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Abstract

Energy consumption is one of the primary concerns in a resource constrained visual

sensor network (VSN) with wireless transceiving capability. The existing VSN

design solutions under particular resource constrained scenarios are application-

specific, whereas the degree of sensitivity of the resource constraints varies from

one application to another. This limits the implementation of the existing energy

efficient solutions within a VSN node, which may be considered to be a part

of a heterogeneous network. This thesis aims to resolve the energy consumption

issues faced within VSNs because of their resource constrained nature by proposing

energy efficient solutions for sensing nodes characterisation.

The heterogeneity of image capture and processing within a VSN can be adaptively

reflected with a dynamic field-of-view (FoV) realisation. This is expected to allow

the implementation of a generalised energy efficient solution that will adapt with

the heterogeneity of the network. In this thesis, a FoV characterisation framework

is proposed, which can assist design engineers during the pre-deployment phase in

developing energy efficient VSNs. The proposed FoV characterisation framework

provides efficient solutions for: 1) selecting suitable sensing range; 2) maximising

spatial coverage; 3) minimising the number of required nodes; and 4) adaptive

task classification. The task classification scheme proposed in this thesis exploits

heterogeneity of the network and leads to an optimal distribution of tasks between

visual sensing nodes. Soft decision criteria is exploited, and it is observed that for

a given detection reliability, the proposed FoV characterisation framework pro-

vides energy efficient solutions which can be implemented within heterogeneous

networks.

In the post-deployment phase, the energy efficiency of a VSN for a given level of

reliability can be enhanced by reconfiguring its nodes dynamically to achieve opti-

mal configurations. Considering the dynamic realisation of quality-of-information

(QoI), a strategy is devised for selecting suitable configurations of visual sensing
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nodes to reduce redundant visual content prior to transmission without sacrific-

ing the expected information retrieval reliability. By incorporating QoI awareness

using peak signal-to-noise ratio-based representative metric, the distributed na-

ture of the proposed self-reconfiguration scheme accelerates the decision making

process.

This thesis also proposes a unified framework for node classification and dynamic

self-reconfiguration in VSNs. For a given application, the unified framework pro-

vides a feasible solution to classify and reconfigure visual sensing nodes based on

their FoV by exploiting the heterogeneity of targeted QoI within the sensing re-

gion. From the results, it is observed that for the second degree of heterogeneity

in targeted QoI, the unified framework outperforms its existing counterparts and

results in up to 72% energy savings with as low as 94% reliability. Within the

context of resource constrained VSNs, the substantial energy savings achieved by

the proposed unified framework can lead to network lifetime enhancement. More-

over, the reliability analysis demonstrates suitability of the unified framework for

applications that need a desired level of QoI.
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T′ adaptive task classification matrix

Vc required 3D coverage of k sensor classes for t tasks

v chosen 3D coverage of k sensor classes for t tasks

b a colour bin from a histogram

hc(b) a global colour histogram

P (E) probability of a pixel belonging to object of interest

Cb blue-difference chroma component in YCbCr colourspace

Cr red-difference chroma component in YCbCr colourspace

γlCb Cb lower bound for object detection

γuCb Cb upper bound for object detection

γlCr Cr lower bound for object detection
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γuCr Cr upper bound for object detection

Sm object segmentation matrix

Sg segmented image

dh horizontal density

dv vertical density

Opo object pixel occupancy

|εd| estimation error

PSNRdB peak signal-to-noise ratio in dB

A area of an object of interest

ξo object pixel occupancy lower bound

R1 chosen range from object pixel occupancy

pd object’s diameter in pixels

de object’s diameter in metres

da object’s actual measured diameter in metres

ξd estimation error upper bound

R2 chosen range from estimation error

ξp PSNRdB lower bound

R3 chosen range from PSNRdB

Rc chosen sensing range from FoVCC

Rc estimated sensing range of k sensor classes for t tasks

r chosen sensing range of k sensor classes for t tasks

Na number of required active sensing nodes in the network

EAcq energy consumption for image acquisition

ETx energy consumption for image transmission

ERx energy consumption for receiving an image

q index to denote image acquisition, transmission or receiving cost

Eq image acquisition, transmission or receiving cost

Ẽq overall image acquisition, transmission or receiving cost

E total energy consumption within the VSN

LT network lifetime
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t̂ number of tasks allocated to a sensor class

ζ l dynamic PSNR range’s lower bound in dB

ζu dynamic PSNR range’s upper bound in dB

AT surface area of the total area of interest

VT volume of the total area of interest

Rr reference distance within close proximity of a sensing node

Rd sensor-to-object distance

λ QoI index

λt target QoI threshold in dB to be achieved for a given application

r̂ set of possible sensor-to-object distances

Λl̃ compressive calibration matrix

θy,e vertical anti-clockwise angle from y-axis to sensor’s LoS

θy,a horizontal anti-clockwise angle from y-axis to sensor’s LoS

Ωt set of heterogeneous target QoI thresholds in dB

Cĩ
r 3D coordinates of the ĩth region of interest

Cl̃
s 3D coordinates of the region within l̃th visual sensing node’s FoV

Oĩl̃ overlap between l̃th sensing node’s FoV and ĩth region of interest

H degree of heterogeneity in target QoI thresholds

β QoI delivered by a visual sensing node

[e−, e+] confidence bound for the fidelity of CCM

[P−r ,P+
r ] performance reliability bound

Êtx average energy cost per node for transmitting an image frame

Êc average energy cost per node for transmitting Nt image frames
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Chapter 1

Introduction

This chapter presents an overview of the characteristics and constraints of visual

sensor networks as well as some possible solutions to overcome such constraints;

subsequently, it provides the motivation to work within the targeted research area.

It also discusses various applications of wireless visual sensing as well as the chal-

lenges faced during the design and implementation phases. Afterwards, the chapter

proceeds towards the aim and objectives of the research study. The methodology

adopted to conduct this research study is presented. A brief summary of the con-

tributions to knowledge by this research study is also given. Finally, a summary

of the thesis organisation is presented at the end of this chapter.

1.1 Background and Motivation

A Wireless Sensor Network (WSN) consists of a group of sensor nodes with sens-

ing, processing and communication capabilities. In traditional WSNs, sensors

generally provide coverage in all directions to collect scalar measurements as 1D

data, for example: temperature, pressure, humidity etc., which limits suitability

of such sensors for many applications [1]. In order to enhance WSN’s suitability

1
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for a wider range of applications, traditional sensors are replaced by visual sen-

sors resulting in a network suitable for a new scope of applications known as a

Visual Sensor Network (VSN). In a VSN, each node captures image data that can

be processed locally to extract relevant information (such as visual features) [2].

Moreover, sensing nodes in the network can collaborate to share such informa-

tion. VSNs are used in surveillance [3–6], environmental monitoring [7, 8], object

detection and tracking [9, 10], health care monitoring [11–14] and many other

applications. Visual sensors within a VSN employ directional sensing to provide

pixel based measurements as a 2D dataset and therefore, require a large band-

width to transmit image data. The visual sensor’s 3D viewing volume (i.e. the

extent of the observable scene) is known as its Field-of-View (FoV) [2]. The FoV

depends on a visual sensing node’s location and orientation parameters. A mod-

ification in any of these parameters will lead to a change in the FoV. Therefore,

precise knowledge of visual sensing nodes’ location and orientation information is

required for VSN management. Moreover, during the VSN design phase, some

image processing algorithms require precise knowledge of the FoV. Cooperation

can be exploited among visual sensing nodes for intelligent sensing and processing

of the data acquired from the targeted sensing environment, independent of the

given application. However, in order to facilitate such intelligent sensing within a

visual sensing node, a dynamic coverage modelling approach is required to obtain

the 3D FoV information. Owing to these fundamental differences between a tradi-

tional WSN and a modern VSN, the deployment of the latter is more challenging

as compared to the former. Furthermore, due to the directional sensing nature of

visual sensors, the existing WSN design solutions are not suitable for VSNs.

Some applications consider a large 3D plane as the targeted sensing environment,

consequently requiring a large number of sensing nodes to provide full coverage.

In case of battery failure within a visual sensing node, battery replacement may

not be feasible and thus, a new sensing node must be added in the network to

support the application. Therefore, VSN design solutions should be scalable and
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the network performance must be independent of its size [15]. The algorithms

for the management of VSNs can be categorised into centralised and distributed

approaches [16, 17]. In centralised approaches, a central node is responsible for

configuring visual sensing nodes and making appropriate decisions. On the other

hand, in distributed approaches, visual sensing nodes are able to find suitable

configuration parameters without any support from the central node. Distributed

approaches are usually less complex and support scalability and hence, they are

preferred over the centralised approaches [17, 18]. The intelligence of a VSN can

be enhanced by utilising nodes with different sensing and processing capabili-

ties. This results in a heterogeneous network which provides better functionality

as compared to its homogeneous counterpart. Furthermore, heterogeneous VSNs

play a prominent role in emerging Internet of Things (IoT) applications. How-

ever, designing algorithms for efficient distribution of sensing and processing tasks

between visual sensing nodes within heterogeneous networks is a challenging task

[1].

Energy is a scarce resource in a VSN due to the resource constrained nature of

its nodes and the possibility of deployment in inadequately resourced areas to

support complex algorithms [19, 20]. Therefore, the main challenge in designing

VSNs is to utilise resources optimally while maintaining a certain degree of relia-

bility, as per the given application. Efficient utilisation of network resources and

optimisation of processing algorithms lead to the conservation of energy resulting

in increased lifetime. In order to explore the challenges in more detail, consider

a VSN deployed at a remote location for a surveillance application such as face

detection, object detection and tracking etc. Since a power source may be unavail-

able, all nodes are assumed to be battery powered therefore, the network lifetime

is limited. This imposes tight constraints on energy consumption and data storage

capacity within a VSN. Furthermore, the aforementioned surveillance tasks vary

in terms of complexity and desired reliability. As an example, distributed video

coding is utilised in [21] and the energy consumption of a VSN is observed. Each
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sensing node is battery powered with 20250 Joules of energy. Considering the

transmission of 30 frames, the analysis revealed that the energy consumption is 16

Joules and 12 Joules for uncompressed and compressed frames respectively. The

network lifetime with a transmission rate of 30 frames per second is found to be

approximately 1687 seconds and 1265 seconds for uncompressed and compressed

scenarios respectively. Therefore, the characterisation of FoV and task classifi-

cation to provide an energy efficient application-aware design solution that can

prolong the network lifetime is an important and challenging problem in VSNs.

The performance and lifetime of a VSN is characterised by its configuration. The

configuration space of a network is defined by the set of parameters that actively

control the quality and amount of acquired data. These parameters include res-

olution, frame rate, aperture, exposure time and level of visual data compression

for networks comprising static visual sensing nodes. In addition to these, the ori-

entation and FoV parameters are also considered for the configuration of networks

comprising Pan-Tilt-Zoom (PTZ) capable visual sensing nodes [22]. Reconfigura-

tion can be defined as the process of updating one or more parameters that form

the configuration space of the network to achieve a specific goal, for example,

maximum detection reliability with minimum possible energy consumption. Im-

plementing self-reconfiguration schemes dynamically within a visual sensing node

to achieve a specific goal for a given application can result in improved reliability

and optimised energy consumption configuration.

Quality-of-Information (QoI) is defined in literature as the degree to which the data

is suitable for a given application or a decision making process [23–25]. Within the

context of surveillance applications, QoI reflects the degree to which the data pro-

duced at the output of a visual sensing node accurately quantifies the actual event

being monitored [26]. In order to enhance the sensing and processing intelligence

within a VSN, heterogeneity can be introduced in the target QoI based on the

characteristics of the targets expected to be monitored within the sensing nodes’

FoV. However, due to the strict orientation requirement and directional nature of
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visual sensing nodes within a 3D plane, handling a wide range of heterogeneity

within target QoI is a challenging task.

Although the existing work in literature addresses several key issues relating to

VSNs such as FoV identification, coverage estimation, feature extraction, camera

scheduling and visual data transmission etc.; it is found that the existing solutions

are application-specific under particular resource constrained scenarios. Further-

more, many existing solutions have limited application capabilities as they assume

a homogeneous network during the design phase. Moreover, despite the fact that

various existing state-of-the-art techniques provide solutions to optimise the energy

consumption in resource constrained scenarios, many schemes assume a simplified

2D sensing model and sensing environment; whereas, 3D modelling is more real-

istic for VSN applications. Although, techniques are found in the literature that

utilise 3D modelling or provide solutions for heterogeneous VSNs; however, to the

best of the author’s knowledge, the existing schemes do not exploit the distributed

nature of visual sensing nodes to adopt heterogeneity in the targeted QoI along

with dynamic targeted threshold based optimisation.

In addition to these, the existing schemes do not consider the heterogeneous real-

isation of targeted QoI within the sensing region and dynamic targeted threshold

based optimisation of visual data prior to transmission in VSNs. Hence, gener-

alised and more realistic solutions are required to overcome the VSNs’ resource

constraints for a diverse range of applications.

Based on the aforementioned challenges faced in resource constrained VSNs, this

thesis addresses the following research questions:

• Can FoV characterisation provide energy savings in resource constrained

scenarios?

• Can the design and unification of node classification and self-reconfiguration

schemes enhance the energy efficiency of resource constrained heterogeneous

VSNs?
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This thesis tackles the problems faced in resource constrained VSNs by proposing

FoV characterisation, task classification, QoI-aware node classification and self-

reconfiguration schemes to select optimised sensing node configurations leading

to an improved network energy efficiency. The proposed schemes provide reliable

solutions to the VSN design problems for the pre-deployment phase and VSN dy-

namic optimisation problems for the post-deployment phase. The proposed energy

efficient FoV characterisation framework exploits heterogeneity of the network to

obtain an application-aware design solution. Moreover, the unified framework pro-

posed in this thesis incorporates 3D FoV modelling with dynamic realisation of

visual data to achieve heterogeneous target QoI thresholds. The proposed uni-

fied framework leads to reduced energy consumption within the network whilst

maintaining an acceptable degree of reliability.

In this thesis, QoI is characterised by the quality of the visual data provided by

a sensing node and quantified by a Peak Signal-to-Noise (PSNR) based metric,

as in [26]. The configuration of a VSN considered for FoV characterisation and

task classification in this thesis is given by: a) the sensing range of the nodes

and b) the allocation of sensing and processing tasks to the nodes which are part

of a heterogeneous network. Whereas, the configuration of a visual sensing node

for optimisation within the reconfiguration phases is considered to be the amount

and quality of the visual data for transmission. In VSNs, the energy consumed

during the communication phase (i.e. transmitting and receiving visual data) is

significantly higher than the processing phase [27–29]. For example, the energy

cost for transmitting 1 Kilo Byte data over a distance of 100 metres is equivalent

to the energy required to process three million instructions [30–32]. Therefore,

optimising the amount of visual data based on the targeted QoI thresholds prior

to transmission can result in energy savings. In this context, the parameter that

forms the network’s configuration space is the level of compression employed by a

visual sensing node.
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1.2 Wireless Visual Sensing: Applications and

Requirements

Wireless visual sensing serves an important purpose for a broad spectrum of appli-

cations such as surveillance, target classification, traffic monitoring, health care,

and environment monitoring etc. The applications are discussed in more detail

below.

• An application of wireless visual sensing is video surveillance which aims

to monitor specific locations for intrusion detection and public safety. In

conventional surveillance systems, visual data is sent from sensing nodes

to the control centre (i.e. sink node) which is monitored by an operator.

However, autonomous management of visual data is desirable due to the

difficulties associated with manual monitoring of visual data. Many existing

approaches provide design solutions for autonomous management of visual

data at the sink node. However, the centralised nature of such solutions

limits the scalability of VSNs [4]. A smart video surveillance system for

distributed and collaborative processing of visual data within visual sensing

nodes is proposed in [4] for autonomous scene analysis. The ground points

of human subjects are estimated through an interference framework and

a semantic topology is employed to construct a work-tree. Visual sensing

nodes’ existence probabilities are calculated and combined with the work-

tree. Due to its distributed nature, the approach is highly efficient for smart

video surveillance applications.

• Another surveillance application of wireless visual sensing is autonomous

object detection and tracking. Due to the movement of objects within the

sensing nodes’ FoV, object detection is a challenging task. Once the objects

have been detected, visual sensing nodes are required to keep a track of the



Chapter 1. Introduction 8

objects’ movements to support the given application. However, this is a chal-

lenging task due to the high reliability requirements of tracking applications

and resource constrained nature of sensing nodes. A cost-aware approach

for collaborative target tracking in resource constrained VSNs is proposed

in [10]. A decentralised resource allocation strategy is devised through the

formation of coalitions by the sensing nodes. Negotiation between sensing

nodes to form a coalition is dynamically supervised by a coalition manager

for cooperative target tracking. In cost-free scenarios, the approach exhibits

improvement in tracking reliability. Furthermore, under resource constrained

scenarios, the approach provides a trade-off between reliability and energy

efficiency.

• Target classification is an important application of wireless visual sensing

which aims to classify targets within a sensing node’s FoV into predefined

categories. However, such classification is a challenging task due to the re-

source constrained nature of VSNs. The algorithms for the classification

of targets can be divided into binary and multiclass categories. In binary

classification algorithms, a decision is made to determine whether a target

belongs to a particular category or not such as human/non-human classifi-

cation as in [5]. Multiclass algorithms, on the other hand, provide solutions

for the classification of multiple targets into suitable categories. A target

classification framework for VSNs is proposed in [33] for both binary and

multiclass animal classification. Firstly, wavelet transform is utilised for fea-

ture extraction from the captured images. Secondly, targets are classified

using if-then rule based decision trees. A suitable dataset is utilised for the

training of the classifier in the pre-deployment phase. After the training

process, the sensing nodes are equipped with the knowledge of if-then rules.

Hence, the approach leads to reduced learning phase time for energy efficient

target classification with high accuracy.
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• Visual sensing has become significantly important in traffic monitoring and

control applications due to the growing traffic demands. Smart autonomous

traffic monitoring and management is required in smart cities for conges-

tion control and safety provision. Smart monitoring systems should support

intelligent incident detection and robust classification of targets. However,

traffic monitoring and control are challenging tasks due to the background

changes, illumination variations and occlusion problems within the sensing

environment [34]. An autonomous traffic monitoring system is proposed in

[34] to support a diverse range of traffic monitoring applications for airports,

highways and tunnels etc. An image processing unit is incorporated in the

system which provides key information relating to the moving objects within

the sensing nodes’ FoV. The information is used to obtain statistical traffic

information and trigger real-time alerts. The system architecture supports

scalability without significantly affecting the computational complexity.

• Nowadays, due to the financial challenges faced by the health care sector,

wireless visual sensing is a promising solution for smart health care monitor-

ing applications. Sleep is a significantly important factor for the wellbeing

of the elderly. Sleep disorders in elderly can cause fatigue and deteriorate

physical functionality, consequently affecting the quality of life [14]. There-

fore, the sleep patterns of elderly must be regularly monitored to reduce such

risks. However, manually monitoring the elderly sleep patterns is not a cost

effective solution. In [14], authors have proposed a low-cost solution for long-

term sleep analysis for elderly care using low-resolution visual sensing nodes.

The approach detects motion patterns and employs a rule-based approach

to identify the wake-up and sleep times. The performance of the approach

evaluated using real-life video data shows reasonably accurate estimations

of sleep duration.

• Another application of wireless visual sensing within the context of per-

vasive health care delivery is the monitoring of elderly wellbeing through
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gait impairment quantification. Such quantification aims to analyse post-

operative recovery of patients by detecting the progression of diseases such

as Parkinson’s. Human motion is detected for the understanding of patients’

activities to identify gait abnormalities. However, this is a challenging task

as the supervised models of classifier requires both normal and impaired gait

samples from a patient. Furthermore, a large training data set to model the

behaviour of a patient’s motion is required which is not feasible due to the re-

source constrained nature of visual sensing nodes [35]. In order to overcome

these challenges, an unsupervised change analysis method is used in [35] to

quantify a patient’s gait impairment. Target blob extraction is utilised to

support feature extraction and change analysis. A target blob skeletonisa-

tion method is employed for the quantification of target’s internal motion.

The method computes motion metrics and utilises change analysis method

to observe pre-operative and post-operative gait changes.

• An important application of wireless visual sensing to ensure public safely

is environment monitoring. Within the context of industrial environment

monitoring applications, keeping a human operator within the proximity of

the surveyed area poses potential concerns of compromising on the opera-

tor’s health. Therefore, autonomous monitoring of environment for critical

events detection is required [7]. The data (such as temperature, pressure

etc) obtained from scalar sensing nodes may not always be sufficient for ef-

ficient environment monitoring. Thus, incorporating both scalar and visual

sensing nodes is expected to improve the detection reliability of an environ-

ment monitoring system. An autonomous environment monitoring system

is proposed in [7] by incorporating both scalar and visual sensing nodes for

accidents detection such as fire and gas leaks. Scalar sensing nodes provide

the temperature, poisonous gas concentration and humidity measurements.

Visual sensing nodes analyse the colour information and flame behaviour for
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fire detection. The approach improves the accident detection reliability and

facilitates environment monitoring from a remote location.

1.3 Aim and Objectives

The aim of this research is to investigate the challenges faced in VSNs due to their

resource constrained nature and to develop schemes for optimised sensing node

characterisation by utilising visual features. As mentioned previously, the multi-

dimensional nature of visual data and its transmission impose strict constraints

on energy and bandwidth in VSNs. Therefore, in order to obtain the optimal

configuration of visual sensing nodes, FoV characterisation, coverage modelling,

node classification and self-reconfiguration in VSNs are required. Moreover, a

unified framework can be developed for node classification and self-reconfiguration

in VSNs to achieve targeted threshold based optimisation. Such unified framework

is expected to enhance the energy efficiency of resource constrained VSNs while

maintaining an acceptable degree of reliability.

The following objectives have been identified for this research:

• To investigate VSNs along with their characteristics, constraints and imple-

mentation challenges.

• To explore the existing solutions for VSN coverage, design, characterisation

and optimisation problems with their strengths and weaknesses.

• To develop a FoV characterisation framework with feature utilisation for re-

source constrained homogeneous and heterogeneous VSNs, which minimises

the energy consumption as well as maximises the network lifetime.

• To analyse the energy efficiency and failure probability of the proposed FoV

characterisation framework for homogeneous and heterogeneous VSNs.
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• To develop an energy efficient visual sensing node dynamic self-reconfiguration

scheme for targeted threshold based redundant feature removal prior to

transmission in VSNs.

• To develop 3D coverage modelling and QoI-centric node classification schemes

by introducing heterogeneity in the network resulting in enhanced sensing

and processing intelligence of VSNs.

• To propose a unified framework for node classification and self-reconfiguration

within heterogeneous VSNs, and to formulate an analytical model for the

quantification of the its performance reliability.

• To evaluate the performance of the proposed unified framework in terms

of resource utilisation by comparing with the existing state-of-the-art tech-

niques.

1.4 Research Methodology

In this section, the methodologies that support researchers during the research

process are presented and the research process is discussed. The research method-

ology chosen for conducting this research project is also presented. Research can

be defined as a process for the collection, analysis and interpretation of information

that results in answering particular questions. The research process is required to

possess particular characteristics which are given below [36].

• The process should be controlled and rigorous.

• The procedures utilised to conduct the investigation should be systematic.

• The findings of the research should be based on hard evidence so that they

can be validated and verified.

• The research process should be able to withstand critical scrutiny.
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Figure 1.1: The research ‘onion’ [37]

In order to carry out a research project, the research study can be classified into

qualitative and quantitative categories. Qualitative research is unstructured and

flexible, whereas, quantitative research is structured and rigid. Moreover, qualita-

tive research aims to investigate the variation in a particular phenomenon, whereas,

quantitative research studies the degree of variation in a particular phenomenon.

Qualitative research focuses on the description of variables under consideration,

whereas, quantitative research concentrates on the measurement of variables [36].

Saunders et al. [37] related different stages involved in the research process with

different layers of ‘onion’, as shown in Figure 1.1. There are six layers of the

research onion model as given below [37].

1. research philosophy

2. research approach

3. research strategy
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4. research choice

5. time horizon

6. techniques and procedures

The first layer of the research ‘onion’ defines the research philosophies which re-

late to knowledge development and include positivism, realism, interpretation and

pragmatism. The second layer refers to the approaches that can be utilised to carry

out research and include deductive and inductive approaches. In the deductive ap-

proach, theory and hypotheses are developed first and then the research strategy

is designed to test the hypotheses. Whereas, inductive approach consists of the-

ory development based on data collection and analysis. The third layer defines

the strategies that can be employed for descriptive, exploratory and explanatory

research [38]. The selection of a particular research strategy depends on many

aspects such as the research questions, research objectives, research time duration

and available resources etc. Action research, ground theory and ethnography are

qualitative research approaches, whereas, experiment, survey and case study are

classified as quantitative research approaches.

The fourth layer refers to research choice and depends on the selection of qualita-

tive and quantitative approaches. This layer includes mono method, mixed meth-

ods and multi-method. The fifth layer relates to the time duration of the research

project. This layer categorises research studies into cross-sectional and longitudi-

nal studies. In cross-sectional research, a particular phenomenon is investigated

at a particular time. Survey based strategy is usually employed in cross-sectional

research studies [39, 40]. On the other hand, longitudinal studies are conducted

over time and they have the ability to study particular behaviours that are not

possible to be studied with a cross-sectional study. The last layer of the research

onion model relates to the techniques and procedures for data collection and anal-

ysis. Data can be categorised into primary and secondary data, whereas, the data
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collection and analysis techniques that can be adopted to conduct research depend

on the type of the data.

In order to accomplish the objectives of this research (presented in Section 1.3), the

quantitative research methodology is adopted. An experiment-based strategy is

utilised to validate the robustness of the proposed FoV characterisation framework,

dynamic self-reconfiguration scheme, 3D coverage modelling scheme, QoI-centric

node classification scheme and the unified framework. In the experiments, the

values of different parameters are changed and the behaviour of the developed

frameworks is studied. The different stages of this research project are given

below.

• Investigation of the existing research work and identification of the challenges

within the context of VSN design and optimisation.

• Formulation of the research questions and identification of the aim and ob-

jectives of the research project.

• Design and development of a FoV characterisation framework to minimise

the energy consumption of homogeneous and heterogeneous VSNs.

• Validation of the proposed FoV characterisation framework’s robustness by

utilising MATLAB simulation platform.

• Design and development of a dynamic self-reconfiguration scheme for visual

sensing nodes.

• Analysis of the proposed dynamic self-reconfiguration scheme’s energy effi-

ciency in resource constrained scenarios using MATLAB simulation platform.

• Design and development of 3D coverage modelling and QoI-centric node

classification schemes.

• Development of a unified framework for node classification and dynamic self-

reconfiguration in heterogeneous VSNs.
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• Evaluation of the proposed unified framework’s energy efficiency and relia-

bility using MATLAB simulation platform.

1.5 Research Contributions

The contribution of this thesis is the design of energy efficient and application-

aware solutions for sensing nodes characterisation to resolve the issues faced within

VSNs due to their resource constrained nature. A generalised framework for the

characterisation of visual sensing nodes’ FoV within homogeneous and heteroge-

neous VSNs is developed. Furthermore, prior to transmission within VSNs, a QoI-

aware self-reconfiguration scheme to dynamically obtain optimal visual sensing

node configuration for feature redundancy removal is also proposed. 3D coverage

modelling and QoI-centric node classification schemes are developed to enhance

the sensing and processing intelligence of heterogeneous VSNs. A unified frame-

work for node classification and self-reconfiguration within heterogeneous VSNs is

also proposed. The contributions by this research study are briefly described as

follows:

• A generalised FoV characterisation framework for homogeneous and hetero-

geneous VSNs is proposed as a function of the required minimum object pixel

occupancy, maximum allowable error tolerance and desired image quality.

