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Abstract  

Prenatal maternal psychological distress increases risk for adverse infant outcomes. 

However, the biological mechanisms underlying this association remain unclear. 

Prenatal stress can impact fetal epigenetic regulation that could underlie changes in 

infant stress responses. It has been suggested that maternal glucocorticoids may 

mediate this epigenetic effect. We examined this hypothesis by determining the 

impact of maternal cortisol and depressive symptoms during pregnancy on infant 

NR3C1 and BDNF DNA methylation. Fifty-seven pregnant women were recruited 

during the second or third trimester. Participants self-reported depressive symptoms 
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and salivary cortisol samples were collected diurnally and in response to a stressor. 

Buccal swabs for DNA extraction and DNA methylation analysis were collected from 

each infant at two months of age, and mothers were assessed for postnatal depressive 

symptoms. Prenatal depressive symptoms significantly predicted increased NR3C1 1F 

DNA methylation in male infants (2.147 = س, P = 0.044). Prenatal depressive 

symptoms also significantly predicted decreased BDNF IV DNA methylation in both 

male and female infants (3.244- = س, P = 0.013). No measure of maternal cortisol 

during pregnancy predicted infant NR3C1 1F or BDNF promoter IV DNA 

methylation. Our findings highlight the susceptibility of males to changes in NR3C1 

DNA methylation and present novel evidence for altered BDNF IV DNA methylation 

in response to maternal depression during pregnancy. The lack of association between 

maternal cortisol and infant DNA methylation suggests that effects of maternal 

depression may not be mediated directly by glucocorticoids. Future studies should 

consider other potential mediating mechanisms in the link between maternal mood 

and infant outcomes.  
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Introduction 

Psychological wellbeing during pregnancy can have long-term implications for 

offspring mental and physical health 1-4.   In particular, psychological distress, which 

encompasses feelings of anxiety, depression, and perceived stress, increases risk for a 

number of adverse offspring outcomes 5-9, including premature birth 10, behavioral 

difficulties in childhood 5, and psychiatric disorder in adulthood 7, 11. However, the 

mechanism(s) that account for associations between prenatal distress and health 

outcomes are unclear.  

 

The prevailing mechanistic theory in perinatal psychiatry to account for mood-

associated effects in offspring is via alterations of the maternal hypothalamic-

pituitary-adrenal (HPA) axis during pregnancy 1, 4. Indeed, symptoms of prenatal 

depression have been associated with increased diurnal salivary cortisol 12, and 

exaggerated cortisol responses to an acute stressor 13. Moreover, enduring changes in 

fetal DNA methylation have been proposed to be involved in entraining the fetal HPA 

axis in response to maternal distress 4, 14.  Epigenetic variation, including DNA 

methylation changes in brain regions involved in the regulation of HPA activity, have 

been observed in animal studies following prenatal exposure to stress 15, maternal 

separation 16, and in response to variation in mother-infant interactions 17, 18, with 

implications for the HPA response to stress.  In particular, increased DNA 

methylation in the promoter region of the gene encoding the glucocorticoid receptor 

(Nr3c1) in the hippocampus has been observed, and may account for heightened 

glucocorticoid levels in offspring 19.  
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The glucocorticoid receptor (GR) plays a critical role in HPA responses to stress 

through negative feedback on glucocorticoid release.  Increased DNA methylation 

within the Nr3c1 gene results in decreased expression of hippocampal GR, a 

dampening of negative feedback, and prolonged increase in circulating glucocorticoid 

levels 19.  In rodents, offspring that experience low compared to high levels of 

postnatal maternal care have increased hippocampal Nr3c1 DNA methylation and 

reduced Nr3c1 expression.  Cross-fostering studies have confirmed that these 

epigenetic changes emerge in response to maternal care during the postnatal period, 

and pharmacological studies have indicated that shifts in hippocampal Nr3c1 DNA 

methylation can modulate the behavioral and physiological response to stress 20.  

Although the epigenetic effects of maternal care are not restricted to Nr3c1 21, 22, this 

target gene may be particularly relevant to understanding the coordinated biological 

response observed following exposure to early life adversity. 

 

Translational studies examining the association between exposure to early life stress 

and NR3C1 exon 1F DNA methylation in humans have generated findings consistent 

with animal studies using both post-mortem brain samples and peripheral tissues 23-25.  

