0830398 year1999 | -.0670378 .0660696 -1.01 0.310 -.1966132 .0625376 year2000 | -.0443333 .0552805 -0.80 0.423 -.1527492 .0640826 year2001 | -.0196898 .0489348 -0.40 0.687 -.1156605 .076281 year2002 | -.0223705 .044885 -0.50 0.618 -.1103988 .0656579 year2003 | -.0075825 .0414177 -0.18 0.855 -.0888108 .0736458 year2004 | .0031439 .0403963 0.08 0.938 -.0760812 .082369 year2005 | -.0181479 .0375506 -0.48 0.629 -.091792 .0554961 -.0754858 year2006 |-.004773.036056-0.130.895-.0754858.0659398year2007 |.0093744.03712330.250.801-.0634318.0821806year2008 |.0139197.03060090.450.649-.0460947.0739341year2010 |-.0216593.0234713-0.920.356-.0676912.0243725 vear2006 | .0659398 \_\_\_\_\_ Underidentification test (Kleibergen-Paap rk LM statistic): 93 323 Chi-sq(1) P-val = 0.0000 \_\_\_\_\_ 270.658 Weak identification test (Cragg-Donald Wald F statistic): (Kleibergen-Paap rk Wald F statistic): 62.370 Stock-Yogo weak ID test critical values: <not available> \_\_\_\_\_ Hansen J statistic (overidentification test of all instruments): 0 000 (equation exactly identified) -endog- option: Endogeneity test of endogenous regressors: 3.867 Chi-sq(4) P-val = 0.4242 Regressors tested: avyrs sqravyrs lnpatappr lnfdi \_\_\_\_\_ Instrumented: avyrs sqravyrs lnpatappr lnfdi Included instruments: lngdpc lnpop unem lnecofree serv lnrulc year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2010 Excluded instruments: avyrslag1 sqravyrslag1 lnpatapprlag1 lnfdilag1 Dropped collinear: cskills dist transdummy year2009 

#### Table A5.5.5.3 Model 2 - IV estimated results (high tech)

xtivreg2 lnrxamhtech cskills lngdpc lnpop unem lnecofree serv lnrulc dist transdummy year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010 (avyrs sqravyrs lnpatappr lnfdi = avyrslag1 sqravyrslag1 lnpatapprlag1 lnfdilag1), fe endog (avyrs sqravyrs lnpatappr lnfdi) small robust bw(3) Warning - collinearities detected Vars dropped: cskills dist transdummy year2009 FIXED EFFECTS ESTIMATION \_\_\_\_\_ 135 Number of groups = Obs per group: min = 3 avg = 12.8 max = 15 IV (2SLS) estimation \_\_\_\_\_ Estimates efficient for homoskedasticity only Statistics robust to heteroskedasticity and autocorrelation kernel=Bartlett; bandwidth=3 time variable (t): year group variable (i): cn ind

| Total (centere<br>Total (uncente<br>Residual SS                     | d) SS =<br>red) SS =<br>=                                               | 367.7232546<br>367.7232546<br>341.9516623                                                         |                                                                           |                                                                   | Winber 01 005 =       1725         F(24, 1566) =       1.74         Prob > F       0.0150         Centered R2       0.0701         Uncentered R2       0.0701         Root MSE       .4673 |   |
|---------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| <br>lnrxamhtech                                                     | Coef.                                                                   | Robust<br>Std. Err.                                                                               | t                                                                         | P> t                                                              | [95% Conf. Interval]                                                                                                                                                                       |   |
| avvrs                                                               | .5613475                                                                | .6042551                                                                                          | 0.93                                                                      | 0.353                                                             | 6238869 1.746582                                                                                                                                                                           |   |
| sgravyrs                                                            | 0321423                                                                 | .0277834                                                                                          | -1.16                                                                     | 0.247                                                             | 0866389 .0223543                                                                                                                                                                           |   |
| lnpatappr                                                           | 2700577                                                                 | .1163328                                                                                          | -2.32                                                                     | 0.020                                                             | 49824210418733                                                                                                                                                                             |   |
| lnfdi                                                               | 0004972                                                                 | .0165979                                                                                          | -0.03                                                                     | 0.976                                                             | 0330536 .0320592                                                                                                                                                                           |   |
| lnadpc                                                              | .9286508                                                                | .3099063                                                                                          | 3.00                                                                      | 0.003                                                             | .3207757 1.536526                                                                                                                                                                          |   |
| lnnon                                                               | - 8562444                                                               | 9074494                                                                                           | -0.94                                                                     | 0 346                                                             | -2 636188 9236995                                                                                                                                                                          |   |
| upop                                                                | 0017244                                                                 | 0021667                                                                                           | 0 80                                                                      | 0 426                                                             | - 0025256 0059744                                                                                                                                                                          |   |
| lnecofree                                                           | 2331856                                                                 | 4764538                                                                                           | 0.00                                                                      | 0.720                                                             | - 7013691 1 16774                                                                                                                                                                          |   |
| eart                                                                | 013672                                                                  | 0144741                                                                                           | 0 94                                                                      | 0 345                                                             | - 0147186 0420627                                                                                                                                                                          |   |
| lprulo !                                                            | .013072<br>52/10071                                                     | 1917990                                                                                           | 1 06                                                                      | 0.243                                                             | - 4456365 1 405401                                                                                                                                                                         |   |
| Infuic                                                              | . JZ400ZI                                                               | 1/50157                                                                                           | 1.00                                                                      | 0.209                                                             | 4450505 1.495401                                                                                                                                                                           |   |
| year1990                                                            | 0014047                                                                 | .1430137                                                                                          | -0.42                                                                     | 0.0/3                                                             | 54/4995 .2245290                                                                                                                                                                           |   |
| year199/                                                            | 0452241                                                                 | .1323431                                                                                          | -0.34                                                                     | 0./33                                                             | 3048124 .2143642                                                                                                                                                                           |   |
| year1998                                                            | 0833105                                                                 | .1221668                                                                                          | -0.68                                                                     | 0.495                                                             | 3229382 .1563171                                                                                                                                                                           |   |
| year1999                                                            | 14/6402                                                                 | .11/8398                                                                                          | -1.25                                                                     | 0.210                                                             | 3787806 .0835002                                                                                                                                                                           |   |
| year2000                                                            | 14/6025                                                                 | .1040251                                                                                          | -1.42                                                                     | 0.156                                                             | 3516456 .0564406                                                                                                                                                                           |   |
| year2001                                                            | 1440819                                                                 | .0919649                                                                                          | -1.57                                                                     | 0.11/                                                             | 3244691 .0363054                                                                                                                                                                           |   |
| year2002                                                            | 162017                                                                  | .0824456                                                                                          | -1.97                                                                     | 0.050                                                             | 32373240003017                                                                                                                                                                             |   |
| year2003                                                            | 1451262                                                                 | .0807204                                                                                          | -1.80                                                                     | 0.072                                                             | 3034577 .0132053                                                                                                                                                                           |   |
| year2004                                                            | 1421972                                                                 | .0760157                                                                                          | -1.87                                                                     | 0.062                                                             | 2913005 .0069061                                                                                                                                                                           |   |
| year2005                                                            | 1715544                                                                 | .0738213                                                                                          | -2.32                                                                     | 0.020                                                             | 31635340267555                                                                                                                                                                             |   |
| year2006                                                            | 1800938                                                                 | .0770602                                                                                          | -2.34                                                                     | 0.020                                                             | 33124580289418                                                                                                                                                                             |   |
| year2007                                                            | 1369672                                                                 | .0736159                                                                                          | -1.86                                                                     | 0.063                                                             | 2813633 .007429                                                                                                                                                                            |   |
| year2008                                                            | 0537049                                                                 | .0562481                                                                                          | -0.95                                                                     | 0.340                                                             | 1640344 .0566246                                                                                                                                                                           |   |
| year2010                                                            | 0599489                                                                 | .055138                                                                                           | -1.09                                                                     | 0.277                                                             | 1681011 .0482033                                                                                                                                                                           |   |
| Underidentific<br>Weak identific                                    | ation test (P<br>ation test (C<br>(P                                    | Cleibergen-Pa<br>Cragg-Donald<br>Cleibergen-Pa                                                    | aap rk LM<br>Wald F s<br>aap rk Wa                                        | 1 statis<br>Ch:<br>statist:<br>ald F st                           | stic): 70.991<br>i-sq(1) P-val = 0.0000<br>ic): 343.876<br>catistic): 76.370                                                                                                               |   |
|                                                                     |                                                                         |                                                                                                   |                                                                           |                                                                   |                                                                                                                                                                                            |   |
| Hansen J stati                                                      | stic (overide                                                           | entification                                                                                      | test of                                                                   | all ins<br>(equa                                                  | struments): 0.000<br>ation exactly identified)                                                                                                                                             |   |
| -endog- option<br>Endogeneity te                                    | :<br>st of endoger                                                      | nous regresso                                                                                     | ors:                                                                      | Ch                                                                | 6.906                                                                                                                                                                                      |   |
| Regressors tes                                                      | ted: avyrs                                                              | sqravyrs li                                                                                       | npatappr                                                                  | lnfdi                                                             |                                                                                                                                                                                            |   |
| Instrumented:<br>Included instr<br>Excluded instr<br>Dropped collin | avyrs<br>uments: lngdr<br>year1<br>year2<br>uments: avyrs<br>ear: cskil | s sqravyrs ln<br>oc lnpop uner<br>998 year1999<br>2004 year2005<br>31ag1 sqravyn<br>11s dist tran | npatappr<br>n lnecofi<br>9 year200<br>5 year200<br>rslag1 ln<br>nsdummy y | lnfdi<br>cee serv<br>00 year2<br>06 year2<br>1patappi<br>2ear2009 | y lnrulc year1996 year199<br>2001 year2002 year2003<br>2007 year2008 year2010<br>clag1 lnfdilag1<br>Ə                                                                                      | 7 |

# Table A5.5.5.3.1 Model 2 - IV estimated results - ETEs (high tech)

xtivreg2 lnrxamhtech cskills lngdpc lnpop unem lnecofree serv lnrulc dist transdummy transindn year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010 (avyrs sqravyrs

| <pre>lnpatappr lnfc<br/>endog (avyrs s<br/>Warning - coll<br/>Vars dropped:</pre>                                                                                                                                                                                                                | di = avyrslag<br>sqravyrs lnpa<br>Linearities d<br>cskills dis                                                                                                                                                                                                                                | 1 sqravyrslag<br>tappr lnfdi)<br>etected<br>t transdummy                                                                                                                                                                                                                                                 | 1 lnpata<br>small ro<br>year1996                                                                                                                                                                                                           | apprlag:<br>bbust bu                                                                                                                                                                                                 | l lnfdilag1) if<br>«(3)                                                                                                                                                                                                                                                                    | transdummy==1,                                                                                                                                                                                                                                                                                        | fe |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| FIXED EFFECTS                                                                                                                                                                                                                                                                                    | ESTIMATION                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                       |    |
| Number of grou                                                                                                                                                                                                                                                                                   | ips =                                                                                                                                                                                                                                                                                         | 50                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                            | Obs pe                                                                                                                                                                                                               | er group: min =<br>avg =<br>max =                                                                                                                                                                                                                                                          | 7<br>13.3<br>15                                                                                                                                                                                                                                                                                       |    |
| IV (2SLS) esti                                                                                                                                                                                                                                                                                   | imation                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                       |    |
| Estimates effi<br>Statistics rok<br>kernel=Bart1<br>time variab1<br>group variak                                                                                                                                                                                                                 | lcient for ho<br>bust to heter<br>lett; bandwid<br>le (t): year<br>ble (i): cn_i                                                                                                                                                                                                              | moskedasticit<br>oskedasticity<br>th=3<br>nd                                                                                                                                                                                                                                                             | y only<br>7 and aut                                                                                                                                                                                                                        | cocorre                                                                                                                                                                                                              | lation                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                       |    |
| Total (centere<br>Total (uncente<br>Residual SS                                                                                                                                                                                                                                                  | ed) SS =<br>ered) SS =<br>=                                                                                                                                                                                                                                                                   | 282.1985173<br>282.1985173<br>228.7997756                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                      | Number of obs =<br>F(25, 590) =<br>Prob > F =<br>Centered R2 =<br>Uncentered R2 =<br>Root MSE =                                                                                                                                                                                            | = 665<br>= 2.96<br>= 0.0000<br>= 0.1892<br>= 0.1892<br>= .6227                                                                                                                                                                                                                                        |    |
| lnrxamhtech                                                                                                                                                                                                                                                                                      | Coef.                                                                                                                                                                                                                                                                                         | Robust<br>Std. Err.                                                                                                                                                                                                                                                                                      | t                                                                                                                                                                                                                                          | P> t                                                                                                                                                                                                                 | [95% Conf.                                                                                                                                                                                                                                                                                 | Interval]                                                                                                                                                                                                                                                                                             |    |
| avyrs<br>sqravyrs<br>lnpatappr<br>lnfdi<br>lngdpc<br>lngdpc<br>lnpop<br>unem<br>lnecofree<br>serv<br>lnrulc<br>transindn<br>year1997<br>year1998<br>year1999<br>year2000<br>year2001<br>year2002<br>year2003<br>year2004<br>year2005<br>year2006<br>year2007<br>year2008<br>year2009<br>year2010 | $\begin{array}{c} 1.795148\\1067643\\9073153\\0018009\\490308\\ .0629572\\0066389\\ 1.225125\\0275081\\ 2.219255\\ -1.21322\\ .14829\\ .1714269\\ .2721834\\ .3215077\\ .5239688\\ .8204322\\ .8764355\\ 1.084319\\ 1.13025\\ 1.309115\\ 1.580336\\ 1.790807\\ 1.87815\\ 1.982936\end{array}$ | 2.221732<br>.0936947<br>.3670101<br>.2673199<br>.7731682<br>7.091814<br>.0044954<br>.8662458<br>.0262343<br>.7701008<br>1.529209<br>.2331958<br>.2746495<br>.3101252<br>.3525748<br>.3868793<br>.4697386<br>.4768753<br>.5230016<br>.5549959<br>.6134261<br>.6502661<br>.6500331<br>.6804121<br>.7172382 | $\begin{array}{c} 0.81 \\ -1.14 \\ -2.47 \\ -0.01 \\ -0.63 \\ 0.01 \\ -1.48 \\ 1.41 \\ -1.05 \\ 2.88 \\ -0.79 \\ 0.64 \\ 0.62 \\ 0.88 \\ 0.91 \\ 1.35 \\ 1.75 \\ 1.84 \\ 2.07 \\ 2.04 \\ 2.13 \\ 2.43 \\ 2.75 \\ 2.76 \\ 2.76 \end{array}$ | 0.419<br>0.255<br>0.014<br>0.995<br>0.526<br>0.993<br>0.140<br>0.158<br>0.295<br>0.004<br>0.428<br>0.525<br>0.533<br>0.380<br>0.362<br>0.176<br>0.081<br>0.067<br>0.039<br>0.042<br>0.033<br>0.015<br>0.006<br>0.006 | $\begin{array}{c} -2.568317\\29078\\ -1.628121\\5268153\\ -2.008805\\ -13.86531\\0154678\\4761757\\079032\\ .7067821\\ -4.216576\\3097049\\3679828\\3369002\\3709467\\2358594\\1021311\\0601442\\ .0571479\\ .0402416\\ .1043505\\ .3032176\\ .5141465\\ .541825\\ .5742853\\ \end{array}$ | 6.158614<br>.0772515<br>1865101<br>.5232135<br>1.028189<br>13.99123<br>.0021901<br>2.926426<br>.0240158<br>3.731727<br>1.790135<br>.6062849<br>.7108366<br>.881267<br>1.013962<br>1.283797<br>1.742995<br>1.813015<br>2.111491<br>2.220258<br>2.51388<br>2.857454<br>3.067467<br>3.214474<br>3.391587 |    |
| Underidentific                                                                                                                                                                                                                                                                                   | cation test (                                                                                                                                                                                                                                                                                 | Kleibergen-Pa                                                                                                                                                                                                                                                                                            | ap rk LN                                                                                                                                                                                                                                   | 1 stati:<br>Ch                                                                                                                                                                                                       | stic):<br>i-sq(1)                                                                                                                                                                                                                                                                          | 65.444<br>0.0000                                                                                                                                                                                                                                                                                      |    |
| Weak identific<br>Stock-Yogo wea                                                                                                                                                                                                                                                                 | cation test (<br>()<br>ak ID test cr                                                                                                                                                                                                                                                          | Cragg-Donald<br>Kleibergen-Pa<br>itical values                                                                                                                                                                                                                                                           | Wald F s<br>ap rk Wa                                                                                                                                                                                                                       | statist:<br>ald F s                                                                                                                                                                                                  | ic):<br>tatistic):<br><not a<="" td=""><td>62.442<br/>43.380<br/>available&gt;</td><td></td></not>                                                                                                                                                                                         | 62.442<br>43.380<br>available>                                                                                                                                                                                                                                                                        |    |

| Hansen J statistic (or | veridentification test of all instruments): 0.0        | 000   |
|------------------------|--------------------------------------------------------|-------|
|                        | (equation exactly identified                           | ed)   |
| -endog- option:        |                                                        |       |
| Endogeneity test of e  | ndogenous regressors: 3.0                              | 663   |
| 2                      | Chi-sq(4) P-val = 0.45                                 | 535   |
| Regressors tested:     | avyrs sqravyrs lnpatappr lnfdi                         |       |
|                        |                                                        |       |
| Instrumented:          | avyrs sgravyrs lnpatappr lnfdi                         |       |
| Included instruments:  | lngdpc lnpop unem lnecofree serv lnrulc transindn veau | r1997 |
|                        | vear1998 vear1999 vear2000 vear2001 vear2002 vear2003  |       |
|                        | year2004 year2005 year2006 year2007 year2008 year2009  |       |
|                        | year2004 year2005 year2006 year2007 year2006 year2005  |       |
|                        | year2010                                               |       |
| Excluded instruments:  | avyrslagl sqravyrslagl Inpatapprlagl Infdilagl         |       |
| Dropped collinear:     | cskills dist transdummy year1996                       |       |
|                        |                                                        |       |

#### Table A5.5.5.3.2 Model 2 - IV estimated results – N-ETEs (high tech)

xtivreg2 lnrxamhtech cskills lngdpc lnpop unem lnecofree serv lnrulc dist transdummy year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010 (avyrs sqravyrs lnpatappr lnfdi = avyrslag1 sqravyrslag1 lnpatapprlag1 lnfdilag1) if transdummy==0, fe endog (avyrs sqravyrs lnpatappr lnfdi) small robus > t bw(3)Warning - collinearities detected Vars dropped: cskills dist transdummy year2009 FIXED EFFECTS ESTIMATION \_\_\_\_\_ Obs per group: min = min = 3 avg = 12.5 Number of groups = 85 max = 15 IV (2SLS) estimation \_\_\_\_\_ Estimates efficient for homoskedasticity only Statistics robust to heteroskedasticity and autocorrelation kernel=Bartlett; bandwidth=3 time variable (t): year group variable (i): cn ind Number of obs = 1060 F(24, 951) = 0.47 Prob > F = 0.9857Total (centered) SS = 85.5247373 Centered R2 = 0.0153Total (uncentered) SS = 85.5247373 Uncentered R2 = 0.0153Residual SS = 84.22032954 Root MSE = .2976 \_\_\_\_\_ 1 Robust lnrxamhtech | Coef. Std. Err. t P>|t| [95% Conf. Interval] \_\_\_\_\_ ----+----\_\_\_\_\_ avyrs.1971484.55921380.350.725-.9002872sqravyrs-.0104402.0253952-0.410.681-.0602774lnpatappr.0350449.11781830.300.766-.196169lnfdi.0105083.01664830.630.528-.0221634 1.294584 .0393969 lnpatappr | .2662588 .04318 lngdpc | -.0841741 .5538802 -0.15 0.879 -1.171143 1.002795 lnpop | .0743456 .8460375 0.09 0.930 -1.585971 1.734662 unem | .0017456 .0020813 0.84 0.402 -.0023389 .0058302 lnecofree | -.2428827 .4489965 -0.54 0.589 -1.124021 .6382556 serv | .0083599 .0120321 0.69 0.487 -.0152526 .0319724

| <pre>year1996  0009039 .1454393 -0.01<br/>year1997   .0396082 .1308747 0.30<br/>year1998   .0124627 .1163774 0.11<br/>year1999  0195095 .109807 -0.18<br/>year2000   .0249141 .0922713 0.27<br/>year2001   .0519933 .0801289 0.65<br/>year2002   .0440085 .0744488 0.59<br/>year2003   .0658509 .067785 0.97<br/>year2004   .064832 .0672654 0.96<br/>year2005   .0417338 .0599803 0.70<br/>year2006   .0256672 .060707 0.42<br/>year2006   .0256672 .060707 0.42<br/>year2008   .0173791 .0522454 0.33<br/>year2010  0367263 .039584 -0.93<br/></pre> | 0.995 -<br>0.762 -<br>0.915 -<br>0.859 -<br>0.787 -<br>0.517 -<br>0.555 -<br>0.332 -<br>0.335 -<br>0.487 -<br>0.673 -<br>0.648 -<br>0.739 -<br>0.354 -<br>statistic)<br>Chi-sq(1)<br>                                                                                                      | .2863229<br>.2172285<br>.2159235<br>.2350014<br>.1561648<br>.1052566<br>.1020943<br>.0671745<br>.0671737<br>.0759753<br>093468<br>.0944688<br>.0851505<br>.1144085<br>:<br>[1] P-val = | .2845151<br>.2964449<br>.2408488<br>.1959825<br>.2059929<br>.2092432<br>.1901113<br>.1988763<br>.1968377<br>.1594429<br>.1448024<br>.1518335<br>.1199088<br>.0409559<br><br>46.662<br>0.0000 |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| <pre>year1997   .0396082 .1308747 0.30<br/>year1998   .0124627 .1163774 0.11<br/>year1999  0195095 .109807 -0.18<br/>year2000   .0249141 .0922713 0.27<br/>year2001   .0519933 .0801289 0.65<br/>year2002   .0440085 .0744488 0.59<br/>year2003   .0658509 .067785 0.97<br/>year2004   .064832 .0672654 0.96<br/>year2005   .0417338 .0599803 0.70<br/>year2006   .0256672 .060707 0.42<br/>year2007   .0286823 .0627534 0.46<br/>year2008   .0173791 .0522454 0.33<br/>year2010  0367263 .039584 -0.93<br/></pre>                                     | 0.762 -<br>0.915 -<br>0.859 -<br>0.787 -<br>0.517 -<br>0.555 -<br>0.332 -<br>0.335 -<br>0.487 -<br>0.673 -<br>0.648 -<br>0.739 -<br>0.354 -<br>statistic)<br>Chi-sq(1)<br>atistic):                                                                                                        | .2172285<br>.2159235<br>.2350014<br>.1561648<br>.1052566<br>.1020943<br>.0671745<br>.0671737<br>.0759753<br>093468<br>.0944688<br>.0851505<br>.1144085<br>                             | .2964449<br>.2408488<br>.1959825<br>.2059929<br>.2092432<br>.1901113<br>.1988763<br>.1968377<br>.1594429<br>.1448024<br>.1518335<br>.1199088<br>.0409559<br>                                 |  |  |  |  |  |  |
| <pre>year1998   .0124627 .1163774 0.11<br/>year1999  0195095 .109807 -0.18<br/>year2000   .0249141 .0922713 0.27<br/>year2001   .0519933 .0801289 0.65<br/>year2002   .0440085 .0744488 0.59<br/>year2003   .0658509 .067785 0.97<br/>year2004   .064832 .0672654 0.96<br/>year2005   .0417338 .0599803 0.70<br/>year2006   .0256672 .060707 0.42<br/>year2007   .0286823 .0627534 0.46<br/>year2008   .0173791 .0522454 0.33<br/>year2010  0367263 .039584 -0.93<br/></pre>                                                                           | 0.915 -<br>0.859 -<br>0.787 -<br>0.517 -<br>0.555 -<br>0.332 -<br>0.335 -<br>0.487 -<br>0.673 -<br>0.648 -<br>0.739 -<br>0.354 -<br>statistic)<br>Chi-sq(1)<br>atistic):                                                                                                                   | .2159235<br>.2350014<br>.1561648<br>.1052566<br>.1020943<br>.0671745<br>.0671737<br>.0759753<br>093468<br>.0944688<br>.0851505<br>.1144085<br>:<br>[1] P-val =                         | .2408488<br>.1959825<br>.2059929<br>.2092432<br>.1901113<br>.1988763<br>.1968377<br>.1594429<br>.1448024<br>.1518335<br>.1199088<br>.0409559<br><br>46.662<br>0.0000                         |  |  |  |  |  |  |
| <pre>year1999  0195095 .109807 -0.18<br/>year2000   .0249141 .0922713 0.27<br/>year2001   .0519933 .0801289 0.65<br/>year2002   .0440085 .0744488 0.59<br/>year2003   .0658509 .067785 0.97<br/>year2004   .064832 .0672654 0.96<br/>year2005   .0417338 .0599803 0.70<br/>year2006   .0256672 .060707 0.42<br/>year2007   .0286823 .0627534 0.46<br/>year2008   .0173791 .0522454 0.33<br/>year2010  0367263 .039584 -0.93<br/></pre>                                                                                                                 | 0.859 -<br>0.787 -<br>0.517 -<br>0.555 -<br>0.332 -<br>0.335 -<br>0.487 -<br>0.673 -<br>0.648 -<br>0.739 -<br>0.354 -<br>statistic)<br>Chi-sq(1<br>                                                                                                                                        | .2350014<br>.1561648<br>.1052566<br>.1020943<br>.0671745<br>.0671737<br>.0759753<br>093468<br>.0944688<br>.0851505<br>.1144085<br>:<br>[1] P-val =                                     | .1959825<br>.2059929<br>.2092432<br>.1901113<br>.1988763<br>.1968377<br>.1594429<br>.1448024<br>.1518335<br>.1199088<br>.0409559<br><br>46.662<br>0.0000                                     |  |  |  |  |  |  |
| year2000   .0249141 .0922713 0.27<br>year2001   .0519933 .0801289 0.65<br>year2002   .0440085 .0744488 0.59<br>year2003   .0658509 .067785 0.97<br>year2004   .064832 .0672654 0.96<br>year2005   .0417338 .0599803 0.70<br>year2006   .0256672 .060707 0.42<br>year2007   .0286823 .0627534 0.46<br>year2008   .0173791 .0522454 0.33<br>year2010  0367263 .039584 -0.93<br>                                                                                                                                                                          | 0.787 -<br>0.517 -<br>0.555 -<br>0.332 -<br>0.335 -<br>0.487 -<br>0.673 -<br>0.648 -<br>0.739 -<br>0.354 -<br>statistic)<br>Chi-sq(1)<br>atistic):                                                                                                                                         | .1561648<br>.1052566<br>.1020943<br>.0671745<br>.0671737<br>.0759753<br>093468<br>.0944688<br>.0851505<br>.1144085<br>                                                                 | .2059929<br>.2092432<br>.1901113<br>.1988763<br>.1968377<br>.1594429<br>.1448024<br>.1518335<br>.1199088<br>.0409559<br>                                                                     |  |  |  |  |  |  |
| <pre>year2001   .0519933 .0801289 0.65<br/>year2002   .0440085 .0744488 0.59<br/>year2003   .0658509 .067785 0.97<br/>year2004   .064832 .0672654 0.96<br/>year2005   .0417338 .0599803 0.70<br/>year2006   .0256672 .060707 0.42<br/>year2007   .0286823 .0627534 0.46<br/>year2008   .0173791 .0522454 0.33<br/>year2010  0367263 .039584 -0.93<br/></pre>                                                                                                                                                                                           | 0.517 -<br>0.555 -<br>0.332 -<br>0.335 -<br>0.487 -<br>0.673 -<br>0.648 -<br>0.739 -<br>0.354 -<br>statistic)<br>Chi-sq(1)<br>atistic):                                                                                                                                                    | .1052566<br>.1020943<br>.0671745<br>.0671737<br>.0759753<br>093468<br>.0944688<br>.0851505<br>.1144085<br>:<br>[1] P-val =                                                             | .2092432<br>.1901113<br>.1988763<br>.1968377<br>.1594429<br>.1448024<br>.1518335<br>.1199088<br>.0409559<br><br>46.662<br>0.0000                                                             |  |  |  |  |  |  |
| <pre>year2002   .0440085 .0744488 0.59 year2003   .0658509 .067785 0.97 year2004   .064832 .0672654 0.96 year2005   .0417338 .0599803 0.70 year2006   .0256672 .060707 0.42 year2007   .0286823 .0627534 0.46 year2008   .0173791 .0522454 0.33 year2010  0367263 .039584 -0.93</pre>                                                                                                                                                                                                                                                                  | 0.555 -<br>0.332 -<br>0.335 -<br>0.487 -<br>0.673 -<br>0.648 -<br>0.739 -<br>0.354 -<br>statistic)<br>Chi-sq(1)<br>atistic):                                                                                                                                                               | .1020943<br>.0671745<br>.0671737<br>.0759753<br>093468<br>.0944688<br>.0851505<br>.1144085<br>.1144085                                                                                 | .1901113<br>.1988763<br>.1968377<br>.1594429<br>.1448024<br>.1518335<br>.1199088<br>.0409559<br><br>46.662<br>0.0000                                                                         |  |  |  |  |  |  |
| <pre>year2003   .0658509 .067785 0.97<br/>year2004   .064832 .0672654 0.96<br/>year2005   .0417338 .0599803 0.70<br/>year2006   .0256672 .060707 0.42<br/>year2007   .0286823 .0627534 0.46<br/>year2008   .0173791 .0522454 0.33<br/>year2010  0367263 .039584 -0.93<br/></pre>                                                                                                                                                                                                                                                                       | 0.332 -<br>0.335 -<br>0.487 -<br>0.673 -<br>0.648 -<br>0.739 -<br>0.354 -<br>statistic)<br>Chi-sq(1)<br>atistic):                                                                                                                                                                          | .0671745<br>.0671737<br>.0759753<br>093468<br>.0944688<br>.0851505<br>.1144085<br>.1144085                                                                                             | .1988763<br>.1968377<br>.1594429<br>.1448024<br>.1518335<br>.1199088<br>.0409559<br><br>46.662<br>0.0000                                                                                     |  |  |  |  |  |  |
| <pre>year2004   .064832 .0672654 0.96 year2005   .0417338 .0599803 0.70 year2006   .0256672 .060707 0.42 year2007   .0286823 .0627534 0.46 year2008   .0173791 .0522454 0.33 year2010  0367263 .039584 -0.93</pre>                                                                                                                                                                                                                                                                                                                                     | 0.335 -<br>0.487 -<br>0.673 -<br>0.648 -<br>0.739 -<br>0.354 -<br>statistic)<br>Chi-sq(1<br>atistic):                                                                                                                                                                                      | .0671737<br>.0759753<br>093468<br>.0944688<br>.0851505<br>.1144085<br>                                                                                                                 | .1968377<br>.1594429<br>.1448024<br>.1518335<br>.1199088<br>.0409559<br><br>46.662<br>0.0000                                                                                                 |  |  |  |  |  |  |
| <pre>year2005   .0417338 .0599803 0.70<br/>year2006   .0256672 .060707 0.42<br/>year2007   .0286823 .0627534 0.46<br/>year2008   .0173791 .0522454 0.33<br/>year2010  0367263 .039584 -0.93<br/></pre>                                                                                                                                                                                                                                                                                                                                                 | 0.487 -<br>0.673 -<br>0.648 -<br>0.739 -<br>0.354 -<br>statistic)<br>Chi-sq(1<br>                                                                                                                                                                                                          | .0759753<br>093468<br>.0944688<br>.0851505<br>.1144085<br>                                                                                                                             | .1594429<br>.1448024<br>.1518335<br>.1199088<br>.0409559<br><br>46.662<br>0.0000                                                                                                             |  |  |  |  |  |  |
| year2006   .0256672 .060707 0.42<br>year2007   .0286823 .0627534 0.46<br>year2008   .0173791 .0522454 0.33<br>year2010  0367263 .039584 -0.93<br>Underidentification test (Kleibergen-Paap rk LM<br>Weak identification test (Cragg-Donald Wald F st<br>(Kleibergen-Paap rk Wal<br>Stock-Yego weak LD test critical walwes:                                                                                                                                                                                                                            | 0.673<br>0.648 -<br>0.739 -<br>0.354 -<br>statistic)<br>Chi-sq(1<br>atistic):                                                                                                                                                                                                              | 093468<br>.0944688<br>.0851505<br>.1144085<br>                                                                                                                                         | .1448024<br>.1518335<br>.1199088<br>.0409559<br><br>46.662<br>0.0000                                                                                                                         |  |  |  |  |  |  |
| year2007   .0286823 .0627534 0.46<br>year2008   .0173791 .0522454 0.33<br>year2010  0367263 .039584 -0.93<br>Underidentification test (Kleibergen-Paap rk LM<br>Weak identification test (Cragg-Donald Wald F st<br>(Kleibergen-Paap rk Wal<br>Stock-Yego weak LD test critical walwas:                                                                                                                                                                                                                                                                | 0.648 -<br>0.739 -<br>0.354 -<br>statistic)<br>Chi-sq(1<br>atistic):                                                                                                                                                                                                                       | .0944688<br>.0851505<br>.1144085<br>                                                                                                                                                   | .1518335<br>.1199088<br>.0409559<br><br>46.662<br>0.0000                                                                                                                                     |  |  |  |  |  |  |
| year2008   .0173791 .0522454 0.33<br>year2010  0367263 .039584 -0.93<br>Underidentification test (Kleibergen-Paap rk LM<br>Weak identification test (Cragg-Donald Wald F st<br>(Kleibergen-Paap rk Wal<br>Stock-Yere weak LD test aritigal walwas:                                                                                                                                                                                                                                                                                                     | 0.739 -<br>0.354 -<br>statistic)<br>Chi-sq(1<br>atistic):                                                                                                                                                                                                                                  | .0851505<br>.1144085<br>                                                                                                                                                               | .1199088<br>.0409559<br>                                                                                                                                                                     |  |  |  |  |  |  |
| year2010  0367263 .039584 -0.93<br>Underidentification test (Kleibergen-Paap rk LM<br>Weak identification test (Cragg-Donald Wald F st<br>(Kleibergen-Paap rk Wal                                                                                                                                                                                                                                                                                                                                                                                      | 0.354 -<br>statistic)<br>Chi-sq(1<br>atistic):                                                                                                                                                                                                                                             | :<br>1) P-val =                                                                                                                                                                        | .0409559<br>46.662<br>0.0000                                                                                                                                                                 |  |  |  |  |  |  |
| Underidentification test (Kleibergen-Paap rk LM<br>Weak identification test (Cragg-Donald Wald F st<br>(Kleibergen-Paap rk Wal                                                                                                                                                                                                                                                                                                                                                                                                                         | statistic)<br>Chi-sq(2<br>atistic):                                                                                                                                                                                                                                                        | :<br>(1) P-val =                                                                                                                                                                       | 46.662<br>0.0000                                                                                                                                                                             |  |  |  |  |  |  |
| SCOCK-TOGO WEAR ID LEST CITCICAL VALUES.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | d F statist                                                                                                                                                                                                                                                                                | stic):<br><not av<="" th=""><th>133.644<br/>30.796<br/>ailable&gt;</th></not>                                                                                                          | 133.644<br>30.796<br>ailable>                                                                                                                                                                |  |  |  |  |  |  |
| Hansen J statistic (overidentification test of a -endog- option:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ll instrume.<br>(equation                                                                                                                                                                                                                                                                  | nents):<br>n exactly ide                                                                                                                                                               | 0.000<br>entified)                                                                                                                                                                           |  |  |  |  |  |  |
| Endogeneity test of endogenous regressors:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                        | 5.077                                                                                                                                                                                        |  |  |  |  |  |  |
| Regressors tested: avyrs sqravyrs lnpatappr l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Chi-sq('<br>nfdi                                                                                                                                                                                                                                                                           | (4) P-val =                                                                                                                                                                            | 0.2795                                                                                                                                                                                       |  |  |  |  |  |  |
| Instrumented:<br>Included instruments:<br>Excluded instruments:<br>avyrs sqravyrs lnpatappr l<br>lngdpc lnpop unem lnecofre<br>year1998 year1999 year2000<br>year2004 year2005 year2006<br>avyrslag1 sqravyrslag1 lnp<br>cskills dist transdummy ve                                                                                                                                                                                                                                                                                                    | Instrumented:<br>Included instruments: lngdpc lnpop unem lnecofree serv lnrulc year1996 year1997<br>year1998 year1999 year2000 year2001 year2002 year2003<br>year2004 year2005 year2006 year2007 year2008 year2010<br>Excluded instruments: avyrslag1 sqravyrslag1 lnpatapprlag1 lnfdilag1 |                                                                                                                                                                                        |                                                                                                                                                                                              |  |  |  |  |  |  |

 Table A5.5.5.4 Model 2 - IV estimated results (medium-high tech)

xtivreg2 lnrxamhtech cskills lngdpc lnpop unem lnecofree serv lnrulc dist transdummy year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010 (avyrs sqravyrs lnpatappr lnfdi = avyrslag1 sqravyrslag1 lnpatapprlag1 lnfdilag1) if mhtechintens==0, fe endog (avyrs sqravyrs lnpatappr lnfdi) small robust bw(3) Warning - collinearities detected Vars dropped: cskills dist transdummy year2009 FIXED EFFECTS ESTIMATION \_\_\_\_\_ 135 Number of groups = 3 Obs per group: min = 12.8 avg = max = 15 IV (2SLS) estimation \_\_\_\_\_ Estimates efficient for homoskedasticity only Statistics robust to heteroskedasticity and autocorrelation kernel=Bartlett; bandwidth=3 time variable (t): year group variable (i): cn ind

| Total (centere<br>Total (uncente<br>Residual SS   | ed) SS =<br>ered) SS =<br>=                               | 107.0602309<br>107.0602309<br>92.9479214                                      |                                                              |                                           | Number of obs<br>F( 24, 1566)<br>Prob > F<br>Centered R2<br>Uncentered R2<br>Root MSE | = 1725 $= 2.35$ $= 0.0002$ $= 0.1318$ $= 0.1318$ $= .2436$ |
|---------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------|
| <br> lnrxamhtech                                  | Coef.                                                     | Robust<br>Std. Err.                                                           | t                                                            | P> t                                      | [95% Conf                                                                             | . Interval]                                                |
| avvrs                                             | .6705759                                                  | .3349812                                                                      | 2.00                                                         | 0.045                                     | .0135171                                                                              | 1.327635                                                   |
| sgravyrs                                          | 032047                                                    | .0152247                                                                      | -2.10                                                        | 0.035                                     | 0619098                                                                               | 0021841                                                    |
| lnnatannr                                         | 0479333                                                   | 0587323                                                                       | 0.82                                                         | 0 415                                     | - 0672689                                                                             | 1631355                                                    |
| lnfdi                                             | 0118303                                                   | 0092269                                                                       | 1 28                                                         | 0 200                                     | - 0062681                                                                             | 0299287                                                    |
| lnadna l                                          | 3126517                                                   | 1795705                                                                       | 1 74                                                         | 0 082                                     | - 0395722                                                                             | 6648757                                                    |
| lnnon                                             | -2 785229                                                 | 6105743                                                                       | -4 56                                                        | 0.002                                     | -3 982858                                                                             | -1 5876                                                    |
| Inbob                                             | _ 0015259                                                 | .0103743                                                                      | -1 40                                                        | 0.000                                     | - 0035373                                                                             | 1.3070                                                     |
| lnocofroo                                         | 0013238                                                   | .0010255                                                                      | -1.49                                                        | 0.137                                     | 0033373                                                                               | 2469126                                                    |
| Inecorree                                         | 245275                                                    | .2300737                                                                      | -0.98                                                        | 0.320                                     | /3/3023                                                                               | .2400120                                                   |
| serv                                              | .004011                                                   | .000/300                                                                      | 0.00                                                         | 0.490                                     | 0000438                                                                               | .UI/00/0                                                   |
| Inruic                                            | .0283002                                                  | .3103313                                                                      | 0.09                                                         | 0.927                                     | 5804084                                                                               | .63/008/                                                   |
| year1996                                          | 0011//5                                                   | .0830825                                                                      | -0.01                                                        | 0.989                                     | 1641422                                                                               | .161/8/2                                                   |
| year1997                                          | 0356663                                                   | .0/14933                                                                      | -0.50                                                        | 0.618                                     | 1/5899                                                                                | .1045664                                                   |
| year1998                                          | 0360451                                                   | .065377                                                                       | -0.55                                                        | 0.581                                     | 1642808                                                                               | .0921907                                                   |
| year1999                                          | 0388773                                                   | .0594487                                                                      | -0.65                                                        | 0.513                                     | 1554847                                                                               | .0777302                                                   |
| year2000                                          | 0741012                                                   | .0561496                                                                      | -1.32                                                        | 0.187                                     | 1842375                                                                               | .0360351                                                   |
| year2001                                          | 0446555                                                   | .0506023                                                                      | -0.88                                                        | 0.378                                     | 1439109                                                                               | .0545999                                                   |
| year2002                                          | 0634503                                                   | .0453695                                                                      | -1.40                                                        | 0.162                                     | 1524416                                                                               | .025541                                                    |
| year2003                                          | 0603509                                                   | .0443154                                                                      | -1.36                                                        | 0.173                                     | 1472747                                                                               | .0265728                                                   |
| year2004                                          | 0391839                                                   | .0425734                                                                      | -0.92                                                        | 0.358                                     | 1226909                                                                               | .0443231                                                   |
| year2005                                          | 0445979                                                   | .0423795                                                                      | -1.05                                                        | 0.293                                     | 1277245                                                                               | .0385287                                                   |
| year2006                                          | 0280953                                                   | .04201                                                                        | -0.67                                                        | 0.504                                     | 1104971                                                                               | .0543064                                                   |
| year2007                                          | 0119371                                                   | .0403549                                                                      | -0.30                                                        | 0.767                                     | 0910924                                                                               | .0672182                                                   |
| year2008                                          | 0080204                                                   | .0298074                                                                      | -0.27                                                        | 0.788                                     | 0664869                                                                               | .0504462                                                   |
| year2010                                          | 0074437                                                   | .0260065                                                                      | -0.29                                                        | 0.775                                     | 0584549                                                                               | .0435675                                                   |
| Jnderidentific                                    | ation test (F                                             | Kleibergen-P                                                                  | aap rk L1                                                    | 4 statis                                  | stic):                                                                                | 70.991                                                     |
|                                                   |                                                           |                                                                               |                                                              | Chi                                       | l-sq(1) P-val =                                                                       | = 0.0000                                                   |
|                                                   |                                                           |                                                                               |                                                              |                                           |                                                                                       |                                                            |
| Weak identific                                    | ation test ((                                             | Cragg-Donald                                                                  | Wald F's                                                     | statisti                                  | LC):                                                                                  | 343.877                                                    |
| ~                                                 | ()                                                        | (leibergen-P                                                                  | aap rk Wa                                                    | ald F'st                                  | tatistic):                                                                            | /6.3/1                                                     |
| Stock-Yogo wea                                    | k ID test cri                                             | ltical value                                                                  | s:                                                           |                                           | <not< td=""><td>available&gt;</td></not<>                                             | available>                                                 |
| Hansen J stati                                    | stic (overide                                             | entification                                                                  | test of                                                      | all ins<br>(equa                          | struments):<br>ation exactly :                                                        | 0.000<br>identified)                                       |
| Endogeneity te                                    | st of endoger                                             | nous regress                                                                  | ors:                                                         | Chi                                       | -sa(4) P-val -                                                                        | 0.912                                                      |
| Regressors tes                                    | ted: avyrs                                                | s sqravyrs l                                                                  | npatappr                                                     | lnfdi                                     |                                                                                       |                                                            |
| Instrumented:<br>Included instr<br>Excluded instr | avyrs<br>uments: lngdr<br>year1<br>year2<br>uments: avyrs | s sqravyrs 1.<br>oc lnpop une<br>1998 year199<br>2004 year200<br>slag1 sgravy | npatappr<br>m lnecofi<br>9 year200<br>5 year200<br>rslag1 li | lnfdi<br>ree serv<br>)0 year2<br>)6 year2 | y lnrulc year19<br>2001 year2002<br>2007 year2008                                     | 996 year1997<br>year2003<br>year2010                       |

| <b>Table A5.5.5.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.1 Model 2                                                                                                                                                                                                                                                                 | 2 - IV estima                                                                                                                                                                                                                                                                    | ted res                                                                                                                                                                                  | sults -E                                                                                                                                                                                                    | TEs (medium                                                                                                                                                                                                                                                 | -high tech)                                                                                                                                                                                                                                                                  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| <pre>xtivreg2 lnrxamhtech cskills lngdpc lnpop unem lnecofree serv lnrulc dist transdummy<br/>transindn year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003<br/>year2004 year2005 year2006 year2007 year2008 year2009 year2010 (avyrs sqravyrs<br/>lnpatappr lnfdi = avyrslag1 sqravyrslag1 lnpatapprlag1 lnfdilag1) if transdummy==1, fe<br/>endog (avyrs sqravyrs lnpatappr lnfdi) small robust bw(3)<br/>Warning - collinearities detected<br/>Vars dropped: cskills dist transdummy year1996</pre> |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                          |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| FIXED EFFECTS E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | STIMATION                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                          |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| Number of group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | os = 5                                                                                                                                                                                                                                                                      | 50                                                                                                                                                                                                                                                                               |                                                                                                                                                                                          | Obs pe                                                                                                                                                                                                      | er group: min =<br>avg =<br>max =                                                                                                                                                                                                                           | 7<br>13.3<br>15                                                                                                                                                                                                                                                              |  |  |  |  |  |
| IV (2SLS) estimation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                          |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| Estimates efficient for homoskedasticity only<br>Statistics robust to heteroskedasticity and autocorrelation<br>kernel=Bartlett; bandwidth=3<br>time variable (t): year<br>group variable (i): cn_ind                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                          |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| Number of obs = $665$ $F(25, 590) =$ $2.47$ $Prob > F =$ $0.0001$ Total (uncentered) SS = $74.48418935$ Centered R2 = $0.1980$ Residual SS = $59.73870785$ Root MSE = $.3182$                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                          |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| <br> <br>lnrxamhtech                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Coef.                                                                                                                                                                                                                                                                       | Robust<br>Std. Err.                                                                                                                                                                                                                                                              |                                                                                                                                                                                          | P> t                                                                                                                                                                                                        | [95% Conf.                                                                                                                                                                                                                                                  | Interval]                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| avyrs  <br>sqravyrs  <br>lnpatappr  <br>lnfdi  <br>lngdpc  <br>lnpop  <br>unem  <br>lnecofree  <br>serv  <br>lnrulc  <br>transindn  <br>year1997  <br>year1998  <br>year1998  <br>year2000  <br>year2001  <br>year2002  <br>year2003  <br>year2005  <br>year2006  <br>year2008                                                                                                                                                                                                                                             | .5739272<br>0481873<br>.0544242<br>.0529761<br>.9138058<br>-5.6774<br>0003683<br>.35933<br>.0091407<br>.1577376<br>-1.916339<br>.0414342<br>.0599588<br>.1067351<br>.0594654<br>.0978408<br>.0933107<br>.0997584<br>.1411394<br>.2031741<br>.1971858<br>.2039972<br>.196471 | 1.119495<br>.0459766<br>.1985917<br>.1272308<br>.4411921<br>3.935366<br>.0021876<br>.4573645<br>.0132122<br>.4447999<br>.6909908<br>.1128028<br>.1271188<br>.1456314<br>.1654179<br>.1854172<br>.2241518<br>.2276736<br>.2505483<br>.2650198<br>.2936986<br>.3135133<br>.3157511 | 0.51<br>-1.05<br>0.27<br>0.42<br>2.07<br>-1.44<br>-0.17<br>0.79<br>0.69<br>0.35<br>-2.77<br>0.37<br>0.47<br>0.73<br>0.36<br>0.53<br>0.42<br>0.44<br>0.56<br>0.77<br>0.67<br>0.65<br>0.62 | 0.608<br>0.295<br>0.784<br>0.677<br>0.039<br>0.150<br>0.866<br>0.432<br>0.489<br>0.723<br>0.006<br>0.714<br>0.637<br>0.464<br>0.719<br>0.598<br>0.677<br>0.661<br>0.573<br>0.444<br>0.502<br>0.516<br>0.534 | -1.624754<br>1384849<br>3356086<br>1969042<br>.0473077<br>-13.40643<br>0046647<br>5389306<br>016808<br>7158463<br>-3.273441<br>1801097<br>1897017<br>179284<br>265414<br>2663172<br>3469219<br>347391<br>3509358<br>317323<br>3796362<br>4117407<br>4236619 | 2.772608<br>.0421104<br>.4444569<br>.3028565<br>1.780304<br>2.051631<br>.0039281<br>1.257591<br>.0350895<br>1.031321<br>5592384<br>.262978<br>.3096193<br>.3927542<br>.3843449<br>.4619989<br>.5335433<br>.5469078<br>.6332145<br>.7236711<br>.7740079<br>.819735<br>.816604 |  |  |  |  |  |

Chi-sq(1) P-val = 0.0000\_\_\_\_\_ Weak identification test (Cragg-Donald Wald F statistic): 62.442 (Kleibergen-Paap rk Wald F statistic): 43.380 Stock-Yogo weak ID test critical values: <not available> \_\_\_\_\_ Hansen J statistic (overidentification test of all instruments): 0.000 (equation exactly identified) -endog- option: Endogeneity test of endogenous regressors: 5 124 Chi-sq(4) P-val = 0.2748Regressors tested: avyrs sqravyrs lnpatappr lnfdi \_\_\_\_\_ \_\_\_\_\_ avyrs sgravyrs lnpatappr lnfdi Instrumented: Included instruments: lnqdpc lnpop unem lnecofree serv lnrulc transindn year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010 Excluded instruments: avyrslag1 sqravyrslag1 lnpatapprlag1 lnfdilag1 Dropped collinear: cskills dist transdummy year1996 \_\_\_\_\_

Table A5.5.5.4.2 Model 2 - IV estimated results –N-ETEs (medium-high tech) xtivreg2 lnrxamhtech cskills lngdpc lnpop unem lnecofree serv lnrulc dist transdummy year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010 (avyrs sgravyrs lnpatappr lnfdi = avyrslag1 sqravyrslag1 lnpatapprlag1 lnfdilag1) if transdummy==0, fe endog (avyrs sqravyrs lnpatappr lnfdi) small robust bw(3) Warning - collinearities detected Vars dropped: cskills dist transdummy year2009 FIXED EFFECTS ESTIMATION \_\_\_\_\_ min = 3 avg = 12.5 max = 15 Number of groups = 85 Obs per group: min = IV (2SLS) estimation \_\_\_\_\_ Estimates efficient for homoskedasticity only Statistics robust to heteroskedasticity and autocorrelation kernel=Bartlett; bandwidth=3 time variable (t): year group variable (i): cn\_ind 1060 Number of obs = F(24, 951) = 1.36 Prob > F = 0.1186Centered R2 = 0.1035 Total (centered) SS = 32.57607307 Total (uncentered) SS = 32.57607307 Uncentered R2 = 0.1035Residual SS 29.2059059 = Root MSE = .1752 \_\_\_\_\_ 1 Robust lnrxamhtech | Coef. Std. Err. t P>|t| [95% Conf. Interval] \_\_\_\_\_\_ avyrs | .6636438 .3228711 2.06 0.040 .0300217 1.297266 

 sqravyrs |
 -.0300684
 .0148948
 -2.02
 0.044
 -.0592988
 -.0008379

 lnpatappr |
 -.0234247
 .0747644
 -0.31
 0.754
 -.1701469
 .1232975

 lnfdi |
 .0130256
 .0096888
 1.34
 0.179
 -.0059884
 .0320395

 lngdpc |
 -.2106046
 .3757369
 -0.56
 0.575
 -.9479738
 .5267646

| lnpop                                                                                                                                          | -2.605247                                                 | .6224117                                                                  | -4.19                                                        | 0.000                                                    | -3.826706                                                        | -1.383788                            |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------|--------------------------------------|--|--|--|
| unem                                                                                                                                           | 0015867                                                   | .0013386                                                                  | -1.19                                                        | 0.236                                                    | 0042137                                                          | .0010403                             |  |  |  |
| lnecofree                                                                                                                                      | 331575                                                    | .2443302                                                                  | -1.36                                                        | 0.175                                                    | 8110635                                                          | .1479136                             |  |  |  |
| serv                                                                                                                                           | 0036238                                                   | .0079074                                                                  | -0.46                                                        | 0.647                                                    | 0191417                                                          | .0118942                             |  |  |  |
| lnrulc                                                                                                                                         | .3439934                                                  | .4457957                                                                  | 0.77                                                         | 0.441                                                    | 5308635                                                          | 1.21885                              |  |  |  |
| year1996                                                                                                                                       | 1216424                                                   | .102819                                                                   | -1.18                                                        | 0.237                                                    | 3234206                                                          | .0801359                             |  |  |  |
| year1997                                                                                                                                       | 1286369                                                   | .0946173                                                                  | -1.36                                                        | 0.174                                                    | 3143198                                                          | .0570459                             |  |  |  |
| year1998                                                                                                                                       | 1273531                                                   | .0787292                                                                  | -1.62                                                        | 0.106                                                    | 2818561                                                          | .02715                               |  |  |  |
| year1999                                                                                                                                       | 1145631                                                   | .0711191                                                                  | -1.61                                                        | 0.108                                                    | 2541315                                                          | .0250053                             |  |  |  |
| year2000                                                                                                                                       | 1135813                                                   | .0584138                                                                  | -1.94                                                        | 0.052                                                    | 2282161                                                          | .0010534                             |  |  |  |
| year2001                                                                                                                                       | 0913708                                                   | .0534216                                                                  | -1.71                                                        | 0.088                                                    | 1962086                                                          | .013467                              |  |  |  |
| year2002                                                                                                                                       | 0887464                                                   | .0476817                                                                  | -1.86                                                        | 0.063                                                    | 1823199                                                          | .0048271                             |  |  |  |
| year2003                                                                                                                                       | 0810128                                                   | .0457396                                                                  | -1.77                                                        | 0.077                                                    | 170775                                                           | .0087494                             |  |  |  |
| year2004                                                                                                                                       | 0585424                                                   | .04345                                                                    | -1.35                                                        | 0.178                                                    | 1438113                                                          | .0267266                             |  |  |  |
| year2005                                                                                                                                       | 0780295                                                   | .044533                                                                   | -1.75                                                        | 0.080                                                    | 1654238                                                          | .0093649                             |  |  |  |
| year2006                                                                                                                                       | 0352134                                                   | .0386812                                                                  | -0.91                                                        | 0.363                                                    | 1111237                                                          | .040697                              |  |  |  |
| year2007                                                                                                                                       | 0099331                                                   | .0391212                                                                  | -0.25                                                        | 0.800                                                    | 086707                                                           | .0668407                             |  |  |  |
| year2008                                                                                                                                       | .0104613                                                  | .0312978                                                                  | 0.33                                                         | 0.738                                                    | 0509593                                                          | .071882                              |  |  |  |
| year2010                                                                                                                                       | 0065907                                                   | .0255264                                                                  | -0.26                                                        | 0.796                                                    | 0566852                                                          | .0435039                             |  |  |  |
| Chi-sq(1) P-val = 0.0000<br>Weak identification test (Cragg-Donald Wald F statistic): 133.644<br>(Kloibergen-Paap rk Wald F statistic): 30.796 |                                                           |                                                                           |                                                              |                                                          |                                                                  |                                      |  |  |  |
| Stock-Yogo wea                                                                                                                                 | k ID test cri                                             | tical value                                                               | s:                                                           |                                                          | <not< td=""><td>available&gt;</td></not<>                        | available>                           |  |  |  |
| Hansen J stati                                                                                                                                 | stic (overide                                             | entification                                                              | test of                                                      | all inst<br>(equat                                       | ruments):<br>ion exactly i                                       | 0.000<br>.dentified)                 |  |  |  |
| -endog- option                                                                                                                                 | :<br>at of orderor                                        | our rogrood                                                               | ore.                                                         |                                                          |                                                                  | 2 690                                |  |  |  |
| Endogeneity te                                                                                                                                 | st of endogen                                             | lous legiess                                                              | 015.                                                         | Chi-                                                     | $e_{\alpha}(A) = \pi a a a$                                      | - 0.6127                             |  |  |  |
| Regressors tes                                                                                                                                 | ted: avyrs                                                | sqravyrs l                                                                | npatappr                                                     | lnfdi                                                    |                                                                  | - 0.012/                             |  |  |  |
| Instrumented:<br>Included instr<br>Excluded instr                                                                                              | avyrs<br>uments: lngdp<br>year1<br>year2<br>uments: avyrs | s sqravyrs 1<br>oc lnpop une<br>998 year199<br>004 year200<br>1aq1 sqravv | npatappr<br>m lnecof:<br>9 year200<br>5 year200<br>rslag1 ln | lnfdi<br>ree serv<br>00 year20<br>06 year20<br>npatapprl | lnrulc year19<br>01 year2002 y<br>07 year2008 y<br>ag1 lnfdilag1 | 996 year1997<br>vear2003<br>vear2010 |  |  |  |
| Dropped collin                                                                                                                                 | ear: cskil                                                | ls dist tra                                                               | nsdummy y                                                    | year2009                                                 |                                                                  |                                      |  |  |  |
|                                                                                                                                                |                                                           |                                                                           |                                                              |                                                          |                                                                  |                                      |  |  |  |

# <u>Country level analysis</u>

| Table A5.6 Model 1 - Fixed effects estimate                                                                                                                                                                                                                                                                             | d results                                                             |                            |                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------|--------------------------------------|
| <pre>xtreg lnEXPY lnsedut lntedut cskills lnpatappr<br/>lnrulc serv dist transdummy year1996 year1997 y-<br/>year2002 year2003 year2004 year2005 year2006 ye<br/>note: cskills omitted because of collinearity<br/>note: dist omitted because of collinearity<br/>note: transdummy omitted because of collinearit</pre> | lnfdi lngdpc lnpop<br>ear1998 year1999 ye<br>ar2007 year2008 yea<br>y | unem li<br>ar2000<br>r2009 | necofree<br>year2001<br>year2010, fe |
| Fixed-effects (within) regression<br>Group variable: country                                                                                                                                                                                                                                                            | Number of obs<br>Number of groups                                     | =                          | 366<br>27                            |
| R-sq: within = 0.6859<br>between = 0.0063<br>overall = 0.0010                                                                                                                                                                                                                                                           | Obs per group: min<br>avg<br>max                                      | =<br>=<br>=                | 5<br>13.6<br>16                      |
|                                                                                                                                                                                                                                                                                                                         | F(25,314)                                                             | =                          | 27.42                                |

| orr(u_i, Xb) | = -0.9314 |            |          | Prob >    | F =        | 0.0000     |
|--------------|-----------|------------|----------|-----------|------------|------------|
| lnEXPY       | Coef.     | Std. Err.  | <br>t    | <br>P> t  | [95% Conf. | Interval]  |
| +            |           | 1000005    |          |           |            |            |
| Insedut      | 2386216   | .1009995   | -2.36    | 0.019     | 43/343     | 0399002    |
| Intedut      | .02/9932  | .1015597   | 0.28     | 0.783     | 1/18303    | .22/816/   |
| CSKILLS      | (omitted) | 0001105    | 0.00     | 0.054     |            | 0440054    |
| Inpatappr    | .0012863  | .0221195   | 0.06     | 0.954     | 0422348    | .04480/4   |
| Infdi        | .0049525  | .0041577   | 1.19     | 0.234     | 003228     | .013133    |
| Ingdpc       | .6109679  | .108339    | 5.64     | 0.000     | .3978057   | .82413     |
| Inpop        | 6414952   | .301295    | -2.13    | 0.034     | -1.234307  | 048683     |
| unem         | .0002162  | .0007112   | 0.30     | 0.761     | 0011832    | .0016156   |
| lnecofree    | .0979272  | .1421791   | 0.69     | 0.491     | 1818169    | .3776714   |
| lnrulc       | .2836756  | .1564659   | 1.81     | 0.071     | 0241786    | .5915297   |
| serv         | .0063964  | .0030859   | 2.07     | 0.039     | .0003248   | .0124681   |
| dist         | (omitted) |            |          |           |            |            |
| transdummy   | (omitted) |            |          |           |            |            |
| year1996     | .0607501  | .0368016   | 1.65     | 0.100     | 0116589    | .133159    |
| year1997     | .1381549  | .0376817   | 3.67     | 0.000     | .0640143   | .2122955   |
| year1998     | .1817794  | .0386975   | 4.70     | 0.000     | .1056404   | .2579185   |
| year1999     | .2103717  | .0407567   | 5.16     | 0.000     | .130181    | .2905624   |
| year2000     | .1934972  | .0412078   | 4.70     | 0.000     | .112419    | .2745754   |
|              | .2275407  | .0427425   | 5.32     | 0.000     | .1434427   | .3116386   |
|              | .2354343  | .045593    | 5.16     | 0.000     | .1457279   | .3251406   |
| year2003     | .2323779  | .0479226   | 4.85     | 0.000     | .1380879   | .3266678   |
| vear2004     | .2338066  | .0503733   | 4.64     | 0.000     | .1346948   | .3329184   |
| vear2005     | .2462277  | .053948    | 4.56     | 0.000     | .1400824   | .3523729   |
| vear2006     | .2521093  | .0566858   | 4.45     | 0.000     | .1405773   | .3636414   |
| vear2007     | .2499677  | .0589742   | 4.24     | 0.000     | .1339332   | .3660021   |
| vear2008     | .2156327  | .0607414   | 3.55     | 0.000     | .0961212   | .3351443   |
| vear2009     | .2034776  | .0620803   | 3.28     | 0.001     | .0813317   | .3256235   |
| vear2010     | 1876792   | 0632092    | 2 97     | 0 003     | 0633122    | 3120463    |
| cons         | 7 55294   | 3 560794   | 2 12     | 0 035     | 5469093    | 14 55897   |
|              |           |            |          |           |            |            |
| siama u l    | 1,1144565 |            |          |           |            |            |
| sigma e l    | 0971843   |            |          |           |            |            |
| rho          | .99245297 | (fraction  | of varia | nce due t | oui)       |            |
|              |           |            |          |           |            |            |
| test that al | l u_i=0:  | F(26, 314) | = 75.0   | )1        | Prob >     | F = 0.0000 |

# Table A5.6.1 Model 1 - Diagnostic tests

#### Groupwise heteroskedasticity

```
xttest3
Modified Wald test for groupwise heteroskedasticity
in fixed effect regression model
H0: sigma(i)^2 = sigma^2 for all i
chi2 (27) = 6292.83
Prob>chi2 = 0.0000
```

#### Autocorrelation in panel data

```
xtserial lnEXPY lnsedut lntedut cskills lnpatappr lnfdi lngdpc lnpop unem lnecofree
lnrulc serv dist transdummy year1996 year1997 year1998 year1999 year2000 year2001
year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010
Wooldridge test for autocorrelation in panel data
H0: no first order autocorrelation
F(1, 26) = 97.769
Prob > F = 0.0000
Normality of residuals
```

pantest2 lnEXPY lnsedut lntedut cskills lnpatappr lnfdi lngdpc lnpop unem lnecofree lnrulc serv dist transdummy year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010, fe Test for serial correlation in residuals Null hypothesis is either that rho=0 if residuals are AR(1) or that lamda=0 if residuals are MA(1) Following tests only approximate for unbalanced panels LM= 64.388648 which is asy. distributed as chisq(1) under null, so: Probability of value greater than LM is 1.021e-15 LM5= 8.0242538 which is asy. distributed as N(0,1) under null, so: Probability of value greater than abs(LM5) is 5.551e-16 Test for significance of fixed effects F= 75.012361 Probability>F= 2.52e-118 Test for normality of residuals Skewness/Kurtosis tests for Normality ----- joint -----Variable | Obs Pr(Skewness) Pr(Kurtosis) adj chi2(2) Prob>chi2 00000B | 366 0.0365 0.0000 29.11 0.0000

| <b>Table A5.6.2</b>                                                                                                                                                                                                                                           | Table A5.6.2 Model 1 - Driscoll-Kraay estimated results |             |       |       |            |           |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------|-------|-------|------------|-----------|--|--|--|--|--|
| xtscc lnEXPY lnsedut lntedut cskills lnpatappr lnfdi lngdpc lnpop unem lnecofree<br>lnrulc serv dist transdummy year1996 year1997 year1998 year1999 year2000 year2001<br>year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010, fe |                                                         |             |       |       |            |           |  |  |  |  |  |
| Regression with Driscoll-Kraay standard errors<br>Method: Fixed-effects regressionNumber of obs=366Mumber of groups27Group variable (i): country<br>maximum lag: 2F(28, 26)=486532.70Prob > F<br>within R-squared=0.0000                                      |                                                         |             |       |       |            |           |  |  |  |  |  |
|                                                                                                                                                                                                                                                               |                                                         | Drisc/Kraav |       |       |            |           |  |  |  |  |  |
| lnEXPY                                                                                                                                                                                                                                                        | Coef.                                                   | Std. Err.   | t     | P> t  | [95% Conf. | Interval] |  |  |  |  |  |
| lnsedut                                                                                                                                                                                                                                                       | 2386216                                                 | .117998     | -2.02 | 0.054 | 4811699    | .0039267  |  |  |  |  |  |
| lntedut                                                                                                                                                                                                                                                       | .0279932                                                | .0703227    | 0.40  | 0.694 | 1165571    | .1725435  |  |  |  |  |  |
| cskills                                                                                                                                                                                                                                                       | (omitted)                                               |             |       |       |            |           |  |  |  |  |  |
| lnpatappr                                                                                                                                                                                                                                                     | .0012863                                                | .0095113    | 0.14  | 0.893 | 0182645    | .0208371  |  |  |  |  |  |
| lnfdi                                                                                                                                                                                                                                                         | .0049525                                                | .0024424    | 2.03  | 0.053 | 000068     | .009973   |  |  |  |  |  |
| lngdpc                                                                                                                                                                                                                                                        | .6109679                                                | .089773     | 6.81  | 0.000 | .4264369   | .7954989  |  |  |  |  |  |
| lnpop                                                                                                                                                                                                                                                         | 6414952                                                 | .2521325    | -2.54 | 0.017 | -1.159761  | 1232294   |  |  |  |  |  |
| unem                                                                                                                                                                                                                                                          | .0002162                                                | .0006746    | 0.32  | 0.751 | 0011706    | .0016029  |  |  |  |  |  |
| lnecofree                                                                                                                                                                                                                                                     | .0979272                                                | .147756     | 0.66  | 0.513 | 2057896    | .401644   |  |  |  |  |  |
| lnrulc                                                                                                                                                                                                                                                        | .2836756                                                | .2282301    | 1.24  | 0.225 | 1854581    | .7528092  |  |  |  |  |  |
| serv                                                                                                                                                                                                                                                          | .0063964                                                | .0031992    | 2.00  | 0.056 | 0001796    | .0129725  |  |  |  |  |  |
| dist                                                                                                                                                                                                                                                          | .0072926                                                | .0032385    | 2.25  | 0.033 | .0006358   | .0139494  |  |  |  |  |  |
| transdummy                                                                                                                                                                                                                                                    | (omitted)                                               |             |       |       |            |           |  |  |  |  |  |
| year1996                                                                                                                                                                                                                                                      | .0607501                                                | .0088558    | 6.86  | 0.000 | .0425468   | .0789533  |  |  |  |  |  |
| year1997                                                                                                                                                                                                                                                      | .1381549                                                | .0116641    | 11.84 | 0.000 | .114179    | .1621307  |  |  |  |  |  |
| year1998                                                                                                                                                                                                                                                      | .1817794                                                | .0158447    | 11.47 | 0.000 | .1492101   | .2143488  |  |  |  |  |  |
| year1999                                                                                                                                                                                                                                                      | .2103717                                                | .0204183    | 10.30 | 0.000 | .1684014   | .252342   |  |  |  |  |  |
| year2000                                                                                                                                                                                                                                                      | .1934972                                                | .0211542    | 9.15  | 0.000 | .1500141   | .2369803  |  |  |  |  |  |
| year2001                                                                                                                                                                                                                                                      | .2275407                                                | .0222052    | 10.25 | 0.000 | .1818973   | .273184   |  |  |  |  |  |
| year2002                                                                                                                                                                                                                                                      | .2354343                                                | .0253591    | 9.28  | 0.000 | .1833079   | .2875607  |  |  |  |  |  |
| year2003                                                                                                                                                                                                                                                      | .2323779                                                | .0287601    | 8.08  | 0.000 | .1732606   | .2914952  |  |  |  |  |  |
| year2004                                                                                                                                                                                                                                                      | .2338066                                                | .0317073    | 7.37  | 0.000 | .1686312   | .298982   |  |  |  |  |  |
| year2005                                                                                                                                                                                                                                                      | .2462277                                                | .0360672    | 6.83  | 0.000 | .1720905   | .3203649  |  |  |  |  |  |

| year2006 | .2521093  | .0381714 | 6.60 | 0.000 | .1736469 | .3305718 |  |
|----------|-----------|----------|------|-------|----------|----------|--|
| year2007 | .2499677  | .0407531 | 6.13 | 0.000 | .1661985 | .3337368 |  |
| year2008 | .2156327  | .040466  | 5.33 | 0.000 | .1324538 | .2988117 |  |
| year2009 | .2034776  | .0404388 | 5.03 | 0.000 | .1203544 | .2866007 |  |
| year2010 | .1876792  | .0416063 | 4.51 | 0.000 | .1021563 | .2732022 |  |
| _cons    | (omitted) |          |      |       |          |          |  |
|          |           |          |      |       |          |          |  |

| Table A5.6.3                                                                                                                                                                                                                                                                                       | 8 Model 1 - F                                                              | EVD estima                                                                  | ated res | ults                                             |                                                               |             |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------|--------------------------------------------------|---------------------------------------------------------------|-------------|--|--|--|--|
| xtfevd lnEXPY lnsedut lntedut cskills lnpatappr lnfdi lngdpc lnpop unem lnecofree<br>lnrulc serv dist transdummy year1996 year1997 year1998 year1999 year2000 year2001<br>year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010,<br>invariant (cskills dist transdummy) |                                                                            |                                                                             |          |                                                  |                                                               |             |  |  |  |  |
| panel fixed effects regression with vector decomposition                                                                                                                                                                                                                                           |                                                                            |                                                                             |          |                                                  |                                                               |             |  |  |  |  |
| degrees of from<br>mean squared of<br>root mean squa<br>Residual Sum of<br>Total Sum of S<br>Estimation Sum                                                                                                                                                                                        | eedom fevd<br>error<br>ared error<br>of Squares<br>Squares<br>n of Squares | = 311<br>= .0081029<br>= .0900162<br>= 2.965664<br>= 60.19739<br>= 57.23173 |          | number<br>F( 30,<br>Prob ><br>R-squar<br>adj. R- | = 366<br>= 5.851626<br>= 2.70e-16<br>= .9507343<br>= .9421802 |             |  |  |  |  |
| lnEXPY                                                                                                                                                                                                                                                                                             | <br>  Coef.                                                                | fevd<br>Std. Err.                                                           | t        | P> t                                             | [95% Conf                                                     | . Interval] |  |  |  |  |
| lnsedut                                                                                                                                                                                                                                                                                            | +<br> 2386216                                                              | 2.21275                                                                     | -0.11    | 0.914                                            | -4.592476                                                     | 4.115233    |  |  |  |  |
| lntedut                                                                                                                                                                                                                                                                                            | .0279932                                                                   | 2.008215                                                                    | 0.01     | 0.989                                            | -3.923413                                                     | 3.9794      |  |  |  |  |
| lnpatappr                                                                                                                                                                                                                                                                                          | .0012863                                                                   | .4467247                                                                    | 0.00     | 0.998                                            | 8776986                                                       | .8802712    |  |  |  |  |
| lnfdi                                                                                                                                                                                                                                                                                              | .0049525                                                                   | .032149                                                                     | 0.15     | 0.878                                            | 0583045                                                       | .0682096    |  |  |  |  |
| lngdpc                                                                                                                                                                                                                                                                                             | .6109679                                                                   | 3.117605                                                                    | 0.20     | 0.845                                            | -5.523298                                                     | 6.745233    |  |  |  |  |
| lnpop                                                                                                                                                                                                                                                                                              | 6414952                                                                    | 1.138808                                                                    | -0.56    | 0.574                                            | -2.882239                                                     | 1.599248    |  |  |  |  |
| unem                                                                                                                                                                                                                                                                                               | .0002162                                                                   | .0064695                                                                    | 0.03     | 0.973                                            | 0125133                                                       | .0129457    |  |  |  |  |
| lnecofree                                                                                                                                                                                                                                                                                          | .0979272                                                                   | 2.014234                                                                    | 0.05     | 0.961                                            | -3.865322                                                     | 4.061177    |  |  |  |  |
| lnrulc                                                                                                                                                                                                                                                                                             | .2836755                                                                   | 1.342552                                                                    | 0.21     | 0.833                                            | -2.357957                                                     | 2.925308    |  |  |  |  |
| serv                                                                                                                                                                                                                                                                                               | .0063964                                                                   | .0373047                                                                    | 0.17     | 0.864                                            | 067005                                                        | .0797979    |  |  |  |  |
| vear1996                                                                                                                                                                                                                                                                                           | .0607501                                                                   | .3019041                                                                    | 0.20     | 0.841                                            | 5332828                                                       | .6547829    |  |  |  |  |
| vear1997                                                                                                                                                                                                                                                                                           | .1381549                                                                   | .4227108                                                                    | 0.33     | 0.744                                            | 6935797                                                       | .9698895    |  |  |  |  |
| vear1998                                                                                                                                                                                                                                                                                           | .1817794                                                                   | .4665564                                                                    | 0.39     | 0.697                                            | 7362268                                                       | 1.099786    |  |  |  |  |
| vear1999                                                                                                                                                                                                                                                                                           | .2103717                                                                   | .4763786                                                                    | 0.44     | 0.659                                            | 726961                                                        | 1.147704    |  |  |  |  |
| vear2000                                                                                                                                                                                                                                                                                           | .1934972                                                                   | .5005347                                                                    | 0.39     | 0.699                                            | 7913655                                                       | 1.17836     |  |  |  |  |
| vear2001                                                                                                                                                                                                                                                                                           | .2275407                                                                   | .5598575                                                                    | 0.41     | 0.685                                            | 8740468                                                       | 1.329128    |  |  |  |  |
| year2002                                                                                                                                                                                                                                                                                           | .2354343                                                                   | .6019378                                                                    | 0.39     | 0.696                                            | 9489513                                                       | 1.41982     |  |  |  |  |
| year2003                                                                                                                                                                                                                                                                                           | .2323779                                                                   | .6878947                                                                    | 0.34     | 0.736                                            | -1.121138                                                     | 1.585894    |  |  |  |  |
| vear2004                                                                                                                                                                                                                                                                                           | .2338066                                                                   | .7068029                                                                    | 0.33     | 0.741                                            | -1.156914                                                     | 1.624527    |  |  |  |  |
| vear2005                                                                                                                                                                                                                                                                                           | .2462277                                                                   | .7727858                                                                    | 0.32     | 0.750                                            | -1.274322                                                     | 1.766777    |  |  |  |  |
| vear2006                                                                                                                                                                                                                                                                                           | .2521093                                                                   | .7485354                                                                    | 0.34     | 0.736                                            | -1.220725                                                     | 1.724943    |  |  |  |  |
| vear2007                                                                                                                                                                                                                                                                                           | .2499676                                                                   | .8827054                                                                    | 0.28     | 0.777                                            | -1.486862                                                     | 1.986797    |  |  |  |  |
| vear2008                                                                                                                                                                                                                                                                                           | .2156327                                                                   | .9077494                                                                    | 0.24     | 0.812                                            | -1.570474                                                     | 2.00174     |  |  |  |  |
| year2009                                                                                                                                                                                                                                                                                           | .2034776                                                                   | .8469324                                                                    | 0.24     | 0.810                                            | -1.462965                                                     | 1.86992     |  |  |  |  |
| year2010                                                                                                                                                                                                                                                                                           | .1876792                                                                   | .8395349                                                                    | 0.22     | 0.823                                            | -1.464207                                                     | 1.839566    |  |  |  |  |
| cskills                                                                                                                                                                                                                                                                                            | .5675052                                                                   | 1.680204                                                                    | 0.34     | 0.736                                            | -2.738501                                                     | 3.873511    |  |  |  |  |
| dist                                                                                                                                                                                                                                                                                               | 0001257                                                                    | .0013328                                                                    | -0.09    | 0.925                                            | 0027482                                                       | .0024969    |  |  |  |  |
| transdummy                                                                                                                                                                                                                                                                                         | .4596955                                                                   | 4.129105                                                                    | 0.11     | 0.911                                            | -7.664818                                                     | 8.584209    |  |  |  |  |
| eta                                                                                                                                                                                                                                                                                                | 1                                                                          |                                                                             |          |                                                  | •                                                             |             |  |  |  |  |
| _cons                                                                                                                                                                                                                                                                                              | 4.714104                                                                   | 35.07336                                                                    | 0.13     | 0.893                                            | -64.29699                                                     | 73.72519    |  |  |  |  |

# Table A5.6.4 Model 1 - Hausman and Taylor estimated results

xthtaylor lnEXPY lnsedut lntedut cskills lnpatappr lnfdi lngdpc lnpop unem lnecofree lnrulc serv dist transdummy year1996 year1997 year1998 year1999 year2000 year2001

| year2002 year2<br>(lnsedut lnted | 003 year2004<br>lut cskills) | year2005 ye  | ar2006 y | ear2007 y         | ear2008                    | year2                   | 009 year2010     | , endc |
|----------------------------------|------------------------------|--------------|----------|-------------------|----------------------------|-------------------------|------------------|--------|
| Hausman-Taylor<br>Group variable | estimation<br>country        |              |          | Number<br>Number  | of obs<br>of grou <u>r</u> | =<br>ps =               | 366<br>27        |        |
|                                  |                              |              |          | Obs per           | group:                     | min =<br>avg =<br>max = | 5<br>13.6<br>16  |        |
| Random effects                   | u_i ~ i.i.d.                 |              |          | Wald ch<br>Prob > | i2(28)<br>chi2             | =                       | 714.04<br>0.0000 |        |
| lnEXPY                           | Coef.                        | Std. Err.    | Z        | P>   z            | [95%                       | Conf.                   | Interval]        |        |
| TVexogenous                      |                              |              |          |                   |                            |                         |                  |        |
| lnpatappr                        | .0064612                     | .0214357     | 0.30     | 0.763             | 035                        | 5552                    | .0484743         |        |
| lnfdi                            | .0032765                     | .0039971     | 0.82     | 0.412             | 0045                       | 5577                    | .0111107         |        |
| lngdpc                           | .7287862                     | .0927469     | 7.86     | 0.000             | .5470                      | 055                     | .9105668         |        |
| l aogul                          | 0423171                      | .1548225     | -0.27    | 0.785             | 345                        | 7637                    | .2611295         |        |
| unem                             | .000453                      | .0006876     | 0.66     | 0.510             | 0008                       | 3946                    | .0018006         |        |
| lnecofree                        | .1372826                     | .1377823     | 1.00     | 0.319             | 132                        | 7658                    | .407331          |        |
| lnrulc                           | 2566149                      | 152358       | 1 68     | 0 092             | - 0420                     | 012                     | 555231           |        |
| serv                             | 0062612                      | 0030049      | 2 08     | 0 037             | 0003                       | 3716                    | 0121507          |        |
| vear1996                         | 0636566                      | 0359109      | 1 77     | 0.037             | - 006                      | 7275                    | 1340406          |        |
| year1990                         | 1272226                      | 0267052      | 2 7 2    | 0.070             | .000                       | 7275                    | 2004215          |        |
| year1997                         | 1905362                      | .0307055     | 1 70     | 0.000             | 106                        | 2337                    | .2094313         |        |
| year1990                         | .1003302                     | .0377001     | 4./0     | 0.000             | .1000                      | 222                     | .23430           |        |
| year1999                         | .2050968                     | .0397081     | 5.17     | 0.000             | .12/2                      | 2703                    | .2829233         |        |
| year2000                         | .183248                      | .0399699     | 4.58     | 0.000             | .1049                      | 9084                    | .26158/5         |        |
| year2001                         | .2134243                     | .0412683     | 5.17     | 0.000             | .1.                        | 3254                    | .2943085         |        |
| year2002                         | .2182175                     | .0438736     | 4.97     | 0.000             | .1322                      | 2267                    | .3042082         |        |
| year2003                         | .2134154                     | .046044      | 4.64     | 0.000             | .1231                      | L'/0'/                  | .3036601         |        |
| year2004                         | .2083411                     | .0479286     | 4.35     | 0.000             | .1144                      | 1029                    | .3022793         |        |
| year2005                         | .2153065                     | .0509492     | 4.23     | 0.000             | .115                       | 5448                    | .3151651         |        |
| year2006                         | .2147976                     | .0529722     | 4.05     | 0.000             | .110                       | 974                     | .3186212         |        |
| year2007                         | .2083794                     | .0547287     | 3.81     | 0.000             | .101                       | L113                    | .3156457         |        |
| year2008                         | .1732754                     | .0564084     | 3.07     | 0.002             | .062                       | 2717                    | .2838338         |        |
| year2009                         | .1722207                     | .0590177     | 2.92     | 0.004             | .0565                      | 5481                    | .2878933         |        |
| year2010                         | .1528609                     | .0598007     | 2.56     | 0.011             | .0356                      | 5537                    | .2700681         |        |
| TVendogenous                     |                              |              |          |                   |                            |                         |                  |        |
| lnsedut                          | 1927718                      | .0964358     | -2.00    | 0.046             | 3817                       | 7825                    | 0037611          |        |
| lntedut                          | 0303265                      | .0957492     | -0.32    | 0.751             | 2179                       | 9915                    | .1573384         |        |
| TIexogenous                      |                              |              |          |                   |                            |                         |                  |        |
| dist                             | .0001004                     | .0004513     | 0.22     | 0.824             | 0007                       | 7842                    | .0009849         |        |
| transdummv                       | .9004043                     | .5025249     | 1.79     | 0.073             | 0845                       | 5263                    | 1.885335         |        |
| Tlendogenous                     |                              |              |          |                   |                            |                         |                  |        |
| cskills                          | .2431767                     | 1.585119     | 0.15     | 0.878             | -2.8                       | 3636                    | 3.349953         |        |
| _cons                            | 7570688                      | 8.334575     | -0.09    | 0.928             | -17.09                     | 9254                    | 15.5784          |        |
| +                                | 1 1175000                    |              |          |                   |                            |                         |                  |        |
| sigma_d                          | 1.11/JUU8                    |              |          |                   |                            |                         |                  |        |
| sigma_e                          | .09353218                    |              |          |                   |                            |                         |                  |        |
| rho                              | .99304344                    | (fraction    | oi varia | nce due t         | o u_1)                     |                         |                  |        |
| Note: TV refe                    | ers to time va               | arying; TI r | efers to | time inv          | ariant.                    |                         |                  |        |

| Table A5.6.5 Model 1 - IV estimated results                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |                     |       |        |                                   |                 |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------|-------|--------|-----------------------------------|-----------------|--|--|--|--|
| <pre>xtivreg2 lnEXPY cskills lngdpc lnpop unem lnecofree serv lnrulc dist transdummy<br/>year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004<br/>year2005 year2006 year2007 year2008 year2009 year2010 (lnsedut lntedut lnpatappr<br/>lnfdi = lnsedutlag1 lntedutlag1 lnpatapprlag1 lnfdilag1), fe endog (lnsedut lntedut<br/>lnpatappr lnfdi) small robust bw(3)<br/>Warning - collinearities detected<br/>Vars dropped: cskills dist transdummy year1997</pre> |            |                     |       |        |                                   |                 |  |  |  |  |
| FIXED EFFECTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ESTIMATION |                     |       |        |                                   |                 |  |  |  |  |
| Number of grou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ps = 2     | 27                  |       | Obs pe | er group: min =<br>avg =<br>max = | 3<br>12.9<br>15 |  |  |  |  |
| IV (2SLS) estimation                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |                     |       |        |                                   |                 |  |  |  |  |
| Estimates efficient for homoskedasticity only<br>Statistics robust to heteroskedasticity and autocorrelation<br>kernel=Bartlett; bandwidth=3<br>time variable (t): year<br>group variable (i): country                                                                                                                                                                                                                                                                                        |            |                     |       |        |                                   |                 |  |  |  |  |
| Number of obs = $349$ F(24, 298) = $11.71$ Prob > F $0.0000$ Total (centered) SS $7.642422083$ Total (uncentered) SS $7.642422083$ Residual SS $2.57929974$ Root MSE $0.9303$                                                                                                                                                                                                                                                                                                                 |            |                     |       |        |                                   |                 |  |  |  |  |
| <br> <br>  lnEXPY                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Coef.      | Robust<br>Std. Err. |       | P> t   | [95% Conf.                        | Interval]       |  |  |  |  |
| lnsedut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | .1658806            | -1.11 | 0.270  |                                   | .1430132        |  |  |  |  |
| Intedut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .0578985   | .1766735            | 0.33  | 0.743  | 2897871                           | .4055842        |  |  |  |  |
| Inpatappr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0087444    | .0493608            | -0.18 | 0.860  | 1058843                           | .0883954        |  |  |  |  |
| lnfdi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .0055529   | .0045059            | 1.23  | 0.219  | 0033146                           | .0144204        |  |  |  |  |
| lnadpc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .6070447   | .1795567            | 3.38  | 0.001  | .2536848                          | .9604045        |  |  |  |  |
| l qoqul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8190879    | .4326585            | -1.89 | 0.059  | -1.670541                         | .0323652        |  |  |  |  |
| unem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0001631    | .000864             | -0.19 | 0.850  | 0018634                           | .0015372        |  |  |  |  |
| lnecofree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .0214996   | .2188513            | 0.10  | 0.922  | 4091902                           | .4521894        |  |  |  |  |
| serv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .0086074   | .0058938            | 1.46  | 0.145  | 0029914                           | .0202062        |  |  |  |  |
| lnrulc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .1935282   | .2736938            | 0.71  | 0.480  | 3450892                           | .7321456        |  |  |  |  |
| year1996                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 074001     | .0321089            | -2.30 | 0.022  | 1371899                           | 010812          |  |  |  |  |
| year1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .0410134   | .0210914            | 1.94  | 0.053  | 0004935                           | .0825203        |  |  |  |  |
| year1999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .0670403   | .0255149            | 2.63  | 0.009  | .0168281                          | .1172525        |  |  |  |  |
| year2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .0459142   | .0323732            | 1.42  | 0.157  | 0177949                           | .1096233        |  |  |  |  |
| year2001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .0816322   | .0304448            | 2.68  | 0.008  | .0217182                          | .1415463        |  |  |  |  |
| year2002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .0865316   | .0343926            | 2.52  | 0.012  | .0188485                          | .1542147        |  |  |  |  |
| year2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .0840866   | .0360165            | 2.33  | 0.020  | .0132077                          | .1549655        |  |  |  |  |
| year2004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .0791254   | .0386172            | 2.05  | 0.041  | .0031284                          | .1551223        |  |  |  |  |
| year2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .0894012   | .0425711            | 2.10  | 0.037  | .005623                           | .1731793        |  |  |  |  |
| year2006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .0978549   | .0452075            | 2.16  | 0.031  | .0088885                          | .1868213        |  |  |  |  |
| year2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .0967708   | .0479233            | 2.02  | 0.044  | .0024598                          | .1910818        |  |  |  |  |
| year2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .0590172   | .050452             | 1.17  | 0.243  | 0402701                           | .1583045        |  |  |  |  |
| year2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .044976    | .0643205            | 0.70  | 0.485  | 0816038                           | .1715559        |  |  |  |  |
| year2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .0301227   | .0647847            | 0.46  | 0.642  | 0973709                           | .1576162        |  |  |  |  |
| year2010   .0301227       .0647847       0.46       0.642      0973709       .1576162         Underidentification test (Kleibergen-Paap rk LM statistic):       15.718         Chi-sq(1) P-val =       0.0001                                                                                                                                                                                                                                                                                 |            |                     |       |        |                                   |                 |  |  |  |  |

\_\_\_\_\_ Weak identification test (Cragg-Donald Wald F statistic): 63.507 (Kleibergen-Paap rk Wald F statistic): 15.880 Stock-Yogo weak ID test critical values: <not available> \_\_\_\_\_ Hansen J statistic (overidentification test of all instruments): 0.000 (equation exactly identified) -endog- option: Endogeneity test of endogenous regressors: 12.582 Chi-sq(4) P-val = 0.0135 Regressors tested: lnsedut lntedut lnpatappr lnfdi ------\_\_\_\_\_ Instrumented: Insedut Intedut Inpatappr Infdi Included instruments: lnqdpc lnpop unem lnecofree serv lnrulc year1996 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010 Excluded instruments: lnsedutlag1 lntedutlag1 lnpatapprlag1 lnfdilag1 Dropped collinear: cskills dist transdummy year1997 \_\_\_\_\_