The proposed FoV characterisation framework provides the system design

engineers with a resource trade-off model while obtaining an optimised sens-

ing range of a visual sensing node for any given application. (Chapter 3)

• Considering the heterogeneity of the modern VSNs, an adaptive task classi-

fication scheme is proposed for the distribution of tasks between the nodes

providing a trade-off model for reliability and energy efficiency. The pro-

posed scheme provides solutions to the task classification problem feasible
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for implementation in resource constrained scenarios. Moreover, a compari-

son of hard decision and proposed soft decision based techniques is presented.

The proposed framework, when employed with the proposed task classifica-

tion and soft decision based sensing range selection schemes results in an

optimised VSN configuration by maximising the spatial coverage, reducing

the energy consumption and increasing the network lifetime without com-

promising on the desired reliability. Analysis of the energy efficiency of the

proposed framework validates its suitability for a diverse range of applica-

tions. (Chapter 3)

• A learning strategy is devised which can be employed by design engineers

during the network pre-deployment phase. The proposed learning approach

formulates a relationship between objects’ variations within a sensing node’s

FoV, the level of detail in the acquired visual data and the effect of feature

redundancy removal on the data. (Chapter 4)

• A dynamic self-reconfiguration scheme for resource constrained VSNs is pro-

posed as a function of the targeted QoI threshold to be ensured based on

the application design criteria. Utilising the proposed learning strategy and

the in-node processing model, the scheme yields optimised configurations for

visual sensing nodes resulting in substantial energy savings. Subsequently,

providing system design engineers with a trade-off model between reliability

and energy efficiency. (Chapter 4)

• A 3D coverage modelling scheme is proposed for visual sensing nodes to

dynamically obtain their FoV information. The proposed scheme can be

utilised in the network initialisation phase to support intelligent sensing by

making the sensing nodes aware of the targeted sensing environment.

(Chapter 5)

• By the heterogeneous realisation of the targeted QoI within the sensing re-

gions, a QoI-centric scheme is proposed for the classification of visual sensing
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nodes. The proposed coverage modelling and node classification schemes,

coupled with the in-node processing model are incorporated in the proposed

unified framework. The unified framework provides feasible solutions to

guarantee targeted QoI satisfaction with optimised energy utilisation in re-

source constrained VSNs. (Chapter 5)

• An analytical model is formulated to quantify the performance reliability

as a function of the targeted and delivered QoI thresholds. For a given

application, the proposed analytical model provides system design engineers

with the confidence bounds for fine-tuning to the required QoI thresholds

while attaining the desired reliability. (Chapter 5)

The contributions by this thesis within the context of the limitations observed in

existing literature are summarised in Figure 1.2.
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Chapter 2.
• State-of-the-art in VSN design and

optimisation

• Limitations in existing literature
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Chapter 1.
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neous VSNs,” in IEEE Access, 2016.
[C01] Amjad et al., “Energy Efficient
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Chapter 5.
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cation and self-reconfiguration

Publication:
[J01] Amjad et al.,“QoI-Aware Unified
Framework for Node Classification and
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neous VSNs,” in IEEE Access, 2016.

Chapter 3.
• Generalised 3D FoV characterisa-

tion framework for both homoge-
neous and heterogeneous VSNs

• Soft decision based sensing range
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schemes for heterogeneous VSNs
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[J02] Amjad et. al, “Characteriza-
tion of Field-of-View for Energy Ef-
ficient Application-Aware VSNs,” in
IEEE Sensors Journal, 2016.

Chapter 6.
• Conclusions

• Future directions

Figure 1.2: An overview of the contributions by this thesis within the context
of limitations observed in existing literature
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1.6 Thesis Organisation

The rest of the thesis is organised as follows:

Chapter 2 provides a comprehensive survey of some notable existing state-of-the-

art techniques for VSN design and optimisation. Visual sensing node architecture

is presented along with a discussion on some notable coverage and deployment

methods. Existing techniques for visual data processing, task classification and

dynamic self-reconfiguration are provided. The chapter also highlights limitations

of the existing techniques within the context of resource constrained scenarios.

Chapter 3 presents the proposed FoV characterisation framework which assists

the design engineers during the network pre-deployment phase in obtaining en-

ergy efficient design solutions for both homogeneous and heterogeneous VSNs.

Soft decision criteria is exploited to maximise the spatial coverage of heteroge-

neous visual sensing nodes. Moreover, a task classification scheme is proposed for

heterogeneous VSNs which supports the FoV characterisation framework during

the post-deployment phase. Finally, the energy efficiency and reliability of the

proposed FoV characterisation framework are evaluated.

Chapter 4 adopts the notion of QoI-awareness and describes the proposed self-

reconfiguration scheme for visual sensing nodes to enhance their energy efficiency

while providing acceptable level of reliability during the network post deployment

phase. A generalised visual sensing node self-reconfiguration model is provided and

various aspects of the reconfiguration process are discussed. In order to enable dis-

tributed decision making, the proposed self-reconfiguration scheme is supported by

a training and calibration process which takes place in the network pre-deployment

phase. The robustness of the proposed self-reconfiguration scheme is evaluated by

observing the energy savings for various target QoI thresholds.

Chapter 5 presents a unified framework of node classification and self-reconfiguration

with heterogeneous QoI realisation. A 3D coverage modelling scheme is proposed
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to enhance visual sensing node’s awareness of the sensing region within their FoV.

A node classification scheme is developed which is driven by the application’s QoI

requirements and supported by the 3D coverage modelling scheme. An efficient

framework is obtained by unifying the 3D coverage modelling, node classification

and self-reconfiguration schemes. The chapter also provides an analytical model

to gauge the proposed framework’s performance reliability. The performance of

the proposed framework in terms of energy consumption is analysed by comparing

with the existing state-of-the-art techniques.

Finally, Chapter 6 summarises the thesis, discusses future scope of the work based

on the schemes proposed in the thesis and provides the concluding remarks.



Chapter 2

State-of-the-art in VSN Design

and Optimisation

2.1 Introduction

This chapter explores the existing VSN design and optimisation techniques along

with their limitations within the context of resource constrained scenarios. In or-

der to conduct the literature review, a systematic approach [41, 42] is adopted.

Initially, the existing work which is relevant to the research study is identified

through an exhaustive, rigorous and comprehensive search. The inclusion and ex-

clusion criteria is employed which can depend on several factors such as relevance,

validity of experimental design, analysis and results etc. The research studies that

satisfy the inclusion criteria are selected from the existing work identified in the

first stage of the review. Next, the quality of the selected existing research studies

is assessed. Afterwards, the key findings from the existing work are extracted and

limitations within the context of the problem under consideration are identified. In

this chapter, the architecture of a visual sensing node is presented along with the

hardware components and several examples. Existing state-of-the art techniques

for visual sensing node coverage and deployment are presented. Various schemes

22
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found in the literature for visual data processing are discussed. An overview of

some notable task classification schemes from the literature is provided. Finally,

state-of-the art resource-aware, coverage-oriented and target-based existing tech-

niques for dynamic reconfiguration are discussed.

2.2 Visual Sensor Networks

In recent years, a significant number of research studies have been conducted on

VSNs. The interest in this context lie in the optimisation of: sensing nodes’ spa-

tial coverage, task allocation, resource utilisation and visual data for transmission.

In resource constrained scenarios, such optimisations aim to provide energy effi-

cient solutions for the lifetime maximisation of VSNs. The hardware components

that constitute a visual sensing node are discussed in Section 2.2.1. Furthermore,

some notable schemes from the existing literature for optimisation are discussed

in Section 2.2.2 to Section 2.2.5.

2.2.1 Visual Sensing Node Architecture

The hardware components of a visual sensing node consist of an image capturing

device, a processing unit, a wireless transceiver and a power unit [43], as shown

in Figure 2.1 [44]. Visual sensing nodes can also be equipped with additional

Processing Unit

Power Unit

Image
Capturing

Device
Transceiver

Processor

Memory

Figure 2.1: Hardware components of a visual sensing node [44]
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application-specific components such as a location finding system and a mobiliser

[44]. The imaging devices can be classified into Charge-Coupled Device (CCD) and

Complementary Metal Oxide Semiconductor (CMOS) categories. Some examples

of CCD-based imaging are Meerkats [45] and Panopes [46], whereas, CMOS-based

imaging are Vision Motes [47] and Cyclops [48]. Although, CMOS-based imaging

devices are compact and less costly as compared to their CCD counterparts, the

latter provide superior image quality as compared to the former [43]. For exam-

ple, Cyclops [48] utilises CMOS-based imaging providing visual data of resolution

352× 288 and Meerkats [45] employs CCD-based imaging providing visual data of

resolution 640×480. Image capturing devices that produce a high resolution image

provide high quality visual content but result in high processing and transmission

energy costs. Hence, there is a trade-off between the quality of visual data and

resource utilisation. Due to the resource constrained nature of VSNs, an image

capturing device with suitable resolution needs to be selected to support a given

application.

The processing unit within a visual sensing node comprises of an embedded pro-

cessor and a storage unit. The on-board processor performs various tasks assigned

to a visual sensing node such as feature detection, extraction, visual data opti-

misation etc. Due to the multi-dimensional nature of data acquired by a visual

sensing node, VSNs require much higher storage compared to WSNs. The memory

requirements within visual sensing nodes is at least ten times higher than the tra-

ditional sensing nodes [43]. For example, Cyclops [48] provides 8-bit monochrome,

16-bit YCbCr colour, and 24-bit RGB colour images of resolution 352 × 288 and

require 101.4 Kilo Bytes (KB), 202.8 KB and 304.1 KB memory respectively to

store a single image frame. On the other hand, for a pixel representation with 24

colour bits, Meerkats [45] provides an image of resolution 640× 480 and requires

921.6 KB storage.

The wireless transceiver modules for sensor networks can be categorised into

Wireless Personal Area Networks (WPANs) and Wireless Local Area Networks
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(WLANs). WPAN transceiver modules typically consist of IEEE 802.15.4 and

Bluetooth (IEEE 802.15.1) which support a maximum data rate of 250 Kbps and

1 Mbps respectively resulting in low power consumption. Furthermore, IEEE

802.15.4 and Bluetooth have a limited transmission range of 10m to 20m. There-

fore, such modules are used for applications that can tolerate a low data rate and

transmission range but require low transmission energy cost. In contrast to WPAN

modules, IEEE 802.11b is typically used as a WLAN transceiver module in VSNs.

It offers a maximum data rate of 11 Mbps with a transmission range of upto 100m

and is suitable for applications that demand real-time streaming. However, as it

provides a high transmission range, this leads to a higher transmission energy cost.

Hence, there is a trade-off between transmission range and energy consumption.

2.2.2 Visual Sensing Node Coverage and Deployment

The deployment of visual sensing nodes within the targeted sensing environment

depends on the application’s requirements and the environmental conditions. The

deployment methods can be classified into deterministic and random categories.

Deterministic node deployment is feasible for sensing environments with known

characteristics, such as indoor environments. It results in coverage maximisation

with minimum possible sensing nodes leading to a reduced network cost. Further-

more, it does not create FoV overlapping and occlusion problems. However, this

type of deployment requires a strategy to be developed during the pre-deployment

phase. On the other hand, random sensing node deployment is suitable for large

scale VSNs with restricted access to the sensing environment. This technique is

simple as it does not require design engineers’ attention in the pre-deployment

phase. However, it can result in FoV redundancy due to the deployment of exces-

sive sensing nodes to compensate for the lack of deterministic positioning. More-

over, random deployment leads to occluded regions within the sensing environment

[49]. Therefore, for a given application, a suitable deployment strategy must be
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Figure 2.2: Comparison of a traditional WSN with a VSN in context of the
sensing nature of the nodes [43]

employed. The post-deployment challenges faced in VSNs due to random deploy-

ment make coverage problem popular within the research community.

In traditional WSNs, an omni-directional sensor provides coverage to an event if

it is within the sensing range. Whereas, apart from the sensing range, the event

must be within the FoV of the visual sensing node in VSNs. Figure 2.2 [43] shows

comparison of a traditional WSN with a VSN. Due to the directional nature of

a visual sensing node’s FoV shown in Figure 2.2, existing WSN solutions are not

suitable for VSNs. Early scenarios related to the optimal sensing node’s coverage

and placement can be found in the art gallery problem [50] which deals with

the estimation of optimal number of guards and their placement to secure an art

gallery. However, as compared to the art gallery problem, the directional FoV and

limited range of a visual sensing node makes the coverage and placement problems

much more challenging.

A mathematical model is proposed in [51] which utilises optimisation-based heuris-

tics to solve the VSN coverage problem by deploying each node sequentially and

removing the overlapping nodes. The approach shows that in small grids, reduced

number of sensing nodes will be required with fixed span angle and sensing range.

Authors in [52] presented a deployment algorithm for video panorama creation

in heterogeneous VSNs comprising sensing nodes with different costs, resolutions

and FoVs. The algorithm takes into account the minimum desired resolution and
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area boundaries to minimise the total deployment cost without compromising on

the multi-perspective coverage of the area. A deployment methodology is pro-

vided in [53] for the secure monitoring of ground activities. The authors consider

multi-objective global optimisation by incorporating the maximum covering lo-

cation and backup coverage location problems to solve the deployment problem.

In [54], the optimal placement and configuration problems for directional sensing

nodes are investigated. An integer linear programming model is developed and the

optimal range, FoV and orientation parameters of sensing nodes are determined.

The model finds optimal locations for sensing nodes and base stations leading

to a reduced network cost while guaranteeing desired coverage and connectivity

requirements.

Authors in [55] considered energy balancing among different visual sensing nodes

for network lifetime optimisation. Considering routing models with a Rayleigh

fading channel, the authors observed that the amount and locations of visual

sensing and relay nodes affect network optimisation. Therefore, assuming a 2D

environment, a scheme has been proposed which employs a location-wise strategy

for pre-determined deployment of sensing nodes attaining energy balancing and

leading to optimised network lifetime. The two-tier deployment problem in large

scale VSNs is considered in [56]. The VSN architecture comprises of tier-1 with

visual sensing nodes and tier-2 with relay nodes. Visual sensing nodes are deployed

with uniform random distribution to reduce the VSN cost, whereas, relay nodes

are deployed with two dimensional Gaussian distribution to tackle energy-holes.

The deployment strategy minimises the network deployment cost subsequently

resulting in an improved network lifetime.

An optimisation problem is formulated in [57] to find optimal number of cameras

required to provide sufficient coverage of the region of interest. Heterogeneity

is considered by incorporating both directional and omnidirectional cameras to

reduce the overall information processing cost. The authors concluded that omni-

directional cameras are suitable for providing large coverage, however, they are
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inefficient for object recognition due to their limited resolution. On the other

hand, directional cameras have limited sensing range but they can be utilised for

moving object recognition and tracking. In order to observe a given floor plan,

Erdem et al. [58] proposed a scheme to automatically compute the camera layout

while satisfying the task-specific requirements. Considering polynomial regions of

interest, a radial sweep algorithm is developed to estimate each camera’s visible

region. A grid-based methodology is applied for the representation of the feasi-

ble regions and the regions that require coverage. The solution is obtained for

a discrete problem space and it results in total cost minimisation. In [59], an

algorithm is presented to maximise the angle coverage in VSNs. The algorithm

aims to satisfy the desired resolution requirement by identifying a set of sensors

that capture the object from all view angles. The energy cost is minimised while

preserving a wide view angle by transmitting only those images that satisfy the

given resolution requirement. An unsupervised neural network based method to

obtain optimal settings for PTZ capable cameras is proposed in [60]. The method

utilises a growing neural gas model to maximise scene coverage in the presence of

moving objects. Karakaya et al. [61] proposed a closed-form solution for visual

sensing node’s coverage estimation. A certainty-based target detection model is

developed to support the formulation of a closed-form solution. Considering a

crowded sensing environment, the proposed coverage estimation model provides

an estimate of the minimum number of sensors required to guarantee visual K-

coverage. The approach also considered the visual occlusions and boundary effect.

In [62], the deployment problem of PTZ capable visual sensing nodes is consid-

ered. The coverage zone of a PTZ capable visual sensing node is classified into

direct coverage and PTZ coverage regions. Time-awareness is incorporated in the

deployment strategy to support real-time applications. The proposed strategy for-

mulates an optimisation problem to minimise the visual sensing node deployment

cost while satisfying the coverage objectives in time constrained scenarios.
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Observations: Many existing solutions to visual sensing node coverage and de-

ployment problems mostly consider the span angle coverage and do not take into

account the sensing range coverage. Furthermore the existing schemes mostly con-

sider a 2D FoV to simplify the coverage and placement problems. In contrast, the

energy efficient solutions for coverage estimation presented in this thesis consider

3D FoV and sensing range coverage within a 3D sensing environment, thus making

the proposed solutions more realistic for VSN applications. Although schemes are

found in literature that consider 3D modelling to define a visual sensing node’s

FoV; however, to the best of the author’s knowledge, they do not adopt hetero-

geneity in the targeted QoI for optimisation.

2.2.3 Visual Data Processing

The perception of information by other sensing nodes differs from that of a vi-

sual sensing node. Measurements can be obtained from most sensing nodes in the

form of 1D data; however, a visual sensing node provides the information in the

form of 2D data sets i.e. images. The rich information content in VSNs results in

computationally intense signal processing [2], consequently imposing constraints

on energy consumption within visual sensing nodes. Once the image data is cap-

tured by a visual sensing node in a VSN, it is processed on board to reduce the

amount of data which is required to be transmitted through the network. Local

processing can be simple image processing techniques such as edge detection, mo-

tion detection, thresholding, background subtraction etc. Furthermore, it can also

involve complex image processing techniques such as feature extraction, object

classification etc. Therefore, the visual sensing nodes may have different levels

of intelligence depending on the complexity of the algorithms being used. Since

the camera nodes are battery-powered, the lifetime of a visual sensing node is

dependent on its energy consumption. In the case of large amount of visual data,

transmission consumes significant amount of energy and bandwidth [63]. Hence,
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efficient processing techniques should be employed in visual sensing nodes to en-

hance the energy and bandwidth efficiency of VSNs.

i) Feature extraction

Feature extraction is one of the most popular methods used for visual data process-

ing in VSNs [43]. A feature is a function of one or more measurements, computed

so that it quantifies some significant characteristic of the object [64]. Feature

extraction is an area of image processing that deals with algorithms to extract

various portions and descriptors from a still image or a video sequence. Since the

useful information is limited, feature extraction methods transform the input data

into reduced representation using a small set of features [65–71]. They reduce

the bandwidth and redundancy of the data with minimum loss of information to

provide relevant set of features which makes the decision process easier [66]. For a

still image, the description of its content can be obtained from its visual features

which play an important role in many image processing applications. These fea-

tures are required to solve computational tasks which vary from one application

to another [72]. There are a number of visual features which can be found in

images; however, the selection of features required in the decision making depends

on the given application. Features can be classified into low-level and high-level

categories.

Low-level features are basic features that can be extracted directly from an image

without requiring any information about its content [73]. They can be further sub-

divided into local features and global features. Local features represent the charac-

teristics of a particular region of the image/object under consideration. They are

robust to occlusion, clutter and image variations [63, 74]. Local features include

colour, corner, edge, blob, texture, region/patch and spatial location. Within the

context of object class recognition, a comparative analysis of various local features

is presented in [75]. Skin tone is also a type of local feature which is used for face
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detection in [76]. Local features are also used in Content-based Image Retrieval

(CBIR) [77]. However, there are several challenges faced during the utilisation of

local features. Features such as corners and edges can be significantly affected by

noisy environment. Pixel intensity or colour features do not show good level of

variance to illumination. Texture-based features are sometimes variant to scale

and rotation. Region-based features can be affected by image blur. In contrast to

the local features, the global features describe the image as a whole and they are

represented by a single vector. Mean, histogram, variance and moment are global

features [78]. These features are inefficient for occlusion and clutter [74] and are

also sensitive to image variations [63].

Although there are many high level features, a brief description of shape features

is provided. Shape features help to find shapes in images and they are represented

by the shape descriptor. Shape descriptors should be as complete as possible to

represent the content of information, should be stored compactly and should not

be computationally expensive [72]. Shape description techniques can be classified

into contour-based methods and region-based methods. In contour-based methods,

the shape features are extracted from the contour only whereas; region-based

methods extract shape features from the whole shape region. They are further sub-

divided into structural and global approaches. In structural approach, the shape

is represented by segments; whereas, the shape is represented as a whole in global

approaches. Simple global shape descriptors are area, eccentricity, circularity ratio,

bending energy and major axis orientation. However, these features can only

be used to distinguish between shapes having large differences. Therefore, they

are usually combined with other shape descriptors or used as a filter to reduce

false detections [72]. An example of shape-based features is human facial features

extraction. The major facial features are the eyes, ears, nose, eyebrows, lips and

mouth [72, 79]. These features can be found using their shapes that have some well-

known properties, for example the white part of eyes is ellipsoidal, the appearance

of mouth and the eyebrows resembles two lines. Moreover, the arrangement of
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facial features is also helpful, for example the eyebrows are located above the eyes,

the nose can be found below the eyes etc [73].

Within the context of VSNs, there are several studies in the literature that utilise

features during the visual data processing phase to support different applications

and achieve various objectives. In [80], the design of a multi-model video sensing

node is presented to support surveillance in sensor networks with low power and

cost. For human detection application, a PIR sensor activates the video sens-

ing node to capture an image frame. The region-of-interest is isolated using a

background subtraction scheme and a feature vector is extracted. It is observed

from the analysis that feature extraction reduces the size of the data significantly.

Multi-model event detection is investigated in [81] for environmental monitoring

applications. Colour, histogram and edge features are extracted in the processing

phase and a system is developed for event detection. Xie et al. [82] provided

solutions for the design and implementation problems of a wireless camera net-

work while considering object detection and recognition. The proposed solution

provides a trade-off between computational complexity and recognition accuracy

by utilising colour histogram-based features with Scale Invariant Feature Trans-

form (SIFT) descriptors. In [83], the difficulties in resource constrained VSNs

for a human detection application are investigated. A method is developed for

robust human detection which comprises of two modules, a foreground segmenta-

tion module and a detection module. Gradient features are extracted to represent

the characteristics of the human shape and performance analysis demonstrates

that the solution is suitable for energy constrained visual sensing nodes. A visual

sensing based abnormal event detection algorithm is presented in [84] for health

care applications. The designed algorithm uses object extraction and classification

techniques to distinguish normal and abnormal activities. Shape feature variations

are observed within visual sensing nodes to detect abnormal events. A shadow re-

moval algorithm is also developed to improve the detection accuracy. An energy

efficient face detection method is proposed in [85] for VSNs which reduces the
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processing and transition costs. An energy-aware strategy is employed for face

detection and only the detected facial information is sent to the base station to

enhance the lifetime of VSNs.

Eriksson et al. [86] considered the completion time minimisation problem for

feature detection and extraction in VSNs by distributing the processing tasks

among sensing nodes. A multi-objective optimisation problem is formulated and a

regression scheme is employed to support prediction of interest point distribution.

Results demonstrate that the proposed approach provides good performance while

minimising the computational complexity. Another distributed visual processing

strategy is considered in [87]. Visual features are extracted by the sensing nodes

and a distributed source coding scheme is developed to optimise the visual content

prior to transmission based on the overlapping views. A visual feature extractor,

BRISKOLA (Binary Robust Invariant Scalable Keypoints Optimized for Low-

power ARM architectures), is proposed in [88] by optimising BRISK [89] for ARM

architectures. The BRISKOLA feature extractor provides a solution to minimise

the energy consumption without compromising on the performance. Resource

allocation problem of VSNs is considered in [90] for visual analysis applications. In

the designed solution, each node extracts local features in pixel-domain and apply

lossy coding. An optimisation problem is formulated which aims to maximise VSN

lifetime while considering the desired target accuracy along with the energy and

bandwidth constraints.

Observations: As discussed previously, many techniques are found in the existing

literature for feature detection and extraction [80, 83, 84, 86–88, 90]. However,

due to strict constraints on available energy and limited hardware capabilities of

visual sensing nodes, schemes that are less computationally complex and support

faster implementation are desirable. Therefore, colour features are considered in

this research study for utilisation in visual sensing nodes due to the simplicity

of implementation, speed of feature detection/extraction and requirement of low

storage space [91, 92], as in [81, 82]. Moreover, colour features show robustness in
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case of rotation and scaling. In event-driven surveillance applications, the process

of colour feature detection is followed by the extraction phase, where the object

of interest is segmented from the captured image.

Segmentation is a key step while performing image analysis as it facilitates image

understanding by providing object feature measurements. Segmentation tech-

niques found in the literature can be classified into unsupervised, semi-supervised

and supervised categories. In unsupervised techniques, an image is autonomously

segmented into meaningful homogeneous regions, thus no human intervention is

required [93]. Local region merging and splitting along with clustering were con-

sidered in the early unsupervised segmentation techniques. In contrast, the recent

unsupervised segmentation techniques aim to optimise a particular global criteria

[94–96]. In semi-supervised segmentation techniques, the un-annotated visual data

is segmented by utilising the coarse annotations [93]. Such techniques can be fur-

ther sub-divided into interactive and cosegmentation techniques [93]. Interactive

segmentation techniques [97, 98] are driven by the user input and they are applied

in commercial products (i.e. Adobe Photoshop and Microsoft Office). Recurring

objects can be extracted from a set of images using the cosegmentation techniques

[99, 100]. In supervised segmentation techniques [101, 102], an application-specific

model for the object-of-interest is developed, therefore, these techniques achieve

superior performance for particular given tasks [93]. In this research study, the

segmentation approach presented in [103] is employed due to its computational

efficiency. Moreover, the chosen segmentation approach is suitable for utilisation

with the colour feature extraction technique considered to develop the proposed

solutions.
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ii) Quality-of-Information (QoI)

Many research studies have considered QoI but in different contexts. One of the

earlier investigations on QoI for sensor networks is presented in [104]. Event de-

tection in sensor networks is considered and application efficiency is modelled with

QoI. Timeliness of the data, confidence on the data, characteristics of the sensor

networks and events are considered as QoI attributes. Relationships are estab-

lished between these attributes and their theoretical performance limits are ob-

tained. In [105], a dual layer model based on QoI and Value-of-Information (VoI)

is developed. QoI attributes of timeliness, accuracy and latency are considered;

whereas, for a given QoI, VoI is characterised by the importance for a specific use.

A VoI attributes-based framework for information scoring and ranking is presented

by utilising a multi-criteria decision making process. A methodology for sensor

network data models processing is proposed in [106]. The data models aim to

combine data from sensing nodes while satisfying the QoI requirements for energy

conservation and WSN lifetime maximisation. Several research studies are found

in the literature that examine QoI for task management. Liu et al. [107] address

the problem of dynamic multi-task management in WSNs and incorporate QoI-

awareness in their solution. The solution provides QoI index of a task to gauge the

satisfaction of requested QoI levels within a WSN. Network capacity in terms of

QoI is modelled to evaluate the WSN’s new task admission ability without affecting

the QoI satisfaction of other tasks. An admission control strategy is developed for

optimal utilisation of network resources resulting in optimised accommodation of

tasks’ QoI requirements. The performance of this approach is evaluated under the

intruder detection scenario and the results demonstrate that it leads to lifetime en-

hancement. The task management solution presented in [107] is extended in [108]

by introducing an energy management scheme. A distributed QoI-aware approach

is employed to develop the energy management scheme which determines the par-

ticipating state of sensing nodes. The approach exploits the trade-off between

sensing nodes’ energy management and QoI support resulting in energy savings.
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In [25], an Internet-of-Things sensory environment is considered and an energy ef-

ficient multi-task oriented framework is proposed to manage and control the duty

cycles of the sensors under particular QoI requirements. The performance of the

framework is observed for an environmental monitoring application. Few schemes

exploiting QoI for visual data are also present in the literature. In [26], the accu-

racy of representing an event at the output of a sensing node is observed as QoI.