Increased NR3C1 exon 1F methylation and decreased GR mRNA have been detected 

in the hippocampus of suicide victims with a history of childhood abuse 23. Increased 

NR3C1 1F DNA methylation has also been detected in DNA extracted from whole 

blood samples from young adolescents exposed to physical abuse in childhood 24, and 

adolescents exposed to stressful life events or trauma 25.  This susceptibility to 

alterations in NR3C1 DNA methylation is also observed in response to prenatal 

distress.  Increased NR3C1 1F DNA methylation has been found in cord blood of 

infants exposed to maternal depressed mood during pregnancy and this altered 
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epigenetic state was predictive of stress responses in these infants at three months of 

age 26. Increased NR3C1 1F DNA methylation has also been observed in whole blood 

of young adolescents whose mothers had experienced intimate partner violence 

during pregnancy 27.  

 

Although gene targets associated with the HPA response to stress have predominated 

epigenetic studies of the impact of early life adversity, the complex behavioral 

phenotypes that emerge suggest the importance of genes involved in brain 

development and neuroplasticity, such as brain derived neurotrophic factor (BDNF).  

BDNF plays an essential role in neurodevelopment and has been linked to psychiatric 

risk 28. In animal studies, maternal stress during pregnancy induces increased bdnf 

promoter IV DNA methylation and decreased BDNF expression in the amygdala and 

hippocampus in offspring that persist into adulthood 29.  Persistent epigenetic changes 

in bdnf, within the cortex of offspring, are also observed in response to abusive 

caregiving during the postnatal period 29-32. We have recently found that increased 

BDNF promoter IV DNA methylation in peripheral blood may be a significant 

biomarker of prenatal adversity that is relevant for both animals and humans 33.  

However, the impact of prenatal psychological distress on infant BDNF IV DNA 

methylation has yet to be explored.  

 

The role of epigenetic variation in mediating the effects of early life adversity is an 

evolving area of study.  In the current study, we determine whether exposure to 

maternal prenatal depression predicts increased infant NR3C1 IF DNA methylation in 

buccal cells. It has been suggested that biological markers of distress in pregnancy 

may be more reliable predictors of adverse infant outcomes than self-reported 
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psychological measures 34.  Here, we assess whether maternal prenatal cortisol may 

be a more accurate predictor of infant NR3C1 1F DNA methylation than a self-

reported measure of depression. A further aim of this study is to investigate, for the 

first time in a human cohort, whether depressed mood during pregnancy may have 

implications for infant BDNF IV DNA methylation.  

 

Results 

Sample characteristics 

The demographic characteristics of this sample are presented in Table 1. All mothers 

in this study were primiparous; average age was 32.04 (SD 4.35). This primarily 

Caucasian (89.5%) group of women was highly educated (49.1% had a postgraduate 

degree). No participants reported smoking cigarettes during pregnancy; however, 

21.1% reported consuming 1-5 units of alcohol per week. No participants were using 

antidepressant or steroid-based medications whilst pregnant. A total of 89.5% of 

participants reported that their pregnancy had been planned, and 29.8% reported a 

previous history of mental health disorders. There were no significant differences 

between the demographic characteristics of the control group (n=37) and depression-

symptom group (n=20). The groups only differed on prenatal and postnatal EPDS 

score; with a significantly higher EPDS score in the depression-symptom group 

compared to the control group [Table 1; (t(55)=2.297, P<0.001) and (t(55)=-2.469, 

P<0.05), respectively]. There were no group differences in prenatal salivary cortisol 

responses to the infant distress stimulus (Table 1; t(55)=1.097, P=0.277) or log AUC 

of diurnal cortisol (Table 1; t(55)=-1.471, P=0.147). Days-of-gestation was not 

correlated with either log AUC of diurnal cortisol (r=0.224, P=0.107), or mean 

cortisol change in response to the stressor (r=0.026, P=0.849).  
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Of the 57 infants included in this study, 25 (43.9%) were male and 32 (56.1%) were 

female. Mean birth weight was 3.33 kg (SD=0.64), and 21 mothers (36.8%) reported 

delivery complications. Mothers who experienced prenatal depressive symptoms 

reported significantly more delivery complications than controls (x2
(1)=4.0657, 

P<0.05). Examples of reported delivery complications include the development of 

preeclampsia resulting in an induced birth, signs of fetal distress leading to an assisted 

delivery, and a retained placenta. There were no significant differences between 

women who did and did not report delivery complications on measures of prenatal 

cortisol or postnatal depression.  