#### Table A5.6.5.1 Model 1 - IV estimated results - ETEs

xtivreq2 lnEXPY cskills lngdpc lnpop unem lnecofree serv lnrulc dist transdummy transindN year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010 (lnsedut Intedut lnpatappr lnfdi = lnsedutlag1 lntedutlag1 lnpatapprlag1 lnfdilag1) if transdummy==1, fe endog (lnsedut lntedut lnpatappr lnfdi) small robust bw(3) Warning - collinearities detected Vars dropped: cskills dist transdummy year1997 FIXED EFFECTS ESTIMATION \_\_\_\_\_ Number of groups = 10 Obs per group: min = 7 avg = 13.4 max = 15 IV (2SLS) estimation \_\_\_\_\_ Estimates efficient for homoskedasticity only Statistics robust to heteroskedasticity and autocorrelation kernel=Bartlett; bandwidth=3 time variable (t): year group variable (i): country Number of obs = 134 F(25, 99) = 134 F(25, 99) = 11.74 Prob > F = 0.0000 Centered R2 = 0.7419Total (centered) SS = 5.640525131 Total (uncentered) SS = 5.640525131 Uncentered R2 = 0.7419 = 1.455955656 Residual SS Root MSE = .1213 \_\_\_\_\_ Robust Coef. Std. Err. lnEXPY | t P>|t| [95% Conf. Interval] \_\_\_\_\_\_ lnsedut | -.3273341 .5054781 -0.65 0.519 -1.330312 .6756442 .429164 lntedut | -.4143736 .4251237 -0.97 0.332 -1.257911 lnpatappr | -.164355 .134384 -1.22 0.224 -.4310021 .102292 .2038214 lnfdi | .012986 .0961767 0.14 0.893 -.1778493 ngdpc.8445394.33316862.530.013.18346071.505618lnpop2.0718032.1794020.950.344-2.2526046.396209unem-.0038394.0021456-1.790.077-.0080967.0004179 lngdpc | .8445394 .3331686 lnpop |

| lnecofree                                                                                                                                                                                                      | 1440598                                                               | .4019605    | -0.36     | 0.721              | 9416366                                       | .653517             |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------|-----------|--------------------|-----------------------------------------------|---------------------|--|--|--|
| serv                                                                                                                                                                                                           | 0010653                                                               | .0107022    | -0.10     | 0.921              | 0223008                                       | .0201701            |  |  |  |
| lnrulc                                                                                                                                                                                                         | .2369057                                                              | .3116118    | 0.76      | 0.449              | 3813998                                       | .8552112            |  |  |  |
| transindN                                                                                                                                                                                                      | 5813905                                                               | .5496779    | -1.06     | 0.293              | -1.672071                                     | .5092897            |  |  |  |
| vear1996                                                                                                                                                                                                       | 1664378                                                               | .0767019    | -2.17     | 0.032              | 3186311                                       | 0142446             |  |  |  |
| vear1998                                                                                                                                                                                                       | .0706213                                                              | .0494032    | 1.43      | 0.156              | 0274053                                       | .168648             |  |  |  |
| vear1999                                                                                                                                                                                                       | .1120747                                                              | .0585709    | 1.91      | 0.059              | 0041426                                       | .2282921            |  |  |  |
| vear2000                                                                                                                                                                                                       | .1616826                                                              | .0828292    | 1.95      | 0.054              | 0026685                                       | .3260337            |  |  |  |
| vear2001                                                                                                                                                                                                       | .2342649                                                              | .099801     | 2.35      | 0.021              | .036238                                       | .4322918            |  |  |  |
| vear2002                                                                                                                                                                                                       | .3029415                                                              | .1451083    | 2.09      | 0.039              | .0150151                                      | .5908679            |  |  |  |
| vear2003                                                                                                                                                                                                       | .3004843                                                              | .1461273    | 2.06      | 0.042              | .0105361                                      | .5904325            |  |  |  |
| vear2004                                                                                                                                                                                                       | .3339416                                                              | .1676208    | 1.99      | 0.049              | .0013457                                      | .6665376            |  |  |  |
| vear2005                                                                                                                                                                                                       | .3621091                                                              | .1910513    | 1.90      | 0.061              | 0169781                                       | .7411964            |  |  |  |
| vear2006                                                                                                                                                                                                       | .398762                                                               | .2083771    | 1.91      | 0.059              | 0147034                                       | .8122275            |  |  |  |
| vear2007                                                                                                                                                                                                       | .4234231                                                              | .2238723    | 1.89      | 0.061              | 0207881                                       | .8676342            |  |  |  |
| vear2008                                                                                                                                                                                                       | .3987454                                                              | .2367982    | 1.68      | 0.095              | 0711136                                       | .8686043            |  |  |  |
| vear2009                                                                                                                                                                                                       | .436553                                                               | .2495723    | 1.75      | 0.083              | 0586525                                       | .9317585            |  |  |  |
| year2010                                                                                                                                                                                                       | .5066901                                                              | .2825293    | 1.79      | 0.076              | 0539093                                       | 1.06729             |  |  |  |
| Underidentification test (Kleibergen-Paap rk LM statistic): 13.033<br>Chi-sq(1) P-val = 0.0003                                                                                                                 |                                                                       |             |           |                    |                                               |                     |  |  |  |
| Weak identifica                                                                                                                                                                                                | ation test (C                                                         | ragg-Donald | Wald F s  | tatistic           | c):                                           | 13.582              |  |  |  |
| Stock-Yogo weak                                                                                                                                                                                                | ID test cri                                                           | tical value | s:        | iiu r sta          | <pre>clistic/. <not a<="" pre=""></not></pre> | available>          |  |  |  |
| Hansen J statis<br>-endog- option:                                                                                                                                                                             | stic (overide                                                         | ntification | test of   | all inst<br>(equat | cruments):<br>tion exactly id                 | 0.000<br>dentified) |  |  |  |
| Endogeneity tes                                                                                                                                                                                                | st of endogen                                                         | ous regress | ors:      | ~1 ·               |                                               | 11.135              |  |  |  |
| Regressors test                                                                                                                                                                                                | ed: lnsed                                                             | ut lntedut  | lnpatappr | Chi-<br>Infdi      | -sq(4)                                        | 0.0251              |  |  |  |
| Instrumented:                                                                                                                                                                                                  | lnsed                                                                 | ut lntedut  | lnpatappr | lnfdi              |                                               |                     |  |  |  |
| Included instruments: lngdpc lnpop unem lnecofree serv lnrulc transindN year1996<br>year1998 year1999 year2000 year2001 year2002 year2003<br>year2004 year2005 year2006 year2007 year2008 year2009<br>year2010 |                                                                       |             |           |                    |                                               |                     |  |  |  |
| Excluded instru                                                                                                                                                                                                | Excluded instruments: Insedutlag1 Intedutlag1 Inpatapprlag1 Infdilag1 |             |           |                    |                                               |                     |  |  |  |
| Dropped colline                                                                                                                                                                                                | ear: cskil                                                            | ls dist tra | nsdummy y | ear1997            |                                               |                     |  |  |  |
|                                                                                                                                                                                                                |                                                                       |             |           |                    |                                               |                     |  |  |  |

### Table A5.6.5.2 Model 1 - IV estimated results - N-ETEs

xtivreg2 lnEXPY cskills lngdpc lnpop unem lnecofree serv lnrulc dist transdummy year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010 (lnsedut lntedut lnpatappr lnfdi = lnsedutlag1 lntedutlag1 lnpatapprlag1 lnfdilag1) if transdummy==0, fe endog (lnsedut lntedut lnpatappr lnfdi) small robust bw(3) Warning - collinearities detected Vars dropped: cskills dist transdummy year1997 FIXED EFFECTS ESTIMATION \_\_\_\_\_ Number of groups = 17 Obs per group: min = 3 avg = 12.6 max = 15 IV (2SLS) estimation \_\_\_\_\_ Estimates efficient for homoskedasticity only Statistics robust to heteroskedasticity and autocorrelation

| kernel=Bartl        | ett; bandwid                          | th=3                          |               |                     |                       |             |
|---------------------|---------------------------------------|-------------------------------|---------------|---------------------|-----------------------|-------------|
| group variab        | ole (i): coun                         | trv                           |               |                     |                       |             |
| 9_00F 00_00         |                                       | 1                             |               |                     |                       |             |
|                     |                                       |                               |               | 1                   | Number of obs =       | = 215       |
|                     |                                       |                               |               |                     | F(24, 174) =          | = 15.00     |
|                     |                                       |                               |               |                     | Prob > F =            | = 0.0000    |
| Total (centere      | ed) SS =                              | 2.001896952                   |               | (                   | Centered R2 =         | = 0.6574    |
| Total (uncente      | ered) SS =                            | 2.001896952                   |               | 1                   | Uncentered R2 =       | = 0.6574    |
| Residual SS         | =                                     | .6858443115                   |               |                     | Root MSE =            | 06278       |
|                     |                                       |                               |               |                     |                       |             |
|                     |                                       | <br>Robust                    |               |                     |                       |             |
| lnEXPY              | Coef.                                 | Std. Err.                     | t             | P> t                | [95% Conf.            | Interval]   |
| +                   |                                       |                               |               |                     |                       |             |
| lnsedut             | 150169                                | .1205378                      | -1.25         | 0.215               | 3880735               | .0877354    |
| lntedut             | .2399896                              | .1416539                      | 1.69          | 0.092               | 0395915               | .5195706    |
| lnpatappr           | .0845948                              | .0556865                      | 1.52          | 0.131               | 0253131               | .1945027    |
| lnfdi               | .0121554                              | .0050995                      | 2.38          | 0.018               | .0020905              | .0222203    |
| lngdpc              | .0682884                              | .2588819                      | 0.26          | 0.792               | 4426645               | .5792414    |
| lnpop               | -1.52655                              | .4518352                      | -3.38         | 0.001               | -2.418333             | 6347664     |
| unem                | 0001901                               | .0007424                      | -0.26         | 0.798               | 0016554               | .0012751    |
| lnecofree           | 3183276                               | 2227207                       | 1.43          | 0.155               | - 1212544             | 7579096     |
| serv                | 0147342                               | 0071871                       | 2 05          | 0 042               | 0005491               | 0289194     |
| lnrulc              | 1292573                               | 3356432                       | 0 39          | 0 701               | - 5331988             | 7917134     |
| vear1996            | - 0565254                             | 019889                        | -2 84         | 0 005               | - 0957801             | - 0172707   |
| voar1998            | 0435167                               | 0214233                       | 2.01          | 0.044               | 0012338               | 0857996     |
| year1999            | 0901080                               | 02014200                      | 3 1 2         | 0.002               | 0331315               | 1/76863     |
| yearryyy            | .0904009                              | 0427456                       | 1 26          | 0.002               | - 0310504             | 1416204     |
| year2000            | 100400                                | .0437430                      | 1.20          | 0.200               | 0310304               | .1410304    |
| year2001            | .108466                               | .0444577                      | 2.44          | 0.016               | .0207203              | .1962118    |
| year2002            | .1123234                              | .0507265                      | 2.21          | 0.028               | .0122049              | .2124418    |
| year2003            | .1162226                              | .0520/48                      | 2.23          | 0.027               | .0134431              | .2190022    |
| year2004            | .1242324                              | .0590455                      | 2.10          | 0.037               | .0076949              | .24077      |
| year2005            | .1506392                              | .0634/45                      | 2.37          | 0.019               | .0253602              | .2/59182    |
| year2006            | .1619086                              | .071519                       | 2.26          | 0.025               | .0207521              | .3030651    |
| year2007            | .1567471                              | .0773712                      | 2.03          | 0.044               | .0040402              | .3094541    |
| year2008            | .0975383                              | .0867873                      | 1.12          | 0.263               | 073753                | .2688296    |
| year2009            | .0321895                              | .0922286                      | 0.35          | 0.727               | 1498413               | .2142204    |
| year2010            | .0127991                              | .0873142                      | 0.15          | 0.884               | 1595322               | .1851304    |
| The devident i Gire |                                       |                               |               | · · · · · · · · · · |                       | 10.000      |
| Underidentiit       | alion lest (                          | kieibergen-Pa                 | арткы         | 'I SLALIS           | (1) $(1)$ $(1)$       | 10.000      |
|                     |                                       |                               |               |                     | -sq(1)                | 0.0015      |
| Weak identific      | ration test (                         | Cragg-Donald                  | Wald F 4      | etatieti            | c).                   | 26 140      |
| weak identifie      | ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( | Clayg Donaid<br>Klojborgon-Pa | an rk Wa      |                     | c/.<br>atistic).      | 6 5/3       |
| Stock-Vogo woo      | (<br>t TD tost ar                     | itigal walwog                 | ар ік wa<br>• | ala r st            | alistic):             | 0.J4J       |
| SLOCK-1090 wea      | ik id test ci                         | values                        | •<br>         |                     |                       | ivallable/  |
| Hansen J stati      | stic (overid                          | entification                  | test of       | all ins             | truments) ·           | 0 000       |
|                     | Sere (overra                          | enerrieación                  | CCDC OI       | (equa               | tion exactly id       | dentified)  |
| -endog- option      | 1:                                    |                               |               | ( - 1               |                       |             |
| Endogeneity te      | est of endoge                         | nous rearesso                 | rs:           |                     |                       | 16.651      |
| Lindogenercy co     | se or enabye                          | nous regresso                 | 10.           | Chi                 | $-s\alpha(4)$ P-val = | 0 0023      |
| Regressors tes      | sted: lnse                            | dut lntedut l                 | npatappi      | r lnfdi             | 09(1) 1 001           | 0.0010      |
|                     |                                       |                               |               |                     |                       |             |
| Instrumented:       | lnse                                  | dut lntedut l                 | npatappı      | r lnfdi             |                       |             |
| Included instr      | ruments: lngd                         | pc lnpop unem                 | lnecofi       | ree serv            | lnrulc year199        | 96 year1998 |
|                     | year                                  | 1999 year2000                 | year200       | 01 year2            | 002 year2003 ye       | ear2004     |
|                     | year                                  | 2005 year2006                 | year200       | )7 year2            | 008 year2009 ye       | ear2010     |
| Excluded instr      | uments: lnse                          | dutlag1 lnted                 | utlag1 l      | lnpatapp            | rlag1 lnfdilag3       | L           |
| Dropped collin      | near: cski                            | lls dist tran                 | sdummy y      | year1997            |                       |             |

| Table A5.7 Model 2 - Fixed effects estimated results                                                                    |                                                                                                   |                                                                                            |                                                                    |                                           |                                            |                     |                                       |                |  |
|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------|--------------------------------------------|---------------------|---------------------------------------|----------------|--|
| <pre>xtreg lnEXPY a<br/>serv dist tran<br/>year2003 year2<br/>note: cskills<br/>note: dist om:<br/>note: transdur</pre> | avyrs sqravyr<br>nsdummy year1<br>2004 year2005<br>omitted beca<br>itted because<br>nmy omitted b | s cskills ln<br>996 year1997<br>year2006 ye<br>use of colli<br>of collinea<br>ecause of co | patappr 1<br>year1998<br>ar2007 ye<br>nearity<br>rity<br>llinearit | Infdi lng<br>3 year199<br>ear2008 y<br>-y | dpc lnpop t<br>99 year2000<br>7ear2009 yea | inem<br>yea<br>ar20 | n lnecofree<br>ar2001 year<br>010, fe | lnrulc<br>2002 |  |
| Fixed-effects<br>Group variable                                                                                         | (within) reg<br>e: country                                                                        | ression                                                                                    |                                                                    | Number<br>Number                          | of obs<br>of groups                        | =                   | 366<br>27                             |                |  |
| R-sq: within<br>between<br>overal                                                                                       | = 0.6958<br>n = 0.0114<br>l = 0.0238                                                              |                                                                                            |                                                                    | Obs per                                   | group: mir<br>avo<br>max                   | n =<br>g =          | 5<br>13.6<br>16                       |                |  |
| corr(u_i, Xb)                                                                                                           | = -0.8772                                                                                         |                                                                                            |                                                                    | F(25,31<br>Prob >                         | .4)<br>F                                   | =                   | 28.73<br>0.0000                       |                |  |
| lnEXPY                                                                                                                  | Coef.                                                                                             | Std. Err.                                                                                  | t                                                                  | P> t                                      | [95% Cor                                   | nf.                 | Interval]                             |                |  |
| avyrs<br>sqravyrs                                                                                                       | 1593657<br>  .0034403<br>  (omitted)                                                              | .1580386<br>.0073173                                                                       | -1.01<br>0.47                                                      | 0.314<br>0.639                            | 4703142<br>0109568                         | <br>2<br>3          | .1515829<br>.0178374                  |                |  |
| lnpatappr<br>lnfdi                                                                                                      | 0074042<br>.0059188                                                                               | .0217919<br>.0040845                                                                       | -0.34<br>1.45                                                      | 0.734<br>0.148                            | 0502809<br>0021176                         | 5                   | .0354724<br>.0139552                  |                |  |
| lngdpc<br>lnpop<br>unem                                                                                                 | .7137505<br> 3204504<br> 0000776                                                                  | .091344<br>.2690468<br>.0007428                                                            | 7.81<br>-1.19<br>-0.10                                             | 0.000<br>0.235<br>0.917                   | .5340268<br>8498127<br>001539              | 3<br>7<br>9         | .8934743<br>.208912<br>.0013839       |                |  |
| lnecofree<br>lnrulc                                                                                                     | .0740471<br>.2804745                                                                              | .1390409<br>.1563722                                                                       | 0.53<br>1.79<br>2.59                                               | 0.595<br>0.074<br>0.010                   | 1995226<br>0271954                         | 5                   | .3476167<br>.5881443                  |                |  |
| dist<br>transdummy                                                                                                      | (omitted)<br>(omitted)                                                                            | .0031003                                                                                   | 2.00                                                               | 0.010                                     | .0019911                                   | -                   | .0141347                              |                |  |
| year1996<br>year1997<br>year1998                                                                                        | .065825<br>.1457527<br>.1888673                                                                   | .0360379<br>.0368188<br>.03741                                                             | 1.83<br>3.96<br>5.05                                               | 0.069<br>0.000<br>0.000                   | 0050813<br>.0733099<br>.1152613            | 3<br>)<br>}         | .136/314<br>.2181954<br>.2624733      |                |  |
| year1999<br>year2000<br>vear2001                                                                                        | <pre>.2157788 .1954816 .2339885</pre>                                                             | .0389693<br>.0388442<br>.0400052                                                           | 5.54<br>5.03<br>5.85                                               | 0.000<br>0.000<br>0.000                   | .1391049<br>.1190537<br>.1552764           | 9<br>7<br>1         | .2924527<br>.2719095<br>.3127006      |                |  |
| year2002<br>year2003                                                                                                    | .245107<br>.2449533<br>.248072                                                                    | .0424619<br>.0442748                                                                       | 5.77<br>5.53                                                       | 0.000                                     | .1615611<br>.1578405                       | 5                   | .3286528<br>.332066<br>.34158         |                |  |
| year2004<br>year2005<br>year2006                                                                                        | .2498072<br>.2642048<br>.2735693                                                                  | .0400433                                                                                   | 5.30<br>5.31<br>5.19                                               | 0.000                                     | .1662802                                   | 2<br>2<br>3         | .3621294                              |                |  |
| year2007<br>year2008<br>year2009                                                                                        | .2716757<br>  .2430929<br>  .2388271                                                              | .0547426<br>.0557881<br>.055284                                                            | 4.96<br>4.36<br>4.32                                               | 0.000<br>0.000<br>0.000                   | .1639671<br>.1333271<br>.1300531           | -                   | .3793843<br>.3528587<br>.347601       |                |  |
| year2010<br>cons                                                                                                        | .2313475<br>4.07845                                                                               | .0570877<br>3.33775                                                                        | 4.05<br>1.22                                                       | 0.000<br>0.223                            | .1190247<br>-2.488732                      | 7<br>2<br>          | .3436704<br>10.64563                  |                |  |
| sigma_u<br>sigma_e<br>rho                                                                                               | .818763<br>.09563513<br>.98654036                                                                 | (fraction                                                                                  | of variar                                                          | nce due t                                 | ou_i)                                      |                     |                                       |                |  |
| F test that a                                                                                                           | ll u_i=0:                                                                                         | F(26, 314)                                                                                 | = 91.3                                                             | <br>30                                    | Prob                                       | <br>> E             | r = 0.0000                            |                |  |

## **Table A5.7.1 Model 2 - Diagnostic tests**

#### Groupwise heteroskedasticity

xttest3 Modified Wald test for groupwise heteroskedasticity in fixed effect regression model H0: sigma(i)^2 = sigma^2 for all i chi2 (27) = 3569.86 Prob>chi2 = 0.0000

#### Autocorrelation in panel data

xtserial lnEXPY avyrs sqravyrs cskills lnpatappr lnfdi lngdpc lnpop unem lnecofree lnrulc serv dist transdummy year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010 Wooldridge test for autocorrelation in panel data H0: no first order autocorrelation F(1, 26) = 92.816

Prob > F = 0.0000

#### Normality of residuals

pantest2 lnEXPY avyrs sqravyrs cskills lnpatappr lnfdi lngdpc lnpop unem lnecofree lnrulc serv dist transdummy year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010, fe Test for serial correlation in residuals Null hypothesis is either that rho=0 if residuals are AR(1) or that lamda=0 if residuals are MA(1) Following tests only approximate for unbalanced panels LM= 59.305243 which is asy. distributed as chisq(1) under null, so: Probability of value greater than LM is 1.350e-14 LM5= 7.7009898 which is asy. distributed as N(0,1) under null, so: Probability of value greater than abs(LM5) is 6.772e-15 Test for significance of fixed effects F= 91.295041 Protection of the set of th

### Table A5.7.2 Model 2 - Driscoll-Kraay estimated results

xtscc lnEXPY avyrs sqravyrs cskills lnpatappr lnfdi lngdpc lnpop unem lnecofree lnrulc serv dist transdummy year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010, fe

| Regression wit | h Driscoll-K | raay standard | l errors | Number   | of obs    | =  | 366       |  |
|----------------|--------------|---------------|----------|----------|-----------|----|-----------|--|
| Method: Fixed- | effects regr | ession        |          | Number   | of groups | =  | 27        |  |
| Group variable | (i): countr  | У             |          | F(28,    | 26)       | =  | 186853.24 |  |
| maximum lag: 2 |              |               |          | Prob > 1 | F         | =  | 0.0000    |  |
|                |              |               |          | within 1 | R-squared | =  | 0.6958    |  |
|                |              |               |          |          |           |    |           |  |
|                |              |               |          |          |           |    |           |  |
|                |              | Drisc/Kraay   |          |          |           |    |           |  |
| lnEXPY         | Coef.        | Std. Err.     | t        | P> t     | [95% Con  | f. | Interval] |  |
| +              |              |               |          |          |           |    |           |  |
| avyrs          | 1593657      | .2301521      | -0.69    | 0.495    | 63245     |    | .3137187  |  |

| sqravyrs   | .0034403  | .0103278 | 0.33  | 0.742 | 0177887  | .0246693 |  |
|------------|-----------|----------|-------|-------|----------|----------|--|
| cskills    | (omitted) |          |       |       |          |          |  |
| lnpatappr  | 0074042   | .0110645 | -0.67 | 0.509 | 0301476  | .0153392 |  |
| lnfdi      | .0059188  | .0024847 | 2.38  | 0.025 | .0008114 | .0110262 |  |
| lngdpc     | .7137505  | .0780245 | 9.15  | 0.000 | .5533688 | .8741322 |  |
| lnpop      | 3204504   | .1351481 | -2.37 | 0.025 | 5982513  | 0426495  |  |
| unem       | 0000776   | .000361  | -0.21 | 0.832 | 0008196  | .0006645 |  |
| lnecofree  | .0740471  | .1186551 | 0.62  | 0.538 | 169852   | .3179461 |  |
| lnrulc     | .2804745  | .1819007 | 1.54  | 0.135 | 0934277  | .6543766 |  |
| serv       | .0080429  | .0030664 | 2.62  | 0.014 | .0017397 | .014346  |  |
| dist       | .0039379  | .002177  | 1.81  | 0.082 | 000537   | .0084128 |  |
| transdummy | (omitted) |          |       |       |          |          |  |
| year1996   | .065825   | .0068459 | 9.62  | 0.000 | .0517531 | .079897  |  |
| year1997   | .1457527  | .0129128 | 11.29 | 0.000 | .1192101 | .1722953 |  |
| year1998   | .1888673  | .0151907 | 12.43 | 0.000 | .1576424 | .2200922 |  |
| year1999   | .2157788  | .0204726 | 10.54 | 0.000 | .1736968 | .2578607 |  |
| year2000   | .1954816  | .0204438 | 9.56  | 0.000 | .1534587 | .2375045 |  |
| year2001   | .2339885  | .023402  | 10.00 | 0.000 | .1858851 | .2820919 |  |
| year2002   | .245107   | .0276482 | 8.87  | 0.000 | .1882753 | .3019386 |  |
| year2003   | .2449533  | .0313624 | 7.81  | 0.000 | .1804869 | .3094197 |  |
| year2004   | .2498072  | .0360429 | 6.93  | 0.000 | .17572   | .3238943 |  |
| year2005   | .2642048  | .0405768 | 6.51  | 0.000 | .1807979 | .3476117 |  |
| year2006   | .2735693  | .0465467 | 5.88  | 0.000 | .1778911 | .3692474 |  |
| year2007   | .2716757  | .0500357 | 5.43  | 0.000 | .1688258 | .3745256 |  |
| year2008   | .2430929  | .0490614 | 4.95  | 0.000 | .1422458 | .34394   |  |
| year2009   | .2388271  | .0423963 | 5.63  | 0.000 | .1516802 | .3259739 |  |
| year2010   | .2313475  | .0457946 | 5.05  | 0.000 | .1372153 | .3254797 |  |
| _cons      | (omitted) |          |       |       |          |          |  |
|            |           |          |       |       |          |          |  |

#### Table A5.7.3 Model 2 - FEVD estimated results

. xtfevd lnEXPY avyrs sqravyrs cskills lnpatappr lnfdi lngdpc lnpop unem lnecofree lnrulc serv dist transdummy year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010, invariant (cskills dist transdummy) panel fixed effects regression with vector decomposition degrees of freedom fevd = 311 number of obs = 366 = .0078466 mean squared error F( 30, 311) = 6.128892 root mean squared error = .0885812 Prob > F = 3.18e-17 Residual Sum of Squares = 2.871867 R-squared = .9522925 Total Sum of Squares = 60.19739 adj. R-squared = .9440089 Estimation Sum of Squares = 57.32552 fevd t P>|t| lnEXPY | Coef. Std. Err. [95% Conf. Interval] \_\_\_\_\_ .uu34403 .0806881 -.0074042 .21011 .00501 avyrs | -.1593657 1.735442 -0.09 0.927 -3.574058 3.255327 0.04 0.966 sqravyrs | -.1553233 .1622039 -0.03 0.972 -.4247737 lnpatappr | .4099653 .0245688 0.24 0.810 lnfdi | .0059188 -.0424233 .0542609 .7137505 1.279509 0.56 0.577 -1.803838 lngdpc | 3.231339 lnpop | -.3204504 .6807283 -0.47 0.638 -1.659866 1.018965 unem | -.0000776 .0042562 -0.02 0.985 -.0084522 .0082971 .074047 1.313449 0.06 0.955 -2.510322 2.658417 lnecofree | .2804744 1.081762 lnrulc | 0.26 0.796 -1.848023 2.408972 .0080429 .0240002 0.34 0.738 -.0391804 serv | .0552662 year1996 | .065825 .221578 0.30 0.767 -.3701566 .5018067 .1457527 .2927798 0.50 0.619 -.4303271 .7218324 year1997 | year1998 | .1888673 .2999011 0.63 0.529 -.4012244 .778959 0.79 0.429 -.3198158 year1999 | .2157788 .2722041 .7513733

| year2000   | .1954816  | .2553564 | 0.77  | 0.445 | 306963    | .6979262 |  |
|------------|-----------|----------|-------|-------|-----------|----------|--|
| year2001   | .2339885  | .2860368 | 0.82  | 0.414 | 3288235   | .7968005 |  |
| year2002   | .245107   | .2928377 | 0.84  | 0.403 | 3310868   | .8213007 |  |
| year2003   | .2449533  | .3445339 | 0.71  | 0.478 | 4329589   | .9228655 |  |
| year2004   | .2498072  | .3665422 | 0.68  | 0.496 | 4714089   | .9710233 |  |
| year2005   | .2642048  | .4154607 | 0.64  | 0.525 | 5532645   | 1.081674 |  |
| year2006   | .2735693  | .4234358 | 0.65  | 0.519 | 5595919   | 1.10673  |  |
| year2007   | .2716757  | .498568  | 0.54  | 0.586 | 7093173   | 1.252669 |  |
| year2008   | .2430929  | .5062922 | 0.48  | 0.631 | 7530982   | 1.239284 |  |
| year2009   | .2388271  | .4486424 | 0.53  | 0.595 | 6439312   | 1.121585 |  |
| year2010   | .2313475  | .4537286 | 0.51  | 0.610 | 6614184   | 1.124113 |  |
| cskills    | .7207232  | .9315926 | 0.77  | 0.440 | -1.112298 | 2.553744 |  |
| dist       | -4.48e-06 | .0006538 | -0.01 | 0.995 | 0012909   | .0012819 |  |
| transdummy | .7744078  | 1.946938 | 0.40  | 0.691 | -3.056428 | 4.605244 |  |
| eta        | 1         | •        | •     |       |           | •        |  |
| _cons      | .239579   | 17.27828 | 0.01  | 0.989 | -33.75754 | 34.2367  |  |
|            |           |          |       |       |           |          |  |
|            |           |          |       |       |           |          |  |

### Table A5.7.4 Model 2 - Hausman and Taylor estimated results

. xthtaylor lnEXPY avyrs sqravyrs cskills lnpatappr lnfdi lngdpc lnpop unem lnecofree lnrulc serv dist transdummy year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010, endo (avyrs sqravyrs cskills)

| Hausman-Taylon<br>Group variable | r estimation<br>e: country |           | Number<br>Number | of obs =<br>of groups = | 366<br>27                      |                  |
|----------------------------------|----------------------------|-----------|------------------|-------------------------|--------------------------------|------------------|
|                                  |                            |           |                  | Obs per                 | group: min =<br>avg =<br>max = | 5<br>13.6<br>16  |
| Random effects                   | s u_i ~ i.i.d.             |           |                  | Wald ch<br>Prob >       | i2(28) =<br>chi2 =             | 752.56<br>0.0000 |
| lnEXPY                           | Coef.                      | Std. Err. | Z                | P> z                    | [95% Conf.                     | Interval]        |
| TVexogenous                      |                            |           |                  |                         |                                |                  |
| lnpatappr                        | 0017438                    | .0209434  | -0.08            | 0.934                   | 0427922                        | .0393045         |
| lnfdi                            | .0040817                   | .0038424  | 1.06             | 0.288                   | 0034492                        | .0116126         |
| lngdpc                           | .7765969                   | .0800993  | 9.70             | 0.000                   | .6196052                       | .9335887         |
| lnpop                            | .1020146                   | .1119708  | 0.91             | 0.362                   | 1174442                        | .3214734         |
| unem                             | .0000693                   | .0007197  | 0.10             | 0.923                   | 0013413                        | .0014798         |
| lnecofree                        | .1177496                   | .1334748  | 0.88             | 0.378                   | 1438562                        | .3793553         |
| lnrulc                           | .2539865                   | .151917   | 1.67             | 0.095                   | 0437654                        | .5517384         |
| serv                             | .0077129                   | .0030039  | 2.57             | 0.010                   | .0018254                       | .0136004         |
| year1996                         | .0696941                   | .0350917  | 1.99             | 0.047                   | .0009157                       | .1384726         |
| year1997                         | .1469793                   | .0359113  | 4.09             | 0.000                   | .0765945                       | .2173641         |
| year1998                         | .190874                    | .0364675  | 5.23             | 0.000                   | .119399                        | .262349          |
| year1999                         | .2156843                   | .0379891  | 5.68             | 0.000                   | .1412269                       | .2901417         |
| year2000                         | .19282                     | .0378319  | 5.10             | 0.000                   | .1186708                       | .2669693         |
| year2001                         | .2277534                   | .0388266  | 5.87             | 0.000                   | .1516546                       | .3038521         |
| year2002                         | .2368221                   | .0411094  | 5.76             | 0.000                   | .1562491                       | .3173951         |
| year2003                         | .235601                    | .0428002  | 5.50             | 0.000                   | .1517141                       | .3194879         |
| year2004                         | .2357648                   | .0447177  | 5.27             | 0.000                   | .1481197                       | .3234099         |
| year2005                         | .2465096                   | .0473928  | 5.20             | 0.000                   | .1536213                       | .3393978         |
| year2006                         | .2507714                   | .0496836  | 5.05             | 0.000                   | .1533932                       | .3481495         |
| year2007                         | .2457914                   | .0511581  | 4.80             | 0.000                   | .1455235                       | .3460594         |
| year2008                         | .2154358                   | .0519015  | 4.15             | 0.000                   | .1137107                       | .317161          |
| year2009                         | .2174269                   | .052439   | 4.15             | 0.000                   | .1146483                       | .3202056         |
| year2010                         | .2066705                   | .0537941  | 3.84             | 0.000                   | .1012361                       | .3121049         |
| TVendogenous                     |                            |           |                  |                         |                                |                  |

| sigma_u<br>sigma_e<br>rho | .74799655<br>  .09204123<br>  .98508445 | (fraction | of varia | nce due t | o u_i)    |          |
|---------------------------|-----------------------------------------|-----------|----------|-----------|-----------|----------|
| _cons                     | -3.296869<br>+                          | 5.739779  | -0.57    | 0.566     | -14.54663 | 7.95289  |
| cskills                   | .4541542                                | 1.062774  | 0.43     | 0.669     | -1.628845 | 2.537154 |
| transdummy                | 1.055614                                | .3468638  | 3.04     | 0.002     | .3757733  | 1.735454 |
| TIexogenous<br>dist       | <br>  .0001749                          | .000303   | 0.58     | 0.564     | 0004189   | .0007687 |
| sqravyrs                  | .0029791                                | .0070961  | 0.42     | 0.675     | 0109291   | .0168873 |
| avyrs                     | 1509265                                 | .1531854  | -0.99    | 0.324     | 4511643   | .1493113 |

#### Table A5.7.5 Model 2 - IV estimated results

```
xtivreg2 lnEXPY cskills lngdpc lnpop unem lnecofree serv lnrulc dist transdummy
year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004
year2005 year2006 year2007 year2008 year2009 year2010 (avyrs sqravyrs lnpatappr lnfdi
= avyrslag1 sqravyrslag1 lnpatapprlag1 lnfdilag1), fe endog (avyrs sqravyrs lnpatappr
lnfdi) small robust bw(3)
Warning - collinearities detected
Vars dropped: cskills dist transdummy year1997
FIXED EFFECTS ESTIMATION
_____
Number of groups =
                                        Obs per group: min =
                                                    min = 3
avg = 12.9
                    27
                                                     max =
                                                               15
IV (2SLS) estimation
Estimates efficient for homoskedasticity only
Statistics robust to heteroskedasticity and autocorrelation
 kernel=Bartlett; bandwidth=3
 time variable (t): year
 group variable (i): country
                                             Number of obs =
                                                              349
                                                           12.16
                                             F(24, 298) =
                                             Prob > F = 0.0000
Total (centered) SS = 7.642422083
                                            Centered R2 = 0.6683
Total (uncentered) SS = 7.642422083
                                            Uncentered R2 = 0.6683
Residual SS
                   = 2.535345782
                                             Root MSE
                                                           .09224
                                                      =
          _____
                       Robust
          lnEXPY | Coef. Std. Err. t P>|t| [95% Conf. Interval]
______
   avyrs | -.0418507 .2471238 -0.17 0.866 -.5281795
sqravyrs | -.0012947 .0111172 -0.12 0.907 -.0231728
                                                           .4444781
                                              -.0231728
                                                           .0205835
                               -0.42 0.676 -.1147175
  lnpatappr | -.0201088 .0480746
                                                          .0744998
     lnfdi |
             .0065521 .0040659
                                 1.61 0.108 -.0014494
                                                          .0145537
                                                          .9841719
            .7213378 .1335569
                                 5.40 0.000
     lngdpc |
                                                .4585037
     lnpop | -.498095 .4108821
                                 -1.21 0.226 -1.306693
                                                          .3105032
                                                          .0015329
      unem | -.0001646 .0008626 -0.19 0.849 -.0018621
                                 0.08 0.935 -.3802396
  lnecofree | .0165212 .2016106
                                                          .4132821
                                 1.68 0.095 -.0016132
                                                          .0200611
     serv | .009224 .0055068
                                 0.88 0.382
                                                          .7373329
     lnrulc | .2271092 .2592658
                                               -.2831145
   year1996 | -.0753466 .032655 -2.31 0.022 -.1396101 -.011083
```

| year1999         .06586       .0266568       2.47       0.014       .0134006       .1183193         year2000         .0418237       .0341921       1.22       0.222      0256468       .1091122         year2002         .0888471       .0353844       2.51       0.013       .0192122       .158482         year2003         .0883282       .0361139       2.45       0.015       .0172576       .1593988         year2004         .086701       .039354       2.20       0.028       .0092531       .164147         year2005         .098741       .0431323       2.29       0.023       .0138584       .1836235         year2007         .1087399       .0468223       2.33       0.020       .0171107       .2013991         year2008         .0772435       .0509642       1.52       0.131      0320518       .175388         year2010         .0657972       .0599347       1.10       0.273      0521518       .1837461                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | year1998                                                                                                                                                                                                                                                                                                                                                                         | .0401857                          | .0218062     | 1.84                  | 0.066                  | 002728                     | .0830995                       |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------|-----------------------|------------------------|----------------------------|--------------------------------|--|
| year2000         .0418237       .0341921       1.22       0.222      0254648       .1091122         year2001         .0808706       .0319424       2.53       0.012       .0180093       .1437319         year2002         .0888471       .0353844       2.51       0.013       .0192122       .158482         year2003         .0883282       .0361139       2.45       0.015       .0172576       .1593988         year2004         .0867001       .039354       2.20       0.028       .0092531       .164147         year2005         .098741       .0431323       2.29       0.023       .0138584       .1836235         year2007         .1087399       .0487433       2.23       0.026       .0128152       .2046645         year2008         .0772435       .0509642       1.52       0.131      0230518       .1775388         year2010         .0657972       .0599347       1.10       0.273      0521518       .1837461                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | year1999                                                                                                                                                                                                                                                                                                                                                                         | .06586                            | .0266568     | 2.47                  | 0.014                  | .0134006                   | .1183193                       |  |
| <pre>year2001   .0808706 .0319424 2.53 0.012 .0180093 .1437319<br/>year2002   .0888471 .0353844 2.51 0.013 .0192122 .158482<br/>year2004   .0867001 .039354 2.20 0.028 .0092531 .164147<br/>year2005   .098741 .0431323 2.29 0.023 .0138584 .1836235<br/>year2006   .1092549 .0468223 2.33 0.020 .0171107 .2013991<br/>year2007   .1087399 .0487433 2.23 0.026 .0128152 .2046645<br/>year2008   .0772435 .0509642 1.52 0.1310230518 .1775388<br/>year2009   .074311 .0577254 1.29 0.19903929 .1879121<br/>year2010   .0657972 .0599347 1.10 0.2730521518 .1837461<br/>Underidentification test (Kleibergen-Paap rk LM statistic): 13.908<br/>Chi-sq(1) P-val = 0.0002<br/></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | year2000                                                                                                                                                                                                                                                                                                                                                                         | .0418237                          | .0341921     | 1.22                  | 0.222                  | 0254648                    | .1091122                       |  |
| <pre>year2002   .0888471 .0353844 2.51 0.013 .0192122 .158482<br/>year2003   .0883282 .0361139 2.45 0.015 .0172576 .1593988<br/>year2004   .0867001 .039354 2.20 0.028 .0092531 .164147<br/>year2005   .098741 .0431323 2.29 0.023 .0138584 .1836235<br/>year2006   .1092549 .0468223 2.33 0.020 .0171107 .2013991<br/>year2007   .1087399 .0487433 2.23 0.026 .0128152 .2046645<br/>year2008   .0774315 .0509642 1.52 0.1310230518 .1775388<br/>year2009   .074311 .0577254 1.29 0.19903929 .1879121<br/>year2010   .0657972 .0599347 1.10 0.2730521518 .1837461<br/></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | year2001                                                                                                                                                                                                                                                                                                                                                                         | .0808706                          | .0319424     | 2.53                  | 0.012                  | .0180093                   | .1437319                       |  |
| year2003   .0883282 .0361139 2.45 0.015 .0172576 .1593988         year2004   .0867001 .039354 2.20 0.028 .0092531 .164147         year2005   .098741 .0431323 2.29 0.023 .0138584 .1836235         year2006   .1092549 .0468223 2.33 0.020 .0171107 .2013991         year2007   .1087399 .0487433 2.23 0.026 .0128152 .2046645         year2008   .0772435 .0509642 1.52 0.1310230518 .1775388         year2010   .0657972 .0599347 1.10 0.2730521518 .1837461                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | year2002                                                                                                                                                                                                                                                                                                                                                                         | .0888471                          | .0353844     | 2.51                  | 0.013                  | .0192122                   | .158482                        |  |
| year2004   .0867001 .039354 2.20 0.028 .0092531 .164147         year2005   .098741 .0431323 2.29 0.023 .0138584 .1836235         year2006   .1092549 .0468223 2.33 0.020 .0171107 .2013991         year2007   .1087399 .0487433 2.23 0.026 .0128152 .2046645         year2008   .0772435 .0509642 1.52 0.1310230518 .1775388         year2010   .0657972 .0599347 1.10 0.2730521518 .1837461         _year2010   .0657972 .0599347 1.10 0.2730521518 .1837461         _year2010   .0657972 .0599347 1.10 0.2730521518 .1837461         _underidentification test (Kleibergen-Paap rk LM statistic): 13.908         Chi-sq(1) P-val = 0.0002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | year2003                                                                                                                                                                                                                                                                                                                                                                         | .0883282                          | .0361139     | 2.45                  | 0.015                  | .0172576                   | .1593988                       |  |
| year2005         .098741       .0431323       2.29       0.023       .0138584       .1836235         year2006         .1092549       .0486223       2.33       0.020       .0171107       .2013991         year2007         .1087399       .0487433       2.23       0.026       .0128152       .2046645         year2008         .0772435       .0509642       1.52       0.131      0230518       .1775388         year2010         .0657972       .0599347       1.10       0.273      0521518       .1837461                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | year2004                                                                                                                                                                                                                                                                                                                                                                         | .0867001                          | .039354      | 2.20                  | 0.028                  | .0092531                   | .164147                        |  |
| year2006   .1092549       .0468223       2.33       0.020       .0171107       .2013991         year2007   .1087399       .0487433       2.23       0.026       .0128152       .2046645         year2008   .0772435       .0509642       1.52       0.131      0230518       .1775388         year2019   .0774311       .0577254       1.29       0.199      03929       .187761         year2010   .0657972       .0599347       1.10       0.273      0521518       .1837461                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | year2005                                                                                                                                                                                                                                                                                                                                                                         | .098741                           | .0431323     | 2.29                  | 0.023                  | .0138584                   | .1836235                       |  |
| year2007         .1087399       .0487433       2.23       0.026       .0128152       .2046645         year2008         .0772435       .0509642       1.52       0.131      0230518       .1775388         year2019         .074311       .0577254       1.29       0.199      03929       .1879121         year2010         .0657972       .0599347       1.10       0.273      0521518       .1837461         Underidentification test (Kleibergen-Paap rk LM statistic):       13.908       .0487433       .061-sq(1) P-val =       0.0002         Weak identification test (Cragg-Donald Wald F statistic):       .63.634       .63.634       .63.634         (Kleibergen-Paap rk Wald F statistic):       .14.385       .0000       .0000         weak identification test critical values: <not available=""> </not>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | year2006                                                                                                                                                                                                                                                                                                                                                                         | .1092549                          | .0468223     | 2.33                  | 0.020                  | .0171107                   | .2013991                       |  |
| year2008   .0772435 .0509642       1.52 0.1310230518 .1775388         year2009   .074311 .0577254 1.29 0.19903929 .1879121         year2010   .0657972 .0599347 1.10 0.2730521518 .1837461         underidentification test (Kleibergen-Paap rk LM statistic): 13.908         Chi-sq(1) P-val = 0.0002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | year2007                                                                                                                                                                                                                                                                                                                                                                         | .1087399                          | .0487433     | 2.23                  | 0.026                  | .0128152                   | .2046645                       |  |
| year2009.074311.05772541.290.19903929.1879121year2010.0657972.05993471.100.2730521518.1837461Underidentification test (Kleibergen-Paap rk LM statistic):13.908Chi-sq(1) P-val =0.0002Weak identification test (Cragg-Donald Wald F statistic):63.634(Kleibergen-Paap rk Wald F statistic):63.634(Kleibergen-Paap rk Wald F statistic):14.385Stock-Yogo weak ID test critical values: <not available=""></not>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | year2008                                                                                                                                                                                                                                                                                                                                                                         | .0772435                          | .0509642     | 1.52                  | 0.131                  | 0230518                    | .1775388                       |  |
| year2010  .0657972.05993471.100.2730521518.1837461Underidentification test (Kleibergen-Paap rk LM statistic):13.908<br>Chi-sq(1) P-val =0.0002Weak identification test (Cragg-Donald Wald F statistic):63.634<br>(Kleibergen-Paap rk Wald F statistic):63.634<br>14.385Stock-Yogo weak ID test critical values: <not available="">Hansen J statistic (overidentification test of all instruments):0.000<br/>(equation exactly identified)-endog- option:12.914<br/>Chi-sq(4) P-val =Endogeneity test of endogenous regressors:12.914<br/>Chi-sq(4) P-val =Instrumented:avyrs sqravyrs lnpatappr lnfdiIncluded instruments:lngdpc lnpop unem lnecofree serv lnrulc year1996 year1998<br/>year1999 year2000 year2001 year2002 year2003 year2004<br/>year2005 year2006 year2007 year2008 year2009 year2010Excluded instruments:avyrslag1 sqravyrslag1 lnpatapprlag1 lnfdilag1</not>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | year2009                                                                                                                                                                                                                                                                                                                                                                         | .074311                           | .0577254     | 1.29                  | 0.199                  | 03929                      | .1879121                       |  |
| Underidentification test (Kleibergen-Paap rk LM statistic): 13.908<br>Chi-sq(1) P-val = 0.0002<br>Weak identification test (Cragg-Donald Wald F statistic): 63.634<br>(Kleibergen-Paap rk Wald F statistic): 14.385<br>Stock-Yogo weak ID test critical values: <a href="https://www.statistic">statistic</a> ): 14.385<br>Stock-Yogo weak ID test critical values: <a href="https://www.statistic">statistic</a> ): 14.385<br>Stock-Yogo weak ID test critical values: <a href="https://www.statistic">statistic</a> ): 0.000<br>(equation exactly identified)<br>-endog- option: <a href="https://www.statistic">statistic</a> (overidentification test of all instruments): 0.000<br>(equation exactly identified)<br>-endog- option: <a href="https://www.statistic">statistic</a> (overidentification test of all instruments): 0.000<br>(equation exactly identified)<br>-endog- option: <a href="https://www.statistic">statistic</a> (overidentification test of all instruments): 0.000<br>(equation exactly identified)<br>-endog- option: <a href="https://www.statistic">statistic</a> (overidentification test of all instruments): 0.000<br>(equation exactly identified)<br>-endog- option: <a href="https://www.statistic">statistic</a> (overidentification test of all instruments): 0.000<br>(equation exactly identified)<br>-endog- option: <a href="https://www.statistic">statistic</a> (overidentification test of all instruments): 0.000<br>(equation exactly identified)<br>-endog- option: <a href="https://www.statistic">statistic</a> (overidentification test of all instruments): 0.000<br>(equation exactly identified)<br>-endog- option: <a href="https://www.statistic">statistic</a> (overidentification test of all instruments): 0.000<br>(equation exactly identified)<br>-endog- option: <a href="https://www.statistic">statistic</a> (overidentification test of all instruments: 12.914<br>Chi-sq(4) P-val = 0.0117<br>Regressors tested: avyrs sqravyrs lnpatappr lnfdi<br>Included instruments: lngdpc lnpop unem lnecofree serv lnrulc year1996 year1998<br>year1999 year2006 year2007 year2002 year2003 year2004<br>year2005 year2006 year | year2010                                                                                                                                                                                                                                                                                                                                                                         | .0657972                          | .0599347     | 1.10                  | 0.273                  | 0521518                    | .1837461                       |  |
| Hansen J statistic (overidentification test of all instruments): 0.000<br>-endog- option:<br>Endogeneity test of endogenous regressors: 12.914<br>Chi-sq(4) P-val = 0.0117<br>Regressors tested: avyrs sqravyrs lnpatappr lnfdi<br>Instrumented: avyrs sqravyrs lnpatappr lnfdi<br>Included instruments: lngdpc lnpop unem lnecofree serv lnrulc year1996 year1998<br>year1999 year2000 year2001 year2002 year2003 year2004<br>year2005 year2006 year2007 year2008 year2009 year2010<br>Excluded instruments: avyrslag1 sqravyrslag1 lnpatapprlag1 lnfdilag1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Weak identifica                                                                                                                                                                                                                                                                                                                                                                  | tion test (C<br>(K<br>ID test cri | cragg-Donald | Wald F s<br>aap rk Wa | statistic<br>ald F sta | e):<br>tistic):            | 63.634<br>14.385<br>available> |  |
| Lendog- option:12.914Endogeneity test of endogenous regressors:12.914Chi-sq(4) P-val =0.0117Regressors tested:avyrs sqravyrs lnpatappr lnfdiInstrumented:avyrs sqravyrs lnpatappr lnfdiIncluded instruments:lngdpc lnpop unem lnecofree serv lnrulc year1996 year1998year1999 year2000 year2001 year2002 year2003 year2004year2005 year2006 year2007 year2008 year2009 year2010Excluded instruments:avyrslag1 sqravyrslag1 lnpatapprlag1 lnfdilag1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Hansen J statis                                                                                                                                                                                                                                                                                                                                                                  | tic (overide                      | entification | test of               | all inst<br>(equat     | ruments):                  | 0.000<br>dentified)            |  |
| Endogeneity test of endogenous regressors.Chi-sq(4) P-val = 0.0117Regressors tested:avyrs sqravyrs lnpatappr lnfdiInstrumented:avyrs sqravyrs lnpatappr lnfdiIncluded instruments:lngdpc lnpop unem lnecofree serv lnrulc year1996 year1998<br>year1999 year2000 year2001 year2002 year2003 year2004<br>year2005 year2006 year2007 year2008 year2009 year2010Excluded instruments:avyrslag1 sqravyrslag1 lnpatapprlag1 lnfdilag1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -endogonojty tos                                                                                                                                                                                                                                                                                                                                                                 | t of ondogor                      | olle rogross | ore.                  |                        |                            | 12 01/                         |  |
| Regressors tested: avyrs sqravyrs lnpatappr lnfdi<br>Instrumented: avyrs sqravyrs lnpatappr lnfdi<br>Included instruments: lngdpc lnpop unem lnecofree serv lnrulc year1996 year1998<br>year1999 year2000 year2001 year2002 year2003 year2004<br>year2005 year2006 year2007 year2008 year2009 year2010<br>Excluded instruments: avyrslag1 sqravyrslag1 lnpatapprlag1 lnfdilag1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Endogeneity tes                                                                                                                                                                                                                                                                                                                                                                  | t of endogen                      | ious regress | 015.                  | Chi-                   | $e_{\alpha(4)} P_{-val} =$ | 0 0117                         |  |
| Instrumented: avyrs sqravyrs lnpatappr lnfdi<br>Included instruments: lngdpc lnpop unem lnecofree serv lnrulc year1996 year1998<br>year1999 year2000 year2001 year2002 year2003 year2004<br>year2005 year2006 year2007 year2008 year2009 year2010<br>Excluded instruments: avyrslag1 sqravyrslag1 lnpatapprlag1 lnfdilag1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Regressors test                                                                                                                                                                                                                                                                                                                                                                  | ed: avyrs                         | sqravyrs l   | npatappr              | lnfdi                  | 59(1) 1 Vai                | 0.0117                         |  |
| Dropped collinear: cskills dist transdummy year1997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Instrumented: avyrs sqravyrs lnpatappr lnfdi<br>Included instruments: lngdpc lnpop unem lnecofree serv lnrulc year1996 year1998<br>year1999 year2000 year2001 year2002 year2003 year2004<br>year2005 year2006 year2007 year2008 year2009 year2010<br>Excluded instruments: avyrslag1 sqravyrslag1 lnpatapprlag1 lnfdilag1<br>Dropped collinear: cskills dist transdummy year1997 |                                   |              |                       |                        |                            |                                |  |

### Table A5.7.5.1 Model 2 - IV estimated results – ETEs

xtivreg2 lnEXPY cskills lngdpc lnpop unem lnecofree serv lnrulc dist transdummy transindN year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004 year2005 year2006 year2007 year2008 year2009 year2010 (avyrs sqravyrs lnpatappr lnfdi =avyrslag1 sqravyrslag1 lnpatapprlag1 lnfdilag1) if transdummy==1, fe endog (avyrs sqravyrs lnpatappr lnfdi) small robust bw(3) Warning - collinearities detected Vars dropped: cskills dist transdummy year1997 FIXED EFFECTS ESTIMATION \_\_\_\_\_ avg = 13.4 max = Number of groups = 10 Obs per group: min = IV (2SLS) estimation \_\_\_\_\_ Estimates efficient for homoskedasticity only Statistics robust to heteroskedasticity and autocorrelation kernel=Bartlett; bandwidth=3 time variable (t): year group variable (i): country Number of obs = 134 11.96 F(25, 99) =

| Total (centere<br>Total (uncente<br>Residual SS   | d) SS =<br>red) SS =<br>=                                                 | 5.640525131<br>5.640525131<br>1.374725097                                                                  |                                                                           |                                                                   | Prob > F<br>Centered R2<br>Uncentered R2<br>Root MSE                          | = 0.0000<br>= 0.7563<br>= 0.7563<br>= .1178 |
|---------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------|
| <br> <br>  lnEXPY                                 | Coef.                                                                     | Robust<br>Std. Err.                                                                                        |                                                                           |                                                                   | [95% Conf.                                                                    | . Intervall                                 |
| +                                                 |                                                                           |                                                                                                            |                                                                           |                                                                   |                                                                               |                                             |
| avyrs                                             | .89595                                                                    | 1.170925                                                                                                   | 0.77                                                                      | 0.446                                                             | -1.427419                                                                     | 3.219319                                    |
| sqravyrs                                          | 0454034                                                                   | .0470891                                                                                                   | -0.96                                                                     | 0.337                                                             | 1388384                                                                       | .0480316                                    |
| lnpatappr                                         | 0715456                                                                   | .1726313                                                                                                   | -0.41                                                                     | 0.679                                                             | 4140836                                                                       | .2709924                                    |
| lnfdi                                             | .0438141                                                                  | .0794747                                                                                                   | 0.55                                                                      | 0.583                                                             | 1138808                                                                       | .2015091                                    |
| lngdpc                                            | .8266677                                                                  | .3754223                                                                                                   | 2.20                                                                      | 0.030                                                             | .0817484                                                                      | 1.571587                                    |
| lnpop                                             | 3.376687                                                                  | 2.972462                                                                                                   | 1.14                                                                      | 0.259                                                             | -2.521322                                                                     | 9.274695                                    |
| unem                                              | 0035758                                                                   | .0021383                                                                                                   | -1.67                                                                     | 0.098                                                             | 0078187                                                                       | .0006671                                    |
| lnecofree                                         | 2375639                                                                   | .4168535                                                                                                   | -0.57                                                                     | 0.570                                                             | -1.064692                                                                     | .5895639                                    |
| serv                                              | 0022184                                                                   | .0098867                                                                                                   | -0.22                                                                     | 0.823                                                             | 0218356                                                                       | .0173989                                    |
| lnrulc                                            | .2757247                                                                  | .3062217                                                                                                   | 0.90                                                                      | 0.370                                                             | 3318857                                                                       | .883335                                     |
| transindN                                         | 7009442                                                                   | .5627996                                                                                                   | -1.25                                                                     | 0.216                                                             | -1.817661                                                                     | .4157723                                    |
| year1996                                          | 1623414                                                                   | .0774778                                                                                                   | -2.10                                                                     | 0.039                                                             | 3160741                                                                       | 0086086                                     |
| year1998                                          | .0742967                                                                  | .0489493                                                                                                   | 1.52                                                                      | 0.132                                                             | 0228294                                                                       | .1714228                                    |
| year1999                                          | .1266062                                                                  | .0641011                                                                                                   | 1.98                                                                      | 0.051                                                             | 0005843                                                                       | .2537967                                    |
| year2000                                          | .1851674                                                                  | .0863715                                                                                                   | 2.14                                                                      | 0.034                                                             | .0137876                                                                      | .3565473                                    |
| year2001                                          | .2309543                                                                  | .0963277                                                                                                   | 2.40                                                                      | 0.018                                                             | .0398191                                                                      | .4220894                                    |
| year2002                                          | .2748553                                                                  | .1320831                                                                                                   | 2.08                                                                      | 0.040                                                             | .0127739                                                                      | .5369368                                    |
| year2003                                          | .2745178                                                                  | .1258726                                                                                                   | 2.18                                                                      | 0.032                                                             | .0247593                                                                      | .5242763                                    |
| year2004                                          | .2914265                                                                  | .1420164                                                                                                   | 2.05                                                                      | 0.043                                                             | .0096352                                                                      | .5732178                                    |
| year2005                                          | .3232388                                                                  | .1574958                                                                                                   | 2.05                                                                      | 0.043                                                             | .010733                                                                       | .6357446                                    |
| year2006                                          | .3538498                                                                  | .1777324                                                                                                   | 1.99                                                                      | 0.049                                                             | .0011901                                                                      | .7065095                                    |
| year2007                                          | .369433                                                                   | .1903758                                                                                                   | 1.94                                                                      | 0.055                                                             | 008314                                                                        | .7471799                                    |
| year2008                                          | .3425418                                                                  | .1981646                                                                                                   | 1.73                                                                      | 0.087                                                             | 0506597                                                                       | .7357434                                    |
| year2009                                          | .3668717                                                                  | .2110077                                                                                                   | 1.74                                                                      | 0.085                                                             | 0518133                                                                       | .7855567                                    |
| year2010                                          | .4315914                                                                  | .2296205                                                                                                   | 1.88                                                                      | 0.063                                                             | 0240255                                                                       | .8872082                                    |
| Underidentific<br>Weak identific                  | ation test (:<br><br>ation test ()                                        | Kleibergen-Pa<br>Cragg-Donald                                                                              | ap rk LN<br><br>Wald F s                                                  | 1 statis<br>Chi<br>statisti                                       | stic):<br>i-sq(1)                                                             | 13.904<br>= 0.0002<br>10.793                |
| Stock-Yogo wea                                    | ()<br>k ID test cr                                                        | Kleibergen-Pa<br>itical values                                                                             | ap rk Wa<br>s:                                                            | ald F st                                                          | atistic):<br><not< td=""><td>7.841<br/>available&gt;</td></not<>              | 7.841<br>available>                         |
| Hansen J stati                                    | stic (overide                                                             | entification                                                                                               | test of                                                                   | all ins<br>(equa                                                  | struments):<br>ation exactly i                                                | 0.000<br>identified)                        |
| -endog- option<br>Endogeneity te                  | :<br>st of endoge:                                                        | nous regresso                                                                                              | ors:                                                                      | Chi                                                               | -sc(4) $P-val -$                                                              | 3.812                                       |
| Regressors tes                                    | ted: avyr                                                                 | s sqravyrs lr                                                                                              | npatappr                                                                  | lnfdi                                                             |                                                                               |                                             |
| Instrumented:<br>Included instr<br>Excluded instr | avyr<br>uments: lngd<br>year<br>year<br>year<br>uments: avyr<br>ear: cski | s sqravyrs ln<br>pc lnpop unem<br>1998 year1999<br>2004 year2005<br>2010<br>slag1 sqravyr<br>11s dist trar | npatappr<br>1 lnecofr<br>9 year200<br>5 year200<br>cslag1 lr<br>15dummy 5 | lnfdi<br>cee serv<br>)0 year2<br>)6 year2<br>npatappr<br>year1997 | y lnrulc transi<br>2001 year2002 y<br>2007 year2008 y<br>clag1 lnfdilag1<br>7 | indN year1996<br>year2003<br>year2009<br>L  |

| Table A5.7.5.2 Model 2 - IV estimated results – N-ETEs                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                               |                     |              |                |                       |                                  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------|--------------|----------------|-----------------------|----------------------------------|--|--|--|--|--|
| <pre>. xtivreg2 lnEXPY cskills lngdpc lnpop unem lnecofree serv lnrulc dist transdummy<br/>year1996 year1997 year1998 year1999 year2000 year2001 year2002 year2003 year2004<br/>year2005 year2006 year2007 year2008 year2009 year2010 (avyrs sqravyrs lnpatappr lnfdi<br/>=avyrslag1 sqravyrslag1 lnpatapprlag1 lnfdilag1) if transdummy==0, fe endog (avyrs<br/>sqravyrs lnpatappr lnfdi) small robust bw(3)<br/>Warning - collinearities detected<br/>Vars dropped: cskills dist transdummy year1997</pre> |                                                                                               |                     |              |                |                       |                                  |  |  |  |  |  |
| FIXED EFFECTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ESTIMATION                                                                                    |                     |              |                |                       |                                  |  |  |  |  |  |
| Number of grou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Number of groups = 17 Obs per group: min = 3<br>avg = 12.6<br>max = 15                        |                     |              |                |                       |                                  |  |  |  |  |  |
| IV (2SLS) estimation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                               |                     |              |                |                       |                                  |  |  |  |  |  |
| Estimates efficient for homoskedasticity only<br>Statistics robust to heteroskedasticity and autocorrelation<br>kernel=Bartlett; bandwidth=3<br>time variable (t): year<br>group variable (i): country                                                                                                                                                                                                                                                                                                       |                                                                                               |                     |              |                |                       |                                  |  |  |  |  |  |
| Number of obs =215 $F(24, 174) =$ 16.50 $Prob > F =$ 0.0000Total (centered) SS =2.001896952Centered R2 =Total (uncentered) SS =2.001896952Uncentered R2 =Residual SS =.6703558375Root MSE =.06207                                                                                                                                                                                                                                                                                                            |                                                                                               |                     |              |                |                       |                                  |  |  |  |  |  |
| lnEXPY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Coef                                                                                          | Robust<br>Std Err   | +            | P> +           | [95% Conf             | Intervall                        |  |  |  |  |  |
| +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                               |                     |              |                |                       |                                  |  |  |  |  |  |
| avyrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .2431545                                                                                      | .2060535            | 1.18         | 0.240          | 1635315               | .6498405                         |  |  |  |  |  |
| sqravyrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0126002                                                                                       | .009729             | -1.30        | 0.19/          | 0318022               | .0066018                         |  |  |  |  |  |
| Inpatappr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .03/3926                                                                                      | .0012389            | 0.61         | 0.540          | 0833135               | .1384988                         |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .0133888                                                                                      | .0045313            | 3.00         | 0.003          | .0046454              | .0225321                         |  |  |  |  |  |
| ingapc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .0728238                                                                                      | .28/03/6            | 0.25         | 0.800          | 493698                | .0393495                         |  |  |  |  |  |
| Inpop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9096391                                                                                       | .4321604            | -2.10        | 0.03/          | -1.76259              | 0566878                          |  |  |  |  |  |
| unem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .0001249                                                                                      | .000/321            | 0.17         | 0.865          | 00132                 | .0015698                         |  |  |  |  |  |
| Inecoiree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .2917025                                                                                      | .2301851            | 1.27         | 0.207          | 1020119               | .7460169                         |  |  |  |  |  |
| serv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .0143003                                                                                      | .0009               | 2.09         | 0.039          | .0007699              | .0200007                         |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .1940/95                                                                                      | .3243019            | 0.00         | 0.549          | 4459056               | .0332040                         |  |  |  |  |  |
| year1990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0300094                                                                                       | .0192407            | -2.90        | 0.004          | 0940704               | 0109025                          |  |  |  |  |  |
| year1990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .0447237                                                                                      | .02170              | 2.00         | 0.041          | .0017702              | 1502440                          |  |  |  |  |  |
| year1999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .0922079                                                                                      | .0293749            | 1 52         | 0.002          | .0342909              | 1520835                          |  |  |  |  |  |
| year2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11000/5                                                                                       | 0421644             | 2 90         | 0.130          | .0195970              | 2012041                          |  |  |  |  |  |
| Year2002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .120104J                                                                                      | .U421044<br>0/00/00 | 2.00         | 0.000          | .UJ40049<br>0255202   | -2013041<br>2187272              |  |  |  |  |  |
| year2002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1226744                                                                                       | .U409420<br>0/02052 | 2.00         | 0.013          | .0200200              | ·∠⊥0/∠43                         |  |  |  |  |  |
| Year2004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1316071                                                                                       | .0493033            | 2.01         | 0.013          | .UZOJOUJ<br>0216412   | ·2209019                         |  |  |  |  |  |
| year2004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .10402/1<br>160514                                                                            | .03/240             | 2.30         |                | .UZI0412              | 2066/5F                          |  |  |  |  |  |
| year2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1000764                                                                                       | 0707645             | 2.02         | 0.010<br>0.010 | .0403823              | .∠000433<br>3107436              |  |  |  |  |  |
| year2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1006622                                                                                       | .0/0/040            | 2.34         | 0.012          | .U4U4U91<br>0200112   | · J I J / 4 3 0<br>2 2 2 2 1 5 1 |  |  |  |  |  |
| year2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .LOU6632                                                                                      | .0//3433            | ∠.34<br>1 ⊑7 | 0.UZI          | .UZXUIIJ<br>_ 0226725 | .3333131                         |  |  |  |  |  |
| year2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .132303                                                                                       | .0041930            | 1.3/         | 0.11/          | U330/33               | .2900/94                         |  |  |  |  |  |
| year2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .0/464/2                                                                                      | .0848309            | 0.00         | 0.380          | U92/829               | .2420/12                         |  |  |  |  |  |
| year2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .0004838                                                                                      | .0820139            | 0./4         | 0.462          | 1013902               | .2223378                         |  |  |  |  |  |
| Underidentific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Underidentification test (Kleibergen-Paap rk LM statistic): 9.218<br>Chi-sg(1) P-val = 0.0024 |                     |              |                |                       |                                  |  |  |  |  |  |
```
_____
                  (Cragg-Donald Wald F statistic):24.189(Kleibergen-Paap rk Wald F statistic):5.675
Weak identification test (Cragg-Donald Wald F statistic):
Stock-Yogo weak ID test critical values:
                                   <not available>
_____
Hansen J statistic (overidentification test of all instruments): 0.000
                                     (equation exactly identified)
-endog- option:
Endogeneity test of endogenous regressors:
                                                       10.225
                                      Chi-sq(4) P-val =
                                                     0.0368
               avyrs sqravyrs lnpatappr lnfdi
Regressors tested:
 _____
                              _ _ _ _
                                       _____
Instrumented: avyrs sqravyrs lnpatappr lnfdi
Included instruments: lngdpc lnpop unem lnecofree serv lnrulc year1996 year1998
                year1999 year2000 year2001 year2002 year2003 year2004
                year2005 year2006 year2007 year2008 year2009 year2010
Excluded instruments: avyrslag1 sqravyrslag1 lnpatapprlag1 lnfdilag1
Dropped collinear: cskills dist transdummy year1997
_____
```

| Country           | level analy        | sis              |                    |                  |                    |                  |                    |                  |                    |                  |                      |                  |
|-------------------|--------------------|------------------|--------------------|------------------|--------------------|------------------|--------------------|------------------|--------------------|------------------|----------------------|------------------|
| Table A           | 5.8 Driscol        | l-Kraay a        | nd IV estin        | nated resu       | ılts (expor        | t market         | share)             |                  |                    |                  |                      |                  |
|                   | Driscoll-<br>Kraay | IV<br>(xtivreg2) | Driscoll-<br>Kraay   | IV<br>(xtivreg2) |
| Tech<br>intensity | medium             | medium           | medium             | medium           | high               | high             | high               | high             | Mid &high          | Mid &high        | Mid &high            | Mid &high        |
|                   |                    |                  |                    |                  |                    |                  |                    |                  |                    |                  | Inmhstech            | Inmhstech        |
| Variables         | InmstechC          | InmstechC        | InmstechC          | InmstechC        | InhstechC          | InhstechC        | InhstechC          | InhstechC        | InmhstechC         | InmhstechC       | С                    | С                |
|                   |                    |                  |                    |                  |                    |                  |                    |                  |                    |                  |                      |                  |
| InSedut           | -0.145             | -0.0804          |                    |                  | -0.177             | 0.0854           |                    |                  | -0.227             | -0.0918          |                      |                  |
|                   | (0.225)            | (0.299)          |                    |                  | (0.207)            | (0.412)          |                    |                  | (0.196)            | (0.313)          |                      |                  |
| Lntedut           | 0.466***           | 0.530*           |                    |                  | 0.588**            | 0.714            |                    |                  | 0.536***           | 0.608*           |                      |                  |
|                   | (0.142)            | (0.302)          |                    |                  | (0.281)            | (0.471)          |                    |                  | (0.132)            | (0.342)          |                      |                  |
| Avyrs             |                    |                  | -1.155*            | -1.010**         |                    |                  | -1.827***          | -1.660**         |                    |                  | -1.542**             | -1.376***        |
|                   |                    |                  | (0.586)            | (0.48)           |                    |                  | (0.525)            | (0.726)          |                    |                  | (0.572)              | (0.523)          |
| Sqravyrs          |                    |                  | 0.0476*            | 0.0424*          |                    |                  | 0.0757***          | 0.0690**         |                    |                  | 0.0643**             | 0.0576**         |
|                   |                    |                  | (0.0268)           | (0.0217)         |                    |                  | (0.0232)           | (0.0335)         |                    |                  | (0.026)              | (0.0238)         |
| Lnpatappr         | 0.0389             | 0.0762           | 0.0271             | 0.0628           | 0.00391            | -0.0608          | -0.00846           | -0.079           | 0.016              | -0.00215         | 0.00532              | -0.0161          |
|                   | (0.05)             | (0.0892)         | (0.0472)           | (0.092)          | (0.0312)           | (0.137)          | (0.0367)           | (0.142)          | (0.0327)           | (0.0961)         | (0.0309)             | (0.0993)         |
| Lnfdi             | 0.0201***          | 0.0257***        | 0.0293***          | 0.0375***        | 0.00623            | 0.00551          | 0.0196**           | 0.0234**         | 0.00993*           | 0.0115           | 0.0215***            | 0.0263***        |
|                   | (0.00319)          | (0.00748)        | (0.0069)           | (0.0082)         | (0.0104)           | (0.0139)         | (0.00884)          | (0.0115)         | (0.00527)          | (0.00873)        | (0.0054)             | (0.0073)         |
| Lngdpc            | 1.829***           | 1.759***         | 2.111***           | 2.092***         | 1.721***           | 1.650***         | 2.062***           | 2.063***         | 1.809***           | 1.742***         | 2.129***             | 2.122***         |
|                   | (0.131)            | (0.335)          | (0.18)             | (0.248)          | (0.263)            | (0.391)          | (0.315)            | (0.269)          | (0.145)            | (0.32)           | (0.212)              | (0.216)          |
| Inpop             | -4.143***          | -4.455***        | -3.532***          | -3.833***        | -1.153**           | -1.67            | -0.41              | -1.038           | -2.251***          | -2.659***        | -1.512***            | -1.956**         |
|                   | (0.453)            | (0.892)          | (0.473)            | (0.812)          | (0.536)            | (1.109)          | (0.49)             | (1.038)          | (0.414)            | (0.858)          | (0.369)<br>0.00239** | (0.81)           |
| Unem              | 0.00500***         | 0.00400**        | 0.00345***         | 0.00329*         | 0.00491***         | 0.00365          | 0.00226            | 0.00213          | 0.00454***         | 0.00333          | *                    | 0.00216          |
|                   | (0.00154)          | (0.00201)        | (0.0005)           | (0.00183)        | (0.00155)          | (0.00242)        | (0.0016)           | (0.00229)        | (0.00155)          | (0.00204)        | (0.0008)             | (0.0018)         |
| Lnecofree         | 0.238              | 0.0963           | 0.192              | 0.127            | -0.0209            | -0.385           | -0.0903            | -0.28            | 0.16               | -0.089           | 0.0836               | -0.046           |
|                   | (0.404)            | (0.39)           | (0.31)             | (0.344)          | (0.281)            | (0.459)          | (0.254)            | (0.412)          | (0.328)            | (0.384)          | (0.251)              | (0.331)          |
| Lnrulc            | 0.236              | -0.0354          | -0.0349            | -0.186           | 0.17               | 0.0937           | -0.254             | -0.203           | 0.0544             | -0.149           | -0.293               | -0.362           |

|           | (0.387)          | (0.436)        | (0.236)  | (0.381)  | (0.432)    | (0.493)  | (0.436)   | (0.49)    | (0.381)   | (0.388)  | (0.278)  | (0.349)  |
|-----------|------------------|----------------|----------|----------|------------|----------|-----------|-----------|-----------|----------|----------|----------|
| Serv      | -0.00231         | -0.00148       | 0.00401  | 0.00338  | -0.0224*** | -0.0184  | -0.0127*  | -0.0112   | -0.00787  | -0.00528 | 0.00078  | 0.00135  |
|           | (0.0094)         | (0.0125)       | (0.0106) | (0.0126) | (0.0073)   | (0.0116) | (0.00716) | (0.00926) | (0.00706) | (0.0112) | (0.0081) | (0.0101) |
| Ν         | 366              | 349            | 366      | 349      | 366        | 349      | 366       | 349       | 366       | 349      | 366      | 349      |
| Year dum  | mies included b  | ut not reporte | ed       |          |            |          |           |           |           |          |          |          |
| (Robust)  | standard errors  | in parenthese  | s        |          |            |          |           |           |           |          |          |          |
| *** p<0.0 | 01, ** p<0.05, * | p<0.1          |          |          |            |          |           |           |           |          |          |          |

## Table A5.8.1. Driscoll-Kraay and IV estimated results (relative export advantage, RXA)

| Estimator | Driscoll-            | IV                       | Driscoll-                | IV                      | Driscoll-         | IV                 | Driscoll-            | IV                 | Driscoll-            | IV                | Driscoll-           | IV                |
|-----------|----------------------|--------------------------|--------------------------|-------------------------|-------------------|--------------------|----------------------|--------------------|----------------------|-------------------|---------------------|-------------------|
|           | Kraay                | (xtivreg2)               | Kraay                    | (xtivreg2)              | Kraay             | (xtivreg2)         | Kraay                | (xtivreg2)         | Kraay                | (xtivreg2)        | Kraay               | (xtivreg2)        |
| intensity | medium               | medum                    | medum                    | medum                   | high              | high               | high                 | high               | mid&high             | mid&high          | mid&high            | mid&high          |
|           | <b>InRXA</b>         | <b>InRXA</b>             | <b>InRXA</b>             | <b>InRXA</b>            | <b>InRXA</b>      | InRXA              | <b>InRXA</b>         | InRXA              | InRXA                | InRXA             | InRXA               | <b>InRXA</b>      |
| Lnsedut   | -0.193<br>(0.163)    | -0.217<br>(0.247)        |                          |                         | -0.278<br>(0.187) | -0.0317<br>(0.332) |                      |                    | -0.376***<br>(0.134) | -0.306<br>(0.23)  |                     |                   |
| Intedut   | -0.124<br>(0.231)    | -0.0214<br>(0.257)       |                          |                         | 0.0788<br>(0.255) | 0.259<br>(0.36)    |                      |                    | -0.0274<br>(0.097)   | 0.075<br>(0.227)  |                     |                   |
| avyrs     |                      |                          | -0.118<br>(0.269)        | 0.00927<br>(0.346)      |                   |                    | -0.825***<br>(0.262) | -0.696<br>(0.576)  |                      |                   | -0.597**<br>(0.282) | -0.437<br>(0.343) |
| sqravyrs  |                      |                          | 0.00205<br>(0.0123)      | -0.00235<br>(0.0157)    |                   |                    | 0.0307***<br>(0.011) | 0.0259<br>(0.0265) |                      |                   | 0.0214<br>(0.0126)  | 0.015<br>(0.0154) |
| Inpatappr | 0.0234               | 0.0899                   | 0.0208                   | 0.085                   | -0.0111           | -0.063             | -0.0193              | -0.0785            | 0.00206              | -0.00768          | -0.00279            | -0.0169           |
|           | (0.0334)             | (0.0733)                 | (0.0351)                 | (0.0763)                | (0.0417)          | (0.115)            | (0.0467)             | (0.116)            | (0.0185)             | (0.0624)          | (0.0184)            | (0.0608)          |
| Infdi     | 0.00562              | 0.00927                  | 0.00522                  | 0.00899                 | -0.00926          | -0.0131            | -0.00466             | -0.00579           | -0.00452             | -0.00537          | -0.00191            | -0.00183          |
|           | (0.00516)            | (0.00684)                | (0.00407)                | (0.00754)               | (0.00973)         | (0.0127)           | (0.0083)             | (0.0111)           | (0.00505)            | (0.00641)         | (0.00326)           | (0.00585)         |
| Ingdpc    | 0.921***             | 0.840***                 | 0.920***                 | 0.897***                | 0.667***          | 0.587**            | 0.795***             | 0.790***           | 0.821***             | 0.743***          | 0.907***            | 0.890***          |
|           | (0.186)              | (0.311)                  | (0.103)                  | (0.256)                 | (0.225)           | (0.293)            | (0.204)              | (0.223)            | (0.123)              | (0.242)           | (0.0986)            | (0.185)           |
| Inpop     | -2.434***<br>(0.463) | -<br>2.661***<br>(0.652) | -<br>2.330***<br>(0.296) | -<br>2.415***<br>(0.58) | 0.839<br>(0.51)   | 0.385<br>(0.901)   | 1.230***<br>(0.351)  | 0.74<br>(0.822)    | -0.394<br>(0.402)    | -0.795<br>(0.583) | -0.0162<br>(0.241)  | -0.346<br>(0.585) |

| unem          | 0.00177*             | 0.00129       | 0.00135   | 0.00129   | 0.000804  | 6.40E-05  | -0.00069  | -0.00071  | 0.00109   | 0.000276  | -6.99E-05 | -0.0003   |
|---------------|----------------------|---------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
|               | (0.00104)            | (0.00135)     | (0.00091) | (0.00137) | (0.00096) | (0.00159) | (0.00137) | (0.00175) | (0.00117) | (0.00123) | (0.00078) | (0.00128) |
| Inecofree     | 0.219                | 0.289         | 0.198     | 0.258     | -0.0871   | -0.293    | -0.134    | -0.232    | 0.182     | 0.104     | 0.118     | 0.083     |
|               | (0.331)              | (0.349)       | (0.306)   | (0.344)   | (0.155)   | (0.35)    | (0.162)   | (0.319)   | (0.227)   | (0.294)   | (0.192)   | (0.269)   |
| Inrulc        | 0.586                | 0.313         | 0.596*    | 0.0109    | 0.394     | 0.398     | 0.244     | -0.00788  | 0.245     | 0.0582    | 0.172     | 0.00704   |
|               | (0.387)              | (0.501)       | (0.338)   | (0.00858) | (0.337)   | (0.397)   | (0.33)    | (0.00918) | (0.338)   | (0.352)   | (0.268)   | (0.00673) |
|               |                      |               |           |           | -         |           |           |           |           |           |           |           |
| serv          | 0.00838*             | 0.0102        | 0.00958*  | 0.359     | 0.0163**  | -0.0109   | -0.0113   | 0.288     | -0.00017  | 0.00404   | 0.00421   | 0.0452    |
|               | (0.00476)            | (0.00827)     | (0.00489) | (0.483)   | (0.00728) | (0.0105)  | (0.00666) | (0.383)   | (0.00404) | (0.00767) | (0.00382) | (0.319)   |
| Ν             | 366                  | 349           | 366       | 349       | 366       | 349       | 366       | 349       | 366       | 349       | 366       | 349       |
| Year dummie   | es included b        | ut not report | ted       |           |           |           |           |           |           |           |           |           |
| (Robust) star | ndard errors i       | in parenthes  | es        |           |           |           |           |           |           |           |           |           |
| *** p<0.01,   | , ** p<0.05 <i>,</i> | * p<0.1       |           |           |           |           |           |           |           |           |           |           |

| Industry | level analysis |  |
|----------|----------------|--|
|----------|----------------|--|

Table A5.9 IV estimated results (medium-low, medium-high and high tech)

| Estimator      | IV (xtivreg2) | IV (xtivreg2) | IV (xtivreg2) | IV (xtivreg2) |
|----------------|---------------|---------------|---------------|---------------|
|                | M. low/       | M. low/ M.    | M. low/       | M. low/       |
|                | M. high/      | high/         | M. high/      | M. high/      |
| Tech intensity | high          | high          | high          | high          |
| Variables      | Inemshind     | Inemshind     | Inrxa         | Inrxa         |
| Insedut        | -0.0446       |               | -0.187        |               |
|                | (0.222)       |               | (0.222)       |               |
| Intedut        | 0.524**       |               | -0.0614       |               |
|                | (0.242)       |               | (0.238)       |               |
| avyrs          | 0.0564        | -0.874**      | 0.0403        | 0.296         |
|                | (0.0681)      | (0.385)       | (0.065)       | (0.37)        |
| sqravyrs       | -0.00292      | 0.0355**      | -0.00035      | -0.0171       |
|                | (0.0128)      | (0.0176)      | (0.0131)      | (0.0171)      |

| Inpatappr         | 1.608***              | 0.0383    | 0.720***  | 0.0267    |
|-------------------|-----------------------|-----------|-----------|-----------|
|                   | (0.248)               | (0.069)   | (0.261)   | (0.0639)  |
| Infdi             | -3.477***             | 0.00998   | -0.988    | -0.00197  |
|                   | (0.722)               | (0.0124)  | (0.789)   | (0.0128)  |
| Ingdpc            | 0.00228*              | 1.969***  | -0.00013  | 0.791***  |
|                   | (0.00133)             | (0.183)   | (0.0012)  | (0.209)   |
| Inpop             | 0.0493                | -2.786*** | 0.0425    | -0.721    |
|                   | (0.272)               | (0.683)   | (0.275)   | (0.744)   |
| unem              | 0.0889                | 0.00178   | 0.295     | 0.000165  |
|                   | (0.322)               | (0.00118) | (0.338)   | (0.00112) |
| Inecofree         | -0.00516              | 0.1       | -0.00041  | 0.0431    |
|                   | (0.0084)              | (0.266)   | (0.00756) | (0.278)   |
| Inrulc            | -0.0446               | -0.00121  | -0.187    | -0.00153  |
|                   | (0.222)               | (0.0083)  | (0.222)   | (0.00772) |
| serv              | 0.524**               | -0.044    | -0.0614   | 0.388     |
|                   | (0.242)               | (0.309)   | (0.238)   | (0.324)   |
| N                 | 1,035                 | 1035      | 1,035     | 1,035     |
| Year dummies inc  | luded but not re      | eported   |           |           |
| Robust standard e | errors in parentl     | heses     |           |           |
| *** p<0.01, ** p< | 0.05 <i>,</i> * p<0.1 |           |           |           |

| Estimator        | FEVD            | FEVD             | HT             | HT              | FEVD           | FEVD      | НТ         | HT        |
|------------------|-----------------|------------------|----------------|-----------------|----------------|-----------|------------|-----------|
|                  | MODEL 1         | Model 2          | MODEL 1        | Model 2         | MODEL 1        | Model 2   | MODEL 1    | Model 2   |
| Variables        | Inemshind       | Inemshind        | Inemshind      | Inemshind       | Inrxa          | Inrxa     | Inrxa      | Inrxa     |
| cskills          | -0.882          | 0.00264          | 0.156          | 0.909           | -0.154         | -0.0275   | 0.16       | 0.252     |
|                  | (6.255)         | (3.982)          | (4.834)        | (4.076)         | (1.621)        | (1.06)    | (1.238)    | (1.077)   |
| dist             | -0.00246        | -0.00206         | -0.00168       | -0.00134        | -0.00037       | -0.00028  | 0.000246   | 0.000239  |
|                  | (0.00527)       | (0.00302)        | (0.00136)      | (0.00115)       | (0.00137)      | (0.00081) | (0.000355) | (0.00031) |
| transdummy       | -1.055          | -0.187           | 0.71           | 1.354           | 0.409          | 0.604     | 1.108***   | 1.178***  |
|                  | (16.41)         | (8.824)          | (1.485)        | (1.256)         | (4.255)        | (2.35)    | (0.413)    | (0.366)   |
| Ν                | 1080            | 1080             | 1080           | 1080            | 1080           | 1080      | 1080       | 1080      |
| Education attain | nment variables | , controls and y | /ear dummies a | are included bu | it not reporte | d         |            |           |
| Standard errors  | in parentheses  |                  |                |                 |                |           |            |           |
| *** p<0.01, **   | p<0.05, * p<0.1 |                  |                |                 |                |           |            |           |

# Appendix – A6

## Contents

| Table A6.1 Descriptive statistics                                                                  |
|----------------------------------------------------------------------------------------------------|
| Table A6.2 Correlation matrix                                                                      |
| Table A6.3 Tobit Model - Full sample estimated results         478                                 |
| Table A6.3.1 Tobit Model - Industry estimated results         479                                  |
| Table A6.3.2 Tobit Model - CEECs estimated results                                                 |
| Table A6.3.3 Tobit Model - CEECs Industry estimated results                                        |
| Table A6.3.4 Tobit Model - CIS estimated results                                                   |
| Table A6.3.5 Tobit Model - CIS Industry estimated results         485                              |
| Table A6.3.6 Tobit vs Probit estimated results         486                                         |
| Table A6.3.7 Tobit Model - Full sample (imputed) estimated results                                 |
| Table A6.3.8 Tobit (Augumented) Model - Full sample (imputed) estimated results (45)               |
| Table A6.3.9 Tobit (Augumented) Model - Full sample (imputed) estimated results (95)               |
| Table A6.4 Fractional Logit Model - Full sample estimated results         490                      |
| Table A6.4.1 Fractional Logit Model - Industry estimated results                                   |
| Table A6.4.2 Fractional Logit Model - CEECs Estimated results         493                          |
| Table A6.4.3 Fractional Logit Model - CEECs Industry estimated results         494                 |
| Table A6.4.4 Fractional Logit Model - CIS estimated results         496                            |
| Table A6.4.5 Fractional Logit Model - CIS Industry estimated results         497                   |
| Table A6.4.6 Fractional Logit Model - Full sample (imputed) estimated results                      |
| Table A6.4.7 Fractional Logit (Augumented) Model - Full sample (imputed) estimated results (45)500 |
| Table A6.4.8 Fractional Logit (Augumented) Model - Full sample (imputed) estimated results (95)501 |
| Table A6.5 Poisson Model - Full sample estimated results         503                               |
| Table A6.5.1 Poisson Model - Industry estimated results         504                                |
| Table A6.5.2 Poisson Model - CEECs estimated results                                               |
| Table A6.5.3 Poisson Model - CEECs Industry estimated results                                      |
| Table A6.5.4 Poisson Model - CIS estimated results                                                 |
| Table A6.5.5 Poisson Model - CIS Industry estimated results       509                              |
| Table A6.5.6 Poisson Model - Full sample (imputed) estimated results                               |

| Table A6.5.7 Poisson (Augumented) Model - Full sample (imputed) estimated results (45)           |
|--------------------------------------------------------------------------------------------------|
| Table A6.5.8 Poisson (Augumented) Model - Full sample (imputed) estimated results (95)           |
| Table A6.6 Panel estimated results    514                                                        |
| Table A6.6.1 IVTobit Model - Full sample estimated results         514                           |
| Table A6.6.2 IVPoisson Model - Full sample estimated results         516                         |
| Table A6.7 Tobit Model - Full sample estimated results (exp_share_industryEU28)                  |
| Table A6.7.1 Tobit Model - CEECs estimated results (exp_share_industryEU28)                      |
| Table A6.7.2 Tobit Model -CIS estimated results (exp_share_industryEU28)                         |
| Table A6.7.3 Tobit Model - Full sample estimated results (exp_share_industryEA40)                |
| Table A6.7.4 Tobit Model - CEECs estimated results (exp_share_industryEA40)                      |
| Table A6.7.5 Tobit Model - CIS estimated results (exp_share_industryEA40)                        |
| Table A6.7.6 Tobit Model - Full sample estimated results (exp_share_totalEU28)                   |
| Table A6.7.7 Tobit Model - Full sample estimated results (exp_share_totalEA40)                   |
| Table A6.8 Fractional Logit Model - Full sample estimated results (exp_share_industryEU28)       |
| Table A6.8.1 Fractional Logit Model - CEECs estimated results (exp_share_industryEU28)           |
| Table A6.8.3 Fractional Logit Model - Full sample estimated results (exp_share_industryEA40) 530 |
| Table A6.8.4 Fractional Logit Model - CEECs estimated results (exp_share_industryEA40)           |
| Table A6.8.5 Fractional Logit Model - CIS estimated results (exp_share_industryEA40)             |
| Table A6.8.6 Fractional Logit Model - Full sample estimated results (exp_share_totalEU28)        |
| Table A6.8.7 Fractional Logit Model - Full sample estimated results (exp_share_totalEA40)        |
| Table A6.9 Poisson Model - Full sample estimated results (exp_share_industryEU28)                |
| Table A6.9.1 Poisson Model - CEECs estimated results (exp_share_industryEU28)                    |
| Table A6.9.2 Poisson Model - CIS estimated results (exp_share_industryEU28)                      |
| Table A6.9.3 Poisson Model - Full sample estimated results (exp_share_industryEA40)              |
| Table A6.9.4 Poisson Model - CEECs estimated results (exp_share_industryEA40)                    |
| Table A6.9.5 Poisson Model - CIS estimated results (exp_share_industryEA40)                      |
| Table A6.9.6 Poisson Model - Full sample estimated results (exp_share_totalEU28)                 |
| Table A6.9.7 Poisson Model - Full sample estimated results (exp_share_totalEA40)                 |