Practical examples are given and experiments are conducted to describe, estimate

and evaluate the QoI. The versatility of a PSNR-based metric is demonstrated

in terms of representing the QoI. Multi-sensor multimedia monitoring system is

considered in [109] and a model is developed by characterising QoI attributes of

certainty, accuracy and timeliness. A fusion approach is employed to determine

the target information and QoI attributes are dynamically calculated depending

on the participating sensors’ observations. The suitability of this mechanism is

demonstrated for detection and human identification.

Observations: Although many research studies have incorporated QoI to enhance

an application’s efficiency; however, most of the existing schemes are developed

for WSNs, which are not suitable for VSNs due to the multi-dimensional nature

of visual data. Therefore, a PSNR-based metric is developed in this thesis for the

characterisation of QoI to reflect the quality of the data obtained from a visual

sensing node. To the best of the author’s knowledge, the existing schemes found

in literature that define QoI for VSNs do not consider dynamic targeted threshold

based optimisation along with the utilisation of visual sensing nodes’ 3D FoV

information. Moreover, a dynamic realisation of QoI is considered in this thesis

to facilitate reconfiguration that can result in substantial energy savings.
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iii) Pre-transmission visual data optimisation

Visual data aggregation is a processing technique which exploits the similarities

between neighbouring visual sensing nodes’ data to eliminate redundancies result-

ing in transmission energy conservation and efficient bandwidth utilisation. The

energy consumption trade-off between image processing and aggregation within

a visual sensing node is investigated in [110]. An energy consumption model for

image aggregation is developed which incorporates image processing and trans-

mission costs. The study also provides a solution to find the optimal number of

nodes to be involved in aggregation resulting in an improved network lifetime.

An entropy-based framework is developed in [111] for visual data aggregations in

sensor networks. In the pre-transmission phase, clusters are formed by grouping

sensing nodes with high joint entropy together. The framework tackles the problem

of single image repeated transmissions by removing redundant data from corre-

lated sensing nodes. In [112], a Wireless Multimedia Sensor Network is considered

which consists of camera and scalar nodes. A distributed scheme is proposed for

topology management and camera actuation. A packet aggregation strategy is em-

ployed within the network prior to reporting an event to a particular camera node.

The approach leads to enhanced scalar nodes’ lifetime, improved event coverage,

increased packet delivery ratio and reduced latency. Multi-view video coding is

considered in [113] to exploit the spatial correlation between partially overlapping

FoVs of multiple cameras observing a particular scene of interest. A metric is

used to represent the degree of correlation between different views of a scene of

interest. The approach leads to a reduction in total bandwidth consumption. Au-

thors in [114] employed a 3D sensing model for 3D visual correlation in resource

constrained VNSs. The method enhances the energy efficiency by minimising the

processing required for 3D visual correlation.

Image compression is one of the most widely utilised approaches in visual data op-

timisation prior to transmission in VSNs. Efficient image compression algorithms

can reduce the amount of visual data for transmission to the sink node resulting
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in network lifetime maximisation. Comprehensive surveys on image compression

schemes for VSNs can be found in [115–117]. An energy efficient architecture

for image processing and a protocol for communication in VSNs are proposed in

[28]. Employing the proposed object detection architecture with Discrete Wavelet

Transform (DWT) processing, the proposed approach leads to a reduction in im-

age transmission cost. In [118], an energy efficient image compressive transmission

scheme is proposed for resource constrained scenarios. The proposed scheme in-

corporates region of interest extraction with block-based compressive sensing to

devise an energy-driven strategy for image quality control. Chow et al. [29] pro-

posed an energy efficient framework for on-demand image transmission in visual

sensor networks. Intra-neighbourhood processing and combining protocol is de-

veloped for overlapping regions. Subsequently, a particular level of compression is

employed and images are transmitted upon request to the mobile sink resulting

in reduced energy consumption. In [119], a computationally less expensive ap-

proach based on change detection is proposed for image compression in resource

constrained sensor networks. Region of interest is determined by the change de-

tection algorithm for visual data optimisation. Fast Discrete Cosine Transform

(DCT) with optimised quantisation is used for compression. The scheme provides

a trade-off between energy consumption and resulting image quality. Another ap-

proach based on region of interest is presented in [120]. An image compression

algorithm is developed which employs a low compression level for the region of

interest and a high compression level for the rest of the image. Thus, by reducing

visual data, the algorithm minimises the transmission energy cost.

Wang et al. [121] developed an information theoretic generalised image compres-

sion framework which is independent of the image statistics and coding algorithms.

The framework employs an entropy-based divergence measure scheme and a dis-

tributed multi-cluster coding protocol to maximise visual data compression in

VSNs. An energy and bandwidth constrained wireless video sensor network is

considered in [122] and a compressive sensing based image compression scheme is
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proposed. The proposed scheme adaptively controls the image quality depending

on the the sensing nodes’ remaining energy and the network’s link quality. In [123],

an architecture for landslide monitoring utilising heterogeneous sensor networks

is proposed. The sensor network considered in [123] consists of geographical and

camera sensor nodes. Strategies for threshold self-learning, information fusion and

sleep scheduling are utilised for anomaly detection. After the confirmation of a

slope anomaly, the camera nodes are activated, object detection is performed and

image compressive transmission takes place.

Several other approaches are presented in the literature for optimised transmission

in VSNs. An energy efficient image prioritisation framework is proposed in [124]

to select relevant information before transmission to the sink node. Based on

salient motion detection, the proposed approach reduces the transmission cost

of the visual information. A VSN lifetime maximisation strategy is proposed in

[125] that optimises the source rates, encoding powers and routing schemes to

prolong the network’s lifetime. Ye et al. [126] proposed an energy-aware packet

interleaving scheme for robust transmissions within VSNs to improve the end-to-

end image transmission quality and prolong the network lifetime. In [127], Dai

et al. proposed a routing algorithm by integrating correlation-aware inter-node

differential coding and load balancing schemes. The proposed approach minimises

the sensor network’s energy consumption under certain constraints. Authors in

[128] proposed a framework for image communication in bandwidth constrained

WSNs. An image compression scheme utilising the set partitioning in hierarchical

trees (SPIHT) technique is incorporated within the framework to enhance the

energy efficiency of the network. Moreover, a protocol to reduce the packet drop

rates is employed for reliable communication. In [129], a framework for video

encoding and wireless transmission in VSNs is proposed which improves the energy

efficiency of the network and results in lifetime enhancement. The transmission

within the framework is supported by a reliable multi-priority routing protocol

that considers the nodes’ residual energy, the packet loss rates and the congestion



Chapter 2. State-of-the-art in VSN Design and Optimisation 40

level.

Observations: Although, many research studies are present in the literature for

visual data optimisation in the pre-transmission phase but most of them utilise

a particular static level of compression for optimisation. In contrast, dynamic

compression levels is considered for feature redundancy removal in this thesis to

optimise the visual data, satisfy the criteria of desired reliability and enhance the

energy efficiency of VSNs. To the best of the author’s knowledge, the existing

studies that adopt dynamic compression strategies do not consider heterogeneous

levels of target QoI thresholds.

2.2.4 Task classification

Owing to the complexity of sensing and processing tasks within VSNs, tasks clas-

sification is an active area of research. A number of studies are found in the

literature that investigate the task allocation problem. Dieber et al. [130] pro-

posed a centralised resource-aware evolutionary algorithm that addresses coverage

and task assignment problems in resource constrained VSNs. The proposed solu-

tion provides optimal configuration for cameras selection, frame rate, resolution

and assignment of tasks. In [131], object tracking application for complex sce-

narios is considered and a dynamic task decomposition strategy is presented. A

vision-based state estimation problem is formulated for maximised sharing of avail-

able resources. A task is divided into different subtasks which results in enhanced

parallelisation, throughput and reliability. An optimisation problem is formulated

in [132] and a distributed load allocation algorithm is developed to minimise the

completion time of visual processing tasks. As compared to other schemes, the

algorithm offers fast convergence at the cost of higher completion times. However,

utilising a centralised coordinator, the algorithm can result in low completion times

with reduced computational complexity.
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Task allocation problem of VSNs is also discussed in [133]. A computational

market-based approach is employed and a method is developed to maintain QoS

levels of the tasks while considering the resource requirements and the desired

level of service. Another market-based solution for the adaptive energy-aware

assignment of tasks to cameras in resource constrained networks is proposed in

[134]. An adaptive utility function is used by the cameras to bid for tasks which

results in network lifetime maximisation. Authors in [135] investigated the task

assignment problem in camera networks for surveillance applications. A model is

formulated to address this problem and promising results are obtained in terms of

priorities assignment, idle agents avoidance and waiting time reduction.

A multi-object tracking problem is discussed in [136] by employing a game theoret-

ical approach. Energy levels, processing loads and nodes’ accuracies are considered

for reassigning object tracking tasks. Various scenarios are considered to evaluate

the performance of the proposed solution which demonstrates that it leads to life-

time enhancement while reducing the communication between the nodes. In [137],

the popular matching strategy is introduced to solve the multi-task assignment

problem in camera networks. The approach allocates tasks to cameras based on

the closest task preferences. A framework for in-network processing is proposed

in [138] which utilises a speedy task reallocation strategy to recover from service

disruptions that occur within the network. A self-learning algorithm is developed

which dynamically maintains system parameters to achieve the desired criteria

resulting in network lifetime improvement.

Observations: To the best of the author’s knowledge, the existing solutions for

task classification do not jointly consider heterogeneous visual sensing nodes, their

3D coverage and energy efficient FoV characterisation criteria for optimal task

allocation in resource constrained scenarios. Hence, there is scope for a coverage-

oriented generalised solution which can be implemented in heterogeneous visual

sensing nodes to support a diverse range of applications. The task classification

scheme developed in this thesis provides a generalised solution by exploiting the
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sensing nodes’ heterogeneity in an intelligent manner and it is suitable for a broad

range of applications.

2.2.5 Dynamic reconfiguration

Many solutions for WSN design have been proposed in the literature that facil-

itate reconfiguration to optimise network performance [139–141]. As the nodes

within WSNs employ omni-directional sensing to collect scalar data and due to

the directional sensing nature of VSNs, the reconfiguration schemes for WSNs

cannot be directly implemented in VSNs. Moreover, the acquisition, processing,

transmission and reception of 2D image data impose stricter constraints on energy

consumption and bandwidth within VSNs. Due to these fundamental differences,

compared to WSNs, obtaining solutions to the reconfiguration problem for VSNs

is much more challenging. Owing to these challenges, researchers have been ac-

tively engaged in developing dynamic reconfiguration schemes for VSNs to achieve

various objectives. The existing solutions for dynamic reconfiguration can be clas-

sified into resource-aware, coverage-oriented and target-based methods [22], which

are discussed in the following sections.

i) Resource-aware methods

Resource-aware methods support reconfiguration by considering the available and/or

required resources on each node while satisfying the desired performance require-

ments [22]. In order to achieve a given objective, several heuristics for energy-aware

resource allocation are discussed in [142]. The reconfiguration aims to guarantee

energy minimisation as well as timely task completion. Dynamic power manage-

ment incorporates strategies to dynamically regulate the state of system com-

ponents depending on the workloads. An artificial neural network is utilised in

[143, 144] and the reconfiguration workloads are obtained. Multi-camera traffic

surveillance application is considered and the developed solutions result in optimal
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selection of timeouts for each component to reduce the power consumption while

ensuring the desired performance levels. A stochastic model is formulated in [145]

for the network operational lifetime. The solution presented by the authors con-

sider camera selection and energy distribution among selected sensing nodes for

reconfiguration. The developed camera scheduling and energy allocation strategies

lead to lifetime maximisation in VSNs.

Karuppiah et al. [146] developed a context-aware reconfiguration framework based

on hierarchical smart resource coordination. The utilised approach comprises of

a fault containment unit which offers dynamic fault tolerance in case of failures.

The effectiveness of the approach is evaluated for a tracking application and it is

observed that the developed system supports tracking by dynamically selecting

camera pairs for optimal object localisation. In [130], a distributed approach to

dynamically find optimal configuration of a network is developed which provides a

trade-off between resource consumption and surveillance quality. The distributed

approach is compared with its centralised counterpart to demonstrate effective-

ness of the proposed approach. The distributed approach of [130] is coupled with

a market-based strategy for tracking assignment in [147]. Fu et al. [148] proposed

a tracking scheme which balances the tracking accuracy and energy consumption

in wireless camera sensor networks. A decentralised approach is employed for

tracking to enhance the energy efficiency of the target tracking scheme. Moreover,

a cluster head selection strategy is proposed which formulates an optimisation

problem for such selection depending on the residual energy and the sensor-to-

target distance. Kim et al. [149] proposed an energy efficient management scheme

to maximise the data quality and lifetime of solar-powered VSNs. The energy

supply and demand is predicted to support the energy management scheme. An-

other energy management solution for VSNs is presented in [150]. A strategy is

developed by formulating an optimisation problem for the minimisation of sensing

nodes’ power consumption. The process of reconfiguration takes place for optimal

node scheduling and power allocation.
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ii) Coverage-oriented methods

Global coverage optimisation for a particular scene of interest is the main aim of

coverage-oriented methods which can be achieved by either increasing the number

of sensing nodes providing coverage to specific regions or reducing the number of

unobserved regions in the sensing environment [22]. Authors in [151] studied the

dynamic coverage optimisation problem of directional sensors. The configuration

space comprises of the position and orientation parameters of the sensing nodes,

whereas the objective of reconfiguration is to maximise the targets’ coverage with

minimum possible sensing nodes. Adaptive scheduling is incorporated by intro-

ducing a sensing neighborhood cooperative sleeping protocol. Both centralised and

distributed solutions are presented by the authors. Morsly et al. [152] considered

the problem of providing reliable visual coverage of the sensing environment by

minimum possible cameras. The sensors’ position and orientation parameters are

considered within the configuration space. The sensors’ capabilities are modelled

as constraints to formulate an optimisation problem which reduces the resource re-

quirements. Another coverage maximisation algorithm is presented in [153] which

takes into account the user defined priority regions. The configuration space con-

siders pan, tilt and zoom level parameters. A centralised genetic algorithm is

utilised in the reconfiguration process to find optimal coverage.

In [154], an occlusion-aware method is proposed to dynamically obtain the opti-

mal configuration of cameras’ pan, tilt and zoom parameters in the network for

coverage maximisation. A multi-purpose approach to the reconfiguration of PTZ

capable cameras within a network is proposed in [155]. The authors considered

the sensors’ orientation and zoom levels to define the configuration space with

coverage and image quality maximisation objectives. An enhanced approach in-

corporating the solutions of [155] is presented in [156]. An optimisation technique

based on particle swarm optimiser is proposed to obtain the most suitable cam-

era position and configuration while achieving a given coverage objective. The

proposed solution takes into account both the coverage and visual quality of the



Chapter 2. State-of-the-art in VSN Design and Optimisation 45

acquired visual data, and it is capable of reconfiguration in case of cameras fail-

ures. Reconfiguration problem to guarantee barrier coverage is studied in [157].

Distributed methodologies are presented for self-configuration of mobile sensing

nodes to form sensing node barriers over a rectangular region.

iii) Target-based methods

The aim of target-based methods is to reconfigure the sensing nodes focusing on

a specific target. A typical application of these methods is target tracking which

aims to follow the detected objects by reconfiguring PTZ capable sensing nodes.

In case of static sensing nodes, reconfiguration can be employed to select the most

suitable sensing nodes for acquiring good quality images of specific targets. In

order to obtain high quality visual data representing a target, a master-slave ap-

proach is employed in [158] with PTZ cameras, where each camera within the

network can function as master or slave. In the proposed strategy, the master

camera observes a large portion of the sensing environment and estimates ap-

proximate location information for the slave cameras. An uncalibrated method is

incorporated in the reconfiguration phase and time-variant homographes are esti-

mated between camera views. The approach does not require any pre-defined 3D

location information. The limitations of the master-slave approach are addressed

in [159, 160] by developing coordination schemes for networks comprising PTZ ca-

pable multi-cameras. The schemes support multiple targets tracking by acquiring

high quality visual data and works for occluded targets as well. Ding et al. [161]

developed a distributed method to dynamically find optimal pan, tilt, zoom pa-

rameters for reconfiguration and system performance maximisation by acquiring

high quality images of specific targets. The method provides a trade-off between

image quality and tracking failure probability.

Solutions for target tracking problem with PTZ capable cameras are also presented

in [162, 163]. The aim of dynamic reconfiguration is to minimise the number of
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camera hand-offs as well as optimising the visual data quality. The strategy for

camera tasking optimisation is supported by moving objects trajectories predic-

tion. Authors in [164] adopted a negotiation-based approach for camera handover

coordination. A status sharing strategy is developed which can be utilised in the

cameras. Bidding takes place among the cameras where objects for sale are of-

fered by the bidding camera to free allocated resources. In [165], a coalition-based

framework for multi-target tracking in bandwidth constrained camera networks is

proposed. Local interactions, tracking confidence and neighbourhood communica-

tion performance are considered to form coalition among cameras for performing

distributed target tracking tasks. The approach leads to accurate tracking with

reduced communication cost.

Observations: Despite the fact that a number of state-of-the-art techniques are

found in the existing literature, most of them are developed for camera networks

without considering a resource constrained scenario. Even though there are var-

ious resource-aware solutions but they consider the remaining or required energy

resources and do not incorporate QoI-awareness in the process of reconfigura-

tion. Furthermore, centralised approach for reconfiguration is employed in many

schemes which is not suitable for bandwidth constrained VSNs. To the best of the

author’s knowledge, the existing techniques that utilise a distributed reconfigura-

tion approach do not exploit heterogeneity of the target QoI thresholds. Hence,

there is scope for a distributed self-reconfiguration scheme to be developed for

visual sensing nodes which takes into account both resource and QoI requirements

based on the application design criteria.
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The notable existing schemes relevant to this research study that are found in the

literature and discussed earlier in this chapter are listed in Table 2.1.

Table 2.1: Classification of some notable schemes found in literature within
the context of the problem domain

Classification Methods

Visual sensing node coverage and deployment

[50], [51], [52], [53], [54],

[55], [56], [57], [58], [59],

[60], [61], [62]

Feature extraction
[80], [81], [82], [83], [84],

[85], [86], [87], [88], [90]

Quality-of-information
[25], [26], [104], [105], [106],

[107], [108], [109]

Pre-transmission visual data optimisation

[28], [29], [110], [111], [112],

[113], [114], [118], [119],

[120], [121], [122], [123],

[124], [125], [126], [127],

[128], [129]

Task classification

[130], [131], [132], [133],

[134], [135], [136], [137],

[138]

Resource-aware reconfiguration

[142], [143], [144], [145],

[146], [147], [148], [149],

[150]

Coverage-oriented reconfiguration
[151], [152], [153], [154],

[155], [156], [157]

Target-based reconfiguration
[158], [159], [160], [161],

[162], [163], [164], [165]
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2.3 Summary

The existing state-of-the-art techniques for VSN design and optimisation have been

discussed in this chapter. The architecture of a visual sensing node is presented

which comprises of an image capturing device, a processing unit, a transceiver and

a power unit. Each component plays a prominent role in VSN applications. The

coverage and deployment of visual sensing nodes depend on the characteristics of

the image capturing device. The deployment algorithms for visual sensing nodes

are classified into two categories - deterministic deployment and random deploy-

ment. Coverage estimation is a challenging task in VSNs due to the directional

nature of visual sensing nodes. Therefore, the existing solutions for a traditional

sensing node’s coverage estimation cannot be implemented in a visual sensing

node. Various coverage and placement algorithms for visual sensing nodes have

been discussed in this chapter. However, it is found that many existing solutions

for coverage estimation assume a simplified 2D FoV model, whereas, a 3D model

is more realistic for VSN applications.

Visual data acquired by a sensing node can be processed to reduce the amount

of data prior to transmission in VSNs. Several techniques are discussed for visual

data processing and optimisation such as feature extraction, QoI utilisation, data

aggregation and compression. QoI-awareness has been incorporated in several

algorithms to enhance the network’s intelligence and improve the management.

However, most of the existing QoI-aware techniques are developed for WSNs and

they may not be suitable for VSNs due to the multi-dimensional nature of visual

data. It is observed that there is scope for a QoI index to be developed for VSNs

characterised by a PSNR-based metric. Moreover, dynamic QoI realisation is

required for optimisation. The existing schemes for visual data optimisation in the

pre-transmission phase employ various compression schemes to reduce the amount

of redundancy. However, many schemes employ a static level of compression and



Chapter 2. State-of-the-art in VSN Design and Optimisation 49

do not take into account the dynamic nature of the visual data. Therefore, a

dynamic compression level is considered for visual data optimisation in this thesis.

Task classification is an active area of research due to the complexity of sens-

ing and processing tasks within VSNs. Several task classification algorithms have

been discussed in this chapter. However, most of the existing solutions for task

classification do not jointly consider heterogeneous visual sensing nodes and their

3D coverage for optimal task allocation in resource constrained scenarios. It is

observed that there is scope for a generalised coverage-oriented task classification

algorithm for heterogeneous visual sensing nodes to support a broad spectrum of

applications. VSNs can be reconfigured to select optimal parameters while sat-

isfying particular objectives. Resource-aware, coverage-oriented and target-based

methods for dynamic reconfiguration have been discussed. It is observed that

most of the existing reconfiguration schemes are developed for camera networks

which may not be suitable for resource constrained scenarios. Furthermore, the

schemes that take into account the resource requirements did not incorporate QoI-

awareness to support reconfiguration. In addition, the centralised nature and suit-

ability only for homogeneous sensing nodes limit the applications of some existing

solutions. Hence, it is observed that there is scope for a distributed approach for

reconfiguration with the joint realisation of resource and QoI requirements. Con-

sidering resource constrained VSNs, this research is focused on the development of

energy efficient solutions for sensing node characterisation while considering het-

erogeneity, incorporating QoI-awareness and satisfying particular desired levels of

reliability.

The next chapter presents a FoV characterisation framework to be employed by

the system design engineers in the network pre-deployment phase for sensing range

optimisation. Moreover, an adaptive task classification scheme is proposed to

support the FoV characterisation framework in the post-deployment phase leading

to substantial energy savings in heterogeneous VSNs.
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FoV Characterisation Framework

3.1 Introduction

The multi-dimensional nature of visual data imposes severe constraints on energy

consumption in VSNs. Consequently, minimising energy consumption within the

network is considered to be the most important design objective in resource con-

strained scenarios. Energy efficient solutions for network lifetime maximisation

are required to assist the system design engineers in the pre-deployment phase.

Such solutions can be obtained by developing a trade-off model for reliability and

energy efficiency. Based on the application design criteria, the characterisation

of visual sensing nodes’ FoV can result in spatial coverage optimisation and life-

time maximisation. Moreover, the heterogeneity of visual sensing nodes can be

exploited to distribute sensing and processing tasks among the nodes in an energy

efficient manner.

This chapter presents the proposed FoV characterisation framework that provides

generalised energy efficient design solutions for both homogeneous and heteroge-

neous VSNs. The 3D projection model of a visual sensing node is presented and

various parameters that affect the projection model are discussed. The proposed

50
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task classification and soft decision based sensing range selection schemes to en-

hance the energy efficiency of heterogeneous VSNs are described. Experiments and

simulations are performed to evaluate the robustness of the proposed FoV charac-

terisation framework and the results are presented in this chapter. Since energy

consumption is a critical issue, an energy model is described in order to compute

the energy dissipation and to demonstrate the energy efficiency of the proposed

framework. In addition, an analysis of system failure probability is presented.

3.2 Visual Sensing Node’s 3D Projection Model

The 3D projection model of a visual sensing node VS within a spherical sector is

shown in Figure 3.1. VS employs directional sensing and transforms a projection

of the 3-dimensional scene from R3 to a 2-dimensional image plane in R2.

Figure 3.1: Visual sensing node’s 3D projection model

In this model, the projection of the 3D scene points onto a physical 2D image

plane is characterised by the pinhole camera model. In reality, the physical image

plane lies inside the visual sensor behind its centre. The light rays hit the image

plane through a pinhole and create an upside down image of the scene within the

FoV. In order to simplify the mathematical model, it is assumed that the physical
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image plane lies infront of the sensor’s centre and provides the same image with

respect to the scene within the FoV.

In order to describe the projection, Figure 3.2 [166, 167] shows a simplified form

of Figure 3.1 where a scene point P (Xc, Yc, Zc) projects onto the image plane at

a point P ′(x, z). In addition, the relationship between the 3D scene point and 2D

point on the image plane is illustrated in Figure 3.3 [167].
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Figure 3.2: Sensing process characterised by a pinhole camera model [166,167]

C
Y

X

P 

P

f

C
Y

Z

P 

P

f

Y

X
f 

Y

Z
f 

Figure 3.3: 2D view of the projection of point P [167]
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The point P ′(x, z) on the image plane is calculated from Figure 3.3 using triangle

similarity as shown in the following equation,

P ′(x, z) =


x = f × Xc

Yc

z = f × Zc
Yc

(3.1)

The visual sensing node covers a certain part of the spherical area of interest. The

region within the sensing node’s 3D FoV is described by the horizontal FoV (θh)

and the vertical FoV (θv) of the sensor.

Where θh and θv are the angular extents of the scene measured horizontally and

vertically by the sensor respectively. The FoV of a sensing node is characterised

by various parameters which are described in the following sections.

3.2.1 Sensing Node’s Location

In Figure 3.1, sensing node VS is located at the origin of the cartesian coordinate

system i.e. (0, 0, 0) and the sensor’s optical axis overlaps onto the y-axis with

X = 0 and Z = 0. Within the context of a VSN, where N sensing nodes are

present, each sensing node VSl̃ (l̃ = {1, 2, 3, . . . ,N}) is identified by its location

which is described by the cartesian coordinates (Xl̃, Yl̃, Zl̃), azimuth angle φa and

elevation angle θe. These parameters define sensing nodes’ distribution within the

network and are tuned to fit the respective regions of interest within each sensing

node’s FoV.

3.2.2 Sensing Range and ABCD-plane Dimension

In Figure 3.1, the origin O2 of the ABCD-plane intersects the y-axis at (0, R, 0);

where R is the distance between the visual sensor and the ABCD-plane and is
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known as the sensing range, w2 is the width of the ABCD-plane and h2 is its

height. For a target object, the sensing range spans from Rmin to Rmax for a

certain acceptable level of sharpness.

Varying R affects the sensing node’s coverage due to the change in ABCD-plane

dimensions. Increasing this distance R results in a larger coverage volume within

a sensing node’s FoV, whereas, decreasing R reduces the coverage volume. There-

fore, R is a key parameter for FoV characterisation.