 

Maternal prenatal depressive symptoms and infant NR3C1 1F and BDNF IV DNA 

methylation 

None of the maternal demographic variables, including prenatal depression, 

significantly correlated with DNA methylation at any CpG site. In the regression 

analyses, mean DNA methylation of all 10 CpG sites within NR3C1 1F was first used 

as the outcome variable. There was a significant effect of the prenatal 

depression*gender interaction to predict mean NR3C1 1F DNA methylation (س=-

0.350, P=0.017); see Table 2. To investigate this interaction further, the data was split 

by gender, and the regression model repeated. For male infants only, prenatal 

depression significantly predicted mean NR3C1 DNA methylation (2,147=س, 

P=0.044), such that those infants exposed to prenatal depressive symptoms had 

increased NR3C1 1F DNA methylation across the 10 CpG sites.  These results are 

shown graphically in Figure 1. The regression model was reconstructed using 

percentage methylation at each individual CpG site as the outcome variable. At CpG 
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sites 2 and 9, a prenatal group*gender interaction also significantly predicted DNA 

methylation [(0.285-=س, P<0.05) and (0.330-=س, P<0.05) respectively]. The data was 

split by gender and the model was repeated for the two sites. At CpG2, the effect of 

prenatal depression approached significance for males (0.395=س, P=0.067), but not 

females (0.239-=س, P=0.231). At CpG9 the effect of prenatal depression in predicting 

DNA methylation in the females approached significance (0.360-=س, P=0.066), but 

was not significant for the males (0.288=س, P=0.191).  

 

A similar model was constructed using mean BDNF IV DNA methylation across the 5 

assessed CpG sites as the outcome variable. Here, prenatal depression significantly 

predicted mean BDNF promoter IV DNA methylation (2.590-=س, P=0.013); however, 

there was no significant effect of gender (1.796-=س, P=0.079) or a prenatal 

depression*gender interaction (0.620=س, P=0.538); see Table 2. This model was 

reconstructed using % DNA methylation at each CpG site as the outcome variable. 

Prenatal depression significantly predicted % DNA methylation at CpG3 only (س=-

3.244, P=0.002), such that those infants exposed to antenatal depression had 

decreased methylation at CpG3. These results are presented graphically in Figure 2.  

 

Maternal prenatal cortisol and infant NR3C1 1F and BDNF IV DNA methylation 

Two measures of maternal cortisol were available: mean change in response to a 

stressor and the log AUC for diurnal cortisol. Regression models were constructed as 

previously described, but each measure of maternal cortisol was used in the place of 

prenatal depression, and days-of-gestation was entered as a covariate. Neither 

measure of cortisol significantly predicted mean infant NR3C1 IF DNA methylation 

(mean change: 0.219=س, P=0.828; log AUC cortisol: 0.296=س, P=0.769), and neither 
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did a cortisol*gender interaction (mean change: 1,227=س, P=0.226; log AUC cortisol: 

   .(P=0.665 ,0.436=س

 

Similarly, neither cortisol measure significantly predicted mean BDNF promoter IV 

DNA methylation (mean change: 0.639-=س, P=0.532; log AUC cortisol: 0.069-=س, 

P=0.945), and neither did a cortisol*gender interaction (mean change: 1.345=س, 

P=0.185; log AUC cortisol 1.633-=س, P=0.109).  

 

Discussion 

Maternal depression is predictive of adverse psychiatric and physical outcomes in 

offspring 7-10 and it has been speculated that elevated maternal glucocorticoids may 

induce these effects 1, 4, 14.  Moreover, there is increasing evidence for the role of 

epigenetic variation in the lasting consequences of early life adversity 19, 22, 23, 26.  In 

the current study, we find a sex-specific effect of maternal prenatal depressive 

symptoms on DNA methylation within the NR3C1 gene, with elevated NR3C1 1F 

DNA methylation in male, but not female, infants exposed to maternal prenatal 

depression.  Analysis of the BDNF promoter IV region revealed that both male and 

female infants exposed to prenatal depression had decreased DNA BDNF IV 

methylation. However, for both NR3C1 and BDNF, maternal cortisol did not predict 

infant DNA methylation changes.  