## Table A6.1 Descriptive statistics

| Variable          | n     | Mean  | S.D.  | Min   | Mdn   | Max    |  |
|-------------------|-------|-------|-------|-------|-------|--------|--|
| exp_int           | 15708 | 0.06  | 0.20  | 0.00  | 0.00  | 1.00   |  |
| emp_edu           | 15121 | 34.03 | 31.36 | 0.00  | 25.00 | 100.00 |  |
| emp_trng          | 15668 | 0.38  | 0.48  | 0.00  | 0.00  | 1.00   |  |
| manager_exp       | 15393 | 16.61 | 10.05 | 1.00  | 15.00 | 65.00  |  |
| manager_edu_dummy | 1299  | 0.47  | 0.50  | 0.00  | 0.00  | 1.00   |  |
| skilled_emp       | 5880  | 58.44 | 24.36 | 0.00  | 61.54 | 100.00 |  |
| lnavrg_tlc        | 11229 | 8.01  | 1.35  | -6.18 | 8.11  | 21.33  |  |
| RD_exp            | 15752 | 0.11  | 0.31  | 0.00  | 0.00  | 1.00   |  |
| new_org_str       | 15795 | 0.21  | 0.41  | 0.00  | 0.00  | 1.00   |  |
| new_prod_serv     | 15797 | 0.24  | 0.43  | 0.00  | 0.00  | 1.00   |  |
| new_methods       | 15796 | 0.20  | 0.40  | 0.00  | 0.00  | 1.00   |  |
| location          | 15883 | 0.21  | 0.41  | 0.00  | 0.00  | 1.00   |  |
| lnsize            | 15795 | 2.96  | 1.28  | 0.00  | 2.71  | 9.35   |  |
| lnsize_sqr        | 15795 | 10.42 | 9.33  | 0.00  | 7.33  | 87.42  |  |
| lnage             | 15724 | 2.42  | 0.73  | -0.69 | 2.56  | 5.16   |  |
| lnage_sqr         | 15724 | 6.37  | 3.42  | 0.00  | 6.58  | 26.62  |  |
| foreign_dummy     | 15721 | 0.04  | 0.21  | 0.00  | 0.00  | 1.00   |  |
| state_dummy       | 15720 | 0.01  | 0.10  | 0.00  | 0.00  | 1.00   |  |
| credit            | 15624 | 0.35  | 0.48  | 0.00  | 0.00  | 1.00   |  |
| CEEC_dummy        | 15883 | 0.35  | 0.48  | 0.00  | 0.00  | 1.00   |  |
| low_mlow_tech     | 15881 | 0.31  | 0.46  | 0.00  | 0.00  | 1.00   |  |
| mhigh_tech        | 15881 | 0.07  | 0.25  | 0.00  | 0.00  | 1.00   |  |
| high_tech         | 15881 | 0.02  | 0.13  | 0.00  | 0.00  | 1.00   |  |
| f_inputs          | 6033  | 29.34 | 35.19 | 0.00  | 10.00 | 100.00 |  |
| tech_dummy        | 1278  | 0.89  | 0.31  | 0.00  | 1.00  | 1.00   |  |
| bus_assoc         | 753   | 0.59  | 0.49  | 0.00  | 1.00  | 1.00   |  |

## Table A6.2 Correlation matrix

|              | I | emp_edu emp_trng manage~p lnavrg~c |          |          |          | RD_exp   | new_or~r | lnsize  | lnage  | foreig~y state_~y |         |        |         |         |
|--------------|---|------------------------------------|----------|----------|----------|----------|----------|---------|--------|-------------------|---------|--------|---------|---------|
|              | + |                                    |          |          |          |          |          |         |        |                   |         |        |         |         |
| emp_edu      |   | 1.0000                             |          |          |          |          |          |         |        |                   |         |        |         |         |
| emp_trng     |   | 0.0357                             | 1.0000   |          |          |          |          |         |        |                   |         |        |         |         |
| manager_exp  |   | -0.1456                            | 0.0771   | 1.0000   |          |          |          |         |        |                   |         |        |         |         |
| lnavrg_tlc   |   | -0.0289                            | 0.1171   | 0.0862   | 1.0000   |          |          |         |        |                   |         |        |         |         |
| RD_exp       |   | 0.0105                             | 0.1977   | 0.0655   | 0.1059   | 1.0000   |          |         |        |                   |         |        |         |         |
| new_org_str  |   | 0.0321                             | 0.2650   | 0.0367   | 0.0863   | 0.3250   | 1.0000   |         |        |                   |         |        |         |         |
| new_prod_s~v |   | 0.0106                             | 0.1910   | 0.0690   | 0.1124   | 0.3345   | 0.3745   | 1.0000  |        |                   |         |        |         |         |
| new_methods  |   | 0.0140                             | 0.2112   | 0.0450   | 0.0777   | 0.3483   | 0.4791   | 0.4888  | 1.0000 |                   |         |        |         |         |
| location     | I | 0.1234                             | 0.0034   | -0.0238  | -0.0227  | 0.0142   | 0.0414   | 0.0190  | 0.0110 | 1.0000            |         |        |         |         |
| lnsize       |   | -0.1543                            | 0.2280   | 0.1538   | 0.0287   | 0.1553   | 0.1393   | 0.1123  | 0.1184 | -0.0134           | 1.0000  |        |         |         |
| lnage        | 1 | -0.2151                            | 0.0651   | 0.3955   | 0.0786   | 0.0643   | 0.0446   | 0.0711  | 0.0549 | -0.0162           | 0.3133  | 1.0000 |         |         |
| foreign du~y | 1 | 0.0082                             | 0.0919   | -0.0349  | 0.0972   | 0.0692   | 0.0652   | 0.0718  | 0.0508 | 0.1157            | 0.1427  | 0.0083 | 1.0000  |         |
| state dummy  | I | -0.0263                            | 0.0236   | -0.0198  | -0.0137  | -0.0019  | 0.0021   | -0.0076 | 0.0004 | -0.0320           | 0.1359  | 0.0738 | -0.0188 | 1.0000  |
| credit       |   | -0 1382                            | 0 1179   | 0 0550   | 0 0773   | 0 1072   | 0 1326   | 0 1296  | 0 1228 | -0 0008           | 0 1711  | 0 1148 | -0.0023 | 0 0130  |
| low mlow tab |   | -0 1979                            | -0.0595  | 0 0303   | -0.0506  | 0 0319   | -0.0185  | 0 0740  | 0 0868 | -0 0743           | 0 1714  | 0 0820 | 0.0140  | -0.0097 |
| mbigh tooh   |   | -0 0060                            | 0.0109   | 0.0000   | 0.0465   | 0.1100   | 0.0245   | 0.0050  | 0.0555 | -0 0390           | 0.0051  | 0.0507 | 0.0272  | _0 0055 |
| miiign_tech  |   | -0.0069                            | 0.0108   | 0.0802   | 0.0465   | 0.1182   | 0.0345   | 0.0950  | 0.0555 | -0.0380           | 0.0405  | 0.0307 | 0.0272  | -0.0055 |
| nigh_tech    |   | 0.0622                             | 0.0345   | 0.0463   | 0.0334   | U.1067   | 0.0373   | 0.0780  | 0.0592 | 0.0128            | 0.0486  | 0.0349 | 0.0233  | 0.0063  |
| CEEC_dummy   |   | -0.3378                            | 0.0531   | 0.1496   | 0.2502   | U.0696   | U.0838   | 0.1191  | 0.0560 | 0.0551            | -0.0649 | 0.2091 | 0.1103  | -0.0545 |
|              |   |                                    |          |          |          |          |          |         |        |                   |         |        |         |         |
|              | I | credit                             | low_ml~h | mhigh~ch | high_t~h | CEEC_d~y |          |         |        |                   |         |        |         |         |
|              | + |                                    |          |          |          |          |          |         |        |                   |         |        |         |         |
| credit       |   | 1.0000                             |          |          |          |          |          |         |        |                   |         |        |         |         |

| low_mlow_t~h | Ι | 0.0623  | 1.0000  |         |         |        |
|--------------|---|---------|---------|---------|---------|--------|
| mhigh_tech   | L | -0.0169 | -0.1849 | 1.0000  |         |        |
| high_tech    | L | -0.0215 | -0.0887 | -0.0362 | 1.0000  |        |
| CEEC_dummy   | L | 0.1952  | -0.0457 | -0.0462 | -0.0233 | 1.0000 |

### **Estimated results: Export intensity**

#### Table A6.3 Tobit Model - Full sample estimated results

tobit exp\_int emp\_edu emp\_trng manager\_exp new\_org\_str new\_prod\_serv new\_methods location lnsize lnsize\_sqr lnage lnage\_sqr foreign\_dummy state\_dummy credit low\_mlow\_tech mhigh\_tech high\_tech dcountry1-dcountry7 dcountry9-dcountry30, 11 ul vce(robust) nolog Tobit regression Number of obs = 14026 F( 46, 13980) = Prob > F = 44.73 Prob > F = Pseudo R2 = 0.0000

Log pseudolikelihood = -4907.2106

|              |          | Robust    |       |       |            |           |
|--------------|----------|-----------|-------|-------|------------|-----------|
| exp_int      | Coef.    | Std. Err. | t     | P> t  | [95% Conf. | Interval] |
| emp_edu      | .0021013 | .0003853  | 5.45  | 0.000 | .0013461   | .0028565  |
| emp_trng     | .0275278 | .0196298  | 1.40  | 0.161 | 0109491    | .0660047  |
| manager_exp  | .0006197 | .0008994  | 0.69  | 0.491 | 0011433    | .0023827  |
| new org str  | .0493851 | .0234472  | 2.11  | 0.035 | .0034253   | .0953448  |
| new prod s~v | .0530538 | .0217337  | 2.44  | 0.015 | .0104529   | .0956547  |
| new methods  | .0282516 | .0248198  | 1.14  | 0.255 | 0203985    | .0769017  |
| location     | 0520632  | .024132   | -2.16 | 0.031 | 0993651    | 0047613   |
| lnsize       | .2028949 | .0306217  | 6.63  | 0.000 | .1428723   | .2629174  |
| lnsize sqr   | 0087889  | .003756   | -2.34 | 0.019 | 0161511    | 0014266   |
| lnage        | .0488579 | .0525003  | 0.93  | 0.352 | 0540498    | .1517656  |
| lnage sqr    | 0159944  | .0101772  | -1.57 | 0.116 | 035943     | .0039542  |
| foreign du~y | .375237  | .0368696  | 10.18 | 0.000 | .3029677   | .4475063  |
| state dummy  | 1267879  | .0868611  | -1.46 | 0.144 | 2970472    | .0434714  |
| credit       | .1078399 | .0186855  | 5.77  | 0.000 | .0712138   | .144466   |
| low mlow t~h | .3787365 | .0208511  | 18.16 | 0.000 | .3378655   | .4196074  |
| mhigh tech   | .5289483 | .0279517  | 18.92 | 0.000 | .4741592   | .5837374  |
| high tech    | .5360094 | .0516404  | 10.38 | 0.000 | .4347873   | .6372315  |
| dcountry1    | .5516418 | .0808891  | 6.82  | 0.000 | .3930883   | .7101952  |
| dcountry2    | .508845  | .0591863  | 8.60  | 0.000 | .3928319   | .624858   |
| dcountry3    | .1856281 | .0825016  | 2.25  | 0.024 | .023914    | .3473423  |
| dcountry4    | .113816  | .0879959  | 1.29  | 0.196 | 0586678    | .2862997  |
| dcountry5    | .7083855 | .0385319  | 18.38 | 0.000 | .6328579   | .7839131  |
| dcountry6    | .1478636 | .0433947  | 3.41  | 0.001 | .0628041   | .2329231  |
| dcountry7    | .0581609 | .0846692  | 0.69  | 0.492 | 1078021    | .2241238  |
| dcountry9    | .4978848 | .0531995  | 9.36  | 0.000 | .3936066   | .602163   |
| dcountry10   | .5780022 | .0504647  | 11.45 | 0.000 | .4790847   | .6769198  |
| dcountry11   | .7394862 | .0511557  | 14.46 | 0.000 | .6392142   | .8397581  |
| dcountry12   | 2787244  | .082873   | -3.36 | 0.001 | 4411666    | 1162823   |
| dcountry13   | .3263076 | .0667645  | 4.89  | 0.000 | .1954401   | .457175   |
| dcountry14   | .6569483 | .0548182  | 11.98 | 0.000 | .5494972   | .7643994  |
| dcountry15   | 1992676  | .1212336  | -1.64 | 0.100 | 4369017    | .0383665  |
| dcountry16   | .6596434 | .0570845  | 11.56 | 0.000 | .5477501   | .7715367  |
| dcountry17   | .2483821 | .0669597  | 3.71  | 0.000 | .1171321   | .379632   |
| dcountry18   | .2087097 | .0797429  | 2.62  | 0.009 | .0524029   | .3650165  |
| dcountry19   | .0261929 | .0959764  | 0.27  | 0.785 | 1619337    | .2143195  |
| dcountry20   | .8825653 | .0595676  | 14.82 | 0.000 | .765805    | .9993257  |
| dcountry21   | .4884932 | .0722076  | 6.77  | 0.000 | .3469565   | .6300298  |
| dcountry22   | .8361702 | .0559255  | 14.95 | 0.000 | .7265487   | .9457916  |
| dcountrv23   | .4776285 | .066304   | 7.20  | 0.000 | .3476639   | .6075931  |

0.2348

| dcountry24   | .8511971  | .0614703    | 13.85     | 0.000    | .7307071      | .9716871  |
|--------------|-----------|-------------|-----------|----------|---------------|-----------|
| dcountry25   | .77429    | .0623311    | 12.42     | 0.000    | .6521128      | .8964673  |
| dcountry26   | .6929248  | .0606978    | 11.42     | 0.000    | .573949       | .8119006  |
| dcountry27   | 1.038998  | .0526759    | 19.72     | 0.000    | .9357462      | 1.14225   |
| dcountry28   | .6040559  | .0661302    | 9.13      | 0.000    | .4744318      | .73368    |
| dcountry29   | .7177246  | .0528375    | 13.58     | 0.000    | .614156       | .8212931  |
| dcountry30   | .4060361  | .1067239    | 3.80      | 0.000    | .1968429      | .6152293  |
| _cons        | -1.989816 | .0914924    | -21.75    | 0.000    | -2.169153     | -1.810479 |
| /sigma       | .6385366  | .0139726    |           |          | .6111485      | .6659248  |
| Obs. summary | : 11804   | left-cens   | ored obse | rvations | at exp_int<=0 |           |
|              | 2047      | uncenso     | ored obse | rvations |               |           |
|              | 175       | right-censo | ored obse | rvations | at exp_int>=1 |           |

## Table A6.3.1 Tobit Model - Industry estimated results

| <pre>tobit exp_in<br/>int_edu_highte<br/>int_mngexp_mhi<br/>lnsize lnsize<br/>mhigh_tech hi<br/>nolog</pre> | at emp_edu<br>ech int_trng<br>igh int_mnges<br>sqr lnage i<br>gh_tech dc | emp_trng<br>_lowmlow i<br>xp_high p<br>lnage_sqr f<br>ountryl-dco | manager_e<br>nt_trng_m<br>new_org_s<br>oreign_du<br>untry7 de | exp int<br>nhigh i<br>tr new_<br>nmmy sta<br>country9 | <pre>t_edu_lowmlow nt_trng_high prod_serv new te_dummy cred -dcountry30,</pre> | int_edu_m<br>int_mngexp<br>v_methods<br>it low_m<br>ll ul vce | hightech<br>_lowmlow<br>location<br>low_tech<br>e(robust) |
|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------|
| Tobit regressi                                                                                              | lon                                                                      |                                                                   |                                                               | Numbe<br>F (                                          | er of obs =<br>55, 13971) =                                                    | 14026<br>39.53                                                |                                                           |
| Log pseudolike                                                                                              | elihood = -487                                                           | 72.0759                                                           |                                                               | Prob<br>Pseud                                         | > F =<br>do R2 =                                                               | 0.0000<br>0.2402                                              |                                                           |
|                                                                                                             |                                                                          | Robust                                                            |                                                               |                                                       |                                                                                |                                                               |                                                           |
| exp_int                                                                                                     | Coef.                                                                    | Std. Err.                                                         | t                                                             | P> t                                                  | [95% Conf.                                                                     | Interval]                                                     |                                                           |
| emp edu                                                                                                     | .0037382                                                                 | .0004948                                                          | 7.56                                                          | 0.000                                                 | .0027684                                                                       | .004708                                                       |                                                           |
| emp trng                                                                                                    | 0236993                                                                  | .0298756                                                          | -0.79                                                         | 0.428                                                 | 0822595                                                                        | .034861                                                       |                                                           |
| manager exp                                                                                                 | 0025531                                                                  | .0015303                                                          | -1.67                                                         | 0.095                                                 | 0055527                                                                        | .0004464                                                      |                                                           |
| int edu lo~w                                                                                                | 0051116                                                                  | .0007549                                                          | -6.77                                                         | 0.000                                                 | 0065913                                                                        | 0036318                                                       |                                                           |
| int_edu_mh~h                                                                                                | 0025071                                                                  | .0009734                                                          | -2.58                                                         | 0.010                                                 | 0044151                                                                        | 0005992                                                       |                                                           |
| int_edu_h~ch                                                                                                | 0027965                                                                  | .0016481                                                          | -1.70                                                         | 0.090                                                 | 0060271                                                                        | .0004341                                                      |                                                           |
| int_trng_l~w                                                                                                | .0966031                                                                 | .0389386                                                          | 2.48                                                          | 0.013                                                 | .0202782                                                                       | .1729279                                                      |                                                           |
| int_trng_m~h                                                                                                | .1239344                                                                 | .0527396                                                          | 2.35                                                          | 0.019                                                 | .0205578                                                                       | .227311                                                       |                                                           |
| int_trng_h~h                                                                                                | 0475329                                                                  | .1000348                                                          | -0.48                                                         | 0.635                                                 | 2436144                                                                        | .1485486                                                      |                                                           |
| int_mngexp~w                                                                                                | .0047606                                                                 | .0019292                                                          | 2.47                                                          | 0.014                                                 | .0009791                                                                       | .0085421                                                      |                                                           |
| int_mn~mhigh                                                                                                | .0043273                                                                 | .0024969                                                          | 1.73                                                          | 0.083                                                 | 0005669                                                                        | .0092215                                                      |                                                           |
| int_mn~_high                                                                                                | .0077553                                                                 | .0046792                                                          | 1.66                                                          | 0.097                                                 | 0014165                                                                        | .0169272                                                      |                                                           |
| new_org_str                                                                                                 | .0507253                                                                 | .0233213                                                          | 2.18                                                          | 0.030                                                 | .0050125                                                                       | .0964382                                                      |                                                           |
| new_prod_s~v                                                                                                | .0502781                                                                 | .0217099                                                          | 2.32                                                          | 0.021                                                 | .0077238                                                                       | .0928325                                                      |                                                           |
| new_methods                                                                                                 | .0286649                                                                 | .0247615                                                          | 1.16                                                          | 0.247                                                 | 0198709                                                                        | .0772007                                                      |                                                           |
| location                                                                                                    | 0470848                                                                  | .0240704                                                          | -1.96                                                         | 0.050                                                 | 094266                                                                         | .0000964                                                      |                                                           |
| lnsize                                                                                                      | .2047927                                                                 | .030088                                                           | 6.81                                                          | 0.000                                                 | .1458162                                                                       | .2637692                                                      |                                                           |
| lnsize_sqr                                                                                                  | 0091499                                                                  | .0036874                                                          | -2.48                                                         | 0.013                                                 | 0163777                                                                        | 0019221                                                       |                                                           |
| lnage                                                                                                       | .0609824                                                                 | .0524259                                                          | 1.16                                                          | 0.245                                                 | 0417793                                                                        | .1637441                                                      |                                                           |
| lnage_sqr                                                                                                   | 0177186                                                                  | .0101368                                                          | -1.75                                                         | 0.080                                                 | 0375881                                                                        | .0021509                                                      |                                                           |
| foreign_du~y                                                                                                | .3673346                                                                 | .0363508                                                          | 10.11                                                         | 0.000                                                 | .2960822                                                                       | .4385869                                                      |                                                           |
| state_dummy                                                                                                 | 1319121                                                                  | .0851242                                                          | -1.55                                                         | 0.121                                                 | 2987669                                                                        | .0349427                                                      |                                                           |
| credit                                                                                                      | .1085244                                                                 | .0185764                                                          | 5.84                                                          | 0.000                                                 | .0721122                                                                       | .1449366                                                      |                                                           |
| low_mlow_t~h                                                                                                | .3816502                                                                 | .0500812                                                          | 7.62                                                          | 0.000                                                 | .2834843                                                                       | .4798161                                                      |                                                           |
| mhigh_tech                                                                                                  | .4770969                                                                 | .068962                                                           | 6.92                                                          | 0.000                                                 | .3419221                                                                       | .6122716                                                      |                                                           |
| high_tech                                                                                                   | .5193047                                                                 | .1459421                                                          | 3.56                                                          | 0.000                                                 | .2332387                                                                       | .8053707                                                      |                                                           |
| dcountry1                                                                                                   | .5267486                                                                 | .0795448                                                          | 6.62                                                          | 0.000                                                 | .3708302                                                                       | .682667                                                       |                                                           |
| dcountry2                                                                                                   | .5112482                                                                 | .058327                                                           | 8.77                                                          | 0.000                                                 | .3969194                                                                       | .625577                                                       |                                                           |
| dcountry3                                                                                                   | .1865928                                                                 | .08105                                                            | 2.30                                                          | 0.021                                                 | .027724                                                                        | .3454615                                                      |                                                           |

| dcountry4    | .1075846        | .086338     | 1.25       | 0.213    | 0616494       | .2768186  |  |
|--------------|-----------------|-------------|------------|----------|---------------|-----------|--|
| dcountry5    | .6687978        | .0391281    | 17.09      | 0.000    | .5921013      | .7454942  |  |
| dcountry6    | .1819951        | .0427638    | 4.26       | 0.000    | .0981724      | .2658178  |  |
| dcountry7    | .0545007        | .0836193    | 0.65       | 0.515    | 1094044       | .2184058  |  |
| dcountry9    | .4856703        | .052598     | 9.23       | 0.000    | .3825712      | .5887694  |  |
| dcountry10   | .5703959        | .0502734    | 11.35      | 0.000    | .4718533      | .6689386  |  |
| dcountry11   | .7351974        | .0508586    | 14.46      | 0.000    | .6355077      | .8348871  |  |
| dcountry12   | 2515079         | .0815089    | -3.09      | 0.002    | 4112762       | 0917396   |  |
| dcountry13   | .3253493        | .0667289    | 4.88       | 0.000    | .1945516      | .4561469  |  |
| dcountry14   | .6559665        | .0546442    | 12.00      | 0.000    | .5488565      | .7630766  |  |
| dcountry15   | 1979079         | .1194173    | -1.66      | 0.097    | 4319818       | .0361659  |  |
| dcountry16   | .6516843        | .0572208    | 11.39      | 0.000    | .5395239      | .7638448  |  |
| dcountry17   | .2407466        | .0655432    | 3.67       | 0.000    | .1122732      | .36922    |  |
| dcountry18   | .2170668        | .0786896    | 2.76       | 0.006    | .0628246      | .3713091  |  |
| dcountry19   | .0352353        | .0945262    | 0.37       | 0.709    | 1500488       | .2205193  |  |
| dcountry20   | .8816456        | .0588458    | 14.98      | 0.000    | .7663         | .9969912  |  |
| dcountry21   | .4827525        | .0723739    | 6.67       | 0.000    | .34089        | .624615   |  |
| dcountry22   | .8169733        | .0561188    | 14.56      | 0.000    | .706973       | .9269737  |  |
| dcountry23   | .4827292        | .0667805    | 7.23       | 0.000    | .3518306      | .6136279  |  |
| dcountry24   | .8528684        | .0606487    | 14.06      | 0.000    | .7339888      | .971748   |  |
| dcountry25   | .7707249        | .061112     | 12.61      | 0.000    | .6509372      | .8905126  |  |
| dcountry26   | .6816106        | .0608902    | 11.19      | 0.000    | .5622575      | .8009636  |  |
| dcountry27   | 1.048517        | .0526152    | 19.93      | 0.000    | .9453843      | 1.15165   |  |
| dcountry28   | .6057215        | .0661272    | 9.16       | 0.000    | .4761034      | .7353396  |  |
| dcountry29   | .7215941        | .0530843    | 13.59      | 0.000    | .6175417      | .8256465  |  |
| dcountry30   | .4139284        | .1062674    | 3.90       | 0.000    | .2056301      | .6222268  |  |
| _cons        | -1.979507       | .0942939    | -20.99     | 0.000    | -2.164336     | -1.794679 |  |
| /sigma       | .6326716        | .0138427    |            |          | .6055381      | .6598051  |  |
| Obs. summary | : 11804<br>2047 | left-censo  | ored obset | rvations | at exp_int<=0 |           |  |
|              | 175             | right-cense | ored obse  | rvations | at exp int>=1 |           |  |
|              | 115             | TTAIC COUP  |            |          | ac cvb_ruc/-r |           |  |

#### Table A6.3.2 Tobit Model - CEECs estimated results

```
tobit exp int emp edu emp trng manager exp new org str new prod serv new methods
location lnsize lnsize sqr lnage lnage sqr foreign dummy state dummy credit
low mlow tech mhigh tech high tech dcountry1-dcountry7 dcountry9-dcountry30 if
CEEC dummy==1, ll ul vce(robust) nolog
note: dcountry2 omitted because of collinearity
note: dcountry3 omitted because of collinearity
note: dcountry4 omitted because of collinearity
note: dcountry5 omitted because of collinearity
note: dcountry6 omitted because of collinearity
note: dcountry7 omitted because of collinearity
note: dcountry12 omitted because of collinearity
note: dcountry13 omitted because of collinearity
note: dcountry15 omitted because of collinearity
note: dcountry17 omitted because of collinearity
note: dcountry18 omitted because of collinearity
note: dcountry19 omitted because of collinearity
note: dcountry30 omitted because of collinearity
                                              Number of obs =
Tobit regression
                                                                    4836
                                              F(33, 4803) =
                                                                   29.62
                                                                  0.0000
                                              Prob > F
                                                        =
Log pseudolikelihood = -2377.1099
                                              Pseudo R2
                                                             =
                                                                   0.1891
   _____
            Robust
```

| exp_int      | Coef.               | Std. Err.     | t        | P> t     | [95% Conf.     | Interval]     |  |
|--------------|---------------------|---------------|----------|----------|----------------|---------------|--|
| +emp edu     | .0017532            | .0005636      | <br>3.11 | 0.002    | .0006483       | .0028581      |  |
| emp trng     | 0324971             | .0264824      | -1.23    | 0.220    | 0844146        | .0194205      |  |
| manager exp  | .0006082            | .0012479      | 0.49     | 0.626    | 0018383        | .0030546      |  |
| new org str  | .0869656            | .0316345      | 2.75     | 0.006    | .0249475       | .1489837      |  |
| new prod s~v | .0307974            | .0289979      | 1.06     | 0.288    | 0260517        | .0876465      |  |
| new methods  | .0655199            | .0330533      | 1.98     | 0.048    | .0007203       | .1303194      |  |
| location     | 0056078             | .0293388      | -0.19    | 0.848    | 0631252        | .0519096      |  |
| Insize       | .2777998            | .0440798      | 6.30     | 0.000    | .1913833       | .3642163      |  |
| lnsize sar l | - 0217803           | 0056854       | -3.83    | 0 000    | - 0329263      | - 0106343     |  |
| lnage        | 0242115             | 0829176       | 0.29     | 0 770    | - 1383449      | 186768        |  |
| lnage sgr    | 0156681             | .0155338      | -1.01    | 0.313    | 0461216        | .0147853      |  |
| foreign du~v | 3668555             | 0443757       | 8 27     | 0 000    | 2798589        | 4538522       |  |
| state dummy  | - 2778723           | 2056122       | -1 35    | 0 177    | - 6809664      | 1252219       |  |
| credit       | 0987307             | 0256243       | 3 85     | 0.177    | 0484954        | 148966        |  |
| ow mlow tab  | 4625178             | 0269567       | 17 16    | 0.000    | 4096704        | 5153652       |  |
| mhigh tech   | 5715936             | 04029907      | 14 19    | 0 000    | 4926062        | 6505811       |  |
| high toch    | 5886531             | 0865465       | 6 80     | 0 000    | 4189823        | 758324        |  |
| dcouptry1    | 1145976             | 1244912       | 0.00     | 0.000    | - 1294621      | 3586573       |  |
| dcountry?    | (omi++od)           | • エムコゴジエム     | 0.92     | 0.007    | . 12 99 021    |               |  |
| dcountry2    | (omi+tad)           |               |          |          |                |               |  |
| dcountry/    | (omitted)           |               |          |          |                |               |  |
| dcountry4    | (omitted)           |               |          |          |                |               |  |
| dcountry6    | (omitted)           |               |          |          |                |               |  |
| dcountry0    | (omitted)           |               |          |          |                |               |  |
| dcountry/    |                     | 110211        | 0 00     | 0 366    | - 116365       | 2157622       |  |
| daountru10   | 1617454             | 1007257       | 1 40     | 0.300    | - 0514263      | .3137032      |  |
| dcountry10   | 316/807             | 1082036       | 2 92     | 0.137    | 0314203        | 5286093       |  |
| dcountry11   | .5104007            | .1002030      | 2.92     | 0.003    | .104552        | . 5200095     |  |
| dcountry12   | (omitted)           |               |          |          |                |               |  |
| dcountry13   | (UNILLUEU)          | 1102102       | 2 22     | 0 026    | 0206679        | 16222         |  |
| dcountry14   | .2459459            | .1103192      | 2.25     | 0.020    | .0290078       | .40222        |  |
| dcountry16   | 2305278             | 110866        | 2 0.8    | 0 038    | 0131707        | 1178759       |  |
| dcountry17   | .2303270            | .110000       | 2.00     | 0.050    | .0131797       | .44/0/59      |  |
| dcountry17   | (omitted)           |               |          |          |                |               |  |
| dcountry10   | (omitted)           |               |          |          |                |               |  |
| dcountry19   | (OIIIILLEA)         | 1110001       | 1 06     | 0 000    | 2252606        | 6741014       |  |
| dcountry20   | .434091             | 1207100       | 4.00     | 0.000    | .2332000       | 20541214      |  |
| deountry21   | .040/409            | 1114060       | 2 76     | 0.000    | - • TO / ATO 3 | .2034102      |  |
| decuntry22   | .419248/            | .1152012      | 3./0     | 0.000    | .2008404       | .03/03/       |  |
| doountry23   | .UUJZ/JJ<br>1175201 | 1122012       | 0.00     | 0.000    | 102/204        | .2072/73      |  |
| depuntry24   | .41/JJZL            | .1140107      | 3.09     | 0.000    | .1934909       | .0393/32      |  |
| decuntry25   | .3438139            | .112C015      | 2.99     | 0.003    | .118/344       | . 30009/4     |  |
| acountry26   | .2/2010/            | .1136213      | 2.40     | U.UL/    | .049/000       | .4932668      |  |
| acountry2/   | .63/4/84            | .108886       | 5.85     | 0.000    | .424012        | .8509448      |  |
| acountry28   | .1960315            | .115/60/      | 1.69     | 0.090    | 0309125        | .4229/54      |  |
| acountry29   | .3016044            | .1092903      | 2.16     | 0.006    | .08/3454       | .3138634      |  |
| acountry30   | (OMITTED)           | 1 ( 1 ) ( ) 7 | 0 01     | 0 000    | 1 000044       | 1 000001      |  |
| _cons  <br>+ | -1.38299/           | .101303/      | -9.81    | 0.000    | -1.899344<br>  | -1.200651<br> |  |
| /sigma       | .6016749            | .0160044      |          |          | .5702989       | .6330508      |  |
| Obs. summary | : 3613              | left-censo    | red obse | rvations | at exp_int<=0  |               |  |
| -            | 1131                | uncenso       | red obse | rvations | _              |               |  |
|              | 92                  | right-censo   | red obse | rvations | at exp_int>=1  |               |  |
|              |                     |               |          |          |                |               |  |

## Table A6.3.3 Tobit Model - CEECs Industry estimated results

| tobit exp_int emp_edu emp_trng manager_exp int_edu_lowmlow int_edu_mhighted<br>int_edu_hightech int_trng_lowmlow int_trng_mhigh int_trng_high int_mngexp_l<br>int_mngexp_mhigh int_mngexp_high new_org_str new_prod_serv new_methods loo<br>lnsize lnsize_sqr lnage lnage_sqr foreign_dummy state_dummy credit low_mlo<br>mhigh tech high tech dcountry1-dcountry7 dcountry9-dcountry30 if CEEC dumm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ech<br>cowmlow<br>cation<br>pw_tech<br>uv==1, ll ul |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| vce(robust) nolog                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <i></i> ,                                           |
| vee (10 days) noting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                     |
| note: acountry2 omitted because of collinearity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     |
| note: dcountry3 omitted because of collinearity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     |
| note: dcountry4 omitted because of collinearity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     |
| note: dcountry5 omitted because of collinearity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     |
| note: dcountry6 omitted because of collinearity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     |
| note: dcountry7 omitted because of collinearity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     |
| note: dcountry12 omitted because of collinearity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |
| note: dcountry13 omitted because of collinearity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |
| note: dcountry15 omitted because of collinearity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |
| note: doubtrul7 omitted because of collinearity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     |
| note: decuntrul a mitted because of collinearity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |
| note, downtry10 emitted because of collinearity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     |
| note: dountry is omitted because of continearity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |
| note: acountry30 omitted because of collinearity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     |
| Tobit regression Number of obs = 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 836                                                 |
| F(42, 4794) = 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .27                                                 |
| Prob > F = 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0000                                                |
| Log pseudolikelihood = -2362.8054 Pseudo R2 = 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .940                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     |
| Bobust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                     |
| even int   Coef Std Frr t Polt   [95% Conf Inter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     |
| emp_edu   .0030961 .000664 4.66 0.000 .001/944 .0043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 977                                                 |
| emp_trng  051/6/3 .0363012 -1.43 0.1541229343 .0193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3996                                                |
| manager_exp  0004739 .0018206 -0.26 0.795004043 .0030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1953                                                |
| int_edu_lo~w  0057615 .0012334 -4.67 0.00000817950033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3435                                                |
| int_edu_mh~h  0033485 .0017132 -1.95 0.0510067071 .0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 101                                                 |
| int_edu_h~ch   .000596 .0028763 0.21 0.8360050429 .0062                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2349                                                |
| int trng l~w   .0336226 .0516199 0.65 0.5150675761 .1348                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8213                                                |
| int_trng_m~h   .1720853 .0769356 2.24 0.025 .0212563 .3229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9143                                                |
| int_trng_h~h  2061601 .1675195 -1.23 0.2195345752 .1222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2551                                                |
| int mngexp~w   .0026528 .0025853 1.03 0.3050024155 .007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 211                                                 |
| $int mn \sim mbigh = 0.014242 = 0.039814 = 0.36 = 0.721 = 0.063812 = 0.092$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 296                                                 |
| 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5616                                                |
| new org str 1 0866242 0314509 2 75 0 006 024966 1485                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 221                                                 |
| new_org_str   .0000242 .0314309 2.75 0.000 .024900 .1402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 024                                                 |
| $\frac{1}{100} \frac{1}{100} \frac{1}$ | 08//                                                |
| new methods   .0638984 .032838 1.95 0.0520004792 .1282                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2/61                                                |
| location  0032534 .0291908 -0.11 0.9110604807 .053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3974                                                |
| lnsize   .2760793 .0435128 6.34 0.000 .1907742 .3613                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8845                                                |
| lnsize_sqr  021612 .0056071 -3.85 0.00003260450106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5194                                                |
| lnage   .0240818 .0820082 0.29 0.769136692 .1848                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3555                                                |
| lnage sgr  0142432 .0153273 -0.93 0.3530442917 .0158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8054                                                |
| foreign du~y   .362505 .0440274 8.23 0.000 .276191 .4488                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3189                                                |
| state dummy  2639488 .1912399 -1.38 0.1686388668 .1109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 692                                                 |
| credit   0978067 0254898 3 84 0 000 047835 147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 785                                                 |
| low mlow table 4863728 0620876 7.72 0.000 3628881 6005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2575                                                |
| mbigh tool 5304007 1027077 510 0.000 302001 .0030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 044                                                 |
| hiningin Leon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0044                                                |
| Inign_tecn   .008080 .230000 2.80 0.000 .19/8683 1.115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                     |
| acountryi 0.98/869 .12251/ 0.81 0.420141402/ .3385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0/04                                                |
| dcountry2   (omitted)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     |
| dcountry3   (omitted)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     |
| dcountry4 (omitted)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
| debuilery i ( (omreed)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                     |
| dcountry5   (omitted)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     |

| dcountry7     | (omitted) |             |            |          |               |          |  |
|---------------|-----------|-------------|------------|----------|---------------|----------|--|
| dcountry9     | .0837101  | .1090209    | 0.77       | 0.443    | 1300209       | .297441  |  |
| dcountry10    | .1480052  | .1075934    | 1.38       | 0.169    | 0629272       | .3589376 |  |
| dcountry11    | .3062276  | .1070172    | 2.86       | 0.004    | .0964248      | .5160305 |  |
| dcountry12    | (omitted) |             |            |          |               |          |  |
| dcountry13    | (omitted) |             |            |          |               |          |  |
| dcountry14    | .2345306  | .1092702    | 2.15       | 0.032    | .0203108      | .4487504 |  |
| dcountry15    | (omitted) |             |            |          |               |          |  |
| dcountry16    | .216188   | .1098373    | 1.97       | 0.049    | .0008564      | .4315196 |  |
| dcountry17    | (omitted) |             |            |          |               |          |  |
| dcountry18    | (omitted) |             |            |          |               |          |  |
| dcountry19    | (omitted) |             |            |          |               |          |  |
| dcountry20    | .443386   | .1106004    | 4.01       | 0.000    | .2265585      | .6602135 |  |
| dcountry21    | .0424388  | .1197613    | 0.35       | 0.723    | 1923483       | .2772259 |  |
| dcountry22    | .387212   | .1105545    | 3.50       | 0.000    | .1704745      | .6039496 |  |
| dcountry23    | .0545317  | .114598     | 0.48       | 0.634    | 1701329       | .2791964 |  |
| dcountry24    | .4195784  | .1117518    | 3.75       | 0.000    | .2004936      | .6386632 |  |
| dcountry25    | .3428672  | .1131645    | 3.03       | 0.002    | .1210127      | .5647216 |  |
| dcountry26    | .2579753  | .11263      | 2.29       | 0.022    | .0371688      | .4787818 |  |
| dcountry27    | .6257372  | .1078801    | 5.80       | 0.000    | .4142427      | .8372317 |  |
| dcountry28    | .1949825  | .1146544    | 1.70       | 0.089    | 0297928       | .4197578 |  |
| dcountry29    | .287412   | .1082906    | 2.65       | 0.008    | .0751128      | .4997113 |  |
| dcountry30    | (omitted) |             |            |          |               |          |  |
| _cons         | -1.574651 | .1624217    | -9.69      | 0.000    | -1.893072     | -1.25623 |  |
| /sigma        | .5971412  | .0159697    |            |          | .5658334      | .6284491 |  |
|               |           |             |            |          |               |          |  |
| Obs. summary: | 3613      | left-censo  | ored obsei | rvations | at exp_int<=0 |          |  |
|               | 1131      | uncenso     | ored obsei | rvations |               |          |  |
|               | 92        | right-censo | ored obsei | rvations | at exp_int>=1 |          |  |

## Table A6.3.4 Tobit Model - CIS estimated results

| . tobit exp_int emp_edu emp_trng manager_exp new_c  | org_str new_prod_serv new_methods |
|-----------------------------------------------------|-----------------------------------|
| location lnsize lnsize_sqr lnage lnage_sqr foreign_ | _dummy state_dummy credit         |
| low_mlow_tech mhigh_tech high_tech dcountry1-dcou   | untry7 dcountry9-dcountry30 if    |
| CEEC_dummy==0, ll ul vce(robust) nolog              |                                   |
| note: dcountry1 omitted because of collinearity     |                                   |
| note: dcountry9 omitted because of collinearity     |                                   |
| note: dcountry10 omitted because of collinearity    |                                   |
| note: dcountry11 omitted because of collinearity    |                                   |
| note: dcountry14 omitted because of collinearity    |                                   |
| note: dcountry16 omitted because of collinearity    |                                   |
| note: dcountry20 omitted because of collinearity    |                                   |
| note: dcountry21 omitted because of collinearity    |                                   |
| note: dcountry22 omitted because of collinearity    |                                   |
| note: dcountry23 omitted because of collinearity    |                                   |
| note: dcountry24 omitted because of collinearity    |                                   |
| note: dcountry25 omitted because of collinearity    |                                   |
| note: dcountry26 omitted because of collinearity    |                                   |
| note: dcountry27 omitted because of collinearity    |                                   |
| note: dcountry28 omitted because of collinearity    |                                   |
| note: dcountry29 omitted because of collinearity    |                                   |
| note: dcountry30 omitted because of collinearity    |                                   |
|                                                     |                                   |
| Tobit regression N                                  | Number of obs = 9190              |
| E                                                   | F(29, 9161) = 33.47               |
| E                                                   | Prob > F = 0.0000                 |
| Log pseudolikelihood = -2490.2398 E                 | Pseudo R2 = 0.2336                |
|                                                     |                                   |
|                                                     |                                   |

|                |           | Robust      |            |          |               |           |
|----------------|-----------|-------------|------------|----------|---------------|-----------|
| exp_int  <br>+ | Coef.     | Std. Err.   | t          | P> t     | [95% Conf.    | Interval] |
| emp_edu        | .002264   | .0005278    | 4.29       | 0.000    | .0012295      | .0032985  |
| emp_trng       | .0868053  | .0288929    | 3.00       | 0.003    | .0301688      | .1434418  |
| manager_exp    | .0001315  | .001317     | 0.10       | 0.920    | 0024501       | .0027131  |
| new_org_str    | .0186881  | .0345545    | 0.54       | 0.589    | 0490464       | .0864227  |
| new_prod_s~v   | .0756455  | .0331704    | 2.28       | 0.023    | .0106242      | .1406668  |
| new_methods    | 0193022   | .0373934    | -0.52      | 0.606    | 0926017       | .0539972  |
| location       | 0962103   | .0415826    | -2.31      | 0.021    | 1777214       | 0146991   |
| lnsize         | .1630033  | .0439795    | 3.71       | 0.000    | .0767936      | .249213   |
| lnsize_sqr     | 0015801   | .0051825    | -0.30      | 0.760    | 011739        | .0085788  |
| lnage          | .0300916  | .0696886    | 0.43       | 0.666    | 1065136       | .1666968  |
| lnage sqr      | 007915    | .0138183    | -0.57      | 0.567    | 035002        | .019172   |
| foreign du~y   | .3959685  | .0646083    | 6.13       | 0.000    | .2693218      | .5226152  |
| state dummy    | 1398187   | .1003519    | -1.39      | 0.164    | 3365308       | .0568934  |
| credit         | .1168068  | .0273406    | 4.27       | 0.000    | .0632131      | .1704005  |
| Low mlow t~h   | .2666887  | .0321517    | 8.29       | 0.000    | .2036642      | .3297133  |
| mhigh tech     | .4582887  | .0397428    | 11.53      | 0.000    | .380384       | .5361934  |
| high tech      | .4696618  | .0661209    | 7.10       | 0.000    | .3400501      | .5992735  |
| dcountry1      | (omitted) |             |            |          |               |           |
| dcountry2      | .5451942  | .0636002    | 8.57       | 0.000    | .4205235      | .6698648  |
| dcountry3      | .216083   | .0864483    | 2.50       | 0.012    | .046625       | .385541   |
| dcountry4      | .1326098  | .0911185    | 1.46       | 0.146    | 0460027       | .3112224  |
| dcountry5      | .7746827  | .0468922    | 16.52      | 0.000    | .6827637      | .8666018  |
| dcountry6      | .2007343  | .0460324    | 4.36       | 0.000    | .1105004      | .2909681  |
| dcountry7      | .0558818  | .0925564    | 0.60       | 0.546    | 1255494       | .2373131  |
| dcountry9      | (omitted) |             |            |          |               |           |
| dcountry10     | (omitted) |             |            |          |               |           |
| dcountry11     | (omitted) |             |            |          |               |           |
| dcountry12     | 2872015   | .0857447    | -3.35      | 0.001    | 4552803       | 1191227   |
| dcountry13     | .3571798  | .0698053    | 5.12       | 0.000    | .2203459      | .4940137  |
| dcountry14     | (omitted) |             |            |          |               |           |
| dcountry15     | 1807628   | .1284495    | -1.41      | 0.159    | 4325524       | .0710268  |
| dcountry16     | (omitted) |             |            |          |               |           |
| dcountry17     | .2849493  | .0746472    | 3.82       | 0.000    | .1386241      | .4312745  |
| dcountry18     | .2383258  | .0844307    | 2.82       | 0.005    | .0728227      | .4038288  |
| dcountry19     | .0566913  | .100041     | 0.57       | 0.571    | 1394112       | .2527939  |
| dcountrv20     | (omitted) |             |            |          |               |           |
| dcountrv21     | (omitted) |             |            |          |               |           |
| dcountrv22     | (omitted) |             |            |          |               |           |
| dcountrv23     | (omitted) |             |            |          |               |           |
| dcountrv24     | (omitted) |             |            |          |               |           |
| dcountrv25     | (omitted) |             |            |          |               |           |
| dcountrv26     | (omitted) |             |            |          |               |           |
| dcount.rv27    | (omitted) |             |            |          |               |           |
| dcount.rv28    | (omitted) |             |            |          |               |           |
| dcountrv29     | (omitted) |             |            |          |               |           |
| dcountrv30     | (omitted) |             |            |          |               |           |
| cons           | -1.978844 | .1278762    | -15.47     | 0.000    | -2.22951      | -1.728178 |
| +              |           |             |            |          |               |           |
| /sigma  <br>   | .6741665  | .0239597    |            |          | .6272001      | .7211328  |
| Obs. summary   | ·: 8191   | left-censo  | ored obser | rvations | at exp_int<=0 |           |
|                | 916       | uncenso     | orea obsei | rvations |               |           |
|                | 83        | right-censo | ored obsei | rvations | at exp_int>=1 |           |

## Table A6.3.5 Tobit Model - CIS Industry estimated results

| . tobit exp i   | int emp edu em           | np trng mana    | lger exp i             | int edu l                    | owmlow int ed | u mhightech |         |
|-----------------|--------------------------|-----------------|------------------------|------------------------------|---------------|-------------|---------|
| int edu highte  | ech int trng l           | owmlow int      | trng mhic              | gh int tr                    | ng high int m | ngexplowml  | OW      |
| int mngexp mhi  | igh int mngexp           | high new        | org str r              | new prod                     | serv new meth | ods locatio | n       |
| lnsīze lnsīze   | sqr lnage lna            | ge_sqr fore     | eign_dummy             | y state_d                    | ummy credit   | low_mlow_te | ch      |
| mhigh_tech high | gh_tech dcour            | ntry1-dcount    | ry7 <sup>-</sup> dcour | ntry9-dco                    | untry30 if CE | EC_dummy==0 | , ll ul |
| vce(robust) no  | blog                     |                 |                        |                              |               |             |         |
| note: dcountry  | yl omitted bed           | cause of col    | linearity              | 7                            |               |             |         |
| note: dcountry  | y9 omitted bec           | cause of col    | linearity              | 7                            |               |             |         |
| note: dcountry  | y10 omitted be           | ecause of co    | ollinearit             | су                           |               |             |         |
| note: dcountry  | /11 omitted be           | ecause of co    | ollinearit             | су                           |               |             |         |
| note: dcountry  | /14 omitted be           | ecause of co    | ollinearit             | су                           |               |             |         |
| note: dcountry  | y16 omitted be           | ecause of co    | llinearit              | СУ                           |               |             |         |
| note: dcountry  | 720 omitted be           | ecause of co    | llinearit              | су                           |               |             |         |
| note: dcountry  | 21 omitted be            | cause of co     | llinearit              | ГА                           |               |             |         |
| note: dcountry  | 22 omitted be            | cause of co     | llinearit              | су                           |               |             |         |
| note: dcountry  | 723 omitted be           | ecause of co    | llinearit              | У                            |               |             |         |
| note: dcountry  | 24 OMILLED De            | cause of co     | llinearit              | - Y                          |               |             |         |
| note: dcountry  | $\gamma^{25}$ omitted be | cause of co     | llinearit              | - Y                          |               |             |         |
| note: dcountry  | v20 omitted be           | cause of co     | llinearit              | - <u>y</u><br>- <sub>V</sub> |               |             |         |
| note: dcountry  | v28 omitted be           | cause of co     | llinearit              | -y<br>-v                     |               |             |         |
| note: dcountry  | v29 omitted be           | cause of co     | llinearit              | - V                          |               |             |         |
| note: dcountry  | v30 omitted be           | cause of co     | ollinearit             | -y<br>-V                     |               |             |         |
|                 |                          | 000000000000000 |                        | - 1                          |               |             |         |
| Tobit regressi  | ion                      |                 |                        | Numbe                        | r of obs =    | 9190        |         |
| 5               |                          |                 |                        | F( 3                         | 8, 9152) =    | 26.29       |         |
|                 |                          |                 |                        | Prob 3                       | > F =         | 0.0000      |         |
| Log pseudolike  | = -247                   | 7.6626          |                        | Pseud                        | o R2 =        | 0.2375      |         |
|                 |                          |                 |                        |                              |               |             |         |
|                 |                          |                 |                        |                              |               |             |         |
|                 |                          | Robust          |                        |                              |               |             |         |
| exp_int         | Coef.                    | Std. Err.       | t                      | P> t                         | [95% Conf.    | Interval]   |         |
| omp. odu        | +                        | 0007003         | 1 56                   |                              | 0020575       | 005156      |         |
| emp_edu         | 0211054                  | .0007903        | 4.50                   | 0.000                        | - 0746624     | 1168732     |         |
| manager evo     | -0047118                 | 0026653         | -1 77                  | 0.000                        | - 0099363     | 0005128     |         |
| int edu lo~w    | -0036204                 | 0011114         | -3 26                  | 0.001                        | - 005799      | - 0014418   |         |
| int_edu_mb~h    | -0010421                 | 0013411         | -0 78                  | 0.001                        | - 0036709     | 0015868     |         |
| int_edu_h~ch    | 0036096                  | .0022663        | -1.59                  | 0.111                        | 0080521       | .0008329    |         |
| int trng l~w    | .1198955                 | .0601901        | 1.99                   | 0.046                        | .0019094      | .2378816    |         |
| int trng m~h    | .066289                  | .0759698        | 0.87                   | 0.383                        | 0826289       | .2152068    |         |
| int trng h~h    | .0647576                 | .131885         | 0.49                   | 0.623                        | 1937665       | .3232817    |         |
| int mngexp~w    | .0060724                 | .003089         | 1.97                   | 0.049                        | .0000173      | .0121275    |         |
| int mn~mhigh    | .006007                  | .0036299        | 1.65                   | 0.098                        | 0011084       | .0131223    |         |
| int mn~ high    | .0135548                 | .0060454        | 2.24                   | 0.025                        | .0017045      | .0254051    |         |
| new_org_str     | .0200867                 | .0346497        | 0.58                   | 0.562                        | 0478343       | .0880078    |         |
| new_prod_s~v    | .0766234                 | .0333005        | 2.30                   | 0.021                        | .011347       | .1418999    |         |
| new_methods     | 0177255                  | .0376234        | -0.47                  | 0.638                        | 0914758       | .0560247    |         |
| location        | 0976433                  | .0413402        | -2.36                  | 0.018                        | 1786792       | 0166073     |         |
| lnsize          | .1677534                 | .0435283        | 3.85                   | 0.000                        | .0824282      | .2530786    |         |
| lnsize_sqr      | 0023124                  | .0051261        | -0.45                  | 0.652                        | 0123607       | .007736     |         |
| lnage           | .0541005                 | .0705999        | 0.77                   | 0.444                        | 0842909       | .192492     |         |
| lnage_sqr       | 0126955                  | .0139814        | -0.91                  | 0.364                        | 0401021       | .0147112    |         |
| foreign_du~y    | .3899163                 | .0638249        | 6.11                   | 0.000                        | .2648052      | .5150274    |         |
| state_dummy     | 144939                   | .0996023        | -1.46                  | 0.146                        | 3401817       | .0503037    |         |
| credit          | .1197153                 | .02731          | 4.38                   | 0.000                        | .0661817      | .1/3249     |         |
| low_mlow_t~h    | .249212                  | .0846175        | 2.95                   | 0.003                        | .0833429      | .4150811    |         |
| mhigh_tech      | .3929996                 | .1030005        | 3.82                   | 0.000                        | .1910957      | .5949036    |         |
| high_tech       | .370748                  | .1896847        | 1.95                   | 0.051                        | 0010764       | ./425/25    |         |
| acountryl       | (omitted)                | 0.00000         | 0 70                   | 0.000                        | 4000100       | CT C1 00    |         |
| acountry2       | .5521004                 | .0633028        | 8.72                   | 0.000                        | .4280128      | .6/6188     |         |

| dcountry3     | .2113035  | .0865815    | 2.44       | 0.015        | .0415843      | .3810226  |
|---------------|-----------|-------------|------------|--------------|---------------|-----------|
| dcountry4     | .1289907  | .090453     | 1.43       | 0.154        | 0483174       | .3062989  |
| dcountry5     | .7445066  | .0480242    | 15.50      | 0.000        | .6503683      | .8386448  |
| dcountry6     | .2160649  | .0459677    | 4.70       | 0.000        | .125958       | .3061718  |
| dcountry7     | .0606255  | .0919718    | 0.66       | 0.510        | 1196598       | .2409108  |
| dcountry9     | (omitted) |             |            |              |               |           |
| dcountry10    | (omitted) |             |            |              |               |           |
| dcountry11    | (omitted) |             |            |              |               |           |
| dcountry12    | 272473    | .0856229    | -3.18      | 0.001        | 440313        | 1046331   |
| dcountry13    | .3634396  | .0702093    | 5.18       | 0.000        | .2258136      | .5010656  |
| dcountry14    | (omitted) |             |            |              |               |           |
| dcountry15    | 1743992   | .127219     | -1.37      | 0.170        | 4237769       | .0749785  |
| dcountry16    | (omitted) |             |            |              |               |           |
| dcountry17    | .2838327  | .0742112    | 3.82       | 0.000        | .1383622      | .4293032  |
| dcountry18    | .255614   | .0843552    | 3.03       | 0.002        | .0902589      | .4209692  |
| dcountry19    | .0701405  | .0996781    | 0.70       | 0.482        | 1252507       | .2655317  |
| dcountry20    | (omitted) |             |            |              |               |           |
| dcountry21    | (omitted) |             |            |              |               |           |
| dcountry22    | (omitted) |             |            |              |               |           |
| dcountry23    | (omitted) |             |            |              |               |           |
| dcountry24    | (omitted) |             |            |              |               |           |
| dcountry25    | (omitted) |             |            |              |               |           |
| dcountry26    | (omitted) |             |            |              |               |           |
| dcountry27    | (omitted) |             |            |              |               |           |
| dcountry28    | (omitted) |             |            |              |               |           |
| dcountry29    | (omitted) |             |            |              |               |           |
| dcountry30    | (omitted) |             |            |              |               |           |
| _cons         | -1.974351 | .1389474    | -14.21     | 0.000        | -2.246719     | -1.701984 |
| +-<br>/sigma  | .6708007  | .0238161    |            |              | .6241159      | .7174855  |
| Obs. summarv: | <br>8191  | left-censo  | ored obser | <br>rvations | at exp int<=( | )         |
| 2             | 916       | uncenso     | ored obsei | vations      |               |           |
|               | 83        | right-censo | ored obsei | rvations     | at exp int>=1 | L         |
|               |           |             |            |              |               |           |

## Table A6.3.6 Tobit vs Probit estimated results

| VARIABLES     | Tobit      | Probit     | Adjusted Tobit |
|---------------|------------|------------|----------------|
|               |            |            |                |
| emp_edu       | 0.00210*** | 0.00458*** | 0.00329***     |
| emp_trng      | 0.0275     | 0.0790**   | 0.04304        |
| manager_exp   | 0.00062    | 0.00154    | 0.00097        |
| new_org_str   | 0.0494**   | 0.0847**   | 0.07731**      |
| new_prod_serv | 0.0531**   | 0.183***   | 0.08310        |
| new_methods   | 0.0283     | 0.0403     | 0.04429        |
| location      | -0.0521**  | -0.0328    | -0.08153**     |
| Insize        | 0.203***   | 0.317***   | 0.31768***     |
| Insize_sqr    | -0.00879** | -0.0111*   | -0.01376**     |
| Inage         | 0.0489     | 0.027      | 0.07653        |
| Inage_sqr     | -0.016     | -0.00734   | -0.02504       |
| foreign_dummy | 0.375***   | 0.552***   | 0.58685***     |
| state_dummy   | -0.127     | -0.15      | -0.19875       |
| credit        | 0.108***   | 0.231***   | 0.16901***     |

| low_mlow_tech | 0.379***  | 0.630***  | 0.59311***  |
|---------------|-----------|-----------|-------------|
| mhigh_tech    | 0.529***  | 0.959***  | 0.82786***  |
| high_tech     | 0.536***  | 0.862***  | 0.83881***  |
| Constant      | -1.990*** | -3.308*** | -3.11424*** |
| Sigma         | 0.639     |           |             |
| Observations  | 14,026    | 14,026    | 14,026      |

#### Table A6.3.7 Tobit Model - Full sample (imputed) estimated results

. mi estimate, cmdok: tobit exp int emp edu emp trng manager exp new org str new prod serv new methods location lnsize lnsize sqr lnage lnage sqr foreign dummy state dummy credit low mlow tech mhigh tech high tech dcountry1-dcountry7 dcountry9-dcountry30, ll ul nolog vce(robust) Multiple-imputation estimates Imputations = 22 Number of obs = 15883 Tobit regression Average RVI = 0.0224 0.0951 Largest FMI = Complete DF = 15837 DF adjustment: Small sample DF: min = 2027.65 = 11216.04 avg max = 15792.24 F(46, 15704.8) =Model F test: Equal FMI 48.16 Within VCE type: Robust. Prob > F = 0.0000 \_\_\_\_\_ exp int | Coef. Std. Err. t P>|t| [95% Conf. Interval] emp\_edu |.0018743.00038274.900.000emp\_trng |.0388138.01895892.050.041nager\_exp |.00014.00088820.160.875 .0011238 .0026248 .0016507 .0759769 .0008882 -.0016011 manager exp | .0018812 .0367388 1.61 0.108 -.0080931 new org str | .022871 .0815708 .0596503 .0210565 2.83 0.005 new\_prod serv | .0183767 .1009239 1.20 0.229 -.0181424 .0757846 new methods | .0288211 .0239593 location | -.0351879 .0230811 -1.52 0.127 .0100549 -.0804308 .1330429 lnsize | .1888744 .0284834 6.63 0.000 .244706 lnsize sqr | -.0080106 .0034718 -2.31 0.021 -.0148158 -.0012054 lnage | .0390085 .0514638 0.76 0.449 -.0618848 .1399017 .0099519 -1.29 0.198 .0067112 lnage sgr | -.0127993 -.0323098 .0352308 11.19 0.000 .3251318 .463259 foreign dummy | .3941954 .0832323 .0385187 state dummy | -.1246663 -1.50 0.134 -.2878513 .0779851 .0182035 6.24 0.000 .1493559 credit | .1136705 .3799313 18.830.00019.620.000 .3403792 low\_mlow\_tech | .020178 .4194833 .5348684 .4814238 mhigh tech | .0272644 .588313 10.56 0.000 .4357552 .5351004 high tech | .0506824 .6344457 6.84 0.000 dcountry1 | .0723977 .4952345 .3533115 .6371576 9.01 0.000 dcountry2 | .5119383 .056802 .4005997 .6232769 1.83 0.067 .0798665 -.0102752 dcountry3 | .1462722 .3028197 .1363244 1.69 0.091 dcountry4 | .08065 -.0217652 .2944141 .6678435 dcountry5 | .7411219 .0373842 19.82 0.000 .8144002 .071278 dcountry6 | .1519668 .0411646 3.69 0.000 .2326555 .0537628 dcountry7 | .0814327 0.66 0.509 -.1058547 .2133804 .4417867 dcountry9 | .5326979 .0463803 11.49 0.000 .623609 .4882855 dcountry10 | .5864193 .0500643 11.71 0.000 .684553 .6273295 .0508215 14.30 0.000 dcountry11 | .7269466 .8265636 .0773326 0.001 dcountry12 | -.2479117 -3.21 -.3994929 -.0963305 .2296862 .4851488 5.48 dcountry13 | .3574175 .0651646 0.000 dcountry14 | .6452783 .0545528 11.83 0.000 .5383467 .7522098

| - |            |    |           |          |        |       |           |           |
|---|------------|----|-----------|----------|--------|-------|-----------|-----------|
|   | dcountry15 |    | 2267146   | .1056325 | -2.15  | 0.032 | 4337665   | 0196628   |
|   | dcountry16 |    | .6572503  | .0569215 | 11.55  | 0.000 | .5456762  | .7688244  |
|   | dcountry17 |    | .2497219  | .0679295 | 3.68   | 0.000 | .1165707  | .382873   |
|   | dcountry18 |    | .2042922  | .079573  | 2.57   | 0.010 | .04832    | .3602643  |
|   | dcountry19 |    | .0024389  | .0963588 | 0.03   | 0.980 | 1864358   | .1913136  |
|   | dcountry20 |    | .8370378  | .0575274 | 14.55  | 0.000 | .7242764  | .9497993  |
|   | dcountry21 |    | .471005   | .0727031 | 6.48   | 0.000 | .3284982  | .6135119  |
|   | dcountry22 |    | .8198813  | .0555642 | 14.76  | 0.000 | .7109651  | .9287975  |
|   | dcountry23 |    | .5127301  | .0627963 | 8.16   | 0.000 | .3896298  | .6358304  |
|   | dcountry24 |    | .838501   | .0556438 | 15.07  | 0.000 | .7294276  | .9475744  |
|   | dcountry25 |    | .7903505  | .0591082 | 13.37  | 0.000 | .6744536  | .9062473  |
|   | dcountry26 |    | .6988788  | .0579195 | 12.07  | 0.000 | .5853485  | .812409   |
|   | dcountry27 |    | 1.040239  | .0519735 | 20.01  | 0.000 | .9383615  | 1.142117  |
|   | dcountry28 |    | .5931009  | .0652869 | 9.08   | 0.000 | .4651307  | .7210711  |
|   | dcountry29 |    | .7020224  | .0523976 | 13.40  | 0.000 | .5993144  | .8047304  |
|   | dcountry30 |    | .4140387  | .0969025 | 4.27   | 0.000 | .2240833  | .6039942  |
|   | _cons      |    | -1.961091 | .0877973 | -22.34 | 0.000 | -2.133202 | -1.788979 |
|   |            | +- |           |          |        |       |           |           |
|   | /sigma     |    | .6516277  | .0133161 | 48.94  | 0.000 | .6255264  | .6777291  |
|   |            |    |           |          |        |       |           |           |

# Table A6.3.8 Tobit (Augumented) Model - Full sample (imputed) estimated results (45)

mi estimate, cmdok: tobit exp\_int emp\_edu emp\_trng manager\_exp skilled\_emp manager\_edu\_dummy new\_org\_str new\_prod\_serv new\_methods location lnsize lnsize\_sqr lnage lnage\_sqr foreign\_dummy state\_dummy credit f\_inputs tech\_dummy bus\_assoc low\_mlow\_tech mhigh\_tech high\_tech dcountry1-dcountry7 dcountry9-dcountry30, ll ul nolog vce(robust)

| Multiple-imputation estimates | Imputations    | = | 45       |
|-------------------------------|----------------|---|----------|
| Tobit regression              | Number of obs  | = | 15883    |
|                               | Average RVI    | = | 0.4607   |
|                               | Largest FMI    | = | 0.9117   |
|                               | Complete DF    | = | 15832    |
| DF adjustment: Small sample   | DF: min        | = | 51.43    |
|                               | avg            | = | 5095.66  |
|                               | max            | = | 15138.39 |
| Model F test: Equal FMI       | F( 51, 9197.7) | = | 30.80    |
| Within VCE type: Robust       | Prob > F       | = | 0.0000   |

| exp_int           | Coef.    | Std. Err. | t     | P> t  | [95% Conf. | Interval] |
|-------------------|----------|-----------|-------|-------|------------|-----------|
| emp edu           | .0013039 | .000436   | 2.99  | 0.003 | .0004474   | .0021604  |
| emp trng          | .0291583 | .0196185  | 1.49  | 0.137 | 0093084    | .067625   |
| manager exp       | .0003093 | .0009264  | 0.33  | 0.739 | 0015073    | .0021259  |
| skilled emp       | .0001035 | .0005071  | 0.20  | 0.838 | 0008971    | .0011041  |
| manager edu dummy | .0717926 | .0395616  | 1.81  | 0.073 | 0069939    | .1505791  |
| new org str       | .0245275 | .0240417  | 1.02  | 0.308 | 0226228    | .0716778  |
| new prod serv     | .0436343 | .0221706  | 1.97  | 0.049 | .0001598   | .0871088  |
| new methods       | .0236805 | .0243734  | 0.97  | 0.331 | 0241009    | .0714619  |
| location          | 0718337  | .0241826  | -2.97 | 0.003 | 1192488    | 0244185   |
| lnsize            | .1765423 | .0293479  | 6.02  | 0.000 | .1190041   | .2340805  |
| lnsize sqr        | 0072172  | .0035479  | -2.03 | 0.042 | 0141725    | 0002618   |
| lnage             | .0300557 | .0522163  | 0.58  | 0.565 | 0723267    | .132438   |
| lnage sqr         | 0106467  | .010101   | -1.05 | 0.292 | 0304523    | .009159   |
| foreign dummy     | .3467769 | .0363961  | 9.53  | 0.000 | .2754031   | .4181508  |
| state dummy       | 1051221  | .0859617  | -1.22 | 0.221 | 2736936    | .0634494  |
| credit            | .1129136 | .0185274  | 6.09  | 0.000 | .0765889   | .1492382  |