3.2.3 Image plane Dimension and Sensor’s Resolution

As mentioned earlier, a visual sensing node captures a 3D scene onto a physical

image plane. The quality of the captured image depends on the dimension of the

physical image plane and the sensor’s resolution in pixels. In Figure 3.1, the width

and height of the physical image plane are represented by w1 and h1 respectively;

and are typically measured in milli-metres (mm). The physical distance f ∈ R+

between the sensor’s optical centre and the image plane is known as the focal

length, typically measured in milli-metres (mm). Each sensor maps P ×Q pixels

onto the image plane, where P ×Q is known as the resolution of the sensor. Each

sensor has a particular pixel size typically measured in micro-metres (µm). A

sensor with higher pixel size has larger image plane dimension and results in a

better quality image as compared to the sensor with smaller pixel size. Similarly,

a sensor with higher resolution provides a better quality image as compared to the

one with lower resolution. Sensors that provide a high quality image are capable

of observing large regions within their FoVs and result in reduction of the number

of sensing nodes required for full coverage. However, such sensors increase the

overall network design cost. Therefore, the selection of sensors for VSN design

requires careful consideration of all the aforementioned parameters.
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3.3 Proposed FoV Characterisation Framework

The proposed FoV characterisation framework to design and calibrate energy effi-

cient VSNs is presented in Figure 3.4 and Figure 3.5. Based on the type of VSN,

there are two approaches for its design and calibration: (i) Approach I for homo-

geneous sensor networks shown in Figure 3.4 (ii) Approach II for heterogeneous

sensor networks shown in Figure 3.5. The proposed framework consists of image

capture, projection modelling, ABCD-plane modelling, adaptive task classification

(for heterogeneous networks), feature detection, extraction and FoV characterisa-

tion which are described in the following sections.
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Figure 3.4: Proposed FoV Characterisation Framework for Energy Efficient
Homogeneous VSNs
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Figure 3.5: Proposed FoV Characterisation Framework for Energy Efficient
Heterogeneous VSNs

3.3.1 Image Capture

Each sensing node VSl̃ captures an image Il̃ of dimension P×Q which is a function

of the following parameters: the distance R, the horizontal FoV θh, the vertical

FoV θv.

Il̃ = f (R, θh, θv) (3.2)

3.3.2 Projection Modelling

As mentioned earlier, a visual sensor projects 3D scene points onto its image

plane. Volume V of the scene within the sensing node’s FoV projected onto its

image plane is given by,
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V =
4R3 sin θh sin θv

3(1 + cos θh)(1 + cos θv)
(3.3)

In order to characterise sensing node’s coverage, FoV (θh, θv) is required to be

known. The projection modelling approach is different for homogeneous and het-

erogeneous networks, as discussed in the following sections.

i) Homogeneous Networks (Approach I)

A homogeneous sensor network has identical nodes in terms of their sensing pa-

rameters and hardware capabilities. Using the following equations [168], FoV (θh,

θv) is calculated with prior knowledge of the following sensor specifications: image

plane dimensions (w1, h1) and focal length (f).

θh = 2 arctan

(
w1

2f

)
(3.4)

θv = 2 arctan

(
h1

2f

)
(3.5)

ii) Heterogeneous Networks (Approach II)

A heterogeneous network has two or more types of nodes in terms of their sensing

parameters and hardware capabilities. The nodes with lower specifications are

less costly and consume less energy. On the other hand, the nodes with higher

specifications can perform feature detection and extraction with higher reliability

but consume more energy and cost more. Keeping a certain reliability level in a

heterogeneous network, few higher specification nodes can be used in each cluster

along with the lower specification nodes to reduce the overall network cost.
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In the case of using a variety of sensing nodes within the network, any of the

following sensor specifications: (w1, h1) and (f) may be unknown and FoV (θh, θv)

cannot be calculated through Approach I. For such case, an alternative approach is

presented for calculating the FoV of each type of sensing node using the following

equations,

θh = 2 arctan
(w2

2R

)
(3.6)

θv = 2 arctan

(
h2

2R

)
(3.7)

This method requires an experimental setup (described later in Section 3.4) which

utilises a known reference distance R = Rref for FoV calculation.

If θh, θv and f are known, the dimension of the physical image plane can be

calculated using the following equations,

w1 = 2f tan

(
θh
2

)
(3.8)

h1 = 2f tan

(
θv
2

)
(3.9)

If θh and w1 or θv and h1 are known, the focal length f can be calculated using

one of the following equations,

f =

(
2

θh

)
arctan

(w1

2

)
(3.10)
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or,

f =

(
2

θv

)
arctan

(
h1

2

)
(3.11)

3.3.3 ABCD-plane Modelling

Once θh and θv are known, the dimension of the ABCD-plane is calculated for a

range of values of R i.e. Rmin to Rmax using the following equations,

w2 = 2R tan

(
θh
2

)
(3.12)

h2 = 2R tan

(
θv
2

)
(3.13)

The aspect ratio of the captured image can be calculated using the following

equation,

Aspect ratio =
w1

h1

=
w2

h2

=

tan

(
θh
2

)
tan

(
θv
2

) (3.14)

3.3.4 Adaptive Task Classification

As discussed earlier, heterogeneous networks comprise of sensing nodes with differ-

ent capabilities and their performance is better as compared to the homogeneous

networks due to the classification of sensing and processing tasks assigned to each

visual sensor class based on its sensing capabilities. Adaptive task classification

is employed by the FoV characterisation framework to enhance the intelligence of

heterogeneous VSNs.
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Consider a heterogeneous sensor network with k sensor classes; each sensing node

is denoted by VSl,j such that l = {1, 2, 3, . . . , k} represent the sensor class and

j = {1, 2, 3, . . . , n} represent nl sensing nodes belonging to a sensing class l. Let

n denote the maximum number of sensing nodes belonging to a particular sensing

class given by n = max {nl | l = 1, 2, 3, . . . , k}. The sensing nodes within the VSN

can be represented by,

VS =


VS1,1 VS1,2 . . . VS1,n

VS2,1 VS2,2 . . . VS2,n

...
...

. . .
...

VSk,1 VSk,2 . . . VSk,n


Assume the sensor network is divided into clusters and each cluster head receives

control signals from the cluster nodes to determine whether they are active or

inactive. VSl,j is assigned a value based on the following condition,

VSl,j =


−1, j > nl

1, the sensing node is active

0, the sensing node is inactive

(3.15)

Suppose t represent the total sensing and processing tasks within the VSN. Let

an i-dimensional task classification matrix T such that i = {1, 2, 3, . . . , t} is given

by,

T =


T1,1 T1,2 . . . T1,n

T2,1 T2,2 . . . T2,n

...
...

. . .
...

Tk,1 Tk,2 . . . Tk,n
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where each Tl,j is given by,

Tl,j =

1, ith task is assigned to sensing node VSl,j

0, otherwise

(3.16)

In the proposed approach, upto
⌈√

k
⌉

sensor classes are assigned an ith task;

where (d e) refers to the ceiling function. Let T′i denote the adaptive ith task

classification matrix which optimises Ti for active sensing nodes within the VSN

and is given by,

T′i =

⌊
1

2

[
Ti ·VS + J

]⌋
(3.17)

where J is a k × n all-ones matrix and (b c) refers to the floor function.

Feedback Rc and r are substituted in equation Equation 3.3 to calculate the re-

quired 3D scene coverage Vc of k sensor classes to perform t tasks and the chosen

3D scene coverage v of k sensor classes respectively. Algorithm 3.1 presents the

proposed adaptive task classification scheme that calculates T and then T′ in an

optimised way.

Algorithm 3.1 Adaptive task classification scheme for heterogeneous networks

Require:

The number of: sensor classes k, sensing nodes of each type nl, tasks t required

to be performed by the VSN; the required 3D scene coverage Vc of k sensor

classes to perform t tasks and the chosen 3D scene coverage v of k sensor

classes.

Ensure:

For ∀ j ∈ {1, 2, 3, . . . , n} and ∀ i ∈ {1, 2, 3, . . . , t}

0 <
k∑
l=1

T ′(l, j, i) ≤ d
√
ke

1: n← max {n1, n2, n3, . . . , nk}
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Algorithm 3.1 (continued) Adaptive task classification scheme for heteroge-
neous networks

2: VS← ∅

3: s← [−1 1 0 0 0]

4: for l← 1 to k do

5: for j ← 1 to n do

6: if j > nl then

7: VS(l, j)← s1

8: else if sensing node is active then

9: VS(l, j)← s2

10: else if sensing node is inactive then

11: VS(l, j)← s3

12: end if

13: end for

14: end for

15: T← ∅

16: T′ ← ∅

17: for i← 1 to t do

18: for l← 1 to k do

19: s5 ← k − l + 1

20: if Vc(s5, i) ≥ v(s5) & s4 < d
√
ke then

21: T (s5, 1:n, i)← s2

22: s4 ← s4 + 1

23: else

24: T (s5, 1:n, i)← s3

25: end if

26: end for

27: T′i =

⌊
1

2

[
Ti ·VS + J

]⌋
28: s4 ← 0

29: end for

30: return T′
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In the proposed adaptive task classification scheme, initially, the number of sensing

nodes belonging to different sensor classes are compared and the maximum number

of sensing nodes belonging to a particular sensor class are found and represented

by n. A matrix VS of dimension k×n is defined. Moreover, a vector s is defined to

keep sensing nodes’ status information. Afterwards, each sensing node is assigned

a particular status, where s2 denote that the sensing node is active and s3 represent

an inactive sensing node. Once the status of each sensing node within the network

is determined, matrices T and T′ with dimensions equal to the dimension of VS

(i.e. k×n) are defined. Subsequently, for an ith task such that i = {1, 2, 3, . . . , t},
the criteria

{
Vc(s5, i) ≥ v(s5) & s4 < d

√
ke
}

is used for ith task allocation to an

lth sensor class such that l = {1, 2, 3, . . . , k}. However, as discussed earlier, the

active and inactive sensing nodes within the network have already been identified

in VS. Therefore, for an ith task, utilising Ti, VS, J and the floor function (b c),
T′i providing information regarding the classification of ith task between active

sensing nodes of the network is obtained. The algorithm is terminated once T′i is

calculated for all the tasks required to be performed within the network.

3.3.5 Feature Detection and Extraction

Global colour histogram is used for object detection and feature extraction. A

global colour histogram represents the distribution of colours within each captured

image Ii of size P ×Q and is given by [169],

hc(b) =
P∑
x=1

Q∑
z=1

1, Ii(x, z) is in bin b

0, otherwise

(3.18)

where a colour bin defines a region of particular colour.

In this framework, histogram-based features have been extracted in YCbCr colour

space as it distinguishes the luminance and chrominance. The extracted features
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have been analysed and a range of values of Cb and Cr has been defined to detect

a particular object of interest through image segmentation.

The probability P (E) of a pixel at location (x, z) belonging to an object of interest

is given by,

P (E) =

1, γlCb ≤ Cb ≤ γuCb ∩ γlCr ≤ Cr ≤ γuCr

0, otherwise

(3.19)

The pixels probabilities are indexed at their respective locations in the object

segmentation matrix Sm. The object of interest is extracted from Ii by image

segmentation using the following equation [103],

Sg = Ii.Sm (3.20)

where Sg is the segmented image and (.) refers to the dot product.

The segmented image can be morphologically processed to remove noise and small

regions. Blob detection and circularity test (for homogeneous objects) can be used

to detect the object of interest.

3.3.6 FoV Characterisation

As mentioned earlier, a visual sensing node captures scene points within its FoV

onto the physical image plane. Although the dimensions of ABCD-plane can

be regulated by R, the dimensions of physical image plane are always constant.

The relationship between sensor’s resolution and ABCD-plane dimensions for a

distance R is given by,
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dh =
P

w2

dv =
Q

h2

(3.21)

where dh is the horizontal and dv is the vertical density measured in pixels/mm.

As P and Q are constant, it is found that dh ∝ 1/w2 and dv ∝ 1/h2. Increasing

the distance R increases w2 and h2 which results in the reduction of horizontal

and vertical density. If R goes outside a certain range, the captured image may

not provide sufficient feature descriptors.

Hence, the need arises to propose a criteria for optimised range defined as the Field-

of-View Characterisation Criteria (FoVCC). FoVCC must ensure the presence

of sufficient feature descriptors within the captured image as well as guarantee

optimised utilisation of resources while maintaining a certain quality.

The proposed FoV characterisation method for energy efficient VSNs utilises either

one or a combination of the following parameters.

(i) Object Pixel Occupancy (Opo)

(ii) Estimation Error (|εd|)

(iii) Peak Signal-to-Noise Ratio (PSNRdB)

The parameters and their respective criterion are discussed in the following sec-

tions.

i) Object Pixel Occupancy

The number of pixels (Opo) an object of interest occupies in the image captured

from a particular distance R is given by,
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Opo = A× dh × dv (pixels) (3.22)

where A is the area of the object in mm2; the product of dh and dv is calculated

from Equation 3.21 in pixels/mm2.

Rearranging Equation 3.22,

Opo

A
= dh × dv (3.23)

Substituting dh and dv from Equation 3.21,

Opo

A
=

P

w2

× Q

h2

(3.24)

Substituting w2 and h2,

Opo = A× P

2R tan
(
θh
2

) × Q

2R tan
(
θv
2

) (3.25)

Let ξo define the required minimum pixel occupancy for a particular application,

the chosen range R1 of a visual sensing node must guarantee the criteria Opo ≥ ξo

and it can be calculated using the following equation,

R1 =

√
P ×Q× A

4×Opo × tan
(
θh
2

)
× tan

(
θv
2

) (3.26)

Table 3.1 provides the minimum object pixel occupancy required for various de-

tection algorithms. ξo for face detection depends on the image size used to train

the classifier. The detection accuracy calculated on PETS 2005 data set in [170]

with ξo = 25 for LOTS, SGM and MGM is 91.2%, 86.8% and 85.0% respectively.
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Table 3.1: Required minimum object pixel occupancy for various detection
algorithms

Detection Method ξo

Viola-Jones face detector [171] 315
Lehigh Omnidirectional Tracking System (LOTS) [172] 25

Single Gaussian Model (SGM) [173] 25
Multiple Gaussian Model (MGM) [174] 25

ii) Estimation Error

Increasing range R1 reduces the object pixel occupancy Opo which may lead to

detection/estimation error. Hence, the need arises to provide a method for the

estimation of maximum sensor-to-object distance based on a certain acceptable er-

ror tolerance level. In order to propose such method, an application that estimates

the detected object’s diameter from the acquired visual data is considered.

After feature detection, if Opo denote the number of pixels representing the de-

tected object; the framework estimates pixels representing the diameter pd by,

pd = 2

√
Opo

π
(3.27)

The diameter de of the object is estimated by,

de =
4R tan

(
θh
2

)
P

√
Opo

π
(metres) (3.28)

If da is the actual measured diameter of the object of interest, the absolute per-

centage estimation error |εd| is given by,

|εd| =
|da − de|

da
× 100 (%) (3.29)
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It is expected that as the range increases, the estimation error will increase. Let

ξd define the maximum acceptable estimation error in percentage for a particular

application, the chosen range R2 of a visual sensing node must guarantee the

criteria |εd| ≤ ξd.

Substituting Equation 3.28 in Equation 3.29, the range R2 can be calculated using

the following equation,

R2 =

[√
π

Opo

][
Pda

4 tan
(
θh
2

)][1− |εd|
100

]
(3.30)

The above equation is valid for |εd| 6= 100%.

iii) PSNR

Suppose image I1 of dimension P ×Q is captured at a distance Rp which contains

a particular object of interest. The aforementioned histogram-based feature ex-

traction scheme is employed to extract the region of interest containing only the

object under consideration in the form of image I′1 of dimension P ′ × Q′. As I′1

contains the object captured at distance Rp, the dimension Ps × Qs of image Is

containing the extracted object at distance Rs (such that Rs > Rp) is estimated

by,

Ps = P ′
(
w
Rp
2

wRs2

)
(3.31)

Qs = Q′
(
h
Rp
2

hRs2

)
(3.32)

where w
Rp
2 , wRs2 , h

Rp
2 and hRs2 are calculated using Equation 3.12 and Equation 3.13.

As Ps < P ′ and Qs < Q′, the object captured and extracted at distance Rs appears
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smaller in size. In order to measure the quality, I′1 and Is are compared to find the

PSNR value. As PSNR requires both images to have the same size, Is is resized

to P ′ ×Q′. First, Mean Squared Error (MSE) is calculated and then the PSNR.

MSE =
1

3P ′Q′

P ′∑
x=1

Q′∑
y=1

[
I ′1(x, y)− Is(x, y)

]2

(3.33)

PSNRdB = 10× log10

(
MAX2

I′1

MSE

)
(3.34)

where MAX2
I′1

is the maximum possible pixel value in I′1.

Let ξp define the required minimum PSNRdB for a particular application, the

chosen range R3 of a visual sensing node must guarantee the criteria PSNRdB ≥ ξp.

As this method is based on image quality assessment, an experiment needs to be

conducted to find the range R3 from graph analysis which is discussed later in

Section 3.4.

Apart from PSNRdB, there are many other image quality assessment methods such

as [175–181] that can be used with the proposed FoV characterisation framework

based on their respective confidence bounds for sensing range estimation.

The FoV characterisation methods and their respective equations for range esti-

mation are summarised in Table 3.2. The selection of one or more characterisation

methods depends on the application design criteria as stated below.

• The application where design considers the detection method’s minimum

pixel requirement, object pixel occupancy based method is used.

• If the design criteria depends on a particular tolerance level, then estimation

error based method is used.

• The design considering image quality utilises the PSNR based method.
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These methods are interdependent i.e. selecting R for a lower estimation error is

expected to provide a larger pixel occupancy and better image quality (in terms

of PSNR). Similarly, selecting R for a poor image quality (in terms of PSNR) is

expected to provide lower pixel occupancy and higher error.

Table 3.2: A summary of FoV characterisation methods

Characterisation Selection Characterisation Range Estimation
Method Method Criteria

Based on

Object pixel Algorithm’s
Opo ≥ ξo R1 =

√
P×Q×A

4×Opo×tan
(
θh
2

)
×tan( θv2 )occupancy minimum pixel

based requirement

Estimation Maximum
|εd| ≤ ξd R2 =

[√
π
Opo

][
Pda

4 tan
(
θh
2

)
][

1− |εd|
100

]
error acceptable error
based tolerance

PSNR based
Image quality

PSNRdB ≥ ξp R3 - from graph analysis
assessment

iv) FoV Charaterisation Criteria

Let Rc define the chosen value of a sensing node’s range, the FoV Characterisation

Criteria (FoVCC) is proposed as,

Rc =


R1, Opo ≥ ξo

R2, |εd| ≤ ξd

R3, PSNRdB ≥ ξp

(3.35)

The sensing range for applications where the design engineer utilises more than

one characterisation method is selected by,

Rc = min{R1, R2, R3} (3.36)
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The designed VSN’s FoV is said to be optimised based on the following criteria,

Rc = R1 ∪Rc = R2 ∪Rc = R3 optimised

Rc 6= R1 ∩Rc 6= R2 ∩Rc 6= R3 unoptimised

(3.37)

v) Adaptive Range Selection

a) Hard decision based sensing range selection: In homogeneous network

design that considers t tasks to be performed within the VSN, sensing range {Rc(i) |
i = 1, 2, 3, . . . , t} is required to be calculated for each task. The sensing range Rc

can be obtained by hard decision as shown below,

Rc = min {Rc(1), Rc(2), Rc(3), . . . , Rc(t)} (3.38)

The chosen sensing range Rc is the feedback to projection modelling.

In the case of heterogeneous network design, Rc of dimension k× t is the feedback

to projection modelling which provides the estimated sensing range of k sensor

classes for t tasks.

Rc =


Rc(1,1) Rc(1,2) . . . Rc(1,t)

Rc(2,1) Rc(2,2) . . . Rc(2,t)

...
...

. . .
...

Rc(k,1) Rc(k,2) . . . Rc(k,t)


Sensing range r(l) can be calculated for each sensor class by hard decision as shown

below,

r(l) = min {Rc(l,1), Rc(l,2), Rc(l,3), . . . , Rc(l,t)} (3.39)
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The individual sensing range values for different sensor classes obtained through

hard decision can be represented collectively by r as,

r =


r(1)

r(2)
...

r(k)


The proposed hard decision based scheme is suitable for homogeneous networks

as they have identical sensing nodes and hard decisions need to be made for sens-

ing range selection. However, the hard decision based scheme for heterogeneous

networks does not take advantage of the multiple sensor classes present within

the network. The approach provides the minimum range for each sensor class

and does not prolong the network lifetime by maximising the sensing range. To

maximise the sensing range and prolong the lifetime of heterogeneous networks, a

soft decision based scheme for sensing range selection is proposed in the following

section.

b) Soft decision based sensing range selection: A soft decision based sens-

ing range selection scheme is proposed in Algorithm 3.2 which calculates a suitable

range r(·) for each sensor class based on the estimated Rc. The algorithm provides

range r for k sensor classes by maximising it for
(
k −

⌈√
k
⌉)

sensor classes.

Algorithm 3.2 Proposed soft decision based sensing range selection scheme for
heterogeneous network design

Require:

The number of sensor classes k, the number of sensing nodes of each type nl,

the number of tasks t required to be performed by the VSN, Rc providing the

estimated sensing range of k sensor classes for t tasks.
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Algorithm 3.2 (continued) Proposed soft decision based sensing range selection
scheme for heterogeneous network design

Ensure:

For
⌈√

k
⌉

values of l ∈ {1, 2, 3, . . . , k} and ∀ i ∈ {1, 2, 3, . . . , t}
r(l) ≤ Rc(l,i)

1: s1 = ∅

2: for l← 1 to k do

3: s1 ←
t∑
i=1

Rc(l,i)

4: end for

5: s2 ← Sort s1 in ascending order

6: s3 ← First
⌈√

k
⌉

values’ indices from s2

7: for l← 1 to k do

8: if l ∈ s3 then

9: r(l)← min {Rc(l,1), Rc(l,2), Rc(l,3), . . . , Rc(l,t)}
10: else if l /∈ s3 then

11: r(l)←
(

1

t

)
×

t∑
i=1

Rc(l,i)

12: end if

13: end for

14: return r

In the proposed soft decision based sensing range selection scheme presented in

Algorithm 3.2, initially a vector s1 defined. The algorithm needs matrix Rc as an

input which provides the estimated sensing range of k sensor classes for t tasks

required to be performed within the network. Afterwards, for lth sensor class

such that l ∈ {1, 2, 3, . . . , k}, sum of the sensing range values for t number of

tasks is calculated. This process is repeated for k sensor classes and the results

are obtained in s1. Subsequently, the values in s1 are sorted in ascending order

and the resulting values are stored in s2. As the proposed soft decision based

sensing range selection scheme is to be designed in such a way that it maximises

the sensing range for
(
k −

⌈√
k
⌉)

sensor classes, the indices of the first
⌈√

k
⌉
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values from s2 are stored in s3. Thereafter, for lth sensor class, the criterion l ∈ s3

and the criterion l /∈ s3 are utilised for soft decision based sensing range selection.

In case if criterion l ∈ s3 is true, the sensing range for lth sensor class is obtained

by employing r(l) = min {Rc(l,1), Rc(l,2), Rc(l,3), . . . , Rc(l,t)}. Whereas, if criterion

l /∈ s3 is true, the sensing range for lth sensor class is calculated using r(l) =
(

1
t

)
× ∑t

i=1Rc(l,i). The algorithm is terminated once the sensing range is calculated

for all the sensor classes.

3.4 Experimental Setup, Results and Analysis

This section evaluates the robustness of the proposed FoV characterisation frame-

work for homogeneous and heterogeneous VSNs. An analysis of system failure

probability is also presented. In order to evaluate the performance of the pro-

posed FoV characterisation framework for homogeneous and heterogeneous VSNs,

the analysis is performed using the MATLAB simulation platform on an Intel Core

i3-2100U CPU @ 3.10GHz with 4 GB RAM and 3 MB cache. Simulation modelling

is chosen to analyse the performance of the proposed schemes and frameworks in

this thesis as: it reduces the cost of experimentation; offers a safe way for testing

and provides details of system behaviour with different parameter values. More-

over, networks can be analysed without deployment limitations using simulations

[10]. In addition, several notable existing schemes [10, 29, 55, 58, 61, 124] found

in literature have been evaluated using simulations.

3.4.1 Image Capture

Specification of the visual sensor used for experiments is presented in Table 3.3.

The visual sensor is utilised to validate the Projection Modelling Approach II

(as discussed in Section 3.4.3). Once the horizontal FoV (θh) and vertical FoV

(θv) have been estimated, the parameter values of the visual sensor as well as
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the captured images are used to analyse the feasibility and energy efficiency of

proposed FoV characterisation framework in resource constrained scenarios.

Table 3.3: Visual sensor specification

Parameter Specification

Imaging device 3.6mm (1/5 type) CMOS sensor
Focal length 3.2mm
Resolution 2304×1728 pixels
Pixel size 1.25µm×1.25µm

Sensor dimensions 2.88mm×2.16mm

3.4.2 Projection Modelling utilising Approach I

Using Projection Modelling Approach I for homogeneous VSNs, after substituting

focal length (f) and sensor dimensions (w1 × h1) in Equations 3.4 and 3.5, the

calculated values of horizontal and vertical FoVs are: θh = 48.39◦, θv = 37.25◦

respectively.

3.4.3 Projection Modelling utilising Approach II

As mentioned in Section 3.3.2, in the case of a heterogeneous network with some

unknown sensor specifications, Equations 3.4 and 3.5 cannot be used. Therefore,

an experiment has been conducted utilising Projection Modelling Approach II out-

lined in the proposed estimation framework to calculate θh and θv. In order to

measure the accuracy of the calculated FoV values from Projection Modelling Ap-

proach II, they will be compared with those calculated from Projection Modelling

Approach I. The experimental procedure is described in Table 3.4.
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Table 3.4: Experimental procedure for calculating horizontal FoV (θh) and
vertical FoV (θv)

Procedure: Horizontal FoV (θh) and vertical FoV (θv) calculation

1: The visual sensing node is placed near a known vertically uniform object

at a certain height ht and a known reference distance Rref without any

tilt or pan.

2: A certain portion of the object is captured within the sensing node’s FoV.

3: The width w2 and height h2 of the object’s portion within the FoV are

measured for Rref.

4: Using Equations 3.6 and 3.7, θh and θv are calculated.

5: Steps 1 to 4 are repeated for a set of values of Rref to guarantee the

accuracy of the calculated θh and θv values.

The experimental results for six cases have been summarised in Table 3.5; where

each case is distinguished by its reference distance Rref.

Table 3.5: FoV calculation utilising Projection Modelling Approach II

Parameter
Case Case Case Case Case Case

Average

1 2 3 4 5 6

Rref 0.27m 0.30m 0.45m 0.68m 0.92m 1.91m -

w2 0.24m 0.27m 0.40m 0.61m 0.82m 1.72m -

h2 0.18m 0.20m 0.30m 0.46m 0.62m 1.29m -

ht 1.04m 1.04m 1.04m 1.04m 1.04m 1.04m -

θh 48.37◦ 48.38◦ 48.43◦ 48.41◦ 48.29◦ 48.48◦ 48.39◦

θv 37.11◦ 37.23◦ 37.29◦ 37.30◦ 37.16◦ 37.40◦ 37.25◦

φa 41.54◦ 41.54◦ 41.54◦ 41.54◦ 41.54◦ 41.54◦ -

θe 52.75◦ 52.75◦ 52.75◦ 52.75◦ 52.75◦ 52.75◦ -
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Based on the experimental results it is found that the error for each case is neg-

ligible and by averaging the estimated values, the projection modelling approach

II leads to accurate FoV measurements.