 

Variation in DNA methylation within the NR3C1 1F region has been reported in both 

animal 15, 18, 19 and human 23-27 studies, suggesting that this epigenetic marker is 

developmentally sensitive to the quality of the environment.  These studies have 

consistently reported increased DNA methylation of NR3C1 1F and our findings 
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compliment previous reports examining the epigenetic impact of maternal depressed 

mood during pregnancy 26.  While previous studies have indicated increased NR3C1 

1F DNA methylation in cord blood samples at birth, here we illustrate that increased 

NR3C1 1F DNA methylation associated with prenatal depression persists into the 

postnatal period in infant buccal cells, independent of postnatal depressed maternal 

mood, and is particularly evident in male infants.  Previous studies in humans have 

not examined the question of sex differences in environmentally-induced NR3C1 1F 

DNA methylation 23-27, and although animal studies have primarily examined these 

effects exclusively in males, there is emerging evidence suggestive of a particular 

epigenetic vulnerability in males in response to prenatal 33 and postnatal 35 

experiences.  These findings compliment a body of literature, which suggests that 

males may more be at risk of adverse outcomes compared to females as a result of 

exposure to maternal distress during pregnancy 36-40. Therefore, sex differences in 

NR3C1 DNA methylation could, in part, explain stronger associations between 

prenatal mood disturbance and more adverse outcomes in males. Importantly, the 

differentially methylated region of NR3C1 contains the binding site for the 

transcription factor NGFI-A (Figure 1; CpG sites 8 and 9) and is directly involved in 

the DNA methylation-mediated regulation of NR3C1 expression 23. Although it is 

unlikely that DNA methylation differences occurring at a single gene could account 

for the increased risk for complex outcomes in later life, our findings suggest that 

epigenetic disruption at this locus may be functionally relevant to the impact of 

maternal depression on offspring development. 

 

Previous studies in animals have suggested that increased bdnf IV DNA methylation 

emerges as a consequence of elevated prenatal stress 29 and Bisphenol A (BPA) 
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exposure 16. In contrast, we report that in human infants, exposure to prenatal 

depression results in decreased infant BDNF IV methylation at CpG3. This CpG site 

is adjacent to the binding site of the transcription factor CREB (Figure 1), which 

controls BDNF transcription via DNA methylation-dependent mechanism 41.  

Although species differences in the regulation of this gene may account for our 

findings, recent analyses indicate increased DNA methylation in human cord blood 

samples within the CREB binding site associated with elevated in utero BPA 

exposure, which is consistent with the direction of reported effects in rodents 42. An 

alternative explanation for these findings may involve the biphasic epigenetic changes 

that have been observed to occur across development 43. 

 

The decreased BDNF methylation we observe in infants exposed to prenatal 

depression could reflect a molecular basis for the rapid maturation that may be 

induced by adverse prenatal events.  BDNF is a critical growth factor involved in 

neurogenesis, and so the timing of regulation and expression of BDNF serves as a 

marker of developmental time.  Stress during pregnancy induces an increased risk of 

preterm delivery 44 and may lead to an advanced pace of neurodevelopment 45-47.  

Consistent with this, children who have experienced maternal deprivation in early life 

have been shown to have mature connectivity between the amygdala and medial 

prefrontal cortex that is comparable to an adolescent phenotype 48, suggestive of more 

rapid brain development.  Further exploration of this hypothesis from both a 

molecular and neurodevelopmental level may provide insights into the mechanisms 

that underlie adversity-induced changes in brain maturation. 
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A prevailing theory in the field of perinatal psychiatry is that prenatal depression 

impacts on fetal development via increased circulating maternal glucocorticoids 1, 4, 34, 

49. However, it is important to note that investigations of maternal depression and 

cortisol in pregnancy have reported mixed results 12, 13, 50-55. Nonetheless, it has been 

suggested that biological markers of prenatal stress may be better indicators of 

offspring outcomes than self-report measures 34. Thus, we expected that maternal 

cortisol would significantly predict infant NR3C1 IF and BDNF IV methylation. 