| f_inputs       .0025762       .0003617       7.12       0.000       .0018628       .002895         tech_dummy       .071626       .066849       1.07       0.288      062175       .205427         bus_assoc      0103811       .0574783       -0.18       0.857      1257501       .1049878         low_mlow_tech       .3771432       .0225195       16.75       0.000       .3329402       .4213463         mhigh_tech       .4800699       .0520593       9.22       0.000       .3780038       .582136         dcountry1       .44163387       .0747353       5.57       0.000       .3393632       .562937         dcountry3       .1340331       .0807391       1.66       0.097      0242279       .2922942         dcountry5       .7608336       .038279       19.90       0.000       .6858936       .8357736         dcountry5       .760836       .0816451       0.85       .398      0010143       .229054         dcountry1       .669172       .0554604       11.12       0.000       .4428997       .6425922         dcountry1       .662267       .0534515       13.14       0.000       .594057       .2206471       .493047 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |           |          |        |       |          |           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------|----------|--------|-------|----------|-----------|
| <pre>tech_dimmy   .071626 .066849 1.07 0.288062175 .205427 bus_assoc  0103811 .0574783 -0.18 0.8571257501 .1049878 low_tech   .3771432 .022195 16.75 0.000 .329402 .4213463 mhigh_tech   .4800699 .0520593 9.22 0.000 .4524869 .5680183 high_tech   .4800699 .0520593 9.22 0.000 .3780038 .582136 dcountry1   .4463387 .0747353 5.57 0.000 .2697837 .5628937 dcountry2   .4511667 .0570368 7.91 0.000 .3393632 .5629702 dcountry3   .134031 .0807391 1.66 0.0970242279 .2922422 dcountry4 .1144456 .081774 1.40 0.162045854 .2747452 dcountry5   .7608336 .0382279 19.90 0.000 .6858936 .8357736 dcountry6   .1600155 .041442 .886 0.000 .0787801 .241251 dcountry6   .5602572 .054891 10.30 0.000 .4498997 .6425922 dcountry1   .5462459 .0491306 11.12 0.000 .4498997 .6425922 dcountry1   .5462459 .0491306 11.12 0.000 .4298057 .8024898 dcountry1   .5677 .069501 5.13 0.000 .2204671 .493047 dcountry1   .6982728 .0531515 13.14 0.000 .5940557 .8024898 dcountry1   .6982728 .0531515 13.14 0.000 .5940557 .8024898 dcountry1   .6126186 .0554604 11.05 0.000 .4754268 .7027385 dcountry1   .177374 .1052613 -1.66 0.029386568 .02894 dcountry1   .509266 .0579765 10.16 0.000 .4754268 .7027385 dcountry1   .177374 .0683959 2.60 0.009 .0437248 .3118696 dcountry1   .771144 .0590511 12.31 0.000 .6113435 .842894 dcountry2   .7271144 .0590511 12.31 0.000 .6113435 .8428854 dcountry2   .7271144 .0590511 12.31 0.000 .6113435 .8428854 dcountry2   .7318888 .0597808 12.24 0.000 .6113435 .8428854 dcountry2   .7318888 .0597808 12.24 0.000 .6114345 .842854 dcountry2   .7318888 .0597808 12.24 0.000 .6116476 .8491016 dcountry2   .7318488 .0597808 12.24 0.000 .6116476 .8491016 dcountry2   .7318888 .0597808 12.24 0.000 .6116476 .8491016 dcountry2   .7318888 .0597808 12.24 0.000 .6116476 .8491016 dcountry2   .7318888 .0597808 12.24 0.000 .6116476 .8491016 dcountry2   .6377109 .053658 11.91 0.000 .52204 .7850278 dcountry2   .6377109 .053658 11.91 0.000 .52204 .7850278 dcountry2   .6377109 .053658 11.91 0.000 .52204 .7850278 dcountry2   .6377109 .053658 11.91 0.000 .</pre>                                                                                              | f inputs      | .0025762  | .0003617 | 7.12   | 0.000 | .0018628 | .0032895  |
| bus_assoc  0103811 .0574783 -0.18 0.8571257501 .1049878<br>low_mlow_tech   .5102526 .022463 17.33 0.000 .3229402 .4213463<br>mhigh_tech   .5102526 .0294463 17.33 0.000 .4524869 .5680183<br>high_tech   .4800699 .0520593 9.22 0.000 .3780038 .582136<br>dcountry1   .4163387 .0747353 5.57 0.000 .2697837 .5628937<br>dcountry2   .4511667 .0570368 7.91 0.000 .3393632 .5629702<br>dcountry3   .1340331 .0807391 1.66 0.0970242279 .2922942<br>dcountry5   .7608336 .0382279 19.90 0.000 .6858936 .8357736<br>dcountry6   .1600155 .041442 3.86 0.000 .0787801 .241251<br>dcountry7   .0690198 .0816451 0.85 0.3980910143 .229054<br>dcountry1   .5202572 .0504891 10.30 0.4498997 .6425922<br>dcountry1   .5202572 .0504891 10.30 0.000 .4291381243919<br>dcountry1   .5202577 .0504891 10.30 0.000 .4291381243919<br>dcountry14   .628728 .0551515 13.14 0.000 .5940557 .8024898<br>dcountry14   .6126186 .0554604 11.05 0.000 .2204671 .493047<br>dcountry14   .6126186 .0554604 11.05 0.000 .5338961 .7213411<br>dcountry14   .6126186 .0554604 11.05 0.000 .5338961 .7213411<br>dcountry14   .6126186 .0554604 11.05 0.000 .5038961 .7213411<br>dcountry15  1773314 .1052613 -1.68 0.0923836568 .028994<br>dcountry16   .580026 0.579765 10.16 0.000 .437248 .3118696<br>dcountry19   .2771144 .0590511 12.31 0.000 .6437248 .3118696<br>dcountry19   .777114 .050511 0.22 0.828165547 .200504<br>dcountry19   .777114 .050511 0.22 0.828 .16547 .200504<br>dcountry14   .615486 .0553109 14.21 0.000 .6437248 .3118696<br>dcountry15   .773148 .053951 12.31 0.000 .6113435 .8428854<br>dcountry21   .3736768 0.751782 8.02 0.000 .382677 .636886<br>dcountry24   .7828465 .0572188 13.68 0.000 .614745 .8491016<br>dcountry24   .7828465 .0572188 13.68 0.000 .614745 .8491016<br>dcountry24   .7828465 .0572188 13.68 0.000 .614745 .8491016<br>dcountry24   .5556229 .0648087 8.57 0.000 .4285878 .6826581<br>dcountry24   .6405016 .053367 11.49 0.000 .5226918 .74273<br>dcountry24   .555629 .0648087 8.57 0.000 .4285878 .6826581<br>dcountry24   .55629 .0648087 8.57 0.000 .4285878 .6826581<br>dcountry24   .555629 .0648087 8.57 0.000 .4285878 .                                           | tech dummy    | .071626   | .066849  | 1.07   | 0.288 | 062175   | .205427   |
| <pre>low_mlow_tech   .3771432 .0225195 16.75 0.000 .3329402 .4213463 mhigh_tech   .4800699 .0520593 9.22 0.000 .3780038 .582136 dcountry1   .4163387 .0747353 5.57 0.000 .2697837 .5628937 dcountry2   .4511667 .0570368 7.91 0.000 .3393632 .5629702 dcountry3   .1340331 .0807391 1.66 0.0970242279 .2922942 dcountry4   .1144456 .081774 1.40 0.162045854 .2747452 dcountry6   .1600155 .041442 3.86 0.000 .0787801 .241251 dcountry6   .1600155 .041442 3.86 0.000 .0787801 .241251 dcountry7   .0690198 .0816451 0.85 0.3980910143 .229054 dcountry1   .5202572 .0504891 10.30 0.000 .4498997 .6425922 dcountry1   .5202572 .0504891 10.30 0.000 .4212802 .6192341 dcountry1   .5982728 .0531515 13.14 0.000 .5940557 .8024898 dcountry1   .5890826 .0579765 10.16 0.000 .421381243919 dcountry1   .5126186 .0554604 11.05 0.000 .2204671 .493047 dcountry1   .5773314 .1052613 -1.68 0.092 .3836568 .022994 dcountry1   .573051 .0802618 2.18 0.022 .0383656 .022894 dcountry1   .777312 .0683959 2.60 0.009 .437248 .3118696 dcountry1   .1777972 .0683959 2.60 0.009 .0437248 .3118696 dcountry1   .1773051 .0802618 2.18 0.022 .0179795 .3326308 dcountry1   .277144 .0590511 12.31 0.000 .613435 .8428854 dcountry1   .277144 .0590511 12.31 0.000 .6147186 .66587 dcountry2   .373768 .075162 4.97 0.000 .6147185 .842854 dcountry2   .373768 .0553109 14.21 0.000 .6198988 .9107814 dcountry2   .373768 .0553109 14.21 0.000 .6198988 .9107814 dcountry2   .373768 .0553109 14.21 0.000 .6198988 .9107814 dcountry2   .7271144 .0590511 12.31 0.000 .6198988 .9107814 dcountry2   .731888 .0597808 12.24 0.000 .614676 .8491016 dcountry2   .6377109 .055658 11.91 0.000 .425878 .6826881 dcountry2   .6377109 .055658 11.91 0.000 .526918 .74273 dcountry2   .6377109 .055568 11.91 0.000 .614776 .682877 dcountry2   .6377109 .055658 11.91 0.000 .614776 .682877 dcountry2   .6377109 .055658 11.91 0.000 .614776 .8491016 dcountry2   .6377109 .055658 11.91 0.000 .614776 .682837 </pre>                                                                                                                                                                                                       | bus assoc     | 0103811   | .0574783 | -0.18  | 0.857 | 1257501  | .1049878  |
| mhigh_tech         .5102526         .0294463         17.33         0.000         .4524869         .5680183           high_tech         .4800699         .0520593         9.22         0.000         .3780038         .582136           dcountry1         .4163387         .0747353         5.57         0.000         .339632         .5629702           dcountry2         .1340331         .0807391         1.66         0.097        0242279         .9222942           dcountry4         .1144456         .081774         1.40         0.162        045854         .2747452           dcountry5         .7608336         .0382279         19.90         0.000         .6858936         .8357736           dcountry7         .0609198         .0816451         0.85         0.398        0910143         .229054           dcountry1         .582272         .0531515         13.14         0.000         .4498997         .6425922           dcountry1         .582728         .0531515         13.14         0.000         .249138        1243919           dcountry14         .516186         .055401         1.13         0.000         .2204671         .493047           dcountry14         .5890826         .0579755                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | low mlow tech | .3771432  | .0225195 | 16.75  | 0.000 | .3329402 | .4213463  |
| high_tech   .4800699 .0520593 9.22 0.000 .3780038 .582136<br>dccuntry1 .4163387 .0747353 5.57 0.000 .2697837 .5628937<br>dccuntry2   .4511667 .0570368 7.91 0.000 .3393632 .5629702<br>dcountry3   .1340331 .0807391 1.66 0.0970242279 .2922942<br>dccuntry4   .1144456 .081774 1.40 0.162045854 .2747452<br>dccuntry6   .1600155 .041442 3.86 0.000 .6858936 .8357736<br>dccuntry6   .1600155 .041442 3.86 0.000 .0787801 .241251<br>dccuntry7   .0690198 .0816451 0.85 0.3980910143 .229054<br>dccuntry10   .5202572 .0504891 10.30 0.000 .4428997 .6425922<br>dccuntry10   .5202572 .0504891 10.30 0.000 .4428097 .8024898<br>dccuntry11   .6982728 .0531515 13.14 0.000 .5940557 .8024898<br>dccuntry12  2767649 .0777356 -3.56 0.0004291381243919<br>dccuntry13   .356757 .0695001 5.13 0.000 .2204671 .493047<br>dccuntry14   .6126186 .0554604 11.05 0.000 .5038961 .7213411<br>dccuntry15   .777314 .1052613 -1.68 0.0923836568 .028994<br>dccuntry16   .5890826 .0579765 10.16 0.000 .4475428 .7027385<br>dccuntry17   .1777972 .0683959 2.60 0.009 .0437248 .3118696<br>dccuntry18   .1753051 .0802618 2.18 0.029 .0179795 .3226308<br>dccuntry19   .0207517 .095541 0.22 0.828 -166547 .2080504<br>dccuntry20   .7271144 .0590511 12.31 0.000 .6113435 .8428854<br>dccuntry21   .3736768 .0759763 10.16 0.000 .6639898 .9107814<br>dccuntry24   .7828465 .0573162 8.02 0.000 .3864787 .63586<br>dccuntry24   .7828465 .05511 2.24 0.000 .614576 .849016<br>dccuntry24   .7828465 .05511 2.21 0.000 .613435 .842854<br>dccuntry24   .7828465 .0572188 13.68 0.000 .670662 .8950311<br>dccuntry24   .7828465 .0572188 13.68 0.000 .670662 .8950311<br>dccuntry24   .7828465 .0572188 13.68 0.000 .670662 .8950311<br>dccuntry27   .9868168 .0534313 18.47 0.000 .8820563 1.091577<br>dccuntry28   .5556229 .0648087 8.57 0.000 .4285878 .6826581<br>dccuntry24   .7828465 .0572188 13.68 0.000 .614676 .8491016<br>dccuntry24   .7828465 .0572188 13.68 0.000 .670662 .8950311<br>dccuntry24   .555629 .0648087 8.57 0.000 .4285878 .6826581<br>dccuntry24   .555629 .0648087 8.57 0.000 .4285878 .6826581<br>dccuntry24   .555629 .0648087 8.57 0.000 .5326918 .74273<br>dccuntry30   .3192309 .09941 |               | .5102526  | .0294463 | 17.33  | 0.000 | .4524869 | .5680183  |
| dcountry1         .4163387       .0747353       5.57       0.000       .2697837       .5628937         dcountry2         .4511667       .0570368       7.91       0.000       .3393632       .5629702         dcountry3         .1340331       .0807391       1.66       0.097      0242279       .2922942         dcountry6         .1600155       .081774       1.40       0.162      045854       .2747452         dcountry6         .1600155       .041442       3.86       0.000       .0858936       .8357736         dcountry7         .0690198       .0816451       0.85       0.398      0910143       .229054         dcountry10         .5202572       .0504891       10.30       0.000       .4212802       .6192341         dcountry11         .6982728       .0531515       13.14       0.000       .421802       .6192341         dcountry14         .6126186       .0554604       11.05       0.000       .2204671       .493047         dcountry14         .6126186       .0554604       11.05       0.000       .5038961       .721341         dcountry14         .5126186       .0579765       10.16       0.000       .475268       .022994 <t< th=""><th>high_tech</th><th>.4800699</th><th>.0520593</th><th>9.22</th><th>0.000</th><th>.3780038</th><th>.582136</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | high_tech     | .4800699  | .0520593 | 9.22   | 0.000 | .3780038 | .582136   |
| dcountry2         .4511667       .0570368       7.91       0.000       .3393632       .5629702         dcountry3         .1340331       .0807391       1.66       0.097      0242279       .2922942         dcountry5         .7608336       .0382279       19.90       0.000       .6858936       .8357736         dcountry6         .1600155       .041442       3.86       0.000       .0787801       .241251         dcountry9         .5462459       .0491306       11.12       0.000       .4498997       .6425922         dcountry10         .5202572       .0504891       10.30       0.000       .4212802       .6192341         dcountry11         .6982728       .0531515       13.14       0.000       .421802       .6192341         dcountry13         .356757       .0695001       5.13       0.000       .2204671       .493047         dcountry14         .6126186       .0554604       11.05       0.000       .5038961       .7213411         dcountry15        1773314       .1052613       -1.68       0.092       .3835568       .028994         dcountry16         .5890826       .0579755       10.16       0.000       .4754268       .7027385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | dcountry1     | .4163387  | .0747353 | 5.57   | 0.000 | .2697837 | .5628937  |
| dcountry3         .1340331       .0807391       1.66       0.097      0242279       .2922942         dcountry4         .1144456       .081774       1.40       0.162      045854       .2747452         dcountry5         .7608336       .0382279       19.90       0.000       .6858936       .8357736         dcountry6         .1600155       .041442       3.86       0.000       .0787801       .241251         dcountry7         .0690198       .0816451       0.85       0.398      0910143       .229054         dcountry10         .5202572       .0504891       10.30       0.000       .4212802       .6192341         dcountry11         .6982728       .0531515       13.14       0.000       .5940557       .8024898         dcountry12        2767649       .0777356       -3.56       0.000       .421930       .1243919         dcountry14         .6126186       .0554604       11.05       0.000       .5038961       .7213411         dcountry16         .5890826       .0579765       10.16       0.000       .4754268       .7027385         dcountry16         .5890826       .0579765       10.16       0.000       .4754268       .7027385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | dcountry2     | .4511667  | .0570368 | 7.91   | 0.000 | .3393632 | .5629702  |
| dcountry4   .1144456 .081774 1.40 0.162045854 .2747452<br>dcountry5   .7608336 .0382279 19.90 0.000 .6858936 .8357736<br>dcountry6   .1600155 .041442 3.86 0.000 .0787801 .241251<br>dcountry7   .0690198 .0816451 0.85 0.3980910143 .229054<br>dcountry10   .5462459 .0491306 11.12 0.000 .4498997 .6425922<br>dcountry10   .5202572 .0504891 10.30 0.000 .4212802 .6192341<br>dcountry11   .6982728 .0531515 13.14 0.000 .5940557 .8024898<br>dcountry12  2767649 .0777356 -3.56 0.0004291381243919<br>dcountry13   .356757 .0695001 5.13 0.000 .2204671 .493047<br>dcountry14   .6126186 .0554604 11.05 0.000 .5038961 .7213411<br>dcountry15  1773314 .1052613 -1.68 0.0923836568 .028994<br>dcountry16   .5890826 .0579765 10.16 0.000 .4754268 .7027385<br>dcountry17   .1777972 .0683959 2.60 0.009 .0437248 .3118696<br>dcountry18   .1753051 .0802618 2.18 0.029 .0179795 .3326308<br>dcountry19   .0207517 .0955541 0.22 0.828166547 .2080504<br>dcountry20   .7271144 .0590511 12.31 0.000 .6113435 .8428854<br>dcountry21   .3736768 .0751623 4.97 0.000 .2263382 .5210153<br>dcountry22   .8003856 .0563109 14.21 0.000 .6899898 .9107814<br>dcountry24   .7828465 .0572188 13.68 0.000 .670662 .8950311<br>dcountry24   .7828465 .0572188 13.68 0.000 .670662 .8950311<br>dcountry24   .7828465 .0572188 13.68 0.000 .670662 .8950311<br>dcountry24   .7828465 .0572188 13.68 0.000 .674676 .8491016<br>dcountry24   .7828465 .057318 13.68 0.000 .674676 .8491016<br>dcountry24   .6706151 .0583667 11.49 0.000 .5526024 .7850278<br>dcountry24   .6706151 .0583667 11.49 0.000 .5526034 .74273<br>dcountry26   .677019 .0535585 11.91 0.000 .4285878 .6826581<br>dcountry27   .986168 .0534313 18.47 0.000 .4285878 .6826581<br>dcountry29   .6377109 .0535585 11.91 0.000 .5226918 .74273<br>dcountry30   .3192309 .0994143 3.21 0.001 .1243205 .5141413<br>cons   -2.044423 .1171574 -17.45 0.000 -2.27506 -1.813786                  | dcountry3     | .1340331  | .0807391 | 1.66   | 0.097 | 0242279  | .2922942  |
| dcountry5   .7608336 .0382279 19.90 0.000 .6858936 .8357736<br>dcountry6   .1600155 .041442 3.86 0.000 .0787801 .241251<br>dcountry7   .0690198 .0816451 0.85 0.3980910143 .229054<br>dcountry10   .5202572 .0504891 10.30 0.000 .4498997 .6425922<br>dcountry11   .6982728 .0531515 13.14 0.000 .5940557 .8024898<br>dcountry12  2767649 .0777356 -3.56 0.0004291381243919<br>dcountry13   .356757 .0695001 5.13 0.000 .2204671 .493047<br>dcountry14   .6126186 .0554604 11.05 0.000 .5038961 .7213411<br>dcountry15  1773314 .1052613 -1.68 0.0923836568 .028994<br>dcountry17   .1777972 .0683959 2.60 0.009 .437248 .3118696<br>dcountry18   .1753051 .0802618 2.18 0.029 .0179795 .3326308<br>dcountry19   .0207517 .0955541 0.22 0.828166547 .2080504<br>dcountry21   .3736768 .0751623 4.97 0.000 .6113435 .8428854<br>dcountry21   .3736768 .0563109 14.21 0.000 .6898988 .9107814<br>dcountry22   .8003856 .0563109 14.21 0.000 .6898988 .9107814<br>dcountry23   .5115324 .063782 8.02 0.000 .670662 .8950311<br>dcountry24   .7828465 .0572188 13.68 0.000 .670662 .8950311<br>dcountry25   .731888 .0597808 12.24 0.000 .614676 .8491016<br>dcountry26   .6706151 .0583667 11.49 0.000 .5562024 .7850278<br>dcountry27   .9868168 .0534313 18.47 0.000 .614676 .8491016<br>dcountry29   .6377109 .0535658 11.91 0.000 .614676 .8491016<br>dcountry29   .6377109 .0535658 11.91 0.000 .614676 .8491016<br>dcountry29   .6377109 .0535658 11.91 0.000 .5562024 .7850278<br>dcountry29   .6377109 .0535658 11.91 0.000 .6226338 1.091577<br>dcountry29   .6377109 .0535658 11.91 0.000 .4226578 .6826581<br>dcountry29   .6377109 .0535658 11.91 0.000 .4285878 .6826581<br>dcountry29   .6377109 .0535658 11.91 0.000 .4228578 .6826581<br>dcountry29   .6377109 .0535658 11.91 0.000 .72.2756 -1.813786                                                                                                                                                                                                                                                                                                                                                                                             | dcountry4     | .1144456  | .081774  | 1.40   | 0.162 | 045854   | .2747452  |
| dcountry6   .1600155 .041442 3.86 0.000 .0787801 .241251<br>dcountry7   0.690198 .0816451 0.85 0.3980910143 .229054<br>dcountry10   .5202572 .0504891 10.30 0.000 .4498997 .6425922<br>dcountry11   .6982728 .0531515 13.14 0.000 .5940557 .8024898<br>dcountry12   -2767649 .0777356 -3.56 0.0004291381243919<br>dcountry13   .356757 .0695001 5.13 0.000 .2204671 .493047<br>dcountry14   .6126186 .0554604 11.05 0.000 .5038961 .7213411<br>dcountry15   -1773314 .1052613 -1.68 0.0923836568 .028994<br>dcountry16   .5890826 .0579765 10.16 0.000 .4754268 .7027385<br>dcountry17   .1777972 .068359 2.60 0.009 .0437248 .3118696<br>dcountry19   .0207517 .0955541 0.22 0.828166547 .2080504<br>dcountry20   .7271144 .0590511 12.31 0.000 .6113435 .8428854<br>dcountry21   .3736768 .075612 4.97 0.000 .6113435 .8428854<br>dcountry22   .8003856 .0563109 14.21 0.000 .6899898 .9107814<br>dcountry23   .5115324 .063782 8.02 0.000 .648787 .636586<br>dcountry24   .7828465 .0577188 13.68 0.000 .670662 .8950311<br>dcountry25   .7318888 .0597808 12.24 0.000 .614676 .8491016<br>dcountry26   .6706151 .0583667 11.49 0.000 .5562024 .7850278<br>dcountry27   .9868168 .0534313 18.47 0.000 .826378 .6826581<br>dcountry28   .5556229 .064807 8.57 0.000 .5326918 .74273<br>dcountry29   .6377109 .0535588 11.91 0.000 .6147196 .6662837<br>////////////////////////////////////                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | dcountry5     | .7608336  | .0382279 | 19.90  | 0.000 | .6858936 | .8357736  |
| dcountry7   .0690198 .0816451 0.85 0.3980910143 .229054<br>dcountry9   .5462459 .0491306 11.12 0.000 .4498997 .6425922<br>dcountry10   .5202572 .0504891 10.30 0.000 .4212802 .6192341<br>dcountry11   .6982728 .0531515 13.14 0.000 .5940557 .8024898<br>dcountry12  2767649 .0777356 -3.56 0.0004291381243919<br>dcountry13   .356757 .0695001 5.13 0.000 .2204671 .493047<br>dcountry14   .6126186 .0554604 11.05 0.000 .2004671 .493047<br>dcountry15   -1773314 .1052613 -1.68 0.0923836568 .028994<br>dcountry16   .5890826 .0579765 10.16 0.000 .4754268 .7027385<br>dcountry17   .1777972 .0683959 2.60 0.009 .0437248 .3118696<br>dcountry18   .1753051 .0802618 2.18 0.029 .0179795 .3326308<br>dcountry20   .7271144 .0590511 12.31 0.000 .6113435 .8428854<br>dcountry21   .3736768 .0751623 4.97 0.000 .2263382 .5210153<br>dcountry22   .8003856 .0563109 14.21 0.000 .6899898 .9107814<br>dcountry23   .5115324 .063782 8.02 0.000 .3864787 .636586<br>dcountry24   .7828465 .0572188 13.68 0.000 .670662 .8950311<br>dcountry25   .7318888 .0597808 12.24 0.000 .614676 .8491016<br>dcountry26   .6706151 .0583667 11.49 0.000 .5562024 .7850278<br>dcountry27   .9868168 .0534313 18.47 0.000 .626381 .1091577<br>dcountry28   .5556229 .0640877 8.57 0.000 .4285878 .6826581<br>dcountry29   .6377109 .0535658 11.91 0.000 .5326918 .74273<br>dcountry29   .6377109 .0535658 11.91 0.000 .526024 .7850278<br>dcountry29   .6377109 .0535658 11.91 0.000 .526024 .7850278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | dcountry6     | .1600155  | .041442  | 3.86   | 0.000 | .0787801 | .241251   |
| dcountry9   .5462459 .0491306 11.12 0.000 .4498997 .6425922<br>dcountry10   .5202572 .0504891 10.30 0.000 .4212802 .6192341<br>dcountry11   .6982728 .0531515 13.14 0.000 .5940557 .8024898<br>dcountry12   -2767649 .0777356 -3.56 0.000 -4291381243919<br>dcountry13   .356757 .0695001 5.13 0.000 .2204671 .493047<br>dcountry14   .6126186 .0554604 11.05 0.000 .5038961 .7213411<br>dcountry15   -1773314 .1052613 -1.68 0.0923836568 .028994<br>dcountry16   .5890826 .0579765 10.16 0.000 .4754268 .7027385<br>dcountry17   .1777972 .0683959 2.60 0.009 .0437248 .3118696<br>dcountry18   .1753051 .0802618 2.18 0.029 .0179795 .3326308<br>dcountry19   .0207517 .0955541 0.22 0.828166547 .2080504<br>dcountry20   .7271144 .0590511 12.31 0.000 .6113435 .8428854<br>dcountry21   .3736768 .0751623 4.97 0.000 .2263382 .5210153<br>dcountry22   .8003856 .0563109 14.21 0.000 .6899898 .9107814<br>dcountry22   .8003856 .0572188 13.68 0.000 .670662 .8950311<br>dcountry24   .7828465 .0572188 13.68 0.000 .670662 .8950311<br>dcountry25   .7318888 .0597808 12.24 0.000 .614676 .8491016<br>dcountry26   .6706151 .0583667 11.49 0.000 .5562024 .7850278<br>dcountry27   .9868168 .0534313 18.47 0.000 .614676 .8491016<br>dcountry28   .5556229 .0648087 8.57 0.000 .4285878 .6826581<br>dcountry29   .6377109 .0535658 11.91 0.000 .5326918 .74273<br>dcountry29   .6377109 .0535658 11.91 0.000 .5326918 .74273<br>dcountry29   .6377109 .0535658 11.91 0.000 .5326918 .74273<br>dcountry29   .6377109 .0535658 11.91 0.000 .5326918 .74273<br>dcountry30   .3192309 .0994143 3.21 0.001 .1243205 .5141413<br>cons   -2.044423 .1171574 -17.45 0.000 .6147196 .6662837                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | dcountry7     | .0690198  | .0816451 | 0.85   | 0.398 | 0910143  | .229054   |
| dcountry10   .5202572 .0504891 10.30 0.000 .4212802 .6192341<br>dcountry11   .6982728 .0531515 13.14 0.000 .5940557 .8024898<br>dcountry12  2767649 .0777356 -3.56 0.0004291381243919<br>dcountry13   .356757 .0695001 5.13 0.000 .2204671 .493047<br>dcountry14   .6126186 .0554604 11.05 0.000 .5038961 .7213411<br>dcountry15  1773314 .1052613 -1.68 0.0923836568 .028994<br>dcountry16   .5890826 .0579765 10.16 0.000 .4754268 .7027385<br>dcountry17   .1777972 .0683959 2.60 0.009 .0437248 .3118696<br>dcountry18   .1753051 .0802618 2.18 0.029 .0179795 .3326308<br>dcountry19   .0207517 .0955541 0.22 0.828166547 .2080504<br>dcountry20   .7271144 .0590511 12.31 0.000 .6113435 .8428854<br>dcountry21   .3736768 .0751623 4.97 0.000 .2263382 .5210153<br>dcountry22   .8003856 .0563109 14.21 0.000 .6899898 .9107814<br>dcountry23   .5115324 .063782 8.02 0.000 .3864787 .636586<br>dcountry24   .7828465 .0572188 13.68 0.000 .670662 .8950311<br>dcountry25   .7318888 .0597808 12.24 0.000 .614676 .8491016<br>dcountry26   .6706151 .0583667 11.49 0.000 .5562024 .7850278<br>dcountry27   .9868168 .0534313 18.47 0.000 .8820563 1.091577<br>dcountry28   .555629 .0644087 8.57 0.000 .4285878 .6826581<br>dcountry29   .6377109 .0535658 11.91 0.000 .5326918 .74273<br>dcountry29   .6377109 .0535658 11.91 0.000 .5326918 .74273<br>dcountry30   .3192309 .0994143 3.21 0.001 .1243205 .5141413<br>cons   -2.044423 .1171574 -17.45 0.000 .6147196 .6662837                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dcountry9     | .5462459  | .0491306 | 11.12  | 0.000 | .4498997 | .6425922  |
| dcountry11   .6982728 .0531515 13.14 0.000 .5940557 .8024898<br>dcountry12  2767649 .0777356 -3.56 0.0004291381243919<br>dcountry13   .356757 .0695001 5.13 0.000 .2204671 .493047<br>dcountry14   .6126186 .0554604 11.05 0.000 .5038961 .7213411<br>dcountry15  1773314 .1052613 -1.68 0.0923836568 .028994<br>dcountry16   .5890826 .0579765 10.16 0.000 .4754268 .7027385<br>dcountry17   .1777972 .0683959 2.60 0.009 .0437248 .3118696<br>dcountry19   .0207517 .0955541 0.22 0.828166547 .2080504<br>dcountry20   .7271144 .0590511 12.31 0.000 .6113435 .8428854<br>dcountry21   .3736768 .0751623 4.97 0.000 .2263382 .5210153<br>dcountry22   .8003856 .0563109 14.21 0.000 .6899898 .9107814<br>dcountry23   .5115324 .063782 8.02 0.000 .3864787 .636586<br>dcountry24   .7828465 .0572188 13.68 0.000 .670662 .8950311<br>dcountry25   .7318888 .0597808 12.24 0.000 .614676 .8491016<br>dcountry26   .6706151 .0583667 11.49 0.000 .552024 .7850278<br>dcountry27   .9868168 .0534313 18.47 0.000 .5326918 .74273<br>dcountry28   .5556229 .0648087 8.57 0.000 .4285878 .6826581<br>dcountry29   .6377109 .0535658 11.91 0.000 .5326918 .74273<br>dcountry29   .6377109 .0535658 11.91 0.000 .5326918 .74273<br>dcountry29   .6377109 .0535658 11.91 0.000 .5226918 .74273<br>dcountry29   .6377109 .0535658 11.91 0.000 .5226918 .74273<br>dcountry29   .6377109 .0535658 11.91 0.000 .5226918 .74273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | dcountry10    | .5202572  | .0504891 | 10.30  | 0.000 | .4212802 | .6192341  |
| dcountry12  2767649 .0777356 -3.56 0.0004291381243919<br>dcountry13   .356757 .0695001 5.13 0.000 .2204671 .493047<br>dcountry14   .6126186 .0554604 11.05 0.000 .5038961 .7213411<br>dcountry15  1773314 .1052613 -1.68 0.0923836568 .028994<br>dcountry16   .5890826 .0579765 10.16 0.000 .4754268 .7027385<br>dcountry17   .1777972 .0683959 2.60 0.009 .0437248 .3118696<br>dcountry18   .1753051 .0802618 2.18 0.029 .0179795 .3326308<br>dcountry19   .0207517 .0955541 0.22 0.828166547 .2080504<br>dcountry20   .7271144 .0590511 12.31 0.000 .6113435 .8428854<br>dcountry21   .3736768 .0751623 4.97 0.000 .2263382 .5210153<br>dcountry22   .8003856 .0563109 14.21 0.000 .6899898 .9107814<br>dcountry23   .5115324 .063782 8.02 0.000 .3864787 .636586<br>dcountry24   .7828465 .0572188 13.68 0.000 .670662 .8950311<br>dcountry25   .7318888 .0597808 12.24 0.000 .614676 .8491016<br>dcountry26   .6706151 .0583667 11.49 0.000 .5562024 .7850278<br>dcountry27   .9868168 .0534313 18.47 0.000 .8820563 1.091577<br>dcountry28   .5556229 .0648087 8.57 0.000 .4285878 .6826581<br>dcountry29   .6377109 .0535658 11.91 0.000 .5326918 .74273<br>dcountry29   .6377109 .0535658 11.91 0.000 .5326918 .74273<br>dcountry29   .6377109 .0535658 11.91 0.000 .5220918 .74273<br>dcountry29   .6405016 .0131529 48.70 0.000 .6147196 .6662837                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | dcountry11    | .6982728  | .0531515 | 13.14  | 0.000 | .5940557 | .8024898  |
| dcountry13   .356757 .0695001 5.13 0.000 .2204671 .493047<br>dcountry14   .6126186 .0554604 11.05 0.000 .5038961 .7213411<br>dcountry15  1773314 .1052613 -1.68 0.0923836568 .028994<br>dcountry16   .5890826 .0579765 10.16 0.000 .4754268 .7027385<br>dcountry17   .1777972 .0683959 2.60 0.009 .0437248 .3118696<br>dcountry18   .1753051 .0802618 2.18 0.029 .0179795 .3326308<br>dcountry19   .0207517 .0955541 0.22 0.828166547 .2080504<br>dcountry20   .7271144 .0590511 12.31 0.000 .6113435 .8428854<br>dcountry21   .3736768 .0751623 4.97 0.000 .2263382 .5210153<br>dcountry22   .8003856 .0563109 14.21 0.000 .6899898 .9107814<br>dcountry23   .5115324 .063782 8.02 0.000 .3864787 .636586<br>dcountry24   .7828465 .0572188 13.68 0.000 .670662 .8950311<br>dcountry25   .7318888 .0597808 12.24 0.000 .614676 .8491016<br>dcountry26   .6706151 .0583667 11.49 0.000 .5562024 .7850278<br>dcountry28   .5556229 .0648087 8.57 0.000 .4285878 .6826581<br>dcountry28   .5556229 .0648087 8.57 0.000 .4285878 .6826581<br>dcountry29   .6377109 .0535658 11.91 0.000 .5326918 .74273<br>dcountry29   .6377109 .0535658 11.91 0.000 .5326918 .74273<br>dcountry29   .6377109 .0535658 11.91 0.000 .227506 -1.813786<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | dcountry12    | 2767649   | .0777356 | -3.56  | 0.000 | 429138   | 1243919   |
| dcountry14   .6126186 .0554604 11.05 0.000 .5038961 .7213411<br>dcountry15  1773314 .1052613 -1.68 0.0923836568 .028994<br>dcountry16   .5890826 .0579765 10.16 0.000 .4754268 .7027385<br>dcountry17   .1777972 .0683959 2.60 0.009 .0437248 .3118696<br>dcountry18   .1753051 .0802618 2.18 0.029 .0179795 .3326308<br>dcountry19   .0207517 .0955541 0.22 0.828166547 .2080504<br>dcountry20   .7271144 .0590511 12.31 0.000 .6113435 .8428854<br>dcountry21   .3736768 .0751623 4.97 0.000 .2263382 .5210153<br>dcountry22   .8003856 .0563109 14.21 0.000 .6898988 .9107814<br>dcountry23   .5115324 .063782 8.02 0.000 .3864787 .636586<br>dcountry24   .7828465 .0572188 13.68 0.000 .670662 .8950311<br>dcountry25   .7318888 .0597808 12.24 0.000 .614676 .8491016<br>dcountry26   .6706151 .0583667 11.49 0.000 .5562024 .7850278<br>dcountry28   .5556229 .0648087 8.57 0.000 .4285878 .6826581<br>dcountry29   .6377109 .0535658 11.91 0.000 .5326918 .74273<br>dcountry20   .3192309 .0994143 3.21 0.001 .1243205 .5141413<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | dcountry13    | .356757   | .0695001 | 5.13   | 0.000 | .2204671 | .493047   |
| dcountry15        1773314       .1052613       -1.68       0.092      3836568       .028994         dcountry16         .5890826       .0579765       10.16       0.000       .4754268       .7027385         dcountry17         .1777972       .0683959       2.60       0.009       .0437248       .3118696         dcountry18         .1753051       .0802618       2.18       0.029       .0179795       .3326308         dcountry19         .0207517       .0955541       0.22       0.828      166547       .2080504         dcountry20         .7271144       .0590511       12.31       0.000       .6113435       .8428854         dcountry21         .3736768       .0751623       4.97       0.000       .263382       .5210153         dcountry23         .5115324       .063782       8.02       0.000       .6899898       .9107814         dcountry24         .7828465       .0572188       13.68       0.000       .670662       .8950311         dcountry26         .6706151       .0583667       11.49       0.000       .5562024       .7850278         dcountry27         .9868168       .0534313       18.47       0.000       .820563       1.091577 <tr< th=""><th>dcountry14</th><th>  .6126186</th><th>.0554604</th><th>11.05</th><th>0.000</th><th>.5038961</th><th>.7213411</th></tr<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dcountry14    | .6126186  | .0554604 | 11.05  | 0.000 | .5038961 | .7213411  |
| dcountry16         .5890826       .0579765       10.16       0.000       .4754268       .7027385         dcountry17         .1777972       .0683959       2.60       0.009       .0437248       .3118696         dcountry18         .1753051       .0802618       2.18       0.029       .0179795       .3326308         dcountry19         .0207517       .0955541       0.22       0.828      166547       .2080504         dcountry20         .7271144       .0590511       12.31       0.000       .6113435       .8428854         dcountry21         .3736768       .0751623       4.97       0.000       .2263382       .5210153         dcountry22         .8003856       .0563109       14.21       0.000       .6899898       .9107814         dcountry23         .5115324       .063782       8.02       0.000       .3864787       .636586         dcountry24         .7828465       .0572188       13.68       0.000       .614676       .8491016         dcountry25         .7318888       .0597808       12.24       0.000       .5562024       .7850278         dcountry26         .6706151       .0534313       18.47       0.000       .820563       1.091577                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | dcountry15    | 1773314   | .1052613 | -1.68  | 0.092 | 3836568  | .028994   |
| dcountry17         .1777972       .0683959       2.60       0.009       .0437248       .3118696         dcountry18         .1753051       .0802618       2.18       0.029       .0179795       .3326308         dcountry19         .0207517       .0955541       0.22       0.828      166547       .2080504         dcountry20         .7271144       .0590511       12.31       0.000       .6113435       .8428854         dcountry21         .3736768       .0751623       4.97       0.000       .2263382       .5210153         dcountry22         .8003856       .0563109       14.21       0.000       .6899898       .9107814         dcountry23         .5115324       .063782       8.02       0.000       .3864787       .636586         dcountry24         .7828465       .0572188       13.68       0.000       .614676       .8491016         dcountry26         .6706151       .0583667       11.49       0.000       .5562024       .7850278         dcountry28         .5556229       .0648087       8.57       0.000       .4285878       .6826581         dcountry29         .6377109       .0535658       11.91       0.000       .5326918       .74273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | dcountry16    | .5890826  | .0579765 | 10.16  | 0.000 | .4754268 | .7027385  |
| dcountry18         .1753051       .0802618       2.18       0.029       .0179795       .3326308         dcountry19         .0207517       .0955541       0.22       0.828      166547       .2080504         dcountry20         .7271144       .0590511       12.31       0.000       .6113435       .8428854         dcountry21         .3736768       .0751623       4.97       0.000       .2263382       .5210153         dcountry22         .8003856       .0563109       14.21       0.000       .6899898       .9107814         dcountry23         .5115324       .063782       8.02       0.000       .3864787       .636586         dcountry24         .7828465       .0572188       13.68       0.000       .670662       .8950311         dcountry25         .7318888       .0597808       12.24       0.000       .614676       .8491016         dcountry26         .6706151       .0583667       11.49       0.000       .5562024       .7850278         dcountry28         .5556229       .0648087       8.57       0.000       .4285878       .6826581         dcountry29         .6377109       .0535658       11.91       0.000       .5326918       .74273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | dcountry17    | .1777972  | .0683959 | 2.60   | 0.009 | .0437248 | .3118696  |
| dcountry19         .0207517       .0955541       0.22       0.828      166547       .2080504         dcountry20         .7271144       .0590511       12.31       0.000       .6113435       .8428854         dcountry21         .3736768       .0751623       4.97       0.000       .2263382       .5210153         dcountry22         .8003856       .0563109       14.21       0.000       .6899898       .9107814         dcountry23         .5115324       .063782       8.02       0.000       .3864787       .636586         dcountry24         .7828465       .0572188       13.68       0.000       .670662       .8950311         dcountry25         .7318888       .0597808       12.24       0.000       .614676       .8491016         dcountry26         .6706151       .0583667       11.49       0.000       .5562024       .7850278         dcountry27         .9868168       .0534313       18.47       0.000       .8820563       1.091577         dcountry28         .5556229       .0648087       8.57       0.000       .4285878       .6826581         dcountry29         .6377109       .0535658       11.91       0.000       .5326918       .74273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | dcountry18    | .1753051  | .0802618 | 2.18   | 0.029 | .0179795 | .3326308  |
| dcountry20         .7271144       .0590511       12.31       0.000       .6113435       .8428854         dcountry21         .3736768       .0751623       4.97       0.000       .2263382       .5210153         dcountry22         .8003856       .0563109       14.21       0.000       .6899898       .9107814         dcountry23         .5115324       .063782       8.02       0.000       .3864787       .636586         dcountry24         .7828465       .0572188       13.68       0.000       .670662       .8950311         dcountry25         .7318888       .0597808       12.24       0.000       .614676       .8491016         dcountry26         .6706151       .0583667       11.49       0.000       .5562024       .7850278         dcountry27         .9868168       .0534313       18.47       0.000       .8820563       1.091577         dcountry28         .5556229       .0648087       8.57       0.000       .4285878       .6826581         dcountry20         .6377109       .0535658       11.91       0.000       .5326918       .74273         dcountry30         .3192309       .0994143       3.21       0.001       .1243205       .5141413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dcountry19    | .0207517  | .0955541 | 0.22   | 0.828 | 166547   | .2080504  |
| dcountry21         .3736768       .0751623       4.97       0.000       .2263382       .5210153         dcountry22         .8003856       .0563109       14.21       0.000       .6899898       .9107814         dcountry23         .5115324       .063782       8.02       0.000       .3864787       .636586         dcountry24         .7828465       .0572188       13.68       0.000       .670662       .8950311         dcountry25         .7318888       .0597808       12.24       0.000       .614676       .8491016         dcountry26         .6706151       .0583667       11.49       0.000       .5562024       .7850278         dcountry27         .9868168       .0534313       18.47       0.000       .8820563       1.091577         dcountry28         .5556229       .0648087       8.57       0.000       .4285878       .6826581         dcountry29         .6377109       .0535658       11.91       0.000       .5326918       .74273         dcountry30         .3192309       .0994143       3.21       0.001       .1243205       .5141413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | dcountry20    | .7271144  | .0590511 | 12.31  | 0.000 | .6113435 | .8428854  |
| dcountry22         .8003856       .0563109       14.21       0.000       .6899898       .9107814         dcountry23         .5115324       .063782       8.02       0.000       .3864787       .636586         dcountry24         .7828465       .0572188       13.68       0.000       .670662       .8950311         dcountry25         .7318888       .0597808       12.24       0.000       .614676       .8491016         dcountry26         .6706151       .0583667       11.49       0.000       .5562024       .7850278         dcountry27         .9868168       .0534313       18.47       0.000       .8820563       1.091577         dcountry28         .5556229       .0648087       8.57       0.000       .4285878       .6826581         dcountry29         .6377109       .0535658       11.91       0.000       .5326918       .74273         dcountry30         .3192309       .0994143       3.21       0.001       .1243205       .5141413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | dcountry21    | .3736768  | .0751623 | 4.97   | 0.000 | .2263382 | .5210153  |
| dcountry23         .5115324       .063782       8.02       0.000       .3864787       .636586         dcountry24         .7828465       .0572188       13.68       0.000       .670662       .8950311         dcountry25         .7318888       .0597808       12.24       0.000       .614676       .8491016         dcountry26         .6706151       .0583667       11.49       0.000       .5562024       .7850278         dcountry27         .9868168       .0534313       18.47       0.000       .8820563       1.091577         dcountry28         .5556229       .0648087       8.57       0.000       .4285878       .6826581         dcountry29         .6377109       .0535658       11.91       0.000       .5326918       .74273         dcountry30         .3192309       .0994143       3.21       0.001       .1243205       .5141413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | dcountry22    | .8003856  | .0563109 | 14.21  | 0.000 | .6899898 | .9107814  |
| dcountry24         .7828465       .0572188       13.68       0.000       .670662       .8950311         dcountry25         .7318888       .0597808       12.24       0.000       .614676       .8491016         dcountry26         .6706151       .0583667       11.49       0.000       .5562024       .7850278         dcountry27         .9868168       .0534313       18.47       0.000       .8820563       1.091577         dcountry28         .5556229       .0648087       8.57       0.000       .4285878       .6826581         dcountry29         .6377109       .0535658       11.91       0.000       .5326918       .74273         dcountry30         .3192309       .0994143       3.21       0.001       .1243205       .5141413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dcountry23    | .5115324  | .063782  | 8.02   | 0.000 | .3864787 | .636586   |
| dcountry25         .7318888       .0597808       12.24       0.000       .614676       .8491016         dcountry26         .6706151       .0583667       11.49       0.000       .5562024       .7850278         dcountry27         .9868168       .0534313       18.47       0.000       .8820563       1.091577         dcountry28         .5556229       .0648087       8.57       0.000       .4285878       .6826581         dcountry29         .6377109       .0535658       11.91       0.000       .5326918       .74273         dcountry30         .3192309       .0994143       3.21       0.001       .1243205       .5141413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | dcountry24    | .7828465  | .0572188 | 13.68  | 0.000 | .670662  | .8950311  |
| dcountry26         .6706151       .0583667       11.49       0.000       .5562024       .7850278         dcountry27         .9868168       .0534313       18.47       0.000       .8820563       1.091577         dcountry28         .5556229       .0648087       8.57       0.000       .4285878       .6826581         dcountry29         .6377109       .0535658       11.91       0.000       .5326918       .74273         dcountry30         .3192309       .0994143       3.21       0.001       .1243205       .5141413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dcountry25    | .7318888  | .0597808 | 12.24  | 0.000 | .614676  | .8491016  |
| dcountry27         .9868168       .0534313       18.47       0.000       .8820563       1.091577         dcountry28         .5556229       .0648087       8.57       0.000       .4285878       .6826581         dcountry29         .6377109       .0535658       11.91       0.000       .5326918       .74273         dcountry30         .3192309       .0994143       3.21       0.001       .1243205       .5141413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | dcountry26    | .6706151  | .0583667 | 11.49  | 0.000 | .5562024 | .7850278  |
| dcountry28         .5556229       .0648087       8.57       0.000       .4285878       .6826581         dcountry29         .6377109       .0535658       11.91       0.000       .5326918       .74273         dcountry30         .3192309       .0994143       3.21       0.001       .1243205       .5141413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | dcountry27    | .9868168  | .0534313 | 18.47  | 0.000 | .8820563 | 1.091577  |
| dcountry29         .6377109       .0535658       11.91       0.000       .5326918       .74273         dcountry30         .3192309       .0994143       3.21       0.001       .1243205       .5141413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | dcountry28    | .5556229  | .0648087 | 8.57   | 0.000 | .4285878 | .6826581  |
| dcountry30   .3192309 .0994143 3.21 0.001 .1243205 .5141413<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | dcountry29    | .6377109  | .0535658 | 11.91  | 0.000 | .5326918 | .74273    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | dcountry30    | .3192309  | .0994143 | 3.21   | 0.001 | .1243205 | .5141413  |
| /sigma   .6405016 .0131529 48.70 0.000 .6147196 .6662837                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _cons         | -2.044423 | .1171574 | -17.45 | 0.000 | -2.27506 | -1.813786 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | /sigma        | .6405016  | .0131529 | 48.70  | 0.000 | .6147196 | .6662837  |

# Table A6.3.9 Tobit (Augumented) Model - Full sample (imputed) estimated results (95)

mi estimate, cmdok: tobit exp\_int emp\_edu emp\_trng manager\_exp skilled\_emp manager\_edu\_dummy new\_org\_str new\_prod\_serv new\_methods location lnsize lnsize\_sqr lnage lnage\_sqr foreign\_dummy state\_dummy credit f\_inputs tech\_dummy bus\_assoc low\_mlow\_tech mhigh\_tech high\_tech dcountry1-dcountry7 dcountry9-dcountry30, ll ul nolog vce(robust)

| Multiple-imputation estimates | Imputations    | = | 95       |
|-------------------------------|----------------|---|----------|
| Tobit regression              | Number of obs  | = | 15883    |
|                               | Average RVI    | = | 0.4364   |
|                               | Largest FMI    | = | 0.8971   |
|                               | Complete DF    | = | 15832    |
| DF adjustment: Small sample   | DF: min        | = | 109.52   |
|                               | avg            | = | 7025.30  |
|                               | max            | = | 15231.48 |
| Model F test: Equal FMI       | F( 51,12051.1) | = | 31.27    |
| Within VCE type: Robust       | Prob > F       | = | 0.0000   |
|                               |                |   |          |

\_\_\_\_\_

| exp_int           | Coef.          | Std. Err. | t      | P> t    | [95% Conf. | Interval] |
|-------------------|----------------|-----------|--------|---------|------------|-----------|
| emp edu           | .0013529       | .0004277  | 3.16   | 0.002   | .0005139   | .0021919  |
| emp trng          | .0300917       | .0196805  | 1.53   | 0.126   | 0084906    | .0686741  |
| manager exp       | .000279        | .0009182  | 0.30   | 0.761   | 001521     | .0020791  |
| skilled emp       | .0001141       | .0004929  | 0.23   | 0.817   | 0008546    | .0010828  |
| manager edu dummy | .066526        | .0389459  | 1.71   | 0.089   | 0103741    | .1434262  |
| new org str       | .0245475       | .0237026  | 1.04   | 0.300   | 0219204    | .0710154  |
| new prod serv     | .0445758       | .0218747  | 2.04   | 0.042   | .0016936   | .0874579  |
| new methods       | .0236225       | .0241406  | 0.98   | 0.328   | 0236977    | .0709427  |
| location          | 0713619        | .0242238  | -2.95  | 0.003   | 1188503    | 0238735   |
| lnsize            | .1785022       | .0294024  | 6.07   | 0.000   | .1208636   | .2361408  |
| lnsize sqr        | 0073971        | .0035623  | -2.08  | 0.038   | 0143801    | 000414    |
| lnage             | .0307843       | .0524358  | 0.59   | 0.557   | 0720137    | .1335822  |
| lnage sqr         | 0108988        | .0101226  | -1.08  | 0.282   | 0307437    | .008946   |
| foreign dummy     | .3493532       | .0362819  | 9.63   | 0.000   | .2782229   | .4204835  |
| state dummy       | 1077213        | .084483   | -1.28  | 0.202   | 2733395    | .057897   |
| credit            | .1116801       | .0186757  | 5.98   | 0.000   | .0750679   | .1482923  |
| f inputs          | .0025567       | .0003433  | 7.45   | 0.000   | .0018822   | .0032311  |
| tech dummy        | .0628288       | .0689401  | 0.91   | 0.364   | 0736983    | .1993559  |
| bus assoc         | 0050476        | .0537317  | -0.09  | 0.925   | 1115365    | .1014412  |
| low mlow tech     | .3786675       | .0222972  | 16.98  | 0.000   | .3349374   | .4223975  |
| mhigh tech        | .5109162       | .0291844  | 17.51  | 0.000   | .4536924   | .56814    |
| high tech         | .4802331       | .0521153  | 9.21   | 0.000   | .3780699   | .5823963  |
| dcountry1         | .0944623       | .1150777  | 0.82   | 0.412   | 1311215    | .320046   |
| dcountry2         | .4533777       | .0573382  | 7.91   | 0.000   | .3409851   | .5657704  |
| dcountry3         | .134024        | .0807019  | 1.66   | 0.097   | 0241623    | .2922103  |
| dcountry4         | .1140778       | .0817645  | 1.40   | 0.163   | 0461966    | .2743522  |
| dcountry5         | .7614621       | .0381033  | 19.98  | 0.000   | .6867718   | .8361524  |
| dcountry6         | .159687        | .0414252  | 3.85   | 0.000   | .0784869   | .2408871  |
| dcountry7         | .0693905       | .0818233  | 0.85   | 0.396   | 090993     | .229774   |
| dcountry9         | .2240659       | .1038621  | 2.16   | 0.031   | .0204579   | .4276739  |
| dcountry10        | .1976396       | .1033451  | 1.91   | 0.056   | 0049451    | .4002243  |
| dcountry11        | .377671        | .1040231  | 3.63   | 0.000   | .1737542   | .5815878  |
| dcountry12        | 2764786        | .0777414  | -3.56  | 0.000   | 428862     | 1240952   |
| dcountry13        | .357973        | .0695393  | 5.15   | 0.000   | .2216381   | .4943078  |
| dcountry14        | .2909514       | .1054908  | 2.76   | 0.006   | .084161    | .4977417  |
| dcountry15        | 1770782        | .1053685  | -1.68  | 0.093   | 3836133    | .0294569  |
| dcountry16        | .2676142       | .106143   | 2.52   | 0.012   | .0595444   | .4756839  |
| dcountry17        | .1802221       | .0691716  | 2.61   | 0.009   | .0446295   | .3158147  |
| dcountry18        | .1738891       | .0804654  | 2.16   | 0.031   | .0161655   | .3316126  |
| dcountry19        | .0218422       | .0956661  | 0.23   | 0.819   | 1656753    | .2093596  |
| dcountry20        | .4055503       | .1061522  | 3.82   | 0.000   | .1974645   | .6136362  |
| dcountry21        | .0539928       | .1166684  | 0.46   | 0.644   | 1747035    | .2826891  |
| dcountry22        | .4771416       | .1063156  | 4.49   | 0.000   | .268733    | .6855502  |
| dcountry23        | .1876846       | .1104138  | 1.70   | 0.089   | 0287641    | .4041332  |
| dcountry24        | .4605867       | .1060946  | 4.34   | 0.000   | .2526096   | .6685639  |
| dcountry25        | .4089338       | .1079628  | 3.79   | 0.000   | .1972953   | .6205724  |
| dcountry26        | .3498415       | .1078076  | 3.25   | 0.001   | .1385098   | .5611732  |
| dcountry27        | .6667387       | .1026775  | 6.49   | 0.000   | .4654663   | .8680111  |
| dcountry28        | .2352166       | .111652   | 2.11   | 0.035   | .0163497   | .4540835  |
| dcountry29        | .3167577       | .1044087  | 3.03   | 0.002   | .1120846   | .5214309  |
| dcountry30        | 0              | (omitted) | 1      | 0 0 0 0 | 0 0 0      | 1 010011  |
|                   | -2.044163<br>+ | .1175773  | -17.39 | 0.000   | -2.275111  | -1.813214 |
| /sigma            | .6411101       | .0131891  | 48.61  | 0.000   | .6152574   | .6669629  |

### Table A6.4 Fractional Logit Model - Full sample estimated results

glm exp\_int emp\_edu emp\_trng manager\_exp new\_org\_str new\_prod\_serv new\_methods
location lnsize lnsize\_sqr lnage lnage\_sqr foreign\_dummy state\_dummy credit

| <pre>low_mlow_tech (binomial) lin note: exp_int</pre> | mhigh_tech h<br>k (logit) vce<br>has nonintege | nigh_tech d<br>e(robust) no<br>er values | country1<br>log | -dcountry    | 7 dcountry9-d                 | .country30,           | family |
|-------------------------------------------------------|------------------------------------------------|------------------------------------------|-----------------|--------------|-------------------------------|-----------------------|--------|
| Generalized li<br>Optimization                        | near models<br>: ML                            |                                          |                 | No.<br>Resi  | of obs =<br>dual df =         | 14026<br>13979        |        |
| Deviance<br>Pearson                                   | = 3404.39<br>= 11111.6                         | 99884<br>50402                           |                 | (1/d<br>(1/d | f) Deviance =<br>f) Pearson = | .2435367              |        |
| Variance funct<br>Link function                       | ion: V(u) = u<br>: g(u) = 1                    | ı*(1−u/1)<br>Ln(u/(1−u))                 |                 | [Bin<br>[Log | omial]<br>it]                 |                       |        |
| Log pseudolike                                        | -229                                           | 95.359377                                |                 | AIC<br>BIC   | =                             | .3340025<br>-130076.4 |        |
|                                                       |                                                |                                          |                 |              |                               |                       |        |
| <br>  exp_int                                         | Coef.                                          | Robust<br>Std. Err.                      | Z               | ₽> z         | [95% Conf.                    | Interval]             |        |
| emp edu                                               | .0027438                                       | .0014501                                 | 1.89            | 0.058        | 0000982                       | .0055859              |        |
| emp trng                                              | .021027                                        | .0667267                                 | 0.32            | 0.753        | 1097549                       | .1518089              |        |
| manager exp                                           | .0003349                                       | .0030266                                 | 0.11            | 0.912        | 0055972                       | .006267               |        |
| new org str                                           | .134112                                        | .0795538                                 | 1.69            | 0.092        | 0218105                       | .2900345              |        |
| new prod s~v                                          | 0908554                                        | .0759251                                 | -1.20           | 0.231        | 2396659                       | .0579552              |        |
| new_methods                                           | .1201731                                       | .0861926                                 | 1.39            | 0.163        | 0487613                       | .2891076              |        |
| location                                              | 306382                                         | .0827391                                 | -3.70           | 0.000        | 4685477                       | 1442163               |        |
| lnsize                                                | .617263                                        | .1068392                                 | 5.78            | 0.000        | .4078621                      | .826664               |        |
| lnsize_sqr                                            | 0306409                                        | .0124116                                 | -2.47           | 0.014        | 0549672                       | 0063147               |        |
| lnage                                                 | .1715372                                       | .1730864                                 | 0.99            | 0.322        | 1677059                       | .5107802              |        |
| lnage_sqr                                             | 0658054                                        | .033514                                  | -1.96           | 0.050        | 1314917                       | 0001191               |        |
| foreign_du~y                                          | 1.037427                                       | .1052409                                 | 9.86            | 0.000        | .8311583                      | 1.243695              |        |
| state_dummy                                           | 7643528                                        | .3174622                                 | -2.41           | 0.016        | -1.386567                     | 1421383               |        |
| credit                                                | .1877893                                       | .0626682                                 | 3.00            | 0.003        | .0649619                      | .3106167              |        |
| low_mlow_t~h                                          | 1.176837                                       | .0730739                                 | 16.10           | 0.000        | 1.033614                      | 1.320059              |        |
| mhigh_tech                                            | 1.497412                                       | .0953806                                 | 15.70           | 0.000        | 1.310469                      | 1.684354              |        |
| high_tech                                             | 1.659743                                       | .1687179                                 | 9.84            | 0.000        | 1.329062                      | 1.990424              |        |
| dcountry1                                             | 2.128335                                       | .2466171                                 | 8.63            | 0.000        | 1.644974                      | 2.611695              |        |
| dcountry2                                             | 1.623519                                       | .2184044                                 | 7.43            | 0.000        | 1.195454                      | 2.051583              |        |
| dcountry3                                             | 1.013827                                       | .320547                                  | 3.16            | 0.002        | .3855664                      | 1.642088              |        |
| dcountry4                                             | .9823349                                       | .303404                                  | 3.24            | 0.001        | .3876741                      | 1.576996              |        |
| dcountry5                                             | 2.141768                                       | .1362351                                 | 15.72           | 0.000        | 1.874753                      | 2.408784              |        |
| dcountry6                                             | .7999487                                       | .1610737                                 | 4.97            | 0.000        | .4842501                      | 1.115647              |        |
| dcountry7                                             | .6793582                                       | .3091109                                 | 2.20            | 0.028        | .0735119                      | 1.285204              |        |
| dcountry9                                             | 1.531628                                       | .1982625                                 | 7.73            | 0.000        | 1.143041                      | 1.920216              |        |
| dcountry10                                            | 2.106969                                       | .1/12329                                 | 12.30           | 0.000        | 1.//1359                      | 2.44258               |        |
| dcountryll                                            | 2.068155                                       | .1940215                                 | 10.66           | 0.000        | 1.68/8/9                      | 2.44843               |        |
| dcountry12                                            | 5166834                                        | .3//4891                                 | -1.3/           | 0.1/1        | -1.236349                     | .2231817              |        |
| dcountry13                                            | 2 120024                                       | .2019943                                 | 3.94            | 0.000        | .JIOU/UJ<br>1 757754          | 2 520204              |        |
| dcountry14                                            | - 1681652                                      | .1945291                                 | -0.95           | 0.000        | -1 /3/002                     | 2.J20294<br>1970712   |        |
| dcountry16                                            | · 1 0 4 0 J Z                                  | 2040712                                  | 10 48           | 0.042        | 1 738708                      |                       |        |
| dcountry17                                            | 1 13357                                        | 2618898                                  | 4 33            | 0 000        | 6202758                       | 1 646865              |        |
| dcountry18                                            | 1,188024                                       | .2556076                                 | 4.65            | 0.000        | .687042                       | 1.689005              |        |
| dcountry19                                            | .887503                                        | .3245708                                 | 2.73            | 0.006        | .2513559                      | 1.52365               |        |
| dcountrv20                                            | 2.794963                                       | .1946146                                 | 14.36           | 0.000        | 2.413525                      | 3.176401              |        |
| dcountrv21                                            | 1.453751                                       | .2882177                                 | 5.04            | 0.000        | .8888543                      | 2.018647              |        |
| dcountrv22                                            | 2.546862                                       | .1852243                                 | 13.75           | 0.000        | 2.183829                      | 2.909895              |        |
| dcountrv23                                            | 1.650954                                       | .2368168                                 | 6.97            | 0.000        | 1.186802                      | 2.115107              |        |
| dcount.rv24                                           | 2.784576                                       | .199835                                  | 13.93           | 0.000        | 2.392907                      | 3.176245              |        |
| dcountry25                                            | 2.560467                                       | .2038771                                 | 12.56           | 0.000        | 2.160875                      | 2.960059              |        |
| dcountry26                                            | 2.096936                                       | .2110445                                 | 9.94            | 0.000        | 1.683296                      | 2.510575              |        |
| dcountry27                                            | 2.91726                                        | .187338                                  | 15.57           | 0.000        | 2.550085                      | 3.284436              |        |

| dcountry28 | 2.219339  | .2089809 | 10.62  | 0.000 | 1.809744  | 2.628934  |  |
|------------|-----------|----------|--------|-------|-----------|-----------|--|
| dcountry29 | 2.225024  | .1943692 | 11.45  | 0.000 | 1.844067  | 2.605981  |  |
| dcountry30 | 1.385678  | .3761382 | 3.68   | 0.000 | .6484604  | 2.122895  |  |
| _cons      | -6.813577 | .3095658 | -22.01 | 0.000 | -7.420315 | -6.206839 |  |
|            |           |          |        |       |           |           |  |

### Table A6.4.1 Fractional Logit Model - Industry estimated results

glm exp int emp edu emp trng manager exp int edu lowmlow int edu mhightech int\_edu\_hightech int\_trng\_lowmlow int\_trng\_mhigh int\_trng\_high int\_mngexp\_lowmlow int\_mngexp\_mhigh int\_mngexp\_high new\_org\_str new\_prod\_serv new\_methods location lnsize lnsize\_sqr lnage lnage\_sqr foreign\_dummy state\_dummy credit low\_mlow\_tech mhigh tech high tech dcountry1-dcountry7 dcountry9-dcountry30, family (binomial) link (logit) vce(robust) nolog note: exp int has noninteger values No. of obs = Residual df = Generalized linear models 14026 Optimization : ML 13970 Scale parameter = 1 = 3370.207044 (1/df) Deviance = .241246 Deviance = 9970.442738 (1/df) Pearson = .7137038 Pearson Variance function:  $V(u) = u^{*}(1-u/1)$ [Binomial] Link function : g(u) = ln(u/(1-u))[Logit] AIC = .332848 Log pseudolikelihood = -2278.262957BIC = -130024.7\_\_\_\_\_ Robust exp int | Coef. Std. Err. z P>|z| [95% Conf. Interval] \_\_\_\_\_+\_\_\_+\_\_\_\_\_+ emp edu | .0095017 .0020769 4.57 0.000 .0054311 .0135723 emp trng | -.1888204 .1225146 -1.54 0.123 -.4289446 .0513039 manager exp | -.0103258 .006261 -1.65 0.099 -.022597 .0019455 int edu lo~w | -.0175806 .0029578 -5.94 0.000 -.0233778 -.0117835 int\_edu\_mh~h | -.0080311 .0036907 -2.18 0.030 -.0152648 -.0007975 -0.91 0.364 .0055777 int\_edu\_h~ch | -.004813 .0053015 -.0152038 -.0008798 int\_trng\_l~w | .2779296 .1422523 1.95 0.051 .5567391 .1786957 .9077885 int\_trng\_m~h | .5432421 .1859965 2.92 0.003 0.885 int\_trng\_h~h | -.046364 .321518 -0.14 -.6765278 .5837997 1.81 0.070 .0072534 int\_mngexp~w | .0131328 -.0010837 .0273492 .014489 .0090142 .0231996 .0166104 .1334841 .0801744 int mn~mhigh | 1.61 0.108 -.0031786 .0321566 1.40 0.163 int mn~ high | -.0093562 .0557554 1.66 0.096 -.0236549 .2906231 -1.38 0.169 -.2557981 .0448292 .1288655 .0864763 1.49 0.136 -.040625 .298356 location | -.2920239 .0840998 -3.47 0.001 -.4568565 -.1271914 .6311244 .1064993 5.93 0.000 .4223895 lnsize | .8398593 lnsize sqr | -.0317669 .0123398 -2.57 0.010 -.0559525 -.0075813 lnage | .199283 .1738829 1.15 0.252 -.1415212 .5400873 lnage sqr | -.0683855 .0335623 -2.04 0.042 -.1341665 -.0026045 .8297799 1.243217 foreign du~y | 1.036498 .1054705 9.83 0.000 0.014 -2.45 state\_dummy | -.7701926 .3147594 -1.38711 -.1532755 3.05 .0687655 .315481 credit | .1921232 .0629388 0.002 .1821611 .8646881 1.578747 low mlow t~h | 1.221717 6.71 0.000 1.220163 .2423213 0.000 .7452215 mhigh\_tech | 5.04 1.695104 2.84 .4312636 .4899842 .2458516 high tech | 1.391615 0.005 2.351966 8.40 0.000 dcountry1 | 2.06457 1.58271 2.546431 1.644286 .2192695 dcountry2 | 7.50 0.000 1.214526 2.074046 dcountry3 | 1.013096 .3233735 3.13 0.002 .3792953 1.646896 dcountry4 | .9823708 .3053495 3.22 0.001 .3838967 1.580845

| dcountry5  | 2.060892  | .1408951 | 14.63  | 0.000 | 1.784743  | 2.337042  |  |
|------------|-----------|----------|--------|-------|-----------|-----------|--|
| dcountry6  | .9057214  | .1604495 | 5.64   | 0.000 | .5912461  | 1.220197  |  |
| dcountry7  | .6683748  | .3114712 | 2.15   | 0.032 | .0579025  | 1.278847  |  |
| dcountry9  | 1.492964  | .1993947 | 7.49   | 0.000 | 1.102157  | 1.88377   |  |
| dcountry10 | 2.097426  | .174082  | 12.05  | 0.000 | 1.756232  | 2.438621  |  |
| dcountry11 | 2.055384  | .1953647 | 10.52  | 0.000 | 1.672476  | 2.438292  |  |
| dcountry12 | 4861534   | .3765782 | -1.29  | 0.197 | -1.224233 | .2519263  |  |
| dcountry13 | 1.020487  | .263717  | 3.87   | 0.000 | .5036107  | 1.537362  |  |
| dcountry14 | 2.135978  | .1954581 | 10.93  | 0.000 | 1.752887  | 2.519069  |  |
| dcountry15 | 4832532   | .494399  | -0.98  | 0.328 | -1.452257 | .485751   |  |
| dcountry16 | 2.108962  | .2056481 | 10.26  | 0.000 | 1.7059    | 2.512025  |  |
| dcountry17 | 1.108913  | .2628147 | 4.22   | 0.000 | .5938061  | 1.624021  |  |
| dcountry18 | 1.211718  | .2562351 | 4.73   | 0.000 | .7095062  | 1.713929  |  |
| dcountry19 | .9173762  | .3235677 | 2.84   | 0.005 | .2831952  | 1.551557  |  |
| dcountry20 | 2.808926  | .1953003 | 14.38  | 0.000 | 2.426144  | 3.191707  |  |
| dcountry21 | 1.463194  | .2902215 | 5.04   | 0.000 | .8943706  | 2.032018  |  |
| dcountry22 | 2.505846  | .1883239 | 13.31  | 0.000 | 2.136738  | 2.874954  |  |
| dcountry23 | 1.657912  | .2384759 | 6.95   | 0.000 | 1.190508  | 2.125316  |  |
| dcountry24 | 2.812505  | .1993731 | 14.11  | 0.000 | 2.421741  | 3.203269  |  |
| dcountry25 | 2.571521  | .2004568 | 12.83  | 0.000 | 2.178633  | 2.964409  |  |
| dcountry26 | 2.072395  | .2133858 | 9.71   | 0.000 | 1.654167  | 2.490623  |  |
| dcountry27 | 2.958151  | .1882912 | 15.71  | 0.000 | 2.589107  | 3.327195  |  |
| dcountry28 | 2.233142  | .2119681 | 10.54  | 0.000 | 1.817692  | 2.648591  |  |
| dcountry29 | 2.232131  | .1958595 | 11.40  | 0.000 | 1.848254  | 2.616009  |  |
| dcountry30 | 1.413336  | .3730124 | 3.79   | 0.000 | .6822451  | 2.144427  |  |
| _cons      | -6.829475 | .3277246 | -20.84 | 0.000 | -7.471804 | -6.187147 |  |
|            |           |          |        |       |           |           |  |

# Table A6.4.2 Fractional Logit Model - CEECs Estimated results

| . glm exp_int emp_edu emp_trng manager_exp new_org            | _str new_prod_se | rv new_methods |
|---------------------------------------------------------------|------------------|----------------|
| location lnsize lnsize_sqr lnage lnage_sqr foreign            | _dummy state_dum | my credit      |
| low_mlow_tech mhigh_tech high_tech dcountry1-dco              | untry7 dcountry9 | -dcountry30 if |
| <pre>CEEC_dummy==1, family(binomial) link (logit) vce(r</pre> | obust) nolog     |                |
| note: dcountry2 omitted because of collinearity               |                  |                |
| note: dcountry3 omitted because of collinearity               |                  |                |
| note: dcountry4 omitted because of collinearity               |                  |                |
| note: dcountry5 omitted because of collinearity               |                  |                |
| note: dcountry6 omitted because of collinearity               |                  |                |
| note: dcountry7 omitted because of collinearity               |                  |                |
| note: dcountry12 omitted because of collinearity              |                  |                |
| note: dcountry13 omitted because of collinearity              |                  |                |
| note: dcountry15 omitted because of collinearity              |                  |                |
| note: dcountry17 omitted because of collinearity              |                  |                |
| note: dcountry18 omitted because of collinearity              |                  |                |
| note: dcountry19 omitted because of collinearity              |                  |                |
| note: dcountry30 omitted because of collinearity              |                  |                |
| note: exp_int has noninteger values                           |                  |                |
|                                                               |                  |                |
| Generalized linear models                                     | No. of obs       | = 4836         |
| Optimization : ML                                             | Residual df      | = 4802         |
|                                                               | Scale parameter  | = 1            |
| Deviance = 1687.75092                                         | (1/df) Deviance  | = .3514683     |
| Pearson = 3299.257718                                         | (1/df) Pearson   | = .6870591     |
|                                                               |                  |                |
| Variance function: $V(u) = u^*(1-u/1)$                        | [Binomial]       |                |
| Link function : $g(u) = ln(u/(1-u))$                          | [Logit]          |                |
|                                                               |                  |                |
|                                                               | AIC              | = .4927415     |
| Log pseudolikelihood = -1157.448919                           | BIC              | = -39051.66    |
|                                                               |                  |                |
|                                                               |                  |                |

|                   |           | Robust    |       |       |            |           |  |
|-------------------|-----------|-----------|-------|-------|------------|-----------|--|
| exp int           | Coef.     | Std. Err. | Z     | P> z  | [95% Conf. | Interval] |  |
|                   | +         |           |       |       |            |           |  |
| emp_edu           | .0017613  | .0021458  | 0.82  | 0.412 | 0024444    | .0059669  |  |
| emp_trng          | 1454      | .0913475  | -1.59 | 0.111 | 3244379    | .0336379  |  |
| manager_exp       | 000244    | .0042074  | -0.06 | 0.954 | 0084903    | .0080023  |  |
| new_org_str       | .1846964  | .1087626  | 1.70  | 0.089 | 0284744    | .3978672  |  |
| new_prod_s~v      | 1080164   | .1000092  | -1.08 | 0.280 | 3040309    | .0879981  |  |
| new_methods       | .1590174  | .1136494  | 1.40  | 0.162 | 0637314    | .3817662  |  |
| location          | 2001939   | .1024986  | -1.95 | 0.051 | 4010875    | .0006998  |  |
| lnsize            | .8039626  | .1514248  | 5.31  | 0.000 | .5071754   | 1.10075   |  |
| lnsize_sqr        | 0557085   | .0184896  | -3.01 | 0.003 | 0919475    | 0194694   |  |
| lnage             | 0827023   | .267509   | -0.31 | 0.757 | 6070103    | .4416057  |  |
| lnage_sqr         | 0340269   | .0504671  | -0.67 | 0.500 | 1329407    | .0648869  |  |
| foreign_du~y      | 1.01841   | .1303709  | 7.81  | 0.000 | .7628877   | 1.273932  |  |
| state_dummy       | -2.490272 | .5356572  | -4.65 | 0.000 | -3.54014   | -1.440403 |  |
| credit            | .163795   | .0875514  | 1.87  | 0.061 | 0078026    | .3353927  |  |
| low_mlow_t~h      | 1.410814  | .0907471  | 15.55 | 0.000 | 1.232953   | 1.588675  |  |
| mhigh_tech        | 1.670082  | .1317273  | 12.68 | 0.000 | 1.411902   | 1.928263  |  |
| high_tech         | 1.973209  | .2382896  | 8.28  | 0.000 | 1.50617    | 2.440248  |  |
| dcountry1         | .6655137  | .4174767  | 1.59  | 0.111 | 1527255    | 1.483753  |  |
| dcountry2         | (omitted) |           |       |       |            |           |  |
| dcountry3         | (omitted) |           |       |       |            |           |  |
| dcountry4         | (omitted) |           |       |       |            |           |  |
| dcountry5         | (omitted) |           |       |       |            |           |  |
| dcountry6         | (omitted) |           |       |       |            |           |  |
| dcountry7         | (omitted) |           |       |       |            |           |  |
| dcountry9         | .1997442  | .3950651  | 0.51  | 0.613 | 5745692    | .9740576  |  |
| dcountry10        | .7344388  | .3807748  | 1.93  | 0.054 | 0118661    | 1.480744  |  |
| dcountry11        | .6805161  | .3876536  | 1.76  | 0.079 | 079271     | 1.440303  |  |
| dcountry12        | (omitted) |           |       |       |            |           |  |
| dcountry13        | (omitted) |           |       |       |            |           |  |
| dcountry14        | .7855378  | .3895881  | 2.02  | 0.044 | .0219591   | 1.549116  |  |
| dcountry15        | (omitted) |           |       |       |            |           |  |
| dcountry16        | .7393048  | .3913658  | 1.89  | 0.059 | 027758     | 1.506368  |  |
| dcountry17        | (omitted) |           |       |       |            |           |  |
| dcountry18        | (omitted) |           |       |       |            |           |  |
| dcountry19        | (omitted) |           |       |       |            |           |  |
| dcountry20        | 1.421622  | .3867192  | 3.68  | 0.000 | .6636664   | 2.179578  |  |
| dcountry21        | .0092621  | .4499003  | 0.02  | 0.984 | 8725263    | .8910505  |  |
| dcountry22        | 1.20316   | .3883132  | 3.10  | 0.002 | .4420805   | 1.96424   |  |
| dcountry23        | .24344    | .4096864  | 0.59  | 0.552 | 5595305    | 1.046411  |  |
| dcountry24        | 1.385502  | .3919257  | 3.54  | 0.000 | .617342    | 2.153663  |  |
| dcountry25        | 1.163118  | .3994276  | 2.91  | 0.004 | .3802546   | 1.945982  |  |
| dcountry26        | .730379   | .4022521  | 1.82  | 0.069 | 0580206    | 1.518779  |  |
| dcountry27        | 1.619657  | .3840092  | 4.22  | 0.000 | .867013    | 2.372301  |  |
| dcountry28        | .8665313  | .3974431  | 2.18  | 0.029 | .0875571   | 1.645505  |  |
| dcountry29        | .8696635  | .3878155  | 2.24  | 0.025 | .1095591   | 1.629768  |  |
| dcountry30        | (omitted) |           |       |       |            |           |  |
| _ <sup>cons</sup> | -5.366953 | .5525822  | -9.71 | 0.000 | -6.449994  | -4.283912 |  |
|                   |           |           |       |       |            |           |  |

### Table A6.4.3 Fractional Logit Model - CEECs Industry estimated results

. glm exp\_int emp\_edu emp\_trng manager\_exp int\_edu\_lowmlow int\_edu\_mhightech int\_edu\_hightech int\_trng\_lowmlow int\_trng\_mhigh int\_trng\_high int\_mngexp\_lowmlow int\_mngexp\_mhigh int\_mngexp\_high new\_org\_str new\_prod\_serv new\_methods location lnsize lnsize\_sqr lnage lnage\_sqr foreign\_dummy state\_dummy credit low\_mlow\_tech mhigh\_tech high\_tech dcountry1-dcountry7 dcountry9-dcountry30 if CEEC\_dummy==1, family (binomial) link (logit) vce(robust) nolog note: dcountry2 omitted because of collinearity

| note: dcountry<br>note: dcountry | 73 omitted bec<br>74 omitted bec<br>75 omitted bec<br>76 omitted bec<br>712 omitted bec<br>713 omitted be<br>713 omitted be<br>715 omitted be<br>718 omitted be<br>719 omitted be<br>730 omitted be<br>730 omitted be | ause of col<br>ause of col<br>ause of col<br>ause of col<br>ause of col<br>cause of col<br>cause of co<br>cause of co | linearity<br>linearity<br>linearity<br>linearity<br>llinearit<br>llinearit<br>llinearit<br>llinearit<br>llinearit<br>llinearit | У<br>У<br>У<br>У<br>У<br>У<br>У<br>У<br>У |                         |                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------|---------------------------|
| Generalized li<br>Optimization                                                                                                                                                                                                         | inear models<br>: ML                                                                                                                                                                                                  | No. c<br>Resic<br>Scale                                                                                                                                                                                                                       | of obs<br>lual df<br>parameter                                                                                                 | = 4836<br>= 4793<br>= 1                   |                         |                           |
| Deviance<br>Pearson                                                                                                                                                                                                                    | $= 1668.40 \\ = 3269.70$                                                                                                                                                                                              | 4801<br>4952                                                                                                                                                                                                                                  |                                                                                                                                | (1/df<br>(1/df                            | ) Deviance<br>) Pearson | = .348092<br>= .6821834   |
| Variance funct<br>Link function                                                                                                                                                                                                        | cion: V(u) = u<br>: g(u) = 1                                                                                                                                                                                          | .*(1−u/1)<br>n(u/(1−u))                                                                                                                                                                                                                       |                                                                                                                                | [Binc<br>[Logi                            | mial]<br>t]             |                           |
| Log pseudolike                                                                                                                                                                                                                         | elihood = -114                                                                                                                                                                                                        | 7.775859                                                                                                                                                                                                                                      |                                                                                                                                | AIC<br>BIC                                | :                       | = .4924631<br>= -38994.66 |
| exp_int                                                                                                                                                                                                                                | Coef.                                                                                                                                                                                                                 | Robust<br>Std. Err.                                                                                                                                                                                                                           | Z                                                                                                                              | ₽> z                                      | [95% Conf               | . Interval]               |
| emp_edu                                                                                                                                                                                                                                | .0080857                                                                                                                                                                                                              | .0027859                                                                                                                                                                                                                                      | 2.90                                                                                                                           | 0.004                                     | .0026255                | .0135459                  |
| emp_trng                                                                                                                                                                                                                               | 2775184                                                                                                                                                                                                               | .1517203                                                                                                                                                                                                                                      | -1.83                                                                                                                          | 0.067                                     | 5748848                 | .0198481                  |
| manager exp                                                                                                                                                                                                                            | 0061076                                                                                                                                                                                                               | .0074423                                                                                                                                                                                                                                      | -0.82                                                                                                                          | 0.412                                     | 0206943                 | .0084791                  |
| int_edu_lo~w                                                                                                                                                                                                                           | 0206273                                                                                                                                                                                                               | .0045226                                                                                                                                                                                                                                      | -4.56                                                                                                                          | 0.000                                     | 0294914                 | 0117631                   |
| int_edu_mh~h                                                                                                                                                                                                                           | 0123853                                                                                                                                                                                                               | .0064416                                                                                                                                                                                                                                      | -1.92                                                                                                                          | 0.055                                     | 0250106                 | .00024                    |
| int_edu_h~ch                                                                                                                                                                                                                           | .0061983                                                                                                                                                                                                              | .0074179                                                                                                                                                                                                                                      | 0.84                                                                                                                           | 0.403                                     | 0083405                 | .020737                   |
| int_trng_l~w                                                                                                                                                                                                                           | .1646195                                                                                                                                                                                                              | .1835664                                                                                                                                                                                                                                      | 0.90                                                                                                                           | 0.370                                     | 1951641                 | .524403                   |
| int_trng_m~h                                                                                                                                                                                                                           | .6271344                                                                                                                                                                                                              | .2638085                                                                                                                                                                                                                                      | 2.38                                                                                                                           | 0.017                                     | .1100793                | 1.14419                   |
| int_trng_h~h                                                                                                                                                                                                                           | 3712553                                                                                                                                                                                                               | .4546001                                                                                                                                                                                                                                      | -0.82                                                                                                                          | 0.414                                     | -1.262255               | .5197446                  |
| int_mngexp~w                                                                                                                                                                                                                           | .0101251                                                                                                                                                                                                              | .0092473                                                                                                                                                                                                                                      | 1.09                                                                                                                           | 0.274                                     | 0079993                 | .0282494                  |
| int_mn~mhigh                                                                                                                                                                                                                           | .0062718                                                                                                                                                                                                              | .0137404                                                                                                                                                                                                                                      | 0.46                                                                                                                           | 0.648                                     | 0206589                 | .0332026                  |
| int_mn~_high                                                                                                                                                                                                                           | .0069807                                                                                                                                                                                                              | .0227764                                                                                                                                                                                                                                      | 0.31                                                                                                                           | 0.759                                     | 03/6603                 | .0516216                  |
| new_org_str                                                                                                                                                                                                                            | .1811938                                                                                                                                                                                                              | .1093046                                                                                                                                                                                                                                      | 1.66<br>1.15                                                                                                                   | 0.097                                     | 0330373                 | .3954289                  |
| new_prod_s~v                                                                                                                                                                                                                           | 1615/38                                                                                                                                                                                                               | 1137789                                                                                                                                                                                                                                       | -1.13                                                                                                                          | 0.251                                     | - 0614588               | 3845464                   |
| location                                                                                                                                                                                                                               | -1859622                                                                                                                                                                                                              | 1029417                                                                                                                                                                                                                                       | -1 81                                                                                                                          | 0.130                                     | - 3877242               | 0157998                   |
| lnsize                                                                                                                                                                                                                                 | .8121207                                                                                                                                                                                                              | .1516285                                                                                                                                                                                                                                      | 5.36                                                                                                                           | 0.000                                     | .5149343                | 1.109307                  |
| lnsize sqr                                                                                                                                                                                                                             | 0562215                                                                                                                                                                                                               | .0185138                                                                                                                                                                                                                                      | -3.04                                                                                                                          | 0.002                                     | 0925078                 | 0199351                   |
| lnage                                                                                                                                                                                                                                  | 0860112                                                                                                                                                                                                               | .2654075                                                                                                                                                                                                                                      | -0.32                                                                                                                          | 0.746                                     | 6062004                 | .434178                   |
| lnage_sqr                                                                                                                                                                                                                              | 0288862                                                                                                                                                                                                               | .050031                                                                                                                                                                                                                                       | -0.58                                                                                                                          | 0.564                                     | 1269452                 | .0691727                  |
| foreign_du~y                                                                                                                                                                                                                           | 1.020921                                                                                                                                                                                                              | .1304144                                                                                                                                                                                                                                      | 7.83                                                                                                                           | 0.000                                     | .7653131                | 1.276528                  |
| state_dummy                                                                                                                                                                                                                            | -2.346172                                                                                                                                                                                                             | .5238666                                                                                                                                                                                                                                      | -4.48                                                                                                                          | 0.000                                     | -3.372932               | -1.319413                 |
| credit                                                                                                                                                                                                                                 | .16647                                                                                                                                                                                                                | .0879022                                                                                                                                                                                                                                      | 1.89                                                                                                                           | 0.058                                     | 0058151                 | .3387552                  |
|                                                                                                                                                                                                                                        | 1 5205                                                                                                                                                                                                                | . ZZZZD /<br>3169730                                                                                                                                                                                                                          | 0.04<br>/ /1                                                                                                                   |                                           | 1.UJYU//<br>8506304     | 1.910308<br>2.21036       |
| high toch                                                                                                                                                                                                                              | 1 810751                                                                                                                                                                                                              | .J400/J0<br>642105                                                                                                                                                                                                                            | 4.41<br>2 82                                                                                                                   | 0.000                                     | -0JU0394<br>5520717     | 2.21030                   |
| dcountry1                                                                                                                                                                                                                              | . 620355                                                                                                                                                                                                              | .4100339                                                                                                                                                                                                                                      | 2.02<br>1.51                                                                                                                   | 0.130                                     | 1832966                 | 1.424007                  |
| dcount.rv2                                                                                                                                                                                                                             | (omitted)                                                                                                                                                                                                             |                                                                                                                                                                                                                                               | - • V +                                                                                                                        | J. 1 J U                                  |                         | I. 12 1001                |
| dcountry3                                                                                                                                                                                                                              | (omitted)                                                                                                                                                                                                             |                                                                                                                                                                                                                                               |                                                                                                                                |                                           |                         |                           |
| dcountry4                                                                                                                                                                                                                              | (omitted)                                                                                                                                                                                                             |                                                                                                                                                                                                                                               |                                                                                                                                |                                           |                         |                           |
| dcountry5                                                                                                                                                                                                                              | (omitted)                                                                                                                                                                                                             |                                                                                                                                                                                                                                               |                                                                                                                                |                                           |                         |                           |
| dcountry6                                                                                                                                                                                                                              | (omitted)                                                                                                                                                                                                             |                                                                                                                                                                                                                                               |                                                                                                                                |                                           |                         |                           |
| dcountry7                                                                                                                                                                                                                              | (omitted)                                                                                                                                                                                                             |                                                                                                                                                                                                                                               |                                                                                                                                |                                           |                         |                           |

| dcountry9  | .1371329  | .3905636 | 0.35  | 0.726 | 6283576  | .9026234  |  |
|------------|-----------|----------|-------|-------|----------|-----------|--|
| dcountry10 | .7054218  | .3747196 | 1.88  | 0.060 | 0290153  | 1.439859  |  |
| dcountry11 | .6512207  | .3810676 | 1.71  | 0.087 | 095658   | 1.398099  |  |
| dcountry12 | (omitted) |          |       |       |          |           |  |
| dcountry13 | (omitted) |          |       |       |          |           |  |
| dcountry14 | .7471212  | .3840393 | 1.95  | 0.052 | 0055821  | 1.499824  |  |
| dcountry15 | (omitted) |          |       |       |          |           |  |
| dcountry16 | .6913543  | .3864028 | 1.79  | 0.074 | 0659812  | 1.44869   |  |
| dcountry17 | (omitted) |          |       |       |          |           |  |
| dcountry18 | (omitted) |          |       |       |          |           |  |
| dcountry19 | (omitted) |          |       |       |          |           |  |
| dcountry20 | 1.402797  | .3801983 | 3.69  | 0.000 | .657622  | 2.147972  |  |
| dcountry21 | .0053183  | .4460561 | 0.01  | 0.990 | 8689355  | .8795722  |  |
| dcountry22 | 1.105441  | .3830959 | 2.89  | 0.004 | .3545871 | 1.856295  |  |
| dcountry23 | .2132465  | .4043682 | 0.53  | 0.598 | 5793006  | 1.005794  |  |
| dcountry24 | 1.407361  | .3845353 | 3.66  | 0.000 | .6536858 | 2.161036  |  |
| dcountry25 | 1.171204  | .3910023 | 3.00  | 0.003 | .4048539 | 1.937555  |  |
| dcountry26 | .6863615  | .3966408 | 1.73  | 0.084 | 0910403  | 1.463763  |  |
| dcountry27 | 1.596139  | .3782593 | 4.22  | 0.000 | .8547644 | 2.337514  |  |
| dcountry28 | .8720452  | .3923906 | 2.22  | 0.026 | .1029737 | 1.641117  |  |
| dcountry29 | .8254672  | .3817831 | 2.16  | 0.031 | .0771861 | 1.573748  |  |
| dcountry30 | (omitted) |          |       |       |          |           |  |
| _cons      | -5.370946 | .5652269 | -9.50 | 0.000 | -6.47877 | -4.263121 |  |
|            |           |          |       |       |          |           |  |

## Table A6.4.4 Fractional Logit Model - CIS estimated results

| . glm exp_int emp_edu emp_trng manager_exp new_org_            | str new_prod_se  | rv new_methods |
|----------------------------------------------------------------|------------------|----------------|
| location lnsize lnsize_sqr lnage lnage_sqr foreign_            | dummy state_dumr | ny credit      |
| low_mlow_tech mhigh_tech high_tech dcountry1-dcou              | ntry7 dcountry9- | -dcountry30 if |
| <pre>CEEC_dummy==0, family(binomial) link (logit) vce(ro</pre> | bust) nolog      |                |
| note: dcountry1 omitted because of collinearity                |                  |                |
| note: dcountry9 omitted because of collinearity                |                  |                |
| note: dcountry10 omitted because of collinearity               |                  |                |
| note: dcountry11 omitted because of collinearity               |                  |                |
| note: dcountry14 omitted because of collinearity               |                  |                |
| note: dcountry16 omitted because of collinearity               |                  |                |
| note: dcountry20 omitted because of collinearity               |                  |                |
| note: dcountry21 omitted because of collinearity               |                  |                |
| note: dcountry22 omitted because of collinearity               |                  |                |
| note: dcountry23 omitted because of collinearity               |                  |                |
| note: dcountry24 omitted because of collinearity               |                  |                |
| note: dcountry25 omitted because of collinearity               |                  |                |
| note: dcountry26 omitted because of collinearity               |                  |                |
| note: dcountry27 omitted because of collinearity               |                  |                |
| note: dcountry28 omitted because of collinearity               |                  |                |
| note: dcountry29 omitted because of collinearity               |                  |                |
| note: dcountry30 omitted because of collinearity               |                  |                |
| note: exp_int has noninteger values                            |                  |                |
|                                                                |                  |                |
| Generalized linear models                                      | No. of obs       | = 9190         |
| Optimization : ML                                              | Residual df      | = 9160         |
|                                                                | Scale parameter  | = 1            |
| Deviance = 1688.449297                                         | (1/df) Deviance  | = .1843285     |
| Pearson = 6739.378672                                          | (1/df) Pearson   | 73574          |
|                                                                |                  |                |
| Variance function: $V(u) = u^{*}(1-u/1)$                       | [Binomial]       |                |
| Link function : $g(u) = ln(u/(1-u))$                           | [Logit]          |                |
|                                                                |                  |                |
|                                                                | AIC              | = .2511013     |
| Log pseudolikelihood = -1123.810624                            | BIC              | = -81904.53    |

|              | <br>            | Robust       |         |       |            |           |
|--------------|-----------------|--------------|---------|-------|------------|-----------|
| exp_int      | Coef.           | Std. Err.    | Z       | ₽> z  | [95% Conf. | Interval] |
| emp edu      | .0032442        | .0019962     | 1.63    | 0.104 | 0006683    | .0071568  |
| emp_trng     | .2317898        | .100039      | 2.32    | 0.021 | .035717    | .4278625  |
| manager exp  | 0002822         | .0044592     | -0.06   | 0.950 | 009022     | .0084576  |
| new org str  | .1007015        | .1133162     | 0.89    | 0.374 | 1213943    | .3227972  |
| new prod s~v | 0804533         | .119782      | -0.67   | 0.502 | 3152218    | .1543152  |
| new methods  | .0496682        | .1304808     | 0.38    | 0.703 | 2060694    | .3054058  |
| location     | 4150873         | .1423359     | -2.92   | 0.004 | 6940606    | 1361139   |
| lnsize       | .4741469        | .1572272     | 3.02    | 0.003 | .1659872   | .7823067  |
| lnsize sqr   | 0133453         | .017351      | -0.77   | 0.442 | 0473526    | .020662   |
| lnage        | .2946307        | .2374599     | 1.24    | 0.215 | 1707821    | .7600435  |
| lnage sgr    | 070574          | .0468087     | -1.51   | 0.132 | 1623173    | .0211692  |
| foreign du~y | 1.128523        | .1870261     | 6.03    | 0.000 | .761959    | 1.495088  |
| state dummv  | 6516135         | .3448879     | -1.89   | 0.059 | -1.327581  | .0243545  |
| credit       | .2076685        | .0911697     | 2.28    | 0.023 | .0289793   | .3863578  |
| low mlow t~h | .728679         | .1172268     | 6.22    | 0.000 | .4989187   | .9584393  |
| mhigh tech   | 1.097688        | .1396414     | 7.86    | 0.000 | .8239963   | 1.37138   |
| high tech    | 1.09276         | .2327222     | 4.70    | 0.000 | .6366328   | 1.548887  |
| dcount.rv1   | (omitted)       |              |         |       |            |           |
| dcountry2    | 1,608128        | .2259552     | 7.12    | 0.000 | 1.165264   | 2,050993  |
| dcountry3    | 1.084192        | . 325146     | 3.33    | 0.001 | .4469171   | 1.721466  |
| dcountry4    | 1.009798        | .3052487     | 3.31    | 0.001 | .4115212   | 1.608074  |
| dcountry5    | 2 235528        | 1488395      | 15 02   | 0 000 | 1 943808   | 2 527248  |
| dcountry6    | 9379206         | 1634239      | 5 74    | 0 000 | 6176155    | 1 258226  |
| dcountry7    | 677846          | .3311272     | 2.05    | 0.041 | .0288487   | 1.326843  |
| dcountry9    | (omitted)       |              | 2.00    | 0.011 | .020010,   | 1.020010  |
| dcountry10   | (omitted)       |              |         |       |            |           |
| dcountry11   | (omitted)       |              |         |       |            |           |
| dcountry12   | -5145481        | 3736964      | -1 38   | 0 169 | -1 24698   | 2178835   |
| dcountry13   |                 | 2657146      | 3 94    | 0.100 | 5274361    | 1 569018  |
| dcountry14   | (omitted)       | .2007110     | 5.51    | 0.000 | .02/1001   | 1.000010  |
| dcountry15   | - 4185436       | 5027121      | -0.83   | 0 405 | -1 403841  | 5667541   |
| dcountry16   | (omittod)       | . 5027121    | 0.05    | 0.405 | 1.403041   | .5007541  |
| dcountry17   |                 | 2783516      | 1 22    | 0 000 | 6292719    | 1 72030   |
| dcountry18   | 1 1 1 9 1 4 3 4 | 2663903      | 4.22    | 0.000 | 6693181    | 1 713540  |
| dcountry10   | 1 201515        | 32/1381      | 2 76    | 0.000 | 2592459    | 1 52984/  |
| dcountry20   | (omittod)       | . 5241501    | 2.70    | 0.000 | .2392439   | 1.529045  |
| dcountry20   | (omitted)       |              |         |       |            |           |
| dcountry21   | (omitted)       |              |         |       |            |           |
| dcountry22   | (omitted)       |              |         |       |            |           |
| decountry23  | (OMILLEA)       |              |         |       |            |           |
| decountry24  | (OMLTTED)       |              |         |       |            |           |
| acountry25   | (OMLTTED)       |              |         |       |            |           |
| dcountry26   | (OMLTTED)       |              |         |       |            |           |
| decountry2/  | (OMLTTED)       |              |         |       |            |           |
| decountry28  | (OMLTTED)       |              |         |       |            |           |
| acountry29   | (omitted)       |              |         |       |            |           |
| acountry30   | (omitted)       | 41 6 6 9 9 9 | 1 5 0 0 | 0 000 |            |           |
| _cons        | -6.634003       | .4166082     | -15.92  | 0.000 | -7.45054   | -5.817466 |

### Table A6.4.5 Fractional Logit Model - CIS Industry estimated results

. glm exp\_int emp\_edu emp\_trng manager\_exp int\_edu\_lowmlow int\_edu\_mhightech int\_edu\_hightech int\_trng\_lowmlow int\_trng\_mhigh int\_trng\_high int\_mngexp\_lowmlow int\_mngexp\_mhigh int\_mngexp\_high new\_org\_str new\_prod\_serv new\_methods location Insize lnsize sqr lnage lnage sqr foreign dummy state dummy credit low mlow tech mhigh tech high tech dcountry1-dcountry7 dcountry9-dcountry30 if CEEC dummy==0, family (binomial) link (logit) vce(robust) nolog note: dcountry1 omitted because of collinearity note: dcountry9 omitted because of collinearity note: dcountry10 omitted because of collinearity note: dcountry11 omitted because of collinearity note: dcountry14 omitted because of collinearity note: dcountry16 omitted because of collinearity note: dcountry20 omitted because of collinearity note: dcountry21 omitted because of collinearity note: dcountry22 omitted because of collinearity note: dcountry23 omitted because of collinearity note: dcountry24 omitted because of collinearity note: dcountry25 omitted because of collinearity note: dcountry26 omitted because of collinearity note: dcountry27 omitted because of collinearity note: dcountry28 omitted because of collinearity note: dcountry29 omitted because of collinearity note: dcountry30 omitted because of collinearity note: exp\_int has noninteger values No. of obs = 9190 Residual df = 9151 Generalized linear models Optimization : ML Scale parameter = 1 = 1679.196327 (1/df) Deviance = .1834987 Deviance = 6309.12407 (1/df) Pearson = .6894464 Pearson Variance function:  $V(u) = u^{*}(1-u/1)$ [Binomial] Link function : g(u) = ln(u/(1-u))[Logit] AIC = .2520531 Log pseudolikelihood = -1119.184139 BIC = -81831.65\_\_\_\_\_ Robust exp\_int | Coef. Std. Err. z P>|z| [95% Conf. Interval] emp\_edu |.0079324.00342042.320.020emp\_trng |.0231223.20470020.110.910manager\_exp |-.0130852.0110485-1.180.236 .0012285 .0146362 .4243273 -.3780827 -.0347398 .0085695 int edu lo~w | -.0115447 .0044516 -2.59 0.010 -.0202696 -.0028197 int\_edu\_mh~h | -.001142 .0050357 -0.23 0.821 -.0110117 .0087278 int\_edu\_h~ch | -.0075098 .0072776 -1.03 0.302 -.0217735 .006754 int trng l~w | .2587803 .2295431 -.191116 1.13 0.260 .7086765 .3416354 .2759935 1.24 0.216 -.1993019 .8825726 int trng m~h | 0.91 0.361 -.4803909 1.319457 int trng h~h | .4195331 .4591534 int\_mngexp~w | .012931 .0120724 1.07 0.284 -.0107304 .0365925 .019221 .0134074 1.43 0.152 -.007057 .045499 int mn~mhigh | 1.50 0.134 -.0110569 int\_mn~\_high | .0360097 .0240141 .0830764 new\_org\_str | .0961799 .1147002 new\_prod\_s~v | -.0852325 .1216713 new\_methods | .0628691 .1318728 location | -.4167678 .1447772 .3209882 0.84 0.402 -.1286283 0.484 0.634 .1532388 -0.70 -.3237038 0.48 -.1955969 .3213351 0.004 -2.88 -.7005259 -.1330098 .4885961 .1576886 -.01482 .017396 .3528084 .2417289 0.002 .7976601 3.10 lnsize | .1795321 -0.85 0.394 -.0489154 lnsize sqr | .0192755 1.46 0.144 lnage | -.1209716 .8265884 lnage sqr | -.0812144 .047601 -1.71 0.088 -.1745107 .0120819 foreign du~y | 1.129043 .1873205 6.03 0.000 .7619017 1.496185 state dummy | -.6689112 .330178 -2.03 0.043 -1.316048 -.0217743 credit | .2149451 .0911951 2.36 0.018 .0362059 .3936843 low mlow t~h | .7854361 .328387 2.39 0.017 .1418095 1.429063 mhigh tech | .7184119 .375598 1.91 0.056 -.0177467 1.45457

| high tech         | .5499959  | .7122304 | 0.77   | 0.440 | 84595     | 1.945942 |   |
|-------------------|-----------|----------|--------|-------|-----------|----------|---|
| dcountry1         | (omitted) |          |        |       |           |          |   |
| dcountry2         | 1.634832  | .2272724 | 7.19   | 0.000 | 1.189386  | 2.080277 |   |
| dcountry3         | 1.064561  | .3322871 | 3.20   | 0.001 | .4132905  | 1.715832 |   |
| dcountry4         | 1.020354  | .306811  | 3.33   | 0.001 | .4190159  | 1.621693 |   |
| dcountry5         | 2.191189  | .1582912 | 13.84  | 0.000 | 1.880944  | 2.501434 |   |
| dcountry6         | .9861395  | .1638762 | 6.02   | 0.000 | .6649481  | 1.307331 |   |
| dcountry7         | .7023536  | .3344004 | 2.10   | 0.036 | .0469408  | 1.357766 |   |
| dcountry9         | (omitted) |          |        |       |           |          |   |
| dcountry10        | (omitted) |          |        |       |           |          |   |
| dcountry11        | (omitted) |          |        |       |           |          |   |
| dcountry12        | 4955244   | .3753842 | -1.32  | 0.187 | -1.231264 | .2402152 |   |
| dcountry13        | 1.071351  | .268342  | 3.99   | 0.000 | .5454099  | 1.597291 |   |
| dcountry14        | (omitted) |          |        |       |           |          |   |
| dcountry15        | 398823    | .5030811 | -0.79  | 0.428 | -1.384844 | .5871979 |   |
| dcountry16        | (omitted) |          |        |       |           |          |   |
| dcountry17        | 1.169319  | .2821149 | 4.14   | 0.000 | .6163839  | 1.722254 |   |
| dcountry18        | 1.245564  | .2684347 | 4.64   | 0.000 | .7194413  | 1.771686 |   |
| dcountry19        | .9456964  | .3245551 | 2.91   | 0.004 | .30958    | 1.581813 |   |
| dcountry20        | (omitted) |          |        |       |           |          |   |
| dcountry21        | (omitted) |          |        |       |           |          |   |
| dcountry22        | (omitted) |          |        |       |           |          |   |
| dcountry23        | (omitted) |          |        |       |           |          |   |
| dcountry24        | (omitted) |          |        |       |           |          | l |
| dcountry25        | (omitted) |          |        |       |           |          |   |
| dcountry26        | (omitted) |          |        |       |           |          |   |
| dcountry27        | (omitted) |          |        |       |           |          |   |
| dcountry28        | (omitted) |          |        |       |           |          |   |
| dcountry29        | (omitted) |          |        |       |           |          |   |
| dcountry30        | (omitted) |          |        |       |           |          |   |
| _ <sup>cons</sup> | -6.672655 | .474817  | -14.05 | 0.000 | -7.603279 | -5.74203 |   |

## Table A6.4.6 Fractional Logit Model - Full sample (imputed) estimated results

. mi estimate, cmdok: glm exp\_int emp\_edu emp\_trng manager\_exp new\_org\_str new\_prod\_serv new\_methods location lnsize lnsize\_sqr lnage lnage\_sqr foreign\_dummy state\_dummy credit low\_mlow\_tech mhigh\_tech high\_tech dcountry1-dcountry7 dcountry9-dcountry30, family(binomial) link (logit) nolog vce(robust)

| Multiple-imputat | tion estimate | Imputations = 22 |       |        |          |       |            |
|------------------|---------------|------------------|-------|--------|----------|-------|------------|
| Generalized line | ear models    |                  |       | Number | of obs   | =     | 15883      |
|                  |               |                  |       | Averag | re RVI   | =     | 0.0263     |
|                  |               |                  |       | Larges | t FMI    | =     | 0.1191     |
| DF adjustment:   | Large sampl   | e                |       | DF:    | min      | =     | 1509.34    |
|                  |               |                  |       |        | avg      | = 1   | .030911.15 |
|                  |               |                  |       |        | max      | =     | 1.74e+07   |
| Model F test:    | Equal FM      | 11               |       | F( 46  | , 1.4e+C | )6)=  | 36.91      |
| Within VCE type: | : Robus       | st               |       | Prob > | F        | =     | 0.0000     |
|                  |               |                  |       |        |          |       |            |
|                  |               | ·                |       |        |          |       |            |
| exp_int          | Coef.         | Std. Err.        | t     | P> t   | [95%     | Conf. | Interval]  |
| emp edu          | .0020798      | .0014111         | 1.47  | 0.141  | 0006     | 5879  | .0048475   |
| emp trng         | .0404873      | .0635058         | 0.64  | 0.524  | 0839     | 9947  | .1649693   |
| manager exp      | 0011939       | .0029071         | -0.41 | 0.681  | 0068     | 3922  | .0045045   |
| new org str      | .0966521      | .0759569         | 1.27  | 0.203  | 0522     | 2319  | .2455361   |
| new prod serv    | 0794244       | .0721101         | -1.10 | 0.271  | 2207     | 7599  | .0619112   |
| new methods      | .1549107      | .0806776         | 1.92  | 0.055  | 003      | 3216  | .3130374   |
| location         | 2510777       | .0773108         | -3.25 | 0.001  | 4026     | 5096  | 0995458    |
| lnsize           | .5475406      | .0968486         | 5.65  | 0.000  | .3577    | 7174  | .7373637   |
| lnsize_sqr       | 0259259       | .0112198         | -2.31 | 0.021  | 0479     | 9168  | 0039351    |

| lnage         | .1541692  | .1722761 | 0.89   | 0.371 | 1836192   | .4919577  |
|---------------|-----------|----------|--------|-------|-----------|-----------|
| lnage sqr     | 0563979   | .0332776 | -1.69  | 0.090 | 1216512   | .0088553  |
| foreign dummy | 1.060789  | .0989622 | 10.72  | 0.000 | .8668     | 1.254778  |
| state dummy   | 567039    | .2896199 | -1.96  | 0.050 | -1.135139 | .001061   |
| credit        | .1961067  | .0596436 | 3.29   | 0.001 | .0791911  | .3130223  |
| low mlow tech | 1.133575  | .0687367 | 16.49  | 0.000 | .9988523  | 1.268298  |
| mhigh tech    | 1.468065  | .0907017 | 16.19  | 0.000 | 1.290281  | 1.645849  |
| high tech     | 1.588617  | .1612006 | 9.85   | 0.000 | 1.272661  | 1.904573  |
| dcountry1     | 1.89705   | .2286038 | 8.30   | 0.000 | 1.448948  | 2.345152  |
| dcountry2     | 1.627445  | .2040755 | 7.97   | 0.000 | 1.227464  | 2.027427  |
| dcountry3     | .8788474  | .3072469 | 2.86   | 0.004 | .2766545  | 1.48104   |
| dcountry4     | .9798362  | .2746442 | 3.57   | 0.000 | .4415386  | 1.518134  |
| dcountry5     | 2.203165  | .1273016 | 17.31  | 0.000 | 1.953655  | 2.452675  |
| dcountry6     | .7610562  | .1513907 | 5.03   | 0.000 | .4643295  | 1.057783  |
| dcountry7     | .6171069  | .2907582 | 2.12   | 0.034 | .0472305  | 1.186983  |
| dcountry9     | 1.575112  | .1702452 | 9.25   | 0.000 | 1.241437  | 1.908787  |
| dcountry10    | 2.096529  | .1642024 | 12.77  | 0.000 | 1.774692  | 2.418366  |
| dcountry11    | 1.969772  | .1878215 | 10.49  | 0.000 | 1.601646  | 2.337897  |
| dcountry12    | 4563859   | .3426784 | -1.33  | 0.183 | -1.128024 | .2152524  |
| dcountry13    | 1.159093  | .247312  | 4.69   | 0.000 | .6743686  | 1.643818  |
| dcountry14    | 2.05887   | .188863  | 10.90  | 0.000 | 1.688702  | 2.429037  |
| dcountry15    | 7296794   | .4521907 | -1.61  | 0.107 | -1.615957 | .1565982  |
| dcountry16    | 2.095919  | .1961995 | 10.68  | 0.000 | 1.711373  | 2.480464  |
| dcountry17    | 1.136797  | .2559109 | 4.44   | 0.000 | .6352195  | 1.638375  |
| dcountry18    | 1.166341  | .2495385 | 4.67   | 0.000 | .6772544  | 1.655428  |
| dcountry19    | .8005791  | .320607  | 2.50   | 0.013 | .1722002  | 1.428958  |
| dcountry20    | 2.587127  | .1846981 | 14.01  | 0.000 | 2.225124  | 2.949131  |
| dcountry21    | 1.361159  | .2853935 | 4.77   | 0.000 | .8017974  | 1.92052   |
| dcountry22    | 2.44943   | .1800125 | 13.61  | 0.000 | 2.096595  | 2.802264  |
| dcountry23    | 1.680224  | .2173976 | 7.73   | 0.000 | 1.254102  | 2.106345  |
| dcountry24    | 2.64075   | .1803224 | 14.64  | 0.000 | 2.287316  | 2.994183  |
| dcountry25    | 2.57224   | .1855756 | 13.86  | 0.000 | 2.208436  | 2.936044  |
| dcountry26    | 2.091844  | .1945615 | 10.75  | 0.000 | 1.710508  | 2.47318   |
| dcountry27    | 2.855409  | .1802659 | 15.84  | 0.000 | 2.502085  | 3.208732  |
| dcountry28    | 2.151636  | .2017708 | 10.66  | 0.000 | 1.75617   | 2.547101  |
| dcountry29    | 2.12955   | .1877747 | 11.34  | 0.000 | 1.761512  | 2.497588  |
| dcountry30    | 1.409625  | .3167513 | 4.45   | 0.000 | .788755   | 2.030496  |
| cons          | -6.573009 | .2934331 | -22.40 | 0.000 | -7.148183 | -5.997836 |