3.4.4 ABCD-plane Modelling

ABCD-plane modelling plays a vital role for FoV characterisation. As θh and θv

have been calculated, extensive numerical simulations have been performed for

ABCD-plane modelling utilising Equations 3.12 and 3.13 for a range of values of

R. The simulation results are presented in Figure 3.6.
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Figure 3.6: ABCD-plane modelling

From the results, it is found that increasing the sensing range increases the ABCD-

plane’s width (w2) and height (h2) as well. This behaviour is logical due to the

relationship between the sensing range and the ABCD-plane’s dimensions in Equa-

tions 3.12 and 3.13. As the visual sensing nodes are assumed to be static, i.e. θh

and θv are constant, it can be noticed from Equation 3.12 that the sensing range
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R is directly proportional to the ABCD-plane’s width w2. Similarly, it can be ob-

served from Equation 3.13 that the sensing range R is directly proportional to the

ABCD-plane’s height h2. Hence, the ABCD-plane’s dimensions increase linearly

by increasing the sensing range. This relationship can be utilised to estimate the

dimensions of the ABCD-plane for a particular sensing range value, thus, support-

ing the FoV characterisation process. In this case, w2 > h2 for any value of R due

to the fact that θh > θv.

3.4.5 Feature Detection and Extraction

Using the global colour histogram, the probability P (E) of a pixel at location

(x, z) belonging to the object of interest is found to be,

P (E) =

1, 43 ≤ Cb ≤ 90 ∩ 138 ≤ Cr ≤ 159

0, otherwise

(3.40)

After dataset creation (discussed in the following section) probability P (E) can

be used for feature detection and extraction.

3.4.6 FoV Characterisation

Although the FoV characterisation depends on several factors, sensing range (R)

is the key parameter for the characterisation process. The sensing range esti-

mation and optimisation requires practical measurements and simulations. The

experimental procedure for these calculations is described in Table 3.6.

In order to estimate the sensing range for optimised FoV characterisation, a dataset

is created by capturing object for a range of values of R i.e. 0.25m to 9.55m.

Sensing range can be estimated for optimised FoV characterisation using one or

a combination of the following parameters: object pixel occupancy, estimation
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Table 3.6: Experimental procedure for FoV characterisation

Procedure: FoV Characterisation

1: A particular type of feature needs to be considered based on the desired
application. In this experiment, colour features are considered.

2: Images of objects under consideration are captured for a range of values
of R.

3: The captured images are processed to classify those containing sufficient
colour feature descriptors.

4: A particular value of Rc is chosen for VSN design based on the FoVCC.

error, PSNR. The experimental and simulation results for FoV characterisation

are presented and analysed in the following sections.

i) Object Pixel Occupancy

Figure 3.7 shows a comparison of the theoretical and experimental object pixel

occupancy for a range of values of R with A = 34cm2 for a homogeneous test

object. The theoretical results are obtained from Equation 3.22 whereas, the

experimental results are achieved by extracting the object of interest from the

captured images (using P (E) for feature detection and extraction) and counting

the pixels it occupies.

It has been noticed that initially, at lower sensing range values, the object pixel

occupancy is higher, however, as the sensing range increases, the object pixel occu-

pancy reduces sharply. Due to the fact that an object-of-interest appears smaller

if captured by a visual sensing node with a higher sensor-to-object distance, the

reduction in object pixel occupancy is justified. It is evident from the graph that

the object pixel occupancy estimated by the proposed method matches with the

experimental results. The proposed object pixel occupancy based characterisation

method provides FoV based mapping between the sensing range and the object

pixel occupancy and it can be used to estimate an optimised sensing range based

on the application’s object pixel occupancy requirement.
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Figure 3.7: A comparison of theoretical and experimental values of object
pixel occupancy

As an example, a face detection application [171] requires object pixel occupancy

to be at least 315 pixels i.e. Opo ≥ 315, the acceptable sensing range in that case

will be R1 ≤ 4.05m.

ii) Estimation Error

As mentioned earlier, in order to observe the relationship between the sensing

range and the estimation error, an application is considered where an object’s

diameter estimation is required after the detection phase. Using Equation 3.28,

Figure 3.8 presents a comparison of actual and estimated diameter for images

captured for a range of values of R. It is observed from Figure 3.8 that at lower

sensing range values, the estimated diameter of the detected object is closer to

the actual diameter value. However, as the sensing range increases, the estimated

diameter deviates from the actual diameter, thus increasing the error.

The absolute percentage estimation error |εd| is shown in Figure 3.9. It has been

observed from Figure 3.9 that as the range increases, the estimation error increases.
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Figure 3.8: A comparison of actual and estimated diameter for different sens-
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Figure 3.9: Estimation error for different sensing range values

This is due to the fact that the object of interest appears too small beyond a

certain range which leads to inaccurate feature detection and extraction results.

Therefore, depending on the maximum error tolerance for a given application, the

estimation error based FoV characterisation method can be utilised by the design
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engineers to obtain suitable range of visual sensing nodes.

As an example, suppose a particular application can tolerate maximum 6% error

i.e. |εd| ≤ 6%, the acceptable sensing range will be R2 ≤ 6.76m.

iii) PSNR

This method utilises an image quality assessment technique for FoV characterisa-

tion. Figure 3.10 shows the estimated PSNRdB for a range of values of R.
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Figure 3.10: PSNR estimation for different sensing range values

It is noticed from Figure 3.10 that initially, at lower sensing range values, the peak

signal-to-noise ratio is higher. However, as the sensing range increases, the peak

signal-to-noise ratio decreases gradually. Assuming static visual sensing nodes

(i.e. with fixed sensing characteristics), this behaviour is logical as an increase

in sensing range is expected to affect the image quality. Therefore, the selection

of suitable sensing range depending on the desired image quality is an important

process during VSN design. This assures that the sensing node is able to provide

visual information regarding the region within its FoV with an acceptable degree
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of reliability. As PSNRdB is an index for image quality assessment, this method

can assist the design engineer to tune the network for a suitable image quality.

As an example, an image transmission application [182] requires PSNRdB to be at

least 30 dB i.e. PSNRdB ≥ 30 dB, the acceptable sensing range in that case will

be R3 ≤ 9.55m.

iv) Adaptive Range Selection

a) Homogeneous Networks: Consider a homogeneous network design for a

surveillance application that requires t = 2 tasks to be performed within the VSN

i.e. face detection [171] (Task I) and occluded target surveillance and tracking

[172] (Task II). Suppose a medium resolution sensor with the following parameters:

P×Q = 640×480, θh = 48.39◦ and θv = 37.25◦ is selected for the VSN design. Let

the object pixel occupancy based characterisation method be used with required

minimum Opo = 315 and Opo = 25 for Task I and Task II respectively. The area

(A) to be considered for detection is found to be 406cm2 for Task I and 3922.6cm2

for Task II. By substituting these parameters in Equation 3.26, the sensing range

estimated for Task I is Rc1 = 8.09m and for Task II is Rc2 = 89.21m. According to

the hard decision based sensing range selection method for homogeneous networks,

the chosen sensing range Rc is min {Rc1, Rc2} i.e. Rc = 8.09m. The chosen range

Rc is a feedback to projection modelling and it is also used to find the number of

active sensing nodes (Na) required within the VSN to perform the desired tasks.

b) Heterogeneous Networks: Now consider a heterogeneous network that

has to perform the same t = 2 tasks described earlier for homogeneous network

i.e. face detection and occluded target surveillance and tracking. Suppose the

network consists of the following k = 3 sensor classes: a low resolution sensor

with P × Q = 320 × 240, a medium resolution sensor with P × Q = 640 × 480

and a high resolution sensor with P ×Q = 2304× 1728. The horizontal FoV (θh)

and the vertical FoV (θv) are assumed to be same for k = 3 sensor classes and
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are given by θh = 48.39◦ and θv = 37.25◦. Again, object pixel occupancy based

characterisation method is considered with the same Opo and A values described

earlier for the homogeneous network scenario.

In this case, the matrix Rc which is the feedback to projection modelling and

provides the estimated sensing range of k = 3 sensor classes for t = 2 tasks is

found to be,

Rc =


Rc11 Rc12

Rc21 Rc22

Rc31 Rc32

 =


4.05 44.60

8.09 89.21

29.12 321.16


In this design solution, Rc is calculated in metres.

Using the hard decision based sensing range selection scheme, if t = 2 tasks have

to be performed by a sensor class, the chosen range should be,

r(1) = min {Rc11, Rc12}

r(2) = min {Rc21, Rc22}

r(3) = min {Rc31, Rc32}

This can be represented in the form of vector r and the values are calculated to

be,

r =


r(1)

r(2)

r(3)

 =


4.05

8.09

29.12


The hard decision based approach does not take advantage of having multiple

sensor classes within the network. The proposed soft decision based range selection
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scheme for heterogeneous networks (presented in Algorithm 3.2) maximises the

sensing range for
(
k −

⌈√
k
⌉)

sensor classes. The range r computed using the

soft decision based scheme is,

r =


r(1)

r(2)

r(3)

 =


4.05

8.09

175.14


This vector r is also a feedback to projection modelling. It can be observed from

the comparison of r computed using the hard and soft decision based approaches

that the latter maximises the sensing range for
(
k −

⌈√
k
⌉) ∣∣∣∣

k=3

sensor classes.

The hard decision based approach computed r(3) to be 29.12m whereas, the soft

decision based scheme calculated r(3) to be 175.14m. This shows that the soft

decision based scheme maximised the range approximately 6 times compared to

the hard decision based approach.

3.4.7 Sensing Node’s 3D Coverage Volume Estimation

The sensing node’s 3D coverage volume can be calculated from Equation 3.3 by

substituting θh and θv for a suitable sensing range R. Assuming a fixed sensing

range R = 5, Figure 3.11 shows the sensing node’s 3D coverage volume in m3 for

different horizontal and vertical FoV angles. It is observed from Figure 3.11 that

the utilisation of a visual sensing node with larger horizontal and vertical FoV

angles results in a larger portion of the 3D sensing environment within the sensing

node’s FoV. As this study is focused on the selection of a suitable sensing range for

FoV characterisation, the 3D coverage volume for a range of values of R is plotted

in Figures 3.12 and 3.13 with fixed horizontal and vertical FoV angles. The results

demonstrate that increasing the sensing range leads to a larger volume of the 3D

environment within a visual sensing node’s FoV. This justifies the requirement

of a FoV characterisation framework that can provide suitable range of a visual
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sensing node resulting in an improved 3D coverage, without compromising on the

desired reliability. As observed in the previous section, the proposed soft decision

based sensing range selection scheme maximises the sensing range, subsequently,

enhancing the 3D coverage of a visual sensing node.
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Figure 3.11: 3D volume within a visual sensing node’s FoV for range R = 5m
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Figure 3.13: 3D volume within a visual sensing node’s FoV, θh = θv

In the case of homogeneous sensor networks, feedback Rc is utilised for projection

modelling. Considering the homogeneous network design solution presented in

Section 3.3 and using Equation 3.3, the chosen sensing range Rc = 8.09m leads to

3D coverage volume 106.90m3.

On the other hand, heterogeneous networks require feedback Rc and r for projec-

tion modelling. Considering the heterogeneous network design solution presented

in Section 3.3 and using Equation 3.3, feedback Rc leads to the following required

3D scene coverage Vc (in m3) of k = 3 sensor classes to perform t = 2 tasks.

Vc =


13.41 1.79× 104

106.90 1.43× 105

4.99× 103 6.69× 106


After calculating r using the hard decision based scheme, the chosen 3D scene

coverage v (in m3) of k = 3 sensor classes is found to be,
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v =


13.41

106.90

4.99× 103


Similarly, after calculating r using the soft decision based scheme, the chosen 3D

scene coverage v (in m3) of k = 3 sensor classes is found to be,

v =


13.41

106.90

1.08× 106



3.4.8 Adaptive Task Classification

In the proposed adaptive task classification scheme for heterogeneous networks,

upto
⌈√

k
⌉

sensor classes are assigned a certain task. Considering the heteroge-

neous design solution presented in Section 3.3,
⌈√

k
⌉ ∣∣∣∣

k=3

evaluates to the allo-

cation of 2 sensor classes for each task. The proposed scheme utilises Vc and v

(calculated from the soft decision based sensing range selection scheme) for task

classification.

In order to analyse the proposed task classification scheme, four different cases are

compared. These are being hard decision based approach without
⌈√

k
⌉

upper-

bound (case 1), hard decision based approach with
⌈√

k
⌉

upperbound (case 2),

soft decision based approach without
⌈√

k
⌉

upperbound (case 3) and soft decision

based approach with
⌈√

k
⌉

upperbound (case 4). Case 1 utilises hard decision

based v but does not impose a limit on the number of sensor classes performing a

certain task i.e. the upper bound
⌈√

k
⌉

is not considered. In case 2, hard decision

based v as well as the upper bound
⌈√

k
⌉

are utilised for task classification. Case 3

utilises soft decision based v but does not consider the upper bound
⌈√

k
⌉
. Finally,
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Case 4 takes advantage of the soft decision based scheme for sensing range selec-

tion and also considers the upper bound
⌈√

k
⌉

for task classification. Table 3.7

summarises the task classification results for these cases where ‘Task I’ refers to

face detection, ‘Task II’ refers to occluded targets surveillance and tracking, ‘1’

refers to an allocated task and ‘0’ refers to an unallocated task.

Table 3.7: A comparison of task classification using four different cases for a
network consisting of k = 3 sensor classes performing t = 2 tasks

Hard decision Hard decision Soft decision Soft decision
Sensor Sensor based approach based approach based approach based approach

class type without
⌈√

k
⌉

with
⌈√

k
⌉

without
⌈√

k
⌉

with
⌈√

k
⌉

upper bound upper bound upper bound upper bound
(case 1) (case 2) (case 3) (case 4)

Task I Task II Task I Task II Task I Task II Task I Task II

1 low 1 1 0 0 1 1 1 0
resolution

2
medium

1 1 1 1 1 1 1 1
resolution

3
high

1 1 1 1 0 1 0 1
resolution

Case 1 for task classification leads to a trivial solution where each sensor class

has to perform every single desired task. Clearly, this is not a desired solution

for VSN design. Although, case 2 provides a better solution as compared to case

1, it totally neglects the sensor class 1 by not allocating even a single task. It

can be noticed that the task classification solution from case 2 will always neglect(
k −

⌈√
k
⌉)

sensor classes due to the hard decision. The solution obtained from

case 3 is somewhere between the solutions of case 1 and case 2. Utilising the

proposed soft decision based approach with
⌈√

k
⌉

upper bound suggested in the

proposed framework for task classification, case 4 leads to a promising solution.

It is clear from the allocation results that this case provides optimised and the

most suitable solution to the task classification problem by utilising all the sensor

classes intelligently. An analysis of the energy efficiency of these cases is presented
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in the following section which will further justify the superiority of case 4 over its

counterparts.

3.4.9 Energy Efficiency of the Proposed Framework

Consider a visual sensor network that requires Na active nodes to cover an area of

size 100× 100m2. The number of nodes Na required to be active depends on: the

chosen sensing range Rc for homogeneous networks, or the chosen sensing range r

of k sensor classes for heterogeneous networks. Figure 3.14 shows the number of

nodes Na required to be active within the VSN for different sensing range values.

The results demonstrate that as the sensing range increases, the number of sensing

nodes required to be active within the region under VSN coverage reduces. The

results are logical and justify the significance of the proposed FoV characterisation

framework to maximise the range of visual sensing nodes while satisfying the

application design criteria, thus, reducing the number of nodes required to be

active within the network.
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Figure 3.14: The number of required active nodes Na to cover an area of size
100× 100m2



Chapter 3. FoV Characterisation Framework 91

Furthermore, in order to validate the proposed framework which provides opti-

mised energy consumption within certain desired confidence bounds, an energy-

measurement testbed employed in [183] is considered. Each visual node within the

testbed consists of a multimedia subsystem and a radio subsystem. The testbed’s

parameters are listed in Table 3.8.

Table 3.8: Energy-measurement testbed’s parameters

Parameter Value

Image acquisition cost 5.00 x 10−3 J
Initialising cost (JPEG) 1.40 x 10−2 J

Overall JPEG acquisition cost 1.90 x 10−2 J
Transmission cost 2.20 x 10−7 J/bit

Receiving cost 2.92 x 10−6 J/bit

The parameters given in [183] are used to measure the energy consumption of

visual sensing nodes as the parameter values are obtained after substantial dedi-

cated energy-measurement experimentation. Moreover, the parameter values are

obtained such that a reliable data transmission platform can be facilitated. The

consistency of the parameter values over different activation intervals has also been

verified.

Suppose EAcq, ETx and ERx denote the energy consumption of a single visual

node to acquire, transmit and receive a single image frame respectively. Consider

a scenario where each node within the VSN acquires, transmits and receives one

image frame, the overall acquisition, transmission or receiving cost is given by,

Ẽq = Na × Eq ; q ∈ {Acq, Tx,Rx} (3.41)

The total energy consumption within the VSN will be,

Ec = Na × (EAcq + ETx + ERx) (3.42)
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The energy efficiency of the proposed framework for both homogeneous and het-

erogeneous networks is discussed in the following sections.

i) Homogeneous Networks

Consider a homogeneous network for a surveillance application that utilises sensors

with the following parameters: P ×Q = 320× 240, θh = 48.39◦ and θv = 37.25◦.

A comparison of image acquisition, transmission and receiving costs for different

sensing range values is shown in Figure 3.15.
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Figure 3.15: A comparison of JPEG image acquisition, transmission and re-
ceiving cost for different sensing range values

The results demonstrate that the reception and transmission of visual data requires

much more energy compared to the energy consumed during the acquisition phase.

This problem is addressed in the next chapter and a self-reconfiguration scheme is

developed to reduce the redundant visual content prior to transmission in a VSN.

It is also found from the results that increasing the sensing range results in less

number of required active nodes leading to reduced energy consumption. However,

if the sensing range goes beyond a certain threshold, the sensor may not provide

accurate feature descriptors and may lead to miss detections. In that case, the
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proposed framework can be used for application-aware sensing range estimation

during the VSN design and calibration process. It maximises the spatial coverage

leading to the reduced energy consumption configuration without compromising

on the desired accuracy. Moreover, reducing the energy consumption will prolong

the network’s lifetime.

Table 3.9 lists the estimated sensing range for various applications based on certain

criteria along with the number of required active nodes Na and the total energy

consumption Ec within the VSN.

Table 3.9: Application-aware sensing range estimation and energy consump-
tion

Application
Characterisation

Criteria
Range and Energy Network

method energy savings lifetime

Face detection
[171]

object pixel
occupancy
based

Opo ≥ 315

R1 = 4.05m

− LTNa = 1355

Ec = 2.64 kJ

Feature
extraction &
size estimation

estimation error
based

|εd| ≤ 6%
R2 = 6.76m

64.06% LT × 2.78Na = 487

Ec = 948.78 J

Image
transmission
using IEEE
802.15.4a [182]

PSNR based PSNRdB ≥ 30 dB
R3 = 9.55m

81.99% LT × 5.55Na = 244

Ec = 475.36 J

Occluded
targets
surveillance &
tracking [172]

object pixel
occupancy
based

Opo ≥ 25
R1 = 44.60m

99.11% LT × 112.92Na = 12

Ec = 23.38 J

The applications are listed in descending order of their energy consumption. The

results show that the application-aware proposed FoV characterisation framework

estimates the sensing range based on the desired criteria to maximise the spatial-

coverage within the VSN and thus optimises the energy consumption. Suppose the

lifetime of a VSN employing face detection algorithm is LT. It is evident from the

results that the proposed approach leads to increased VSN lifetime for other appli-

cations in comparison with the first. The proposed framework has also optimised

the number of required active nodes Na leading to reduced energy consumption
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configuration. The LOTS method proposed in [172] for occluded targets surveil-

lance and tracking finds its applications in military where energy efficiency is highly

desirable. As shown in the results, utilising the proposed approach with LOTS has

resulted in optimised energy consumption. Hence, the application-aware sensing

range estimation from the proposed approach makes it suitable for a wide range

of applications and it can be utilised to design and calibrate an energy efficient

VSN.

ii) Heterogeneous Networks

Heterogeneous networks provide much more flexibility to the design engineer com-

pared to the homogeneous networks due to the presence of different types of sensing

nodes within the network. The analysis of energy efficiency presented in the pre-

vious section for homogeneous networks considered the design solution for four

different applications. For heterogeneous networks, suppose t̂ represent the num-

ber of tasks allocated to a sensing class; the task classification solutions obtained

from four different cases given in Table 3.7 are used to analyse the energy efficiency

of the proposed framework and the results are presented in Table 3.10.

It is found from the results that the proposed soft decision based sensing range

selection scheme with
⌈√

k
⌉

upper bound for task classification maximised the

spatial coverage and allocated tasks efficiently that lead to the minimum energy

consumption configuration. The proposed task classification solution presented

in case 4 minimises the energy consumption to 8 kJ and doubles the network’s

lifetime compared to case 1. The energy savings with the solution presented in case

4 compared to case 1, case 2 and case 3 are 49.8%, 25.0% and 24.8% respectively.
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Table 3.10: Analysis of the energy efficiency of the proposed framework for
heterogeneous network design

Hard decision Hard decision Soft decision Soft decision
Sensor Sensor based approach based approach based approach based approach

class type without
⌈√

k
⌉

with
⌈√

k
⌉

without
⌈√

k
⌉

with
⌈√

k
⌉

upper bound upper bound upper bound upper bound
(case 1) (case 2) (case 3) (case 4)

1

r(1) = 4.05m r(1) = 4.05m r(1) = 4.05m r(1) = 4.05m
low t̂ = 2 t̂ = 0 t̂ = 2 t̂ = 1

resolution Na = 1355 Na = 0 Na = 1355 Na = 1355
Ec = 5.28 kJ Ec = 0 J Ec = 5.28 kJ Ec = 2.64 kJ

2

r(2) = 8.09m r(2) = 8.09m r(2) = 8.09m r(2) = 8.09m
medium t̂ = 2 t̂ = 2 t̂ = 2 t̂ = 2

resolution Na = 340 Na = 340 Na = 340 Na = 340
Ec = 5.26 kJ Ec = 5.26 kJ Ec = 5.26 kJ Ec = 5.26 kJ

3

r(3) = 29.12m r(3) = 29.12m r(3) = 175.14m r(3) = 175.14m
high t̂ = 2 t̂ = 2 t̂ = 1 t̂ = 1

resolution Na = 27 Na = 27 Na = 27 Na = 27
Ec = 5.40 kJ Ec = 5.40 kJ Ec = 100 J Ec = 100 J

Overall energy
15.94 kJ 10.66 kJ 10.64 kJ 8 kJ

consumption

Network
LT LT × 1.5 LT × 1.5 LT × 2

lifetime

3.4.10 Analysis of System Failure

After the design process, the VSN is expected to perform tasks within a certain

confidence bound. Let ζ l to ζu be the dynamic PSNR range in dB for a particular

application and δ1 = antilog
(
− ζu

10

)
− antilog

(
− ζl

10

)
be the dynamic difference.

Suppose λt denote the threshold for system quality assessment representing the

desired PSNR in dB. The probability that a system with quality β (representing

the achieved PSNR in dB) will fail to perform a certain task is derived as,

P (λt > β) =


0, λt < β

δ2

δ1

, λt ≥ β
(3.43)

where δ2 = antilog
(
− λt

10

)
− antilog

(
− β

10

)
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Figure 3.16: Analysis of failure for a system with target quality threshold λt
and achieved quality β

Figure 3.16 shows an analysis of system failure for several values of target quality

threshold λt and system’s achieved quality β. It can be observed from the graph

that the system failure probability is maximum when the target quality threshold

λt and system’s achieved quality β are at the opposite ends of the dynamic PSNR

range. However, the system failure probability reduces when the target quality

threshold λt and the system’s achieved quality β lies between the dynamic range.

Moreover, the results demonstrate that the failure probability minimises to zero

when the system’s achieved quality β is higher than the target quality threshold

λt.

3.5 Summary

In this chapter, the issues of FoV characterisation and task classification for VSNs

have been addressed. A novel framework for the FoV characterisation of both

homogeneous and heterogeneous networks is proposed. The image captured by
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a visual sensing node is found to be a function of the sensing range, the hori-

zontal FoV and the vertical FoV. Therefore, accurate FoV parameters estimation

and sensing range maximisation is paramount which can lead to a reduction in

the total number of sensing nodes required to provide full coverage resulting in

minimisation of overall network energy requirements. Initially, in the projection

modelling phase, a suitable approach is selected to calculate the FoV parameters

based on whether the network is homogeneous or heterogeneous. YCbCr colour

space is chosen and features are extracted using global colour histogram. Next, for

a given level of reliability, the proposed framework defines a criteria, referred to as

the Field-of-View characterisation Criteria, which estimates the optimal sensing

range of a visual sensing node. This chapter also proposes adaptive task classifi-

cation and soft decision based sensing range selection schemes for heterogeneous

networks. Without compromising on the desired reliability, the proposed adaptive

task classification and soft decision based sensing range selection schemes provide

an energy efficient solution for the maximisation of visual sensing node’s spatial

coverage resulting in an enhanced network lifetime.

The performance of the proposed FoV characterisation framework is evaluated

through experiments and simulations. An energy model is presented which is

utilised to observe the robustness of the framework. For any given application,

it is noticed that the proposed solution for FoV characterisation enhances the

spatial coverage, optimises the energy consumption and increases the lifetime in

homogeneous networks. Furthermore, the configuration of heterogeneous network

obtained by utilising the proposed FoV characterisation framework with the task

classification and sensing range selection schemes for a surveillance application

resulted in substantial energy savings compared to the trivial design solution. The

energy efficiency of the proposed FoV characterisation framework demonstrates

that it can be utilised during the network design and calibration phase to achieve

an application-aware solution. An analysis of system failure probability is also

presented which can assist the design engineers in predicting and minimising the
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network failure probability.

The next chapter presents a QoI-aware self-reconfiguration scheme for dynami-

cally selecting optimal configurations of visual sensing nodes in the network post-

deployment phase. The distributed nature of the proposed reconfiguration scheme

is obtained by introducing a learning strategy which involves the training and

calibration of visual sensing nodes in the network pre-deployment phase.



Chapter 4

QoI-Aware Self-Reconfiguration

Scheme

4.1 Introduction

In the network post-deployment phase, the main purpose of a visual sensing node

is the transmission of visual data to the sink node; where the visual data pro-

vides information about a portion of the sensing environment within the sensing

node’s FoV. Due to energy and bandwidth constraints of visual sensing nodes,

in-node energy conservation is one of the prime concerns in VSNs with wireless

transceiving capability. The amount of visual data transmitted by a sensing node

is characterised by local processing in the pre-transmission phase. Local process-

ing can remove redundant features (by employing a suitable compression scheme)

from the acquired visual data prior to transmission in VSNs leading to a reduced

transmission energy cost and enhanced bandwidth efficiency. Nevertheless, such

processing may deteriorate the quality of visual data; therefore, the reliability and

energy efficiency trade-off must be analysed within the context of visual data opti-

misation. The analysis can be performed at a centralised unit (i.e. the sink node)

or a distributed approach can be employed at each sensing node. The latter is

99
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more suitable as compared to the former as it facilitates speedy decision making.

Due to the dynamic nature of visual data, a static level of compression utilised

within visual sensing nodes for feature redundancy removal may not be suitable.

Therefore, each visual sensing node is required to be equipped with a distributed

strategy to dynamically and independently select optimal configuration. The in-

telligence of a distributed strategy can be enhanced by developing a training and

calibration process for sensing nodes to be employed by the design engineers in the

network pre-deployment phase. Moreover, the suitability of visual data for a given

application or a decision making process can be reflected by the QoI. Incorporating

QoI-awareness in the self-reconfiguration strategy is expected to provide a reliable

solution for visual data optimisation while enhancing the energy efficiency of visual

sensing nodes.