However, we found no evidence to support this hypothesis. Moreover, in our cohort, 

maternal depressive symptoms were not correlated with elevated diurnal or stress-

induced glucocorticoid levels.  The lack of group differences in glucocorticoid levels 

and the relatively low variability of cortisol levels between individuals may account 

for this finding.  However, this initial investigation suggests that perhaps maternal 

cortisol does not account for the association between prenatal depression and changes 

in infant DNA methylation, and future studies should consider other potential 

mediating pathways, such as changes in maternal immune activation.  

 

The prospective longitudinal design and the inclusion of both biological and 

psychological measures of maternal prenatal distress as predictors of infant 

methylation are significant strengths of this study. This is also the first study to 

replicate the previous finding of increased NR3C1 DNA methylation in response to 

maternal depression 26 using buccal tissue, which has significant implications for 

assessing epigenetic effects in larger cohorts.  However, a number of limitations 

should be considered.  It is unclear how epigenetic variation in the periphery (i.e., 

blood, buccal cells) relates to epigenetic variation within the brain.  Studies of 

consistency of methylation profiles across peripheral tissues have produced 

D
ow

nl
oa

de
d 

by
 [I

m
pe

ria
l C

ol
le

ge
 L

on
do

n 
Li

br
ar

y]
 a

t 0
0:

27
 2

2 
A

pr
il 

20
15

 



 

 13

conflicting results, but are generally limited by small sample sizes and a candidate 

gene approach 56, 57. Recently, Davis and colleagues (2012) have analyzed DNA 

methylation patterns in human blood and post-mortem brain tissue and found that 

between-tissue variation in DNA methylation greatly exceeded between-individual 

differences 58.  The current study is also limited by the modest sample size and 

reliance on self-reported mood rather than on a clinical diagnosis. Previous studies of 

prenatal depression have suggested that clinical diagnoses correlate more reliably 

with biological markers of depression, such as awakening cortisol, than do self-report 

measures 12. Therefore, using clinical diagnoses to define the depressive symptom 

group may have revealed a potential relationship between depressed mood, maternal 

glucocorticoids, and epigenetic outcomes.  

 

Furthermore, it is likely that a number of postnatal environmental influences, such as 

parental care, abuse or sleep disturbance, may have implications for infant DNA 

methylation. Unfortunately, these measures were not available in the current dataset. 

However, future studies should comprehensively document postnatal environmental 

variables, to both control for postnatal effects but also in order to fully understand 

potential mechanisms by which early environmental factors impact on infant DNA 

methylation.  Further, assessments of infant and childhood behavior are required fully 

disseminate the role of epigenetic mechanisms in mediating associations between 

prenatal depressed mood and offspring outcomes. 

 

In conclusion, this study found that antenatal symptoms of depression have 

implications for changes in infant NR3C1 and BDNF DNA methylation. Conversely, 

measures of maternal cortisol were not related to infant DNA methylation. Thus, 
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these initial findings suggest that maternal glucocorticoids may not mediate the 

association between antenatal depression and infant epigenetic regulation. Future 

studies should consider other potential mediating pathways that likewise contribute to 

coordinated physiological and behavioral responses to the environment, such as the 

maternal immune system and sympathetic nervous system activity. 

 

Methods and Materials 

Participants  

The participants (N=57) were derived from a larger cohort of pregnant women 

participating in a longitudinal study based in Oxford, UK. This study was designed to 

investigate the effects of antenatal mood disturbance on maternal and infant stress 

responses. This study was reviewed and approved by the South Central Oxford B 

Research Ethics Committee (REF: 12/SC/0473), and all participants provided 

informed consent. 

 

Procedures 

Participants were assessed during either the second or third trimester of pregnancy. 

Self-reported symptoms of depression were obtained using a paper-based 

questionnaire (Edinburgh Postnatal Depression Scale) and maternal salivary cortisol 

samples were collected in two contexts: in response to a stressor (infant distress 

video) and diurnally. Participants were visited at home approximately 2 months after 

birth. Self-report measures of postnatal depression from the mother and two buccal 

swabs from each infant were collected.  