# Table A6.4.7 Fractional Logit (Augumented) Model - Full sample (imputed) estimated results (45)

mi estimate, cmdok: glm exp\_int emp\_edu emp\_trng manager\_exp skilled\_emp manager\_edu\_dummy new\_org\_str new\_prod\_serv new\_methods location lnsize lnsize\_sqr lnage lnage\_sqr foreign\_dummy state\_dummy credit f\_inputs tech\_dummy bus\_assoc low\_mlow\_tech mhigh\_tech high\_tech dcountry1-dcountry7 dcountry9-dcountry30, family(binomial) link (logit) nolog vce(robust)

| Multiple-imputation estimates | Imputations = 45       |
|-------------------------------|------------------------|
| Generalized linear models     | Number of obs = 15883  |
|                               | Average RVI = 0.5753   |
|                               | Largest FMI = 0.9295   |
| DF adjustment: Large sample   | DF: min = 51.22        |
|                               | avg = 52034.33         |
|                               | max = 1032614.00       |
| Model F test: Equal FMI       | F(51, 16572.9) = 23.57 |
| Within VCE type: Robust       | Prob > F = 0.0000      |
|                               |                        |
|                               |                        |

| <pre>emp_edu   .0003259 .001604 0.20 0.8390028242 .0034761 emp_trng   .0091563 .0670405 0.14 0.8911222933 .140608 manager_exp   .0014576 .0030837 -0.38 0.7070072036 .0004884 skilled_emp   .0014431 .0016479 0.88 0.3820018056 .0046819 manager_edu_dummy   .2430277 .1337042 1.74 0.8863355192 .5215747 new_org_str   .0630101 .0813389 0.77 0.439986113 .2225314 new_ord_str   .0630101 .0813389 0.77 0.439986113 .2225314 new_ord_str   .1366219 .0840243 1.63 0.1042800818 .3013356 Tocation   .3672119 .0822358 -4.47 0.000 .3021746 .7033143 lnsize   .5027445 .1023061 4.91 0.000 .3021746 .7033143 lnsize sgg   .0046302 .0018585 -1.94 0.0520462738 .0002217 lnage   .1130181 .1772855 0.64 0.524234588 .4406241 lnage_gd   .130181 .1772855 0.64 0.524234588 .4406241 lnage_gd   .130181 .1772855 0.64 0.524234588 .4406241 lnage_ddmmy   .513116 .288287 -1.72 0.086 -1.099422 .0731885 credit   .2054526 .0621142 3.31 0.001 .00261712 .3272339 f_input   .0089324 .001624 7.68 0.000 .0066416 .0112233 tach_dummy   .2706379 .25587 1.06 0.2952419962 .738392 bus_assoc  0322826 .2224458 -0.15 0.8804887403 .3941752 low_mlow_tech   1.405501 .1014561 13.85 0.000 1.206434 1.664568 high_tech   1.405501 .1014561 13.85 0.000 1.206434 1.664568 high_tech   1.405501 .1014561 .328 0.000 1.202277 1.428734 dcountry1   1.624611 .24174 6.72 0.000 1.150574 2.098674 dcountry1   1.624611 .24174 6.72 0.000 1.272721 .74539 dcountry1   1.624611 .24174 6.72 0.000 1.273791 .74539 dcountry1   1.62461 .321697 17.51 0.000 2.055411 2.573581 dcountry1   1.62461 .321697 17.51 0.000 1.26631 1.664568 high_tech   1.405501 .321697 17.51 0.000 2.055411 2.573581 dcountry1   1.62461 .321697 17.51 0.000 1.27399 1.990063 dcountry1   1.62481 .321697 17.51 0.000 1.27399 1.990063 dcountry1   1.62481 .321697 17.51 0.000 1.27399 1.990063 dcountry1   1.62481 .321697 17.51 0.000 1.27499 1.990063 dcountry2   .251797 .456211 -1.20 0.231 -1.440131 .3481855 dcountry1   1.62481 .321697 17.51 0.000 1.274599 1.9775 dcountry2   .251697 .414 0.000 1.23772 2.2</pre>                                                                                                                                                                    | exp_int           | Coef.                     | Std. Err. | t             | P> t  | [95% Conf.           | Interval]            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------|-----------|---------------|-------|----------------------|----------------------|
| emp_trng           .0011563         .0670405         0.14         0.881        1222933         .140608           manager_exp         .00114431         .0016479         0.88         0.382        0018056         .0048894           manager_edu_dummy         .0303017         .137042         1.74         0.88        0355192         .5215747           new_org_str         .0630101         .081339         0.77         0.439        0965113         .2223314           new_prod_serv        133034         .0770572        73         0.84        2242287         .1080608           new_methods         .1366219         .0822358         -4.47         0.000         .528476        2059763           lnsize         .5027445         .1023061         4.91         0.052        0462738         .0002217           lnage         .1130181         .1772855         0.64         0.000         .103976         .0209931           foreign_dummy        513116         .2989267         -1.72         0.86         -1.099422         .0731895           credit         .2054526         .621142         .331         0.001         .086445         1.2287394           foreignumy        7322262         .22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | emp edu           | .0003259                  | .001604   | 0.20          | 0.839 | 0028242              | .0034761             |
| <pre>manager_exp  0011576 .0030837 -0.38 0.707007236 .0048844 skilled_exp   .0014431 .0016479 0.88 0.3820018056 .0046919 manager_edu_dummy   .2430277 .1397042 1.74 0.0860351192 .5215747 new_ord_serv  133034 .0770572 -1.73 0.0842841287 .0180608 new_methods   .1366219 .0840243 1.63 0.1040280918 .3013356 location  027207445 .1023061 4.91 0.000 .3021746 .7033143 lnsize_sqr  023026 .0118585 -1.94 0.000 .3021746 .7033143 lnsize_sqr   .043032 .0343195 -1.35 0.000 .3021746 .7033143 lnsize_sqr   .045032 .0343195 -1.35 0.000 .7100359 1.133271 lnage_sqr   .045032 .0343195 -1.35 0.000 .7100359 1.133271 state_dummy   .9216534 .107802 8.54 0.000 .7100359 1.133271 state_dummy   .2706979 .255887 1.06 0.225241962 .7033892 credit   .2054526 .0621142 3.33 0.001 .0864712 .3272339 finputs   .0089324 .0011624 7.66 0.000 .0066412 .372339 finputs   .0089324 .0011624 7.66 0.000 .0666412 .0112233 tech_dummy   .2706979 .255887 1.06 0.235241962 .783392 bus_assc  022226 .212458 -0.500 0.800 .489743 .32981752 low_mic_sech   .405501 .1014561 1.86 0.000 .0066413 .1288744 mhigh_tech   .405501 .1014561 3.85 0.000 1.206434 1.288784 dcountry1   .624611 .24174 6.72 0.000 1.07227 1.74549 dcountry1   .624611 .24174 6.72 0.000 1.07227 1.74549 dcountry1   .624611 .24174 6.72 0.000 1.07227 1.74558 dcountry3   .8120408 .3121394 2.260 0.009 .2002477 1.423832 dcountry3   .8120408 .3121394 2.20 0.000 1.206431 1.263344 dcountry1   .624611 .24174 6.72 0.000 1.55758 2.337326 dcountry1   .62461 .345023 -1.72 0.086 -1.268422 .0298674 dcountry1   .62461 .345023 -1.72 0.086 1.226531 1.263384 dcountry2   .62558877 1.51 0.000 2.555847 1.423832 dcountry3   .8120408 .3121394 2.22 0.000 1.55758 2.337326 dcountry4   .626658 .2973905 2.22 0.026 0.77782 1.243534 dcountry5   .331496 1.321697 1.751 0.000 2.055841 2.537381 dcountry4   .62658 .2973905 2.22 0.026 0.77782 1.243534 dcountry4   .62658 .2973905 2.22 0.026 0.77782 1.243534 dcountry4   .62658 .2973905 2.22 0.006 1.537392 2.19767 dcountry4   .62658 .2973905 2.22 0.006 1.35759 2.33</pre>                                                                                                                                                           | emp trng          | .0091563                  | .0670405  | 0.14          | 0.891 | 1222953              | .140608              |
| <pre>skilied_emp   .0014431 .0016479 0.88 0.3820018056 .0046919 manager_edu_dummy   .2430277 .1337042 1.77 0.4390965113 .2225314 new_prod_serv   .1366219 .0840243 1.63 0.1040280918 .3013356 Tocation  3672119 .0822338 -4.47 0.0005284716 .7033143 lnsize_sqr  023026 .0118585 -1.94 0.0520462738 .0002217 lnage_sqr  0463032 .0343195 -1.35 0.1771135986 .0209931 lnsize_sqr  0463032 .0343195 -1.35 0.1771135986 .0209931 foreign_dummy   .216534 .1073062 8.54 0.0520462738 .0002217 state_dummy   .2165424 .1073062 8.54 0.050 -1.099422 .0731895 credit   .2054526 .0621142 3.31 0.001 .0866712 .327239 f_inputs   .0083324 .0011624 7.68 0.000456710 .3931752 low_mlow_tech   1.135919 .0778912 11.58 0.060456710 .3941752 low_mlow_tech   1.135919 .0778912 11.58 0.000 .0866416 .0112233 ltech_dummy   .2706979 .255887 1.06 0.2252419962 .783392 low_mlow_tech   1.405511 .1074581 3.82 0.000 1.50547 2.098674 dcountry1   .626461 .23714 6.72 0.000 1.150547 2.098674 dcountry2   1.424195 .2071967 6.87 0.000 1.150547 1.288794 dcountry3   .8120408 .3121349 2.60 0.000 1.150541 2.293844 dcountry3   .8120408 .3121349 2.60 0.000 1.150541 2.293844 dcountry4   .9005636 .283028 3.18 0.001 .3458128 1.455314 dcountry4   .8120408 .1121697 1.751 0.000 2.052411 2.573541 dcountry1   .62451 .326577 4.51 0.000 1.274899 1.90063 dcountry4   .82071967 3.273795 2.22 0.0026 .77782 1.243534 dcountry1   .62458 .273795 2.22 0.0026 .77782 1.243534 dcountry1   .62458 .273795 2.22 0.0026 .77782 1.245354 dcountry1   .62458 .273795 2.22 0.0026 .77782 1.243534 dcountry1   .62458 .273795 2.22 0.0026 .77782 1.243534 dcountry1   .62458 .273795 2.22 0.0026 .77823 1.263541 dcountry1   .62458 .273795 2.22 0.0026 .77823 1.263541 dcountry1   .62458 .273795 2.22 0.0026 .77824 2.254066 dcountry1   .634581 .1291697 1.51 0.000 1.537579 2.137354 dcountry1   .634581 .1291697 1.51 0.000 1.274899 1.990063 dcountry1   .634581 .1291697 1.51 0.000 1.274899 1.990053 dcountry1   .634581 .1226977 4.11 0.000 1.4545892 dcountry2   .245653 .1943081 10.07 0.</pre>                                                                                                                                                                    | manager exp       | 0011576                   | .0030837  | -0.38         | 0.707 | 0072036              | .0048884             |
| <pre>manager_edu_dimmy   .2430277 .1397042 1.74 0.0860355192 .5215747     new_prod_serv  133034 .0770572 -1.73 0.0842841287 .0180608     new_methods   .1366219 .0840243 1.63 0.104020918 .301336     Tocation  3672119 .082238 -4.47 0.000 .3021746 .7033143     lnsize sqr  023026 .011855 -1.94 0.0520462738 .0002217     lnage_gr   .1130181 .1772855 0.64 0.524224588 .4606241     lnage_sqr   .0463032 .034315 -1.35 0.1771135996 .0209931     foreign_dummy   .9216534 .1078002 8.54 0.000 .7100359 1.133271     state_dummy   .751316 .2989287 -1.72 0.086 -1.099422 .021895     f_inputs   .0089324 .0011624 7.68 0.000 .7100359 1.133271     state_dummy   .720697 .255887 1.06 0.2952441986 .0122339     f_inputs   .0089324 .0011624 7.68 0.000 .74587403 .3391752     bus_assoc  3322826 .2124458 -0.15 0.88045587403 .3391752     bus_assoc  3322826 .2124458 -0.15 0.88045587403 .3941752     bus_assoc  3322826 .2124458 -0.15 0.88045587403 .3941752     bus_assoc  3622826 .2124458 -0.15 0.000 1.00086416 .0112233     tech_dummy   1.624611 .24174 6.72 0.000 1.0105847 2.098674     dcountry1   1.624611 .24174 6.72 0.000 1.010287 1.28832     dcountry1   1.624611 .24174 6.72 0.000 1.010888 1.8830302     dcountry2   1.424195 .3271967 6.87 0.000 1.010808 1.883032     dcountry1   1.624611 .24174 6.72 0.000 1.010808 1.883032     dcountry1   1.624611 .24174 6.72 0.000 1.0104547 2.098674     dcountry1   1.624611 .24174 6.72 0.000 1.206434 1.604568     high_tech   1.405501 .1014561 113.85 0.000 1.206434 1.604568     high_tech   1.40551 .3121697 17.51 0.000 1.350547 2.098674     dcountry1   1.624611 .24174 6.72 0.000 1.1150547 2.098674     dcountry1   1.624611 .24174 6.72 0.000 1.274899 1.990063     dcountry1   1.624611 .24174 6.72 0.000 1.274899     le30345     dcountry2   1.42195 .3271967 1.617 0.000 1.350547 2.098674     dcountry1   1.624611 .24174 6.72 0.000 1.274899     le30345     dcountry1   1.624611 .24174 6.72 0.000 1.274899     le30345     dcountry2   1.62461 .3210975 3.18 0.000 1.6288613 1.061</pre>                                                                                                                                                                          | skilled emp       | .0014431                  | .0016479  | 0.88          | 0.382 | 0018056              | .0046919             |
| <pre>new_prd_str   .0630101 .0813389 0.77 0.4390965113 .222514 new_prd_str   .0530101 .0813389 0.77 0.4392841287 .0180608 new_methods   .1366219 .0840243 1.63 0.1042280918 .3013356 Tocation  3672119 .0822338 -4.47 0.00052841287 .073143 lnsize_sqr  023026 .0118585 -1.94 0.0520462738 .0002217 lnage_sqr  0463032 .0343195 -1.35 0.1771133966 .0209931 foreign_dummy   .216334 .1078002 8.54 0.0520462738 .0406241 lnage_sqr  0463032 .0343195 -1.35 0.1771133966 .0209931 foreign_dummy   .216434 .1078002 8.54 0.0001099422 .0731895</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | manager edu dummy | .2430277                  | .1397042  | 1.74          | 0.086 | 0355192              | .5215747             |
| <pre>new_piod_serv  133034 .0770572 -1.73 0.084 -2841287 .0180608 new_methods   .1366219 0.840243 1.63 0.104280918 .3013356 location  3672119 0.822358 -4.47 0.000 .3021746 .70280918 lnsize   .5027445 .1023061 4.91 0.000 .3021746 .7033143 lnsize_sqr   .023026 0.0118585 -1.94 0.052 -0.462738 0.002217 lnage   .1130181 .1772855 0.64 0.524224588 4.606241 lnage sqr   .463032 0.0343195 -1.35 0.177 -1.135996 0.209931 foreign_dummy   .9216534 .1078802 8.54 0.000 .7100359 1.133271 state_dummy   .51316 .2989287 -1.72 0.086 -1.099422 .0731895 credit   .2054526 0.621142 3.31 0.001 .0836712 .327339 f_lnputs   .008324 .0011624 7.66 0.000 .006616 .0112233 f_lnputs   .008324 0.011624 7.66 0.000 .008616 .0112233 tech_dummy   .2706979 .255887 1.066 0.22552419962 .783392 bus_assoc  3222826 .2124458 -0.15 0.880 -4.4587403 .3941752 low_mos_tech   1.405501 .1014561 13.85 0.000 1.206434 1.604568 high_tech   1.405501 .1014561 13.85 0.000 1.206434 1.604568 high_tech   1.405501 .1014561 13.85 0.000 1.206434 1.604568 high_tech   1.405501 .3014561 72 .0926474 1.604564 high_tech   1.424611 .24174 6.72 0.000 1.150547 2.098674 dcountry1   1.624611 .24174 6.77 0.000 1.150547 2.098674 dcountry2   1.424195 .2071967 6.67 0.000 1.205431 1.6830302 dcountry4   .900563 .223028 3.18 0.000 2.055411 2.573581 dcountry6   .7819036 1.542417 5.07 0.000 1.777821 1.423822 dcountry1   1.624611 .34174 6.72 0.000 1.53799 1.943832 dcountry1   1.632481 .1823795 2.20.026 .077782 1.243534 dcountry1   1.632481 .1823795 2.20.026 .000 1.432137 2.272502 dcountry1   1.64563 .293028 3.18 0.000 1.3454128 1.455314 dcountry1   1.632481 .1823795 2.0006 1.432137 2.272502 dcountry1   1.632481 .1823795 2.0006 1.432137 2.272502 dcountry1   1.645239 .203978 3.000 1.434182 2.254066 dcountry1   1.882319 .199022 9.46 0.000 1.432137 2.272502 dcountry1   1.882319 .199022 9.46 0.000 1.432137 2.272502 dcountry1   1.645423 .263503 -1.72 0.026 -1.24899 1.990063 dcountry2   1.632481 .1823795 2.0006 1.434132 2.254066 dcountry1   1.845483 .1643641 1.00 0.00 1.434542 2.254066</pre>                                                                                                                                         | new org str       | .0630101                  | .0813389  | 0.77          | 0.439 | 0965113              | .2225314             |
| <pre>new methods   .1.366219 .0840243 1.63 0.10420280918 .3013356<br/>Tocation   .3672119 .08223584.47 0.00052844762059763<br/>Insize   .5027445 .1023061 4.91 0.000 .3021746 .7033143<br/>Insize agr  043032 .0118585 -1.94 0.520462738 .0002217<br/>Inage agr  0463032 .0343195 -1.35 0.1771135996 .0209931<br/>foreign_dummy   .9216534 .1078802 8.54 0.000 .7100359 1.133711<br/>state_dummy   .92165426 .0621142 3.31 0.001 .0086 -1.099422 .0731895<br/>credit   .2054526 .0621142 3.31 0.001 .0086712 .3272339<br/>f_inputs   .0089324 .0011624 7.68 0.000 .0066416 .0112233<br/>tech_dummy   .7706979 .255887 1.06 0.2952419962 .783392<br/>bus_assoc   .0322826 .2124458 -0.15 0.8804587403 .3941752<br/>low_mlow_tech   1.135919 .0778912 14.58 0.000 1.206634 1.604568<br/>high_tech   1.40841 .1714551 8.22 0.000 1.07227 1.744549<br/>dcountry1   1.624611 .24174 6.72 0.000 1.07227 1.744549<br/>dcountry3   .8120408 .3121394 .60 0.009 .305413 1.288794<br/>dcountry3   .8120408 .3121394 2.60 0.009 .2055411 2.573581<br/>dcountry5   2.314496 .1321697 17.51 0.000 1.355147 2.098674<br/>dcountry5   2.314496 .1321697 17.51 0.000 1.3458128 1.425314<br/>dcountry5   .78149036 .152247 7.000 1.355811 1.0284224<br/>dcountry6   .7819036 .152477 5.07 0.000 1.357581 2.673581<br/>dcountry1   .66258 .2973905 2.22 0.026 .077782 1.2243534<br/>dcountry1   .662461 .323785 8.95 0.000 1.274899 1.990063<br/>dcountry1   .867783 .1663486 11.00 0.000 1.537799 2.197767<br/>dcountry1   .862451 .323785 8.95 0.000 1.537399 2.197767<br/>dcountry1   .862783 .164346 11.00 0.000 1.537399 2.2254066<br/>dcountry14   .9956453 .1943081 10.07 0.000 1.537392 2.2254066<br/>dcountry15   .545977 .456211 -1.20 0.231 -1.440131 .3481855<br/>dcountry14   .1956453 .1943081 10.07 0.000 1.537392 2.2254066<br/>dcountry15   .545977 .456211 -1.20 0.231 -1.440131 .3481855<br/>dcountry14   .1956453 .1943081 10.07 0.000 1.537392 2.254066<br/>dcountry15   .545977 .456211 -1.20 0.231 -1.440131 .3481855<br/>dcountry24   .2021783 .1843631 14.36 0.000 2.0538613 1.6616<br/>dcountry24   .2021783 .249117 3.46 0.000 1.632122 2.278406<br/>dcountry24   .2021783 .249117 3.46 0.000 1.632125 2.40958<br/>dcountry24  </pre>             | new prod serv     | 133034                    | .0770572  | -1.73         | 0.084 | 2841287              | .0180608             |
| Tocation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | new methods       | .1366219                  | .0840243  | 1.63          | 0.104 | 0280918              | .3013356             |
| <pre>lnsize   .5027445 .1023061 4.91 0.0003021746 .7033143 lnsize_sqr  042028 .011885 -1.39 0.0520462738 .0002217 lnage   .1130181 .1772855 0.64 0.524234588 .4606241 lnage_sqr  0463032 .0343195 -1.35 0.1771135996 .020931 state_dummy  513116 .2989287 -1.72 0.086 -1.099422 .0731895 credit   .2064526 .0621142 3.31 0.0000066416 .0112233 tech_dummy   .2706979 .255887 1.06 0.2952419962 .373392 tech_dummy   .2706979 .255887 1.06 0.2952419962 .373392 tech_dummy   .2706979 .255887 1.06 0.2952419962 .3783392 bus_assoc  0322826 .2124458 -0.15 0.8804587403 .3941752 low_mlow_tech   1.135919 .0778912 14.58 0.000 1.206614 .040558 high_tech   1.405501 .014561 13.85 0.000 1.206434 1.604568 high_tech   1.40561 1.31458 0.000 1.150547 1.288794 dcountry1   1.624611 .24174 6.72 0.000 1.150547 1.288674 dcountry3 .8120408 .3121394 2.60 0.009 .0002497 1.423832 dcountry4   .9005636 .28028 3.18 0.000 1.3458128 1.455314 dcountry5   2.314496 .1321697 17.51 0.000 1.2365111 2.573581 dcountry1   .66268 .2973905 2.222 0.026 0.77782 1.243534 dcountry1   .622461 .24217 5.77 0.0000 1.274899 1.99063 dcountry1   .682783 .1683866 11.09 0.000 1.274899 1.99063 dcountry1   .682481 .1623785 8.95 0.000 1.274899 1.99063 dcountry1   .682481 .1623785 8.95 0.000 1.274899 1.99063 dcountry1   .1682481 .1623785 8.95 0.000 1.274899 1.99063 dcountry1   .1862481 .1623785 8.95 0.000 1.274899 1.99063 dcountry1   .1862481 .1623785 8.95 0.000 1.274899 1.99063 dcountry1   .9664778 .1683866 11.09 0.000 1.537379 2.197767 dcountry11   .886319 .199020 9.46 0.000 1.2345912 0.245546 dcountry12   .921653 .1943081 10.07 0.000 1.537379 2.197767 dcountry13   .1.45231 .263562 4.35 0.000 1.274899 1.99063 dcountry14   .9665762 .3221062 2.69 0.007 .2354567 1.498096 dcountry15   .545977 .456211 -1.20 0.231 -1.440131 .3481855 dcountry14   .966576 .3221062 2.69 0.007 .2354567 1.498096 dcountry14   .966778 .1683466 11.09 0.000 1.537379 2.197767 dcountry14   .906929 .261175 3.48 0.000 2.035362 2.778404 dcountry24   .2.41953 .194598 0.000 2.0334917 3</pre>                                                                                                                                                              | location          | 3672119                   | .0822358  | -4.47         | 0.000 | 5284476              | 2059763              |
| <pre>Insize_sqr  023026 .0118585 -1.94 0.0520462738 .0002217 Inage   .1130181 .1772855 0.64 0.524223588 .4606241 Inage_sqr  0463032 .0343195 -1.35 0.1771135996 .0209931 foreign_dummy   .9216534 .1078802 8.54 0.000 .7100359 1.133271 state_dummy  51316 .2989287 -1.72 0.086 -1.099422 .0731895</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | lnsize            | .5027445                  | .1023061  | 4.91          | 0.000 | .3021746             | .7033143             |
| lnage sqr        046302         .0343195        046002         .0343195        135         0.177        1135966         .0209931           foreign_dummy         .9216534         .1078802         6.54         0.000         .7100359         1.133271           state_dummy        513116         .2989287         -1.72         0.086         -1.099422         .0731895           credit         .2054526         .0621142         3.31         0.010         .0836712         .3272339           fiputs         .0089324         .0011624         7.68         0.000         .0066416         .0112233           tech_dummy         .2706979         .255887         1.06         0.295        2419962         .783392           bus_assoc        0322826         .2124458         -0.15         0.880         -4587403         .3941752           low_mlow_tech         1.40841         .1714351         8.22         0.000         1.206341         1.604568           high_tech         1.40841         .1714351         8.22         0.000         1.018088         1.830302           dcountryl         1.424195         .2071967         6.87         0.000         1.50547         2.098674           dcountryl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lnsize_sqr        | 023026                    | .0118585  | -1.94         | 0.052 | 0462738              | .0002217             |
| <pre>hage_sqr  0463032 .0343195 -1.35 0.177 -1135996 .020931<br/>foreign_dummy   .9216534 .1078802 8.54 0.000 .7100359 1.133271<br/>state_dummy  513116 .2989287 -1.72 0.086 -1.099422 .0731895</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lnage             | .1130181                  | .1772855  | 0.64          | 0.524 | 234588               | .4606241             |
| <pre>foreign_dimmy   .9216534 .1078802 8.54 0.000 .7100359 1.133271 state_dimmy   .513116 .2989287 -1.72 0.086 -1.099422 .0731895</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | lnage_sqr         | 0463032                   | .0343195  | -1.35         | 0.177 | 1135996              | .0209931             |
| <pre>state_dummy  513116 .2989287 -1.72 0.086 -1.099422 .0731895</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | foreign_dummy     | .9216534                  | .1078802  | 8.54          | 0.000 | .7100359             | 1.133271             |
| credit         2054526         .0621142         3.31         0.001         .0836712         .3272339           f_inputs         .0089324         .0011624         7.68         0.000         .0066416         .0112233           tech_dummy         .2706979         .255887         1.06         0.295        2419962         .783332           bus_assoc        0322826         .2124458         -0.15         0.880         .4587403         .3341752           low_mlow_tech         1.1405501         .1014561         13.85         0.000         1.206434         1.604568           high_tech         1.408411         .24174         6.72         0.000         1.150547         2.098674           dcountry1         1.624611         .24174         6.72         0.000         1.010808         1.830302           dcountry3         .8120408         .3121394         2.60         0.000         2.05411         2.573581           dcountry4         .900566         .283028         3.18         0.010         .458128         1.684224           dcountry1         .6658         .2973905         .2026         .077782         1.243534           dcountry1         .652431         .1823785         8.95         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | state_dummy       | 513116                    | .2989287  | -1.72         | 0.086 | -1.099422            | .0731895             |
| f_inputs       .0089324       .0011624       7.68       0.000       .0066416       .0112233         tech_dummy       .2706979       .255887       1.06       0.295      2419962       .783392         bus_assoc      0322826       .2124458       -0.15       0.880      4587403       .3941752         low_mlow_tech       1.135919       .0778912       14.58       0.000       .9830445       1.288794         mhigh_tech       1.40841       .1714351       8.22       0.000       1.07227       1.744549         dcountry1       1.624611       .24174       6.72       0.000       1.150547       2.096674         dcountry2       1.424195       .2071967       6.87       0.000       .108088       1.830302         dcountry3       .8120408       .3121394       2.60       0.009       .202497       1.423832         dcountry5       2.534496       .1521697       7.51       0.000       .4758831       1.084224         dcountry6       .7819036       .1542417       5.07       0.000       1.274899       1.990063         dcountry1       1.662481       .1683486       11.09       0.000       1.537799       2.197767         dcountry1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | credit            | .2054526                  | .0621142  | 3.31          | 0.001 | .0836712             | .3272339             |
| tech_dummy   .2706979 .255887 1.06 0.2952419962 .783392<br>bus_assoc  0322826 .2124458 -0.15 0.8804587403 .3941752<br>low_tech   1.45519 0.778912 14.58 0.000 9.830445 1.288794<br>mhigh_tech   1.405501 .1014561 13.85 0.000 1.206434 1.604568<br>high_tech   1.40841 .1714351 8.22 0.000 1.07227 1.744549<br>dcountry1   1.624611 .24174 6.72 0.000 1.150547 2.098674<br>dcountry2   1.424195 .2071967 6.87 0.000 1.018088 1.830302<br>dcountry3   8120408 .3121394 2.60 0.009 .2002497 1.423832<br>dcountry4   .9005636 .283028 3.18 0.001 .3458128 1.455314<br>dcountry5   2.314496 .1321697 17.51 0.000 2.055411 2.573581<br>dcountry6   .7819036 .1542417 5.07 0.000 1.274899 1.990063<br>dcountry7   .660658 .2973905 2.22 0.026 0.077782 1.243534<br>dcountry6   .7819036 .1542417 5.07 0.000 1.537799 2.197767<br>dcountry10   1.867783 .168346 11.09 0.000 1.537799 2.197767<br>dcountry11   1.882319 .1990202 9.46 0.000 1.424137 2.272502<br>dcountry12  5921861 .345023 -1.72 0.086 -1.268422 .0840494<br>dcountry13   1.145231 .2633692 4.35 0.000 1.424137 2.272502<br>dcountry14   1.956453 .1943081 10.07 0.000 1.57558 2.337326<br>dcountry15  5459727 .456211 -1.20 0.231 -1.440131 .3481855<br>dcountry16   1.887782 .2209785 9.09 0.000 1.454392 2.254066<br>dcountry17   .9080919 .2611775 3.48 0.001 .396168 1.420016<br>dcountry18   1.049974 .2556707 4.11 0.000 1.454392 2.254066<br>dcountry19   .867762 .3221062 2.69 0.007 .2354567 1.498096<br>dcountry21   .021743 .2949117 3.46 0.001 .4431103 1.398175<br>dcountry22   2.415833 .1849648 13.06 0.000 1.236426 2.778404<br>dcountry23   1.678916 .2255597 7.44 0.000 1.236726 2.121106<br>dcountry24   2.262989 .193095 11.53 0.000 1.632125 2.409362<br>dcountry24   2.262389 .192896 12.38 0.000 2.038649 2.835998<br>dcountry24   2.262324 .1925597 7.44 0.000 1.236726 2.121106<br>dcountry24   2.262324 .1925597 7.44 0.000 1.236726 2.121106<br>dcountry24   2.262324 .1925597 7.44 0.000 1.236726 2.121106<br>dcountry24   2.262324 .1925597 7.44 0.000 1.632125 2.409362<br>dcountry24   2.262324 .1925896 1.33 0.000 2.0384917 3.073399<br>dcountry24   2.00744 .1925797 1.019 0.000 1.611825 2.409553<br>dcountry24   2.020                                      | f_inputs          | .0089324                  | .0011624  | 7.68          | 0.000 | .0066416             | .0112233             |
| bus_assoc  0322826 .2124458 -0.15 0.8004587403 .3941752<br>low_mlow_tech   1.135919 .0778912 14.58 0.000 .9830445 1.288794<br>mhigh_tech   1.405501 .1014561 13.85 0.000 1.206434 1.604568<br>high_tech   1.40841 .1714351 8.22 0.000 1.07227 1.744549<br>dcountry1   1.624611 .24174 6.72 0.000 1.150547 2.098674<br>dcountry2   1.424195 .2071967 6.87 0.000 1.018088 1.830302<br>dcountry3   .8120408 .3121394 2.60 0.009 .2002497 1.423832<br>dcountry4   .9005636 .283028 3.18 0.001 .3458128 1.455314<br>dcountry5   2.314496 .1321697 17.51 0.000 2.055411 2.573581<br>dcountry6   .7819036 .1542417 5.07 0.000 .4795831 1.084224<br>dcountry7   .660558 .2973905 2.22 0.026 .77782 1.243534<br>dcountry1   1.82781 .1823785 8.95 0.000 1.274699 1.990063<br>dcountry1   1.867783 .1683486 11.09 0.000 1.537799 2.197767<br>dcountry1   1.862481 .34502 -1.72 0.086 -1.268422 .0840494<br>dcountry1   1.82319 .199022 9.46 0.000 1.424137 2.272502<br>dcountry1   1.952461 .34502 -1.72 0.086 -1.268422 .0840494<br>dcountry1   1.95453 .1943081 10.07 0.000 1.57588 2.337326<br>dcountry14   1.956453 .1943081 10.07 0.000 1.57588 2.337326<br>dcountry15  5459727 .456211 -1.20 0.231 -1.440131 .3481855<br>dcountry16   1.854229 .2039785 9.09 0.000 1.454392 2.254066<br>dcountry17   .9080919 .2611775 3.48 0.001 .396168 1.420016<br>dcountry18   1.049974 .2556707 4.11 0.000 .448577 1.551091<br>dcountry19   .667762 .3221062 2.69 0.007 .2354567 1.498096<br>dcountry21   .021743 .2949117 3.46 0.000 1.84847 2.605499<br>dcountry22   2.415833 .1849648 13.06 0.000 2.053262 2.778404<br>dcountry22   2.415833 .1849648 13.06 0.000 2.053262 2.778404<br>dcountry24   2.462324 .1906101 12.92 0.000 2.088649 2.835998<br>dcountry24   2.405595 .7.44 0.000 1.632125 2.409362<br>dcountry24   2.415833 .1943081 10.19 0.000 1.632125 2.409362<br>dcountry24   2.415833 .1943081 3.06 0.000 2.087026 2.762101<br>dcountry24   2.415833 .1943081 3.06 0.000 2.087026 2.762101<br>dcountry24   2.415833 .1849648 13.06 0.000 2.087026 2.762101<br>dcountry24   2.415833 .1943961 2.38 0.000 2.087026 2.762101<br>dcountry24   2.020744 .1982717 10.19 0.000 1.632125 2.40                                                                    | tech_dummy        | .2706979                  | .255887   | 1.06          | 0.295 | 2419962              | .783392              |
| <pre>low_mlow_tech   1.135919 .0778912 14.58 0.000 .9830445 1.288794 mhigh_tech   1.405501 .1014561 13.85 0.000 1.206434 1.604568 high_tech   1.40841 .1714351 8.22 0.000 1.07227 1.7744549 dcountry1   1.624611 .24174 6.72 0.000 1.150547 2.098674 dcountry3   .8120408 .3121394 2.60 0.009 .2002497 1.423832 dcountry4   .9005636 .283028 3.18 0.001 .3458128 1.455314 dcountry6   .7819036 .1542417 5.07 0.000 1.4795831 1.084224 dcountry6   .7819036 .1542417 5.07 0.000 1.274899 1.90063 dcountry10   1.667783 .1683486 11.09 0.000 1.274899 1.90063 dcountry10   1.667783 .1683486 11.09 0.000 1.53779 2.197767 dcountry11   1.882319 .1990202 9.46 0.000 1.492137 2.272502 dcountry12   -5921861 .345023 -1.72 0.086 -1.268422 .0840494 dcountry13   1.145231 .2633692 4.35 0.000 1.57588 2.337326 dcountry14   1.956453 .1943081 10.07 0.000 1.57558 2.337326 dcountry16   .854229 .2039785 9.09 0.000 1.454313 .3481855 dcountry16   1.854229 .2039785 9.09 0.000 1.4548132 2.254066 dcountry14   1.956453 .1943081 10.07 0.000 1.454382 2.254066 dcountry14   1.956453 .1943081 10.07 0.000 1.454382 2.254066 dcountry14   .968776 .3221062 2.69 0.007 .336168 1.420016 dcountry19   .667762 .3221062 2.69 0.007 .2354567 1.498096 dcountry19   .68777 .456211 -1.20 0.231 -1.440131 .3481855 dcountry14   .049974 .2556707 4.11 0.000 .5488577 1.551091 dcountry19   .867762 .3221062 2.69 0.007 .2354567 1.498096 dcountry21   .021743 .2949117 3.48 0.001 .336168 1.420016 dcountry22   2.415833 .1849648 13.06 0.000 2.053262 2.778404 dcountry24   2.462324 .1906101 1.292 0.000 1.632125 2.409362 dcountry24   2.462324 .1906101 1.292 0.000 2.058649 2.835998 dcountry24   2.462324 .1906101 1.292 0.000 1.632125 2.409362 dcountry24   2.462324 .1906101 1.292 0.000 1.632152 2.409362 dcountry24   2.462324 .1906101 1.292 0.000 1.632152 2.409362 dcountry24   2.462324 .1906101 1.292 0.000 2.058649 2.835998 dcountry24   2.462324 .1906101 1.292 0.000 2.058649 2.835998 dcountry24   2.462324 .1906101 1.292 0.000 1.632125 2.409362 dcountry24   2.462324 .1906101 1.292 0.0000 1.632452 2.778404 d</pre>                                                                                                                       | bus_assoc         | 0322826                   | .2124458  | -0.15         | 0.880 | 4587403              | .3941752             |
| <pre>mhigh_tech   1.405501 .1014561 13.85 0.000 1.206434 1.604568<br/>high_tech   1.40841 .1714351 8.22 0.000 1.07227 1.744549<br/>dcountry1   1.624611 .24174 6.72 0.000 1.018088 1.830302<br/>dcountry2   1.424195 .2071967 6.87 0.000 1.018088 1.830302<br/>dcountry3   .8120408 .3121394 2.60 0.009 .202497 1.423832<br/>dcountry5   2.314496 .1321697 17.51 0.000 2.055411 2.573581<br/>dcountry6   .7819036 .1542417 5.07 0.000 1.4795831 1.084224<br/>dcountry9   1.632481 .1823785 8.95 0.000 1.274899 1.990063<br/>dcountry1   .660658 .2973905 2.22 0.026 .077782 1.243534<br/>dcountry9   1.632481 .1823785 8.95 0.000 1.274899 1.990063<br/>dcountry1   1.887783 .1683486 11.09 0.000 1.492137 2.272502<br/>dcountry12  5921861 .345023 -1.72 0.086 -1.268422 .0840494<br/>dcountry13   1.145231 .2633692 4.35 0.000 1.492137 2.272502<br/>dcountry15  5497187 .456211 -1.20 0.231 -1.440131 .3481855<br/>dcountry16   1.854229 .2039785 9.09 0.000 1.57558 2.337326<br/>dcountry16   1.854229 .2039785 9.09 0.000 1.454392 2.254066<br/>dcountry18   1.049974 .2556707 4.11 0.000 5.488577 1.498096<br/>dcountry18   1.049974 .2556707 4.11 0.000 1.454392 2.254066<br/>dcountry19   .8667762 .3221062 2.69 0.007 .2354567 1.498096<br/>dcountry19   .8667762 .3221062 2.69 0.007 .2354567 1.498096<br/>dcountry21   .021743 .2949117 3.46 0.001 .437103 1.599775<br/>dcountry22   2.415833 .1849648 13.06 0.000 2.053262 2.778404<br/>dcountry24   2.462324 .1906101 12.92 0.000 2.088649 2.835998<br/>dcountry25   2.384563 .1925896 12.38 0.000 2.07026 2.762101<br/>dcountry24   2.462324 .1906101 12.92 0.000 2.088649 2.835998<br/>dcountry25   2.384563 .1925896 12.38 0.000 2.07026 2.762101<br/>dcountry26   2.020744 .1982717 10.19 0.000 1.632125 2.409362<br/>dcountry27   2.021692 .2060533 9.78 0.000 1.611825 2.419558<br/>dcountry28   2.015692 .2060533 9.78 0.000 1.611825 2.419558<br/>dcountry28   2.025696 .1930582 9.95 0.000 1.541961 2.298831<br/>dcountry29   1.920396 .1930582 9.95 0.000 1.541961 2.298831<br/>dcountry29   1.920396 .1930582 9.95 0.000 1.541961 2.298831<br/>dcountry29   1.920396 .1930582 9.95 0.000 1.541961 2.298831<br/>dcountry30   1.076325 .3243124 3.32 0.000 -7.843822 -6.198784</pre> | low_mlow_tech     | 1.135919                  | .0778912  | 14.58         | 0.000 | .9830445             | 1.288794             |
| high_tech         1.40841       .1714351       8.22       0.000       1.07227       1.744549         dcountry2         1.424195       .24174       6.72       0.000       1.150547       2.098674         dcountry2         1.424195       .2071967       6.87       0.000       1.018088       1.830302         dcountry3         .8120408       .3121394       2.60       0.009       .2002497       1.423832         dcountry6         .7819036       .1542417       5.07       0.000       .4795831       1.084224         dcountry6         .7819036       .1542417       5.07       0.000       .4795831       1.084224         dcountry1         .660658       .2973905       2.22       0.026       .077782       1.243534         dcountry1         1.867783       .1683486       11.09       0.000       1.537799       2.197767         dcountry14         1.956453       .1943081       10.07       0.000       1.453779       2.272502         dcountry14         1.956453       .1943081       10.07       0.000       1.5758       2.337326         dcountry14         1.956453       .1943081       10.07       0.000       1.454392       2.254066         dco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mhigh_tech        | 1.405501                  | .1014561  | 13.85         | 0.000 | 1.206434             | 1.604568             |
| dcountry1       1.624611       .24174       6.72       0.000       1.150547       2.098674         dcountry2       1.424195       .2071967       6.87       0.000       1.018088       1.830302         dcountry3       .8120408       .3121394       2.60       0.009       .202497       1.423832         dcountry4       .9005636       .283028       3.18       0.001       .3458128       1.455314         dcountry5       2.314496       .1321697       17.51       0.000       2.055411       2.573581         dcountry6       .7819036       .1542417       5.07       0.000       .4795831       1.842244         dcountry9       1.632481       .1823785       8.95       0.000       1.42137       2.272502         dcountry10       1.867783       .1683486       11.09       0.000       1.457799       2.197767         dcountry11       1.862319       .1990202       9.46       0.000       1.428422       .0840494         dcountry12      5921861       .345023       -1.72       0.086       -1.268422       .0840494         dcountry14       1.956453       .1943081       10.07       0.000       1.5758       2.337326         dcountry15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | high_tech         | 1.40841                   | .1714351  | 8.22          | 0.000 | 1.07227              | 1.744549             |
| dcountry2         1.424195       .2071967       6.87       0.000       1.018088       1.830302         dcountry3         .8120408       .3121394       2.60       0.009       .2002497       1.423832         dcountry4         .905535       .283028       3.18       0.001       .3458128       1.455314         dcountry5         2.314496       .1321697       17.51       0.000       2.055411       2.573581         dcountry6         .7819036       .1542417       5.07       0.000       .4795831       1.084224         dcountry9         1.632481       .1823785       8.95       0.000       1.274899       1.990063         dcountry10         1.867783       .1683486       11.09       0.000       1.537799       2.197767         dcountry11         1.882319       .1990202       9.46       0.000       1.428137       2.272502         dcountry13         1.145231       .2633692       4.35       0.000       .6288613       1.6616         dcountry14         1.956453       .1943081       10.07       0.000       1.545322       .237326         dcountry15        5459727       .456211       -1.20       0.231       -1.440131       .3481855         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | dcountry1         | 1.624611                  | .24174    | 6.72          | 0.000 | 1.150547             | 2.098674             |
| dcountry3         8.8120408       .3121394       2.60       0.009       .2002497       1.423832         dcountry4         .9005636       .283028       3.18       0.001       .3458128       1.455314         dcountry5         2.314496       .1321697       17.51       0.000       2.055411       2.573581         dcountry6         .7819036       .1542417       5.07       0.000       .4795831       1.084224         dcountry9         1.632481       .1823785       8.95       0.000       1.274899       1.990063         dcountry10         1.867783       .1683486       11.09       0.000       1.537799       2.197767         dcountry11         1.882319       .1990202       9.46       0.000       1.4268422       .0840494         dcountry13         1.145231       .2633692       4.35       0.000       1.45758       2.337326         dcountry14         1.956453       .1943081       10.07       0.000       1.57558       2.337326         dcountry15        5459727       .456211       -1.20       0.231       -1.440131       .3481855         dcountry16         1.854229       .2039785       9.09       0.000       1.454392       2.254066                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dcountry2         | 1.424195                  | .2071967  | 6.87          | 0.000 | 1.018088             | 1.830302             |
| dcountry4         .9005636       .283028       3.18       0.001       .3458128       1.455314         dcountry5         2.314496       .1321697       17.51       0.000       2.055411       2.573581         dcountry6         .7819036       .1542417       5.07       0.000       .4795831       1.084224         dcountry9         1.632481       .1823785       8.95       0.000       1.274899       1.990063         dcountry10         1.867783       .1683486       11.09       0.000       1.537799       2.197767         dcountry11         1.82319       .1990202       9.46       0.000       1.492137       2.272502         dcountry13         1.46531       .2633692       4.35       0.000       .6288613       1.6616         dcountry14         1.956453       .1943081       10.07       0.000       1.57558       2.337326         dcountry16         1.854229       .2039785       9.09       0.000       1.454392       2.254066         dcountry17         .9080919       .2611775       3.48       0.001       .396168       1.420016         dcountry17         .9080919       .2611775       3.48       0.001       .3454848       2.605499 <td< td=""><td>dcountry3</td><td>.8120408</td><td>.3121394</td><td>2.60</td><td>0.009</td><td>.2002497</td><td>1.423832</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | dcountry3         | .8120408                  | .3121394  | 2.60          | 0.009 | .2002497             | 1.423832             |
| dcountry5         2.314496       .1321697       17.51       0.000       2.055411       2.573881         dcountry6         .7819036       .1542417       5.07       0.000       .4795831       1.084224         dcountry7         .660658       .2973905       2.22       0.026       .077782       1.243534         dcountry10         1.632481       .1823785       8.95       0.000       1.537799       2.197767         dcountry11         1.867783       .1683486       11.09       0.000       1.537799       2.197767         dcountry12        5921861       .345023       -1.72       0.086       -1.268422       .0840494         dcountry13         1.145231       .2633692       4.35       0.000       1.57558       2.337326         dcountry15        5459727       .456211       -1.20       0.231       -1.440131       .3481855         dcountry16         1.854229       .2039785       9.09       0.000       1.454392       .254066         dcountry17         .9080919       .2611775       3.48       0.001       .396168       1.420016         dcountry10         .8667762       .3221062       2.69       0.007       .2354567       1.498096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | dcountry4         | .9005636                  | .283028   | 3.18          | 0.001 | .3458128             | 1.455314             |
| dcountry6         .7819036       .1542417       5.07       0.000       .4795831       1.084224         dcountry7         .660658       .2973905       2.22       0.026       .077782       1.243534         dcountry9         1.632481       .1823785       8.95       0.000       1.274899       1.990063         dcountry10         1.867783       .1683486       11.09       0.000       1.537799       2.197767         dcountry11         1.882319       .1990202       9.46       0.000       1.492137       2.272502         dcountry12        5921861       .345023       -1.72       0.086       -1.268422       .0840494         dcountry13         1.145231       .2633692       4.35       0.000       .6288613       1.6616         dcountry14         1.956453       .1943081       10.07       0.000       1.57558       2.337326         dcountry16         1.854229       .2039785       9.09       0.000       1.454392       2.254066         dcountry17         .9080919       .2611775       3.48       0.001       .4488577       1.551091         dcountry18         1.049974       .2556707       4.11       0.000       1.84848       2.605499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | dcountry5         | 2.314496                  | .1321697  | 17.51         | 0.000 | 2.055411             | 2.573581             |
| dcountry7         .660658       .2973905       2.22       0.026       .07782       1.243534         dcountry9         1.632481       .1823785       8.95       0.000       1.537799       2.197767         dcountry10         1.882319       .1990202       9.46       0.000       1.492137       2.272502         dcountry11         1.882319       .1990202       9.46       0.000       1.492137       2.272502         dcountry13         1.145231       .2633692       4.35       0.000       .6288613       1.6616         dcountry14         1.956453       .1943081       10.07       0.000       1.57558       2.337326         dcountry15         -5459727       .456211       -1.20       0.231       -1.440131       .3481855         dcountry16         1.854229       .2039785       9.09       0.000       1.454392       2.254066         dcountry17         .9080919       .2611775       3.48       0.001       .396168       1.420016         dcountry19         .8667762       .3221062       .69       0.007       .2354567       1.498096         dcountry20         2.226989       .1930905       11.53       0.000       1.84848       2.605499 <td< td=""><td>dcountry6</td><td>.7819036</td><td>.1542417</td><td>5.07</td><td>0.000</td><td>.4795831</td><td>1.084224</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | dcountry6         | .7819036                  | .1542417  | 5.07          | 0.000 | .4795831             | 1.084224             |
| dcountry9   1.632481       .1823785       8.95       0.000       1.274899       1.990063         dcountry10   1.867783       .1683486       11.09       0.000       1.537799       2.197767         dcountry11   1.882319       .1990202       9.46       0.000       1.492137       2.272502         dcountry12  5921861       .345023       -1.72       0.086       -1.268422       .0840494         dcountry13   1.145231       .2633692       4.35       0.000       1.658423       .0616         dcountry14   1.956453       .1943081       10.07       0.000       1.57558       2.337326         dcountry15  5459727       .456211       -1.20       0.231       -1.440131       .3481855         dcountry16   1.854229       .2039785       9.09       0.000       1.454392       2.254066         dcountry17   .9080919       .2611775       3.48       0.001       .396168       1.420016         dcountry18   1.049974       .2556707       4.11       0.000       .548577       1.551091         dcountry20   2.226989       .1930905       11.53       0.000       1.84848       2.605499         dcountry21   1.021743       .2949117       3.46       0.001       .4437103       1.599775 <tr< td=""><td>dcountry7</td><td>.660658</td><td>.2973905</td><td>2.22</td><td>0.026</td><td>.077782</td><td>1.243534</td></tr<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | dcountry7         | .660658                   | .2973905  | 2.22          | 0.026 | .077782              | 1.243534             |
| dcountry10       1.887783       .1683486       11.09       0.000       1.537799       2.197767         dcountry11       1.882319       .1990202       9.46       0.000       1.492137       2.272502         dcountry12      5921861       .345023       -1.72       0.086       -1.268422       .0840494         dcountry13       1.145231       .2633692       4.35       0.000       .6288613       1.6616         dcountry14       1.956453       .1943081       10.07       0.000       1.57558       2.337326         dcountry15      5459727       .456211       -1.20       0.231       -1.440131       .3481855         dcountry16       1.854229       .2039785       9.09       0.000       1.454392       2.254066         dcountry18       1.049974       .2556707       4.11       0.000       .5488577       1.551091         dcountry20       2.226989       .1930905       11.53       0.000       1.84848       2.605499         dcountry21       1.021743       .2949117       3.46       0.001       .4437103       1.599775         dcountry22       2.415833       .1849648       13.06       0.000       2.053262       2.778404         dcountry2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | dcountry9         | 1.632481                  | .1823785  | 8.95          | 0.000 | 1.274899             | 1.990063             |
| dcountry11       1.882319       .1990202       9.46       0.000       1.492137       2.272502         dcountry12      5921861       .345023       -1.72       0.086       -1.268422       .0840494         dcountry13       1.145231       .2633692       4.35       0.000       .6288613       1.6616         dcountry14       1.956453       .1943081       10.07       0.000       1.57558       2.337326         dcountry15      5459727       .456211       -1.20       0.231       -1.440131       .3481855         dcountry16       1.854229       .2039785       9.09       0.000       1.454392       2.254066         dcountry17       .9080919       .2611775       3.48       0.001       .396168       1.420016         dcountry19       .8667762       .3221062       2.69       0.007       .2354567       1.498096         dcountry20       2.226989       .1930905       11.53       0.000       1.84848       2.605499         dcountry21       1.021743       .2949117       3.46       0.001       .4437103       1.599775         dcountry23       1.678916       .225597       7.44       0.000       1.236726       2.121106         dcountry24 <td>dcountry10</td> <td>1.867783</td> <td>.1683486</td> <td>11.09</td> <td>0.000</td> <td>1.537799</td> <td>2.197767</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | dcountry10        | 1.867783                  | .1683486  | 11.09         | 0.000 | 1.537799             | 2.197767             |
| dcountry12  5921861       .345023       -1.72       0.086       -1.268422       .0840494         dcountry13   1.145231       .2633692       4.35       0.000       .6288613       1.6616         dcountry14   1.956453       .1943081       10.07       0.000       1.57558       2.337326         dcountry15  5459727       .456211       -1.20       0.231       -1.440131       .3481855         dcountry16   1.854229       .2039785       9.09       0.000       1.454392       2.254066         dcountry17   .9080919       .2611775       3.48       0.001       .396168       1.420016         dcountry19   .8667762       .3221062       2.69       0.007       .2354567       1.498096         dcountry20   2.226989       .1930905       11.53       0.000       1.84848       2.605499         dcountry21   1.021743       .2949117       3.46       0.001       .4437103       1.599775         dcountry22   2.415833       .1849648       13.06       0.000       2.053262       2.778404         dcountry24   2.462324       .1906101       12.92       0.000       2.088649       2.835998         dcountry24   2.462324       .1906101       12.92       0.000       2.088649       2.835998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | dcountry11        | 1.882319                  | .1990202  | 9.46          | 0.000 | 1.492137             | 2.272502             |
| dcountry13   1.145231       .2633692       4.35       0.000       .6288613       1.6616         dcountry14   1.956453       .1943081       10.07       0.000       1.57558       2.337326         dcountry15  5459727       .456211       -1.20       0.231       -1.440131       .3481855         dcountry16   1.854229       .2039785       9.09       0.000       1.454392       2.254066         dcountry17   .9080919       .2611775       3.48       0.001       .396168       1.420016         dcountry18   1.049974       .2556707       4.11       0.000       .5488577       1.551091         dcountry20   2.226989       .1930905       11.53       0.000       1.84848       2.605499         dcountry21   1.021743       .2949117       3.46       0.001       .4437103       1.599775         dcountry22   2.415833       .1849648       13.06       0.000       2.053262       2.778404         dcountry24   2.462324       .1906101       12.92       0.000       2.088649       2.835998         dcountry25   2.384563       .1925896       12.38       0.000       2.007026       2.762101         dcountry26   2.020744       .1982717       10.19       0.000       1.632125       2.409362                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | dcountry12        | 5921861                   | .345023   | -1.72         | 0.086 | -1.268422            | .0840494             |
| dcountry14       1.956453       .1943081       10.07       0.000       1.57558       2.337326         dcountry15      5459727       .456211       -1.20       0.231       -1.440131       .3481855         dcountry16       1.854229       .2039785       9.09       0.000       1.454392       2.254066         dcountry17       .9080919       .2611775       3.48       0.001       .396168       1.420016         dcountry18       1.049974       .2556707       4.11       0.000       .5488577       1.551091         dcountry20       2.226989       .1930905       11.53       0.000       1.84848       2.605499         dcountry21       1.021743       .2949117       3.46       0.001       .4437103       1.599775         dcountry22       2.415833       .1849648       13.06       0.000       2.053262       2.778404         dcountry23       1.678916       .2255597       7.44       0.000       1.236726       2.121106         dcountry24       2.462324       .1906101       12.92       0.000       2.088649       2.835998         dcountry25       2.384563       .1925896       12.38       0.000       2.07026       2.762101         dcountry26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | dcountry13        | 1.145231                  | .2633692  | 4.35          | 0.000 | .6288613             | 1.6616               |
| dcountry15      5459727       .456211       -1.20       0.231       -1.440131       .3481855         dcountry16       1.854229       .2039785       9.09       0.000       1.454392       2.254066         dcountry17       .9080919       .2611775       3.48       0.001       .396168       1.420016         dcountry18       1.049974       .2556707       4.11       0.000       .5488577       1.551091         dcountry19       .8667762       .3221062       2.69       0.007       .2354567       1.498096         dcountry20       2.226989       .1930905       11.53       0.000       1.84848       2.605499         dcountry21       1.021743       .2949117       3.46       0.001       .4437103       1.599775         dcountry22       2.415833       .1849648       13.06       0.000       2.053262       2.778404         dcountry23       1.678916       .2255597       7.44       0.000       1.236726       2.121106         dcountry24       2.462324       .1906101       12.92       0.000       2.088649       2.835998         dcountry25       2.384563       .1925896       12.38       0.000       2.007026       2.762101         dcountry2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | dcountry14        | 1.956453                  | .1943081  | 10.07         | 0.000 | 1.5/558              | 2.33/326             |
| dcountry16       1.854229       .2039785       9.09       0.000       1.454392       2.254066         dcountry17       .9080919       .2611775       3.48       0.001       .396168       1.420016         dcountry18       1.049974       .2556707       4.11       0.000       .5488577       1.551091         dcountry19       .8667762       .3221062       2.69       0.007       .2354567       1.498096         dcountry20       2.226989       .1930905       11.53       0.000       1.84848       2.605499         dcountry21       1.021743       .2949117       3.46       0.001       .4437103       1.599775         dcountry22       2.415833       .1849648       13.06       0.000       2.053262       2.778404         dcountry23       1.678916       .2255597       7.44       0.000       1.236726       2.121106         dcountry24       2.462324       .1906101       12.92       0.000       2.088649       2.835998         dcountry25       2.384563       .1925896       12.38       0.000       2.070726       2.762101         dcountry26       2.020744       .1982717       10.19       0.000       1.632125       2.409362         dcountry27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | dcountry15        | 5459/2/                   | .456211   | -1.20         | 0.231 | -1.440131            | .3481855             |
| dcountry17         .9080919       .2611775       3.48       0.001       .396168       1.420016         dcountry18         1.049974       .2556707       4.11       0.000       .5488577       1.551091         dcountry19         .8667762       .3221062       2.69       0.007       .2354567       1.498096         dcountry20         2.226989       .1930905       11.53       0.000       1.84848       2.605499         dcountry21         1.021743       .2949117       3.46       0.001       .4437103       1.599775         dcountry22         2.415833       .1849648       13.06       0.000       2.053262       2.778404         dcountry23         1.678916       .2255597       7.44       0.000       1.236726       2.121106         dcountry24         2.462324       .1906101       12.92       0.000       2.088649       2.835998         dcountry25         2.384563       .1925896       12.38       0.000       2.07026       2.762101         dcountry26         2.020744       .1982717       10.19       0.000       1.632125       2.409362         dcountry28         2.015692       .2060533       9.78       0.000       1.611825       2.419558                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | dcountry16        | 1.854229                  | .2039/85  | 9.09          | 0.000 | 1.454392             | 2.254066             |
| dcountry18       1.049974       .2350707       4.11       0.000       .5488577       1.531091         dcountry19       .8667762       .3221062       2.69       0.007       .2354567       1.498096         dcountry20       2.226989       .1930905       11.53       0.000       1.84848       2.605499         dcountry21       1.021743       .2949117       3.46       0.001       .4437103       1.599775         dcountry22       2.415833       .1849648       13.06       0.000       2.053262       2.778404         dcountry23       1.678916       .2255597       7.44       0.000       1.236726       2.121106         dcountry24       2.462324       .1906101       12.92       0.000       2.088649       2.835998         dcountry25       2.384563       .1925896       12.38       0.000       2.007026       2.762101         dcountry26       2.020744       .1982717       10.19       0.000       1.632125       2.409362         dcountry28       2.015692       .2060533       9.78       0.000       1.611825       2.419558         dcountry29       1.920396       .1930582       9.95       0.000       1.541961       2.298831         dcountry3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | dcountry1/        | .9080919                  | .2611//5  | 3.48          | 0.001 | .396168              | 1.420016             |
| dcountry19         .3007762       .3221062       2.69       0.007       .2334367       1.498096         dcountry20         2.226989       .1930905       11.53       0.000       1.84848       2.605499         dcountry21         1.021743       .2949117       3.46       0.001       .4437103       1.599775         dcountry22         2.415833       .1849648       13.06       0.000       2.053262       2.778404         dcountry23         1.678916       .2255597       7.44       0.000       1.236726       2.121106         dcountry24         2.462324       .1906101       12.92       0.000       2.088649       2.835998         dcountry25         2.384563       .1925896       12.38       0.000       2.007026       2.762101         dcountry26         2.020744       .1982717       10.19       0.000       1.632125       2.409362         dcountry27         2.704158       .1883631       14.36       0.000       2.334917       3.073399         dcountry28         2.015692       .2060533       9.78       0.000       1.611825       2.419558         dcountry29         1.920396       .1930582       9.95       0.000       1.541961       2.298831      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | acountry18        | L.U499/4                  | .2006/07  | 4.11          | 0.000 | .54885//             | 1.00000              |
| dcountry20         2.226369       .1930905       11.53       0.000       1.84848       2.605499         dcountry21         1.021743       .2949117       3.46       0.001       .4437103       1.599775         dcountry22         2.415833       .1849648       13.06       0.000       2.053262       2.778404         dcountry23         1.678916       .2255597       7.44       0.000       1.236726       2.121106         dcountry24         2.462324       .1906101       12.92       0.000       2.088649       2.835998         dcountry25         2.384563       .1925896       12.38       0.000       2.007026       2.762101         dcountry26         2.020744       .1982717       10.19       0.000       1.632125       2.409362         dcountry27         2.704158       .1883631       14.36       0.000       2.334917       3.073399         dcountry28         2.015692       .2060533       9.78       0.000       1.611825       2.419558         dcountry29         1.920396       .1930582       9.95       0.000       1.541961       2.298831         dcountry30         1.076325       .3243124       3.32       0.001       .4405513       1.712098      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | acountry19        |                           | 1020005   | 2.69<br>11 50 | 0.007 | .233436/             | 1.490U90<br>2.60E400 |
| dcountry21       1.021743       .294917       3.46       0.001       .4437103       1.599775         dcountry22       2.415833       .1849648       13.06       0.000       2.053262       2.778404         dcountry23       1.678916       .2255597       7.44       0.000       1.236726       2.121106         dcountry24       2.462324       .1906101       12.92       0.000       2.088649       2.835998         dcountry25       2.384563       .1925896       12.38       0.000       2.007026       2.762101         dcountry26       2.020744       .1982717       10.19       0.000       1.632125       2.409362         dcountry27       2.704158       .1883631       14.36       0.000       2.334917       3.073399         dcountry28       2.015692       .2060533       9.78       0.000       1.611825       2.419558         dcountry29       1.920396       .1930582       9.95       0.000       1.541961       2.298831         dcountry30       1.076325       .3243124       3.32       0.001       .4405513       1.712098         cons       -7.021303       .4172112       -16.83       0.000       -7.843822       -6.198784                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | dcountry20        | L 1 001740                | .1930903  | 2 46          | 0.000 | ⊥.04048<br>//27102   | 2.0UJ499<br>1 500775 |
| dcountry22         2.413833       .1849648       13.06       0.000       2.053262       2.778404         dcountry23         1.678916       .2255597       7.44       0.000       1.236726       2.121106         dcountry24         2.462324       .1906101       12.92       0.000       2.088649       2.835998         dcountry25         2.384563       .1925896       12.38       0.000       2.007026       2.762101         dcountry26         2.020744       .1982717       10.19       0.000       1.632125       2.409362         dcountry27         2.704158       .1883631       14.36       0.000       2.334917       3.073399         dcountry28         2.015692       .2060533       9.78       0.000       1.611825       2.419558         dcountry29         1.920396       .1930582       9.95       0.000       1.541961       2.298831         dcountry30         1.076325       .3243124       3.32       0.001       .4405513       1.712098         cons         -7.021303       .4172112       -16.83       0.000       -7.843822       -6.198784                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dcountry21        | 1.021/43<br>  0.415000    | .2949117  | 3.40          | 0.001 | .443/103             | 1.599775             |
| dcountry23         1.0763916       .2233397       7.44       0.000       1.236726       2.121106         dcountry24         2.462324       .1906101       12.92       0.000       2.088649       2.835998         dcountry25         2.384563       .1925896       12.38       0.000       2.007026       2.762101         dcountry26         2.020744       .1982717       10.19       0.000       1.632125       2.409362         dcountry27         2.704158       .1883631       14.36       0.000       2.334917       3.073399         dcountry28         2.015692       .2060533       9.78       0.000       1.611825       2.419558         dcountry29         1.920396       .1930582       9.95       0.000       1.541961       2.298831         dcountry30         1.076325       .3243124       3.32       0.001       .4405513       1.712098         cons         -7.021303       .4172112       -16.83       0.000       -7.843822       -6.198784                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | dcountry22        | 2.413033<br>  1.670016    | .1049040  | 13.00         | 0.000 | 2.000202             | 2.770404             |
| dcountry24         2.402324       .1900101       12.92       0.000       2.000049       2.835998         dcountry25         2.384563       .1925896       12.38       0.000       2.007026       2.762101         dcountry26         2.020744       .1982717       10.19       0.000       1.632125       2.409362         dcountry27         2.704158       .1883631       14.36       0.000       2.334917       3.073399         dcountry28         2.015692       .2060533       9.78       0.000       1.611825       2.419558         dcountry29         1.920396       .1930582       9.95       0.000       1.541961       2.298831         dcountry30         1.076325       .3243124       3.32       0.001       .4405513       1.712098         cons         -7.021303       .4172112       -16.83       0.000       -7.843822       -6.198784                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | dcountry23        | 1 7 160301                | 1006101   | 12 02         | 0.000 | 1.230/20<br>2 0006/0 | 7 832000<br>7 832000 |
| dcountry26         2.020744       .1982717       10.19       0.000       1.632125       2.409362         dcountry27         2.704158       .1883631       14.36       0.000       2.334917       3.073399         dcountry28         2.015692       .2060533       9.78       0.000       1.611825       2.419558         dcountry29         1.920396       .1930582       9.95       0.000       1.541961       2.298831         dcountry30         1.076325       .3243124       3.32       0.001       .4405513       1.712098         cons         -7.021303       .4172112       -16.83       0.000       -7.843822       -6.198784                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | dcountry24        | 1 2.402324<br>1 2.301563  | 1925896   | 12.92         | 0.000 | 2.000049<br>2.007026 | 2.033330             |
| dcountry20         2.020744       .1902777       10.19       0.000       1.032123       2.409362         dcountry27         2.704158       .1883631       14.36       0.000       2.334917       3.073399         dcountry28         2.015692       .2060533       9.78       0.000       1.611825       2.419558         dcountry29         1.920396       .1930582       9.95       0.000       1.541961       2.298831         dcountry30         1.076325       .3243124       3.32       0.001       .4405513       1.712098         cons         -7.021303       .4172112       -16.83       0.000       -7.843822       -6.198784                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | dcountry25        | 1 2.004000<br>1 2.0007777 | 1980717   | 10 10         | 0.000 | 1 630105             | 2 100362             |
| dcountry27         2.704136       .1003031       14.36       0.000       2.334917       3.073399         dcountry28         2.015692       .2060533       9.78       0.000       1.611825       2.419558         dcountry29         1.920396       .1930582       9.95       0.000       1.541961       2.298831         dcountry30         1.076325       .3243124       3.32       0.001       .4405513       1.712098         cons         -7.021303       .4172112       -16.83       0.000       -7.843822       -6.198784                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | dcountry20        | 1 2.020/44<br>1 2.70/150  | 1222621   | 1/ 26         | 0.000 | 1.0JZIZJ<br>2 32/017 | 2.709302             |
| dcountry20         1.920396       .1930582       9.95       0.000       1.011023       2.419338         dcountry29         1.920396       .1930582       9.95       0.000       1.541961       2.298831         dcountry30         1.076325       .3243124       3.32       0.001       .4405513       1.712098         cons         -7.021303       .4172112       -16.83       0.000       -7.843822       -6.198784                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | dcountry27        | 1 2.7041J0<br>1 2.015602  | 2060533   | 17.30<br>0 70 | 0.000 | 2.JJ491/<br>1 611025 | 2 419558             |
| dcountry30   1.076325 .3243124 3.32 0.001 .4405513 1.712098<br>cons   -7.021303 .4172112 -16.83 0.000 -7.843822 -6.198784                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | dcountry20        | 1 9203092                 | 1930582   | 9.70          | 0.000 | 1 541961             | 2 298831             |
| $cons \mid -7.021303 \cdot 4172112 - 16.83 \cdot 0.000 - 7.843822 - 6.198784$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | dcountry29        | 1 1 076325                | 3243124   | 3 32          | 0 001 | 4405513              | 1 712098             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | cons              | -7.021303                 | .4172112  | -16.83        | 0.000 | -7.843822            | -6.198784            |

# Table A6.4.8 Fractional Logit (Augumented) Model - Full sample (imputed) estimated results (95)

mi estimate, cmdok: glm exp\_int emp\_edu emp\_trng manager\_exp skilled\_emp manager\_edu\_dummy new\_org\_str new\_prod\_serv new\_methods location lnsize lnsize\_sqr lnage lnage\_sqr foreign\_dummy state\_dummy credit f\_inputs tech\_dummy bus\_assoc

| low_mlow_tech mh<br>family (binomial)     | nigh_tech h<br>link (logit) : | igh_tech<br>nolog vce(ro | dcount:<br>bust) | ryl-dcoun                          | try7 dcountry                    | y9-dcountry30,               |
|-------------------------------------------|-------------------------------|--------------------------|------------------|------------------------------------|----------------------------------|------------------------------|
| Multiple-imputation<br>Generalized linear | n estimates<br>models         |                          | Ir<br>Ni<br>Av   | mputation<br>umber of<br>verage RV | ls =<br>obs =<br>7I = 0          | 95<br>15883<br>.5456<br>9159 |
| DF adjustment: La                         | arge sample                   |                          | DI               | F: mi<br>av                        | n = 1<br>rg = 1032<br>rg = 24588 | 12.42<br>25.22<br>02.26      |
| Model F test:                             | Equal FMT                     |                          | ਸ                | ( 51,379                           | (93.4) =                         | 23.92                        |
| Within VCE type:                          | Robust                        |                          | P                | rob > F                            | = 0                              | .0000                        |
| Wienin von cype.                          | 1000000                       |                          |                  |                                    | 0                                |                              |
|                                           |                               |                          |                  |                                    |                                  |                              |
| exp_int                                   | Coef.                         | Std. Err.                | t<br>t           | P> t                               | [95% Conf.                       | Interval]                    |
| emp_edu                                   | .0005228                      | .0015764                 | 0.33             | 0.740                              | 0025693                          | .0036149                     |
| emp_trng                                  | .0131093                      | .0670161                 | 0.20             | 0.845                              | 1182654                          | .1444839                     |
| manager exp                               | 0012655                       | .0030715                 | -0.41            | 0.680                              | 0072864                          | .0047554                     |
| skilled emp                               | .0014472                      | .0015883                 | 0.91             | 0.363                              | 001673                           | .0045674                     |
| manager edu dummy                         | .2194324                      | .1365577                 | 1.61             | 0.110                              | 0503056                          | .4891705                     |
| new org str                               | .0628981                      | .0798622                 | 0.79             | 0.431                              | 0936579                          | .2194542                     |
| new prod serv                             | 1294353                       | .0760857                 | -1.70            | 0.089                              | 2785811                          | .0197104                     |
| new methods                               | .13745                        | .0830609                 | 1.65             | 0.098                              | 0253538                          | .3002538                     |
| location                                  | 3650313                       | .0818787                 | -4.46            | 0.000                              | 5255325                          | 2045302                      |
| lnsize                                    | .5105788                      | .1024652                 | 4.98             | 0.000                              | .3097243                         | .7114332                     |
| lnsize sqr                                | 0237944                       | .0119055                 | -2.00            | 0.046                              | 0471317                          | 0004571                      |
| lnage                                     | .1115427                      | .1764023                 | 0.63             | 0.527                              | 2342511                          | .4573364                     |
| lnage sqr                                 | 0462473                       | .0340073                 | -1.36            | 0.174                              | 1129113                          | .0204168                     |
| foreign dummy                             | .9292855                      | .1067536                 | 8.70             | 0.000                              | .7199863                         | 1.138585                     |
| state dummy                               | 5181344                       | .2945668                 | -1.76            | 0.079                              | -1.095608                        | .0593397                     |
| credit                                    | .2012658                      | .0627031                 | 3.21             | 0.001                              | .0783448                         | .3241868                     |
| f_inputs                                  | .0088463                      | .0011317                 | 7.82             | 0.000                              | .0066233                         | .0110693                     |
| tech dummy                                | .2314016                      | .2653128                 | 0.87             | 0.385                              | 2940856                          | .7568888                     |
| bus_assoc                                 | 0141266                       | .1962359                 | -0.07            | 0.943                              | 4029271                          | .3746739                     |
| low_mlow_tech                             | 1.140571                      | .0773177                 | 14.75            | 0.000                              | .9889428                         | 1.292198                     |
| mhigh_tech                                | 1.406691                      | .0995752                 | 14.13            | 0.000                              | 1.211454                         | 1.601927                     |
| high_tech                                 | 1.409251                      | .1700093                 | 8.29             | 0.000                              | 1.075992                         | 1.742511                     |
| dcountry1                                 | .5374147                      | .360438                  | 1.49             | 0.136                              | 169103                           | 1.243932                     |
| dcountry2                                 | 1.428276                      | .208482                  | 6.85             | 0.000                              | 1.019651                         | 1.8369                       |
| dcountry3                                 | .8110591                      | .3117195                 | 2.60             | 0.009                              | .2000974                         | 1.422021                     |
| dcountry4                                 | .8980107                      | .2824347                 | 3.18             | 0.001                              | .344438                          | 1.451583                     |
| dcountry5                                 | 2.313015                      | .1314167                 | 17.60            | 0.000                              | 2.055431                         | 2.5706                       |
| dcountry6                                 | .7833607                      | .1542984                 | 5.08             | 0.000                              | .4809357                         | 1.085786                     |
| dcountry7                                 | .660983                       | .2979097                 | 2.22             | 0.027                              | .07709                           | 1.244876                     |
| dcountry9                                 | .541371                       | .3368982                 | 1.61             | 0.108                              | 119034                           | 1.201776                     |
| dcountry10                                | .7804516                      | .3259212                 | 2.39             | 0.017                              | .1415958                         | 1.419307                     |
| dcountry11                                | .7978413                      | .3391758                 | 2.35             | 0.019                              | .1329931                         | 1.46269                      |
| dcountry12                                | 5911176                       | .3452225                 | -1.71            | 0.087                              | -1.267743                        | .0855077                     |
| dcountry13                                | 1.144793                      | .2630451                 | 4.35             | 0.000                              | .6291541                         | 1.660433                     |
| dcountry14                                | .8694505                      | .3381875                 | 2.57             | 0.010                              | .2065567                         | 1.532344                     |
| dcountry15                                | 5425223                       | .4561759                 | -1.19            | 0.234                              | -1.436611                        | .3515665                     |
| dcountry16                                | .7714738                      | .3394643                 | 2.27             | 0.023                              | .1060741                         | 1.436874                     |
| dcountry17                                | .9170582                      | .2618486                 | 3.50             | 0.000                              | .403829                          | 1.430287                     |
| dcountry18                                | 1.045305                      | .2563339                 | 4.08             | 0.000                              | .5428925                         | 1.547717                     |
| dcountry19                                | .8687564                      | .3220858                 | 2.70             | 0.007                              | .2374786                         | 1.500034                     |
| dcountry20                                | 1.142503                      | .331376                  | 3.45             | 0.001                              | .4929635                         | 1.792042                     |
| dcountry21                                | 0590934                       | .4029231                 | -0.15            | 0.883                              | 8488387                          | .7306518                     |
| dcountry22                                | 1.321655                      | .3360691                 | 3.93             | 0.000                              | .6628984                         | 1.980411                     |
| dcountry23                                | .5919069                      | .3547446                 | 1.67             | 0.095                              | 1034505                          | 1.287264                     |
| dcountry24                                | 1.375574                      | .3334762                 | 4.12             | 0.000                              | .7219038                         | 2.029245                     |
| dcountry25                                | 1.29594                       | .3366948                 | 3.85             | 0.000                              | .6359773                         | 1.955902                     |
| dcountry26                                | .9375237                      | .3433481                 | 2.73             | 0.006                              | .264519                          | 1.610528                     |

| dcountry27 |   | 1.622274 | .3277321  | 4.95   | 0.000 | .9798894  | 2.264659  |  |
|------------|---|----------|-----------|--------|-------|-----------|-----------|--|
| dcountry28 | 1 | .9338835 | .3471928  | 2.69   | 0.007 | .2533414  | 1.614426  |  |
| dcountry29 | 1 | .838123  | .3356191  | 2.50   | 0.013 | .1802568  | 1.495989  |  |
| dcountry30 | 1 | 0        | (omitted) |        |       |           |           |  |
| _cons      | 1 | -7.00068 | .4201557  | -16.66 | 0.000 | -7.826486 | -6.174874 |  |
|            |   |          |           |        |       |           |           |  |

#### **Table A6.5 Poisson Model - Full sample estimated results**

poisson exp\_int emp\_edu emp\_trng manager\_exp new\_org\_str new\_prod\_serv new\_methods location lnsize lnsize\_sqr lnage lnage\_sqr foreign\_dummy state\_dummy credit low mlow tech mhigh tech high\_tech dcountry1-dcountry7 dcountry9-dcountry30, vce(robust) nolog note: you are responsible for interpretation of noncount dep. variable Number of obs 14026 Poisson regression = Wald chi2(46) = 2245.61 Prob > chi2 = 0.0000 = Log pseudolikelihood = -2520.1083Pseudo R2 0.1855 \_\_\_\_\_ Robust exp int | Coef. Std. Err. z P>|z| [95% Conf. Interval] \_\_\_\_\_\_ 

 emp\_edu |
 .0022557
 .0012522
 1.80
 0.072
 -.0001986
 .0047101

 emp\_trng |
 .0200165
 .0554383
 0.36
 0.718
 -.0886406
 .1286736

 manager\_exp |
 .000325
 .0024152
 0.13
 0.893
 -.0044087
 .0050588

 new\_org\_str |
 .1035377
 .0628404
 1.65
 0.099
 -.0196272
 .2267027

 new\_prod\_s~v |
 -.0697833
 .0609258
 -1.15
 0.252
 -.1891956
 .0496291

 new\_methods |
 .0928956
 .0682412
 1.36
 0.173
 -.0408548
 .2266459

 -.2228706 .0685636 -.3572528 -.0884884 -3.25 0.001 location | 6.43 0.000 lnsize | .5746026 .0893675 .3994455 .7497597 lnsize sqr | -.0334998 .0100783 -3.32 0.001 -.0532529 -.0137466 lnage | .1238847 .1434186 0.86 0.388 -.1572106 .40498 lnage sqr | -.050618 .026992 -1.88 0.061 -.1035213 .0022853 foreign du~y | .7219829 .0741866 9.73 0.000 .5765798 .8673861 state dummy | -.6529478 .2914121 -2.24 0.025 -1.224105 -.0817906 .2647839 3.21 0.001 .0638985 low mlow t~h | 1.031297 .0636236 16.21 0.000 .9065971 1.155997 0.000 16.28 1.109838 1.413641 mhigh\_tech | 1.26174 .0775021 0.000 .1270123 10.93 high\_tech | 1.3885 1.139561 1.63744 dcountry1 | .2121627 1.900665 8.96 0.000 1.484834 2.316496 o.\_\_\_ 7.95 0.000 .1891083 1.13311 dcountry2 | 1.503755 1.8744 3.02 0.003 dcountry3 | .9060238 .3002131 .317617 1.494431 .888473 .2850545 3.12 0.002 dcountry4 | .3297765 1.447169 dcountry5 | 1.930256 .1220996 15.81 0.000 2.169567 1.690946 .7659179 .1508674 .4702232 dcountry6 | 5.08 0.000 1.061613 dcountry7 | .6697388 .2790293 2.40 0.016 .1228514 1.216626 1.070702 dcountry9 | 1.410234 .1732337 8.14 0.000 1.749766 dcountry10 | 1.907169 .146021 13.06 0.000 1.620973 2.193365 dcountry11 | 1.86365 .1680357 11.09 0.000 1.534306 2.192993 dcountry12 | -.4929315 .3726762 -1.32 0.186 -1.223363 .2375003 3.74 0.000 .4381453 1.400539 dcountry13 | .9193422 .2455131 0.000 11.52 1.600507 2.257019 dcountry14 | 1.928763 .1674806 0.224 -1.549428 .3629218 dcountry15 | -.5932531 .4878533 -1.22 1.923718 .177526 10.84 1.575774 dcountry16 | 0.000 2.271663 4.26 4.84 dcountry17 | 1.027864 .2410654 0.000 .5553847 1.500344 1.122011 .2318627 .7900767 .3063391 0.000 1.122011 .6675687 dcountry18 | 1.576454 2.58 0.010 dcountry19 | .1896631 1.39049 2.401858 .1552764 dcountry20 | 15.47 0.000 2.097522 2.706194 dcountry21 | 1.311741 .2655366 .7912989 4.94 0.000 1.832183 dcountry22 | 2.226036 .14894 14.95 0.000 1.934119 2.517953

| dcountry23 | 1.498437  | .2044936 | 7.33   | 0.000 | 1.097637 | 1.899237  |  |
|------------|-----------|----------|--------|-------|----------|-----------|--|
| dcountry24 | 2.432801  | .161816  | 15.03  | 0.000 | 2.115647 | 2.749954  |  |
| dcountry25 | 2.239727  | .1642114 | 13.64  | 0.000 | 1.917879 | 2.561576  |  |
| dcountry26 | 1.881865  | .1763963 | 10.67  | 0.000 | 1.536135 | 2.227595  |  |
| dcountry27 | 2.515855  | .1511786 | 16.64  | 0.000 | 2.21955  | 2.81216   |  |
| dcountry28 | 1.97308   | .1751758 | 11.26  | 0.000 | 1.629742 | 2.316419  |  |
| dcountry29 | 1.999796  | .1657355 | 12.07  | 0.000 | 1.67496  | 2.324631  |  |
| dcountry30 | 1.245418  | .3495428 | 3.56   | 0.000 | .5603264 | 1.930509  |  |
| cons       | -6.434522 | .2633506 | -24.43 | 0.000 | -6.95068 | -5.918365 |  |
|            |           |          |        |       |          |           |  |
|            |           |          |        |       |          |           |  |

#### **Table A6.5.1 Poisson Model - Industry estimated results**

. poisson exp\_int emp\_edu emp\_trng manager\_exp int\_edu\_lowmlow int\_edu\_mhightech int\_edu\_hightech int\_trng\_lowmlow int\_trng\_mhigh int\_trng\_high int\_mngexp\_lowmlow int\_mngexp\_mhigh int\_mngexp\_high new\_org\_str new\_prod\_serv new\_methods location lnsize lnsize\_sqr lnage lnage\_sqr foreign\_dummy state\_dummy credit low\_mlow\_tech mhigh\_tech high\_tech dcountry1-dcountry7 dcountry9-dcountry30, vce(robust) nolog note: you are responsible for interpretation of noncount dep. variable

| Poisson regression<br>Log pseudolikelihood = -2507.1249 |          |                     |       |       | er of obs =<br>chi2(55) =<br>> chi2 =<br>do R2 = | 14026<br>2472.40<br>0.0000<br>0.1897 |  |
|---------------------------------------------------------|----------|---------------------|-------|-------|--------------------------------------------------|--------------------------------------|--|
| exp_int                                                 | Coef.    | Robust<br>Std. Err. |       | P> z  | [95% Conf.                                       | Interval]                            |  |
| emp edu                                                 | .007844  | .0019007            | 4.13  | 0.000 | .0041187                                         | .0115693                             |  |
| emp trng                                                | 1089038  | .111664             | -0.98 | 0.329 | 3277613                                          | .1099537                             |  |
| manager exp                                             | 0098884  | .0057702            | -1.71 | 0.087 | 0211979                                          | .0014211                             |  |
| int edu lo~w                                            | 0145793  | .0026266            | -5.55 | 0.000 | 0197273                                          | 0094312                              |  |
| int_edu_mh~h                                            | 0054911  | .0030626            | -1.79 | 0.073 | 0114937                                          | .0005115                             |  |
| int_edu_h~ch                                            | 0028801  | .0040848            | -0.71 | 0.481 | 0108862                                          | .005126                              |  |
| int trng l~w                                            | .1663245 | .1244386            | 1.34  | 0.181 | 0775706                                          | .4102196                             |  |
| int_trng_m~h                                            | .3334159 | .1512503            | 2.20  | 0.027 | .0369708                                         | .629861                              |  |
| int trng h~h                                            | 0882541  | .2439875            | -0.36 | 0.718 | 5664609                                          | .3899527                             |  |
| int_mngexp~w                                            | .0120067 | .0064188            | 1.87  | 0.061 | 000574                                           | .0245874                             |  |
| int_mn~mhigh                                            | .0129095 | .0073939            | 1.75  | 0.081 | 0015822                                          | .0274012                             |  |
| int_mn~_high                                            | .0216382 | .0125821            | 1.72  | 0.085 | 0030223                                          | .0462988                             |  |
| new_org_str                                             | .0983088 | .0630382            | 1.56  | 0.119 | 0252438                                          | .2218615                             |  |
| new_prod_s~v                                            | 0793509  | .0609867            | -1.30 | 0.193 | 1988827                                          | .0401808                             |  |
| new_methods                                             | .1005003 | .0678776            | 1.48  | 0.139 | 0325373                                          | .2335379                             |  |
| location                                                | 210965   | .0695293            | -3.03 | 0.002 | 3472399                                          | 0746901                              |  |
| lnsize                                                  | .5860219 | .0895574            | 6.54  | 0.000 | .4104926                                         | .7615513                             |  |
| lnsize_sqr                                              | 0346137  | .0100931            | -3.43 | 0.001 | 0543959                                          | 0148315                              |  |
| lnage                                                   | .1479117 | .1432446            | 1.03  | 0.302 | 1328425                                          | .4286658                             |  |
| lnage_sqr                                               | 0526226  | .0268082            | -1.96 | 0.050 | 1051658                                          | 0000794                              |  |
| foreign_du~y                                            | .7155492 | .0740367            | 9.66  | 0.000 | .5704399                                         | .8606585                             |  |
| state_dummy                                             | 6542472  | .2862839            | -2.29 | 0.022 | -1.215353                                        | 0931411                              |  |
| credit                                                  | .1664977 | .0511469            | 3.26  | 0.001 | .0662516                                         | .2667439                             |  |
| low_mlow_t~h                                            | 1.069818 | .1617745            | 6.61  | 0.000 | .7527461                                         | 1.386891                             |  |
| mhigh_tech                                              | 1.038118 | .1987595            | 5.22  | 0.000 | .6485563                                         | 1.427679                             |  |
| high_tech                                               | 1.120333 | .3461387            | 3.24  | 0.001 | .4419139                                         | 1.798753                             |  |
| dcountry1                                               | 1.856101 | .2116594            | 8.77  | 0.000 | 1.441256                                         | 2.270946                             |  |
| dcountry2                                               | 1.531102 | .1901322            | 8.05  | 0.000 | 1.158449                                         | 1.903754                             |  |
| dcountry3                                               | .9151854 | .3049194            | 3.00  | 0.003 | .3175543                                         | 1.512816                             |  |
| dcountry4                                               | .8987536 | .2898743            | 3.10  | 0.002 | .3306105                                         | 1.466897                             |  |
| dcountry5                                               | 1.881748 | .1256473            | 14.98 | 0.000 | 1.635484                                         | 2.128012                             |  |
| dcountry6                                               | .8597568 | .1502727            | 5.72  | 0.000 | .5652278                                         | 1.154286                             |  |
| dcountry7  | .6737894  | .2797342 | 2.41   | 0.016 | .1255204  | 1.222058  |  |
|------------|-----------|----------|--------|-------|-----------|-----------|--|
| dcountry9  | 1.39127   | .1731621 | 8.03   | 0.000 | 1.051878  | 1.730661  |  |
| dcountry10 | 1.907891  | .1480021 | 12.89  | 0.000 | 1.617812  | 2.19797   |  |
| dcountry11 | 1.862868  | .1683553 | 11.07  | 0.000 | 1.532898  | 2.192838  |  |
| dcountry12 | 4651766   | .372915  | -1.25  | 0.212 | -1.196077 | .2657233  |  |
| dcountry13 | .9223874  | .2454305 | 3.76   | 0.000 | .4413524  | 1.403422  |  |
| dcountry14 | 1.932646  | .1669737 | 11.57  | 0.000 | 1.605384  | 2.259908  |  |
| dcountry15 | 6035314   | .4893711 | -1.23  | 0.217 | -1.562681 | .3556183  |  |
| dcountry16 | 1.908992  | .1776927 | 10.74  | 0.000 | 1.560721  | 2.257263  |  |
| dcountry17 | 1.01553   | .2435208 | 4.17   | 0.000 | .538238   | 1.492822  |  |
| dcountry18 | 1.156053  | .2312632 | 5.00   | 0.000 | .7027851  | 1.60932   |  |
| dcountry19 | .8257436  | .3061708 | 2.70   | 0.007 | .22566    | 1.425827  |  |
| dcountry20 | 2.414408  | .1560004 | 15.48  | 0.000 | 2.108652  | 2.720163  |  |
| dcountry21 | 1.334278  | .2656812 | 5.02   | 0.000 | .8135524  | 1.855004  |  |
| dcountry22 | 2.194241  | .1509099 | 14.54  | 0.000 | 1.898463  | 2.490019  |  |
| dcountry23 | 1.522761  | .2051236 | 7.42   | 0.000 | 1.120726  | 1.924796  |  |
| dcountry24 | 2.463621  | .1617888 | 15.23  | 0.000 | 2.14652   | 2.780721  |  |
| dcountry25 | 2.256666  | .160697  | 14.04  | 0.000 | 1.941706  | 2.571626  |  |
| dcountry26 | 1.873583  | .1766953 | 10.60  | 0.000 | 1.527266  | 2.219899  |  |
| dcountry27 | 2.53846   | .1512369 | 16.78  | 0.000 | 2.242041  | 2.834879  |  |
| dcountry28 | 1.989098  | .1767126 | 11.26  | 0.000 | 1.642747  | 2.335448  |  |
| dcountry29 | 2.008075  | .1658121 | 12.11  | 0.000 | 1.68309   | 2.333061  |  |
| dcountry30 | 1.281656  | .3472755 | 3.69   | 0.000 | .601009   | 1.962304  |  |
| _cons      | -6.451327 | .2826711 | -22.82 | 0.000 | -7.005352 | -5.897301 |  |