This chapter provides an energy efficient solution to the visual sensing nodes’ self-

reconfiguration problem for resource constrained scenarios. A generalised recon-

figuration model for visual sensing nodes is presented and various parameters that

constitute the model are discussed. A learning strategy is devised to be employed

by design engineers during the network pre-deployment phase. The proposed

learning approach formulates a relationship between objects’ variations within a

sensing node’s FoV, the level of detail in the acquired visual data and the effect of

feature redundancy removal on that data. Moreover, incorporating QoI-awareness,

an energy efficient scheme is proposed to reconfigure the nodes of a VSN for opti-

mal performance in resource constrained scenarios. Depending on the application

design criteria, the proposed self-reconfiguration scheme is capable of maintaining

target QoI thresholds while achieving energy savings. The distributed nature of

the proposed learning-aided reconfiguration scheme expedites the decision making

process at visual sensing nodes. The robustness of the proposed reconfiguration

scheme in terms of energy savings is evaluated by performing simulations and the

results are presented in this chapter.
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4.2 Visual Sensing Node Reconfiguration Model

Energy conservation is a primary issue within resource constrained VSNs which

is expected to be achieved by dynamic self-reconfiguration, for example, by the

realisation of the targeted QoI thresholds at each visual sensing node to fine tune

its parameters. The self-reconfiguration model employed within each visual sensing

node is illustrated in Figure 4.1.

Reconfiguration
Criteria

Objectives

Reconfiguration

Configuration
Space

scCurrent
Configuration

ŝn

Learning

Optimization
Problem

Formulation

Optimal
Parameters

Selection

Figure 4.1: Visual sensing node self-reconfiguration model

Let Cc = {Cc
1, C

c
2, C

c
3, . . . , C

c
n̂} be the set of criteria provided by the design engineer

for a given application and Cs = {Cs
1 , C

s
2 , C

s
3 , . . . , C

s
ñ} denote the set of parameters

in the network configuration space. Suppose Co = {Co
1 , C

o
2 , C

o
3 , . . . , C

o
n̆} represent

the set of objectives to be achieved, for example, coverage maximisation, energy

conservation, redundancy management and optimal task classification between vi-

sual sensing nodes. Based on particular reconfiguration criteria Cc, the considered

set of parameters Cs and the current configuration state sc; the process of recon-

figuration takes place dynamically within a visual sensing node to obtain a new

configuration state ŝn and achieve particular goals Co. The self-reconfiguration

model depicted in Figure 4.1 incorporates a learning-assisted strategy for the se-

lection of optimal parameters during the decision making process. The algorithms
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for the management of nodes within VSNs can be classified into centralised and

distributed categories. Distributed algorithms are preferred over the centralised

ones due to the complexity and scalability issues of the latter [184]. Moreover,

the distributed algorithms reduce bottlenecks and improve resilience against net-

work failures as they do not rely on a single central node for decision making.

Therefore, in this thesis, a distributed decision making strategy for reconfigura-

tion is devised where each node takes the decision independently to accelerate the

decision making process.

4.3 Proposed QoI-Aware Self-Reconfiguration

Scheme

Suppose a region of interest with surface area AT and volume VT is to be mon-

itored for a surveillance application. For this purpose, consider the deployment

of a VSN which consists of N visual sensing nodes and one sink node. The

placement of nodes within the region of interest can either be random or deter-

ministic. Suppose each visual sensing node within the network is represented by

{VSl̃|l̃ = 1, 2, 3, . . . ,N}. The sensing nodes VS1,VS2,VS3, . . . ,VSN capture im-

ages, represented by I1, I2, I3, . . . , IN respectively, and process them for feature

detection and object extraction. Moreover, the effective sensing range R of a vi-

sual sensing node for a given application can be estimated from the methodology

presented in Chapter 3 and is assumed to be known.

The system model of the proposed QoI-aware self-reconfiguration scheme to en-

hance the energy efficiency of VSNs by achieving targeted threshold based optimi-

sation is presented in Figure 4.2. In the proposed scheme, training and calibration

take place in the pre-deployment phase which consists of training dataset selection,

object appearance modelling, redundant feature removal, quality estimation and
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Figure 4.2: (a) Training and calibration process in the network pre-
deployment phase (b) Proposed in-node processing model for QoI-aware self-
reconfiguration within resource constrained VSNs to achieve targeted threshold

based optimisation in the network post-deployment phase

learning, as shown in Figure 4.2a. In the post-deployment phase, the scheme incor-

porates image capture, feature detection and object extraction, sensor-to-object

distance estimation, self-reconfiguration and redundant feature removal within the

in-node processing model, as shown in Figure 4.2b.

4.3.1 Training and Calibration

In the proposed scheme, training and calibration take place only in the pre-

deployment phase. Therefore, once this task is accomplished, the proposed frame-

work does not require any further training in the post-deployment phase; conse-

quently, facilitating the feasibility of the proposed scheme for resource constrained
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scenarios. The training and calibration process is discussed in the following sec-

tions.

i) Dataset selection

In order to initiate the training and calibration process, a suitable dataset is se-

lected. For a given application, the types of targets expected to be monitored

within the FoV of visual sensing nodes have to be considered for such selection.

ii) Object appearance modelling

In the proposed scheme, reconfiguration is initiated based on the appearance of the

object within a visual sensing node’s FoV. As an object moves closer to a visual

sensing node, its pixel occupancy within the captured image increases resulting

in an increased number of redundant features. On the other hand, if the object

moves away from a visual sensing node, the reduction in its pixel occupancy within

the captured image leads to a reduced number of redundant features. Therefore,

object appearance modelling plays a prominent role during training and calibration

of visual sensing nodes.

Suppose Ir denote a training image of size D+ ×D− captured from a reference

distance Rr ≥ Rl containing only the object of interest; where Rl is the minimum

possible distance to capture a suitably sharp image of the object of interest. Let

Rd be the sensor-to-object distance such that Rr < Rd ≤ Ru; where Ru is the

maximum distance to capture an object of interest’s suitably sharp image. For an

object captured from sensor-to-object distance Rd, its appearance at the reference

distance Rr can be modelled as,

Îr =
(
Ir ↓ D±d

)
↑ D±u (4.1)
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where ↓ denote the image down-sampling operator, ↑ represent the image up-

sampling operator; D±d and D±u are the down-sampling and up-sampling factors

given by,

D±d = D±
(
Rr

Rd

)
D±u = D±

(
Rd

Rr

) (4.2)

iii) Redundant feature removal

In resource constrained VSNs, energy conservation can be achieved through redun-

dant feature removal, which leads to the minimisation of the transmission cost.

Suppose αlc to αuc be the dynamic compression range; the possible compression

ratios can be written as,

ac = {αlc, αlc + Sc, αlc + 2Sc, . . . , αuc } (4.3)

and the resulting bits per pixel values can be denoted by ab as,

ab = {αb(l)|l = 1, 2, 3, . . . , lm} (4.4)

where Sc is a positive scalar step-size, lm =
⌊
(αuc − αlc + Sc)/Sc

⌋
and (b c) refers

to the floor function.

iv) Quality estimation

As discussed earlier, redundant features can be removed to optimise energy con-

sumption of the visual sensing nodes. However, such removal may affect the qual-

ity of the visual data. Therefore, the impact of redundant feature removal on the

quality of the acquired visual data must be taken into consideration to achieve an
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acceptable level of reliability for the given application. In the proposed scheme,

PSNR is used as a quality metric, which is realised with the system’s dynamic

PSNR range in dB (ζ l to ζu) to obtain the QoI index λ as,

λ =
10 log10

(
A2

M

)
− ζ l

ζu − ζ l (4.5)

where λ ∈ [0, 1], λ = 0 refers to the QoI index of ζ l, λ = 1 refers to the QoI index

of ζu, A is the maximum possible pixel value in Ir and M represent the Mean

Squared Error (MSE) given by,

M =
1

3(D+D−)

D+∑
x=1

D−∑
z=1

[
Ir(x, z)− Îr(x, z)

]2

(4.6)

Suppose the set of possible sensor-to-object distances is given by r̂ = {Rr, Rr +

Sr, Rr+2Sr, . . . , Ru} and let λλλ = {λp | p = 1, 2, 3, . . . , pm} be the respective quality

metrics calculated using Equation 4.5; such that λ(1) ≥ λ(2) ≥ λ(3) ≥ . . . ≥ λ(pm);

where Sr is a positive scalar step-size and pm = b(Ru −Rr + Sr)/Src. For a dy-

namic sensor-to-object range Rr to Ru and dynamic compression range αlc to αuc ,

the resulting quality metrics can be given by,

Λ =


λ1,1 λ1,2 . . . λ1,pm

λ2,1 λ2,2 . . . λ2,pm

...
...

. . .
...

λlm,1 λlm,2 . . . λlm,pm

 (4.7)

where λ(·,1) ≥ λ(·,2) ≥ . . . ≥ λ(·,pm) and λ(1,·) ≥ λ(2,·) ≥ . . . ≥ λ(lm,·).



Chapter 4. QoI-Aware Self-Reconfiguration Scheme 107

v) Learning

Let t̂m be the set of t̃ training images used for learning and {Λi|i = 1, 2, 3, · · · , t̃} be

their respective quality metrics. Suppose Λl̃ denote the Compressive Calibration

Matrix (CCM) which serves as a reference to reflect the impact of feature redun-

dancy removal on the quality of the acquired visual data for t̃ training images; and

it is calculated by,

Λl̃ =
1

t̃

t̃∑
i=1

Λi (4.8)

The training and calibration process terminates after learning of the CCM and

it is assumed that CCM is known to each visual sensing node in the network for

utilisation during its self-reconfiguration phases. The fidelity of CCM is quantified

within a confidence bound [e−, e+], measured in dB, given by,

e± = D±(ζu − ζ l) (4.9)

where D− = min
{

(Λi −Λl̃)
∣∣i = 1, 2, 3, · · · , t̃

}
,

D+ = max
{

(Λi −Λl̃)
∣∣i = 1, 2, 3, · · · , t̃

}
and (·) represent the mean.

4.3.2 In-node Processing Model

The in-node processing model is employed by the proposed scheme during the

network post-deployment phase to dynamically attain optimal configurations of

visual sensing nodes that result in energy conservation while satisfying a desired

reliability level. The in-node processing model in discussed in the following sec-

tions.
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i) Image Capture

During the data acquisition phase, an image Il̃ of dimension D+ ×D− is captured

by each visual sensing node VSl̃.

ii) Feature detection and object extraction

Let Ob be an object, Sm be the object segmentation matrix and Sg be the seg-

mented image. The probability of a pixel (x, z) in Il̃ belonging to the object of

interest Ob can be given by,

D(x, z) =

1, (x, z) ∈ Ob

0, otherwise

(4.10)

This can be accomplished by utilising an appropriate detection method depending

on the given application; for example, [185], [186] can be considered for face de-

tection, [172] can be used for human detection and vehicles can be detected using

[187], [188]. The pixels probabilities from Equation 4.10 are indexed at their re-

spective locations in the object segmentation matrix Sm. Consider a target-driven

approach where each node transmits the acquired data only if an object of area A

is detected within its FoV. The decision is made based on the following criteria,

ed =

1, γp̂ ≥ γt

0, otherwise

(4.11)

where γp̂ represent the number of pixels an object occupies and γt denote the

detection threshold given by,

γt =
A×D+ ×D− × sin θh × sin θv

4R2 (1− cos θh) (1− cos θv)
(4.12)
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The object of interest is extracted from Il̃ by image segmentation using the fol-

lowing equation,

Sg = ed · Il̃ · Sm (4.13)

where (·) represent the dot product.

iii) Sensor-to-object distance estimation

The level of detail in the captured image Il̃ is a function of the sensor-to-object dis-

tance Rd. The object of interest is obtained after feature detection and extraction

as image Sg. Therefore, for an object of area A being monitored within the FoV

of a visual sensing node, utilising the output of feature detection and extraction

process, Rd is estimated prior to reconfiguration, as shown below,

Rd =
1

2

√
A×D+ ×D− × sin θh × sin θv
γp̂ (1− cos θh) (1− cos θv)

(4.14)

iv) Self-reconfiguration

Suppose λt denote the target QoI in dB to be achieved for a given application and

γb represent the level of compression employed. Based on the spatial location of an

object within a sensing node’s FoV, each visual sensing node is to be reconfigured

dynamically by maximising the compression level for redundant feature removal

while achieving the target QoI threshold. Let M be a matrix of dimension lm×pm
and Ml,p is assigned a value based on the following condition,

Ml,p =

1, Λl̃(l,p) ≥ λ̂t

0, otherwise

(4.15)



Chapter 4. QoI-Aware Self-Reconfiguration Scheme 110

where λ̂t = (λt − ζ l)/(ζu − ζ l).

Considering λt for a particular application, the Active Compressive Calibration

Matrix (ACCM) Λa is calculated by,

Λa = Λl̃ ·M (4.16)

and the respective transmission energy cost can be expressed by E as,

E =


Et

1,1 Et
1,2 . . . Et

1,pm

Et
2,1 Et

2,2 . . . Et
2,pm

...
...

. . .
...

Et
lm,1

Et
lm,2

. . . Et
lm,pm

 (4.17)

where Et
l,p =

{
L(αb(l)) | l = 1, 2, . . . , lm

}
and L(·) denote a function for energy

cost calculation.

Within the context of the visual sensing node self-reconfiguration model depicted

in Fig 4.1, the compression level γb forms the configuration space, target QoI

threshold λt is the reconfiguration criterion and minimisation of the transmission

energy cost Et
l,p is the ultimate objective. Hence, the following optimisation prob-

lem can be stated,

minimise Et
l,p

subject to β = λt

(4.18)

where β is the QoI delivered by a visual sensing node.
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The proposed scheme for dynamic self-reconfiguration of a visual sensing node

within a resource constrained network is described in Algorithm 4.1 to find opti-

mal compression level γb ∈ ab that solves the optimisation problem expressed in

Equation 4.18.

Algorithm 4.1 Proposed dynamic self-reconfiguration scheme

Input:

The target QoI threshold λt, the set of possible sensor-to-object distances

r̂, the compressive calibration matrix Λl̃, the system’s dynamic PSNR range

(ζ l, ζu) and the estimated sensor-to-object distance Rd.

Output:

The new configuration state ŝn of a visual sensing node to achieve targeted

QoI threshold with optimised energy consumption.

1: M← ∅

2: λ̂t = (λt − ζ l)/(ζu − ζ l).
3: for p← 1 to pm do

4: if Λl̃(1,p) ≥ λ̂t then

5: M← [M 1]

6: where 1 is a lm × 1 all-ones vector

7: else

8: M← [M 0]

9: where 0 is a lm × 1 all-zeros vector

10: end if

11: end for

12: Λa ← Λl̃ ·M
13: γ1 ← arg minp

[
|Rd − r̂(p)|

]
; p = {1, 2, 3, . . . , pm}

14: t← Λa(1:lm,γ1)
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Algorithm 4.1 (continued) Proposed dynamic self-reconfiguration scheme

15: γ2 ← arg minp̂

[
|λ̂t − t(p̂)|

]
; p̂ = {1, 2, 3, . . . , lm}

16: β ← t(γ2)

17: Et
min ← L

(
αb(γ2)

)
18: γb ← ab(γ2)

19: ŝn ← γb

20: return ŝn

In the proposed dynamic self-reconfiguration scheme presented in Algorithm 4.1,

initially a matrix M is defined. Afterwards, the target QoI threshold λt and the

system’s dynamic PSNR range (ζ l, ζu) are utilised to calculate λ̂t. Subsequently,

for each value of p, such that p = {1, 2, 3, . . . , pm} and pm = b(Ru −Rr + Sr)/Src,
the criterion Λl̃(1,p) ≥ λ̂t is employed. In case if the criterion is true, an all-ones

vector of dimension lm × 1, where lm =
⌊
(αuc − αlc + Sc)/Sc

⌋
, is appended to the

matrix M. Whereas, if Λl̃(1,p) < λ̂t is true, an all-zeros vector of dimension lm×1 is

appended to the matrix M. Afterwards, the Active Compressive Calibration Ma-

trix Λa is obtained using Λa = Λl̃·M. Subsequently, function arg minp
[
|Rd − r̂(p)|

]
is utilised and the resulting value of p is stored in γ1. Moreover, the first lm rows

from column γ1 of the Active Compressive Calibration Matrix Λa are extracted

and stored in vector t. Next, function arg minp̂

[
|λ̂t − t(p̂)|

]
is employed, where

p̂ = {1, 2, 3, . . . , lm}, and the resulting value of p̂ is stored in γ2. The value at

index γ2 is extracted from t and stored in β. Afterwards, the energy cost is calcu-

lated and the compression level γb is obtained and utilised as the new configuration

state ŝn of a visual sensing node to achieve targeted QoI threshold with optimised

energy consumption.



Chapter 4. QoI-Aware Self-Reconfiguration Scheme 113

v) Redundant feature removal

After the dynamic reconfiguration of a visual sensing node to obtain a new con-

figuration state ŝn, the removal of redundant features from the segmented image

Sg (containing the detected object) can be expressed as,

Sr = G(Sg, ŝn) (4.19)

where Sr is a matrix of dimension D̂+ × D̂− representing the reduced set of features

to be transmitted to the sink node, such that (D̂+ × D̂−) < (D+ ×D−); and G(·) is

a function representing the compression method employed such as Discrete Wavelet

Transform (DWT), Discrete Cosine Transform (DCT) etc.

The reconstruction takes place at the sink node and the reconstructed image Ŝg

can be given by,

Ŝg = G−1(Sr) (4.20)

where G−1(·) denote the inverse of G(·).

4.4 Results and Analysis

This section demonstrates the performance of the proposed QoI-aware self-reconfig-

uration scheme for resource constrained VSNs. In order to evaluate the perfor-

mance of the proposed QoI-aware self-reconfiguration scheme, the analysis was

conducted using the MATLAB simulation platform on an Intel Core i5-4200U

CPU @ 1.60GHz 2.30GHz with 8 GB RAM and 3 MB cache. The Long Distance

Heterogeneous Face (LDHF) dataset [189, 190] is used for training and calibra-

tion and its specification is presented in Table 4.1. This particular dataset is
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Table 4.1: Specification of the dataset used for training and calibration in the
pre-deployment phase

Parameter Specification

Imaging environment Indoor and Outdoor
Lighting Day-light
Actual Resolution 5184×3456
Resolution after down-sampling 512×512
Number of subjects 100
Indoor sensor-to-object distance 1 m
Number of indoor images 100
Outdoor sensor-to-object distance 60 m, 100 m, 150 m
Number of outdoor images 300

selected as it provides a variety of facial images captured with various sensor-to-

object distances, hence making it suitable to be employed for the evaluation of

the proposed framework. Even though the dataset contains images captured at

both daytime and nighttime, the specification of images captured at daytime is

considered. Keeping the capabilities of visual sensing nodes into consideration,

the original resolution of the test images is found to be large, therefore, the test

images are down-sampled to a resolution of 512×512.

An image subset extracted from the dataset containing cropped faces is shown in

Figure 4.3. In order to conduct experiments for object appearance modelling, ref-

erence distance Rr = 1 m, maximum distance Ru = 40 m and step size Sr = 1 m

is considered in the simulation model. Suppose t̂s denote a subset consisting of

15 test images selected randomly from the dataset, i.e. t̂s ⊂ t̂m. Utilising the

proposed object appearance modelling approach, the appearance of faces con-

tained in test images at Rr = 1 is modelled for a range set of sensor-to-object

Figure 4.3: An image subset from the LDHF dataset containing cropped faces
for Rr = 1 m
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distance Rd ∈ [2, 40] and the resulting QoI index is shown in Figure 4.4. Due

to the fact that moving an object away from a visual sensing node results in re-

duced object pixel occupancy, it can be observed from the results that increasing

Rd results in QoI index reduction; where a higher value of QoI index refers to

a higher QoI within the image. This justifies the requirement of incorporating

QoI-awareness during the self-reconfiguration phase so that the proposed solution

considers the estimated sensor-to-object distance Rd and is capable of achieving

particular objectives. Moreover, it can be noticed that the decaying characteristics

of the test images are identical and the QoI metrics are bounded within a range

of [−0.043, 0.048] from the mean.
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Figure 4.4: QoI index estimation for object appearance modelling utilising
Test Images (TIs) from the LDHF dataset

In order to analyse the performance of the proposed framework, 2D-DWT and

2D-DCT are considered for the removal of redundant features from the images

captured by visual sensing nodes. These methods are chosen for conducting ex-

periments due to their suitability for visual sensing nodes [191] and utilisation

in many existing schemes [28, 29, 55]. Nevertheless, the proposed framework is

expected to support any compression scheme provided that its implementation
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is feasible within visual sensing nodes. In the following discussion, even though

2D-DWT and 2D-DCT are treated together, they are required to be employed

individually and only one redundancy removal method is required to be used for

a given application. In the experiments, the dynamic compression range αlc = 2

to αuc = 100 and αlc = 2 to αuc = 70 is considered for 2D-DWT and 2D-DCT

respectively, with step size Sc = 0.5. This particular range is considered because

the quality deteriorates beyond the upper limit and the resulting image may not

be suitable for object detection. After redundancy removal and QoI index estima-

tion, Equation 4.8 is used to obtain the compressive calibration matrix, which is

shown in Figure 4.5 and Figure 4.6 for 2D-DWT and 2D-DCT respectively.
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Figure 4.5: QoI index estimation after object appearance modelling and re-
dundant feature removal with 2D-DWT to obtain compressive calibration ma-

trix
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Figure 4.6: QoI index estimation after object appearance modelling and re-
dundant feature removal with 2D-DCT to obtain compressive calibration matrix

It is observed from Figure 4.5 and Figure 4.6 that increasing the level of redun-

dancy removal results in QoI index reduction for 2D-DWT and 2D-DCT respec-

tively. Moreover, the results demonstrate that the decaying characteristics of the

QoI index are similar for both 2D-DWT and 2D-DCT. This behaviour is logical

as an increase in either the sensor-to-object-distance or the level of redundancy

removal leads to a reduction in the visual data quality resulting in QoI index

degradation. Therefore, the selection of inappropriate parameters for feature re-

dundancy removal within visual sensing nodes is expected to affect the taget QoI

achievement reliability. As energy conservation can be achieved by redundancy

removal, CCM shown in Figure 4.5 and Figure 4.6 are used for the training and

calibration of visual sensing nodes so that each node is dynamically self-reliant

for the selection of an optimal configuration to minimise its energy consumption.

Furthermore, it is found that compared to the DCT-aided scheme, the scheme sup-

ported by DWT is much more efficient in terms of the resulting QoI. This is due
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to that fact that DWT, at high compression ratios, results in significantly higher

compression efficiency compared to DCT [116]. Therefore, the overall transmis-

sion cost of the DCT-aided scheme is expected to be higher than the DWT-aided

scheme.

The movements of objects within the FoV of visual sensing nodes are modelled

randomly in the simulation. As the primary focus is the self-reconfiguration prob-

lem, it is assumed that after the capturing of an image by a visual sensing node in

the post-deployment phase, an appropriate feature detection scheme can be used

for object extraction from the image. It is also assumed that the sensor-to-object

distance is estimated with a reasonable degree of reliability. Each time a target is

detected, the configuration of a visual sensing node is obtained dynamically using

Algorithm 4.1.

Suppose a VSN comprises of N = 100 visual sensing nodes within a 3D sensing

environment of size 50 × 50 × 10 m3. Uniform random deployment is considered

and the visual sensing nodes are represented by VS1,VS2,VS3, . . . ,VS100. The

horizontal FoV and vertical FoV values that have been obtained in Chapter 3,

i.e. θh = 48.39◦ and θv = 37.25◦, are utilised for simulations in this chapter.

Figure 4.7 illustrates the network model and shows the node distribution within

the network. A homogeneous realisation of target QoI is considered i.e. target QoI

thresholds are consistent throughout the network. In order to define connectivity

between independent sensing nodes and a sink node, star topology is widely used

in the existing literature [192–199]. Star topology provides a simplified solution to

realise data communication in sensor networks. Therefore, in this study, a star-

shaped topology in considered where the visual data collected by sensing nodes is

transmitted to a sink node.

As in Chapter 3, the energy model given by Redondi et al. in [183] is used to cal-

culate the energy consumption of visual sensing nodes. Redondi et al. considered

star topology in their previous work on the energy consumption of VSNs [194]
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Figure 4.7: Visual sensing nodes distribution within the network

which justifies the selection of star topology for the chosen energy model. Since,

the energy cost of communication is higher than the energy cost of data processing

within VSNs [27–29], the optimisation of transmission energy cost is considered

for reconfiguring visual sensing nodes and analysing the proposed scheme’s energy

efficiency. Let Êtx be the average energy cost incurred per node for the trans-

mission of one image frame and Êc be the total transmission cost of Nt image

frames, where an image frame is represented by I. In order to demonstrate the

energy efficiency of the proposed QoI-aware scheme compared to the conventional

scheme, their transmission costs are observed for various target QoI thresholds.

Unlike the proposed scheme, the conventional scheme does not dynamically tune

the visual sensing nodes’ parameters for redundant feature removal and utilises a

constant value of γb to achieve target QoI threshold λt. The results obtained from

the comparative analysis for Nt = 150 image frames are presented in Figure 4.8 to

Figure 4.11.
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Let µp and µc denote the energy consumption averaged over the total number of

image frame transmissions for the proposed and conventional schemes respectively.

Figure 4.8 and Figure 4.9 illustrate the average transmission energy cost compari-

son for target QoI threshold λt = 31 dB with 2D-DWT and 2D-DCT respectively.
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Figure 4.8: Comparison of the average energy cost incurred per node to trans-
mit an image frame with the proposed QoI-aware scheme and conventional

scheme for target QoI λt = 31dB with 2D-DWT
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Figure 4.9: Comparison of the average energy cost incurred per node to trans-
mit an image frame with the proposed QoI-aware scheme and conventional

scheme for target QoI λt = 31dB with 2D-DCT

It is observed from Figure 4.8 and Figure 4.9 that average transmission energy

consumption per frame of the proposed and conventional schemes to achieve ho-

mogeneous target QoI threshold λt = 31 dB is: 0.17 mJ and 0.72 mJ respectively

with 2D-DWT; and 0.51 mJ and 1.61 mJ respectively with 2D-DCT. Thus the pro-

posed scheme leads to energy conservation of 76.39% and 68.32% with 2D-DWT

and 2D-DCT respectively. It is noticed from the comparison between the proposed

and conventional schemes that the former leads to substantial energy savings com-

pared to the latter as the redundancy removal process is more effective due to the

lower target QoI threshold requirement.

Similarly, the average transmission energy cost comparison for target QoI threshold

λt = 37 dB with 2D-DWT and 2D-DCT is presented in Figure 4.10 and Figure 4.11

respectively.
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Ê
t
x

(m
J
)

Conventional (DWT)

QoI-Aware (DWT)

Figure 4.10: Comparison of the average energy cost incurred per node to
transmit an image frame with the proposed QoI-aware scheme and conventional

scheme for target QoI λt = 37dB with 2D-DWT
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Figure 4.11: Comparison of the average energy cost incurred per node to
transmit an image frame with the proposed QoI-aware scheme and conventional

scheme for target QoI λt = 37dB with 2D-DCT
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As shown in Figure 4.10 and Figure 4.11, to achieve target QoI threshold λt = 37

dB, the average cost of transmission energy per frame for the proposed and conven-

tional schemes is: 6.75 mJ and 11.86 mJ respectively with 2D-DWT; and 15.74 mJ

and 23.81 mJ respectively with 2D-DCT. Hence, energy savings of 43.09% and

33.89% are achieved with 2D-DWT and 2D-DCT respectively. In this comparison

between the proposed and conventional schemes, the proposed scheme shows supe-

rior performance; however, in this scenario, the energy savings with the proposed

scheme have reduced due to the higher QoI threshold requirement compared to the

previous scenario. The results demonstrate that in scenarios where high energy

savings are desirable, a lower target QoI threshold should be chosen to prolong

the network lifetime.