 

Measures 
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Maternal mood 

Edinburgh Postnatal Depression Scale (EPDS).  The EPDS is the most widely used 

self-report questionnaire to identify symptoms of depression during the peripartum 

period. The scale consists of 10 items that describe common symptom of depression; 

however, it does not include somatic symptoms of depression, such as change in 

appetite, which are commonly experienced in pregnancy. Each item is scored from 0 

to 3, with a maximum score of 30.  A cut-off score of 10 is frequently used to identify 

a group �at risk� of depression 59-63.  A recent study has shown that using a cut-off of 

10 in the second and third trimester of pregnancy provides a good balance between 

sensitivity (70-79%) and specificity (96-97%) 63.   

 

Maternal prenatal cortisol  

Response to infant distress stimulus. During either the second or third trimester, 

participants were invited to an afternoon test session between the hours of 2 P.M. and 

7 P.M., and asked to watch a short film depicting distressed young infants, all under 

the age of 6 months. The film was 6 minutes in length and included 8 short clips of 

crying infants. The clips were taken from online sources with permission from the 

owners.  This video has been used in a previous study 13 and found to induce 

significant salivary cortisol responses in a group of late first/early second trimester 

pregnant women with symptoms of depression. Saliva samples were collected at five 

time points during the test session using saliva collection aids and plastic cryovials 

(Salimetrics, UK). Two samples were taken before the film, approximately 20 

minutes apart. The third sample was taken immediately post-film, and the fourth and 

fifth samples were taken 10 and 20 minutes post-film, respectively. Saliva samples 

were stored at -20°C until analysis. Cortisol mean-change in response to the stressor 
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was used as a main predictor in these analyses. This variable was calculated by 

subtracting the mean baseline cortisol measure from the 20-minute post-stimulus 

measure. Notably, there were no differences between the control and depressive-

symptom group in baseline cortisol.  

 

Diurnal cortisol. Participants were asked to collect six saliva samples at home over 

two working days (three per day) within two weeks of the test session. On each day 

samples were collected immediately after awakening, 30 minutes and 12 hours post-

awakening. Participants were provided with a stamped addressed envelope to return 

the samples, which were stored at -20°C until analysis. The area under the curve of 

the diurnal cortisol data was skewed to the left, and was therefore log transformed 

(log AUC), and log AUC was used as a main predictor in this study.  

 

Cortisol assay 

Salivary cortisol analysis was carried out by a direct double-antibody 

radioimmunoassay (RIA) with utilization of 125I-cortisol as the ligand, in accordance 

with the manufacturer�s instructions (Salimetrics Inc., UK).  

 

Infant NR3C1 1F and BDNF IV methylation 

Buccal swab collection 

Infants were on average 53.6 days old (SD=9.99, range=26-98 days) when the buccal 

swabs were collected. The buccal swabs were obtained using Catch-All soft sample 

swabs (Epicentre Ltd), which were firmly bushed across the inside of the infant�s 

cheek, and stored in sterilized 2 ml tubes. Samples were stored at -20oC at the 

Department of Psychiatry, Oxford, before being shipped to the Department of 
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Psychology at Columbia University on dry ice (World Courier Ltd), where they were 

stored at -80oC until analysis. 

 

DNA isolation 

Buccal cell DNA isolation was performed using a QIAamp DNA mini kit (Qiagen 

Ltd, USA) in accordance with the manufacturer�s protocol, and the buccal DNA was 

quantified using a Nanodrop 1000 spectrophotometer (Thermo Scientific Ltd, USA).  

The extracted DNA was in a range of 6-31 ng/صl.  

 

Bisulfite pyrosequencing 

DNA methylation at specific CpG sites was analyzed using the quantitative bisulfite-

pyrosequencing method. The extracted buccal DNA (125ng) was bisulfite converted 

using an EpiTect Bisulphite kit (Qiagen Ltd, USA) according to the manufacturer�s 

instructions, and stored at -20oC until further analysis. A PyroMark PCR kit (Qiagen 