### Table A6.5.2 Poisson Model - CEECs estimated results

| poisson exp_in<br>location lnsiz | nt emp_edu emp<br>ze lnsize_sqr | _trng manage<br>lnage lnage_ | er_exp ner<br>_sqr fore: | w_org_str<br>ign_dummy | new_prod_<br>state_dum | _serv<br>my c: | new_metho<br>redit | ds     |
|----------------------------------|---------------------------------|------------------------------|--------------------------|------------------------|------------------------|----------------|--------------------|--------|
| low_mlow_tech                    | mhigh_tech h                    | .igh_tech do                 | country1-                | dcountry7              | dcountry9              | -dco           | untry30 if         | :<br>• |
| CEEC_dummy==1,                   | , vce(robust)                   | nolog                        |                          |                        |                        |                |                    |        |
| note: you are                    | responsible f                   | or interpret                 | ation of                 | noncount               | dep. vari              | able           |                    |        |
| note: dcountry                   | y2 omitted bec                  | ause of coll                 | inearity                 |                        |                        |                |                    |        |
| note: dcountry                   | y3 omitted bec                  | ause of coll                 | inearity                 |                        |                        |                |                    |        |
| note: dcountry                   | 74 omitted bec                  | ause of coll                 | inearity                 |                        |                        |                |                    |        |
| note: dcountry                   | y5 omitted bec                  | ause of coll                 | inearity                 |                        |                        |                |                    |        |
| note: dcountry                   | 76 omitted bec                  | ause of coll                 | inearity                 |                        |                        |                |                    |        |
| note: dcountry                   | 7 omitted bec                   | ause of coll                 | linearity                |                        |                        |                |                    |        |
| note: dcountry                   | y12 omitted be                  | cause of col                 | linearit                 | Y                      |                        |                |                    |        |
| note: dcountry                   | y13 omitted be                  | cause of col                 | linearit                 | Y                      |                        |                |                    |        |
| note: dcountry                   | y15 omitted be                  | cause of col                 | linearit                 | Y                      |                        |                |                    |        |
| note: dcountry                   | y17 omitted be                  | cause of col                 | linearit                 | Y                      |                        |                |                    |        |
| note: dcountry                   | /18 omitted be                  | cause of col                 | linearit                 | Y                      |                        |                |                    |        |
| note: dcountry                   | y19 omitted be                  | cause of col                 | linearit                 | Y                      |                        |                |                    |        |
| note: dcountry                   | 730 omitted be                  | cause of col                 | linearit                 | Y                      |                        |                |                    |        |
|                                  |                                 |                              |                          |                        |                        |                |                    |        |
| Poisson regres                   | ssion                           |                              |                          | Number                 | of obs                 | =              | 4836               |        |
|                                  |                                 |                              |                          | Wald ch                | ni2(33)                | =              | 1102.33            |        |
|                                  |                                 |                              |                          | Prob >                 | chi2                   | =              | 0.0000             |        |
| Log pseudolike                   | elihood = -129                  | 3.2435                       |                          | Pseudo                 | R2                     | =              | 0.1515             |        |
|                                  |                                 |                              |                          |                        |                        |                |                    |        |
|                                  | <br>                            | Robust                       |                          |                        |                        |                |                    |        |
| exp int                          | Coef.                           | Std. Err.                    | Z                        | P> z                   | [95% Cor               | f. I           | ntervall           |        |
|                                  | +                               |                              |                          |                        |                        |                |                    |        |
| emp edu                          | .0016805                        | .0017393                     | 0.97                     | 0.334                  | 0017284                |                | .0050894           |        |
| emp trng                         | 1097097                         | .0715902                     | -1.53                    | 0.125                  | 250024                 | ł              | .0306046           |        |
| manager exp                      | 0005614                         | .0031547                     | -0.18                    | 0.859                  | 0067445                | )              | .0056217           |        |
| new org str                      | .1407952                        | .0809603                     | 1.74                     | 0.082                  | 0178841                |                | .2994746           |        |
| new prod s~v                     | 08345                           | .0752786                     | -1.11                    | 0.268                  | 2309934                |                | .0640934           |        |
| new_methods                      | .1171414                        | .084548                      | 1.39                     | 0.166                  | 0485697                |                | .2828525           |        |

| location       | 1250314   | .0802236      | -1.56 | 0.119 | 2822667   | .0322039  |
|----------------|-----------|---------------|-------|-------|-----------|-----------|
| lnsize l       | .7221791  | .1245767      | 5.80  | 0.000 | .4780133  | .9663448  |
| lnsize sar l   | 0552931   | .0148142      | -3.73 | 0.000 | 0843285   | 0262578   |
| lnage          | - 1168433 | 2044778       | -0 57 | 0 568 | - 5176123 | 2839258   |
| lnage sgr l    | - 0173422 | 0377782       | -0.46 | 0.646 | - 0913861 | 0567018   |
| foreign du~v   | 6702817   | 0869567       | 7 71  | 0 000 | 4998498   | 8407137   |
| state dummy    | -2 29632  | 5665298       | -4 05 | 0 000 | -3 406698 | -1 185942 |
| credit         | 1353399   | 067375        | 2 01  | 0 045 | 0032874   | 2673924   |
| low mlow tab l | 1 203199  | 0764156       | 15 75 | 0.010 | 1 053428  | 1 352971  |
| mbigh tech     | 1 356341  | 0990139       | 13 70 | 0.000 | 1 162278  | 1 550405  |
| high toch      | 1 558707  | 1561768       | 13.70 | 0.000 | 1 252606  | 1 86/808  |
| dcountryl      | 5803262   | 3773428       | 1 54  | 0.000 | - 1502522 | 1 310005  |
| dcountry2      | .J00J202  | .5775420      | 1.04  | 0.124 | 1392322   | 1.319903  |
| dcountry2      | (omitted) |               |       |       |           |           |
|                | (omitted) |               |       |       |           |           |
| dcountry4      | (omitted) |               |       |       |           |           |
| dcountry5      | (omitted) |               |       |       |           |           |
| dcountry6      | (omitted) |               |       |       |           |           |
| acountry/      | (omitted) | 2506620       | 0 64  | 0 500 | 4746201   | 0050010   |
| dcountry9      | .2302949  | .3596632      | 0.64  | 0.522 | 4/46321   | .9352218  |
| dcountry10     | .6806555  | .3464065      | 1.96  | 0.049 | .001/113  | 1.3596    |
| dcountry11     | .627615   | .3534245      | 1.78  | 0.076 | 0650842   | 1.320314  |
| dcountry12     | (omitted) |               |       |       |           |           |
| dcountry13     | (omitted) |               |       |       |           |           |
| dcountry14     | .7111577  | .3546729      | 2.01  | 0.045 | .0160116  | 1.406304  |
| dcountry15     | (omitted) |               |       |       |           |           |
| dcountry16     | .6656907  | .3576374      | 1.86  | 0.063 | 0352657   | 1.366647  |
| dcountry17     | (omitted) |               |       |       |           |           |
| dcountry18     | (omitted) |               |       |       |           |           |
| dcountry19     | (omitted) |               |       |       |           |           |
| dcountry20     | 1.164718  | .3479246      | 3.35  | 0.001 | .4827985  | 1.846638  |
| dcountry21     | .0183054  | .4137382      | 0.04  | 0.965 | 7926067   | .8292174  |
| dcountry22     | 1.043901  | .3494717      | 2.99  | 0.003 | .3589486  | 1.728852  |
| dcountry23     | .2603178  | .3717199      | 0.70  | 0.484 | 4682398   | .9888754  |
| dcountry24     | 1.157457  | .3510538      | 3.30  | 0.001 | .4694046  | 1.84551   |
| dcountry25     | .9841151  | .358568       | 2.74  | 0.006 | .2813348  | 1.686895  |
| dcountry26     | .6760311  | .3622513      | 1.87  | 0.062 | 0339683   | 1.38603   |
| dcountry27     | 1.354629  | .3464829      | 3.91  | 0.000 | .6755345  | 2.033723  |
| dcountry28     | .775736   | .3586035      | 2.16  | 0.031 | .0728861  | 1.478586  |
| dcountry29     | .7920154  | .3532429      | 2.24  | 0.025 | .099672   | 1.484359  |
| dcountry30     | (omitted) |               |       |       |           |           |
| -              |           | 4 - 0 0 0 0 - |       |       |           |           |

#### **Table A6.5.3 Poisson Model - CEECs Industry estimated results**

. poisson exp\_int emp\_edu emp\_trng manager\_exp int\_edu\_lowmlow int\_edu\_mhightech int\_edu\_hightech int\_trng\_lowmlow int\_trng\_mhigh int\_trng\_high int\_mngexp\_lowmlow int mngexp\_mhigh int\_mngexp\_high new\_org\_str new\_prod\_serv new\_methods location Insize lnsize sqr lnage lnage sqr foreign dummy state dummy credit low mlow tech mhigh tech high tech dcountry1-dcountry7 dcountry9-dcountry30 if CEEC dummy==1, vce(robust) nolog note: you are responsible for interpretation of noncount dep. variable note: dcountry2 omitted because of collinearity note: dcountry3 omitted because of collinearity note: dcountry4 omitted because of collinearity note: dcountry5 omitted because of collinearity note: dcountry6 omitted because of collinearity note: dcountry7 omitted because of collinearity note: dcountry12 omitted because of collinearity note: dcountry13 omitted because of collinearity note: dcountry15 omitted because of collinearity note: dcountry17 omitted because of collinearity

| note: dcountry18 omitted because of collinearity<br>note: dcountry19 omitted because of collinearity |                |             |           |        |            |           |  |  |  |  |
|------------------------------------------------------------------------------------------------------|----------------|-------------|-----------|--------|------------|-----------|--|--|--|--|
| note: dcountr                                                                                        | v30 omitted be | cause of co | llinearit | Y<br>V |            |           |  |  |  |  |
|                                                                                                      |                |             |           | 1      |            |           |  |  |  |  |
| Poisson regre                                                                                        | ssion          |             |           | Numbe  | r of obs = | 4836      |  |  |  |  |
| _                                                                                                    |                |             |           | Wald   | chi2(42) = | 1164.39   |  |  |  |  |
|                                                                                                      |                |             |           | Prob   | > chi2 =   | 0.0000    |  |  |  |  |
| Log pseudolik                                                                                        | elihood = -12  | 85.732      |           | Pseud  | o R2 =     | 0.1565    |  |  |  |  |
|                                                                                                      |                |             |           |        |            |           |  |  |  |  |
|                                                                                                      |                |             |           |        |            |           |  |  |  |  |
|                                                                                                      | <br>  Coof     | Robust      | _         |        | [OE® Comf  | T.o.t.o   |  |  |  |  |
| exp_int                                                                                              | Coer.<br>+     | Sta. Err.   | Z         | P> z   | [95% Coni. | Intervalj |  |  |  |  |
| emp edu                                                                                              | .0071885       | .0024529    | 2.93      | 0.003  | .0023809   | .011996   |  |  |  |  |
| emp trng                                                                                             | 1741951        | .1351431    | -1.29     | 0.197  | 4390708    | .0906806  |  |  |  |  |
| manager exp                                                                                          | 0076104        | .0067573    | -1.13     | 0.260  | 0208544    | .0056336  |  |  |  |  |
| int edu lo~w                                                                                         | 0168966        | .0037719    | -4.48     | 0.000  | 0242895    | 0095038   |  |  |  |  |
| int_edu_mh~h                                                                                         | 0091531        | .0048213    | -1.90     | 0.058  | 0186025    | .0002964  |  |  |  |  |
| int_edu_h~ch                                                                                         | .0033565       | .0047299    | 0.71      | 0.478  | 005914     | .012627   |  |  |  |  |
| int_trng_l~w                                                                                         | .0718842       | .1532624    | 0.47      | 0.639  | 2285046    | .372273   |  |  |  |  |
| int_trng_m~h                                                                                         | .3513763       | .191555     | 1.83      | 0.067  | 0240647    | .7268173  |  |  |  |  |
| int_trng_h~h                                                                                         | 2605988        | .298056     | -0.87     | 0.382  | 8447779    | .3235802  |  |  |  |  |
| int_mngexp~w                                                                                         | .0102561       | .0077849    | 1.32      | 0.188  | 0050019    | .0255141  |  |  |  |  |
| int_mn~mhigh                                                                                         | .0075034       | .0096856    | 0.77      | 0.439  | 0114801    | .0264869  |  |  |  |  |
| int_mn~_high                                                                                         | .0121209       | .0150946    | 0.80      | 0.422  | 017464     | .0417059  |  |  |  |  |
| new_org_str                                                                                          | .1364723       | .0813894    | 1.68      | 0.094  | 0230481    | .2959927  |  |  |  |  |
| new_prod_s~v                                                                                         | 0876064        | .0749638    | -1.17     | 0.243  | 2345329    | .05932    |  |  |  |  |
| new_methods                                                                                          | .1172158       | .0838928    | 1.40      | 0.162  | 0472111    | .2816427  |  |  |  |  |
| location                                                                                             | 1134712        | .0804678    | -1.41     | 0.158  | 2711851    | .0442427  |  |  |  |  |
| lnsize                                                                                               | .7332622       | .1251804    | 5.86      | 0.000  | .4879131   | .9786114  |  |  |  |  |
| lnsize_sqr                                                                                           | 0565909        | .0148573    | -3.81     | 0.000  | 0857106    | 0274712   |  |  |  |  |
| lnage                                                                                                | 1137501        | .2005242    | -0.57     | 0.571  | 5067702    | .2792701  |  |  |  |  |
| lnage_sqr                                                                                            | 0136267        | .0368971    | -0.37     | 0.712  | 0859438    | .0586903  |  |  |  |  |
| foreign_du~y                                                                                         | .6720874       | .0870551    | 7.72      | 0.000  | .5014625   | .8427123  |  |  |  |  |
| state_dummy                                                                                          | -2.187547      | .550569     | -3.97     | 0.000  | -3.266642  | -1.108451 |  |  |  |  |
| credit                                                                                               | .1357401       | .0671234    | 2.02      | 0.043  | .0041806   | .2672995  |  |  |  |  |
| low_mlow_t~h                                                                                         | 1.25123        | .1884041    | 6.64      | 0.000  | .8819646   | 1.620495  |  |  |  |  |
| mhigh_tech                                                                                           | 1.245299       | .2508095    | 4.97      | 0.000  | .7537211   | 1.736876  |  |  |  |  |
| high_tech                                                                                            | 1.334011       | .388559     | 3.43      | 0.001  | .5/24499   | 2.095573  |  |  |  |  |
| dcountryl                                                                                            | .529/683       | .3/26816    | 1.42      | 0.155  | 2006/41    | 1.260211  |  |  |  |  |
| dcountry2                                                                                            | (omitted)      |             |           |        |            |           |  |  |  |  |
| acountry3                                                                                            | (omitted)      |             |           |        |            |           |  |  |  |  |
| dcountry4                                                                                            | (omitted)      |             |           |        |            |           |  |  |  |  |
| dcountrys                                                                                            | (omitted)      |             |           |        |            |           |  |  |  |  |
| dcountry6                                                                                            | (omitted)      |             |           |        |            |           |  |  |  |  |
| dcountry?                                                                                            | (OMILLEA)      | 2562721     | 0 51      | 0 609  | - 5160921  | 0001020   |  |  |  |  |
| dcountry10                                                                                           | 65/3813        | 3/20352     | 1 91      | 0.009  | - 0177594  | 1 326522  |  |  |  |  |
| dcountry11                                                                                           | 6013315        | 3490099     | 1 72      | 0.030  | - 0827153  | 1 285378  |  |  |  |  |
| dcountry12                                                                                           | (omittod)      | .3490099    | 1.12      | 0.005  | .002/100   | 1.200070  |  |  |  |  |
| dcountry13                                                                                           | (omitted)      |             |           |        |            |           |  |  |  |  |
| dcountry14                                                                                           | 6788751        | 3508555     | 1 93      | 0 053  | - 008789   | 1 366539  |  |  |  |  |
| dcountry15                                                                                           | (omitted)      | .0000000    | 1.95      | 0.000  | .000705    | 1.000000  |  |  |  |  |
| dcountry16                                                                                           | 6221663        | .3541508    | 1.76      | 0.079  | 0719566    | 1.316289  |  |  |  |  |
| dcount.rv17                                                                                          | (omitted)      |             |           | 0.0/5  |            | 1.010200  |  |  |  |  |
| dcountrv18                                                                                           | (omitted)      |             |           |        |            |           |  |  |  |  |
| dcount.rv19                                                                                          | (omitted)      |             |           |        |            |           |  |  |  |  |
| dcount.rv20                                                                                          | 1.139447       | .3439825    | 3.31      | 0.001  | .4652538   | 1.81364   |  |  |  |  |
| dcountrv21                                                                                           | .015766        | .4109439    | 0.04      | 0.969  | 7896692    | .8212013  |  |  |  |  |
| dcountrv22                                                                                           | .9611045       | .3454285    | 2.78      | 0.005  | .284077    | 1.638132  |  |  |  |  |
| dcountrv23                                                                                           | .2432928       | .36831      | 0.66      | 0.509  | 4785815    | .9651671  |  |  |  |  |
| dcountry24                                                                                           | 1.16792        | .3463411    | 3.37      | 0.001  | .489104    | 1.846736  |  |  |  |  |
| dcountry25                                                                                           | .985349        | .3536538    | 2.79      | 0.005  | .2922003   | 1.678498  |  |  |  |  |

| dcountry26 | .6399381  | .3580621 | 1.79   | 0.074 | 0618507   | 1.341727  |  |
|------------|-----------|----------|--------|-------|-----------|-----------|--|
| dcountry27 | 1.323129  | .3425999 | 3.86   | 0.000 | .6516452  | 1.994612  |  |
| dcountry28 | .772785   | .3553616 | 2.17   | 0.030 | .076289   | 1.469281  |  |
| dcountry29 | .751812   | .3492106 | 2.15   | 0.031 | .0673717  | 1.436252  |  |
| dcountry30 | (omitted) |          |        |       |           |           |  |
| _cons      | -5.051748 | .4861889 | -10.39 | 0.000 | -6.004661 | -4.098835 |  |
|            |           |          |        |       |           |           |  |

#### Table A6.5.4 Poisson Model - CIS estimated results

| . poisson exp_ | int emp_edu e | emp_trng man | ager_exp : | new_org_st | r new_prod_ | serv new_methods |  |
|----------------|---------------|--------------|------------|------------|-------------|------------------|--|
| location lnsiz | e lnsize_sqr  | lnage lnage  | _sqr fore  | ign_dummy  | state_dummy | credit           |  |
| low_mlow_tech  | mhigh_tech h  | nigh_tech d  | country1-  | dcountry7  | dcountry9-d | country30 if     |  |
| CEEC_dummy==0, | vce(robust)   | nolog        |            |            |             |                  |  |
| note: you are  | responsible f | for interpre | tation of  | noncount   | dep. variab | le               |  |
| note: dcountry | 1 omitted bed | cause of col | linearity  |            |             |                  |  |
| note: dcountry | 9 omitted bed | cause of col | linearity  |            |             |                  |  |
| note: dcountry | 10 omitted be | ecause of co | llinearit  | Y          |             |                  |  |
| note: dcountry | 11 omitted be | ecause of co | llinearit  | Y          |             |                  |  |
| note: dcountry | 14 omitted be | ecause of co | llinearit  | Y          |             |                  |  |
| note: dcountry | 16 omitted be | ecause of co | llinearit  | Y          |             |                  |  |
| note: dcountry | 20 omitted be | ecause of co | llinearit  | Y          |             |                  |  |
| note: dcountry | 21 omitted be | ecause of co | llinearit  | y          |             |                  |  |
| note: dcountry | 22 omitted be | ecause of co | llinearit  | y<br>V     |             |                  |  |
| note: dcountry | 23 omitted be | ecause of co | llinearit  | Y          |             |                  |  |
| note: dcountry | 24 omitted be | ecause of co | llinearit  | Y          |             |                  |  |
| note: dcountry | 25 omitted be | ecause of co | llinearit  | Y          |             |                  |  |
| note: dcountry | 26 omitted be | ecause of co | llinearit  | y          |             |                  |  |
| note: dcountry | 27 omitted be | ecause of co | llinearit  | y<br>V     |             |                  |  |
| note: dcountry | 28 omitted be | ecause of co | llinearit  | y<br>V     |             |                  |  |
| note: dcountry | 29 omitted be | ecause of co | llinearit  | V          |             |                  |  |
| note: dcountry | 30 omitted be | ecause of co | llinearit  | V          |             |                  |  |
| -              |               |              |            | -          |             |                  |  |
| Poisson regres | sion          |              |            | Number     | of obs =    | 9190             |  |
| 5              |               |              |            | Wald ch    | ni2(29) =   | 1160.45          |  |
|                |               |              |            | Prob >     | chi2 =      | 0.0000           |  |
| Log pseudolike | = -121        | 5.8352       |            | Pseudo     | R2 =        | 0.1792           |  |
|                |               |              |            |            |             |                  |  |
|                |               |              |            |            |             |                  |  |
|                |               | Robust       |            |            |             |                  |  |
| exp int        | Coef.         | Std. Err.    | Z          | P> z       | [95% Conf.  | Interval]        |  |
| +              |               |              |            |            |             |                  |  |
| emp_edu        | .0025299      | .0018221     | 1.39       | 0.165      | 0010414     | .0061012         |  |
| emp trng       | .1930226      | .088115      | 2.19       | 0.028      | .0203204    | .3657247         |  |
| manager exp    | 0002144       | .0037651     | -0.06      | 0.955      | 0075939     | .0071652         |  |
| new org str    | .0960034      | .094437      | 1.02       | 0.309      | 0890897     | .2810965         |  |
| new prod s~v   | 0512139       | .1027241     | -0.50      | 0.618      | 2525494     | .1501216         |  |
| new methods    | .0452454      | .1116593     | 0.41       | 0.685      | 1736027     | .2640935         |  |
| location       | 3497714       | .129555      | -2.70      | 0.007      | 6036944     | 0958483          |  |
| lnsize         | .4956735      | .1386699     | 3.57       | 0.000      | .2238855    | .7674616         |  |
| lnsize sqr     | 0221618       | .0147887     | -1.50      | 0.134      | 051147      | .0068235         |  |
| lnage          | .2628063      | .211962      | 1.24       | 0.215      | 1526317     | .6782443         |  |
| lnage sgr      | 0632003       | .0409742     | -1.54      | 0.123      | 1435083     | .0171078         |  |
| foreign du~v   | .9034801      | .1436941     | 6.29       | 0.000      | .621845     | 1.185115         |  |
| state dummv    | 5489228       | .3117908     | -1.76      | 0.078      | -1.160022   | .062176          |  |
| credit         | .175415       | .0793095     | 2.21       | 0.027      | .0199712    | .3308587         |  |
| low mlow t~h   | .6948214      | .110604      | 6.28       | 0.000      | .4780417    | .9116012         |  |
| mhigh tech     | .9970857      | .126728      | 7.87       | 0.000      | .7487034    | 1.245468         |  |
| high tech      | 1.024487      | .2072717     | 4.94       | 0.000      | .6182421    | 1.430732         |  |
| dcountrv1      | (omitted)     |              |            |            |             |                  |  |
| dcountrv2      | 1.480617      | .2010523     | 7.36       | 0.000      | 1.086562    | 1.874673         |  |
|                |               |              |            |            |             |                  |  |

| dcountry3  | 1.00195   | .3063613 | 3.27   | 0.001 | .4014926  | 1.602407  |  |
|------------|-----------|----------|--------|-------|-----------|-----------|--|
| dcountry4  | .9278343  | .2841272 | 3.27   | 0.001 | .3709553  | 1.484713  |  |
| dcountry5  | 1.99836   | .1342458 | 14.89  | 0.000 | 1.735243  | 2.261477  |  |
| dcountry6  | .8765905  | .1522136 | 5.76   | 0.000 | .5782573  | 1.174924  |  |
| dcountry7  | .6610218  | .3013357 | 2.19   | 0.028 | .0704146  | 1.251629  |  |
| dcountry9  | (omitted) |          |        |       |           |           |  |
| dcountry10 | (omitted) |          |        |       |           |           |  |
| dcountry11 | (omitted) |          |        |       |           |           |  |
| dcountry12 | 4927885   | .3689626 | -1.34  | 0.182 | -1.215942 | .2303649  |  |
| dcountry13 | .9535532  | .2502498 | 3.81   | 0.000 | .4630725  | 1.444034  |  |
| dcountry14 | (omitted) |          |        |       |           |           |  |
| dcountry15 | 5049491   | .4968254 | -1.02  | 0.309 | -1.478709 | .4688107  |  |
| dcountry16 | (omitted) |          |        |       |           |           |  |
| dcountry17 | 1.099709  | .2573667 | 4.27   | 0.000 | .5952801  | 1.604139  |  |
| dcountry18 | 1.125935  | .2419551 | 4.65   | 0.000 | .6517121  | 1.600159  |  |
| dcountry19 | .824473   | .3092019 | 2.67   | 0.008 | .2184484  | 1.430498  |  |
| dcountry20 | (omitted) |          |        |       |           |           |  |
| dcountry21 | (omitted) |          |        |       |           |           |  |
| dcountry22 | (omitted) |          |        |       |           |           |  |
| dcountry23 | (omitted) |          |        |       |           |           |  |
| dcountry24 | (omitted) |          |        |       |           |           |  |
| dcountry25 | (omitted) |          |        |       |           |           |  |
| dcountry26 | (omitted) |          |        |       |           |           |  |
| dcountry27 | (omitted) |          |        |       |           |           |  |
| dcountry28 | (omitted) |          |        |       |           |           |  |
| dcountry29 | (omitted) |          |        |       |           |           |  |
| dcountry30 | (omitted) |          |        |       |           |           |  |
| _cons      | -6.464829 | .3770373 | -17.15 | 0.000 | -7.203808 | -5.725849 |  |

#### **Table A6.5.5 Poisson Model - CIS Industry estimated results**

```
. poisson exp int emp edu emp trng manager exp int edu lowmlow int edu mhightech
int edu hightech int trng lowmlow int trng mhigh int trng high int mngexp lowmlow
int mngexp mhigh int mngexp high new org str new prod serv new methods location
Insize lnsize sqr lnage lnage sqr foreign dummy state dummy credit low mlow tech
mhigh tech high tech dcountry1-dcountry7 dcountry9-dcountry30if CEEC dummy==0,
vce(robust) nolog
note: you are responsible for interpretation of noncount dep. variable
note: dcountry1 omitted because of collinearity
note: dcountry9 omitted because of collinearity
note: dcountry10 omitted because of collinearity
note: dcountryll omitted because of collinearity
note: dcountry14 omitted because of collinearity
note: dcountry16 omitted because of collinearity
note: dcountry20 omitted because of collinearity
note: dcountry21 omitted because of collinearity
note: dcountry22 omitted because of collinearity
note: dcountry23 omitted because of collinearity
note: dcountry24 omitted because of collinearity
note: dcountry25 omitted because of collinearity
note: dcountry26 omitted because of collinearity
note: dcountry27 omitted because of collinearity
note: dcountry28 omitted because of collinearity
note: dcountry29 omitted because of collinearity
note: dcountry30 omitted because of collinearity
                                                  Number of obs =
Poisson regression
                                                                          9190
                                                  Wald chi2(38) =
                                                                      1229.10
                                                  Prob > chi2
                                                                 =
                                                                       0.0000
Log pseudolikelihood = -1211.9474
                                                  Pseudo R2
                                                                 =
                                                                        0.1818
```

|              |               | Robust    |        |        |                       |                  |
|--------------|---------------|-----------|--------|--------|-----------------------|------------------|
| exp_int      | Coef.         | Std. Err. | Z      | ₽>   z | [95% Conf.            | . Interval]      |
|              | +             |           |        |        |                       |                  |
| emp_edu      | .0069373      | .0032991  | 2.10   | 0.035  | .0004712              | .0134035         |
| emp_trng     | .0460615      | .1957819  | 0.24   | 0.814  | 337664                | .4297871         |
| manager_exp  | 0117889       | .0105739  | -1.11  | 0.265  | 0325133               | .0089356         |
| int edu lo~w | 0105735       | .0042003  | -2.52  | 0.012  | 0188059               | 002341           |
| int_edu_mh~h | 0009459       | .004627   | -0.20  | 0.838  | 0100146               | .0081227         |
| int_edu_h~ch | 0064743       | .0067795  | -0.95  | 0.340  | 0197618               | .0068132         |
| int trng l~w | .1812562      | .2145869  | 0.84   | 0.398  | 2393264               | .6018388         |
| int trng m~h | .2154623      | .2504485  | 0.86   | 0.390  | 2754078               | .7063323         |
| int trng h~h | .3354867      | .4197031  | 0.80   | 0.424  | 4871163               | 1.15809          |
| int mngexp~w | .0116675      | 0112987   | 1.03   | 0.302  | 0104776               | 0338126          |
| int mn~mhiah | .0159915      | .0122118  | 1.31   | 0.190  | 0079433               | .0399262         |
| int mn~ high | 0301622       | 0211679   | 1 42   | 0 154  | - 0113261             | 0716505          |
| new org str  | 088324        | 0956174   | 0 92   | 0 356  | - 0990827             | 2757307          |
| now prod saw | .000021       | 10/12/7   | -0.55  | 0.595  | - 2609027             | 1/72586          |
| new_prou_sev | 061727        | 1120057   | 0.55   | 0.505  | - 1505642             | 2020101          |
| location     | - 3564206     | 1301560   | -2 70  | 0.000  | .1JJJ042<br>- 615/511 | - 007/002        |
| inci '       | 3004290       | 1200/17   | -2.70  | 0.007  | UIJ4JII               | U9/4U0Z<br>70525 |
| Insize       | .3128333      | .139041/  | 3.69   | 0.000  | .2403165              | ./0333           |
| insize_sqr   | 0239544       | .014/919  | -1.62  | 0.105  | 052946                | .00503/1         |
| Inage        | .3166286      | .215485   | 1.47   | 0.142  | 105/143               | ./389715         |
| lnage_sqr    | 0732431       | .0415666  | -1.76  | 0.078  | 154712                | .0082259         |
| foreign_du~y | .900634       | .1444414  | 6.24   | 0.000  | .617534               | 1.183734         |
| state_dummy  | 5557311       | .2962438  | -1.88  | 0.061  | -1.136358             | .0248961         |
| credit       | .1795904      | .0792972  | 2.26   | 0.024  | .0241708              | .3350101         |
| low_mlow_t~h | .7748192      | .3097719  | 2.50   | 0.012  | .1676773              | 1.381961         |
| mhigh_tech   | .7347891      | .3447515  | 2.13   | 0.033  | .0590887              | 1.41049          |
| high_tech    | .5756526      | .6338396  | 0.91   | 0.364  | 6666501               | 1.817955         |
| dcountry1    | (omitted)     |           |        |        |                       |                  |
| dcountry2    | 1.499616      | .2021744  | 7.42   | 0.000  | 1.103362              | 1.895871         |
| dcountry3    | .9928646      | .3133028  | 3.17   | 0.002  | .3788025              | 1.606927         |
| dcountry4    | .9445515      | .2877225  | 3.28   | 0.001  | .3806258              | 1.508477         |
| dcountry5    | 1.960499      | .1427314  | 13.74  | 0.000  | 1.68075               | 2.240247         |
| dcountrv6    | .9180346      | .1526315  | 6.01   | 0.000  | .6188823              | 1.217187         |
| dcountrv7    | .6863155      | .3038116  | 2.26   | 0.024  | .0908558              | 1.281775         |
| dcountry9    | (omitted)     |           |        |        |                       |                  |
| dcountrv10   | (omitted)     |           |        |        |                       |                  |
| dcountry11   | (omitted)     |           |        |        |                       |                  |
| dcountry12   | -4756689      | 3704722   | -1 28  | 0 199  | -1 201781             | 2504433          |
| dcountry12   | 0781/72       | 2507533   | 3 90   | 0.100  | 1866797               | 1 /69615         |
| dcountry13   | (omi++od)     | .2007000  | 5.90   | 0.000  | . 4000/9/             | T.4030TJ         |
| dcountry14   | - 1017050     | 1072527   | -0 07  | 0 220  | _1 /50202             | 1000015          |
|              | =.404/008     | .4912321  | -0.97  | 0.330  | -T.402003             | .4090910         |
| decurtry16   |               | 2612700   | 4 0 0  | 0 000  | 5000557               | 1 614046         |
| acountry1/   | I I.I.Z.S.S.L | .2013/99  | 4.22   | 0.000  | . 3902337             | 1.014846         |
| acountry18   | L.1/5289      | .2429448  | 4.84   | 0.000  | .699126               | 1.051452         |
| acountry19   | .8/45405      | .3092531  | 2.83   | 0.005  | .2684156              | 1.480665         |
| dcountry20   | (omitted)     |           |        |        |                       |                  |
| dcountry21   | (omitted)     |           |        |        |                       |                  |
| dcountry22   | (omitted)     |           |        |        |                       |                  |
| dcountry23   | (omitted)     |           |        |        |                       |                  |
| dcountry24   | (omitted)     |           |        |        |                       |                  |
| dcountry25   | (omitted)     |           |        |        |                       |                  |
| dcountry26   | (omitted)     |           |        |        |                       |                  |
| dcountry27   | (omitted)     |           |        |        |                       |                  |
| dcountry28   | (omitted)     |           |        |        |                       |                  |
| dcountrv29   | (omitted)     |           |        |        |                       |                  |
| dcountry30   | (omitted)     |           |        |        |                       |                  |
| cons         | -6.534381     | .4373765  | -14.94 | 0.000  | -7.391623             | -5.677138        |
|              |               |           |        |        |                       |                  |

#### Table A6.5.6 Poisson Model - Full sample (imputed) estimated results

. mi estimate, cmdok: poisson exp\_int emp\_edu emp\_trng manager\_exp new\_org\_str new\_prod\_serv new\_methods location lnsize lnsize\_sqr lnage lnage\_sqr foreign\_dummy state\_dummy credit low\_mlow\_tech mhigh\_tech high\_tech dcountry1-dcountry7 dcountry9-dcountry30, nolog vce(robust)

| Multiple-imputa<br>Poisson regress<br>DF adjustment: | ation estimate<br>sion<br>Large samp] | es<br>Le  |       | Imputa<br>Number<br>Averag<br>Larges<br>DF: | tions =<br>of obs =<br>e RVI =<br>t FMI =<br>min =<br>avg = 1<br>max = | 22<br>15883<br>0.0262<br>0.1162<br>1586.49<br>423112.95<br>2.93e+07 |
|------------------------------------------------------|---------------------------------------|-----------|-------|---------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------|
| Model F test:<br>Within VCE type                     | Equal FN<br>e: Robus                  | 4I<br>st  |       | F( 46<br>Prob >                             | , 1.4e+06)=<br>F =                                                     | 52.42<br>0.0000                                                     |
| exp_int                                              | Coef.                                 | Std. Err. | t     | P> t                                        | [95% Conf.                                                             | Interval]                                                           |
| emp edu                                              | .0017187                              | .0012191  | 1.41  | 0.159                                       | 0006725                                                                | .0041099                                                            |
| emp trng                                             | .035797                               | .0526923  | 0.68  | 0.497                                       | 0674883                                                                | .1390824                                                            |
| manager exp                                          | 0009699                               | .0023278  | -0.42 | 0.677                                       | 0055327                                                                | .003593                                                             |
| new org str                                          | .0723633                              | .0603587  | 1.20  | 0.231                                       | 0459473                                                                | .1906738                                                            |
| new prod serv                                        | 0644544                               | .0582472  | -1.11 | 0.268                                       | 1786191                                                                | .0497102                                                            |
| new methods                                          | .1240578                              | .0639861  | 1.94  | 0.053                                       | 0013538                                                                | .2494693                                                            |
| location                                             | 1774292                               | .064346   | -2.76 | 0.006                                       | 3035503                                                                | 0513081                                                             |
| lnsize                                               | .5099841                              | .0811112  | 6.29  | 0.000                                       | .3510063                                                               | .6689618                                                            |
| lnsize sqr                                           | 0286046                               | .0091101  | -3.14 | 0.002                                       | 0464603                                                                | 0107489                                                             |
| lnage                                                | .1128158                              | .1430506  | 0.79  | 0.430                                       | 1676642                                                                | .3932959                                                            |
| lnage sqr                                            | 0436149                               | .0268989  | -1.62 | 0.105                                       | 0963602                                                                | .0091304                                                            |
| foreign dummy                                        | .7596171                              | .070731   | 10.74 | 0.000                                       | .6209691                                                               | .8982651                                                            |
| state dummy                                          | 4668128                               | .2568423  | -1.82 | 0.069                                       | 9705838                                                                | .0369581                                                            |
| credit                                               | .170163                               | .0489299  | 3.48  | 0.001                                       | .0742496                                                               | .2660764                                                            |
| low mlow tech                                        | .9948193                              | .059964   | 16.59 | 0.000                                       | .8772905                                                               | 1.112348                                                            |
| mhigh_tech                                           | 1.239652                              | .0738812  | 16.78 | 0.000                                       | 1.094838                                                               | 1.384466                                                            |
| high_tech                                            | 1.336185                              | .1222436  | 10.93 | 0.000                                       | 1.096585                                                               | 1.575784                                                            |
| dcountry1                                            | 1.699997                              | .2024048  | 8.40  | 0.000                                       | 1.303251                                                               | 2.096743                                                            |
| dcountry2                                            | 1.501744                              | .1774134  | 8.46  | 0.000                                       | 1.15402                                                                | 1.849469                                                            |
| dcountry3                                            | .7810713                              | .2896676  | 2.70  | 0.007                                       | .2133331                                                               | 1.348809                                                            |
| dcountry4                                            | .888987                               | .2583615  | 3.44  | 0.001                                       | .3826036                                                               | 1.39537                                                             |
| dcountry5                                            | 1.981301                              | .1144111  | 17.32 | 0.000                                       | 1.757057                                                               | 2.205545                                                            |
| dcountry6                                            | .7290559                              | .1420952  | 5.13  | 0.000                                       | .4505493                                                               | 1.007562                                                            |
| dcountry7                                            | .6199537                              | .2621269  | 2.37  | 0.018                                       | .1061937                                                               | 1.133714                                                            |
| dcountry9                                            | 1.453421                              | .1497578  | 9.71  | 0.000                                       | 1.1599                                                                 | 1.746941                                                            |
| dcountry10                                           | 1.902104                              | .1401916  | 13.57 | 0.000                                       | 1.627328                                                               | 2.17688                                                             |
| dcountry11                                           | 1.785512                              | .1630505  | 10.95 | 0.000                                       | 1.465937                                                               | 2.105086                                                            |
| dcountry12                                           | 4435209                               | .3373211  | -1.31 | 0.189                                       | -1.104659                                                              | .217617                                                             |
| dcountry13                                           | 1.046383                              | .2280622  | 4.59  | 0.000                                       | .5993873                                                               | 1.493378                                                            |
| dcountry14                                           | 1.863451                              | .1633568  | 11.41 | 0.000                                       | 1.543275                                                               | 2.183627                                                            |
| dcountry15                                           | 8299464                               | .4473852  | -1.86 | 0.064                                       | -1.706805                                                              | .0469126                                                            |
| dcountry16                                           | 1.882872                              | .1694689  | 11.11 | 0.000                                       | 1.550717                                                               | 2.215026                                                            |
| dcountry17                                           | 1.033143                              | .2357746  | 4.38  | 0.000                                       | .5710322                                                               | 1.495254                                                            |
| dcountry18                                           | 1.100151                              | .2264616  | 4.86  | 0.000                                       | .6562946                                                               | 1.544008                                                            |
| dcountry19                                           | .7111046                              | .3038758  | 2.34  | 0.019                                       | .1155185                                                               | 1.306691                                                            |
| dcountry20                                           | 2.254018                              | .1489871  | 15.13 | 0.000                                       | 1.962006                                                               | 2.546031                                                            |
| dcountry21                                           | 1.234355                              | .2639579  | 4.68  | 0.000                                       | .7170073                                                               | 1.751704                                                            |
| dcountry22                                           | 2.155231                              | .145249   | 14.84 | 0.000                                       | 1.870533                                                               | 2.439928                                                            |
| dcountry23                                           | 1.525414                              | .1883448  | 8.10  | 0.000                                       | 1.156242                                                               | 1.894586                                                            |
| dcountry24                                           | 2.326546                              | .1494995  | 15.56 | 0.000                                       | 2.033526                                                               | 2.619565                                                            |
| dcountry25                                           | 2.256049                              | .1509018  | 14.95 | 0.000                                       | 1.960233                                                               | 2.551865                                                            |
| dcountry26                                           | 1.878101                              | .1632465  | 11.50 | 0.000                                       | 1.558142                                                               | 2.198061                                                            |
| dcountry27                                           | 2.468056                              | .1460089  | 16.90 | 0.000                                       | 2.181876                                                               | 2.754236                                                            |

| dcountry28 | l | 1.923775  | .1704594 | 11.29  | 0.000 | 1.58968   | 2.257871  |  |
|------------|---|-----------|----------|--------|-------|-----------|-----------|--|
| dcountry29 | l | 1.925713  | .1608249 | 11.97  | 0.000 | 1.610497  | 2.240929  |  |
| dcountry30 | l | 1.284545  | .2915923 | 4.41   | 0.000 | .7129915  | 1.856098  |  |
| _cons      | I | -6.226869 | .2503661 | -24.87 | 0.000 | -6.717624 | -5.736114 |  |

# Table A6.5.7 Poisson (Augumented) Model - Full sample (imputed) estimated results (45)

mi estimate, cmdok: poisson exp\_int emp\_edu emp\_trng manager\_exp skilled\_emp manager\_edu\_dummy new\_org\_str new\_prod\_serv new\_methods location lnsize lnsize\_sqr lnage lnage\_sqr foreign\_dummy state\_dummy credit f\_inputs tech\_dummy bus\_assoc low\_mlow\_tech mhigh\_tech high\_tech dcountry1-dcountry7 dcountry9-dcountry30, nolog vce(robust)

| Multiple-imputation<br>Poisson regression<br>DF adjustment: La | n estimates<br>arge sample |           |        | Imputation<br>Number of<br>Average RV<br>Largest FM<br>DF: mi<br>av<br>ma | s =<br>obs =<br>I = 0<br>I = 0<br>n =<br>g = 874<br>x = 23012 | 45<br>15883<br>.5564<br>.9269<br>51.52<br>11.20<br>86.32 |
|----------------------------------------------------------------|----------------------------|-----------|--------|---------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------|
| Model F test:                                                  | Equal FMI                  |           |        | F( 51,172                                                                 | 91.3) =                                                       | 34.67                                                    |
| Within VCE type:                                               | Robust                     |           |        | Prob > F                                                                  | = 0                                                           | .0000                                                    |
| exp_int                                                        | Coef.                      | Std. Err. | t<br>t | P> t                                                                      | [95% Conf.                                                    | Interval]                                                |
| emp edu                                                        | .0003327                   | .0013654  | 0.24   | 0.808                                                                     | 0023482                                                       | .0030136                                                 |
| emp trng                                                       | .0091567                   | .0550444  | 0.17   | 0.868                                                                     | 0987744                                                       | .1170879                                                 |
| manager exp                                                    | 0008135                    | .0024383  | -0.33  | 0.739                                                                     | 0055942                                                       | .0039673                                                 |
| skilled emp                                                    | .0010561                   | .0013286  | 0.79   | 0.428                                                                     | 0015634                                                       | .0036755                                                 |
| manager edu dummy                                              | .1971117                   | .1152273  | 1.71   | 0.091                                                                     | 0325919                                                       | .4268152                                                 |
| new org str                                                    | .0467524                   | .0636466  | 0.73   | 0.463                                                                     | 0780771                                                       | .1715819                                                 |
| new prod serv                                                  | 104475                     | .061091   | -1.71  | 0.087                                                                     | 2242563                                                       | .0153064                                                 |
| new methods                                                    | .105921                    | .0662846  | 1.60   | 0.110                                                                     | 0240241                                                       | .2358661                                                 |
| location                                                       | 2608486                    | .0672377  | -3.88  | 0.000                                                                     | 3926724                                                       | 1290248                                                  |
| lnsize                                                         | .4712838                   | .0853843  | 5.52   | 0.000                                                                     | .3038872                                                      | .6386803                                                 |
| lnsize sqr                                                     | 0265732                    | .0096103  | -2.77  | 0.006                                                                     | 0454139                                                       | 0077326                                                  |
| lnage                                                          | .0805252                   | .1458252  | 0.55   | 0.581                                                                     | 205383                                                        | .3664334                                                 |
| lnage sqr                                                      | 0355568                    | .0274696  | -1.29  | 0.196                                                                     | 0894191                                                       | .0183055                                                 |
| foreign dummy                                                  | .6281294                   | .0785724  | 7.99   | 0.000                                                                     | .4739307                                                      | .7823281                                                 |
| state dummy                                                    | 4134897                    | .2601356  | -1.59  | 0.112                                                                     | 9236647                                                       | .0966853                                                 |
| credit                                                         | .1768635                   | .0501788  | 3.52   | 0.000                                                                     | .078484                                                       | .275243                                                  |
| f inputs                                                       | .0072679                   | .0009485  | 7.66   | 0.000                                                                     | .0053989                                                      | .009137                                                  |
| tech dummy                                                     | .2180284                   | .2109932  | 1.03   | 0.306                                                                     | 2046262                                                       | .6406829                                                 |
| bus assoc                                                      | 0295667                    | .1694599  | -0.17  | 0.862                                                                     | 369688                                                        | .3105547                                                 |
| low mlow tech                                                  | .9867354                   | .0664718  | 14.84  | 0.000                                                                     | .8563095                                                      | 1.117161                                                 |
| mhigh tech                                                     | 1.176714                   | .0818997  | 14.37  | 0.000                                                                     | 1.016032                                                      | 1.337396                                                 |
| high tech                                                      | 1.165316                   | .1309253  | 8.90   | 0.000                                                                     | .9085787                                                      | 1.422054                                                 |
| dcountry1                                                      | 1.46528                    | .2103528  | 6.97   | 0.000                                                                     | 1.052824                                                      | 1.877736                                                 |
| dcountry2                                                      | 1.332581                   | .1785774  | 7.46   | 0.000                                                                     | .9825688                                                      | 1.682592                                                 |
| dcountry3                                                      | .7240589                   | .2910414  | 2.49   | 0.013                                                                     | .1536235                                                      | 1.294494                                                 |
| dcountry4                                                      | .8234397                   | .2644583  | 3.11   | 0.002                                                                     | .3050951                                                      | 1.341784                                                 |
| dcountry5                                                      | 2.057475                   | .1174744  | 17.51  | 0.000                                                                     | 1.827208                                                      | 2.287742                                                 |
| dcountry6                                                      | .7470446                   | .1437524  | 5.20   | 0.000                                                                     | .4652873                                                      | 1.028802                                                 |
| dcountry7                                                      | .6584635                   | .2644258  | 2.49   | 0.013                                                                     | .1401975                                                      | 1.176729                                                 |
| dcountry9                                                      | 1.490373                   | .1578676  | 9.44   | 0.000                                                                     | 1.180869                                                      | 1.799877                                                 |
| dcountry10                                                     | 1.702227                   | .142735   | 11.93  | 0.000                                                                     | 1.42245                                                       | 1.982004                                                 |
| dcountry11                                                     | 1.708107                   | .1712216  | 9.98   | 0.000                                                                     | 1.372439                                                      | 2.043776                                                 |
| dcountry12                                                     | 5475335                    | .3383725  | -1.62  | 0.106                                                                     | -1.210733                                                     | .1156664                                                 |
| dcountry13                                                     | 1.028412                   | .2377376  | 4.33   | 0.000                                                                     | .5623394                                                      | 1.494484                                                 |
| dcountry14                                                     | 1.77128                    | .1665673  | 10.63  | 0.000                                                                     | 1.444786                                                      | 2.097774                                                 |

| dcountry15 | 6930696   | .4498764 | -1.54  | 0.123 | -1.574812 | .1886725 |
|------------|-----------|----------|--------|-------|-----------|----------|
| dcountry16 | 1.669211  | .1744446 | 9.57   | 0.000 | 1.327269  | 2.011153 |
| dcountry17 | .8369386  | .2400562 | 3.49   | 0.000 | .3664213  | 1.307456 |
| dcountry18 | .999069   | .2285224 | 4.37   | 0.000 | .5511665  | 1.446971 |
| dcountry19 | .7553061  | .3046446 | 2.48   | 0.013 | .1582119  | 1.3524   |
| dcountry20 | 1.942658  | .1552903 | 12.51  | 0.000 | 1.638246  | 2.247069 |
| dcountry21 | .9523006  | .2696072 | 3.53   | 0.000 | .4238699  | 1.480731 |
| dcountry22 | 2.10677   | .1480781 | 14.23  | 0.000 | 1.816506  | 2.397034 |
| dcountry23 | 1.492417  | .190628  | 7.83   | 0.000 | 1.118726  | 1.866108 |
| dcountry24 | 2.168516  | .1556687 | 13.93  | 0.000 | 1.86336   | 2.473672 |
| dcountry25 | 2.078605  | .1546502 | 13.44  | 0.000 | 1.775445  | 2.381765 |
| dcountry26 | 1.807857  | .1652014 | 10.94  | 0.000 | 1.48406   | 2.131655 |
| dcountry27 | 2.337375  | .1512016 | 15.46  | 0.000 | 2.040993  | 2.633757 |
| dcountry28 | 1.792403  | .171914  | 10.43  | 0.000 | 1.45545   | 2.129357 |
| dcountry29 | 1.749476  | .164106  | 10.66  | 0.000 | 1.427801  | 2.07115  |
| dcountry30 | 1.009952  | .2948445 | 3.43   | 0.001 | .4319694  | 1.587934 |
| _cons      | -6.562049 | .3434025 | -19.11 | 0.000 | -7.238619 | -5.88548 |

# Table A6.5.8 Poisson (Augumented) Model - Full sample (imputed) estimated results (95)

| . mi estimate, cm<br>manager_edu_dummy<br>lnage lnage_sqr f<br>low_mlow_tech mh<br>nolog yce(robust) | ndok: poisson<br>new_org_str n<br>foreign_dummy<br>nigh_tech h | exp_int<br>new_prod_ser<br>state_dummy<br>igh_tech | emp_edu<br>v new_me<br>y credit<br>dcountr | emp_trr<br>thods i<br>f_ing<br>cy1-dcoun | ng manager_e<br>location lns<br>puts tech_du<br>try7 dcount: | <pre>xp skilled_emp<br/>ize lnsize_sqr<br/>ummy bus_assoc<br/>ry9-dcountry30,</pre> |
|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------|--------------------------------------------|------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------|
|                                                                                                      |                                                                |                                                    |                                            |                                          |                                                              |                                                                                     |
| Multiple-imputation                                                                                  | n estimates                                                    |                                                    | Ir                                         | nputation                                | s =                                                          | 95                                                                                  |
| Poisson regression                                                                                   |                                                                |                                                    | Nu                                         | umber of                                 | obs =                                                        | 15883                                                                               |
| _                                                                                                    |                                                                |                                                    | Av                                         | verage RV                                | I =                                                          | 0.5308                                                                              |
|                                                                                                      |                                                                |                                                    | Lá                                         | argest FM                                | I =                                                          | 0.9129                                                                              |
| DF adjustment: La                                                                                    | arge sample                                                    |                                                    | DH                                         | F: mi                                    | n =                                                          | 113.17                                                                              |
|                                                                                                      |                                                                |                                                    |                                            | av                                       | g = 188                                                      | 254.38                                                                              |
|                                                                                                      |                                                                |                                                    |                                            | ma                                       | x = 5714                                                     | 940.38                                                                              |
| Model F test:                                                                                        | Equal FMI                                                      |                                                    | F                                          | ( 51,394                                 | 55.7) =                                                      | 35.06                                                                               |
| Within VCE type:                                                                                     | Robust                                                         |                                                    | Pi                                         | rob > F                                  | =                                                            | 0.0000                                                                              |
|                                                                                                      |                                                                |                                                    |                                            |                                          |                                                              |                                                                                     |
|                                                                                                      |                                                                |                                                    |                                            |                                          |                                                              |                                                                                     |
| exp_int                                                                                              | Coef.                                                          | Std. Err.                                          | t                                          | P> t                                     | [95% Conf                                                    | . Interval]                                                                         |
| emp edu                                                                                              | .0004966                                                       | .0013415                                           | 0.37                                       | 0.711                                    | 0021345                                                      | .0031276                                                                            |
| emp trng                                                                                             | .0126721                                                       | .0550033                                           | 0.23                                       | 0.818                                    | 0951534                                                      | .1204976                                                                            |
| manager exp                                                                                          | 0009069                                                        | .0024306                                           | -0.37                                      | 0.709                                    | 0056714                                                      | .0038577                                                                            |
| skilled emp                                                                                          | .0010734                                                       | .0012753                                           | 0.84                                       | 0.400                                    | 0014317                                                      | .0035785                                                                            |
| manager edu dummy                                                                                    | .1769502                                                       | .1127768                                           | 1.57                                       | 0.119                                    | 0458024                                                      | .3997028                                                                            |
| new org str                                                                                          | .0466102                                                       | .0623997                                           | 0.75                                       | 0.455                                    | 0757143                                                      | .1689347                                                                            |
| new prod serv                                                                                        | 1018773                                                        | .0605082                                           | -1.68                                      | 0.092                                    | 2204861                                                      | .0167315                                                                            |
| new methods                                                                                          | .1069029                                                       | .0654323                                           | 1.63                                       | 0.102                                    | 0213494                                                      | .2351552                                                                            |
| location                                                                                             | 2594634                                                        | .0668686                                           | -3.88                                      | 0.000                                    | 3905381                                                      | 1283887                                                                             |
| lnsize                                                                                               | .4782467                                                       | .0853251                                           | 5.60                                       | 0.000                                    | .3109913                                                     | .6455022                                                                            |
| lnsize sqr                                                                                           | 0272544                                                        | .009623                                            | -2.83                                      | 0.005                                    | 0461176                                                      | 0083912                                                                             |
| lnage                                                                                                | .0796817                                                       | .1454084                                           | 0.55                                       | 0.584                                    | 2053524                                                      | .3647158                                                                            |
| lnage sqr                                                                                            | 0356045                                                        | .0272906                                           | -1.30                                      | 0.192                                    | 0891014                                                      | .0178923                                                                            |
| foreign_dummy                                                                                        | .6357183                                                       | .0773848                                           | 8.22                                       | 0.000                                    | .4839745                                                     | .7874621                                                                            |
| state_dummy                                                                                          | 418028                                                         | .2565798                                           | -1.63                                      | 0.103                                    | 9210179                                                      | .084962                                                                             |
| credit                                                                                               | .1739868                                                       | .050697                                            | 3.43                                       | 0.001                                    | .0746026                                                     | .273371                                                                             |
| f inputs                                                                                             | .0072047                                                       | .0009254                                           | 7.79                                       | 0.000                                    | .0053869                                                     | .0090225                                                                            |
| tech_dummy                                                                                           | .1868809                                                       | .2185731                                           | 0.86                                       | 0.394                                    | 2459935                                                      | .6197553                                                                            |
| bus_assoc                                                                                            | 0143893                                                        | .1566631                                           | -0.09                                      | 0.927                                    | 3247621                                                      | .2959835                                                                            |
| low_mlow_tech                                                                                        | .9908668                                                       | .0660148                                           | 15.01                                      | 0.000                                    | .8614208                                                     | 1.120313                                                                            |
| mhigh tech                                                                                           | 1.178649                                                       | .0807755                                           | 14.59                                      | 0.000                                    | 1.020274                                                     | 1.337025                                                                            |

| high tech  | 1.167     | .1293035  | 9.03   | 0.000 | .9135281  | 1.420472  |
|------------|-----------|-----------|--------|-------|-----------|-----------|
| dcountry1  | .4477958  | .3222047  | 1.39   | 0.165 | 1837646   | 1.079356  |
| dcountry2  | 1.336052  | .1796071  | 7.44   | 0.000 | .9840232  | 1.688081  |
| dcountry3  | .7233699  | .2908391  | 2.49   | 0.013 | .1533343  | 1.293406  |
| dcountry4  | .8217176  | .26405    | 3.11   | 0.002 | .3041822  | 1.339253  |
| dcountry5  | 2.05745   | .1169983  | 17.59  | 0.000 | 1.82813   | 2.286769  |
| dcountry6  | .7486835  | .1438582  | 5.20   | 0.000 | .4667228  | 1.030644  |
| dcountry7  | .6586189  | .2647689  | 2.49   | 0.013 | .1396809  | 1.177557  |
| dcountry9  | .4698627  | .3003745  | 1.56   | 0.118 | 118931    | 1.058656  |
| dcountry10 | .6855991  | .2895978  | 2.37   | 0.018 | .1179534  | 1.253245  |
| dcountry11 | .6925458  | .3021943  | 2.29   | 0.022 | .1002014  | 1.28489   |
| dcountry12 | 5469734   | .3385602  | -1.62  | 0.106 | -1.21054  | .1165935  |
| dcountry13 | 1.028903  | .2375374  | 4.33   | 0.000 | .5632858  | 1.494519  |
| dcountry14 | .753523   | .3010611  | 2.50   | 0.012 | .1634114  | 1.343635  |
| dcountry15 | 6893085   | .449873   | -1.53  | 0.125 | -1.571044 | .1924266  |
| dcountry16 | .6567295  | .302244   | 2.17   | 0.030 | .0642973  | 1.249162  |
| dcountry17 | .8444971  | .2408003  | 3.51   | 0.000 | .372527   | 1.316467  |
| dcountry18 | .9956669  | .2292019  | 4.34   | 0.000 | .546435   | 1.444899  |
| dcountry19 | .7577015  | .3046862  | 2.49   | 0.013 | .1605268  | 1.354876  |
| dcountry20 | .9285693  | .290425   | 3.20   | 0.001 | .3593077  | 1.497831  |
| dcountry21 | 0601063   | .3670069  | -0.16  | 0.870 | 7794484   | .6592358  |
| dcountry22 | 1.083895  | .293591   | 3.69   | 0.000 | .5084154  | 1.659374  |
| dcountry23 | .4768277  | .3134004  | 1.52   | 0.128 | 137474    | 1.091129  |
| dcountry24 | 1.151396  | .2934955  | 3.92   | 0.000 | .5761071  | 1.726685  |
| dcountry25 | 1.061367  | .2950064  | 3.60   | 0.000 | .4831284  | 1.639606  |
| dcountry26 | .7925103  | .3028468  | 2.62   | 0.009 | .198902   | 1.386119  |
| dcountry27 | 1.324417  | .2883237  | 4.59   | 0.000 | .7592831  | 1.88955   |
| dcountry28 | .7788371  | .3052719  | 2.55   | 0.011 | .180472   | 1.377202  |
| dcountry29 | .7356585  | .2988643  | 2.46   | 0.014 | .1498487  | 1.321468  |
| dcountry30 | 0         | (omitted) |        |       |           |           |
| _cons      | -6.549236 | .3466009  | -18.90 | 0.000 | -7.23028  | -5.868192 |
|            |           |           |        |       |           |           |

#### Endogeneity Testing Table A6.6 Panel estimated results

|                   | Tobit/<br>Poisson | Probit  | Logit     |
|-------------------|-------------------|---------|-----------|
| VARIABLES         | emp_edu           | RD      | emp_trng  |
|                   |                   |         |           |
| exp_int_lag1      | 0.00684           | 0.00349 | -0.00181  |
|                   | (0.0935)          | (5.053) | (0.00902) |
| exp_int_lag2      | 0.00968           | 0.00450 | 0.0127    |
|                   | (0.0977)          | (6.501) | (0.00932) |
| Constant          | 26.85***          | -0.731  | -0.326    |
|                   | (1.658)           | (1,057) | (0.246)   |
|                   |                   |         |           |
| Observations      | 359               | 371     | 107       |
| Number of panelid | 359               | 371     | 107       |

#### Table A6.6.1 IVTobit Model - Full sample estimated results

ivtobit exp\_int emp\_edu emp\_trng manager\_exp new\_org\_str new\_prod\_serv new\_methods
location lnsize lnsize\_sqr lnage lnage\_sqr foreign\_dummy state\_dummy credit

| <pre>low_mlow_tech = avrg_edu),</pre> | mhigh_tech h<br>ll ul vce(rob | nigh_tech coust) nolog | dcountry1-       | dcountry       | 7 dcountry9-d      | country30        | (emp_edu |
|---------------------------------------|-------------------------------|------------------------|------------------|----------------|--------------------|------------------|----------|
| Tobit model w                         | ith endogenous                | regressors             | 5                | Numbe:<br>Wald | r of obs =         | 14026<br>2051 88 |          |
| Log pseudolike                        | elihood = -679                | 064.267                |                  | Prob 3         | > chi2 =           | 0.0000           |          |
|                                       |                               |                        |                  |                |                    |                  |          |
|                                       | Coef.                         | Robust<br>Std. Err.    | Z                | P> z           | [95% Conf.         | Interval]        |          |
| emp edu                               | +<br>  .0030349               | .0006511               | 4.66             | 0.000          | .0017588           | .004311          |          |
| emp trng                              | .0233102                      | .019635                | 1.19             | 0.235          | 0151737            | .0617941         |          |
| manager_exp                           | .0006865                      | .0009006               | 0.76             | 0.446          | 0010786            | .0024516         |          |
| new_org_str                           | .0478622                      | .0235079               | 2.04             | 0.042          | .0017875           | .0939369         |          |
| new_prod_s~v                          | .0502309                      | .0217283               | 2.31             | 0.021          | .0076443           | .0928176         |          |
| new_methods                           | 0621624                       | .0248207               | 1.12             | 0.261          | 020/368            | .0/65583         |          |
| location                              |                               | .0240912               | -2.54            | 0.011          | 1119492            | 0143770          |          |
| Insize sor                            | -0.093375                     | .0309238               | -2 47            | 0.000          | - 0167353          | - 0019398        |          |
| lnage                                 | 0502857                       | 0525272                | 0.96             | 0.015          | - 0526657          | 1532371          |          |
| lnage sgr                             | 0160888                       | .0101906               | -1.58            | 0.114          | 0360621            | .0038845         |          |
| foreign du~v                          | .3710641                      | .0370439               | 10.02            | 0.000          | .2984594           | .4436689         |          |
| state dummy                           | 1267409                       | .0867172               | -1.46            | 0.144          | 2967036            | .0432218         |          |
| credit                                | .1092822                      | .0187219               | 5.84             | 0.000          | .0725881           | .1459764         |          |
| low mlow t~h                          | .3861055                      | .0211696               | 18.24            | 0.000          | .3446138           | .4275972         |          |
| mhigh tech                            | .5308491                      | .0279609               | 18.99            | 0.000          | .4760468           | .5856514         |          |
| high tech                             | .5303366                      | .0518326               | 10.23            | 0.000          | .4287467           | .6319265         |          |
| dcountry1                             | .5748757                      | .0819884               | 7.01             | 0.000          | .4141815           | .73557           |          |
| dcountry2                             | .5239227                      | .0595124               | 8.80             | 0.000          | .4072805           | .640565          |          |
| dcountry3                             | .1880388                      | .0826261               | 2.28             | 0.023          | .0260945           | .349983          |          |
| dcountry4                             | .1259382                      | .0878208               | 1.43             | 0.152          | 0461874            | .2980637         |          |
| dcountry5                             | .7394131                      | .0413961               | 17.86            | 0.000          | .6582783           | .8205479         |          |
| dcountry6                             | .1570664                      | .0434989               | 3.61             | 0.000          | .0718101           | .2423226         |          |
| dcountry7                             | .0821061                      | .0856085               | 0.96             | 0.338          | 0856835            | .2498957         |          |
| dcountry9                             | .5168578                      | .0538431               | 9.60             | 0.000          | .4113272           | .6223884         |          |
| dcountry10                            | .6056033                      | .0519121               | 11.67            | 0.000          | .5038575           | .7073491         |          |
| dcountry11                            | .771549                       | .0536279               | 14.39            | 0.000          | .6664402           | .8766578         |          |
| dcountry12                            | 2731645                       | .0828506               | -3.30            | 0.001          | 4355486            | 1107804          |          |
| dcountry13                            | .3530267                      | .0682913               | 5.17             | 0.000          | .2191783           | .4868752         |          |
| dcountry14                            | .6908276                      | .05/3385               | 12.05            | 0.000          | .5/84463           | .803209          |          |
| dcountry15                            | 1//6069                       | .1213011               | -1.40            | 0.143          | 4103020            | .0001389         |          |
| dcountry17                            | 1 .094J040                    | .0597905               | 11.02            | 0.000          | . 3773023          | .011/0/3         |          |
| dcountry18                            | ·2407297                      | .0009108               | 2.72             | 0.000          | .11/30/            | 37858/1          |          |
| dcountry19                            | 0466119                       | 0953723                | 0 49             | 0.000          | - 1403144          | 2335382          |          |
| dcountry20                            | 9149798                       | 0621433                | 14 72            | 0.020          | 7931812            | 1 036778         |          |
| dcountrv21                            | .5226681                      | .0738144               | 7.08             | 0.000          | .3779944           | .6673418         |          |
| dcountry22                            | .8737956                      | .0587567               | 14.87            | 0.000          | .7586345           | .9889567         |          |
| dcountry23                            | .5123111                      | .0687615               | 7.45             | 0.000          | .377541            | .6470812         |          |
| dcountry24                            | .87781                        | .0632946               | 13.87            | 0.000          | .7537549           | 1.001865         |          |
| dcountry25                            | .799218                       | .0635102               | 12.58            | 0.000          | .6747404           | .9236957         |          |
| dcountry26                            | .724402                       | .0625515               | 11.58            | 0.000          | .6018033           | .8470007         |          |
| dcountry27                            | 1.078401                      | .0560024               | 19.26            | 0.000          | .9686388           | 1.188164         |          |
| dcountry28                            | .6305303                      | .0677809               | 9.30             | 0.000          | .4976822           | .7633784         |          |
| dcountry29                            | .7570319                      | .0559026               | 13.54            | 0.000          | .6474648           | .8665991         |          |
| dcountry30                            | .4407176                      | .1081846               | 4.07             | 0.000          | .2286797           | .6527556         |          |
| _cons                                 | -2.054761                     | .0970069               | -21.18           | 0.000          | -2.244891          | -1.864631        |          |
| / - 1 1-                              | +                             |                        | 1 7 4            | 0 000          |                    |                  |          |
| /alpha                                | UU1384/                       | .000/949               | -1./4            | 0.082          | 0029427            | .0001/33         |          |
| / 1ns<br>/ 1n                         | 4403//0                       | .UZI0910<br>0070570    | -20.49<br>135 05 |                | 4914844<br>3 06306 | 4036/08          |          |
| V111 /                                | L                             | .00/03/9               | 400.90           | 0.000          | 00200.0            | J.U9U/26         |          |

| s  <br>v                       | .6385358<br>21.69091                                                                                                                   | .0139786<br>.1530915                                                                                                                                                                    |                                                                                                                                                              | .6117177<br>21.39292                                                                                               | .6665296<br>21.99305                  |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Instrumented:<br>Instruments:  | emp_edu<br>emp_trng mar<br>location lns<br>state_dummy<br>dcountry1 dd<br>dcountry7 dd<br>dcountry13 d<br>dcountry18 d<br>dcountry23 d | ager_exp new_org<br>size lnsize_sqr l<br>credit low_mlow_<br>country2 dcountry<br>country9 dcountry<br>dcountry14 dcount<br>dcountry19 dcount<br>dcountry24 dcount<br>dcountry29 dcount | _str new_prod_<br>hage lnage_sqr<br>tech mhigh_tec<br>3 dcountry4 dc<br>10 dcountry11<br>ry15 dcountry1<br>ry20 dcountry2<br>ry25 dcountry2<br>ry30 avrg_edu | serv new_me<br>foreign_du<br>h high_tech<br>ountry5 dco<br>dcountry12<br>6 dcountry1<br>1 dcountry2<br>6 dcountry2 | thods<br>mmy<br>untry6<br>7<br>2<br>7 |
| Wald test of e<br>Obs. summary | xogeneity (/a<br>: 11804<br>2047<br>175                                                                                                | <pre>alpha = 0): chi2(     left-censored of     uncensored of     right-censored of</pre>                                                                                               | 1) = 3.03<br>oservations at<br>oservations<br>oservations at                                                                                                 | <pre>Prob &gt; chi exp_int&lt;=0 exp_int&gt;=1</pre>                                                               | 2 = 0.0815                            |

#### Table A6.6.2 IVPoisson Model - Full sample estimated results

ivpois exp\_int emp\_trng manager\_exp new\_org\_str new\_prod\_serv new\_methods location
lnsize lnsize\_sqr lnage lnage\_sqr foreign\_dummy state\_dummy credit low\_mlow\_tech
mhigh\_tech high\_tech dcountry1-dcountry7 dcountry9-dcountry30, endog (emp\_edu) exog
(avrg\_edu)

| exp_int      | Coef.     | Std. Err. | Z     | P> z  | [95% Conf. | . Interval] |
|--------------|-----------|-----------|-------|-------|------------|-------------|
| exp int      |           |           |       |       |            |             |
| emp trng     | .062747   | .1133685  | 0.55  | 0.580 | 1594512    | .2849452    |
| manager exp  | 0011441   | .0052881  | -0.22 | 0.829 | 0115085    | .0092204    |
| new org str  | .2238703  | .1222223  | 1.83  | 0.067 | 0156809    | .4634215    |
| new prod s~v | 1630698   | .1004821  | -1.62 | 0.105 | 3600111    | .0338716    |
| new_methods  | 0160448   | .1204989  | -0.13 | 0.894 | 2522182    | .2201286    |
| location     | 1219598   | .1450168  | -0.84 | 0.400 | 4061874    | .1622678    |
| lnsize       | .1150871  | .1791664  | 0.64  | 0.521 | 2360726    | .4662469    |
| lnsize_sqr   | .0349075  | .0234666  | 1.49  | 0.137 | 0110862    | .0809012    |
| lnage        | .6709593  | .2785625  | 2.41  | 0.016 | .1249868   | 1.216932    |
| lnage_sqr    | 1345367   | .0552741  | -2.43 | 0.015 | 242872     | 0262014     |
| foreign_du~y | 1.16245   | .1611901  | 7.21  | 0.000 | .8465234   | 1.478377    |
| state_dummy  | -1.05899  | .3829486  | -2.77 | 0.006 | -1.809556  | 3084249     |
| credit       | .2957289  | .0940167  | 3.15  | 0.002 | .1114596   | .4799982    |
| low_mlow_t~h | 1.04483   | .1346551  | 7.76  | 0.000 | .7809111   | 1.30875     |
| mhigh_tech   | 1.159101  | .137246   | 8.45  | 0.000 | .8901037   | 1.428098    |
| high_tech    | .9623794  | .1725175  | 5.58  | 0.000 | .6242513   | 1.300508    |
| dcountry1    | 1.370243  | .3845505  | 3.56  | 0.000 | .6165381   | 2.123948    |
| dcountry2    | 1.551772  | .2755951  | 5.63  | 0.000 | 1.011616   | 2.091928    |
| dcountry3    | .0496556  | .3921467  | 0.13  | 0.899 | 7189378    | .818249     |
| dcountry4    | .3743034  | .5021244  | 0.75  | 0.456 | 6098424    | 1.358449    |
| dcountry5    | 1.970393  | .2256271  | 8.73  | 0.000 | 1.528172   | 2.412614    |
| dcountry6    | .2897692  | .2359993  | 1.23  | 0.220 | 1727809    | .7523193    |
| dcountry7    | 0877651   | .3388342  | -0.26 | 0.796 | 751868     | .5763378    |
| dcountry9    | 1.275979  | .2503044  | 5.10  | 0.000 | .7853915   | 1.766567    |
| dcountry10   | 1.482666  | .2686756  | 5.52  | 0.000 | .9560717   | 2.009261    |
| dcountry11   | 1.945149  | .2475908  | 7.86  | 0.000 | 1.45988    | 2.430418    |
| dcountry12   | -1.51006  | .5524494  | -2.73 | 0.006 | -2.592841  | 4272788     |
| dcountry13   | .7277961  | .3402045  | 2.14  | 0.032 | .0610076   | 1.394585    |
| dcountry14   | 1.759181  | .2728604  | 6.45  | 0.000 | 1.224384   | 2.293977    |
| dcountry15   | -1.504858 | .5510251  | -2.73 | 0.006 | -2.584848  | 424869      |
| dcountry16   | 1.608904  | .2782674  | 5.78  | 0.000 | 1.06351    | 2.154298    |

| dcountry17 | .214065   | .319889  | 0.67   | 0.503 | 4129059   | .841036   |
|------------|-----------|----------|--------|-------|-----------|-----------|
| dcountry18 | .8560062  | .3137112 | 2.73   | 0.006 | .2411435  | 1.470869  |
| dcountry19 | .2544534  | .4179528 | 0.61   | 0.543 | 564719    | 1.073626  |
| dcountry20 | 2.179724  | .2815575 | 7.74   | 0.000 | 1.627882  | 2.731567  |
| dcountry21 | 1.272565  | .3723713 | 3.42   | 0.001 | .5427309  | 2.0024    |
| dcountry22 | 2.224038  | .2683873 | 8.29   | 0.000 | 1.698008  | 2.750067  |
| dcountry23 | 1.091835  | .4062451 | 2.69   | 0.007 | .2956091  | 1.888061  |
| dcountry24 | 2.038851  | .2493496 | 8.18   | 0.000 | 1.550135  | 2.527568  |
| dcountry25 | 2.114519  | .2929466 | 7.22   | 0.000 | 1.540354  | 2.688684  |
| dcountry26 | 1.930147  | .3124204 | 6.18   | 0.000 | 1.317814  | 2.542479  |
| dcountry27 | 2.596931  | .269874  | 9.62   | 0.000 | 2.067988  | 3.125874  |
| dcountry28 | 1.646363  | .2886067 | 5.70   | 0.000 | 1.080704  | 2.212022  |
| dcountry29 | 1.970595  | .2679974 | 7.35   | 0.000 | 1.44533   | 2.495861  |
| dcountry30 | 1.307789  | .4939628 | 2.65   | 0.008 | .3396398  | 2.275939  |
| emp_edu    | .0095658  | .0034846 | 2.75   | 0.006 | .0027362  | .0163954  |
| cons       | -6.645289 | .4948344 | -13.43 | 0.000 | -7.615146 | -5.675431 |

#### **Estimated results: Export market share**

#### Table A6.7 Tobit Model - Full sample estimated results (exp\_share\_industryEU28)

tobit exp\_share\_industryEU28 emp\_edu emp\_trng manager\_exp new\_org\_str new\_prod\_serv new\_methods location lnsize lnsize\_sqr lnage lnage\_sqr foreign\_dummy state\_dummy credit low\_mlow\_tech mhigh\_tech high\_tech dcountry1-dcountry7 dcountry9-dcountry30, ll ul vce(robust) nolog

| Tobit regress:<br>Log pseudolike | ion<br>elihood = -34 | 4.78356  |       | Numbe<br>F( 4<br>Prob<br>Pseud | r of obs =<br>6, 13665) =<br>> F =<br>10 R2 = | 13711<br>63.64<br>0.0000<br>0.9650 |
|----------------------------------|----------------------|----------|-------|--------------------------------|-----------------------------------------------|------------------------------------|
| ovp shaveu28                     |                      | Robust   | +     | DN   +                         | [958 Conf                                     | Intorvall                          |
| exp_311*9±020                    | +                    |          |       |                                | [95% CONT.                                    |                                    |
| emp edu                          | .0002785             | .0000576 | 4.84  | 0.000                          | .0001656                                      | .0003913                           |
| emp trng                         | .0046764             | .0023054 | 2.03  | 0.043                          | .0001574                                      | .0091954                           |
| manager exp                      | 0001211              | .0001337 | -0.91 | 0.365                          | 0003833                                       | .000141                            |
| new org str                      | .0084459             | .0030529 | 2.77  | 0.006                          | .0024618                                      | .01443                             |
| new_prod_s~v                     | .0124381             | .0031884 | 3.90  | 0.000                          | .0061884                                      | .0186879                           |
| new_methods                      | 002366               | .0032113 | -0.74 | 0.461                          | 0086605                                       | .0039285                           |
| location                         | .0077128             | .0033136 | 2.33  | 0.020                          | .0012177                                      | .0142078                           |
| lnsize                           | .012319              | .0050038 | 2.46  | 0.014                          | .0025108                                      | .0221272                           |
| lnsize_sqr                       | .0006653             | .0006783 | 0.98  | 0.327                          | 0006642                                       | .0019948                           |
| lnage                            | .0053059             | .0072127 | 0.74  | 0.462                          | 0088321                                       | .0194438                           |
| lnage_sqr                        | 0008334              | .001425  | -0.58 | 0.559                          | 0036266                                       | .0019598                           |
| foreign_du~y                     | .0240689             | .0039764 | 6.05  | 0.000                          | .0162745                                      | .0318632                           |
| state_dummy                      | 0145448              | .0115853 | -1.26 | 0.209                          | 0372535                                       | .0081639                           |
| credit                           | .0181319             | .0024646 | 7.36  | 0.000                          | .0133009                                      | .0229629                           |
| low_mlow_t~h                     | .0369272             | .0024484 | 15.08 | 0.000                          | .0321279                                      | .0417264                           |
| mhigh_tech                       | .055048              | .0033143 | 16.61 | 0.000                          | .0485515                                      | .0615445                           |
| high_tech                        | .0547239             | .0059026 | 9.27  | 0.000                          | .043154                                       | .0662938                           |
| dcountry1                        | .0501961             | .0091248 | 5.50  | 0.000                          | .0323102                                      | .068082                            |
| dcountry2                        | .052439              | .0069409 | 7.56  | 0.000                          | .0388339                                      | .0660442                           |
| dcountry3                        | .0127452             | .0096406 | 1.32  | 0.186                          | 0061517                                       | .031642                            |

| dcountry4     | 0069418  | .0111724    | -0.62      | 0.534    | 0288412         | .0149576       |  |
|---------------|----------|-------------|------------|----------|-----------------|----------------|--|
| dcountry5     | .0692111 | .004351     | 15.91      | 0.000    | .0606824        | .0777397       |  |
| dcountry6     | .0092747 | .0057667    | 1.61       | 0.108    | 0020288         | .0205781       |  |
| dcountry7     | 000978   | .0097482    | -0.10      | 0.920    | 0200858         | .0181298       |  |
| dcountry9     | .0499927 | .0066478    | 7.52       | 0.000    | .0369621        | .0630233       |  |
| dcountry10    | .0562414 | .0055702    | 10.10      | 0.000    | .0453231        | .0671597       |  |
| dcountry11    | .0836858 | .0058706    | 14.26      | 0.000    | .0721786        | .095193        |  |
| dcountry12    | 0384346  | .0107297    | -3.58      | 0.000    | 0594663         | 0174029        |  |
| dcountry13    | .0293762 | .0085859    | 3.42       | 0.001    | .0125467        | .0462058       |  |
| dcountry14    | .0657518 | .0064192    | 10.24      | 0.000    | .0531693        | .0783344       |  |
| dcountry15    | 04169    | .0165476    | -2.52      | 0.012    | 0741257         | 0092544        |  |
| dcountry16    | .0698868 | .0065039    | 10.75      | 0.000    | .0571382        | .0826354       |  |
| dcountry17    | .0060696 | .0088648    | 0.68       | 0.494    | 0113066         | .0234457       |  |
| dcountry18    | .0173181 | .0102645    | 1.69       | 0.092    | 0028018         | .0374381       |  |
| dcountry19    | 0194869  | .011515     | -1.69      | 0.091    | 042058          | .0030841       |  |
| dcountry20    | .0908044 | .0065366    | 13.89      | 0.000    | .0779917        | .103617        |  |
| dcountry21    | .0554939 | .0088478    | 6.27       | 0.000    | .038151         | .0728368       |  |
| dcountry22    | .0890129 | .0061014    | 14.59      | 0.000    | .0770534        | .1009725       |  |
| dcountry23    | .0475131 | .0083615    | 5.68       | 0.000    | .0311233        | .0639029       |  |
| dcountry24    | .0863787 | .0065863    | 13.11      | 0.000    | .0734687        | .0992888       |  |
| dcountry25    | .0791589 | .0068167    | 11.61      | 0.000    | .0657972        | .0925205       |  |
| dcountry26    | .0593752 | .0079956    | 7.43       | 0.000    | .0437028        | .0750477       |  |
| dcountry27    | .1411126 | .00809      | 17.44      | 0.000    | .1252552        | .15697         |  |
| dcountry28    | .056652  | .006851     | 8.27       | 0.000    | .0432231        | .0700808       |  |
| dcountry29    | .0813099 | .0058302    | 13.95      | 0.000    | .0698818        | .092738        |  |
| dcountry30    | .0395044 | .0134887    | 2.93       | 0.003    | .0130646        | .0659442       |  |
| _cons         | 2523495  | .013594     | -18.56     | 0.000    | 2789955         | 2257035        |  |
| /sigma        | .0872653 | .0005487    |            |          | .0861898        | .0883409       |  |
| Obs. summary: | : 11804  | left-censo  | ored obsei | rvations | at exp sh~yEU   | J28<=0         |  |
| -             | 1906     | uncenso     | ored obser | rvations | *_ <sup>-</sup> |                |  |
|               | 1        | right-censo | ored obser | rvation  | at exp sh~yEU   | J28>=3.0019033 |  |
|               |          |             |            |          |                 |                |  |

### Table A6.7.1 Tobit Model - CEECs estimated results (exp\_share\_industryEU28)

| tobit exp_share_industryEU28 emp_edu emp_trng man | ager_exp new_org  | _str new_prod_serv   |
|---------------------------------------------------|-------------------|----------------------|
| new methods location lnsize lnsize sqr lnage lnag | e sqr foreign du  | nmy state dummy      |
| credit low mlow tech mhigh tech high tech dcou    | ntry1-dcountry7 ( | dcountry9-dcountry30 |
| if CEEC dummy==1, ll ul vce(robust) nolog         |                   |                      |
| note: dcountry2 omitted because of collinearity   |                   |                      |
| note: dcountry3 omitted because of collinearity   |                   |                      |
| note: dcountry4 omitted because of collinearity   |                   |                      |
| note: dcountry5 omitted because of collinearity   |                   |                      |
| note: dcountry6 omitted because of collinearity   |                   |                      |
| note: dcountry7 omitted because of collinearity   |                   |                      |
| note: dcountry12 omitted because of collinearity  |                   |                      |
| note: dcountry13 omitted because of collinearity  |                   |                      |
| note: dcountry15 omitted because of collinearity  |                   |                      |
| note: dcountry17 omitted because of collinearity  |                   |                      |
| note: dcountry18 omitted because of collinearity  |                   |                      |
| note: dcountry19 omitted because of collinearity  |                   |                      |
| note: dcountry30 omitted because of collinearity  |                   |                      |
|                                                   |                   |                      |
| Tobit regression                                  | Number of obs     | = 4720               |
|                                                   | F( 33, 4687)      | = 41.03              |
|                                                   | Prob > F          | = 0.0000             |
| Log pseudolikelihood = 4.3134043                  | Pseudo R2         | = 1.0137             |
|                                                   |                   |                      |
|                                                   |                   |                      |
| Robust                                            |                   |                      |

| exp_sh~yEU28  | Coef.     | Std. Err.   | t         | P> t     | [95% Conf    | . Interval]    |  |
|---------------|-----------|-------------|-----------|----------|--------------|----------------|--|
|               | 0002922   | 0000795     | 3 67      |          | 0001363      | 0004481        |  |
| emp_eau       | - 002174  | .0000755    | -0.86     | 0.000    | - 010/103    | 0040704        |  |
| managor ovo   | - 0001631 | .0030932    | -0.80     | 0.390    | - 0005618    | 0002356        |  |
| now org str   | 01/1863   | 0042216     | 336       | 0.425    | .0003010     | 0224627        |  |
| now prod saw  | .0138101  | 0042210     | 3.04      | 0.001    | 00/0021      | 0224027        |  |
| new_prod_sev  | 00/811    | 0049403     | 1 00      | 0.002    | - 0046519    | 0142738        |  |
| liew_methods  | .004011   | .0046200    | 2.00      | 0.319    | 0040319      | .0142750       |  |
| location      | .0100/00  | .0046667    | 3.07      | 0.000    | .0009290     | .0272270       |  |
| Insize        | .0007703  | .0096957    | 1 00      | 0.405    | 0122296      | .0237004       |  |
| Insize_sqr    | .0014603  | .0014///    | 1.00      | 0.310    | 0014100      | .0043773       |  |
| lnage         | .002001   | .0110034    | 0.17      | 0.004    | 0209076      | .0249097       |  |
| Inage_sqr     | 0005761   | .0021232    | -0.27     | 0.788    | 0047300      | .0033684       |  |
| loreign_au~y  | .02/0814  | .005646     | 4.80      | 0.000    | .0100127     | .0381502       |  |
| state_dummy   | 0238/31   | .0333706    | -0.72     | 0.4/4    | 0892951      | .0415489       |  |
| creait        | .02134/1  | .0039891    | 2.35      | 0.000    | .0133207     | .0291676       |  |
| IOW_MILOW_U~N | .0525781  | .0037502    | 14.02     | 0.000    | .0452258     | .0599303       |  |
| mnign_tech    | .064/69   | .0052956    | 12.23     | 0.000    | .0543871     | .0751509       |  |
| nign_tecn     | .0511486  | .0091986    | 5.56      | 0.000    | .033115      | .0691822       |  |
| dcountryl     | .007669   | .0183852    | 0.42      | 0.6//    | 0283/46      | .043/126       |  |
| dcountry2     | (omitted) |             |           |          |              |                |  |
| acountry3     | (omitted) |             |           |          |              |                |  |
| dcountry4     | (omitted) |             |           |          |              |                |  |
| dcountry5     | (omitted) |             |           |          |              |                |  |
| dcountry6     | (omitted) |             |           |          |              |                |  |
| dcountry/     | (omitted) |             |           |          |              |                |  |
| dcountry9     | .0151736  | .0172438    | 0.88      | 0.379    | 0186324      | .0489796       |  |
| dcountry10    | .0208448  | .0164145    | 1.2/      | 0.204    | 0113353      | .0530249       |  |
| dcountryll    | .0531184  | .0165298    | 3.21      | 0.001    | .020/122     | .0855247       |  |
| dcountry12    | (omitted) |             |           |          |              |                |  |
| dcountry13    | (omitted) | 01.00.004   | 0 00      |          | 0000050      |                |  |
| dcountry14    | .0339859  | .0168634    | 2.02      | 0.044    | .0009258     | .067046        |  |
| dcountry15    | (omitted) | 01 60 4 4 0 | 0.04      | 0 0 4 4  | 0010406      | 0.67.0.0.6     |  |
| dcountry16    | .0343723  | .0168448    | 2.04      | 0.041    | .0013486     | .06/396        |  |
| dcountry17    | (omitted) |             |           |          |              |                |  |
| dcountry18    | (omitted) |             |           |          |              |                |  |
| dcountry19    | (omitted) |             |           |          |              |                |  |
| dcountry20    | .0607032  | .0168168    | 3.61      | 0.000    | .0277344     | .093672        |  |
| dcountry21    | .0156619  | .0183267    | 0.85      | 0.393    | 0202671      | .0515908       |  |
| dcountry22    | .0623033  | .016783     | 3.71      | 0.000    | .0294007     | .0952059       |  |
| dcountry23    | .0092041  | .017826     | 0.52      | 0.606    | 0257431      | .0441514       |  |
| dcountry24    | .0534687  | .0168704    | 3.17      | 0.002    | .0203949     | .0865426       |  |
| dcountry25    | .0470039  | .0171096    | 2.75      | 0.006    | .013461      | .0805469       |  |
| dcountry26    | .0271532  | .0176557    | 1.54      | 0.124    | 0074603      | .0617667       |  |
| dcountry27    | .1199547  | .0178153    | 6.73      | 0.000    | .0850284     | .1548809       |  |
| dcountry28    | .0228983  | .0171489    | 1.34      | 0.182    | 0107216      | .0565182       |  |
| dcountry29    | .0511304  | .016561     | 3.09      | 0.002    | .0186631     | .0835976       |  |
| dcountry30    | (omitted) |             | _         | _        |              |                |  |
|               | 2324305   | .0239362    | -9.71     | 0.000    | 2793567      | 1855042        |  |
| /sigma        | .1042454  | .0014172    |           |          | .101467      | .1070239       |  |
| Obs. summary  | : 3613    | left-censc  | ored obse | rvations | at exp_sh~yE | J28<=0         |  |
|               | 1106      | uncenso     | red obset | rvations |              |                |  |
|               | 1         | right-censo | red obset | rvation  | at exp_sh~yE | J28>=3.0019033 |  |