Moreover, a comparison of the overall transmission cost of the proposed and con-

ventional schemes per node to achieve a set of given homogeneous target QoI

thresholds λt ∈ [30, 40] for Nt = 150 image frames with 2D-DWT and 2D-DCT is

depicted in Figure 4.12 and Figure 4.13. In order to enhance readability, the per-

formance of the proposed and conventional schemes for λt = {30, 31, 32} is shown

within Figure 4.12 and Figure 4.13 separately. The results demonstrate that for

any given target QoI threshold, the proposed scheme minimises the transmission

energy consumption with both 2D-DWT and 2D-DCT. Moreover, it is observed

that the proposed DWT-aided scheme shows superior performance compared to

the proposed scheme supported by the DCT. However, both DWT and DCT-based

proposed schemes are capable of enhancing the energy efficiency of the visual sens-

ing nodes. The proposed self-reconfiguration scheme outperforms the conventional

scheme due to its dynamic realisation of the QoI which assists in selecting opti-

mal configurations of visual sensing nodes leading to an energy efficient solution

feasible for implementation in VSNs with strict constraints on available energy

and bandwidth. Summarising the findings from Figure 4.8 to Figure 4.13, the

results demonstrated that the energy savings with the proposed scheme are higher

at lower QoI targets, thus making it suitable for resource constrained scenarios.
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Figure 4.12: Comparison of the average energy cost incurred per node to
transmit Nt = 150 image frames with the proposed QoI-aware scheme and
conventional scheme to achieve homogeneous target QoI thresholds with 2D-

DWT
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Figure 4.13: Comparison of the average energy cost incurred per node to
transmit Nt = 150 image frames with the proposed QoI-aware scheme and
conventional scheme to achieve homogeneous target QoI thresholds with 2D-
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4.5 Summary

In this chapter, the issue of visual data optimisation prior to transmission in VSNs

has been addressed. A QoI-aware dynamic self-reconfiguration scheme is proposed

to obtain suitable configurations of visual sensing nodes for visual data optimisa-

tion in the pre-transmission phase. In the proposed scheme, QoI is characterised

by the quality of the visual data and gauged by a PSNR-based metric. Since

the communication energy cost is significantly higher than the processing cost in

VSNs, the configuration space in the proposed scheme comprises of the amount

and quality of visual data to be transmitted to the sink node. By making the vi-

sual sensing nodes self-reliant through the training and calibration process in the

pre-deployment phase, the proposed reconfiguration scheme is fully decentralised,

which accelerates the decision making process. During the training and calibra-

tion process, first, a suitable dataset is chosen depending on the given application.

Subsequently, exploiting the variations in sensor-to-object distance and their im-

pact on the feature redundancy within the acquired visual data, the appearance

of objects within sensing nodes’ FoV is modelled. Thereafter, redundant features

are removed from the visual data by considering a dynamic compression range.

Since feature redundancy removal may degrade the visual data quality, the re-

sulting quality should be observed to satisfy an application’s desired reliability

level. Therefore, a QoI index is developed by taking into account the system’s

dynamic PSNR range. For a range set of dynamic sensor-to-object distances and

compression ratios, compressive calibration matrix is obtained which is learnt by

the visual sensing nodes to be employed in the post deployment phase.

In addition, the proposed in-node processing model provides an energy efficient so-

lution for self-reconfiguration of visual sensing nodes in the post-deployment phase.

Once the visual data is acquired by a sensing node, a suitable feature detection

scheme is utilised and the object of interest is extracted. Thereafter, the sensor-to-

object distance is estimated which is utilised by the proposed self-reconfiguration
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scheme. The proposed scheme utilises the compressive calibration matrix learnt

during the training and calibration process to select optimal configuration of visual

sensing nodes for feature redundancy removal. Hence, a trade-off model between

reliability and energy efficiency is provided which assists in dynamically optimising

visual data while achieving the target QoI threshold.

Simulations were performed using the LDHF dataset to evaluate the performance

of the proposed self-reconfiguration scheme. After employing the object appear-

ance modelling approach, the resulting QoI index is analysed and it is observed

that an increase in sensor-to-object distance results in QoI index reduction. More-

over, the decaying characteristics of QoI index are found to be identical for all

the test images. Utilising 2D-DWT and 2D-DCT due to their suitability for vi-

sual sensing nodes, compressive calibration matrices are obtained. The QoI-aware

self-reconfiguration scheme supported by 2D-DWT is found to be more efficient

in terms of resulting QoI compared to the 2D-DCT based scheme. Considering a

conventional scheme which utilises a static level of compression, the transmission

energy cost compared to the proposed scheme is analysed for various homogeneous

target QoI thresholds. It is observed from the comparison that for any given tar-

get QoI threshold, the proposed QoI-aware self-reconfiguration scheme results in

transmission energy cost minimisation leading to energy savings in visual sensing

nodes.

The next chapter builds on the self-reconfiguration scheme presented in this chap-

ter to propose a unified framework of node classification and self-reconfiguration.

A 3D coverage modelling scheme is introduced to enhance the sensing and pro-

cessing intelligence of VSNs. Incorporating heterogeneity in target QoI thresholds,

the proposed node classification scheme categorises visual sensing nodes into dif-

ferent levels of heterogeneity. The unified framework enables visual sensing nodes

to optimise visual data prior to transmission based on heterogenous target QoI

thresholds resulting in substantial energy savings.



Chapter 5

Unified Framework with

Heterogeneous QoI Realisation

5.1 Introduction

In VSNs, depending on the given application, sensing nodes are required to achieve

particular objectives whilst satisfying the desired reliability criteria. This can

be accomplished by reconfiguring visual sensing nodes dynamically to obtain the

optimal configuration, as discussed in Chapter 4. Visual sensing nodes are typ-

ically provided with a homogeneous reliability level which is to be maintained

network-wide during the post-deployment phase for reliable network operation.

Nevertheless, visual sensing nodes observe particular portions of the 3D target

environment based on their location and orientation parameters and thus, provide

different views of the sensing environment. Consequently, the achievement of par-

ticular objectives by satisfying homogeneous levels of desired reliability may not

lead to efficient solutions. In these scenarios, exploiting the distributed nature of

visual sensing nodes and adopting heterogeneity in the desired level of reliability

is expected to enhance the global efficiency. Since, some regions within the moni-

toring space may dynamically facilitate relaxation in the desired reliability levels,

127
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heterogeneous realisation is expected to achieve the objectives more convincingly

as compared to its homogeneous counterpart. Although global efficiency can be

improved by introducing heterogeneity, manually identifying the suitability of each

visual sensing node for a particular heterogeneity level is impractical. Therefore,

a strategy could be devised to dynamically classify visual sensing nodes into var-

ious categories depending on the application design criteria. Hence, by unifying

the visual sensing node classification and self-reconfiguration schemes, a hetero-

geneous solution will emerge. The heterogeneous solution is expected to enhance

the sensing and processing intelligence of VSNs resulting in an improved global

efficiency.

In light of the above discussion, this chapter aims to incorporate heterogeneity

and presents a unified framework for node classification and self-reconfiguration in

VSNs. A scheme for 3D coverage modelling of visual sensing nodes is developed

which is capable of dynamically obtaining their individual FoV information. The

visual sensing nodes are made aware of their sensing environment by the proposed

scheme. The context of heterogeneity is considered to be the allocation of suitable

target QoI thresholds to visual sensing nodes in the network.

In order to introduce heterogeneity, a node classification scheme is presented which

categorises visual sensing nodes depending on their 3D coverage. The proposed

coverage modelling and node classification schemes are coupled with the in-node

processing model (previously presented in Chapter 4) to formulate a unified frame-

work. An energy model is developed to quantify the energy consumption of the

unified framework. The robustness of the proposed unified framework is evaluated

by performing simulations and comparing the results with existing state-of-the-

art techniques. This chapter also presents an analytical model to evaluate the

proposed framework’s performance reliability. As compared to the homogeneous

QoI realisation, the unified framework improves the global efficiency of achieving

the objective (i.e. transmission energy cost minimisation) and leads to substantial

energy savings.
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5.2 Proposed Unified Framework

The proposed unified framework for node classification and self-reconfiguration in

VSNs with heterogeneous QoI realisation for achieving targeted threshold based

optimisation is presented in Figure 5.1.

In the proposed framework, training and calibration take place in the pre-deployment

phase (as discussed in Chapter 4) which consists of training dataset selection,

object appearance modelling, redundant feature removal, quality estimation and

learning, as shown in Figure 5.1a. In the post-deployment phase, the unified

framework incorporates 3D coverage modelling and QoI-centric node classification

with the in-node processing model (comprising image capture, feature detection

and object extraction, sensor-to-object distance estimation, self-reconfiguration

and redundant feature removal), as shown in Figure 5.1b. Since, the in-node

processing model for self-reconfiguration is presented earlier in Chapter 4, 3D cov-

erage modelling and QoI-centric node classification are discussed in the following

sections.
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5.2.1 3D Coverage Modelling

Consider the visual sensing node’s 3D projection model shown in Figure 3.1 where

sensing node VS is located at the origin of the cartesian coordinate system i.e.

(0, 0, 0) and the sensor’s optical axis overlaps onto the y-axis with X = 0 and Z =

0. Within the context of a VSN, where N sensing nodes are present, each sensing

node VSl̃ (l̃ = {1, 2, 3, . . . ,N}) is identified by its location which is described by

the local cartesian coordinates s = [Xl̃, Yl̃, Zl̃, 1]T, azimuth angle φa and elevation

angle θe. In the simplest scenario where the sensor’s optical axis is assumed to

be parallel with the y-axis, thus the azimuth angle φa and elevation angle θe are

given by,

φa =
π

2
− θh

2
(5.1)

θe =
π

2
− θv

2
(5.2)

where φa is measured clockwise and θe is measured counter-clockwise.

For a particular sensing range R, suppose p = [Xo, Yo, Zo, 1]T represent the coor-

dinates of O2 which are calculated by,

p = [Xo, Yo, Zo, 1]T = [Xl̃, Yl̃ +R,Zl̃, 1]T (5.3)

Consider a more complex scenario where the sensor’s optical axis is not parallel

to the y-axis. Let θya be the horizontal angle from y-axis to the sensor’s optical

axis measured clockwise. For a particular azimuth angle φa, θya is calculated by,

θya =


φa +

θh
2

+
3π

2
, 0 <

(
φa +

θh
2

)
<
π

2

φa +
θh
2
− π

2
,

π

2
≤
(
φa +

θh
2

)
≤ 2π

(5.4)
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Similarly, let θye be the vertical angle from y-axis to the sensor’s optical axis

measured counter-clockwise. For a particular elevation angle θe, θye is calculated

by,

θye =


θe +

θv
2

+
3π

2
, 0 <

(
θe +

θv
2

)
<
π

2

θe +
θv
2
− π

2
,

π

2
≤
(
θe +

θv
2

)
≤ 2π

(5.5)

By adjusting the azimuth and elevation angles to fit a particular region of interest

within the sensing node’s FoV, the coordinates of O2 are expected to change. The

problem of calculating the new coordinates of O2 can be classified into three cases.

In the first case, suppose φa is adjusted to capture a particular region of interest

within the sensing node’s FoV and θe is kept constant i.e. θe = π
2
− θv

2
. This

results in 0 < θya < 2π whereas θye remains consistent i.e. 0. In the second case,

suppose θe is adjusted to capture a particular region of interest within the sensing

node’s FoV and φa is kept constant i.e. φa = π
2
− θh

2
. This results in 0 < θye < 2π

whereas θya remains consistent i.e. 0. In the third case, suppose both φa and θe

are adjusted to capture a particular region of interest within the sensing node’s

FoV. This results in 0 < {θya, θye} < 2π. There are two possibilities for changing

the azimuth and elevation angles in this case: (a) azimuth angle is adjusted first

followed by the elevation angle, (b) elevation angle is adjusted first followed by

the azimuth angle.

Based on the above discussion, let ĉ ∈ {1, 2, 3a, 3b} denote Case 1, Case 2, Case

3a and Case 3b respectively. The new coordinates of point O2 are represented by

p′ĉ = [X ′o, Y
′
o , Z

′
o, 1]T and derived as,

p′ĉ = T−1ΨĉTp (5.6)
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In Equation 5.6, T is the translation matrix given by,

T =

J t

z 1

 (5.7)

where J is a 3×3 identity matrix, t represent the transformation coordinates given

by t = [−p(1), R− p(2),−p(3)]
T and z denote a 1× 3 all-zeros vector.

Ψĉ is expressed as,

Ψĉ =

Θĉ zT

z 1

 (5.8)

where Θĉ denote the rotation matrices Θ1, Θ2, Θ3a and Θ3b given by [200, 201],

Θ1 =


cos θya sin θya 0

− sin θya cos θya 0

0 0 1

 (5.9)

Θ2 =


1 0 0

0 cos θye − sin θye

0 sin θye cos θye

 (5.10)

Θ3a =


cos θya sin θya 0

− cos θye sin θya cos θye cos θya − sin θye

− sin θye sin θya sin θye cos θya cos θye



Θ3b =


cos θya sin θya cos θye − sin θya sin θye

− sin θya cos θya cos θye − cos θya sin θye

0 sin θye cos θye


(5.11)
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Let S be the sampling interval, the coordinates of sy points on the y-axis within

the sensing node’s FoV are represented by py as,

py = {S, 2S, 3S, . . . , R} (5.12)

For a particular point py(·) on the y-axis, the coordinates of sx points on the x-axis

and sz points on the z-axis are denoted by px and pz respectively, and given by,

px =
{
γ−x , γ

−
x + S, γ−x + 2S, . . . , γ+

x

}
(5.13)

pz =
{
γ−z , γ

−
z + S, γ−z + 2S, . . . , γ+

z

}
(5.14)

where γ−x , γ+
x , γ−z and γ+

z represent the x-axis lower bound, x-axis upper bound,

z-axis lower bound and z-axis upper bound respectively which are expressed as,

γ+
x

γ−x

 = X ′o ± py(·) tan

(
θh
2

)
(5.15)

γ+
z

γ−z

 = Z ′o ± py(·) tan

(
θv
2

)
(5.16)

and,

sx =

⌊
γ+
x − γ−x + S
S

⌋
(5.17)

sz =

⌊
γ+
z − γ−z + S
S

⌋
(5.18)
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The total number of points in cartesian coordinates within a sensing node’s FoV

are derived as,

tp =

sy∑
ĭ=1

⌊
2py(̆i) tan

(
θh
2

)
+ S

S

⌋⌊
2py(̆i) tan

(
θv
2

)
+ S

S

⌋
(5.19)

where sy =

⌊
R

S

⌋
.

Suppose cx, cy and cz represent the set of 3D coordinates within a visual sensing

node’s FoV and are defined as,

cx =
{
cx(1), cx(2), cx(3), . . . , cx(tp)

}
cy =

{
cy(1), cy(2), cy(3), . . . , cy(tp)

}
(5.20)

cz =
{
cz(1), cz(2), cz(3), . . . , cz(tp)

}

where each respective pair
(
cx(·), cy(·), cz(·)

)
denote the 3D cartesian coordinates of

a point within a sensing node’s FoV.

Algorithm 5.1 proposes a 3D coverage modelling scheme for visual sensing nodes

to calculate cx, cy and cz.

Algorithm 5.1 Proposed 3D coverage modelling scheme for visual sensing nodes

Input:

The sensing node’s coordinates [Xl̃, Yl̃, Zl̃, 1]T, the azimuth angle φa, the ele-

vation angle θe, the horizontal FoV θh, the vertical FoV θv, the sensing range

R and the sampling interval S.
Output:

cx, cy and cz representing the 3D coverage coordinates of a visual sensing

node.

1: lc ← 1

2: py = {S, 2S, 3S, . . . , R}
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Algorithm 5.1 (continued) Proposed 3D coverage modelling scheme for visual
sensing nodes

3: sy ←
⌊
R

S

⌋
4: for ĭ← 1 to sy do

5: Set φa =
π

2
− θh

2
and θe =

π

2
− θv

2
for θya = 0 and θye = 0.

6: Calculate the coordinates of O2 by substituting R = py(̆i) in Equation 5.3

as,

[Xo, Yo, Zo, 1]T = [Xl̃, Yl̃ + py(̆i), Zl̃, 1]T

7: As θya = 0 and θye = 0,

[X ′o, Y
′
o , Z

′
o, 1]T = [Xo, Yo, Zo, 1]T

8: Calculate γ±x and γ±z using Equation 5.15 and Equation 5.16 respectively.

9: px = {γ−x , γ−x + S, γ−x + 2S, . . . , γ+
x }

10: pz = {γ−z , γ−z + S, γ−z + 2S, . . . , γ+
z }

11: sx ← b(γ+
x − γ−x + S) /Sc

12: sz ← b(γ+
z − γ−z + S) /Sc

13: for j̆ ← 1 to sx do

14: for q̆ ← 1 to sz do

15: Based on φa and θe for targeted sensing within a 3D plane, calculate

θya and θye using Equation 5.4 and Equation 5.5 respectively.

16: Substitute p = [px(j̆), Yl̃ + py(̆i), pz(q̆), 1]T in Equation 5.6 to obtain

the coordinates after rotation p′(·) = [cx(lc), cy(lc), cz(lc), 1]T

17: lc ← lc + 1

18: end for

19: end for

20: end for

21: return cx, cy, cz
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In the proposed 3D coverage modelling scheme for visual sensing nodes presented

in Algorithm 5.1, initially lc is defined as 1 which will act as a counter. Afterwards,

depending on a particular sampling interval S, the coordinates of points within the

visual sensing node’s FoV on the y-axis are obtained as py = {S, 2S, 3S, . . . , R}.
In order to calculate the number of points sy on the y-axis, sy =

⌊
R
S
⌋

is used.

Subsequently, for each point on the y-axis within the visual sensing node’s FoV,

considering θya = 0 and θye = 0, φa is set to
(
π
2
− θh

2

)
and θe is set to

(
π
2
− θv

2

)
. The

coordinates of O2 are calculated by substituting R = py(̆i) in Equation 5.3 and the

new coordinates of point O2 are also obtained as [X ′o, Y
′
o , Z

′
o, 1]T = [Xo, Yo, Zo, 1]T.

Next, utilising Equation 5.15 the x-axis lower and upper bounds γ−x and γ+
x re-

spectively are calculated. Furthermore, z-axis lower and upper bounds γ−z and γ+
z

respectively are obtained from Equation 5.16. Thereafter, px and pz are calculated

utilising Equation 5.13 and Equation 5.14 to obtain the coordinates of points on

the x-axis and z-axis respectively for a particular point on the y-axis. Moreover,

the number of points on the x-axis and z-axis for a particular point on the y-axis

are calculated from Equation 5.17 and Equation 5.18 respectively. Afterwards, for

each point on the x-axis and each point on the z-axis, depending on the azimuth

and elevation angles, Equation 5.4 and Equation 5.5 are used to calculate θya and

θye respectively. The post-rotation coordinates p′(·) = [cx(lc), cy(lc), cz(lc), 1]T are

obtained from Equation 5.6 by substituting p = [px(j̆), Yl̃ + py(̆i), pz(q̆), 1]T. The al-

gorithm terminates once the coverage coordinates cx, cy and cz of a visual sensing

node are obtained.

5.2.2 QoI-Centric Node Classification

In resource constrained scenarios, the utilisation of a homogeneous target QoI

threshold may reduce the energy efficiency of a VSN. This is due to the fact that

compared to others, some regions under VSN coverage may offer relaxation in

the requirement of maintaining a particular QoI threshold. Furthermore, due to

the time-varying nature of the targets’ characteristics monitored within the visual
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sensing nodes’ FoV, heterogeneous QoI realisation in VSNs is more suitable as

compared to the homogeneous QoI realisation. Thus, dividing the overall region

of interest within the sensing environment into smaller sub-regions and realising

heterogeneity in the target QoI thresholds is expected to preserve energy leading

to improved network lifetime. In order to optimise the network’s energy consump-

tion based on such realisation, each node within the network needs to be assigned

a local target QoI threshold to be achieved in accordance with its 3D spatial cov-

erage coordinates. Let Ct
r = [Cĩ

r

∣∣̃i = 1, 2, 3, · · · , ŝ] be the matrix denoting the

3D coordinates of ŝ sub-regions and Ωt = [λĩt
∣∣̃i = 1, 2, 3, · · · , ŝ] be the set of their

respective heterogeneous target QoI thresholds; where Cĩ
r = [cĩxr , c

ĩ
yr , c

ĩ
zr ]

T repre-

sents the 3D coordinates of the ĩth region of interest. Suppose Cl̃
s = [cl̃xs , c

l̃
ys , c

l̃
zs ]

T

denote the 3D coordinates of the region within the l̃th visual sensing node’s FoV.

Let the total number of points in cartesian coordinates within the FoV of l̃th visual

sensing node be represented by tl̃p and suppose tĩp denote the number of points in

ĩth region of interest. The degree of overlap between l̃th sensing node’s FoV and

ĩth region of interest is derived as,

Oĩl̃ =
1

min{tl̃p, tĩp}

tl̃p∑
ǐ=1

tĩp∑
ǰ=1

{ ∏
q̂∈{x,y,z}

1−
[
sgn

(
cl̃q̂s (̌i) − c

ĩ
q̂r(ǰ)

)]2
}

(5.21)

where sgn is the signum function. The value of Oĩl̃ for tl̃p < tĩp is categorised as,

Oĩl̃ =



0, (cl̃xs * cĩxr) ∩ (cl̃ys * cĩyr) ∩ (cl̃zs * cĩzr)

(0, 1), (cl̃xs ⊂ cĩxr) ∩ (cl̃ys ⊂ cĩyr) ∩ (cl̃zs ⊂ cĩzr)

1, (cl̃xs ⊆ cĩxr) ∩ (cl̃ys ⊆ cĩyr) ∩ (cl̃zs ⊆ cĩzr)

(5.22)
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In case of tl̃p > tĩp, Equation 5.22 is modified as,

Oĩl̃ =



0, (cĩxr * cl̃xs) ∩ (cĩyr * cl̃ys) ∩ (cĩzr * cl̃zs)

(0, 1), (cĩxr ⊂ cl̃xs) ∩ (cĩyr ⊂ cl̃ys) ∩ (cĩzr ⊂ cl̃zs)

1, (cĩxr ⊆ cl̃xs) ∩ (cĩyr ⊆ cl̃ys) ∩ (cĩzr ⊆ cl̃zs)

(5.23)

whereOĩl̃ = 0 , 0 < Oĩl̃ < 1 andOĩl̃ = 1 refer to no overlapping, partial overlapping

and complete overlapping respectively between a sensing node’s FoV and particular

sensing sub-region.

The l̃th sensing node is assigned a local target QoI threshold λĩt based on the value

of ĩ that satisfies the following criterion,

ξl̃ = arg max
ĩ

[
1

min{tl̃p, tĩp}

tl̃p∑
ǐ=1

tĩp∑
ǰ=1

{ ∏
q̂∈{x,y,z}

1−
[
sgn

(
cl̃q̂s (̌i) − c

ĩ
q̂r(ǰ)

)]2
}]

(5.24)

Suppose H denote the degree of heterogeneity, such that H < ŝ. Let m̂ = {1, 2, 3,
. . . ,H + 1} represent a particular heterogeneity level and Nm̂ be the number of

nodes classified within the m̂th heterogeneity level given by,

Nm̂ = N (1− fm̂) (5.25)

where,

fm̂ = 1−

N∑̃
l=1

1− [sgn (ξl̃ − m̂)]2

N (5.26)

such that
H+1∑̂
m=1

fm̂ = H; therefore,
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Nm̂ =
N∑
l̃=1

1− [sgn (ξl̃ − m̂)]2 (5.27)

such that
H+1∑̂
m=1

Nm̂ = N .

5.3 Energy Model

The performance of a visual sensor network is characterised by the energy con-

servation within the network. Figure 5.2 shows the energy dissipation model of a

radio transceiver [202], which is characterised by the energy cost of the transmitter

and receiver units. Let Etx and Erx denote the energy consumed for transmitting

and receiving one bit respectively. Suppose k̂m̂
l̂

and k̃m̂
l̂

represent the number of

bits transmitted and received respectively by l̂th visual sensing node belonging

to m̂th level of heterogeneity. Let Nt and Nr denote the total number of image

frames transmitted and received by a visual sensing node. Suppose et
l̂

and er
l̂

represent the number of control signal bits transmitted and received by a visual

sensing node respectively. Within the context of the proposed framework, each

visual sensing node transmits its location, azimuth and elevation angles to the

sink node; and the sink node sends control signals to each visual sensing node for

classification within a suitable level of heterogeneity. Let nt and nr be the total

Transmitter
Unit
(Etx)

Switching
Unit

Receiver
Unit
(Erx)

Radio Transceiver

Communication
mode

k-bit packet

k-bit packet

Figure 5.2: Communication energy dissipation model [202]
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number of control signals transmitted and received by a visual sensing node. The

total energy consumption within the communication phase of a VSN is denoted

by Ẽc and obtained as,

Ẽc =
H+1∑
m̂=1

Nm̂∑
l̂=1

[
Etx

(
Ntk̂m̂l̂ + nte

t
l̂

)
+ Erx

(
Nrk̃m̂l̂ + nre

r
l̂

)]
(5.28)

As in Chapter 3 and Chapter 4, in order to calculate the energy consumption of

the visual sensing nodes, the energy model of [183] is used. The parameters used

to model the energy consumption of the radio transceiver are given in Table 3.8.

In VSNs, the energy cost incurred for visual data transmission and reception is

significantly higher than the data processing cost [27–29]. Therefore, only the

communication energy cost is considered to model the energy dissipation of a visual

sensing node, as in Chapter 4. Moreover, it is assumed that adequate resources

are available at the sink node and it is not constrained by limited energy, data

storage and computational capability. This is a widely adopted assumption in the

literature; consequently, the energy cost for reception at the sink node does not

influence lifetime of the VSN and can be ignored.

5.4 Results and Analysis

This section evaluates the robustness of the proposed unified framework compared

to existing state-of-the-art techniques. An analysis of the proposed framework’s

performance reliability is also presented. As in Chapter 4, in order to evaluate the

performance of the proposed unified framework, MATLAB simulation platform

was used to conduct the experiments on an Intel Core i5-4200U CPU @ 1.60GHz

2.30GHz with 8 GB RAM and 3 MB cache.
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5.4.1 Energy Efficiency of the Unified Framework

A 3D sensing environment of size 50× 50× 10 m3 is considered for visual sensing

nodes deployment and the origin of the coordinate system is assumed to be at

(1, 1, 1). The number of sensing nodes N within the network is considered to be

100 and the sampling interval S is 0.1 m. The horizontal and vertical FoVs are

considered to be 48.39◦ and 37.25◦ respectively, as in Chapter 3. The azimuth

and elevation angles are bounded within [0◦, 360◦] and [0◦, 155◦] respectively. It is

assumed that the visual sensing nodes are static; therefore, θe and φa are assumed

to be constant for each sensing node. Degree of heterogeneity up to 2 is considered,

therefore H ∈ {0, 1, 2} appears in the simulation model. H = 0 refers to homoge-

neous target QoI realisation; H = 1 and H = 2 refer to heterogeneous realisation

of target QoI. The number of control signal bits transmitted (et
l̂
) and received (er

l̂
)

each time the node classification takes place are 115 and 5 respectively. In the

simulation model, the number of control signals transmission nt = 1 and recep-

tion nr = 1 are considered for simplicity. However, the proposed framework can

support scenarios with dynamically changing QoI by updating the visual sensing

nodes’ target QoI thresholds for reclassification within a suitable level of hetero-

geneity. A detailed analysis of the proposed self-reconfiguration scheme to achieve

different homogeneous target QoI thresholds has been presented in Chapter 4.