Ltd, USA) and PCR primers specific for NR3C1 and BDNF were used to obtain 

biotinylated PCR products and a specific sequencing primer was then used to 

determine CpG methylation in the regions of interest. Two separate assays were used 

to assess 10 CpG sites within NR3C1 exon 1F, and one assay was used to assess 5 

CpG sites within BDNF promoter IV (Figure 3). Details of the primers used are 

available in Table 3. The PCR and pyrosequencing primers were designed using 

PyroMark Assay Design Software 2.0. The regions of interest within NR3C1 and 

BDNF were chosen based on previous research that has identified these areas as 

susceptible to epigenetic regulation following early exposure to adverse 

environmental influences 23, 26, 28, 33. Pyrosequencing was performed using a PyroMark 

Q24 pyrosequencer (Qiagen Ltd, USA) with specific pyrosequencing primers. Before 
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sample analysis, each pyrosequencing assay was validated using standard curves by 

analysing 0, 20, 40, 60, 80, and 100% methylated human genomic DNA standards 

(Supplementary Figure 1). Those standards were generated by mixing commercially 

available unmethylated and hypermethylated DNA standards (EpiTect PCR Control 

DNA Set, Qiagen) in the following ratios: 0:5; 1:4; 2:3; 3:2; 4:1; and 5:0 (10 ng of 

total bisulfite-converted DNA).  Following assay validation, 10 ng of each bisulfite-

converted sample DNA was run in a 25-µL PCR reaction; 3 µL of a PCR product was 

run on a gel to confirm the band size and 20 µL was run on a pyrosequencer. The 

average DNA methylation levels of specific CpG sites were quantified using 

PyroMark Q24 2.0.4 software (Qiagen Ltd, USA).  

 

Statistical analysis 

For analysis, participants were split into two groups based on maternal EPDS score: 

those scoring 9 or below were the control group, whereas those scoring 10 or above 

were the �depressive symptom� group. Independent samples t-tests and Pearson chi-

squared tests were used to determine group differences in demographic characteristics 

and maternal prenatal mood.  Pearson�s correlations were used to assess the 

relationship between variables and DNA methylation at independent CpG sites, and 

multiple regression models were constructed to examine predictive models. Data were 

entered into each model in a stepwise fashion: batch number for DNA methylation 

analysis was entered at step 1 as a covariate, as was postnatal depression. The 

postnatal depression group (control vs. depressive-symptoms) was defined using the 

same criteria as the prenatal depression group. Main predictor variables were entered 

at step 2. Either prenatal depression or maternal cortisol was used as a main predictor, 

as was infant gender. Where prenatal cortisol was a main predictor, days of gestation 
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at the point of cortisol collection was entered as a covariate. Interaction variables 

between infant gender and prenatal depression or cortisol were created using 

standardized or centered variables, and entered into step 3 of the model.  
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Table 1 Maternal demographic and salivary cortisol variables 

Demographic Variables Control Group 
(N=37) 

Depressive 
symptom group 

(N=20) 
Age (mean, SD) 32.14 (4.33) 31.85 (4.50) 
Education (n, %)     
    A-level 1 (2.7) 0 
    Undergraduate degree 16 (43.2) 9 (45) 
    NVQ 2 (5.4) 1 (5) 
    Postgraduate degree 18 (48.6) 10 (50) 
Ethnicity (n, %)     
    Caucasian 35 (84.6) 16 (80) 
    Black 0 1 (5) 
    Asian 1 (2.7) 3 (15) 
    Mixed Race 1 (2.7) 0 
Alcohol units/week (n, %)     
    None 28 (75.7) 17 (85) 
    1-5 9 (24.3) 3 (15) 
Cigarettes/week (n, %)     
    None 33 (89.2) 18 (90) 
    Did not respond 4 (10.8) 2 (10) 
Weeks of gestation (mean, SD) 28.4 (12.4) 29.9 (6.67) 
Planned Pregnancy (n, %) 33 (89.2) 18 (90) 
Previous history of mental health problems (n, %) 10 (27) 7 (35) 
Prenatal EPDS (depression) 4.68 (2.82) 12.2 (2.12) 
Postnatal EPDS (depression) 6.22 (3.30) 8.95 (4.96) 
Salivary Cortisol Variables (nmol/l)     
Mean change in response to stressor (mean, range)  -0.54 (-8.63 - 5.66)  -1.13 (-4.13 - 3.07)  
Log AUC diurnal cortisol (mean, range) 15.81 (6.70 - 25.66) 17.79 (6.61 - 31.32) 

EPDS: Edinburgh Postnatal Depression Scale, 
NVQ: National Vocational Qualification 
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Table 2 Regression model using prenatal depression and infant gender to predict 
infant NR3C1 IF and BDNF IV methylation 

Model 

Unstandardized 
coefficients 

Standardise
d 

coefficients t Sig. 