#### Table A6.7.2 Tobit Model - CIS estimated results (exp\_share\_industryEU28)

tobit exp\_share\_industryEU28 emp\_edu emp\_trng manager\_exp new\_org\_str new\_prod\_serv new\_methods location lnsize lnsize\_sqr lnage lnage\_sqr foreign\_dummy state\_dummy credit low\_mlow\_tech mhigh\_tech high\_tech dcountry1-dcountry7 dcountry9-dcountry30 if CEEC\_dummy==0, ll ul vce(robust) nolog

| note: dcountr                                                                                                                                                                                | yl omitted bed                                                                                                                                        | cause of col                                                                                          | linearity                                                                | 7                                                                             |                                                                                                     |                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| note: dcountr                                                                                                                                                                                | y9 omitted bed                                                                                                                                        | cause of col                                                                                          | linearity                                                                | 7                                                                             |                                                                                                     |                                                                    |
| note: dcountr                                                                                                                                                                                | y10 omitted be                                                                                                                                        | ecause of co                                                                                          | llinearit                                                                | -y                                                                            |                                                                                                     |                                                                    |
| note: dcountr                                                                                                                                                                                | yll omitted be                                                                                                                                        | ecause of co                                                                                          | llinearit                                                                | -<br>y                                                                        |                                                                                                     |                                                                    |
| note: dcountr                                                                                                                                                                                | y14 omitted be                                                                                                                                        | ecause of co                                                                                          | llinearit                                                                | -<br>V                                                                        |                                                                                                     |                                                                    |
| note: dcountr                                                                                                                                                                                | v16 omitted be                                                                                                                                        | ecause of co                                                                                          | llinearit                                                                | zv                                                                            |                                                                                                     |                                                                    |
| note: dcountr                                                                                                                                                                                | ,<br>v20 omitted b€                                                                                                                                   | ecause of co                                                                                          | llinearit                                                                | LV LV                                                                         |                                                                                                     |                                                                    |
| note: dcountr                                                                                                                                                                                | v21 omitted be                                                                                                                                        | ecause of co                                                                                          | llinearit                                                                | LV                                                                            |                                                                                                     |                                                                    |
| note: dcountr                                                                                                                                                                                | v22 omitted be                                                                                                                                        | ecause of co                                                                                          | llinearit                                                                | .V                                                                            |                                                                                                     |                                                                    |
| note: dcountr                                                                                                                                                                                | v23 omitted be                                                                                                                                        | ecause of co                                                                                          | llinearit                                                                | - V                                                                           |                                                                                                     |                                                                    |
| note: dcountr                                                                                                                                                                                | v24 omitted be                                                                                                                                        | ecause of co                                                                                          | llinearit                                                                | - V                                                                           |                                                                                                     |                                                                    |
| note: dcountr                                                                                                                                                                                | v25 omitted be                                                                                                                                        | ecause of co                                                                                          | llinearit                                                                | - V                                                                           |                                                                                                     |                                                                    |
| note: dcountr                                                                                                                                                                                | v26 omitted be                                                                                                                                        | cause of co                                                                                           | llinearit                                                                | -V                                                                            |                                                                                                     |                                                                    |
| note: dcountr                                                                                                                                                                                | v27 omitted be                                                                                                                                        | cause of co                                                                                           | llinearit                                                                | - V                                                                           |                                                                                                     |                                                                    |
| note: dcountr                                                                                                                                                                                | v28 omitted be                                                                                                                                        | ecause of co                                                                                          | llinearit                                                                | - V                                                                           |                                                                                                     |                                                                    |
| note: dcountr                                                                                                                                                                                | v29 omitted be                                                                                                                                        | ecause of co                                                                                          | llinearit                                                                | - V                                                                           |                                                                                                     |                                                                    |
| note: dcountr                                                                                                                                                                                | v30 omitted be                                                                                                                                        | cause of co                                                                                           | llinearit                                                                | - V                                                                           |                                                                                                     |                                                                    |
| noce. acount                                                                                                                                                                                 | you onreced be                                                                                                                                        | coube of co                                                                                           | TTTICATIO                                                                | - <u>Y</u>                                                                    |                                                                                                     |                                                                    |
| Tohit regress                                                                                                                                                                                | ion                                                                                                                                                   |                                                                                                       |                                                                          | Numbe                                                                         | r of obs =                                                                                          | 8991                                                               |
| TODIC TEGICOD                                                                                                                                                                                | 1011                                                                                                                                                  |                                                                                                       |                                                                          | F(2                                                                           | 9 8962) =                                                                                           | 53 47                                                              |
|                                                                                                                                                                                              |                                                                                                                                                       |                                                                                                       |                                                                          | Prob                                                                          | >F =                                                                                                | 0 0000                                                             |
| Log pseudolik                                                                                                                                                                                | $elihood = 14^{-1}$                                                                                                                                   | 7 22029                                                                                               |                                                                          | Peend                                                                         | $ R^2 =$                                                                                            | 1 4493                                                             |
| LOG PSEUDOTIK                                                                                                                                                                                |                                                                                                                                                       | • • • • • • • • • • • • • • • • • • • •                                                               |                                                                          | i Seuu                                                                        | - 112 -                                                                                             | T. 1172                                                            |
|                                                                                                                                                                                              |                                                                                                                                                       |                                                                                                       |                                                                          |                                                                               |                                                                                                     |                                                                    |
|                                                                                                                                                                                              |                                                                                                                                                       | Robust                                                                                                |                                                                          |                                                                               |                                                                                                     |                                                                    |
| exp_sh~vEII28                                                                                                                                                                                | Coef                                                                                                                                                  | Std Err                                                                                               | +                                                                        | P>1+1                                                                         | [95% Conf                                                                                           | Intervall                                                          |
|                                                                                                                                                                                              | +                                                                                                                                                     |                                                                                                       |                                                                          |                                                                               |                                                                                                     |                                                                    |
| emp edu                                                                                                                                                                                      | 000221                                                                                                                                                | 000038                                                                                                | 5 82                                                                     | 0 000                                                                         | 0001466                                                                                             | 0002954                                                            |
| emp_cau                                                                                                                                                                                      | 0072423                                                                                                                                               | 0021007                                                                                               | 3 45                                                                     | 0 001                                                                         | 0031245                                                                                             | 0113601                                                            |
| managor ovn                                                                                                                                                                                  | - 0001029                                                                                                                                             | .0021007                                                                                              | _1 11                                                                    | 0.269                                                                         | - 0002853                                                                                           | 0000795                                                            |
| nallager_exp                                                                                                                                                                                 | 0050047                                                                                                                                               | .000093                                                                                               | 2.06                                                                     | 0.209                                                                         | .0002000                                                                                            | .0000795                                                           |
| new_org_str                                                                                                                                                                                  | 0063970                                                                                                                                               | .0024095                                                                                              | 2.00                                                                     | 0.039                                                                         | .0002344                                                                                            | 0115012                                                            |
| new_prod_s~v                                                                                                                                                                                 | 0055112                                                                                                                                               | .0020494                                                                                              | 2.41<br>1 70                                                             | 0.010                                                                         | .0011944                                                                                            | .0113013                                                           |
| new_methods                                                                                                                                                                                  | 0055112                                                                                                                                               | .0030758                                                                                              | -1.79                                                                    | 0.073                                                                         | 0113405                                                                                             | .0005181                                                           |
| location                                                                                                                                                                                     | 0042943                                                                                                                                               | .0030821                                                                                              | -1.39                                                                    | 0.164                                                                         | 0103358                                                                                             | .001/4/3                                                           |
| Insize                                                                                                                                                                                       | .01/1191                                                                                                                                              | .0031425                                                                                              | 5.45                                                                     | 0.000                                                                         | .0109592                                                                                            | .0232791                                                           |
| Insize_sqr                                                                                                                                                                                   | 0005/9/                                                                                                                                               | .000362                                                                                               | -1.60                                                                    | 0.109                                                                         | 0012893                                                                                             | .0001298                                                           |
| Inage                                                                                                                                                                                        | .003887                                                                                                                                               | .0055263                                                                                              | 0.70                                                                     | 0.482                                                                         | 0069458                                                                                             | .014/198                                                           |
| sqr                                                                                                                                                                                          | 0004679                                                                                                                                               | .0010646                                                                                              | -0.44                                                                    | 0.660                                                                         | 0025547                                                                                             | .0016189                                                           |
| foreign_du~y                                                                                                                                                                                 | .0215052                                                                                                                                              | .0048489                                                                                              | 4.44                                                                     | 0.000                                                                         | .0120002                                                                                            | .0310102                                                           |
| state_dummy                                                                                                                                                                                  | 0099315                                                                                                                                               | .007506                                                                                               | -1.32                                                                    | 0.186                                                                         | 024645                                                                                              | .004782                                                            |
| credit                                                                                                                                                                                       | .0123648                                                                                                                                              | .0019832                                                                                              | 6.23                                                                     | 0.000                                                                         | .0084773                                                                                            | .0162522                                                           |
| low_mlow_t~h                                                                                                                                                                                 | .0172432                                                                                                                                              | .002516                                                                                               | 6.85                                                                     | 0.000                                                                         | .0123113                                                                                            | .0221752                                                           |
| mhigh_tech                                                                                                                                                                                   | .0324257                                                                                                                                              | .0030779                                                                                              | 10.53                                                                    | 0.000                                                                         | .0263922                                                                                            | .0384592                                                           |
| high_tech                                                                                                                                                                                    | .0359641                                                                                                                                              | .0049604                                                                                              | 7.25                                                                     | 0.000                                                                         | .0262407                                                                                            | .0456875                                                           |
| dcountry1                                                                                                                                                                                    | (omitted)                                                                                                                                             |                                                                                                       |                                                                          | _                                                                             |                                                                                                     |                                                                    |
| dcountry2                                                                                                                                                                                    | .0346854                                                                                                                                              | .0044971                                                                                              | 7.71                                                                     | 0.000                                                                         | .02587                                                                                              | .0435007                                                           |
| dcountry3                                                                                                                                                                                    | .0114056                                                                                                                                              | .006052                                                                                               | 1.88                                                                     | 0.060                                                                         | 0004577                                                                                             | .023269                                                            |
| dcountrv4                                                                                                                                                                                    | 0021565                                                                                                                                               | .0069388                                                                                              | -0.31                                                                    | 0.756                                                                         | 0157581                                                                                             | .011445                                                            |
|                                                                                                                                                                                              | 0021365                                                                                                                                               | -                                                                                                     |                                                                          | -                                                                             | _                                                                                                   | 0510157                                                            |
| dcountry5                                                                                                                                                                                    | .045137                                                                                                                                               | .002999                                                                                               | 15.05                                                                    | 0.000                                                                         | .0392583                                                                                            | .0310137                                                           |
| dcountry5<br>dcountry6                                                                                                                                                                       | .045137<br>.0077278                                                                                                                                   | .002999<br>.0035224                                                                                   | 15.05<br>2.19                                                            | 0.000<br>0.028                                                                | .0392583<br>.0008231                                                                                | .0146325                                                           |
| dcountry5<br>dcountry6<br>dcountry7                                                                                                                                                          | 0021383<br>  .045137<br>  .0077278<br>  .0003348                                                                                                      | .002999<br>.0035224<br>.0064011                                                                       | 15.05<br>2.19<br>0.05                                                    | 0.000<br>0.028<br>0.958                                                       | .0392583<br>.0008231<br>0122128                                                                     | .0146325                                                           |
| dcountry5<br>dcountry6<br>dcountry7<br>dcountry9                                                                                                                                             | .045137<br>  .0077278<br>  .0003348<br>  (omitted)                                                                                                    | .002999<br>.0035224<br>.0064011                                                                       | 15.05<br>2.19<br>0.05                                                    | 0.000<br>0.028<br>0.958                                                       | .0392583<br>.0008231<br>0122128                                                                     | .0146325                                                           |
| dcountry5<br>dcountry6<br>dcountry7<br>dcountry9<br>dcountry10                                                                                                                               | .0021383<br>  .045137<br>  .0077278<br>  .0003348<br>  (omitted)<br>  (omitted)                                                                       | .002999<br>.0035224<br>.0064011                                                                       | 15.05<br>2.19<br>0.05                                                    | 0.000<br>0.028<br>0.958                                                       | .0392583<br>.0008231<br>0122128                                                                     | .0146325<br>.0128825                                               |
| dcountry5<br>dcountry6<br>dcountry7<br>dcountry9<br>dcountry10<br>dcountry11                                                                                                                 | 0021383<br>  .045137<br>  .0077278<br>  .0003348<br>  (omitted)<br>  (omitted)<br>  (omitted)                                                         | .002999<br>.0035224<br>.0064011                                                                       | 15.05<br>2.19<br>0.05                                                    | 0.000<br>0.028<br>0.958                                                       | .0392583<br>.0008231<br>0122128                                                                     | .0146325<br>.0128825                                               |
| dcountry5<br>dcountry6<br>dcountry7<br>dcountry9<br>dcountry10<br>dcountry11<br>dcountry12                                                                                                   | <pre>0021383 .045137 .0077278 .0003348 (omitted) (omitted) (omitted) .0257626</pre>                                                                   | .002999<br>.0035224<br>.0064011                                                                       | -3.97                                                                    | 0.000<br>0.028<br>0.958<br>0.000                                              | .0392583<br>.0008231<br>0122128                                                                     | .0146325<br>.0128825                                               |
| dcountry5<br>dcountry6<br>dcountry7<br>dcountry10<br>dcountry11<br>dcountry12<br>dcountry13                                                                                                  | 0021383<br>.045137<br>.0077278<br>.0003348<br>(omitted)<br>(omitted)<br>(omitted)<br>.0257626<br>.0223276                                             | .002999<br>.0035224<br>.0064011<br>.0064879<br>.005404                                                | -3.97<br>4.13                                                            | 0.000<br>0.028<br>0.958<br>0.000<br>0.000                                     | .0392583<br>.0008231<br>0122128<br>0384804<br>.0117346                                              | 0130448<br>.0329206                                                |
| dcountry5<br>dcountry6<br>dcountry7<br>dcountry9<br>dcountry10<br>dcountry11<br>dcountry12<br>dcountry13<br>dcountry14                                                                       | 0021383<br>.045137<br>.0077278<br>.0003348<br>(omitted)<br>(omitted)<br>(omitted)<br>.0257626<br>.0223276<br>(omitted)                                | .002999<br>.0035224<br>.0064011<br>.0064879<br>.005404                                                | -3.97<br>4.13                                                            | 0.000<br>0.028<br>0.958<br>0.000<br>0.000                                     | .0392583<br>.0008231<br>0122128<br>0384804<br>.0117346                                              | 0130448<br>.0329206                                                |
| dcountry5<br>dcountry6<br>dcountry7<br>dcountry9<br>dcountry10<br>dcountry11<br>dcountry12<br>dcountry13<br>dcountry14                                                                       | <pre>0021363 .045137 .0077278 .0003348 (omitted) (omitted) (omitted) .02257626 .0223276 (omitted)0214014</pre>                                        | .002999<br>.0035224<br>.0064011<br>.0064879<br>.005404<br>.0104137                                    | -3.97<br>4.13<br>-2.06                                                   | 0.000<br>0.028<br>0.958<br>0.000<br>0.000<br>0.000                            | .0392583<br>.0008231<br>0122128<br>0384804<br>.0117346<br>0418146                                   | 0130448<br>.0329206<br>0009883                                     |
| dcountry5<br>dcountry6<br>dcountry7<br>dcountry9<br>dcountry10<br>dcountry11<br>dcountry12<br>dcountry13<br>dcountry14<br>dcountry15<br>dcountry16                                           | <pre>0021363 .045137 .0077278 .0003348 (omitted) (omitted) (omitted) .02257626 .0223276 (omitted)0214014 (omitted)</pre>                              | .002999<br>.0035224<br>.0064011<br>.0064879<br>.005404<br>.0104137                                    | -3.97<br>4.13<br>-2.06                                                   | 0.000<br>0.028<br>0.958<br>0.000<br>0.000<br>0.000                            | .0392583<br>.0008231<br>0122128<br>0384804<br>.0117346<br>0418146                                   | 0130448<br>.0329206<br>0009883                                     |
| dcountry5<br>dcountry6<br>dcountry7<br>dcountry9<br>dcountry10<br>dcountry11<br>dcountry12<br>dcountry13<br>dcountry14<br>dcountry15<br>dcountry16<br>dcountry17                             | <pre>0021363 .045137 .0077278 .0003348 (omitted) (omitted) (omitted) .0223276 (omitted) .0223276 (omitted) .0214014 (omitted) .0083219</pre>          | .002999<br>.0035224<br>.0064011<br>.0064879<br>.005404<br>.0104137<br>.005861                         | 15.05<br>2.19<br>0.05<br>-3.97<br>4.13<br>-2.06<br>1.42                  | 0.000<br>0.028<br>0.958<br>0.000<br>0.000<br>0.000<br>0.040<br>0.156          | .0392583<br>.0008231<br>0122128<br>0384804<br>.0117346<br>0418146<br>0031671                        | 0130448<br>.0329206<br>0009883<br>.0198108                         |
| dcountry5<br>dcountry6<br>dcountry7<br>dcountry10<br>dcountry10<br>dcountry12<br>dcountry13<br>dcountry14<br>dcountry15<br>dcountry16<br>dcountry18                                          | <pre>0021363 .045137 .0077278 .0003348 (omitted) (omitted) (omitted) .0223276 (omitted) .0223276 (omitted) .0214014 (omitted) .0083219 .0145756</pre> | .002999<br>.0035224<br>.0064011<br>.0064879<br>.005404<br>.0104137<br>.005861<br>.0067513             | 15.05<br>2.19<br>0.05<br>-3.97<br>4.13<br>-2.06<br>1.42<br>2.16          | 0.000<br>0.028<br>0.958<br>0.000<br>0.000<br>0.000<br>0.040<br>0.156<br>0.031 | .0392583<br>.0008231<br>0122128<br>0384804<br>.0117346<br>0418146<br>0031671<br>.0013416            | 0130448<br>.0329206<br>0009883<br>.0198108<br>.0278097             |
| dcountry5<br>dcountry6<br>dcountry7<br>dcountry9<br>dcountry10<br>dcountry11<br>dcountry12<br>dcountry13<br>dcountry14<br>dcountry15<br>dcountry16<br>dcountry17<br>dcountry18<br>dcountry19 | <pre>0021383 .045137 .0077278 .0003348 (omitted) (omitted) (omitted) (omitted) .0223276 (omitted) .0214014 (omitted) .0083219 .01457560071331</pre>   | .002999<br>.0035224<br>.0064011<br>.0064879<br>.005404<br>.0104137<br>.005861<br>.0067513<br>.0072234 | 15.05<br>2.19<br>0.05<br>-3.97<br>4.13<br>-2.06<br>1.42<br>2.16<br>-0.99 | 0.000<br>0.028<br>0.958<br>0.000<br>0.000<br>0.040<br>0.156<br>0.031<br>0.323 | .0392583<br>.0008231<br>0122128<br>0384804<br>.0117346<br>0418146<br>0031671<br>.0013416<br>0212927 | 0130448<br>.0329206<br>0009883<br>.0198108<br>.0278097<br>.0070265 |

| dcountry21  <br>dcountry22  <br>dcountry23  <br>dcountry24  <br>dcountry25  <br>dcountry26  <br>dcountry27  <br>dcountry28  <br>dcountry29  <br>dcountry30 | <pre>(omitted)<br/>(omitted)<br/>(omitted)<br/>(omitted)<br/>(omitted)<br/>(omitted)<br/>(omitted)<br/>(omitted)<br/>(omitted)</pre> | 0000500               | 10 12                  | 0.000           | 1050500      | 1500570        |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------|-----------------|--------------|----------------|--|
|                                                                                                                                                            | 1//1081                                                                                                                              | .0092392              | -19.15                 |                 | 1952582      | 1389379        |  |
| /sigma                                                                                                                                                     | .0542187                                                                                                                             | .0001715              |                        |                 | .0538825     | .0545549       |  |
| Obs. summary:                                                                                                                                              | 8191<br>799                                                                                                                          | left-cense<br>uncense | ored obse<br>ored obse | vations vations | at exp_sh~yE | U28<=0         |  |
|                                                                                                                                                            | 1                                                                                                                                    | right-cense           | ored obse:             | rvation         | at exp_sh~yE | U28>=1.4024965 |  |

#### Table A6.7.3 Tobit Model - Full sample estimated results (exp\_share\_industryEA40)

. tobit exp\_share\_industryEA40 emp\_edu emp\_trng manager\_exp new\_org\_str new\_prod\_serv new\_methods location lnsize lnsize\_sqr lnage lnage\_sqr foreign\_dummy state\_dummy credit low\_mlow\_tech mhigh\_tech high\_tech dcountry1-dcountry7 dcountry9-dcountry30, ll ul vce(robust) nolog

| Tobit regressi<br>Log pseudolike | on<br>elihood = -21 | Numbe<br>F( 4<br>Prob<br>Pseud | 13711<br>65.98<br>0.0000<br>0.8232 |       |            |           |
|----------------------------------|---------------------|--------------------------------|------------------------------------|-------|------------|-----------|
| <br> <br>  exp_sh~yEA40          | Coef.               | Robust<br>Std. Err.            |                                    | P> t  | [95% Conf. | Interval] |
| +                                | 000323              | 0000655                        | 4 93                               | 0 000 | 0001947    | 0004514   |
| emp_eau                          | 00472               | 0028911                        | 1 63                               | 0.000 | - 000947   | 0103869   |
| manager exp                      | 0001252             | .0001493                       | -0.84                              | 0.402 | 0004178    | .0001675  |
| new org str                      | .0064416            | .003915                        | 1.65                               | 0.100 | 0012323    | .0141154  |
| new prod s~v                     | .0137579            | .0033398                       | 4.12                               | 0.000 | .0072114   | .0203044  |
| new methods                      | 0002046             | .0045059                       | -0.05                              | 0.964 | 0090369    | .0086276  |
| location                         | .0087067            | .0039093                       | 2.23                               | 0.026 | .0010439   | .0163696  |
| lnsize                           | .0167209            | .0070617                       | 2.37                               | 0.018 | .0028789   | .0305629  |
| lnsize sar                       | .0003631            | .0009235                       | 0.39                               | 0.694 | 001447     | .0021733  |
| lnage                            | .0063011            | .0077683                       | 0.81                               | 0.417 | 0089259    | .0215281  |
| lnage sgr                        | 0011189             | .0015678                       | -0.71                              | 0.475 | 0041921    | .0019543  |
| foreign du~y                     | .02776              | .0051452                       | 5.40                               | 0.000 | .0176747   | .0378453  |
| state dummy                      | 0149761             | .0124883                       | -1.20                              | 0.230 | 0394548    | .0095026  |
| credit                           | .0198087            | .0027135                       | 7.30                               | 0.000 | .0144898   | .0251276  |
| low mlow t~h                     | .0377807            | .0028846                       | 13.10                              | 0.000 | .0321264   | .043435   |
| mhigh tech                       | .0572824            | .0037056                       | 15.46                              | 0.000 | .0500189   | .0645458  |
| high tech                        | .0560235            | .0066013                       | 8.49                               | 0.000 | .043084    | .068963   |
| dcountry1                        | .0550678            | .0098534                       | 5.59                               | 0.000 | .0357539   | .0743818  |
| dcountry2                        | .0576934            | .0075439                       | 7.65                               | 0.000 | .0429063   | .0724806  |
| dcountry3                        | .0142544            | .0104463                       | 1.36                               | 0.172 | 0062218    | .0347305  |
| dcountry4                        | 0071566             | .012118                        | -0.59                              | 0.555 | 0309096    | .0165965  |
| dcountry5                        | .0789219            | .0049983                       | 15.79                              | 0.000 | .0691246   | .0887192  |
| dcountry6                        | .0114172            | .0062127                       | 1.84                               | 0.066 | 0007605    | .0235949  |
| dcountry7                        | 0002774             | .010622                        | -0.03                              | 0.979 | 0210979    | .0205431  |
| dcountry9                        | .0556046            | .0072578                       | 7.66                               | 0.000 | .0413783   | .069831   |
| dcountry10                       | .0620182            | .0060168                       | 10.31                              | 0.000 | .0502244   | .073812   |
| dcountry11                       | .0919824            | .0064792                       | 14.20                              | 0.000 | .0792823   | .1046826  |
| dcountry12                       | 0410226             | .0115548                       | -3.55                              | 0.000 | 0636716    | 0183736   |

| dcountry13    | .0326192 | .0093465    | 3.49       | 0.000    | .0142988      | .0509396       |
|---------------|----------|-------------|------------|----------|---------------|----------------|
| dcountry14    | .0727057 | .0070219    | 10.35      | 0.000    | .0589417      | .0864696       |
| dcountry15    | 0447997  | .0180034    | -2.49      | 0.013    | 0800889       | 0095105        |
| dcountry16    | .0779943 | .0072555    | 10.75      | 0.000    | .0637724      | .0922161       |
| dcountry17    | .0064922 | .0096569    | 0.67       | 0.501    | 0124367       | .0254212       |
| dcountry18    | .0184553 | .0110264    | 1.67       | 0.094    | 003158        | .0400686       |
| dcountry19    | 020591   | .0125199    | -1.64      | 0.100    | 0451316       | .0039497       |
| dcountry20    | .0999315 | .007164     | 13.95      | 0.000    | .0858891      | .1139739       |
| dcountry21    | .0617405 | .0096412    | 6.40       | 0.000    | .0428423      | .0806386       |
| dcountry22    | .122823  | .0148885    | 8.25       | 0.000    | .0936394      | .1520065       |
| dcountry23    | .0522269 | .0090813    | 5.75       | 0.000    | .0344263      | .0700275       |
| dcountry24    | .0953119 | .0072961    | 13.06      | 0.000    | .0810106      | .1096132       |
| dcountry25    | .0871616 | .0074867    | 11.64      | 0.000    | .0724866      | .1018366       |
| dcountry26    | .0767276 | .0123598    | 6.21       | 0.000    | .0525007      | .1009545       |
| dcountry27    | .1505079 | .0089821    | 16.76      | 0.000    | .1329017      | .168114        |
| dcountry28    | .0631225 | .007491     | 8.43       | 0.000    | .0484392      | .0778058       |
| dcountry29    | .0897366 | .0064394    | 13.94      | 0.000    | .0771145      | .1023588       |
| dcountry30    | .0441381 | .0146761    | 3.01       | 0.003    | .015371       | .0729052       |
| _cons         | 2813399  | .0177532    | -15.85     | 0.000    | 3161386       | 2465411        |
| /sigma        | .0950012 | .0010073    |            |          | .0930268      | .0969756       |
| Obs. summarv: | 11804    | left-censo  | ored obset | rvations | at exp sh~vEA | A40<=0         |
| 2             | 1906     | uncenso     | ored obset | rvations | ·             |                |
|               | 1        | right-censo | ored obset | rvation  | at exp sh~yEA | A40>=2.7831056 |

### Table A6.7.4 Tobit Model - CEECs estimated results (exp\_share\_industryEA40)

| tobit exp_share_industryEA40 emp_edu emp_trng manager_exp new_org_str new_prod_serv |                                                 |              |           |                      |                |                |     |  |  |  |  |
|-------------------------------------------------------------------------------------|-------------------------------------------------|--------------|-----------|----------------------|----------------|----------------|-----|--|--|--|--|
| credit low ml                                                                       | ow tech mhio                                    | h tech high  | tech dc   | age_sqr<br>ountrv1-c | dcountry7 dcou | intrv9-dcountr | v30 |  |  |  |  |
| if CEEC dummy=                                                                      | =1, 11 ul vce                                   | (robust) nol | Log       | 0 41102 / 2 0        | accuncty, acc  |                | 100 |  |  |  |  |
| note: dcountry                                                                      | note: dcountry2 omitted because of collinearity |              |           |                      |                |                |     |  |  |  |  |
| note: dcountry3 omitted because of collinearity                                     |                                                 |              |           |                      |                |                |     |  |  |  |  |
| note: dcountry4 omitted because of collinearity                                     |                                                 |              |           |                      |                |                |     |  |  |  |  |
| note: dcountry5 omitted because of collinearity                                     |                                                 |              |           |                      |                |                |     |  |  |  |  |
| note: dcountry                                                                      | v6 omitted bec                                  | ause of coll | linearity |                      |                |                |     |  |  |  |  |
| note: dcountry                                                                      | 7 omitted bec                                   | ause of coll | linearity |                      |                |                |     |  |  |  |  |
| note: dcountry                                                                      | 12 omitted be                                   | cause of col | llinearit | У                    |                |                |     |  |  |  |  |
| note: dcountry                                                                      | v13 omitted be                                  | cause of col | llinearit | У                    |                |                |     |  |  |  |  |
| note: dcountry                                                                      | 15 omitted be                                   | cause of col | llinearit | У                    |                |                |     |  |  |  |  |
| note: dcountry                                                                      | /l/ omitted be                                  | cause of col | llinearit | У                    |                |                |     |  |  |  |  |
| note: dcountry                                                                      | $r_{10}$ omitted be                             | cause of col | llinearit | У                    |                |                |     |  |  |  |  |
| note: dcountry                                                                      | 719 OMILLED De                                  | cause of col | llinearit | Y                    |                |                |     |  |  |  |  |
| note. acountry                                                                      | 50 ONITCLEA DE                                  | cause of col | LIINEALIC | У                    |                |                |     |  |  |  |  |
| Tobit regressi                                                                      | on                                              |              |           | Number               | c of obs =     | 4720           |     |  |  |  |  |
| 5                                                                                   |                                                 |              |           | F( 33                | 3, 4687) =     | 41.10          |     |  |  |  |  |
|                                                                                     |                                                 |              |           | Prob >               | > F =          | 0.0000         |     |  |  |  |  |
| Log pseudolike                                                                      | = -134                                          | .40246       |           | Pseudo               | o R2 =         | 0.7043         |     |  |  |  |  |
|                                                                                     |                                                 |              |           |                      |                |                |     |  |  |  |  |
|                                                                                     |                                                 | Robust.      |           |                      |                |                |     |  |  |  |  |
| exp sh~vEA40                                                                        | Coef.                                           | Std. Err.    | t         | P> t                 | [95% Conf.     | Interval]      |     |  |  |  |  |
| +                                                                                   |                                                 |              |           |                      |                |                |     |  |  |  |  |
| emp_edu                                                                             | .0003865                                        | .0001096     | 3.53      | 0.000                | .0001716       | .0006014       |     |  |  |  |  |
| emp_trng                                                                            | 0044988                                         | .0050389     | -0.89     | 0.372                | 0143774        | .0053798       |     |  |  |  |  |
| manager_exp                                                                         | 0002216                                         | .0002363     | -0.94     | 0.348                | 0006849        | .0002417       |     |  |  |  |  |
| new_org_str                                                                         | .011477                                         | .0057928     | 1.98      | 0.048                | .0001204       | .0228336       |     |  |  |  |  |
| new_prod_s~v                                                                        | .015488                                         | .0050095     | 3.09      | 0.002                | .0056671       | .0253089       |     |  |  |  |  |
| newmethods                                                                          | .0094421                                        | .0071799     | 1.32      | 0.189                | 004634         | .0235182       |     |  |  |  |  |

| location        | .0203201  | .0057138    | 3.56      | 0.000    | .0091184      | .0315218      |
|-----------------|-----------|-------------|-----------|----------|---------------|---------------|
| lnsize          | .0174494  | .0147568    | 1.18      | 0.237    | 0114808       | .0463796      |
| lnsize sqr      | .0004086  | .0020835    | 0.20      | 0.845    | 0036761       | .0044934      |
| lnage           | .0042691  | .013069     | 0.33      | 0.744    | 0213522       | 0298904       |
|                 | - 0012806 | 0024841     | -0.52     | 0 606    | - 0061507     | 0035894       |
| forming dury    | 0220251   | .0024041    | 4 20      | 0.000    | 0102700       | 0477015       |
| ioreign_du~y    | .0330331  | .0075289    | 4.39      | 0.000    | .0102/00      | .04//913      |
| state_dummy     | 0266572   | .0363078    | -0.73     | 0.463    | 09/83/5       | .0445232      |
| credit          | .0245357  | .0045865    | 5.35      | 0.000    | .015544       | .0335273      |
| low_mlow_t~h    | .0549707  | .0046199    | 11.90     | 0.000    | .0459136      | .0640278      |
| mhigh_tech      | .0664297  | .006139     | 10.82     | 0.000    | .0543945      | .078465       |
| high tech       | .0493743  | .0106922    | 4.62      | 0.000    | .0284126      | .070336       |
| dcountry1       | .0069257  | .0205598    | 0.34      | 0.736    | 0333812       | .0472326      |
| dcountry2       | (omitted) |             |           |          |               |               |
| dcountry3       | (omitted) |             |           |          |               |               |
| dcountry        | (omittod) |             |           |          |               |               |
| dcountry4       | (omitted) |             |           |          |               |               |
| acountry5       | (omitted) |             |           |          |               |               |
| dcountry6       | (omitted) |             |           |          |               |               |
| dcountry7       | (omitted) |             |           |          |               |               |
| dcountry9       | .0172215  | .0192197    | 0.90      | 0.370    | 0204581       | .0549011      |
| dcountry10      | .0227597  | .0183313    | 1.24      | 0.214    | 0131783       | .0586976      |
| dcountry11      | .0591845  | .0184425    | 3.21      | 0.001    | .0230285      | .0953404      |
| dcountry12      | (omitted) |             |           |          |               |               |
| dcountrv13      | (omitted) |             |           |          |               |               |
| dcountry14      | 0378957   | 0187988     | 2 02      | 0 044    | 0010413       | 0747502       |
| dcountry15      | (omittod) | .010/900    | 2.02      | 0.011    | .0010113      | .0717302      |
| dcountry15      |           | 0100/02     | 2 1 2     | 0 0 2 4  | 0020669       | 0760720       |
| dcountry16      | .0400203  | .0100495    | 2.12      | 0.034    | .0030666      | .0709730      |
| acountry17      | (omitted) |             |           |          |               |               |
| dcountry18      | (omitted) |             |           |          |               |               |
| dcountry19      | (omitted) |             |           |          |               |               |
| dcountry20      | .0677503  | .0187805    | 3.61      | 0.000    | .0309316      | .1045689      |
| dcountry21      | .0174913  | .0204371    | 0.86      | 0.392    | 022575        | .0575577      |
| dcountry22      | .0953556  | .0229127    | 4.16      | 0.000    | .0504359      | .1402752      |
| dcountry23      | .0099697  | .0199053    | 0.50      | 0.616    | 0290541       | .0489935      |
| dcountrv24      | .0602668  | .0189231    | 3.18      | 0.001    | .0231688      | .0973649      |
| $d_{count}ry25$ | 0520565   | 0191285     | 2 72      | 0 007    | 0145556       | 0895574       |
| dcountry26      | 0414101   | 0210355     | 1 89      | 0.059    | - 0015938     | 0844141       |
| decountry20     | 1201050   | 0106052     | £ 61      | 0.000    | 0015730       | 1697070       |
|                 | .1301039  | .0196955    | 0.01      | 0.000    | .0913730      | .100/9/9      |
| acountry28      | .U263816  | .0191253    | 1.38      | 0.168    | 011113        | .0038/62      |
| acountry29      | .05/9011  | .0184/92    | 3.13      | 0.002    | .0216/31      | .0941291      |
| dcountry30      | (omitted) |             |           |          |               |               |
| _cons           | 2761549   | .0336041    | -8.22     | 0.000    | 3420348       | 210275        |
| /sigma          | .1169155  | .0024827    |           |          | .1120482      | .1217829      |
| Obs. summary:   | 3613      | left-censc  | red obse: | rvations | at exp sh~yEA | <u> </u>      |
| -               | 1106      | uncenso     | red obset | rvations |               |               |
|                 | 1         | right-censo | red obset | rvation  | at exp sh~vEA | 40>=2.7831056 |
|                 |           |             |           |          | <u> </u>      |               |

#### Table A6.7.5 Tobit Model - CIS estimated results (exp\_share\_industryEA40)

. tobit exp\_share\_industryEA40 emp\_edu emp\_trng manager\_exp new\_org\_str new\_prod\_serv new\_methods location lnsize lnsize\_sqr lnage lnage\_sqr foreign\_dummy state\_dummy credit low\_mlow\_tech mhigh\_tech high\_tech dcountry1-dcountry7 dcountry9-dcountry30 if CEEC\_dummy==0, ll ul vce(robust) nolog note: dcountry1 omitted because of collinearity note: dcountry9 omitted because of collinearity note: dcountry10 omitted because of collinearity note: dcountry11 omitted because of collinearity

| note: dcountry<br>note: dcountry | y14 omitted be<br>y16 omitted be<br>y20 omitted be<br>y21 omitted be<br>y22 omitted be<br>y23 omitted be<br>y24 omitted be<br>y26 omitted be<br>y27 omitted be<br>y28 omitted be<br>y29 omitted be<br>y30 omitted be | cause of co<br>cause of co | llinearit<br>llinearit<br>llinearit<br>llinearit<br>llinearit<br>llinearit<br>llinearit<br>llinearit<br>llinearit<br>llinearit | y<br>y<br>y<br>y<br>y<br>y<br>y<br>y<br>y<br>y<br>y<br>y<br>y<br>y<br>y<br>y<br>y<br>y<br>y | r of obs =                              | 8991                                    |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|--|
| Log pseudolike                                                                                                                                                                                                                                                             | elihood = 205                                                                                                                                                                                                        | 5.00306                                                                                                                                                                                                                       |                                                                                                                                | F( 2<br>Prob<br>Pseud                                                                       | 9, 8962) =<br>> F =<br>o R2 =           | 53.44<br>0.0000<br>1.7119               |  |
|                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                      |                                                                                                                                                                                                                               |                                                                                                                                |                                                                                             |                                         |                                         |  |
| exp_sh~yEA40                                                                                                                                                                                                                                                               | Coef.                                                                                                                                                                                                                | Robust<br>Std. Err.                                                                                                                                                                                                           | t                                                                                                                              | P> t                                                                                        | [95% Conf.                              | Interval]                               |  |
|                                                                                                                                                                                                                                                                            | +                                                                                                                                                                                                                    | 0000255                                                                                                                                                                                                                       | E 0.4                                                                                                                          |                                                                                             |                                         | 0002765                                 |  |
| emp_edu                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                      | .0000355                                                                                                                                                                                                                      | 3.84                                                                                                                           | 0.000                                                                                       | .00013/4                                | .0002765                                |  |
| emp_cring                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                      | .0019010                                                                                                                                                                                                                      | -0.99                                                                                                                          | 0.000                                                                                       | - 0002473                               | .0109377                                |  |
| new org str                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                      | .0000871                                                                                                                                                                                                                      | -0.99                                                                                                                          | 0.321                                                                                       | 0002572                                 | .0000843                                |  |
| new prod s~v                                                                                                                                                                                                                                                               | 0057646                                                                                                                                                                                                              | 0024728                                                                                                                                                                                                                       | 2.20                                                                                                                           | 0.020                                                                                       | 0009174                                 | 0106117                                 |  |
| new methods                                                                                                                                                                                                                                                                | 0055633                                                                                                                                                                                                              | .0028732                                                                                                                                                                                                                      | -1.94                                                                                                                          | 0.053                                                                                       | 0111955                                 | .0000688                                |  |
| location                                                                                                                                                                                                                                                                   | 0042069                                                                                                                                                                                                              | .002877                                                                                                                                                                                                                       | -1.46                                                                                                                          | 0.144                                                                                       | 0098464                                 | .0014326                                |  |
| Insize                                                                                                                                                                                                                                                                     | .0146043                                                                                                                                                                                                             | .0029593                                                                                                                                                                                                                      | 4.93                                                                                                                           | 0.000                                                                                       | .0088033                                | .0204053                                |  |
| lnsize sar                                                                                                                                                                                                                                                                 | 0003244                                                                                                                                                                                                              | .000344                                                                                                                                                                                                                       | -0.94                                                                                                                          | 0.346                                                                                       | 0009986                                 | .0003498                                |  |
| lnage                                                                                                                                                                                                                                                                      | 0037247                                                                                                                                                                                                              | .0051718                                                                                                                                                                                                                      | 0.72                                                                                                                           | 0.471                                                                                       | 0064132                                 | .0138627                                |  |
| lnage sgr                                                                                                                                                                                                                                                                  | 0004679                                                                                                                                                                                                              | .0009956                                                                                                                                                                                                                      | -0.47                                                                                                                          | 0.638                                                                                       | 0024195                                 | .0014837                                |  |
| foreign du~v                                                                                                                                                                                                                                                               | 0194927                                                                                                                                                                                                              | 0045422                                                                                                                                                                                                                       | 4 29                                                                                                                           | 0 000                                                                                       | 010589                                  | 0283964                                 |  |
| state dummy                                                                                                                                                                                                                                                                | -0103103                                                                                                                                                                                                             | 0070993                                                                                                                                                                                                                       | -1 45                                                                                                                          | 0 146                                                                                       | - 0242266                               | 0036059                                 |  |
| credit                                                                                                                                                                                                                                                                     | 011547                                                                                                                                                                                                               | 0018516                                                                                                                                                                                                                       | 6 24                                                                                                                           | 0 000                                                                                       | 0079175                                 | 0151766                                 |  |
| low mlow t~h                                                                                                                                                                                                                                                               | 0156464                                                                                                                                                                                                              | 0023885                                                                                                                                                                                                                       | 6 55                                                                                                                           | 0 000                                                                                       | 0109643                                 | 0203284                                 |  |
| mhigh tech                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                      | 0023003                                                                                                                                                                                                                       | 10 57                                                                                                                          | 0.000                                                                                       | 024785                                  | 0360756                                 |  |
| high tech                                                                                                                                                                                                                                                                  | 0333908                                                                                                                                                                                                              | 004644                                                                                                                                                                                                                        | 7 19                                                                                                                           | 0.000                                                                                       | 0242875                                 | 042494                                  |  |
| dcountry1                                                                                                                                                                                                                                                                  | (omitted)                                                                                                                                                                                                            | .001011                                                                                                                                                                                                                       | 1.19                                                                                                                           | 0.000                                                                                       | .0242075                                | .012101                                 |  |
| dcountry?                                                                                                                                                                                                                                                                  | 0326498                                                                                                                                                                                                              | 0042014                                                                                                                                                                                                                       | 7 77                                                                                                                           | 0 000                                                                                       | 0244141                                 | 0408855                                 |  |
| dcountry3                                                                                                                                                                                                                                                                  | 0110373                                                                                                                                                                                                              | 005651                                                                                                                                                                                                                        | 1 95                                                                                                                           | 0.051                                                                                       | - 0000401                               | 0221146                                 |  |
| dcountry4                                                                                                                                                                                                                                                                  | -0016969                                                                                                                                                                                                             | 0064703                                                                                                                                                                                                                       | -0.26                                                                                                                          | 0 793                                                                                       | - 0143802                               | 0109863                                 |  |
| dcountry5                                                                                                                                                                                                                                                                  | 0433702                                                                                                                                                                                                              | 0028348                                                                                                                                                                                                                       | 15 30                                                                                                                          | 0 000                                                                                       | 0378133                                 | 0489272                                 |  |
| dcountry6                                                                                                                                                                                                                                                                  | 0075572                                                                                                                                                                                                              | 0032952                                                                                                                                                                                                                       | 2 29                                                                                                                           | 0.022                                                                                       | 0010979                                 | 0140165                                 |  |
| dcountry7                                                                                                                                                                                                                                                                  | 0003472                                                                                                                                                                                                              | .0060022                                                                                                                                                                                                                      | 0 06                                                                                                                           | 0.954                                                                                       | 0114185                                 | .0121129                                |  |
| dcountry9                                                                                                                                                                                                                                                                  | (omitted)                                                                                                                                                                                                            |                                                                                                                                                                                                                               | 0.00                                                                                                                           | 0.001                                                                                       | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • |  |
| dcountrv10                                                                                                                                                                                                                                                                 | (omitted)                                                                                                                                                                                                            |                                                                                                                                                                                                                               |                                                                                                                                |                                                                                             |                                         |                                         |  |
| dcountry11                                                                                                                                                                                                                                                                 | (omitted)                                                                                                                                                                                                            |                                                                                                                                                                                                                               |                                                                                                                                |                                                                                             |                                         |                                         |  |
| dcount.rv12                                                                                                                                                                                                                                                                | 0240828                                                                                                                                                                                                              | .0060788                                                                                                                                                                                                                      | -3.96                                                                                                                          | 0.000                                                                                       | 0359987                                 | 012167                                  |  |
| dcountrv13                                                                                                                                                                                                                                                                 | .0212507                                                                                                                                                                                                             | .0050353                                                                                                                                                                                                                      | 4.22                                                                                                                           | 0.000                                                                                       | .0113803                                | .031121                                 |  |
| dcountrv14                                                                                                                                                                                                                                                                 | (omitted)                                                                                                                                                                                                            |                                                                                                                                                                                                                               |                                                                                                                                |                                                                                             |                                         |                                         |  |
| dcountrv15                                                                                                                                                                                                                                                                 | 0195634                                                                                                                                                                                                              | .0097196                                                                                                                                                                                                                      | -2.01                                                                                                                          | 0.044                                                                                       | 0386162                                 | 0005107                                 |  |
| dcountrv16                                                                                                                                                                                                                                                                 | (omitted)                                                                                                                                                                                                            |                                                                                                                                                                                                                               |                                                                                                                                |                                                                                             |                                         | · · ·                                   |  |
| dcountrv17                                                                                                                                                                                                                                                                 | .0081085                                                                                                                                                                                                             | .0054688                                                                                                                                                                                                                      | 1.48                                                                                                                           | 0.138                                                                                       | 0026115                                 | .0188285                                |  |
| dcountrv18                                                                                                                                                                                                                                                                 | .0139034                                                                                                                                                                                                             | .0062969                                                                                                                                                                                                                      | 2.21                                                                                                                           | 0.027                                                                                       | .0015601                                | .0262468                                |  |
| dcountrv19                                                                                                                                                                                                                                                                 | 0062268                                                                                                                                                                                                              | .0067415                                                                                                                                                                                                                      | -0.92                                                                                                                          | 0.356                                                                                       | 0194417                                 | .0069882                                |  |
| dcountrv20                                                                                                                                                                                                                                                                 | (omitted)                                                                                                                                                                                                            |                                                                                                                                                                                                                               |                                                                                                                                |                                                                                             |                                         |                                         |  |
| dcountrv21                                                                                                                                                                                                                                                                 | (omitted)                                                                                                                                                                                                            |                                                                                                                                                                                                                               |                                                                                                                                |                                                                                             |                                         |                                         |  |
| dcountrv22                                                                                                                                                                                                                                                                 | (omitted)                                                                                                                                                                                                            |                                                                                                                                                                                                                               |                                                                                                                                |                                                                                             |                                         |                                         |  |
| dcountrv23                                                                                                                                                                                                                                                                 | (omitted)                                                                                                                                                                                                            |                                                                                                                                                                                                                               |                                                                                                                                |                                                                                             |                                         |                                         |  |
| dcountry24                                                                                                                                                                                                                                                                 | (omitted)                                                                                                                                                                                                            |                                                                                                                                                                                                                               |                                                                                                                                |                                                                                             |                                         |                                         |  |

| dcountry25    | (omitted) |             |           |          |               |                |
|---------------|-----------|-------------|-----------|----------|---------------|----------------|
| dcountry26    | (omitted) |             |           |          |               |                |
| dcountry27    | (omitted) |             |           |          |               |                |
| dcountry28    | (omitted) |             |           |          |               |                |
| dcountry29    | (omitted) |             |           |          |               |                |
| dcountry30    | (omitted) |             |           |          |               |                |
| _cons         | 1636361   | .0086392    | -18.94    | 0.000    | 1805708       | 1467014        |
| +             |           |             |           |          |               |                |
| /sigma        | .0504779  | .0001625    |           |          | .0501592      | .0507965       |
| Obs summary.  | 91 Q1     | loft_cons   | arod obso | ruations | at ovo chave  | <br>♪↓∩∠−0     |
| obs. Summary. | 0191      | Terc-Cellso | red Obse  | Lvacions | at exp_SII~yE | A40<-0         |
|               | /99       | uncenso     | pred obse | rvations |               |                |
|               | 1         | right-censo | pred obse | rvation  | at exp_sh~yE  | A40>=1.2897083 |

#### Table A6.7.6 Tobit Model - Full sample estimated results (exp\_share\_totalEU28)

. tobit exp\_share\_totalEU28 emp\_edu emp\_trng manager\_exp new\_org\_str new\_prod\_serv new\_methods location lnsize lnsize\_sqr lnage lnage\_sqr foreign\_dummy state\_dummy credit low\_mlow\_tech mhigh\_tech high\_tech dcountry1-dcountry7 dcountry9-dcountry30, ll ul vce(robust) nolog

| Tobit regressi | on<br>lihood = 912 |                     | Numbe<br>F( 4<br>Prob<br>Pseud | er of obs =<br>16, 13665) =<br>> F =<br>10 R2 = | 13711<br>71.53<br>0.0000<br>-0.1528 |           |
|----------------|--------------------|---------------------|--------------------------------|-------------------------------------------------|-------------------------------------|-----------|
| exp_sh~lEU28   | Coef.              | Robust<br>Std. Err. | t                              | P> t                                            | [95% Conf.                          | Interval] |
| emp edu        | 2.45e-06           | 4.27e-07            | 5.74                           | 0.000                                           | 1.61e-06                            | 3.29e-06  |
| emp trng       | .0000439           | .0000208            | 2.11                           | 0.035                                           | 3.11e-06                            | .0000848  |
| manager exp    | 1.30e-06           | 1.62e-06            | 0.80                           | 0.423                                           | -1.88e-06                           | 4.47e-06  |
| new_org_str    | .0000901           | .0000273            | 3.30                           | 0.001                                           | .0000366                            | .0001436  |
| new_prod_s~v   | .0000724           | .0000334            | 2.17                           | 0.030                                           | 6.90e-06                            | .0001379  |
| new_methods    | 0000121            | .000034             | -0.36                          | 0.722                                           | 0000787                             | .0000546  |
| location       | .0000309           | .0000306            | 1.01                           | 0.313                                           | 0000291                             | .0000908  |
| lnsize         | 0000169            | .0000666            | -0.25                          | 0.800                                           | 0001474                             | .0001137  |
| lnsize sqr     | .0000256           | 9.03e-06            | 2.83                           | 0.005                                           | 7.86e-06                            | .0000433  |
| lnage          | .0000692           | .0000668            | 1.04                           | 0.300                                           | 0000616                             | .0002001  |
| lnage sqr      | 0000146            | .0000143            | -1.02                          | 0.309                                           | 0000427                             | .0000135  |
| foreign du~y   | .0002607           | .0000557            | 4.68                           | 0.000                                           | .0001516                            | .0003699  |
| state dummy    | 0001531            | .0001201            | -1.28                          | 0.202                                           | 0003885                             | .0000822  |
| credit         | .0001441           | .0000229            | 6.29                           | 0.000                                           | .0000992                            | .0001889  |
| low mlow t~h   | .000354            | .0000284            | 12.47                          | 0.000                                           | .0002983                            | .0004096  |
| mhigh tech     | .0005351           | .0000355            | 15.08                          | 0.000                                           | .0004656                            | .0006046  |
| high tech      | .0004906           | .0000523            | 9.38                           | 0.000                                           | .000388                             | .0005931  |
| dcountry1      | .0004479           | .000075             | 5.97                           | 0.000                                           | .0003008                            | .0005949  |
| dcountry2      | .0004484           | .0000611            | 7.34                           | 0.000                                           | .0003286                            | .0005681  |
| dcountry3      | .0001403           | .0000808            | 1.74                           | 0.082                                           | 000018                              | .0002986  |
| dcountry4      | 0000316            | .0000943            | -0.33                          | 0.738                                           | 0002164                             | .0001533  |
| dcountry5      | .0006438           | .0000433            | 14.86                          | 0.000                                           | .0005589                            | .0007287  |
| dcountry6      | .0000707           | .0000483            | 1.46                           | 0.144                                           | 0000241                             | .0001655  |
| dcountry7      | .0000192           | .0000903            | 0.21                           | 0.832                                           | 0001579                             | .0001963  |
| dcountry9      | .000436            | .0000589            | 7.40                           | 0.000                                           | .0003205                            | .0005515  |
| dcountry10     | .000582            | .0000858            | 6.78                           | 0.000                                           | .0004139                            | .0007502  |
| dcountry11     | .0007218           | .0000538            | 13.42                          | 0.000                                           | .0006164                            | .0008272  |
| dcountry12     | 0002976            | .000096             | -3.10                          | 0.002                                           | 0004856                             | 0001095   |
| dcountry13     | .000283            | .000073             | 3.88                           | 0.000                                           | .00014                              | .000426   |
| dcountry14     | .0005757           | .0000554            | 10.39                          | 0.000                                           | .000467                             | .0006843  |
| dcountrv15     | 0003087            | .0001367            | -2.26                          | 0.024                                           | 0005767                             | 0000407   |

| dcountry16    | 0006046       | 0000568     | 10 64      | 0 000    | 0004932       | 0007159        |
|---------------|---------------|-------------|------------|----------|---------------|----------------|
| dcountry17    | 0000786       | 0000759     | 1 04       | 0 300    | - 0000701     | 0002273        |
| dcountry18    | 0001469       | 0000851     | 1 73       | 0 084    | - 00002       | 0003137        |
| dcountry19    | - 0001323     | 0000962     | -1 38      | 0 169    | - 000321      | 0000563        |
| dcountry20    | .0007937      | .0000565    | 14.04      | 0.000    | .0006829      | .0009046       |
| dcountrv21    | .0004915      | .0000737    | 6.67       | 0.000    | .0003471      | .000636        |
| dcountry22    | .0007798      | .0000554    | 14.08      | 0.000    | .0006712      | .0008884       |
| dcountry23    | .0004338      | .0000721    | 6.01       | 0.000    | .0002924      | .0005751       |
| dcountry24    | .0007331      | .0000582    | 12.60      | 0.000    | .0006191      | .0008471       |
| dcountry25    | .0007008      | .0000587    | 11.94      | 0.000    | .0005858      | .0008159       |
| dcountry26    | .0005231      | .0000689    | 7.59       | 0.000    | .000388       | .0006582       |
| dcountry27    | .0011446      | .000071     | 16.12      | 0.000    | .0010054      | .0012837       |
| dcountry28    | .000482       | .0000594    | 8.12       | 0.000    | .0003656      | .0005984       |
| dcountry29    | .0007179      | .0000528    | 13.60      | 0.000    | .0006145      | .0008214       |
| dcountry30    | .0003621      | .000114     | 3.18       | 0.001    | .0001386      | .0005856       |
| _cons         | 00202         | .0001644    | -12.29     | 0.000    | 0023422       | 0016978        |
| /sigma        | .0007084      | .0000135    |            |          | .000682       | .0007348       |
| Obs. summary: | 11804<br>1906 | left-censo  | ored obset | rvations | at exp_sh~lEU | J28<=0         |
|               | 1900          | right-censo | ored obsei | rvation  | at exp sh~lEU | J28>=.01620722 |

#### Table A6.7.7 Tobit Model - Full sample estimated results (exp\_share\_totalEA40)

tobit exp\_share\_totalEA40 emp\_edu emp\_trng manager\_exp new\_org\_str new\_prod\_serv new\_methods location lnsize lnsize\_sqr lnage lnage\_sqr foreign\_dummy state\_dummy credit low\_mlow\_tech mhigh\_tech high\_tech dcountry1-dcountry7 dcountry9-dcountry30, ll ul vce(robust) nolog

| Tobit regressi<br>Log pseudolike | obit regression<br>og pseudolikelihood = 7169.7945<br>Robust |                     |       |       | Number of obs =<br>F( 46, 13665) =<br>Prob > F =<br>Pseudo R2 = |           |  |  |
|----------------------------------|--------------------------------------------------------------|---------------------|-------|-------|-----------------------------------------------------------------|-----------|--|--|
| exp_sh~lEA40                     | Coef.                                                        | Robust<br>Std. Err. | t     | P> t  | [95% Conf.                                                      | Interval] |  |  |
| +                                | 7 160-06                                                     | 1 090-06            | 6 55  |       | 5 020-06                                                        | 0.210-06  |  |  |
| emp_eau                          | 0001927                                                      | 0000569             | 3 39  | 0.000 | 0000813                                                         | 0003042   |  |  |
| manager exp                      | 8 40e-06                                                     | 4 260-06            | 1 97  | 0.001 | 3 750-08                                                        | 0000168   |  |  |
| new org str                      | .0002786                                                     | .0000906            | 3.08  | 0.002 | .000101                                                         | .0004561  |  |  |
| new prod s~v                     | .0001945                                                     | .0000833            | 2.34  | 0.020 | .0000312                                                        | .0003578  |  |  |
| new methods                      | 0000677                                                      | .0000734            | -0.92 | 0.357 | 0002116                                                         | .0000763  |  |  |
| location                         | 0000123                                                      | .0000698            | -0.18 | 0.860 | 0001492                                                         | .0001245  |  |  |
| lnsize                           | 0000993                                                      | .0001242            | -0.80 | 0.424 | 0003428                                                         | .0001441  |  |  |
| lnsize sqr                       | .0000785                                                     | .0000164            | 4.78  | 0.000 | .0000463                                                        | .0001107  |  |  |
| lnage                            | .0002099                                                     | .0001759            | 1.19  | 0.233 | 0001349                                                         | .0005547  |  |  |
| lnage sqr                        | 0000436                                                      | .0000365            | -1.19 | 0.232 | 0001151                                                         | .000028   |  |  |
| foreign du~y                     | .0006105                                                     | .0001052            | 5.80  | 0.000 | .0004042                                                        | .0008168  |  |  |
| state dummy                      | 0006144                                                      | .0003046            | -2.02 | 0.044 | 0012116                                                         | 0000173   |  |  |
| credit                           | .0003727                                                     | .0000659            | 5.65  | 0.000 | .0002435                                                        | .0005019  |  |  |
| low mlow t~h                     | .0009572                                                     | .0000658            | 14.55 | 0.000 | .0008283                                                        | .0010862  |  |  |
| mhigh tech                       | .0016089                                                     | .0001343            | 11.98 | 0.000 | .0013457                                                        | .001872   |  |  |
| high_tech                        | .0013558                                                     | .0001384            | 9.79  | 0.000 | .0010844                                                        | .0016271  |  |  |
| dcountry1                        | .0014232                                                     | .0002009            | 7.08  | 0.000 | .0010293                                                        | .0018171  |  |  |
| dcountry2                        | .001413                                                      | .0001679            | 8.42  | 0.000 | .001084                                                         | .0017421  |  |  |
| dcountry3                        | .0005487                                                     | .0002278            | 2.41  | 0.016 | .000102                                                         | .0009953  |  |  |
| dcountry4                        | .0000439                                                     | .0002658            | 0.17  | 0.869 | 000477                                                          | .0005649  |  |  |
| dcountry5                        | .0021829                                                     | .0001352            | 16.15 | 0.000 | .001918                                                         | .0024478  |  |  |

| dcountrv6                                                                                                                                                    | .0003125 | .0001324 | 2.36   | 0.018 | .000053   | .0005721 |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|--------|-------|-----------|----------|--|
| dcountrv7                                                                                                                                                    | .0001102 | .0002467 | 0.45   | 0.655 | 0003733   | .0005938 |  |
| dcountrv9                                                                                                                                                    | .0012788 | .000161  | 7.94   | 0.000 | .0009632  | .0015944 |  |
| dcountrv10                                                                                                                                                   | .0015237 | .0001509 | 10.09  | 0.000 | .0012278  | .0018196 |  |
| dcountrv11                                                                                                                                                   | .0021604 | .0001434 | 15.06  | 0.000 | .0018793  | .0024416 |  |
| dcountrv12                                                                                                                                                   | 0008531  | .0002615 | -3.26  | 0.001 | 0013656   | 0003406  |  |
| dcountrv13                                                                                                                                                   | .0009613 | .0002008 | 4.79   | 0.000 | .0005676  | .0013549 |  |
| dcountrv14                                                                                                                                                   | .0017207 | .0001544 | 11.14  | 0.000 | .001418   | .0020234 |  |
| dcountrv15                                                                                                                                                   | 0007299  | .0003837 | -1.90  | 0.057 | 001482    | .0000222 |  |
| dcountrv16                                                                                                                                                   | .0018049 | .0001611 | 11.21  | 0.000 | .0014892  | .0021206 |  |
| dcountry17                                                                                                                                                   | .0004057 | .0002091 | 1.94   | 0.052 | -4.19e-06 | .0008156 |  |
| dcountry18                                                                                                                                                   | .0005146 | .0002343 | 2.20   | 0.028 | .0000553  | .0009738 |  |
| dcountry19                                                                                                                                                   | 0002001  | .0002707 | -0.74  | 0.460 | 0007307   | .0003305 |  |
| dcountry20                                                                                                                                                   | .0023383 | .0001558 | 15.01  | 0.000 | .0020329  | .0026437 |  |
| dcountry21                                                                                                                                                   | .0014902 | .0002089 | 7.13   | 0.000 | .0010807  | .0018996 |  |
| dcountry22                                                                                                                                                   | .0025249 | .0001767 | 14.29  | 0.000 | .0021784  | .0028713 |  |
| dcountry23                                                                                                                                                   | .0012415 | .0002021 | 6.14   | 0.000 | .0008454  | .0016376 |  |
| dcountry24                                                                                                                                                   | .0021852 | .0001611 | 13.56  | 0.000 | .0018694  | .0025009 |  |
| dcountry25                                                                                                                                                   | .0020638 | .0001621 | 12.73  | 0.000 | .001746   | .0023816 |  |
| dcountry26                                                                                                                                                   | .0017114 | .0002041 | 8.38   | 0.000 | .0013112  | .0021116 |  |
| dcountry27                                                                                                                                                   | .0029164 | .0001619 | 18.01  | 0.000 | .002599   | .0032338 |  |
| dcountry28                                                                                                                                                   | .0014042 | .0001662 | 8.45   | 0.000 | .0010785  | .00173   |  |
| dcountry29                                                                                                                                                   | .0020566 | .0001433 | 14.35  | 0.000 | .0017757  | .0023375 |  |
| dcountry30                                                                                                                                                   | .0011452 | .0003207 | 3.57   | 0.000 | .0005167  | .0017738 |  |
| _cons                                                                                                                                                        | 0058208  | .0003132 | -18.59 | 0.000 | 0064346   | 005207   |  |
| +-<br>/sigma                                                                                                                                                 | .0020043 | .000019  |        |       | .0019671  | .0020415 |  |
| Obs. summary: 11804 left-censored observations at exp_sh~lEA40<=0<br>1906 uncensored observations<br>1 right-censored observation at exp_sh~lEA40>=.04731133 |          |          |        |       |           |          |  |

#### **Fractional Logit Model**

## Table A6.8 Fractional Logit Model - Full sample estimated results(exp\_share\_industryEU28)

glm exp\_share\_industryEU28prp emp\_edu emp\_trng manager\_exp new\_org\_str new\_prod\_serv new\_methods location lnsize lnsize\_sqr lnage lnage\_sqr foreign\_dummy state\_dummy credit low\_mlow\_tech mhigh\_tech high\_tech dcountry1-dcountry7 dcountry9-dcountry30, family(binomial) link (logit) vce(robust) nolog note: exp\_share\_industryEU28prp has noninteger values

| Generalized li<br>Optimization                                                               | inear models<br>: ML  |                      |               | No. o<br>Resid            | f obs =<br>ual df =         | = 13711<br>= 13664  |  |  |
|----------------------------------------------------------------------------------------------|-----------------------|----------------------|---------------|---------------------------|-----------------------------|---------------------|--|--|
| Deviance<br>Pearson                                                                          | = .536468<br>= 6.4669 | 39611<br>93427       |               | (1/df<br>(1/df            | ) Deviance =<br>) Pearson = | 0000393<br>0004733  |  |  |
| Variance function: $V(u) = u^*(1-u/1)$ [Binomial]Link function: $g(u) = ln(u/(1-u))$ [Logit] |                       |                      |               |                           |                             |                     |  |  |
| Log pseudolike                                                                               |                       | AIC<br>BIC           | =             | = .0069758<br>= -130162.1 |                             |                     |  |  |
| exp~yEU28prp                                                                                 | Coef.                 | Robust<br>Std. Err.  | Z             | P> z                      | [95% Conf.                  | Interval]           |  |  |
| emp_edu<br>emp_trng                                                                          | .017534<br>  .3187703 | .0175228<br>.3563888 | 1.00<br>-0.89 | 0.317<br>0.371            | 01681<br>-1.01728           | .051878<br>.3797389 |  |  |

| manager exp  | 0482272   | .0448921 | -1.07 | 0.283 | 1362141   | .0397596  |  |
|--------------|-----------|----------|-------|-------|-----------|-----------|--|
| new org str  | 1.446875  | .5674272 | 2.55  | 0.011 | .3347382  | 2.559012  |  |
| new prod s~v | 3886401   | .5733063 | -0.68 | 0.498 | -1.5123   | .7350197  |  |
| new methods  | 510409    | .6171066 | -0.83 | 0.408 | -1.719916 | .6990977  |  |
| location     | 1.073224  | 1.311746 | 0.82  | 0.413 | -1.49775  | 3.644199  |  |
| lnsize       | 2507469   | .8899208 | -0.28 | 0.778 | -1.99496  | 1.493466  |  |
| lnsize_sqr   | .0796062  | .0758359 | 1.05  | 0.294 | 0690294   | .2282418  |  |
| lnage        | .5516593  | 1.408667 | 0.39  | 0.695 | -2.209278 | 3.312597  |  |
| lnage_sqr    | 0907862   | .2384432 | -0.38 | 0.703 | 5581261   | .3765538  |  |
| foreign_du~y | 6375387   | .8631402 | -0.74 | 0.460 | -2.329262 | 1.054185  |  |
| state_dummy  | -1.429663 | 1.319222 | -1.08 | 0.278 | -4.01529  | 1.155964  |  |
| credit       | 1.663272  | .5425054 | 3.07  | 0.002 | .599981   | 2.726563  |  |
| low_mlow_t~h | -3.09368  | .4109512 | -7.53 | 0.000 | -3.899129 | -2.28823  |  |
| mhigh_tech   | -2.637556 | .5586788 | -4.72 | 0.000 | -3.732546 | -1.542566 |  |
| high_tech    | -3.50437  | .5930157 | -5.91 | 0.000 | -4.66666  | -2.342081 |  |
| dcountry1    | .1376496  | 1.726574 | 0.08  | 0.936 | -3.246373 | 3.521672  |  |
| dcountry2    | -2.119254 | .8862206 | -2.39 | 0.017 | -3.856214 | 3822931   |  |
| dcountry3    | -3.95886  | 1.242407 | -3.19 | 0.001 | -6.393934 | -1.523786 |  |
| dcountry4    | -3.564329 | 1.179221 | -3.02 | 0.003 | -5.87556  | -1.253099 |  |
| dcountry5    | .4310945  | .9543721 | 0.45  | 0.651 | -1.439441 | 2.301629  |  |
| dcountry6    | -4.558481 | .5658257 | -8.06 | 0.000 | -5.667479 | -3.449483 |  |
| dcountry7    | -2.269972 | 1.163166 | -1.95 | 0.051 | -4.549736 | .0097919  |  |
| dcountry9    | -1.198536 | .7359417 | -1.63 | 0.103 | -2.640955 | .2438834  |  |
| dcountry10   | -1.091361 | .6897482 | -1.58 | 0.114 | -2.443243 | .2605205  |  |
| dcountry11   | 9941827   | .8846769 | -1.12 | 0.261 | -2.728118 | .7397521  |  |
| dcountry12   | -4.069419 | 1.049649 | -3.88 | 0.000 | -6.126694 | -2.012144 |  |
| dcountry13   | -2.415779 | 1.303752 | -1.85 | 0.064 | -4.971086 | .1395282  |  |
| dcountry14   | -1.609517 | .7509327 | -2.14 | 0.032 | -3.081318 | 1377163   |  |
| dcountry15   | -9.35746  | 1.209284 | -7.74 | 0.000 | -11.72761 | -6.987307 |  |
| dcountry16   | -1.379869 | 1.259945 | -1.10 | 0.273 | -3.849316 | 1.089578  |  |
| dcountry17   | -5.731202 | 1.2006   | -4.77 | 0.000 | -8.084335 | -3.378069 |  |
| dcountry18   | 3544237   | .9195549 | -0.39 | 0.700 | -2.156718 | 1.447871  |  |
| dcountry19   | -5.304807 | 1.1761   | -4.51 | 0.000 | -7.60992  | -2.999694 |  |
| dcountry20   | 4740049   | .9174568 | -0.52 | 0.605 | -2.272187 | 1.324177  |  |
| dcountry21   | 545601    | 1.369012 | -0.40 | 0.690 | -3.228815 | 2.137613  |  |
| dcountry22   | .8372287  | 1.122799 | 0.75  | 0.456 | -1.363417 | 3.037874  |  |
| dcountry23   | 2332559   | 1.49919  | -0.16 | 0.876 | -3.171614 | 2.705102  |  |
| dcountry24   | 5960164   | 1.644138 | -0.36 | 0.717 | -3.818468 | 2.626436  |  |
| dcountry25   | -1.097629 | .8965445 | -1.22 | 0.221 | -2.854824 | .6595656  |  |
| dcountry26   | .0199386  | 1.199998 | 0.02  | 0.987 | -2.332015 | 2.371892  |  |
| dcountry27   | 2.446124  | .4750827 | 5.15  | 0.000 | 1.514979  | 3.377269  |  |
| dcountry28   | -1.031715 | .7723546 | -1.34 | 0.182 | -2.545502 | .4820725  |  |
| dcountry29   | 2735006   | .6565029 | -0.42 | 0.677 | -1.560223 | 1.013222  |  |
| dcountry30   | 8331052   | 1.491635 | -0.56 | 0.576 | -3.756656 | 2.090445  |  |
| _cons        | -13.84364 | 4.094587 | -3.38 | 0.001 | -21.86889 | -5.8184   |  |

### Table A6.8.1 Fractional Logit Model - CEECs estimated results(exp\_share\_industryEU28)

glm exp\_share\_industryEU28prp emp\_edu emp\_trng manager\_exp new\_org\_str new\_prod\_serv new\_methods location lnsize lnsize\_sqr lnage lnage\_sqr foreign\_dummy state\_dummy credit low\_mlow\_tech mhigh\_tech high\_tech dcountry1-dcountry7 dcountry9-dcountry30 if CEEC\_dummy==1, family (binomial) link (logit) vce(robust) nolog note: dcountry2 omitted because of collinearity note: dcountry3 omitted because of collinearity note: dcountry4 omitted because of collinearity note: dcountry5 omitted because of collinearity note: dcountry6 omitted because of collinearity

| note: dcountry<br>note: dcountry<br>note: dcountry<br>note: dcountry<br>note: dcountry<br>note: dcountry<br>note: dcountry<br>note: dcountry | <pre>y7 omitted beg y12 omitted beg y13 omitted beg y15 omitted beg y17 omitted beg y18 omitted beg y19 omitted beg y30 omitted beg ce_industryEU2</pre> | cause of col<br>ecause of co<br>ecause of co | linearity<br>llinearit<br>llinearit<br>llinearit<br>llinearit<br>llinearit<br>llinearit<br>ninteger | y<br>y<br>y<br>y<br>y<br>y<br>y<br>y<br>values |                                        |                       |  |
|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------|-----------------------|--|
| Generalized 1:<br>Optimization                                                                                                               | inear models<br>: ML                                                                                                                                     |                                                                                                                                                              |                                                                                                     | No.<br>Resi<br>Scal                            | of obs =<br>dual df =<br>e parameter = | 4720<br>4686<br>1     |  |
| Deviance<br>Pearson                                                                                                                          | = .283147<br>= 4.45291                                                                                                                                   | 1323<br>.3879                                                                                                                                                |                                                                                                     | (1/d<br>(1/d                                   | f) Deviance =<br>f) Pearson =          | .0000604<br>.0009503  |  |
| Variance funct<br>Link function                                                                                                              | cion: V(u) = u<br>: g(u) = 1                                                                                                                             | u*(1−u/1)<br>.n(u/(1−u))                                                                                                                                     |                                                                                                     | [Bin<br>[Log                                   | omial]<br>it]                          |                       |  |
| Log pseudolike                                                                                                                               | elihood =50                                                                                                                                              | 75938772                                                                                                                                                     |                                                                                                     | AIC<br>BIC                                     | =                                      | .0146219<br>-39641.23 |  |
|                                                                                                                                              |                                                                                                                                                          |                                                                                                                                                              |                                                                                                     |                                                |                                        |                       |  |
| exp~yEU28prp                                                                                                                                 | Coef.                                                                                                                                                    | Robust<br>Std. Err.                                                                                                                                          | Z                                                                                                   | P> z                                           | [95% Conf.                             | Interval]             |  |
| emp edu                                                                                                                                      | .0021494                                                                                                                                                 | .0085893                                                                                                                                                     | 0.25                                                                                                | 0.802                                          | 0146852                                | .0189841              |  |
| emp trng                                                                                                                                     | 5936601                                                                                                                                                  | .464368                                                                                                                                                      | -1.28                                                                                               | 0.201                                          | -1.503805                              | .3164844              |  |
| manager exp                                                                                                                                  | 0218334                                                                                                                                                  | .0288327                                                                                                                                                     | -0.76                                                                                               | 0.449                                          | 0783446                                | .0346777              |  |
| new org str                                                                                                                                  | .9065984                                                                                                                                                 | .3642762                                                                                                                                                     | 2.49                                                                                                | 0.013                                          | .1926301                               | 1.620567              |  |
| new prod s~v                                                                                                                                 | .5247244                                                                                                                                                 | .3576392                                                                                                                                                     | 1.47                                                                                                | 0.142                                          | 1762355                                | 1.225684              |  |
| new methods                                                                                                                                  | 5948629                                                                                                                                                  | .6073991                                                                                                                                                     | -0.98                                                                                               | 0.327                                          | -1.785343                              | .5956173              |  |
| location                                                                                                                                     | 1.799245                                                                                                                                                 | 1.010638                                                                                                                                                     | 1.78                                                                                                | 0.075                                          | 181569                                 | 3.78006               |  |
| lnsize                                                                                                                                       | -1.339983                                                                                                                                                | .8513932                                                                                                                                                     | -1.57                                                                                               | 0.116                                          | -3.008683                              | .3287165              |  |
| lnsize sar                                                                                                                                   | 1739963                                                                                                                                                  | 0898802                                                                                                                                                      | 1 94                                                                                                | 0 053                                          | - 0021657                              | 3501582               |  |
| lnage                                                                                                                                        | -7400989                                                                                                                                                 | 9860152                                                                                                                                                      | -0.75                                                                                               | 0 453                                          | -2 672653                              | 1 192455              |  |
| lnage sgr                                                                                                                                    | 0938882                                                                                                                                                  | 2808892                                                                                                                                                      | 0 33                                                                                                | 0 738                                          | - 4566446                              | 6444209               |  |
| foreign du~v                                                                                                                                 | - 83657                                                                                                                                                  | 1 046452                                                                                                                                                     | -0.80                                                                                               | 0 424                                          | -2 887579                              | 1 214439              |  |
| state dummy                                                                                                                                  | -2 17678                                                                                                                                                 | 1 589821                                                                                                                                                     | -1 37                                                                                               | 0 171                                          | -5 292772                              | 9392114               |  |
| credit                                                                                                                                       | 9742668                                                                                                                                                  | 5098582                                                                                                                                                      | 1 91                                                                                                | 0 056                                          | - 025037                               | 1 973571              |  |
| low mlow t~h                                                                                                                                 | -2 775479                                                                                                                                                | 3658784                                                                                                                                                      | -7 59                                                                                               | 0 000                                          | -3 492587                              | -2 05837              |  |
| mhigh tech                                                                                                                                   | -2.645133                                                                                                                                                | .5346479                                                                                                                                                     | -4.95                                                                                               | 0.000                                          | -3.693023                              | -1.597242             |  |
| high tech                                                                                                                                    | -3.162293                                                                                                                                                | .8367406                                                                                                                                                     | -3.78                                                                                               | 0.000                                          | -4.802274                              | -1.522311             |  |
| dcount.rv1                                                                                                                                   | .3638626                                                                                                                                                 | 1.153309                                                                                                                                                     | 0.32                                                                                                | 0.752                                          | -1.896581                              | 2.624306              |  |
| dcountry?                                                                                                                                    | (omitted)                                                                                                                                                |                                                                                                                                                              | 0.02                                                                                                |                                                |                                        |                       |  |
| dcount.rv3                                                                                                                                   | (omitted)                                                                                                                                                |                                                                                                                                                              |                                                                                                     |                                                |                                        |                       |  |
| dcountrv4                                                                                                                                    | (omitted)                                                                                                                                                |                                                                                                                                                              |                                                                                                     |                                                |                                        |                       |  |
| dcountrv5                                                                                                                                    | (omitted)                                                                                                                                                |                                                                                                                                                              |                                                                                                     |                                                |                                        |                       |  |
| dcountry6                                                                                                                                    | (omitted)                                                                                                                                                |                                                                                                                                                              |                                                                                                     |                                                |                                        |                       |  |
| dcountry7                                                                                                                                    | (omitted)                                                                                                                                                |                                                                                                                                                              |                                                                                                     |                                                |                                        |                       |  |
| dcountry9                                                                                                                                    | .0135349                                                                                                                                                 | 1.216595                                                                                                                                                     | 0.01                                                                                                | 0.991                                          | -2.370948                              | 2.398018              |  |
| dcountry10                                                                                                                                   | 3365125                                                                                                                                                  | .8980292                                                                                                                                                     | -0.37                                                                                               | 0.708                                          | -2.096617                              | 1.423592              |  |
| dcountry11                                                                                                                                   | 2237898                                                                                                                                                  | .8589291                                                                                                                                                     | -0.26                                                                                               | 0.794                                          | -1.90726                               | 1.45968               |  |
| dcountry12                                                                                                                                   | (omitted)                                                                                                                                                |                                                                                                                                                              |                                                                                                     |                                                |                                        |                       |  |
| dcountry13                                                                                                                                   | (omitted)                                                                                                                                                |                                                                                                                                                              |                                                                                                     |                                                |                                        |                       |  |
| dcountry14                                                                                                                                   | 7275774                                                                                                                                                  | 1.038369                                                                                                                                                     | -0.70                                                                                               | 0.483                                          | -2.762743                              | 1.307588              |  |
| dcountry15                                                                                                                                   | (omitted)                                                                                                                                                |                                                                                                                                                              |                                                                                                     |                                                |                                        |                       |  |
| dcountry16                                                                                                                                   | 9967144                                                                                                                                                  | .8633925                                                                                                                                                     | -1.15                                                                                               | 0.248                                          | -2.688933                              | .6955039              |  |
| dcountry17                                                                                                                                   | (omitted)                                                                                                                                                |                                                                                                                                                              |                                                                                                     |                                                |                                        |                       |  |
| dcountry18                                                                                                                                   | (omitted)                                                                                                                                                |                                                                                                                                                              |                                                                                                     |                                                |                                        |                       |  |
| dcountry19                                                                                                                                   | (omitted)                                                                                                                                                |                                                                                                                                                              |                                                                                                     |                                                |                                        |                       |  |
| dcountry20                                                                                                                                   | .3325825                                                                                                                                                 | 1.126556                                                                                                                                                     | 0.30                                                                                                | 0.768                                          | -1.875427                              | 2.540592              |  |
| dcountry21                                                                                                                                   | 1489474                                                                                                                                                  | 1.077526                                                                                                                                                     | -0.14                                                                                               | 0.890                                          | -2.26086                               | 1.962965              |  |

| dcountry22 | 1.359818  | 1.013161 | 1.34  | 0.180 | 6259404   | 3.345577 |  |
|------------|-----------|----------|-------|-------|-----------|----------|--|
| dcountry23 | .078199   | 1.063097 | 0.07  | 0.941 | -2.005433 | 2.161831 |  |
| dcountry24 | 7802287   | 1.293745 | -0.60 | 0.546 | -3.315922 | 1.755465 |  |
| dcountry25 | 2978322   | .9542082 | -0.31 | 0.755 | -2.168046 | 1.572382 |  |
| dcountry26 | .7283198  | 1.064967 | 0.68  | 0.494 | -1.358976 | 2.815616 |  |
| dcountry27 | 3.59483   | 1.343665 | 2.68  | 0.007 | .9612957  | 6.228364 |  |
| dcountry28 | 0609036   | .9308233 | -0.07 | 0.948 | -1.885284 | 1.763476 |  |
| dcountry29 | .5316472  | .8874161 | 0.60  | 0.549 | -1.207656 | 2.270951 |  |
| dcountry30 | (omitted) |          |       |       |           |          |  |
| _cons      | -10.24436 | 1.15669  | -8.86 | 0.000 | -12.51143 | -7.97729 |  |

# Table A6.8.3 Fractional Logit Model - Full sample estimated results(exp\_share\_industryEA40)

| .glm exp_sha<br>new_prod_serv | re_industryEA<br>new_methods | A40prp emp_e<br>location lns | du emp_t:<br>ize lnsi: | rng manag<br>ze_sqr ln | er_exp new_o<br>age lnage_sq | rg_str<br>r foreign_dummy |
|-------------------------------|------------------------------|------------------------------|------------------------|------------------------|------------------------------|---------------------------|
| state_dummy cr                | edit low_mlo                 | ow_tech mhi                  | gh_tech 1              | nigh_tech              | dcountry1-                   | dcountry7                 |
| dcountry9-dcou                | ntry30, fam:                 | ily(binomial                 | ) link (.              | logit) vc              | e(robust) no                 | log                       |
| note: exp_shar                | e_industryEA4                | 40prp has no                 | ninteger               | values                 |                              |                           |
| Generalized li                | near models                  |                              |                        | No.                    | of obs                       | = 13711                   |
| Optimization                  | : ML                         |                              |                        | Resi                   | dual df                      | = 13664                   |
| -                             |                              |                              |                        | Scal                   | e parameter :                | = 1                       |
| Deviance                      | = .819125                    | 51163                        |                        | (1/d                   | f) Deviance                  | 0000599                   |
| Pearson                       | = 9.80862                    | 17362                        |                        | (1/d                   | f) Pearson                   | 0007178                   |
|                               |                              |                              |                        |                        |                              |                           |
| Variance funct                | ion: $V(u) = u$              | ı*(1−u/1)                    |                        | [Bin                   | omial]                       |                           |
| Link function                 | : g(u) = 1                   | ln(u/(1−u))                  |                        | [Log                   | it]                          |                           |
|                               |                              |                              |                        |                        |                              |                           |
|                               |                              |                              |                        | AIC                    | :                            | 0070351                   |
| iog pseudolike                | lihood = -1.2                | 229238223                    |                        | BIC                    | :                            | = -130161.8               |
|                               |                              |                              |                        |                        |                              |                           |
|                               |                              |                              |                        |                        |                              |                           |
|                               |                              | Robust                       |                        |                        |                              |                           |
| exp~yEA40prp                  | Coef.                        | Std. Err.                    | Z                      | P> z                   | [95% Conf                    | . Interval]               |
| +emp edu                      | . 02218                      | .0127918                     | 1.73                   | 0.083                  | 0028914                      | .0472514                  |
| emp_caa                       | 3040897                      | .5314622                     | -0.57                  | 0.567                  | -1.345737                    | .7375571                  |
| manager exp                   | 0320983                      | .029282                      | -1.10                  | 0.273                  | 08949                        | .0252934                  |
| new org str                   | .5422974                     | . 624063                     | 0.87                   | 0.385                  | 6808436                      | 1.765438                  |
| new prod s~v                  | 0503573                      | .5168732                     | -0.10                  | 0.922                  | -1.06341                     | .9626957                  |
| new methods                   | 1548825                      | 6840044                      | 0 23                   | 0 821                  | -1 185741                    | 1 495506                  |
| location                      | 9515567                      | 6242008                      | 1 52                   | 0 127                  | - 2718544                    | 2 174968                  |
| Insize                        | 7408058                      | 7406584                      | 1 00                   | 0 317                  | - 7108579                    | 2 19247                   |
| Insize sar                    | - 0201794                    | 0607604                      | -0 33                  | 0 740                  | - 1392676                    | 0989088                   |
| lnage                         | 6990683                      | .9059487                     | -0.77                  | 0.440                  | -2.474695                    | 1.076558                  |
| lnage sgr                     | .1668978                     | .1586455                     | 1.05                   | 0.293                  | 1440416                      | .4778372                  |
| foreign du~v                  | 543913                       | .5206579                     | -1.04                  | 0.296                  | -1.564384                    | 4765576                   |
| state dummy                   | -1.947326                    | .9140737                     | -2.13                  | 0.033                  | -3.738877                    | 1557741                   |
| credit                        | 1.257123                     | .3829603                     | 3.28                   | 0.001                  | .5065343                     | 2.007711                  |
| ow mlow t~h                   | -2.830179                    | .5018247                     | -5.64                  | 0.000                  | -3.813738                    | -1.846621                 |
| mhigh tech                    | -2.474282                    | .8912344                     | -2.78                  | 0.005                  | -4.221069                    | 7274942                   |
| high tech                     | -4 568333                    | 7325935                      | -6 24                  | 0 000                  | -6 00419                     | -3 132476                 |
| dcountry1                     | 4650324                      | 1 205571                     | 0 39                   | 0 700                  | -1 897843                    | 2 827908                  |
| dcountry2                     | -1.935166                    | .7459083                     | -2 59                  | 0.009                  | -3.39712                     | - 4732127                 |
| dcountry?                     | -3.810794                    | 9397904                      | -4 05                  | 0.000                  | -5.65275                     | -1.968839                 |
| dcountry4                     | -3,425192                    | .9943813                     | -3 44                  | 0.001                  | -5.374143                    | -1.47624                  |
| dcountry5                     | 2 084767                     | 6535781                      | 3 19                   | 0 001                  | 8037776                      | 3 365757                  |
| dcountry6                     | -4 953387                    | 5222625                      | -9 48                  | 0 000                  | -5 977003                    | -3 929771                 |
| dcountry7                     | -2 39841                     | 9111104                      | -2 63                  | 0 008                  | -4 184154                    | - 6126664                 |
|                               |                              | • / + + + + 1/ 7             | ( \ / . )              |                        |                              | • V + C V V V I           |

| .4728989  | -2.659559 | 0.171 | -1.37  | .799111  | -1.09333  | dcountry9  |
|-----------|-----------|-------|--------|----------|-----------|------------|
| .2374912  | -2.038894 | 0.121 | -1.55  | .5807212 | 9007014   | dcountry10 |
| .3579786  | -2.078413 | 0.166 | -1.38  | .6215399 | 8602172   | dcountry11 |
| -2.208598 | -5.677038 | 0.000 | -4.46  | .8848224 | -3.942818 | dcountry12 |
| 1724522   | -4.266315 | 0.034 | -2.13  | 1.044372 | -2.219384 | dcountry13 |
| .0239934  | -2.710149 | 0.054 | -1.93  | .6974981 | -1.343078 | dcountry14 |
| -8.184907 | -10.9533  | 0.000 | -13.55 | .7062365 | -9.569105 | dcountry15 |
| .5205516  | -2.293205 | 0.217 | -1.23  | .7178081 | 8863265   | dcountry16 |
| -4.114877 | -7.245326 | 0.000 | -7.11  | .7985987 | -5.680102 | dcountry17 |
| 1.499559  | -1.984163 | 0.785 | -0.27  | .8887209 | 242302    | dcountry18 |
| -3.303526 | -7.144056 | 0.000 | -5.33  | .979745  | -5.223791 | dcountry19 |
| 1.249074  | -1.883929 | 0.691 | -0.40  | .79925   | 3174275   | dcountry20 |
| 1.712999  | -2.149633 | 0.825 | -0.22  | .9853834 | 2183173   | dcountry21 |
| 5.371329  | 2.665127  | 0.000 | 5.82   | .6903704 | 4.018228  | dcountry22 |
| 1.825526  | -2.264733 | 0.833 | -0.21  | 1.043453 | 2196033   | dcountry23 |
| 1.626746  | -2.0194   | 0.833 | -0.21  | .9301564 | 1963268   | dcountry24 |
| .5332756  | -2.275646 | 0.224 | -1.22  | .7165748 | 8711851   | dcountry25 |
| 4.550739  | 1.288452  | 0.000 | 3.51   | .8322313 | 2.919595  | dcountry26 |
| 4.396505  | 1.615098  | 0.000 | 4.24   | .7095557 | 3.005801  | dcountry27 |
| .6180797  | -2.250964 | 0.265 | -1.12  | .7319124 | 8164421   | dcountry28 |
| 1.220231  | -1.184042 | 0.976 | 0.03   | .6133464 | .0180945  | dcountry29 |
| 1.556181  | -2.497388 | 0.649 | -0.46  | 1.034093 | 4706032   | dcountry30 |
| -9.411904 | -19.9519  | 0.000 | -5.46  | 2.688824 | -14.6819  | cons       |