B Std. 
error Beta 

Outcome: Mean NR3C1 1F methylation 
1 Batch number 0.238 0.234 0.167 1.208 0.233 
  Postnatal depression 0.338 0.40 0.117 0.845 0.402 

2 

Batch number 0.263 0.241 0.155 1.089 0.282 
Postnatal depression 0.352 0.432 0.122 0.815 0.419 
Prenatal depression 0.066 0.184 0.053 0.36 0.720 
Infant gender 0.069 0.185 0.054 0.372 0.711 

3 

Batch number 0.157 0.233 0.093 0.676 0.502 
Postnatal depression 0.427 0.412 0.148 1.037 0.305 
Prenatal depression -0.024 0.179 -0.019 -0.132 0.896 
Infant gender 0.114 0.177 0.089 0.642 0.524 
Prenatal depression*gender -0.435 0.176 -0.350 -2.475 0.017 

Outcome: Mean BDNF IV methylation 
1 Batch number 0.114 0.217 0.072 0.524 0.602 
  Postnatal depression -0.405 0.382 -0.145 -1.061 0.294 

2 

Batch number 0.253 0.205 0.16 1.232 0.224 
Postnatal depression -0.402 0.376 -0.144 -1.069 0.290 
Prenatal depression -0.419 0.164 -0.336 -2.565 0.013 
Infant gender -0.322 0.158 -0.271 -2.034 0.047 

3 

Batch number 0.274 0.209 0.173 1.31 0.196 
Postnatal depression -0.421 0.38 -0.151 -1.107 0.274 
Prenatal depression -0.427 0.165 -0.343 -2.59 0.013 
Infant gender -0.296 0.165 -0.249 -1.796 0.079 
Prenatal depression*gender 0.100 0.162 0.084 0.620 0.538 
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Table  3 PCR and pyrosequencing primers  

*Genomic coordinates show genomic regions amplified by PCR and are based on the UCSC 

Genome Browser Human Dec. 2013 (GRCh38/hg38) Assembly. 

  

NR3C1 1F Assay 2 – CpG sites 5-1 - chr5:143,404,013-143,404,147* 

PCR primer forward- 

Biotinylated 

/5Biosg/ GTTGTTATTAGTAGGGGTATTGG 

PCR primer reverse AACCACCCAATTTCTCCAATTTCTTTTC 

Pyrosequencing primer (reverse) CAACTCCCCCACTCCAAACCC 

NR3C1 1F Assay 1 – CpG sites 6-10 -  chr5:143,404,011-143,404,097* 

PCR primer forward AGTTTTAGAGTGGGTTTGGAG 

PCR primer reverse-

Biotinylated 

/5Biosg/ AAAACCACCCAATTTCTCCAATTTCTT 

Pyrosequencing primer 

(forward) 

GAGTGGGTTTGGAGT 

BDNF IV – CpG sites 1-5 - chr11:27,701,519-27,701,826* 

PCR primer forward GGGTTGGAAGTGAAAATATTTGTAAA 

PCR primer reverse-

Biotinylated 

/5Biosg/CCCCATCAACCAAAAACTCCATTTAATCTC 

Pyrosequencing primer 

(forward) 

GGTAGAGGAGGTATTATATGATAG 
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Figure 1 Percent methylation at each CpG site (1-10) within the examined NR3C1 1F 

region for the depression-exposed and control infants. A shows the values for the 

male infants and B the female infants.  
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Figure 2 Percent methylation at each CpG site within the examined BDNF IV region 

for the depression-exposed and control infants.  
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Figure 3 Schematic and the analyzed sequence of the NR3C1 (A) and BDNF (B) gene. 

Shown are specific CpG sites analyzed using bisulfite-pyrosequencing assays as well 

as NGFI-A (blue box) and CREB (purple box) binding sites within NR3C1 exon 1F 

and BDNF promoter IV, respectively. 
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