## Table A6.8.4 Fractional Logit Model - CEECs estimated results(exp\_share\_industryEA40)

```
glm exp share industryEA40prp emp edu emp trng manager exp new org str new prod serv
new methods location lnsize lnsize sqr lnage lnage sqr foreign dummy state dummy
credit low mlow tech mhigh tech high tech dcountry1-dcountry7 dcountry9-dcountry30
if CEEC dummy==1, family (binomial) link (logit) vce(robust) nolog
note: dcountry2 omitted because of collinearity
note: dcountry3 omitted because of collinearity
note: dcountry4 omitted because of collinearity
note: dcountry5 omitted because of collinearity
note: dcountry6 omitted because of collinearity
note: dcountry7 omitted because of collinearity
note: dcountry12 omitted because of collinearity
note: dcountry13 omitted because of collinearity
note: dcountry15 omitted because of collinearity
note: dcountry17 omitted because of collinearity
note: dcountry18 omitted because of collinearity
note: dcountry19 omitted because of collinearity
note: dcountry30 omitted because of collinearity
note: exp share industryEA40prp has noninteger values
                                                No. of obs =
Residual df =
Generalized linear models
                                                                      4720
Optimization : ML
                                                                    4686
                                                Scale parameter =
                                                                       1
Deviance
              = .5486464385
                                                (1/df) Deviance = .0001171
              = 4.475587223
                                               (1/df) Pearson = .0009551
Pearson
Variance function: V(u) = u^{*}(1-u/1)
                                               [Binomial]
Link function : g(u) = ln(u/(1-u))
                                               [Logit]
                                                               = .0147736
                                                AIC
Log pseudolikelihood = -.8656415968
                                                BIC
                                                               = -39640.97
_____
```

|              |           | Robust    |       |       |            |           |
|--------------|-----------|-----------|-------|-------|------------|-----------|
| exp~yEA40prp | Coef.     | Std. Err. | z     | P> z  | [95% Conf. | Interval] |
| emp edu      | .0146112  | .0115953  | 1.26  | 0.208 | 0081153    | .0373376  |
| emp trng     | 5505861   | .7242207  | -0.76 | 0.447 | -1.970032  | .8688603  |
| manager exp  | 0258946   | .0227011  | -1.14 | 0.254 | 0703879    | .0185988  |
| new org str  | 0555505   | .5540278  | -0.10 | 0.920 | -1.141425  | 1.030324  |
| new prod s~v | .4980572  | .5499598  | 0.91  | 0.365 | 5798442    | 1.575959  |
| new methods  | .4868794  | .6418652  | 0.76  | 0.448 | 7711534    | 1.744912  |
| location     | 1.228414  | .6104021  | 2.01  | 0.044 | .0320479   | 2.42478   |
| lnsize       | .301671   | .7796611  | 0.39  | 0.699 | -1.226437  | 1.829779  |
| lnsize sqr   | .0135456  | .0634167  | 0.21  | 0.831 | 1107489    | .1378401  |
| lnage        | -1.935664 | .7371804  | -2.63 | 0.009 | -3.380511  | 4908172   |
| lnage sqr    | .3778139  | .1779189  | 2.12  | 0.034 | .0290992   | .7265286  |
| foreign du~v | 4203342   | .5178233  | -0.81 | 0.417 | -1.435249  | .5945808  |
| state dummy  | -3.918893 | 1.390037  | -2.82 | 0.005 | -6.643316  | -1.194469 |
| credit       | .9583705  | .4450475  | 2.15  | 0.031 | .0860934   | 1.830648  |
| low mlow t~h | -3.487    | .7755941  | -4.50 | 0.000 | -5.007137  | -1.966864 |
| mhigh tech   | -4.012746 | 1.188074  | -3.38 | 0.001 | -6.341328  | -1.684164 |
| high tech    | -4.719881 | .9271386  | -5.09 | 0.000 | -6.537039  | -2.902722 |
| dcountry1    | .3695341  | 1.419664  | 0.26  | 0.795 | -2.412956  | 3.152024  |
| dcountry2    | (omitted) |           |       |       |            |           |
| dcountry3    | (omitted) |           |       |       |            |           |
| dcountry4    | (omitted) |           |       |       |            |           |
| dcountry5    | (omitted) |           |       |       |            |           |
| dcountry6    | (omitted) |           |       |       |            |           |
| dcountry7    | (omitted) |           |       |       |            |           |
| dcountry9    | 5692175   | 1.105551  | -0.51 | 0.607 | -2.736058  | 1.597623  |
| dcountry10   | 5416597   | .8758209  | -0.62 | 0.536 | -2.258237  | 1.174918  |
| dcountry11   | 5702165   | .8782973  | -0.65 | 0.516 | -2.291648  | 1.151215  |
| dcountry12   | (omitted) |           |       |       |            |           |
| dcountry13   | (omitted) |           |       |       |            |           |
| dcountry14   | 9914775   | .9004713  | -1.10 | 0.271 | -2.756369  | .7734139  |
| dcountry15   | (omitted) |           |       |       |            |           |
| dcountry16   | 5276866   | .8952854  | -0.59 | 0.556 | -2.282414  | 1.227041  |
| dcountry17   | (omitted) |           |       |       |            |           |
| dcountry18   | (omitted) |           |       |       |            |           |
| dcountry19   | (omitted) |           |       |       |            |           |
| dcountry20   | 1795567   | 1.090953  | -0.16 | 0.869 | -2.317785  | 1.958672  |
| dcountry21   | 2615439   | 1.141564  | -0.23 | 0.819 | -2.498969  | 1.975881  |
| dcountry22   | 4.199747  | .8925361  | 4.71  | 0.000 | 2.450409   | 5.949086  |
| dcountry23   | 1006133   | 1.068607  | -0.09 | 0.925 | -2.195045  | 1.993818  |
| dcountry24   | 0761112   | 1.119367  | -0.07 | 0.946 | -2.270031  | 2.117808  |
| dcountry25   | 5033778   | 1.036709  | -0.49 | 0.627 | -2.535291  | 1.528535  |
| dcountry26   | 3.202038  | 1.181476  | 2.71  | 0.007 | .8863865   | 5.517689  |
| dcountry27   | 3.45576   | 1.048642  | 3.30  | 0.001 | 1.40046    | 5.511061  |
| dcountry28   | 3037091   | .8926908  | -0.34 | 0.734 | -2.053351  | 1.445933  |
| dcountry29   | .3385258  | .8060203  | 0.42  | 0.674 | -1.241245  | 1.918297  |
| dcountry30   | (omitted) |           |       |       |            |           |
| cons         | -11.99623 | 1.771698  | -6.77 | 0.000 | -15.4687   | -8.523767 |

# Table A6.8.5 Fractional Logit Model - CIS estimated results(exp\_share\_industryEA40)

. glm exp\_share\_industryEA40prp emp\_edu emp\_trng manager\_exp new\_org\_str new\_prod\_serv new\_methods location lnsize lnsize\_sqr lnage lnage\_sqr foreign\_dummy state\_dummy credit low\_mlow\_tech mhigh\_tech high\_tech dcountry1-dcountry7 dcountry9-dcountry30 if CEEC\_dummy==0, family (binomial) link (logit) vce(robust) nolog note: dcountry1 omitted because of collinearity note: dcountry9 omitted because of collinearity note: dcountry10 omitted because of collinearity

| note: dcountry<br>note: dcountry<br>note: dcountry<br>note: dcountry<br>note: dcountry<br>note: dcountry<br>note: dcountry | 711 omitted be<br>714 omitted be<br>716 omitted be<br>720 omitted be<br>721 omitted be<br>722 omitted be<br>723 omitted be<br>724 omitted be | cause of co<br>cause of co | ollinearit<br>ollinearit<br>ollinearit<br>ollinearit<br>ollinearit<br>ollinearit<br>ollinearit | - Y<br>- Y<br>- Y<br>- Y<br>- Y<br>- Y<br>- Y |                             |                           |
|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------|---------------------------|
| note: dcountry<br>note: dcountry<br>note: dcountry<br>note: dcountry<br>note: dcountry<br>note: dcountry<br>note: exp_shar | 725 omitted be<br>726 omitted be<br>727 omitted be<br>728 omitted be<br>729 omitted be<br>730 omitted be<br>re_industryEA4                   | cause of co<br>cause of co<br>cause of co<br>cause of co<br>cause of co<br>cause of co<br>cause of co                               | ollinearit<br>ollinearit<br>ollinearit<br>ollinearit<br>ollinearit<br>ollinearit               | y<br>y<br>y<br>y<br>y<br>values               |                             |                           |
| Generalized li<br>Optimization                                                                                             | near models<br>: ML                                                                                                                          |                                                                                                                                     |                                                                                                | No. c<br>Resic                                | of obs =<br>lual df =       | = 8991<br>= 8961          |
| Deviance<br>Pearson                                                                                                        | = .146907<br>= 3.1954                                                                                                                        | 8164<br>3434                                                                                                                        |                                                                                                | (1/df<br>(1/df                                | ) Deviance =<br>) Pearson = | - 1<br>0000164<br>0003566 |
| Variance funct<br>Link function                                                                                            | tion: V(u) = u<br>: g(u) = 1                                                                                                                 | u*(1-u/1)<br>.n(u/(1-u))                                                                                                            |                                                                                                | [Binc<br>[Logi                                | omial]<br>t]                |                           |
| Log pseudolike                                                                                                             | elihood =30                                                                                                                                  | 18111954                                                                                                                            |                                                                                                | AIC<br>BIC                                    | =                           | = .0067405<br>= -81580.61 |
| exp~yEA40prp                                                                                                               | Coef.                                                                                                                                        | Robust<br>Std. Err.                                                                                                                 | z                                                                                              | P> z                                          | [95% Conf.                  | . Interval]               |
| emp_edu                                                                                                                    | .0319399                                                                                                                                     | .0075902                                                                                                                            | 4.21                                                                                           | 0.000                                         | .0170635                    | .0468164                  |
| emp_trng                                                                                                                   | .4981691                                                                                                                                     | .3630256                                                                                                                            | 1.37                                                                                           | 0.170                                         | 213348                      | 1.209686                  |
| manager_exp                                                                                                                | 0549823                                                                                                                                      | .0242832                                                                                                                            | -2.26                                                                                          | 0.024                                         | 1025/65                     | 00/388                    |
| new prod s~v                                                                                                               | -2.146064                                                                                                                                    | .6128006                                                                                                                            | -3.50                                                                                          | 0.000                                         | -3.347131                   | 9449965                   |
| new methods                                                                                                                | 142293                                                                                                                                       | .5479538                                                                                                                            | -0.26                                                                                          | 0.795                                         | -1.216263                   | .9316767                  |
| location                                                                                                                   | 7343858                                                                                                                                      | .4985229                                                                                                                            | -1.47                                                                                          | 0.141                                         | -1.711473                   | .2427011                  |
| lnsize                                                                                                                     | 1.701615                                                                                                                                     | .7011476                                                                                                                            | 2.43                                                                                           | 0.015                                         | .3273907                    | 3.075839                  |
| lnsize sqr                                                                                                                 | 0469013                                                                                                                                      | .0722454                                                                                                                            | -0.65                                                                                          | 0.516                                         | 1884996                     | .0946971                  |
| lnage                                                                                                                      | 1.059444                                                                                                                                     | 1.796578                                                                                                                            | 0.59                                                                                           | 0.555                                         | -2.461784                   | 4.580672                  |
| lnage_sqr                                                                                                                  | 0993743                                                                                                                                      | .2946603                                                                                                                            | -0.34                                                                                          | 0.736                                         | 6768979                     | .4781493                  |
| foreign_du~y                                                                                                               | .7195405                                                                                                                                     | .6319416                                                                                                                            | 1.14                                                                                           | 0.255                                         | 5190422                     | 1.958123                  |
| state_dummy                                                                                                                | -3.29492                                                                                                                                     | 1.222911                                                                                                                            | -2.69                                                                                          | 0.007                                         | -5.691781                   | 8980596                   |
| credit                                                                                                                     | 1.746161                                                                                                                                     | .3249532                                                                                                                            | 5.37                                                                                           | 0.000                                         | 1.109264                    | 2.383057                  |
| low_mlow_t~h                                                                                                               | -3.457221                                                                                                                                    | .5623153                                                                                                                            | -6.15                                                                                          | 0.000                                         | -4.559339                   | -2.355104                 |
| mhigh_tech                                                                                                                 | -1.952341                                                                                                                                    | .5820663                                                                                                                            | -3.35                                                                                          | 0.001                                         | -3.09317                    | 8115117                   |
| high_tech                                                                                                                  | -5.957144                                                                                                                                    | .8816754                                                                                                                            | -6.76                                                                                          | 0.000                                         | -7.685196                   | -4.229092                 |
| dcountry1                                                                                                                  | (omitted)                                                                                                                                    |                                                                                                                                     |                                                                                                | 0 0                                           |                             |                           |
| dcountry2                                                                                                                  | -1.526329                                                                                                                                    | .8436152                                                                                                                            | -1.81                                                                                          | 0.070                                         | -3.179785                   | .1271261                  |
| dcountry3                                                                                                                  | -1.664297                                                                                                                                    | .7705986                                                                                                                            | -2.16                                                                                          | 0.031                                         | -3.174642                   | 153951                    |
| dcountry4                                                                                                                  | -1.594665                                                                                                                                    | .8649672                                                                                                                            | -1.84                                                                                          | 0.065                                         | -3.289969                   | .1006397                  |
| dcountry5                                                                                                                  | 2.631386                                                                                                                                     | .4551825                                                                                                                            | 5.78                                                                                           | 0.000                                         | 1./39245                    | 3.523528                  |
| dcountry6                                                                                                                  | -4.371962                                                                                                                                    | .5200416                                                                                                                            | -8.41                                                                                          | 0.000                                         | -5.391225                   | -3.3527                   |
| dcountry7                                                                                                                  | -1.533996                                                                                                                                    | .9967898                                                                                                                            | -1.54                                                                                          | 0.124                                         | -3.487668                   | .4196764                  |
| dcountry9                                                                                                                  | (omitted)                                                                                                                                    |                                                                                                                                     |                                                                                                |                                               |                             |                           |
| dcountry10                                                                                                                 | (omitted)                                                                                                                                    |                                                                                                                                     |                                                                                                |                                               |                             |                           |
| dcountry11                                                                                                                 | (omitted)                                                                                                                                    |                                                                                                                                     | -                                                                                              |                                               |                             |                           |
| dcountry12                                                                                                                 | -5.042725                                                                                                                                    | 1.153433                                                                                                                            | -4.37                                                                                          | 0.000                                         | -7.303412                   | -2.782038                 |
| dcountry13                                                                                                                 | -1.29342                                                                                                                                     | .632941                                                                                                                             | -2.04                                                                                          | 0.041                                         | -2.533961                   | 0528783                   |
| dcountry14                                                                                                                 | (omitted)                                                                                                                                    |                                                                                                                                     |                                                                                                | 0.005                                         | 10 11                       |                           |
| dcountry15                                                                                                                 | -8.670242                                                                                                                                    | .752831                                                                                                                             | -11.52                                                                                         | 0.000                                         | -10.14576                   | -7.194721                 |

| dcountry16 | (omitted) |          |       |       |           |           |
|------------|-----------|----------|-------|-------|-----------|-----------|
| dcountry17 | -4.482531 | .8390482 | -5.34 | 0.000 | -6.127035 | -2.838027 |
| dcountry18 | 1.169928  | .7270204 | 1.61  | 0.108 | 2550061   | 2.594861  |
| dcountry19 | -3.848503 | .9963971 | -3.86 | 0.000 | -5.801406 | -1.895601 |
| dcountry20 | (omitted) |          |       |       |           |           |
| dcountry21 | (omitted) |          |       |       |           |           |
| dcountry22 | (omitted) |          |       |       |           |           |
| dcountry23 | (omitted) |          |       |       |           |           |
| dcountry24 | (omitted) |          |       |       |           |           |
| dcountry25 | (omitted) |          |       |       |           |           |
| dcountry26 | (omitted) |          |       |       |           |           |
| dcountry27 | (omitted) |          |       |       |           |           |
| dcountry28 | (omitted) |          |       |       |           |           |
| dcountry29 | (omitted) |          |       |       |           |           |
| dcountry30 | (omitted) |          |       |       |           |           |
| cons       | -22.47224 | 2.636972 | -8.52 | 0.000 | -27.64061 | -17.30387 |

### Table A6.8.6 Fractional Logit Model - Full sample estimated results(exp\_share\_totalEU28)

glm exp share totalEU28prp emp edu emp trng manager exp new org str new prod serv new methods location lnsize lnsize sqr lnage lnage sqr foreign dummy state dummy credit low mlow tech mhigh tech high tech dcountry1-dcountry7 dcountry9-dcountry30, family(binomial) link (logit) vce(robust) nolog note: exp share totalEU28prp has noninteger values No. of obs = 13711 Residual df = 13664 Generalized linear models Residual df = 13664 Scale parameter = 1 Optimization : ML = .0091922294 (1/df) Deviance = 6.73e-07 Deviance (1/df) Pearson = .0000125 = .1703993822 Pearson Variance function:  $V(u) = u^{*}(1-u/1)$ [Binomial] Link function : g(u) = ln(u/(1-u))[Logit] AIC = .0068602 Log pseudolikelihood = -.0298456656BIC = -130162.6\_\_\_\_\_ Robust exp~lEU28prp | Coef. Std. Err. z P>|z| [95% Conf. Interval] emp\_edu |.0102515.00605851.690.091-.0016229emp\_trng |.0700893.27891930.250.802-.4765825nager\_exp |.0048763.01397820.350.727-.0225204w\_org\_str |.7777995.28798192.700.007.2133653 .022126 .6167611 emp trng | manager exp | .032273 1.342234 new org str | new prod s~v | -.4420262 .3771592 -1.17 0.241 -1.181245 .2971922 new methods | -.067679 .3862816 -0.18 0.861 -.8247771 .6894191 .2570956 .3267371 0.79 0.431 -.3832973 location | .8974885 .6211288 .4082763 lnsize | 1.52 0.128 -.179078 1.421336 0.79 0.431 -.0403043 .0944779 lnsize sqr | .0270868 .0343838 0.38 0.701 -1.210908 1.800156 lnage | .2946242 .7681426 lnage\_sqr | -.06568 .1221753 -0.54 0.591 -.3051392 .1737791 foreign du~y | .482825 .4411376 1.09 0.274 -.3817889 1.347439 state\_dummy | -.1425061 .7060533 -0.20 0.840 -1.526345 1.241333 credit |.4370012.3261994.ow\_t~h |1.238472.2961691gh\_tech |1.776708.3189587 1.34 0.180 4.18 0.000 5.57 0.000 -.2023379 1.07634 .6579912 low mlow t~h | 1.818953 1.15156 2.401855 mhigh tech | high tech | 1.053778 .3854378 2.73 0.006 .2983336 1.809222

| dcountrv1  | 1.021708  | .8679125 | 1.18   | 0.239 | 6793691   | 2,722785  |  |
|------------|-----------|----------|--------|-------|-----------|-----------|--|
| dcountrv2  | 7518966   | .458067  | -1.64  | 0.101 | -1.649691 | .1458983  |  |
| dcountry3  | 9397037   | .7283145 | -1.29  | 0.197 | -2.367174 | .4877665  |  |
| dcountrv4  | -1.938677 | .7127912 | -2.72  | 0.007 | -3.335722 | 5416319   |  |
| dcountrv5  | 1.778889  | .3244577 | 5.48   | 0.000 | 1.142964  | 2.414815  |  |
| dcountrv6  | -3.063079 | .4255294 | -7.20  | 0.000 | -3.897101 | -2.229057 |  |
| dcountry7  | .2739103  | .5437428 | 0.50   | 0.614 | 7918059   | 1.339627  |  |
| dcountry9  | .3495438  | .6589019 | 0.53   | 0.596 | 9418802   | 1.640968  |  |
| dcountrv10 | 2.348841  | .6204801 | 3.79   | 0.000 | 1.132722  | 3.56496   |  |
| dcountrv11 | .5160964  | .619495  | 0.83   | 0.405 | 6980915   | 1.730284  |  |
| dcountrv12 | 6444332   | .7993744 | -0.81  | 0.420 | -2.211178 | .9223118  |  |
| dcountry13 | -1.979101 | .5911746 | -3.35  | 0.001 | -3.137782 | 8204204   |  |
| dcountry14 | .3723623  | .4715742 | 0.79   | 0.430 | 551906    | 1.296631  |  |
| dcountry15 | -6.064252 | .4950893 | -12.25 | 0.000 | -7.034609 | -5.093895 |  |
| dcountry16 | .4509819  | .4212662 | 1.07   | 0.284 | 3746847   | 1.276649  |  |
| dcountry17 | -2.418578 | .5898173 | -4.10  | 0.000 | -3.574599 | -1.262557 |  |
| dcountry18 | .0786339  | .6652044 | 0.12   | 0.906 | -1.225143 | 1.38241   |  |
| dcountry19 | -5.454489 | .5452115 | -10.00 | 0.000 | -6.523083 | -4.385894 |  |
| dcountry20 | 1.651259  | .3989213 | 4.14   | 0.000 | .8693876  | 2.43313   |  |
| dcountry21 | .4076505  | .5758895 | 0.71   | 0.479 | 7210722   | 1.536373  |  |
| dcountry22 | 1.410104  | .4639114 | 3.04   | 0.002 | .5008544  | 2.319354  |  |
| dcountry23 | 1.570908  | .4771399 | 3.29   | 0.001 | .6357309  | 2.506085  |  |
| dcountry24 | .7273101  | .4036736 | 1.80   | 0.072 | 0638757   | 1.518496  |  |
| dcountry25 | 1.215988  | .4391765 | 2.77   | 0.006 | .3552174  | 2.076758  |  |
| dcountry26 | 1.2518    | .5281965 | 2.37   | 0.018 | .2165535  | 2.287046  |  |
| dcountry27 | 3.092886  | .5108193 | 6.05   | 0.000 | 2.091698  | 4.094073  |  |
| dcountry28 | .6088115  | .5032109 | 1.21   | 0.226 | 3774638   | 1.595087  |  |
| dcountry29 | 1.349164  | .3590623 | 3.76   | 0.000 | .6454144  | 2.052913  |  |
| dcountry30 | .2018115  | .6612708 | 0.31   | 0.760 | -1.094255 | 1.497878  |  |
| _cons      | -21.63777 | 1.79468  | -12.06 | 0.000 | -25.15527 | -18.12026 |  |

## Table A6.8.7 Fractional Logit Model - Full sample estimated results(exp\_share\_totalEA40)

. glm exp\_share\_totalEA40prp emp\_edu emp\_trng manager\_exp new\_org\_str new\_prod\_serv new\_methods location lnsize lnsize\_sqr lnage lnage\_sqr foreign\_dummy state\_dummy credit low\_mlow\_tech mhigh\_tech high\_tech dcountry1-dcountry7 dcountry9-dcountry30, family(binomial) link (logit) vce(robust) nolog note: exp share totalEA40prp has noninteger values

| Generalized lin          | near models            |                     |       | No.                  | of obs =                                       | 13711                     |  |
|--------------------------|------------------------|---------------------|-------|----------------------|------------------------------------------------|---------------------------|--|
| Optimization             | : ML                   |                     |       | Resi                 | dual df =                                      | 13664                     |  |
| Deviance<br>Pearson      | = .016633<br>= .441590 | 36684<br>)5945      |       | Scal<br>(1/d<br>(1/d | e parameter =<br>f) Deviance =<br>f) Pearson = | 1<br>1.22e-06<br>.0000323 |  |
| Variance functi          | .on: V(u) = u          | ı*(1−u/1)           |       | [Bin                 | omial]                                         |                           |  |
| Link function            | : g(u) = 1             | Ln(u/(1-u))         |       | [Log                 | it]                                            |                           |  |
|                          |                        |                     |       |                      |                                                |                           |  |
|                          |                        |                     |       | AIC                  | =                                              | .0068651                  |  |
| Log pseudolikel          | ihood =06              | 535955274           |       | BIC                  | =                                              | -130162.6                 |  |
|                          |                        |                     |       |                      |                                                |                           |  |
| <br> <br> <br> <br> <br> | Coef.                  | Robust<br>Std. Err. | Z     | P> z                 | [95% Conf.                                     | Interval]                 |  |
| emp edu                  | .0054549               | .0058363            | 0.93  | 0.350                | 005984                                         | .0168939                  |  |
| emp trng                 | .901092                | .2624347            | 3.43  | 0.001                | .3867295                                       | 1.415454                  |  |
| manager_exp              | .0166454               | .0073567            | 2.26  | 0.024                | .0022265                                       | .0310642                  |  |
| new_org_str              | .5731831               | .2969992            | 1.93  | 0.054                | 0089246                                        | 1.155291                  |  |
| new_prod_s~v             | 6330994                | .4258754            | -1.49 | 0.137                | -1.4678                                        | .201601                   |  |

| new_methods  | 047523    | .2708151 | -0.18  | 0.861 | 5783109   | .4832649  |  |
|--------------|-----------|----------|--------|-------|-----------|-----------|--|
| location     | 2170851   | .3472616 | -0.63  | 0.532 | 8977053   | .4635351  |  |
| lnsize       | .7706998  | .3759321 | 2.05   | 0.040 | .0338864  | 1.507513  |  |
| lnsize_sqr   | .0129779  | .0307303 | 0.42   | 0.673 | 0472525   | .0732082  |  |
| lnage        | .9841441  | .7947112 | 1.24   | 0.216 | 5734613   | 2.541749  |  |
| lnage_sqr    | 1637291   | .1296311 | -1.26  | 0.207 | 4178014   | .0903432  |  |
| foreign_du~y | .3908583  | .3543054 | 1.10   | 0.270 | 3035676   | 1.085284  |  |
| state_dummy  | 9691404   | .823058  | -1.18  | 0.239 | -2.582305 | .6440237  |  |
| credit       | .2750194  | .2274376 | 1.21   | 0.227 | 1707501   | .7207889  |  |
| low_mlow_t~h | 1.264254  | .3399928 | 3.72   | 0.000 | .59788    | 1.930627  |  |
| mhigh_tech   | 2.294051  | .3412392 | 6.72   | 0.000 | 1.625234  | 2.962867  |  |
| high_tech    | 1.111373  | .3805405 | 2.92   | 0.003 | .3655278  | 1.857219  |  |
| dcountry1    | 1.474325  | .8914759 | 1.65   | 0.098 | 2729355   | 3.221586  |  |
| dcountry2    | 5880718   | .536527  | -1.10  | 0.273 | -1.639645 | .4635019  |  |
| dcountry3    | 9519023   | .837041  | -1.14  | 0.255 | -2.592473 | .688668   |  |
| dcountry4    | -1.898963 | .7202937 | -2.64  | 0.008 | -3.310713 | 4872135   |  |
| dcountry5    | 3.094383  | .3451714 | 8.96   | 0.000 | 2.41786   | 3.770907  |  |
| dcountry6    | -3.150119 | .448991  | -7.02  | 0.000 | -4.030125 | -2.270113 |  |
| dcountry7    | .3239171  | .6549143 | 0.49   | 0.621 | 9596913   | 1.607525  |  |
| dcountry9    | .1738141  | .6561895 | 0.26   | 0.791 | -1.112294 | 1.459922  |  |
| dcountry10   | 2.285596  | .6910942 | 3.31   | 0.001 | .9310761  | 3.640116  |  |
| dcountry11   | .7506649  | .6133723 | 1.22   | 0.221 | 4515227   | 1.952852  |  |
| dcountry12   | -1.176597 | .792636  | -1.48  | 0.138 | -2.730135 | .3769406  |  |
| dcountry13   | -1.853847 | .6377847 | -2.91  | 0.004 | -3.103882 | 6038121   |  |
| dcountry14   | .2646183  | .5081369 | 0.52   | 0.603 | 7313118   | 1.260548  |  |
| dcountry15   | -4.994691 | .5256045 | -9.50  | 0.000 | -6.024857 | -3.964525 |  |
| dcountry16   | .5170856  | .4819567 | 1.07   | 0.283 | 427532    | 1.461703  |  |
| dcountry17   | -2.730187 | .6591965 | -4.14  | 0.000 | -4.022189 | -1.438186 |  |
| dcountry18   | .328765   | .708211  | 0.46   | 0.642 | -1.059303 | 1.716833  |  |
| dcountry19   | -4.898316 | .5806934 | -8.44  | 0.000 | -6.036454 | -3.760178 |  |
| dcountry20   | 1.652069  | .4635676 | 3.56   | 0.000 | .7434928  | 2.560645  |  |
| dcountry21   | .5294193  | .6094317 | 0.87   | 0.385 | 665045    | 1.723884  |  |
| dcountry22   | 3.104803  | .5370916 | 5.78   | 0.000 | 2.052123  | 4.157483  |  |
| dcountry23   | 1.683344  | .4602161 | 3.66   | 0.000 | .7813374  | 2.585351  |  |
| dcountry24   | .8713315  | .4557407 | 1.91   | 0.056 | 0219039   | 1.764567  |  |
| dcountry25   | 1.261629  | .4733356 | 2.67   | 0.008 | .333908   | 2.18935   |  |
| dcountry26   | 2.949672  | .5509885 | 5.35   | 0.000 | 1.869755  | 4.02959   |  |
| dcountry27   | 3.104954  | .5472837 | 5.67   | 0.000 | 2.032298  | 4.177611  |  |
| dcountry28   | .5064138  | .5147812 | 0.98   | 0.325 | 5025387   | 1.515366  |  |
| dcountry29   | 1.336378  | .4392146 | 3.04   | 0.002 | .475533   | 2.197222  |  |
| dcountry30   | .4201972  | .5908106 | 0.71   | 0.477 | 7377704   | 1.578165  |  |
| _cons        | -23.68668 | 1.573381 | -15.05 | 0.000 | -26.77045 | -20.60291 |  |
|              |           |          |        |       |           |           |  |

## Table A6.9 Poisson Model - Full sample estimated results(exp\_share\_industryEU28)

poisson exp\_share\_industryEU28prp emp\_edu emp\_trng manager\_exp new\_org\_str new prod serv new methods location lnsize lnsize sqr lnage lnage sqr foreign dummy state\_dummy credit low\_mlow\_tech mhigh\_tech high\_tech dcountry1-dcountry7 dcountry9-dcountry30, vce(robust) nolog note: you are responsible for interpretation of noncount dep. variable Number of obs = Poisson regression 13711 Wald chi2(46) = Prob > chi2 = 1608.46 Prob > chi2 0.0000 Log pseudolikelihood = -.8652023 Pseudo R2 = 0.3030 \_\_\_\_\_

|              | l          | Robust    | _     |       |            | T         |
|--------------|------------|-----------|-------|-------|------------|-----------|
| exp~yEU28prp | Coer.<br>+ | Sta. Err. | Z<br> | P> Z  | [95% CONI. | Intervalj |
| emp_edu      | .0175217   | .017522   | 1.00  | 0.317 | 0168207    | .0518642  |
| emp_trng     | 3182489    | .356142   | -0.89 | 0.372 | -1.016274  | .3797766  |
| manager_exp  | 0481057    | .0448708  | -1.07 | 0.284 | 1360509    | .0398395  |
| new_org_str  | 1.443274   | .5659382  | 2.55  | 0.011 | .3340552   | 2.552492  |
| new_prod_s~v | 3926597    | .573382   | -0.68 | 0.493 | -1.516468  | .7311484  |
| new_methods  | 5072611    | .6164095  | -0.82 | 0.411 | -1.715402  | .7008794  |
| location     | 1.073021   | 1.312009  | 0.82  | 0.413 | -1.498469  | 3.644511  |
| lnsize       | 2487213    | .8903692  | -0.28 | 0.780 | -1.993813  | 1.49637   |
| lnsize_sqr   | .0793339   | .0758616  | 1.05  | 0.296 | 0693521    | .2280198  |
| lnage        | .5565657   | 1.41119   | 0.39  | 0.693 | -2.209316  | 3.322447  |
| lnage_sqr    | 0922579    | .2387426  | -0.39 | 0.699 | 5601848    | .375669   |
| foreign_du~y | 6359173    | .8630315  | -0.74 | 0.461 | -2.327428  | 1.055593  |
| state_dummy  | -1.426318  | 1.320056  | -1.08 | 0.280 | -4.01358   | 1.160943  |
| credit       | 1.662478   | .5428318  | 3.06  | 0.002 | .5985476   | 2.726409  |
| low_mlow_t~h | -3.084923  | .41034    | -7.52 | 0.000 | -3.889174  | -2.280671 |
| mhigh_tech   | -2.632357  | .5563125  | -4.73 | 0.000 | -3.722709  | -1.542004 |
| high_tech    | -3.495734  | .5926329  | -5.90 | 0.000 | -4.657273  | -2.334195 |
| dcountry1    | .1367592   | 1.72595   | 0.08  | 0.937 | -3.246041  | 3.51956   |
| dcountry2    | -2.117755  | .8867232  | -2.39 | 0.017 | -3.8557    | 3798092   |
| dcountry3    | -3.953979  | 1.243604  | -3.18 | 0.001 | -6.391399  | -1.516559 |
| dcountry4    | -3.556465  | 1.180016  | -3.01 | 0.003 | -5.869255  | -1.243676 |
| dcountry5    | .4291207   | .953555   | 0.45  | 0.653 | -1.439813  | 2.298054  |
| dcountry6    | -4.330924  | .5931863  | -7.30 | 0.000 | -5.493548  | -3.1683   |
| dcountry7    | -2.26955   | 1.16334   | -1.95 | 0.051 | -4.549654  | .010554   |
| dcountry9    | -1.196507  | .7359718  | -1.63 | 0.104 | -2.638985  | .2459711  |
| dcountry10   | -1.090408  | .689615   | -1.58 | 0.114 | -2.442029  | .2612126  |
| dcountry11   | 9921035    | .8850517  | -1.12 | 0.262 | -2.726773  | .742566   |
| dcountry12   | -4.049519  | 1.070333  | -3.78 | 0.000 | -6.147333  | -1.951704 |
| dcountry13   | -2.415605  | 1.303604  | -1.85 | 0.064 | -4.970623  | .1394125  |
| dcountry14   | -1.607433  | .7510194  | -2.14 | 0.032 | -3.079404  | 135462    |
| dcountry15   | -8.010586  | 1.313704  | -6.10 | 0.000 | -10.5854   | -5.435773 |
| dcountry16   | -1.378312  | 1.260318  | -1.09 | 0.274 | -3.84849   | 1.091866  |
| dcountry17   | -5.700994  | 1.203667  | -4.74 | 0.000 | -8.060138  | -3.34185  |
| dcountry18   | 3522332    | .9195707  | -0.38 | 0.702 | -2.154559  | 1.450092  |
| dcountry19   | -5.27154   | 1.173256  | -4.49 | 0.000 | -7.571079  | -2.972001 |
| dcountry20   | 472635     | .91814    | -0.51 | 0.607 | -2.272156  | 1.326886  |
| dcountry21   | 5437408    | 1.368768  | -0.40 | 0.691 | -3.226477  | 2.138995  |
| dcountry22   | .8393761   | 1.122078  | 0.75  | 0.454 | -1.359856  | 3.038608  |
| dcountry23   | 2346261    | 1.498266  | -0.16 | 0.876 | -3.171173  | 2.701921  |
| dcountry24   | 5960227    | 1.642907  | -0.36 | 0.717 | -3.816062  | 2.624017  |
| dcountry25   | -1.097016  | .8964227  | -1.22 | 0.221 | -2.853972  | .6599398  |
| dcountry26   | .0189777   | 1.199523  | 0.02  | 0.987 | -2.332044  | 2.369999  |
| dcountry27   | 2.446203   | .4752102  | 5.15  | 0.000 | 1.514808   | 3.377598  |
| dcountry28   | -1.031537  | .772092   | -1.34 | 0.182 | -2.54481   | .4817352  |
| dcountry29   | 2727613    | .6567384  | -0.42 | 0.678 | -1.559945  | 1.014422  |
| dcountry30   | 8334488    | 1.490686  | -0.56 | 0.576 | -3.75514   | 2.088242  |
| cons         | -13.84848  | 4.096646  | -3.38 | 0.001 | -21.87776  | -5.819207 |

#### Table A6.9.1 Poisson Model - CEECs estimated results (exp\_share\_industryEU28)

poisson exp\_share\_industryEU28prp emp\_edu emp\_trng manager\_exp new\_org\_str new\_prod\_serv new\_methods location lnsize lnsize\_sqr lnage lnage\_sqr foreign\_dummy state\_dummy credit low\_mlow\_tech mhigh\_tech high\_tech dcountry1-dcountry7 dcountry9-dcountry30 if CEEC\_dummy==1, vce(robust) nolog note: you are responsible for interpretation of noncount dep. variable note: dcountry2 omitted because of collinearity note: dcountry3 omitted because of collinearity

| note: dcountry<br>note: dcountry | 74 omitted bed<br>75 omitted bed<br>76 omitted bed<br>712 omitted bed<br>713 omitted bed<br>713 omitted bed<br>715 omitted bed<br>717 omitted bed<br>718 omitted bed<br>719 omitted bed<br>730 omitted bed<br>85500 | cause of col<br>cause of col<br>cause of col<br>cause of col<br>ecause of co<br>ecause of co<br>ecause of co<br>ecause of co<br>ecause of co<br>ecause of co<br>ecause of co | linearity<br>linearity<br>linearity<br>llinearit<br>llinearit<br>llinearit<br>llinearit<br>llinearit<br>llinearit<br>llinearit | Y<br>Y<br>Y<br>Y<br>Y<br>Y<br>Y<br>Y<br>Y<br>Numbe<br>Wald | r of obs =<br>chi2(33) = | 4720<br>611.47   |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------|------------------|--|
| Log pseudolikelihood =53712127                                                                                                                                                                     |                                                                                                                                                                                                                     |                                                                                                                                                                              |                                                                                                                                |                                                            | > chi2 =<br>o R2 =       | 0.0000<br>0.3376 |  |
|                                                                                                                                                                                                    |                                                                                                                                                                                                                     |                                                                                                                                                                              |                                                                                                                                |                                                            |                          |                  |  |
| owney FII29prp                                                                                                                                                                                     | Coof                                                                                                                                                                                                                | Robust                                                                                                                                                                       | -                                                                                                                              | DNIRI                                                      | [95% Conf                | Intornall        |  |
| exp~yE028prp                                                                                                                                                                                       |                                                                                                                                                                                                                     | Sta. Err.                                                                                                                                                                    | Z<br>Z                                                                                                                         | ₽> Z <br>                                                  | [95% CONI.               | Interval]        |  |
| emp edu                                                                                                                                                                                            | .0021483                                                                                                                                                                                                            | .0085839                                                                                                                                                                     | 0.25                                                                                                                           | 0.802                                                      | 0146759                  | .0189724         |  |
| emp trng                                                                                                                                                                                           | 5924456                                                                                                                                                                                                             | .4639944                                                                                                                                                                     | -1.28                                                                                                                          | 0.202                                                      | -1.501858                | .3169667         |  |
| manager_exp                                                                                                                                                                                        | 0217597                                                                                                                                                                                                             | .0288215                                                                                                                                                                     | -0.75                                                                                                                          | 0.450                                                      | 0782489                  | .0347294         |  |
| new_org_str                                                                                                                                                                                        | .9027606                                                                                                                                                                                                            | .3626251                                                                                                                                                                     | 2.49                                                                                                                           | 0.013                                                      | .1920286                 | 1.613493         |  |
| new_prod_s~v                                                                                                                                                                                       | .5205504                                                                                                                                                                                                            | .3557462                                                                                                                                                                     | 1.46                                                                                                                           | 0.143                                                      | 1766993                  | 1.2178           |  |
| new_methods                                                                                                                                                                                        | 5912779                                                                                                                                                                                                             | .6066225                                                                                                                                                                     | -0.97                                                                                                                          | 0.330                                                      | -1.780236                | .5976803         |  |
| location                                                                                                                                                                                           | 1.798224                                                                                                                                                                                                            | 1.009794                                                                                                                                                                     | 1.78                                                                                                                           | 0.075                                                      | 1809356                  | 3.777384         |  |
| lnsize                                                                                                                                                                                             | -1.336846                                                                                                                                                                                                           | .8513076                                                                                                                                                                     | -1.57                                                                                                                          | 0.116                                                      | -3.005378                | .3316861         |  |
| lnsize_sqr                                                                                                                                                                                         | .173619                                                                                                                                                                                                             | .0898673                                                                                                                                                                     | 1.93                                                                                                                           | 0.053                                                      | 0025176                  | .3497556         |  |
| lnage                                                                                                                                                                                              | 7349665                                                                                                                                                                                                             | .9857974                                                                                                                                                                     | -0.75                                                                                                                          | 0.456                                                      | -2.667094                | 1.197161         |  |
| lnage_sqr                                                                                                                                                                                          | .0924379                                                                                                                                                                                                            | .2806892                                                                                                                                                                     | 0.33                                                                                                                           | 0.742                                                      | 4577029                  | .6425787         |  |
| foreign_du~y                                                                                                                                                                                       | 834275                                                                                                                                                                                                              | 1.046501                                                                                                                                                                     | -0.80                                                                                                                          | 0.425                                                      | -2.885379                | 1.216829         |  |
| state_dummy                                                                                                                                                                                        | -2.11/961                                                                                                                                                                                                           | 1.5/8885                                                                                                                                                                     | -1.34                                                                                                                          | 0.180                                                      | -5.212519                | .9/65981         |  |
| credit                                                                                                                                                                                             | .9/29354                                                                                                                                                                                                            | .5098884                                                                                                                                                                     | 1.91                                                                                                                           | 0.056                                                      | 02642/4                  | 1.9/2298         |  |
| low_mlow_t~h                                                                                                                                                                                       | -2.75424                                                                                                                                                                                                            | .3615661                                                                                                                                                                     | -/.62                                                                                                                          | 0.000                                                      | -3.462897                | -2.045584        |  |
| mnign_tech                                                                                                                                                                                         | -2.636845                                                                                                                                                                                                           | .5323749                                                                                                                                                                     | -4.95                                                                                                                          | 0.000                                                      | -3.68028                 | -1.593409        |  |
| nign_tecn                                                                                                                                                                                          | -3.146/35                                                                                                                                                                                                           | .8313446                                                                                                                                                                     | -3.79                                                                                                                          | 0.000                                                      | -4.//6141                | -1.51/33         |  |
| acountryi                                                                                                                                                                                          | .303/232                                                                                                                                                                                                            | 1.15408                                                                                                                                                                      | 0.32                                                                                                                           | 0.753                                                      | -1.89823                 | 2.023081         |  |
| dcountry2                                                                                                                                                                                          | (omitted)                                                                                                                                                                                                           |                                                                                                                                                                              |                                                                                                                                |                                                            |                          |                  |  |
| dcountry3                                                                                                                                                                                          | (omitted)                                                                                                                                                                                                           |                                                                                                                                                                              |                                                                                                                                |                                                            |                          |                  |  |
| dcountry4                                                                                                                                                                                          | (omitted)                                                                                                                                                                                                           |                                                                                                                                                                              |                                                                                                                                |                                                            |                          |                  |  |
| dcountry5                                                                                                                                                                                          | (omitted)                                                                                                                                                                                                           |                                                                                                                                                                              |                                                                                                                                |                                                            |                          |                  |  |
| dcountry7                                                                                                                                                                                          | (omitted)                                                                                                                                                                                                           |                                                                                                                                                                              |                                                                                                                                |                                                            |                          |                  |  |
| dcountry9                                                                                                                                                                                          | .0153078                                                                                                                                                                                                            | 1,216168                                                                                                                                                                     | 0 01                                                                                                                           | 0.990                                                      | -2.368338                | 2.398953         |  |
| dcountry10                                                                                                                                                                                         | 3348006                                                                                                                                                                                                             | .8982593                                                                                                                                                                     | -0.37                                                                                                                          | 0.709                                                      | -2.095356                | 1.425755         |  |
| dcountry11                                                                                                                                                                                         | 2216                                                                                                                                                                                                                | .8589885                                                                                                                                                                     | -0.26                                                                                                                          | 0.796                                                      | -1.905187                | 1.461987         |  |
| dcountrv12                                                                                                                                                                                         | (omitted)                                                                                                                                                                                                           |                                                                                                                                                                              |                                                                                                                                |                                                            |                          |                  |  |
| dcountrv13                                                                                                                                                                                         | (omitted)                                                                                                                                                                                                           |                                                                                                                                                                              |                                                                                                                                |                                                            |                          |                  |  |
| dcountry14                                                                                                                                                                                         | 7255515                                                                                                                                                                                                             | 1.037914                                                                                                                                                                     | -0.70                                                                                                                          | 0.485                                                      | -2.759826                | 1.308723         |  |
| dcountry15                                                                                                                                                                                         | (omitted)                                                                                                                                                                                                           |                                                                                                                                                                              |                                                                                                                                |                                                            |                          |                  |  |
| dcountry16                                                                                                                                                                                         | 993721                                                                                                                                                                                                              | .8635924                                                                                                                                                                     | -1.15                                                                                                                          | 0.250                                                      | -2.686331                | .6988889         |  |
| dcountry17                                                                                                                                                                                         | (omitted)                                                                                                                                                                                                           |                                                                                                                                                                              |                                                                                                                                |                                                            |                          |                  |  |
| dcountry18                                                                                                                                                                                         | (omitted)                                                                                                                                                                                                           |                                                                                                                                                                              |                                                                                                                                |                                                            |                          |                  |  |
| dcountry19                                                                                                                                                                                         | (omitted)                                                                                                                                                                                                           |                                                                                                                                                                              |                                                                                                                                |                                                            |                          |                  |  |
| dcountry20                                                                                                                                                                                         | .3329976                                                                                                                                                                                                            | 1.126079                                                                                                                                                                     | 0.30                                                                                                                           | 0.767                                                      | -1.874077                | 2.540072         |  |
| dcountry21                                                                                                                                                                                         | 1461052                                                                                                                                                                                                             | 1.07741                                                                                                                                                                      | -0.14                                                                                                                          | 0.892                                                      | -2.257791                | 1.96558          |  |
| dcountry22                                                                                                                                                                                         | 1.362587                                                                                                                                                                                                            | 1.012806                                                                                                                                                                     | 1.35                                                                                                                           | 0.179                                                      | 6224759                  | 3.347649         |  |
| dcountry23                                                                                                                                                                                         | .0779196                                                                                                                                                                                                            | 1.063812                                                                                                                                                                     | 0.07                                                                                                                           | 0.942                                                      | -2.007113                | 2.162952         |  |
| dcountry24                                                                                                                                                                                         | 7771511                                                                                                                                                                                                             | 1.292621                                                                                                                                                                     | -0.60                                                                                                                          | 0.548                                                      | -3.310642                | 1.756339         |  |
| dcountry25                                                                                                                                                                                         | 2976731                                                                                                                                                                                                             | .9544044                                                                                                                                                                     | -0.31                                                                                                                          | 0.755                                                      | -2.168271                | 1.572925         |  |
| dcountry26                                                                                                                                                                                         | .7272345                                                                                                                                                                                                            | 1.065521                                                                                                                                                                     | 0.68                                                                                                                           | 0.495                                                      | -1.361148                | 2.815617         |  |

| dcountry27 |  | 3.59522   | 1.342897 | 2.68  | 0.007 | .9631911  | 6.227249  |  |
|------------|--|-----------|----------|-------|-------|-----------|-----------|--|
| dcountry28 |  | 0599341   | .9310988 | -0.06 | 0.949 | -1.884854 | 1.764986  |  |
| dcountry29 |  | .5324982  | .8875605 | 0.60  | 0.549 | -1.207088 | 2.272085  |  |
| dcountry30 |  | (omitted) |          |       |       |           |           |  |
| _cons      |  | -10.252   | 1.156294 | -8.87 | 0.000 | -12.5183  | -7.985711 |  |
|            |  |           |          |       |       |           |           |  |
|            |  |           |          |       |       |           |           |  |

### Table A6.9.2 Poisson Model - CIS estimated results (exp\_share\_industryEU28)

| . poisson exp  | share industr | yEU28prp e        | mp edu emp  | trng man  | nager exp new | org str       |  |
|----------------|---------------|-------------------|-------------|-----------|---------------|---------------|--|
| new prod serv  | new methods l | ocation ln        | size lnsiz  | e sqr lna | age lnage sqr | foreign dummy |  |
| state dummy cr | redit low mlo | w tech mh         | igh tech h  | igh tech  | dcountry1-d   | country7      |  |
| dcountry9-dcou | ntry30 if CEE | C_dummy==0        | , vce (robu | st) nolo  | 3             |               |  |
| note: you are  | responsible f | or interpr        | etation of  | noncoun   | dep. variab   | le            |  |
| note: dcountry | 1 omitted bec | ause of co        | llinearity  |           |               |               |  |
| note: dcountry | 9 omitted bec | ause of co        | llinearity  |           |               |               |  |
| note: dcountry | 10 omitted be | cause of c        | ollinearit  | У         |               |               |  |
| note: dcountry | 11 omitted be | cause of c        | ollinearit  | Y         |               |               |  |
| note: dcountry | 14 omitted be | cause of c        | ollinearit  | Y         |               |               |  |
| note: dcountry | 16 omitted be | cause of c        | ollinearit  | У         |               |               |  |
| note: dcountry | 20 omitted be | cause of c        | ollinearit  | У         |               |               |  |
| note: dcountry | 21 omitted be | cause of c        | ollinearit  | У         |               |               |  |
| note: dcountry | 22 omitted be | cause of c        | ollinearit  | У         |               |               |  |
| note: dcountry | 23 omitted be | cause of c        | ollinearit  | У         |               |               |  |
| note: dcountry | 24 omitted be | cause of c        | ollinearit  | У         |               |               |  |
| note: dcountry | 25 omitted be | cause of c        | ollinearit  | У         |               |               |  |
| note: dcountry | 26 omitted be | cause of c        | ollinearit  | У         |               |               |  |
| note: dcountry | 27 omitted be | cause of c        | ollinearit  | У         |               |               |  |
| note: dcountry | 28 omitted be | cause of c        | ollinearit  | У         |               |               |  |
| note: dcountry | 29 omitted be | cause of c        | ollinearit  | У         |               |               |  |
| note: dcountry | 30 omitted be | cause of c        | ollinearit  | У         |               |               |  |
|                |               |                   |             |           |               |               |  |
| Poisson regres | sion          |                   |             | Numbe     | c of obs =    | 8991          |  |
|                |               |                   |             | Wald o    | chi2(29) =    | 425.10        |  |
|                |               |                   |             | Prob 3    | > chi2 =      | 0.0000        |  |
| Log pseudolike | =26           | 379213            |             | Pseudo    | o R2 =        | 0.3486        |  |
|                |               |                   |             |           |               |               |  |
|                |               | Debuet            |             |           |               |               |  |
| own, wEU29mm   | Coof          | RODUSL<br>Std Err | -           |           | [OE% Conf     | Totomroll     |  |
| exb~AF070bib   | COEL.         | Stu. EII.         | Z           | P> 2      | [93% CONT.    | Intervalj     |  |
| empedul        | .034106       | .0070087          | 4.87        | 0.000     | .0203693      | .0478427      |  |
| emp_caa        | 2091224       | .3590888          | 0.58        | 0.560     | 4946788       | .9129235      |  |
| manager exp    | 089064        | .0289513          | -3.08       | 0.002     | 1458075       | 0323206       |  |
| new org str    | 1.713789      | .364673           | 4.70        | 0.000     | .9990436      | 2,428535      |  |
| new prod s~v   | -2.273326     | .6771504          | -3.36       | 0.001     | -3.600517     | 9461359       |  |
| new methods    | .2632507      | .5371872          | 0.49        | 0.624     | 7896168       | 1.316118      |  |
| location       | 467589        | .5043197          | -0.93       | 0.354     | -1.456037     | .5208595      |  |
| lnsize         | 1.972689      | .9456444          | 2.09        | 0.037     | .1192604      | 3.826118      |  |
| lnsize sqr     | 0801803       | .096454           | -0.83       | 0.406     | 2692267       | .1088662      |  |
| lnage          | 1879532       | 1.128218          | -0.17       | 0.868     | -2.399219     | 2.023313      |  |
| lnage sgr      | .1990336      | .1842611          | 1.08        | 0.280     | 1621115       | .5601787      |  |
| foreign du~v   | .7783336      | .6640019          | 1.17        | 0.241     | 5230862       | 2.079753      |  |
| state dummy    | -3.214218     | 1.309254          | -2.45       | 0.014     | -5.78031      | 648127        |  |
| credit         | 1.908541      | .3306639          | 5.77        | 0.000     | 1.260451      | 2.55663       |  |
| low mlow t~h   | -4.875421     | .6389063          | -7.63       | 0.000     | -6.127655     | -3.623188     |  |
| mhigh tech     | -3.93907      | .7580581          | -5.20       | 0.000     | -5.424837     | -2.453304     |  |
| high tech      | -6.779495     | 1.102624          | -6.15       | 0.000     | -8.940598     | -4.618392     |  |
| dcountry1      | (omitted)     |                   |             |           |               |               |  |
| dcountrv2      | -1.657398     | .8689316          | -1.91       | 0.056     | -3.360473     | .0456766      |  |

| try3 | -1.969288 | .8156223 | -2.41 | 0.016 | -3.567878 | 3706976   |
|------|-----------|----------|-------|-------|-----------|-----------|
| try4 | -1.46852  | .8747824 | -1.68 | 0.093 | -3.183062 | .2460222  |
| try5 | 2.030572  | .6256453 | 3.25  | 0.001 | .8043294  | 3.256814  |
| try6 | -3.710827 | .8146247 | -4.56 | 0.000 | -5.307463 | -2.114192 |
| try7 | -1.948801 | 1.116938 | -1.74 | 0.081 | -4.137958 | .240357   |
| try9 | (omitted) |          |       |       |           |           |
| ry10 | (omitted) |          |       |       |           |           |
| ry11 | (omitted) |          |       |       |           |           |
| ry12 | -4.816259 | 1.204046 | -4.00 | 0.000 | -7.176146 | -2.456372 |
| ry13 | -1.285902 | .5756045 | -2.23 | 0.025 | -2.414066 | 157738    |
| ry14 | (omitted) |          |       |       |           |           |
| ry15 | -5.680603 | .7810926 | -7.27 | 0.000 | -7.211516 | -4.14969  |
| ry16 | (omitted) |          |       |       |           |           |
| ry17 | -4.446033 | .913891  | -4.86 | 0.000 | -6.237226 | -2.654839 |
| ry18 | 1.132469  | .7338074 | 1.54  | 0.123 | 3057673   | 2.570705  |
| ry19 | -4.406149 | 1.103898 | -3.99 | 0.000 | -6.569749 | -2.242549 |
| ry20 | (omitted) |          |       |       |           |           |
| ry21 | (omitted) |          |       |       |           |           |
| ry22 | (omitted) |          |       |       |           |           |
| ry23 | (omitted) |          |       |       |           |           |
| ry24 | (omitted) |          |       |       |           |           |
| ry25 | (omitted) |          |       |       |           |           |
| ry26 | (omitted) |          |       |       |           |           |
| ry27 | (omitted) |          |       |       |           |           |
| ry28 | (omitted) |          |       |       |           |           |
| ry29 | (omitted) |          |       |       |           |           |
| ry30 | (omitted) |          |       |       |           |           |
| cons | -21.59618 | 2.336213 | -9.24 | 0.000 | -26.17507 | -17.01728 |

### Table A6.9.3 Poisson Model - Full sample estimated results (exp\_share\_industryEA40)

. poisson exp share industryEA40prp emp edu emp trng manager exp new org str new prod serv new methods location lnsize lnsize sqr lnage lnage sqr foreign dummy state dummy credit low\_mlow\_tech mhigh\_tech high\_tech dcountry1-dcountry7 dcountry9-dcountry30, vce(robust) nolog note: you are responsible for interpretation of noncount dep. variable Poisson regression Number of obs = 13711 Wald chi2(46) = 1318.74 Prob > chi2 = 0.0000 Log pseudolikelihood = -1.2918096Pseudo R2 = 0.2686 \_\_\_\_\_ Robust exp~yEA40prp | Coef. Std. Err. z P>|z| [95% Conf. Interval] \_\_\_\_\_\_+\_\_\_\_+\_\_\_\_\_\_\_ emp\_edu | .0221619 .0127867 1.73 0.083 -.0028996 .0472233 emp\_trng | -.3039322 .5312178 -0.57 0.567 .7372355 -1.3451 manager exp | -.0320317 .0292552 -1.09 0.274 -.0893708 .0253073 new org str | .5412611 .6227751 0.87 0.385 -.6793556 1.761878 .960269 new prod s~v | -.0515158 .5162262 -0.10 0.921 -1.063301 new methods | .1557045 .6826453 0.23 0.820 -1.182256 1.493665 location | .9509035 .623996 1.52 0.128 -.2721061 2.173913 lnsize | .7418989 .7403693 1.00 0.316 -.7091983 2.192996 .0986069 lnsize\_sqr | -.0203508 .0606938 -0.34 0.737 -.1393085 lnage | -.6977005 .906076 lnage\_sqr | .1664409 .1584822 foreign\_du~y | -.5424565 .5195858 0.441 -0.77 -2.473577 1.078176 .4770602 1.05 0.294 -.1441785 0.296 .475913 -1.04 -1.560826
| state dummy  | -1.943954 | .9138698 | -2.13 | 0.033 | -3.735106 | 1528025   |  |
|--------------|-----------|----------|-------|-------|-----------|-----------|--|
| credit       | 1.256227  | .3828722 | 3.28  | 0.001 | .5058115  | 2.006643  |  |
| low_mlow_t~h | -2.82755  | .5014865 | -5.64 | 0.000 | -3.810446 | -1.844655 |  |
| mhigh tech   | -2.471032 | .8894515 | -2.78 | 0.005 | -4.214325 | 7277389   |  |
| high tech    | -4.560517 | .7344577 | -6.21 | 0.000 | -6.000028 | -3.121006 |  |
| dcountry1    | .4647464  | 1.205428 | 0.39  | 0.700 | -1.89785  | 2.827343  |  |
| dcountry2    | -1.934634 | .745958  | -2.59 | 0.010 | -3.396685 | 4725837   |  |
| dcountry3    | -3.805435 | .9401197 | -4.05 | 0.000 | -5.648036 | -1.962835 |  |
| dcountry4    | -3.417542 | .9953005 | -3.43 | 0.001 | -5.368295 | -1.466789 |  |
| dcountry5    | 2.083389  | .653191  | 3.19  | 0.001 | .8031578  | 3.363619  |  |
| dcountry6    | -4.63878  | .5773772 | -8.03 | 0.000 | -5.770419 | -3.507142 |  |
| dcountry7    | -2.396475 | .9104789 | -2.63 | 0.008 | -4.180981 | 6119696   |  |
| dcountry9    | -1.092777 | .7990222 | -1.37 | 0.171 | -2.658831 | .4732779  |  |
| dcountry10   | 900682    | .5806996 | -1.55 | 0.121 | -2.038832 | .2374682  |  |
| dcountry11   | 8594387   | .6213168 | -1.38 | 0.167 | -2.077197 | .3583198  |  |
| dcountry12   | -3.928331 | .8923679 | -4.40 | 0.000 | -5.67734  | -2.179322 |  |
| dcountry13   | -2.219275 | 1.044452 | -2.12 | 0.034 | -4.266364 | 1721857   |  |
| dcountry14   | -1.342873 | .6973306 | -1.93 | 0.054 | -2.709616 | .0238695  |  |
| dcountry15   | -7.997091 | .8431727 | -9.48 | 0.000 | -9.649679 | -6.344503 |  |
| dcountry16   | 8862838   | .7175653 | -1.24 | 0.217 | -2.292686 | .5201184  |  |
| dcountry17   | -5.649666 | .8045027 | -7.02 | 0.000 | -7.226463 | -4.07287  |  |
| dcountry18   | 2413759   | .888531  | -0.27 | 0.786 | -1.982865 | 1.500113  |  |
| dcountry19   | -5.189666 | .9857868 | -5.26 | 0.000 | -7.121773 | -3.25756  |  |
| dcountry20   | 3165251   | .7988829 | -0.40 | 0.692 | -1.882307 | 1.249257  |  |
| dcountry21   | 2175514   | .9849749 | -0.22 | 0.825 | -2.148067 | 1.712964  |  |
| dcountry22   | 4.017109  | .6897742 | 5.82  | 0.000 | 2.665177  | 5.369042  |  |
| dcountry23   | 220021    | 1.04306  | -0.21 | 0.833 | -2.264381 | 1.824339  |  |
| dcountry24   | 1966323   | .9298007 | -0.21 | 0.833 | -2.019008 | 1.625744  |  |
| dcountry25   | 870918    | .716325  | -1.22 | 0.224 | -2.274889 | .5330533  |  |
| dcountry26   | 2.91881   | .8318231 | 3.51  | 0.000 | 1.288467  | 4.549154  |  |
| dcountry27   | 3.004641  | .7097399 | 4.23  | 0.000 | 1.613576  | 4.395706  |  |
| dcountry28   | 8166461   | .7318304 | -1.12 | 0.264 | -2.251007 | .617715   |  |
| dcountry29   | .0180602  | .6132572 | 0.03  | 0.977 | -1.183902 | 1.220022  |  |
| dcountry30   | 4704636   | 1.033718 | -0.46 | 0.649 | -2.496513 | 1.555586  |  |
| _cons        | -14.68261 | 2.688558 | -5.46 | 0.000 | -19.95209 | -9.413132 |  |

## Table A6.9.4 Poisson Model - CEECs estimated results (exp\_share\_industryEA40)

| poisson exp_share_industryEA40prp emp_edu emp_truc            | g manager_exp new | _org_s | tr         |
|---------------------------------------------------------------|-------------------|--------|------------|
| new_prod_serv new_methods location insize insize_s            | qr Inage Inage_s  | qr ior | eign_dummy |
| state dummy credit low mlow tech mhigh tech high              | ı tech dcountryl  | -dcoun | try7       |
| <pre>dcountry9-dcountry30 if CEEC_dummy==1, vce(robust)</pre> | nolog             |        |            |
| note: you are responsible for interpretation of no            | oncount dep. vari | able   |            |
| note: dcountry2 omitted because of collinearity               |                   |        |            |
| note: dcountry3 omitted because of collinearity               |                   |        |            |
| note: dcountry4 omitted because of collinearity               |                   |        |            |
| note: dcountry5 omitted because of collinearity               |                   |        |            |
| note: dcountry6 omitted because of collinearity               |                   |        |            |
| note: dcountry7 omitted because of collinearity               |                   |        |            |
| note: dcountry12 omitted because of collinearity              |                   |        |            |
| note: dcountry13 omitted because of collinearity              |                   |        |            |
| note: dcountry15 omitted because of collinearity              |                   |        |            |
| note: dcountry17 omitted because of collinearity              |                   |        |            |
| note: dcountry18 omitted because of collinearity              |                   |        |            |
| note: dcountry19 omitted because of collinearity              |                   |        |            |
| note: dcountry30 omitted because of collinearity              |                   |        |            |
|                                                               |                   |        | 4500       |
| Poisson regression                                            | Number of obs     | =      | 4/20       |
|                                                               | Wald chi2(33)     | =      | 348.23     |
|                                                               | Prob > chi2       | =      | 0.0000     |
| Log pseudolikelihood =91326999                                | Pseudo R2         | =      | 0.2730     |

|                          |            | Robust    |                |       |                        |                    |
|--------------------------|------------|-----------|----------------|-------|------------------------|--------------------|
| exp~yEA40prp             | Coef.      | Std. Err. | Z              | P> z  | [95% Conf.             | [Interval]         |
| emp_edu                  | .0145974   | .0115843  | 1.26           | 0.208 | 0081075                | .0373023           |
| emp_trng                 | 5502243    | .7237719  | -0.76          | 0.447 | -1.968791              | .8683425           |
| <pre>manager_exp  </pre> | 0258448    | .0226756  | -1.14          | 0.254 | 0702882                | .018598            |
| new org str              | 0565038    | .5519827  | -0.10          | 0.918 | -1.13837               | 1.025362           |
| new prod s~v             | .4968261   | .5483305  | 0.91           | 0.365 | 5778819                | 1.57153            |
| new methods              | .487259    | .6403344  | 0.76           | 0.447 | 7677734                | 1.74229            |
| location                 | 1.227756   | .6100784  | 2.01           | 0.044 | .0320239               | 2.42348            |
| lnsize                   | .3028665   | .7788546  | 0.39           | 0.697 | -1.22366               | 1.829393           |
| lnsize sqr               | .013362    | .0633087  | 0.21           | 0.833 | 1107208                | .137444            |
| lnage                    | -1.933777  | .7358687  | -2.63          | 0.009 | -3.376053              | 49150              |
| lnage sqr                | .3772753   | .1774244  | 2.13           | 0.033 | .0295299               | .7250208           |
| foreign du~v             | 4185746    | .51628    | -0.81          | 0.418 | -1.430465              | .593315            |
| state dummy              | -3.90557   | 1.419225  | -2.75          | 0.006 | -6.687201              | -1.1239            |
| credit                   | .9579925   | .444707   | 2.15           | 0.031 | .0863828               | 1.829602           |
| Low mlow t~h             | -3.485509  | .7738985  | -4.50          | 0.000 | -5.002322              | -1.96869           |
| mhigh tech               | -4.009195  | 1.184979  | -3.38          | 0.001 | -6.331712              | -1.686679          |
| high tech                | -4.718269  | .926986   | -5.09          | 0.000 | -6.535128              | -2.90143           |
| dcountrv1                | .3697997   | 1.419282  | 0.26           | 0.794 | -2.411941              | 3.151543           |
| dcountrv2                | (omitted)  |           |                |       |                        |                    |
| dcountry3                | (omitted)  |           |                |       |                        |                    |
| dcountry4                | (omitted)  |           |                |       |                        |                    |
| dcountry5                | (omitted)  |           |                |       |                        |                    |
| dcountry6                | (omitted)  |           |                |       |                        |                    |
| dcountry7                | (omitted)  |           |                |       |                        |                    |
| dcountry9                | 5684763    | 1.104911  | -0.51          | 0.607 | -2.734061              | 1.59710            |
| dcountrv10               | 5413261    | .8753336  | -0.62          | 0.536 | -2.256948              | 1.17429            |
| dcountry11               | 5695273    | .8778355  | -0.65          | 0.516 | -2.290053              | 1.15099            |
| dcountry12               | (omitted)  |           | 0.00           | 0.010 | 2.230000               | 1.100000           |
| dcountry13               | (omitted)  |           |                |       |                        |                    |
| dcountry14               | - 990641   | 8997323   | -1 10          | 0 271 | -2 754084              | 77280              |
| dcountry15               | (omitted)  | .0337320  | <b>T • T</b> O | V.2/1 | 2.,01001               | • / /2002          |
| dcountry16               | - 5273536  | 8947928   | -0 59          | 0 556 | -2 281115              | 1 22640            |
| dcountry17               | (omi+tod)  | .031/320  | 0.00           | 0.000 | 2.201113               | 1.220100           |
| dcountry18               | (omit+ad)  |           |                |       |                        |                    |
| dcountry10               | (omi++od)  |           |                |       |                        |                    |
| dcountry20               | - 1783885  | 1 089683  | -0 16          | 0 870 | -2 314128              | 1 95735            |
| dcountry20               | -260213    | 1 140249  | -0.23          | 0.070 | -2 495059              | 1 97463            |
| dcountry21               | Δ 100150   | 20103/0   | Δ 71           | 0.019 | 2 450009               | 5 0/7210           |
| dcountry22               | - 1007062  | 1 068547  | -0 00          | 0.000 | -2 10511               | 1 00351            |
| doountry23               |            | 1 110100  | -0.09          | 0.920 | -2.19011               | 1 1 1 2 2 J J L    |
| dountry24                | - 5020400  | 1 036036  | -0.07          | 0.940 | -2.209321<br>_2 524025 | 2.11/33<br>1 50700 |
| dountry25                |            | 1 1010230 | -0.49          | 0.02/ | -2.JJ4UJJ<br>006/60/   | 1.32/93<br>5 51600 |
| decumtry26               | ) 3.2U1248 | 1 0/0171  | 2.11           | 0.007 | .0004384<br>1 400651   | 5.51003            |
| decountry2/              | 3.435027   | 1.0481/1  | 3.30           | 0.001 | 1.400651               | 3.30940            |
| decountry28              | 3035958    | .0923141  | -0.34          | 0./34 | -2.U32891              | L.445              |
| acountry29               | .3384355   | .8058824  | 0.42           | 0.6/5 | -1.241065              | 1.91/93            |
| acountry30               | (omitted)  | 1 960596  | C 70           | 0 000 |                        | 0 50000            |
| _cons                    | -11.99834  | 1./695/6  | -6./8          | 0.000 | -15.46665              | -8.53003           |

## Table A6.9.5 Poisson Model - CIS estimated results (exp\_share\_industryEA40)

poisson exp\_share\_industryEA40prp emp\_edu emp\_trng manager\_exp new\_org\_str new\_prod\_serv new\_methods location lnsize lnsize\_sqr lnage lnage\_sqr foreign\_dummy state\_dummy credit low\_mlow\_tech mhigh\_tech high\_tech dcountry1-dcountry7 dcountry9-dcountry30 if CEEC\_dummy==0, vce(robust) nolog note: you are responsible for interpretation of noncount dep. variable note: dcountry1 omitted because of collinearity

| note: dcountry          | y9 omitted bec          | ause of col          | linearity |        |                         |                                        |
|-------------------------|-------------------------|----------------------|-----------|--------|-------------------------|----------------------------------------|
| note: dcountry          | y10 omitted be          | cause of co          | llinearit | y      |                         |                                        |
| note: dcountry          | yll omitted be          | cause of co          | llinearit | y      |                         |                                        |
| note: dcountry          | ,<br>14 omitted be      | cause of co          | llinearit | y      |                         |                                        |
| note: dcountry          | /16 omitted be          | cause of co          | llinearit | y      |                         |                                        |
| note: dcountry          | ,20 omitted be          | cause of co          | llinearit | Ý      |                         |                                        |
| note: dcountry          | ,<br>21 omitted be      | cause of co          | llinearit | y      |                         |                                        |
| note: dcountry          | ,<br>22 omitted be      | cause of co          | llinearit | Ý      |                         |                                        |
| note: dcountry          | ,<br>23 omitted be      | cause of co          | llinearit | y      |                         |                                        |
| note: dcountry          | /24 omitted be          | cause of co          | llinearit | y      |                         |                                        |
| note: dcountry          | ,<br>25 omitted be      | cause of co          | llinearit | y      |                         |                                        |
| note: dcountry          | y26 omitted be          | cause of co          | llinearit | У      |                         |                                        |
| note: dcountry          | ,<br>27 omitted be      | cause of co          | llinearit | y      |                         |                                        |
| note: dcountry          | ,<br>28 omitted be      | cause of co          | llinearit | y      |                         |                                        |
| note: dcountry          | ,<br>29 omitted be      | cause of co          | llinearit | y      |                         |                                        |
| note: dcountry          | y30 omitted be          | cause of co          | llinearit | y      |                         |                                        |
|                         |                         |                      |           |        |                         |                                        |
| Poisson regres          | ssion                   |                      |           | Numbe  | r of obs =              | 8991                                   |
| _                       |                         |                      |           | Wald   | chi2(29) =              | 487.65                                 |
|                         |                         |                      |           | Prob   | > chi2 =                | 0.0000                                 |
| Log pseudolike          | elihood =31             | 681994               |           | Pseud  | o R2 =                  | 0.3048                                 |
| 5 1                     |                         |                      |           |        |                         |                                        |
|                         |                         |                      |           |        |                         |                                        |
|                         |                         | Robust               |           |        |                         |                                        |
| exp~yEA40prp            | Coef.                   | Std. Err.            | Z         | P>   z | [95% Conf.              | Interval]                              |
|                         | +                       |                      |           |        |                         |                                        |
| emp_edu                 | .0318802                | .0075825             | 4.20      | 0.000  | .0170187                | .0467416                               |
| emp_trng                | .4961126                | .3627561             | 1.37      | 0.171  | 2148763                 | 1.207102                               |
| manager_exp             | 0549361                 | .0242314             | -2.27     | 0.023  | 1024287                 | 0074434                                |
| new_org_str             | 1.650973                | .3267274             | 5.05      | 0.000  | 1.010599                | 2.291347                               |
| new_prod_s~v            | -2.140977               | .6138924             | -3.49     | 0.000  | -3.344184               | 9377703                                |
| new_methods             | 1428894                 | .5476765             | -0.26     | 0.794  | -1.216316               | .9305368                               |
| location                | 7325041                 | .4986771             | -1.47     | 0.142  | -1.709893               | .244885                                |
| lnsize                  | 1.693417                | .7025441             | 2.41      | 0.016  | .3164558                | 3.070378                               |
| lnsize sqr              | 0463455                 | .0722587             | -0.64     | 0.521  | 18797                   | .0952789                               |
| lnage                   | 1.069617                | 1.802861             | 0.59      | 0.553  | -2.463926               | 4.603159                               |
| lnage sqr               | 1017781                 | .295853              | -0.34     | 0.731  | 6816393                 | .4780832                               |
| foreign du~y            | .7183406                | .6315192             | 1.14      | 0.255  | 5194143                 | 1.956095                               |
| state dummy             | -3.275065               | 1.233467             | -2.66     | 0.008  | -5.692616               | 8575145                                |
| credit                  | 1.742353                | .3255057             | 5.35      | 0.000  | 1.104373                | 2.380332                               |
| low mlow t~h            | -3.443858               | .5673961             | -6.07     | 0.000  | -4.555934               | -2.331782                              |
| mhigh tech              | -1.942997               | .5833356             | -3.33     | 0.001  | -3.086313               | 7996798                                |
| high tech               | -5.747872               | 1.06863              | -5.38     | 0.000  | -7.842348               | -3.653397                              |
| dcountry1               | (omitted)               |                      |           |        |                         |                                        |
| dcountrv2               | -1.522664               | .8440355             | -1.80     | 0.071  | -3.176943               | .1316154                               |
| dcountrv3               | -1.656701               | .7708022             | -2.15     | 0.032  | -3.167446               | 1459564                                |
| dcountry4               | -1.582934               | .864106              | -1.83     | 0.067  | -3.27655                | .1106828                               |
| dcountry5               | 2.625628                | 4558962              | 5.76      | 0.000  | 1.732088                | 3.519168                               |
| dcountry6               | -3.86353                | .5577855             | -6.93     | 0.000  | -4.95677                | -2.770291                              |
| dcountry7               | -1 523398               | 9991095              | -1 52     | 0 127  | -3 481617               | 4348207                                |
| dcountry9               | (omitted)               |                      | ±•02      | ·· /   | J. 10101/               | . 10 10207                             |
| dcountry10              | (omitted)               |                      |           |        |                         |                                        |
| dcountry11              | (omitted)               |                      |           |        |                         |                                        |
| dcountry12              | -4.961042               | 1,233776             | -4 02     | 0.000  | -7.379198               | -2.542886                              |
| dcountry12              | -1.289844               | .6341868             | -2 03     | 0.042  | -2.532827               | 0468605                                |
| dcountry10              | (omittad)               | .0011000             | 2.00      | 0.012  | 2.002021                | .0100000                               |
| $d_{COUP} + r_{V}^{15}$ | -5.8/7621               | 746863               | -7 83     | 0 000  | -7 311506               | -4 383856                              |
| dcountry16              | (omi++od)               | . / 10005            |           | 0.000  |                         | J.J.J.J.J.J.J.J.J.J.J.J.J.J.J.J.J.J.J. |
| dcountry 17             |                         | 8805871              | -1 00     | 0 000  | -6 101010               | -2 660/1                               |
| doountry1/              | =4.595529<br>  1 166764 | 7266102              | -4.33     | 0.000  | - 0.121240<br>- 2570406 | -2.00941<br>2 500560                   |
| decumber 10             |                         | ./200402<br>1 004001 | T.0T      | 0.100  | 2J/04U0                 | 2.390300                               |
| decuntry19              | -3.1/2003               | 1.024891             | -3.68     | 0.000  | -3./81432               | -T. 103333                             |
| acountry20              | (omitted)               |                      |           |        |                         |                                        |
| acountry21              | (omitted)               |                      |           |        |                         |                                        |

| dcountry22 | (omitted) |          |       |       |           |           |
|------------|-----------|----------|-------|-------|-----------|-----------|
| dcountry23 | (omitted) |          |       |       |           |           |
| dcountry24 | (omitted) |          |       |       |           |           |
| dcountry25 | (omitted) |          |       |       |           |           |
| dcountry26 | (omitted) |          |       |       |           |           |
| dcountry27 | (omitted) |          |       |       |           |           |
| dcountry28 | (omitted) |          |       |       |           |           |
| dcountry29 | (omitted) |          |       |       |           |           |
| dcountry30 | (omitted) |          |       |       |           |           |
| _cons      | -22.44692 | 2.648634 | -8.47 | 0.000 | -27.63815 | -17.25569 |
|            |           |          |       |       |           |           |

## Table A6.9.6 Poisson Model - Full sample estimated results (exp\_share\_totalEU28)

. poisson exp\_share\_totalEU28prp emp\_edu emp\_trng manager\_exp new\_org\_str new\_prod\_serv new\_methods location lnsize lnsize\_sqr lnage lnage\_sqr foreign\_dummy state\_dummy credit low\_mlow\_tech mhigh\_tech high\_tech dcountry1-dcountry7
dcountry9-dcountry30, vce(robust) nolog note: you are responsible for interpretation of noncount dep. variable

| Poisson | rearession  |
|---------|-------------|
| 1010001 | TCGTCDDTOIL |

| Poisson regres<br>Log pseudolike | elihood =03 | 3078261             |       | Numbe<br>Wald<br>Prob<br>Pseud | r of obs<br>chi2(46)<br>> chi2<br>o R2 | = 13711<br>= 1759.82<br>= 0.0000<br>= 0.1531 |
|----------------------------------|-------------|---------------------|-------|--------------------------------|----------------------------------------|----------------------------------------------|
| <br>exp~lEU28prp                 | Coef.       | Robust<br>Std. Err. | Z     | P> z                           | [95% Con                               | f. Interval]                                 |
| emp edu                          | .0100404    | .006051             | 1.66  | 0.097                          | 0018194                                | .0219002                                     |
| emp trng                         | .0702823    | .2789468            | 0.25  | 0.801                          | 4764433                                | .6170079                                     |
| manager exp                      | .0048596    | .0139876            | 0.35  | 0.728                          | 0225555                                | .0322748                                     |
| new org str                      | .7707679    | .2858967            | 2.70  | 0.007                          | .2104208                               | 1.331115                                     |
| new prod s~v                     | 4330558     | .3776612            | -1.15 | 0.252                          | -1.173258                              | .3071466                                     |
| new methods                      | 0679126     | .38477              | -0.18 | 0.860                          | 8220479                                | .6862227                                     |
| location                         | .227633     | .3223101            | 0.71  | 0.480                          | 4040831                                | .8593491                                     |
| lnsize                           | .5287786    | .4125092            | 1.28  | 0.200                          | 2797246                                | 1.337282                                     |
| lnsize sqr                       | .0343524    | .0346963            | 0.99  | 0.322                          | 0336512                                | .102356                                      |
| lnage                            | .2616217    | .7761464            | 0.34  | 0.736                          | -1.259597                              | 1.782841                                     |
| lnage sqr                        | 0594659     | .1233747            | -0.48 | 0.630                          | 3012759                                | .1823442                                     |
| foreign du~y                     | .4845468    | .4382284            | 1.11  | 0.269                          | 3743651                                | 1.343459                                     |
| state dummy                      | 1600998     | .702718             | -0.23 | 0.820                          | -1.537402                              | 1.217202                                     |
|                                  | .4212511    | .3218278            | 1.31  | 0.191                          | 2095198                                | 1.052022                                     |
| low_mlow_t~h                     | 1.186597    | .2965647            | 4.00  | 0.000                          | .6053413                               | 1.767854                                     |
| mhigh_tech                       | 1.725534    | .3123225            | 5.52  | 0.000                          | 1.113393                               | 2.337674                                     |
| high_tech                        | 1.014679    | .383037             | 2.65  | 0.008                          | .2639405                               | 1.765418                                     |
| dcountry1                        | .989301     | .8689865            | 1.14  | 0.255                          | 7138812                                | 2.692483                                     |
| dcountry2                        | 682078      | .4654282            | -1.47 | 0.143                          | -1.5943                                | .2301445                                     |
| dcountry3                        | 7040331     | .7039054            | -1.00 | 0.317                          | -2.083662                              | .6755961                                     |
| dcountry4                        | 9733255     | .5751973            | -1.69 | 0.091                          | -2.100692                              | .1540406                                     |
| dcountry5                        | 1.766162    | .3220005            | 5.48  | 0.000                          | 1.135053                               | 2.397271                                     |
| dcountry6                        | -1.711952   | .4071846            | -4.20 | 0.000                          | -2.510019                              | 9138848                                      |
| dcountry7                        | .2820555    | .5444483            | 0.52  | 0.604                          | 7850435                                | 1.349155                                     |
| dcountry9                        | .3426717    | .6602582            | 0.52  | 0.604                          | 9514106                                | 1.636754                                     |
| dcountry10                       | 2.323361    | .621257             | 3.74  | 0.000                          | 1.10572                                | 3.541002                                     |
| dcountryll                       | .5074145    | .6212864            | 0.82  | 0.414                          | 7102846                                | 1.725114                                     |
| dcountry12                       | 588677      | .8036515            | -0.73 | 0.464                          | -2.163805                              | .9864509                                     |
| dcountry13                       | -1.05679    | .5104595            | -2.07 | 0.038                          | -2.057272                              | 0563078                                      |
| dcountry14                       | .3717775    | .4725986            | 0.79  | 0.431                          | 5544986                                | 1.298054                                     |
| dcountry15                       | -2.582157   | .654558             | -3.94 | 0.000                          | -3.865067                              | -1.299247                                    |

| dcountry16 | .4472461  | .4210591 | 1.06   | 0.288 | 3780145   | 1.272507  |  |
|------------|-----------|----------|--------|-------|-----------|-----------|--|
| dcountry17 | -1.792246 | .5660236 | -3.17  | 0.002 | -2.901631 | 6828597   |  |
| dcountry18 | .0746035  | .6655872 | 0.11   | 0.911 | -1.229923 | 1.379131  |  |
| dcountry19 | -2.541342 | .6672606 | -3.81  | 0.000 | -3.849148 | -1.233535 |  |
| dcountry20 | 1.605439  | .4002101 | 4.01   | 0.000 | .8210413  | 2.389836  |  |
| dcountry21 | .3804562  | .580648  | 0.66   | 0.512 | 757593    | 1.518505  |  |
| dcountry22 | 1.375905  | .467441  | 2.94   | 0.003 | .4597375  | 2.292073  |  |
| dcountry23 | 1.536192  | .4795086 | 3.20   | 0.001 | .5963729  | 2.476012  |  |
| dcountry24 | .7112189  | .4068171 | 1.75   | 0.080 | 086128    | 1.508566  |  |
| dcountry25 | 1.199219  | .4380915 | 2.74   | 0.006 | .3405759  | 2.057863  |  |
| dcountry26 | 1.224436  | .5194551 | 2.36   | 0.018 | .2063227  | 2.242549  |  |
| dcountry27 | 3.058407  | .4991836 | 6.13   | 0.000 | 2.080025  | 4.036789  |  |
| dcountry28 | .5978256  | .5025516 | 1.19   | 0.234 | 3871575   | 1.582809  |  |
| dcountry29 | 1.334293  | .3580481 | 3.73   | 0.000 | .6325315  | 2.036054  |  |
| dcountry30 | .2436769  | .6636875 | 0.37   | 0.714 | -1.057127 | 1.54448   |  |
| _cons      | -21.24642 | 1.84394  | -11.52 | 0.000 | -24.86048 | -17.63236 |  |
|            |           |          |        |       |           |           |  |

## Table A6.9.7 Poisson Model - Full sample estimated results (exp\_share\_totalEA40)

. poisson exp share totalEA40prp emp edu emp trng manager exp new org str new prod serv new methods location lnsize lnsize sqr lnage lnage sqr foreign dummy state\_dummy credit low\_mlow\_tech mhigh\_tech high\_tech dcountry1-dcountry7 dcountry9-dcountry30, vce(robust) nolog note: you are responsible for interpretation of noncount dep. variable Number of obs = 13711 Poisson regression Wald chi2(46) = 3763.94= 0.0000 Prob > chi2 Log pseudolikelihood = -.06596677= 0.2287 Pseudo R2 \_\_\_\_\_ 1 Robust exp~lEA40prp | Coef. Std. Err. z P>|z| [95% Conf. Interval] \_\_\_\_\_+\_\_\_\_ 

 emp\_edu |
 .0059321
 .0058581
 1.01
 0.311
 -.0055496
 .0174138

 emp\_trng |
 .8750509
 .2613405
 3.35
 0.001
 .3628328
 1.387269

 manager\_exp |
 .0163114
 .0074067
 2.20
 0.028
 .0017944
 .0308283

 new\_org\_str |
 .5790581
 .2998275
 1.93
 0.053
 -.008593
 1.166709

 new\_prod\_s~v |
 -.6228184
 .4298712
 -1.45
 0.147
 -1.46535
 .2197136

 new\_methods |
 -.054552
 .2733968
 -0.20
 0.842
 -.5903999
 .4812959

 -.254674 .3499118 -0.73 0.467 location | -.9404884 .4311405 .6756345 .3837244 1.76 0.078 -.0764516 1.427721 lnsize | lnsize sgr | .0207536 .0314108 0.66 0.509 -.0408103 .0823176 lnage | .8660204 .8121589 1.07 0.286 -.7257817 2.457823 lnage sqr | -.1436285 .1325474 -1.08 0.279 -.4034167 .1161597 foreign\_du~y | .3868643 .3568749 1.08 0.278 -.3125975 1.086326 state\_dummy | -.9889176 .8230773 .6242843 -1.20 0.230 -2.60212 \_ credit | 1.14 0.255 .2593445 .2276345 -.1868109 .7054999 .533017 low\_mlow\_t~h | 1.199576 .3400873 3.53 0.000 1.866135 mhigh\_tech | 2.232993 .3432713 1.560194 6.51 0.000 2.71 0.007 2.905793 high\_tech | .385026 .2880676 1.042705 1.797342 
 1.042705
 .385026

 1.493041
 .8752269

 -.4677378
 .5459816
 0.088 -.2223721 3.208454 dcountry1 | 1.71 0.392 -0.86 -1.537842 dcountry2 | .6023664 -.454178 .8348611 -0.54 0.586 dcountry3 | -2.090476 1.18212 dcountry4 | -.7038546 .5968227 -1.18 0.238 -1.873606 .4658964 3.079482 .3430454 dcountry5 | 8.98 0.000 2.407125 3.751838 dcountry6 | -1.644677 .3867327 -4.25 0.000 -2.402659 -.8866948 dcountry7 | .3408239 .6596907 0.52 0.605 -.9521461 1.633794 dcountry9 | .1695376 .6651785 0.25 0.799 -1.134188 1.473264 dcountry10 | 2.260662 .6898386 3.28 0.001 .9086029 3.61272

| dcountry11 | .7455973  | .6175648 | 1.21   | 0.227 | 4648075   | 1.956002  |
|------------|-----------|----------|--------|-------|-----------|-----------|
| dcountry12 | -1.04631  | .8016546 | -1.31  | 0.192 | -2.617524 | .524904   |
| dcountry13 | 6061474   | .570315  | -1.06  | 0.288 | -1.723944 | .5116495  |
| dcountry14 | .2873672  | .5134423 | 0.56   | 0.576 | 7189612   | 1.293696  |
| dcountry15 | -2.170382 | .6818526 | -3.18  | 0.001 | -3.506789 | 833976    |
| dcountry16 | .5531146  | .4834834 | 1.14   | 0.253 | 3944955   | 1.500725  |
| dcountry17 | -1.11941  | .5735505 | -1.95  | 0.051 | -2.243548 | .0047283  |
| dcountry18 | .3401161  | .7057499 | 0.48   | 0.630 | -1.043128 | 1.72336   |
| dcountry19 | -2.234719 | .7420034 | -3.01  | 0.003 | -3.689019 | 7804194   |
| dcountry20 | 1.629529  | .4655006 | 3.50   | 0.000 | .7171649  | 2.541894  |
| dcountry21 | .5437955  | .6184428 | 0.88   | 0.379 | 6683301   | 1.755921  |
| dcountry22 | 3.059873  | .5436131 | 5.63   | 0.000 | 1.99441   | 4.125335  |
| dcountry23 | 1.641501  | .4668644 | 3.52   | 0.000 | .7264631  | 2.556538  |
| dcountry24 | .8873558  | .4573573 | 1.94   | 0.052 | 009048    | 1.78376   |
| dcountry25 | 1.238822  | .4804654 | 2.58   | 0.010 | .2971276  | 2.180517  |
| dcountry26 | 2.918679  | .5456414 | 5.35   | 0.000 | 1.849241  | 3.988116  |
| dcountry27 | 3.051306  | .5388569 | 5.66   | 0.000 | 1.995166  | 4.107446  |
| dcountry28 | .4964355  | .5173633 | 0.96   | 0.337 | 5175779   | 1.510449  |
| dcountry29 | 1.306438  | .4432935 | 2.95   | 0.003 | .4375986  | 2.175277  |
| dcountry30 | .4874052  | .5965659 | 0.82   | 0.414 | 6818425   | 1.656653  |
| cons       | -23.144   | 1.689192 | -13.70 | 0.000 | -26.45476 | -19.83325 |