Consider a heterogeneous realisation of target QoI i.e. H > 0. Modelling the simu-

lations using the parameters presented in the earlier discussion and incorporating

them within the proposed 3D coverage modelling and QoI-centric node classifi-

cation schemes, {f1, f2} = {0.48, 0.52} and {f1, f2, f3} = {0.64, 0.67, 0.69} are ob-

tained, as given in Table 5.1, for target QoI with first and second degree of hetero-

geneity respectively. Table 5.1 also presents the number of nodes classified in m̂th

level of heterogeneity i.e. {N1,N2} = {52, 48} and {N1,N2,N3} = {36, 33, 31}
for first (H = 1) and second (H = 2) degree of heterogeneity respectively with

m̂ = {1, 2, 3, . . . ,H + 1}.
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Table 5.1: Node classification for target QoI with first and second degree of
heterogeneity

H f1 f2 f3

H+1∑̂
m=1

fm̂ N1 N2 N3

H+1∑̂
m=1

Nm̂

1 0.48 0.52 – 1 52 48 – 100

2 0.64 0.67 0.69 2 36 33 31 100

The distribution of visual sensing nodes within the network and classification

based on two different target QoI thresholds, i.e. λ1
t and λ2

t , is shown in Fig-

ure 5.3. Moreover, Figure 5.4 illustrates the visual sensing node distribution and

classification for second degree of heterogeneity. It is expected that increasing
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Figure 5.3: Visual sensing nodes distribution within the network for first
degree of heterogeneity
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Figure 5.4: Visual sensing nodes distribution within the network for second
degree of heterogeneity

the degree of heterogeneity will enhance the energy efficiency of a VSN. The en-

ergy consumption analysis utilising the proposed unified framework with different

degree of heterogeneity will demonstrate such behaviour.

In order to analyse the efficiency of the proposed scheme, its energy consumption

for homogeneous and heterogeneous target QoI realisations is compared with the

energy cost of existing 2D-DWT and 2D-DCT based state-of-the-art approaches

proposed in [28, 29, 55] and the results are summarised in Table 5.2. These

approaches are chosen for comparison as they utilise 2D-DWT or 2D-DCT, which

are suitable for visual sensing nodes [191] and are employed for the proposed unified

framework’s performance analysis. Moreover, these approaches show promising

performance, therefore, the selection of these approaches will lead to a rigorous

comparative analysis.
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Scenarios 1a, 2a and 3a present the performance analysis for homogeneous tar-

get QoI realisation; scenarios 1b, 2b and 3b show the performance analysis for

heterogeneous target QoI realisation with tight thresholds; and scenarios 1c, 2c

and 3c provide the performance analysis for heterogeneous target QoI realisation

with relaxed thresholds. Table 5.2 also presents the minimum QoI achievement

reliability for such scenarios, which is discussed in the following section.

It is observed from scenarios 1a, 2a and 3a that with homogeneous QoI realisa-

tion i.e. 40 dB, 39 dB and 35 dB target QoI respectively, the proposed scheme

results in 21.03%, 17.55% and 30.78% energy savings compared to the schemes

presented in [28], [55] and [29] respectively. The results demonstrate that lower

target QoI threshold of 35 dB achieves higher energy efficiency compared to higher

QoI target thresholds. Similarly, for the first degree of heterogeneity with tight

QoI thresholds i.e. {39 dB, 40 dB}, {38 dB, 39 dB} and {34 dB, 35 dB}, it is

found from scenarios 1b, 2b and 3b that the proposed unified framework leads to

38.08%, 27.73% and 49.08% energy conservation compared to [28], [55] and [29]

respectively. Moreover, it is noticed from scenarios 1b, 2b and 3b that, for the sec-

ond degree of heterogeneity with tight QoI thresholds i.e. {38 dB, 39 dB, 40 dB},
{37 dB, 38 dB, 39 dB} and {33 dB, 34 dB, 35 dB}, the proposed unified framework

leads to 48.63%, 40.95% and 60.14% energy savings compared to [28], [55] and [29]

respectively. The results demonstrate that by increasing the level of heterogeneity

in target QoI, superior performance in terms of energy savings is achieved. More-

over, as discussed earlier, the results signify the suitability of the proposed scheme

for resource constrained scenarios by providing significant energy savings at lower

QoI target thresholds.

The experiments are also conducted for first degree of heterogeneity with relaxed

QoI thresholds i.e. {30 dB, 40 dB}, {30 dB, 39 dB} and {30 dB, 35 dB}, it is ob-

served from scenarios 1c, 2c and 3c that the proposed unified framework provides

61.92%, 60.12% and 64.68% energy savings compared to [28], [55] and [29] respec-

tively. Furthermore, results obtained by considering second degree of heterogeneity
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with relaxed QoI thresholds i.e. {30 dB, 35 dB, 40 dB}, {30 dB, 35 dB, 39 dB} and

{30 dB, 33 dB, 35 dB}, in scenarios 1c, 2c and 3c demonstrate 71.95%, 69.26% and

70.21% energy savings with the proposed unified framework compared to [28], [55]

and [29] respectively. It is observed from the results that relaxed QoI thresholds

result in higher energy savings compared to the tight QoI thresholds. Moreover,

the scenarios where second degree of heterogeneity is considered with relaxed QoI

thresholds lead to substantial energy conservation compared to other scenarios.

In light of the aforementioned analysis, it can be concluded that the proposed

unified framework results in substantial energy savings compared to its existing

counterparts and thus leads to an improved network lifetime. The reason for these

energy savings is the dynamic nature of the proposed scheme, where visual sensing

nodes are dynamically assigned a suitable target QoI threshold and reconfigured

accordingly. In contrast, the schemes in [28, 29, 55] are static for particular tar-

get QoI thresholds. Moreover, the results demonstrate that heterogeneous QoI

realisations result in significantly higher energy savings as compared to their ho-

mogeneous counterparts. Hence, the proposed scheme provides a feasible solution

to enhance the energy efficiency of individual visual sensing nodes and it is found

to be suitable for VSNs with strict constraints on available energy. The follow-

ing section formulates an analytical model to analyse the proposed framework’s

performance reliability.

5.4.2 Analysis of Proposed Framework’s Performance Re-

liability

Reliable reporting of visual information to the sink node is an important require-

ment in VSNs [1, 203]. Within the context of the proposed unified framework for

node classification and self-reconfiguration, reliability can be defined as the abil-

ity of the visual sensing nodes to deliver the visual information while satisfying

the target QoI requirements. In order to analyse the robustness of the proposed
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framework, an analytical model is developed to calculate the performance relia-

bility as a function of: the target QoI threshold (λt) and the QoI delivered by

a visual sensing node (β). Due to the fact that the fidelity of the compressive

calibration matrix is quantified within a confidence bound [e−, e+] (as shown in

Equation 4.9), the performance reliability of the proposed framework is bounded

between [P−r ,P+
r ], where P±r ∈ [0, 1], and is derived as,

P±r =


1− ξ±p , λt ≥ β + e±

1, otherwise

(5.29)

ξ±p =

Q
10

2 log(m)−λt
20 − 10

2 log(m)−β+e±
20

α̂b−1∑
k=0

2
2k

− 0.50

×
Q

10
2 log(m)− ζu

20 − 10
2 log(m)− ζl

20

α̂b−1∑
k=0

2
2k

− 0.50


−1

(5.30)

where ξ±r denote the probability of failure to ensure the target QoI satisfaction

and it is calculated from Equation 5.30 with m = 2α̂b−1 (α̂b denote the number of

bits per pixel), e± is obtained from Equation 4.9 and Q(·) is the Q-function given

by,

Q(x̂) =
1√
2π

∫ ∞
x̂

e−
1
2
q2dq (5.31)

The robustness of a system employing image processing algorithms is directly

proportional to the PSNR, and Q(·) is a monotonically decreasing function; thus

the realisation with (1−ξ±p ) leads to a measure of robustness in terms of reliability
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to dynamically ensure that the targeted QoI is achieved. Using Equation 4.9,

e− and e+ for the proposed framework are found to be −0.78 dB and 0.87 dB

respectively. Substituting the parameters in Equation 5.29 and Equation 5.30,

the system reliability to achieve targeted threshold based optimisation is shown in

Figure 5.5 and Figure 5.6. The lower bound P−r obtained with respect to e−, which

denotes the minimum reliability offered by the system for a range set of target QoI

thresholds (λt) and delivered QoI (β) is shown in Figure 5.5. It is observed from

Figure 5.5 that the reliability increases with the increase in delivered QoI and

attains a maximum value when β + e− ≥ λt.

30
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40

27

30

33

36

39

42

0

0.2

0.4
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0.8

1

λt
(dB

)

β
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P
− r

Figure 5.5: The minimum level of reliability for a range set of target QoI
threshold (λt) and delivered QoI (β).
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± r

Figure 5.6: Proposed framework’s confidence bound for retrieving the infor-
mation.

In order to demonstrate the reliability of the QoI ensured by the proposed frame-

work, incorporating both e− and e+, the region between the upper and lower

confidence bounds, representing P±r , is shown in Figure 5.6. It is noticed that the

reliability, bounded between P−r and P+
r (shown in the shaded region), increases

with the increase in target QoI threshold. This is due to the fact that the impact

of the fidelity of the compressive calibration matrix decreases with the increase in

target QoI threshold and thus enhances the confidence bound for retrieving the

information.

As the fidelity of the compressive calibration matrix is quantified within a confi-

dence bound [e−, e+], it is pertinent to study the impact of different values of the

parameter e− on the minimum QoI achievement reliability. Figure 5.7 illustrates

such impact by considering the values of e− from −1 dB to 0 dB for different

target QoI thresholds i.e. 40 dB, 35 dB and 30 dB.
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Figure 5.7: Proposed framework’s information retrieval confidence bound for
varying fidelity of the compressive calibration matrix.

The results demonstrate that the reliability level is minimum at the lowest value

of e− and it increases as the value of e− increases. Moreover, as mentioned earlier,

the impact of e− on the reliability is higher at lower target QoI thresholds. As an

example, the results show that the information retrieval reliability at λt = 40 dB

is higher than the reliability at λt = 35 dB and λt = 30 dB for e− = −1 dB.

Due to the dependency of the reliability level on various parameters, it is required

to develop a methodology which can assist the design engineers in selecting a

suitable target QoI threshold λt that can satisfy a desired level of reliability P tr.
Suppose tλ be the set of target QoI thresholds and aβ be the set of respective

delivered QoI. Algorithm 5.2 presents a method for calculating an optimal target

QoI threshold λt to be employed within a visual sensing node such that it operates

at a desired reliability level P tr.
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Algorithm 5.2 Optimal target QoI threshold calculation for sensing node oper-
ation at a desired level of reliability

Input:

The set of target QoI thresholds tλ, the set of respective delivered QoI aβ, the

lower bound that quantifies the fidelity of the compressive calibration matrix

e−, the number of bits per pixel α̂b, the system’s dynamic PSNR range (ζ l, ζu)

and the desired reliability level P tr.
Output:

The target QoI threshold λt to be employed by a visual sensing node such that

it operates at a desired reliability level.

1: p̂− ← ∅

2: for k̆ ← 1 to ‖tλ‖0 do

3: λt ← tλ(k̆)

4: β ← aβ(k̆)

5: if λt ≥ β + e− then

6: Calculate ξ−p from Equation 5.30

7: P−r ← 1− ξ−p
8: else

9: P−r ← 1

10: end if

11: p̂−
(k̆)
← P−r

12: end for

13: σ ← arg mink̆

[∣∣∣P tr − p̂−(k̆)

∣∣∣] ; k̆ = {1, 2, . . . , ‖tλ‖0}
14: λt ← tλ(σ)

15: return λt

In the method presented in Algorithm 5.2, initially a matrix p̂− is defined. Af-

terwards, each element from the vector tλ and the respective value from vector

aβ is extracted and the criterion λt ≥ β + e− is employed. In case if the cri-

terion is true, ξ−p is calculated from Equation 5.30 and P−r is obtained using
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P−r = 1 − ξ−p . Whereas, if the criterion is not satisfied, P−r = 1 is obtained.

Next, the value of P−r is stored at the k̆th index of the vector p̂−. Afterwards,

function arg mink̆

[∣∣∣P tr − p̂−(k̆)

∣∣∣] is utilised and the resulting value of k̆ is stored in

σ; where k̆ = {1, 2, . . . , ‖tλ‖0} and ‖·‖0 is the l0-norm. The value at index σ is

extracted from tλ and stored in λt, which can be utilised within a visual sensing

node for satisfying a desired reliability level.

A comparison of the minimum QoI achievement reliability for homogeneous and

heterogeneous QoI realisations is presented in Table 5.2. In the case of homoge-

neous target QoI thresholds of 40 dB, 39 dB and 35 dB, the reliability of the pro-

posed framework to ensure that the targeted QoI is achieved is as low as 97.52%,

97.22% and 95.59% respectively. On the other hand, for heterogeneous target

QoI thresholds, the proposed unified framework guarantees as low as 93.88% re-

liability. Although, compared to the homogeneous scenarios, the heterogeneous

realisations result in up to 2.68% degradation in the reliability. However, the lat-

ter lead to substantial energy savings and justify the robustness of the proposed

unified heterogeneous framework of node classification and self-reconfiguration for

resource constrained VSNs. Moreover, the tight and relaxed heterogeneous target

QoI thresholds provide a trade-off between energy efficiency and reliability.

5.5 Summary

This chapter considered the adoption of heterogeneity in the reconfiguration cri-

teria to maximise the global efficiency of achieving the reconfiguration objective.

Since, the manual allocation of a suitable level of heterogeneity to each visual

sensing node within the VSN is not feasible, a classification scheme is developed

to dynamically categorise visual sensing nodes into suitable heterogeneity levels.

In the proposed node classification scheme, visual sensing nodes are categorised

depending on the QoI requirements of the region within their FoV. In order to

equip visual sensing nodes with their FoV information, a 3D coverage modelling
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scheme is proposed which is capable of dynamically obtaining visual sensing nodes’

FoV information. Once the visual sensing nodes obtain their FoV information, the

node classification scheme categorises them into various heterogeneity levels.

In order to enhance the robustness, a novel unified framework for the classification

and self-reconfiguration of sensing nodes in resource constrained VSNs is proposed.

The proposed framework incorporates the QoI-centric node classification scheme,

the 3D coverage modelling scheme and the in-node processing model by exploit-

ing the heterogeneity of targeted QoI threshold levels within the sensing region.

Since, satisfying a particular acceptable reliability level is paramount in VSN ap-

plications, an analytical model is formulated to quantify the degree to which the

targeted QoI thresholds are achieved by a visual sensing node. The analytical

model, depending on the given application, provides a tuneable model to attain

suitable QoI thresholds.

An energy model is developed to calculate the energy consumption of the proposed

unified framework. Simulations were performed to evaluate the energy efficiency

of the proposed unified framework by considering node deployment in a 3D sensing

environment and degree of heterogeneity up to 2. For given target thresholds of

QoI, it is observed that the proposed unified framework resulted in significant

amount of energy savings compared to the existing state-of-the-art techniques,

as shown in the results, thus enhancing the lifetime of the network. The energy

efficiency of the proposed unified framework demonstrated its feasibility to assist

the system design engineers for speedy deployment of VSNs in scenarios with strict

resource constraints.

The next chapter briefly summarises the research challenges and contributions of

the thesis. Moreover, it provides several directions to extend the proposed schemes

for future research.



Chapter 6

Conclusions and Future

Directions

This chapter presents a brief summary of the thesis and provides a strategy for

future research utilising the proposed schemes.

6.1 Conclusions

A summary of the research challenges, the proposed FoV characterisation frame-

work, the proposed QoI-aware self-reconfiguration scheme and the proposed unified

framework is provided in the following sections.

6.1.1 Research Challenges

VSNs have attracted the attention of both the research community and the in-

dustry for over a decade. By embedding a visual sensor, processor and a wire-

less transceiver within a tiny low-powered sensing node, VSNs are capable of

autonomously sensing multi-dimensional signals i.e. images, and implementing

155
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complex signal processing algorithms. Compared to a traditional WSN, the visual

sensing in a VSN significantly enhances the level of detail in the acquired data and

consequently increases feasibility for a diverse range of applications. However, vi-

sual data requires high bandwidth for transmission and thus, results in high energy

consumption. In order to guarantee suitable levels of reliability within VSNs, the

need to maintain targeted QoI thresholds is paramount. Due to the resource con-

strained nature of VSNs, achieving targeted QoI thresholds is a challenging task.

Therefore, the algorithms utilised during the design and implementation phases of

VSNs must minimise the energy consumption for an improved network lifetime. It

is pertinent to characterise visual sensing nodes’ FoV for optimised sensing range

estimation and reliable monitoring of the targeted sensing environment. Exploiting

the diversity of sensing and processing tasks within a VSN, an efficient task clas-

sification scheme can be employed for energy conservation. Furthermore, in-node

processing and self-reconfiguring for optimised feature redundancy removal can

also contribute towards energy savings resulting in network lifetime maximisation.

A significant number of research studies are present in the existing literature to

address issues relating to VSNs such as FoV identification, coverage estimation

and enhancement, feature detection and extraction, visual data transmission, task

classification, camera scheduling and self-reconfiguration etc. However, many ex-

isting solutions are found to be application-specific under particular resource con-

strained scenarios. Furthermore, many schemes have been developed for homo-

geneous VSNs which cannot be directly implemented within their heterogeneous

counterparts. In most of the existing schemes, a simplified 2D sensing model is as-

sumed along with a 2D sensing environment; whereas, many applications require

3D sensing within a 3D targeted sensing environment. Moreover, the existing

schemes do not jointly consider the heterogeneous target QoI thresholds within

the sensing environment and dynamic QoI-aware optimisation of visual data prior

to transmission. In order to resolve the aforementioned issues within resource

constrained VSNs, this thesis provided design solutions for energy efficient sensing
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node characterisation with feature utilisation.

6.1.2 FoV Characterisation Framework

In this thesis, a novel approach for characterising a visual sensing node’s FoV for

both homogeneous and heterogeneous networks is presented. It is observed that

an image captured by a visual sensing node is a function of the sensing range,

the horizontal FoV and the vertical FoV. Therefore, it is pertinent to estimate

the FoV parameters accurately and the sensing range optimally. In the case of

static visual sensing nodes, horizontal and vertical FoV are constant; whereas,

FoV parameters change in PTZ capable sensing nodes. Sensing range maximisa-

tion results in the reduction of total sensing nodes required to provide full coverage

and consequently, minimises the overall energy consumption within the network.

The proposed FoV characterisation method selects a suitable approach during the

projection modelling phase to calculate the FoV parameters of homogeneous and

heterogeneous networks. Global colour histogram-based features are employed for

feature detection and extraction in YCbCr colour space. FoV characterisation cri-

teria is proposed to estimate optimal range of visual sensing nodes based on the

minimum object pixel occupancy, maximum allowable error tolerance and desired

image quality. Within the context of heterogeneous VSN design, the proposed

FoV characterisation criteria is supported by a soft decision based sensing range

selection scheme. Furthermore, an adaptive task classification scheme is also pro-

posed to efficiently distribute tasks between heterogeneous visual sensing nodes.

Exploiting heterogeneity, the proposed soft decision based sensing range selection

and the adaptive task classification schemes provide an energy efficient solution

for visual sensing node’s spatial coverage maximisation leading to an improved

network lifetime without compromising on the desired reliability.

The performance of the proposed FoV characterisation framework is evaluated

through experiments and simulations. Assuming static visual sensing nodes, the
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horizontal and vertical FoV are calculated by experiments utilising the projection

model and the estimation accuracy has been verified. Afterwards, the probability

of a pixel within the captured image belonging to an object of interest has been

estimated and utilised for feature detection and extraction. Once the object of in-

terest is extracted from the captured image with feature utilisation, the accuracy

of the proposed method to calculate the object pixel occupancy is verified through

an experiment. It is observed that an increase in the sensing range results in the

reduction of object pixel occupancy. Therefore, it is pertinent to estimate an opti-

mal sensing range based on the application’s object pixel occupancy requirement

for visual sensing node’s FoV characterisation. Furthermore, an experiment was

conducted to evaluate the estimation error based FoV characterisation method.

For this purpose, an application which estimates the diameter of an object ex-

tracted from the visual data was considered. It was noticed from the experiment

that as the sensing range increases, the inaccuracy in feature detection and ex-

traction increases and thus results in a higher estimation error. Therefore, the

estimation error based FoV characterisation method can be utilised for applica-

tions demanding a particular level of estimation reliability. Another method for

FoV characterisation based on the desired image quality is evaluated through an

experiment. PSNR is used as an image quality assessment technique and it is ob-

served that as the sensing range increases, the resulting image quality decreases.

This method is suitable for applications where image quality is paramount for FoV

characterisation.

The robustness of the proposed FoV characterisation framework for homogeneous

networks has been analysed by considering various applications. It is found that

the proposed framework provides an application-aware solution to the FoV char-

acterisation problem by optimising the visual sensing node’s spatial coverage lead-

ing to a substantial reduction in the energy consumption. Heterogeneous networks

provide much more flexibility to the design engineer compared to the homogeneous

networks due to the presence of different kinds of sensing nodes within the network.
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The performance of the proposed heterogeneous network design solution has been

evaluated by considering a surveillance application with two tasks: face detection

and occluded target tracking. Utilising the feedback provided by the proposed soft

decision based sensing range selection scheme with the proposed task classification

scheme, optimised node configurations were obtained for a resource constrained

heterogeneous network. It has been observed that the proposed solution leads to

49.8% energy savings compared to the trivial design solution and prolongs the

heterogeneous network’s lifetime by two-fold. In order to enhance the reliability

of the proposed FoV characterisation framework, an analysis of system failure has

been presented to predict and minimise the network failure probability. The en-

ergy efficiency of the proposed FoV characterisation framework demonstrates that

it can be utilised during the network design and calibration phase to achieve an

application-aware solution.

6.1.3 QoI-Aware Self-Reconfiguration Scheme

Since visual sensing nodes provide rich information of the scene within their FoV,

redundant features can be removed prior to transmission in VSNs. However, such

removal may affect the quality of the visual data. Therefore, the selection of

an optimised visual sensing node’s configuration for feature redundancy removal

is required. Due to the dynamic nature of information within the visual data

acquired by a sensing node, static node configurations are energy inefficient for re-

source constrained scenarios. Therefore, the implementation of self-reconfiguration

schemes within visual sensing nodes to dynamically select optimised configurations

can result in substantial energy savings. This thesis presented a dynamic self-

reconfiguration scheme to enhance the energy efficiency of visual sensing nodes

with target QoI threshold based optimisation. In the proposed scheme, QoI is

characterised by the quality of the visual data and quantified by a PSNR based
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representative metric. In VSNs, the energy consumption during the communica-

tion phase is significantly higher than the processing phase. Therefore, the config-

uration of a visual sensing node for optimisation is considered to be the amount

and quality of the visual data for transmission. Visual sensing node management

algorithms are classified into centralised and distributed categories; nevertheless,

the latter are preferred due to the scalability and complexity issues of the former.

Moreover, distributed algorithms are suitable for bandwidth constrained visual

sensor networks.

Hence, considering benefits of the distributed approach, a decision making strategy

is devised for visual sensing nodes to select optimised configuration independently,

consequently, accelerating the decision making process. The distributed nature

of the proposed scheme is supported by the training and calibration of visual

sensing nodes which take place in the network pre-deployment phase. For a given

application, the training and calibration process is initiated by the selection of a

suitable dataset. The feature redundancy within visual data is characterised by the

appearance of objects within visual sensing node’s FoV. Since changing the sensor-

to-object distance modifies the number of redundant features. Therefore, in the

training and calibration process, the appearance of objects within visual sensing

node’s FoV is modelled. Afterwards, employing a suitable dynamic compression

range, redundant features are removed from the acquired visual data. As discussed

earlier, feature redundancy removal may introduce undesirable degradation in QoI;

therefore, the resulting quality must be taken into account to achieve an acceptable

level of reliability for a given application. In the proposed approach, the quality is

quantified by a QoI index which incorporates the system’s dynamic PSNR range.

For a range set of dynamic sensor-to-object distances and compression ratios, QoI

index is utilised to obtain the quality metrics for each test image from the dataset.

Compressive calibration matrix is calculated which serves as a reference to gauge

the impact of feature redundancy removal on the quality of the acquired visual

data. Thereupon, each visual sensing node learns the compressive calibration
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matrix at the termination of the training and calibration process.

An in-node processing model is proposed to support visual sensing nodes’ self-

reconfiguration in the post-deployment phase. After the acquisition of visual data,

a suitable feature detection scheme can be employed depending on the given ap-

plication to extract the object of interest. A target-driven approach is considered

where the extracted object of interest is processed further prior to transmission

only if its pixel occupancy is greater than a given threshold. The level of detail

in the visual data is a function of the sensor-to-object distance. Hence, utilising

the output of the feature detection and extraction process, the sensor-to-object

distance is estimated. A self-reconfiguration scheme is proposed to support the

in-node processing model. The proposed reconfiguration scheme is a function of

the target QoI threshold to be achieved based on the application design criteria.

In order to minimise energy consumption, the spatial location of an object within

a visual sensing node’s FoV is exploited. Each time an object is detected, the

respective visual sensing node utilises the knowledge acquired from the learning

process to calculate the active compressive calibration matrix and the transmission

energy cost matrix. Thereupon, the visual sensing node is dynamically reconfig-

ured by maximising the level of feature redundancy removal leading to minimum

possible energy consumption while achieving the target QoI threshold.

Simulations were carried out to evaluate the performance of the proposed self-

reconfiguration scheme. The LDHF dataset is used during the training and calibra-

tion process as it provides a variety of facial images captured with various sensor-

to-object distances; thus, making it suitable to evaluate the proposed scheme. An

image subset is extracted randomly from the data set. The proposed object mod-

elling approach is employed to model the appearance of faces contained in the test

images for a range set of sensor-to-object distances. The resulting QoI index is

observed and it is found that as the sensor-to-object distance increases, the QoI

index decreases. It is also noticed that the decaying characteristics of all the test

images are identical. 2D-DWT and 2D-DCT schemes are considered to support
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the process of redundant feature removal due to their suitability for visual sens-

ing nodes. Compressive calibration matrix is obtained after object appearance

modelling and redundant feature removal with 2D-DWT and 2D-DCT. It is ob-

served that an increase in the level of redundancy removal leads to a reduction

in QoI index. Therefore, selecting inappropriate sensing node configuration for

feature redundancy removal can degrade the performance reliability; hence, the

need for a self-reconfiguration scheme to select optimised node configurations is

justified. It is found from the resulting QoI that the scheme supported by DWT

is much more efficient as compared to the DCT based scheme. The energy effi-

ciency of the proposed QoI-aware self-reconfiguration scheme as compared to the

conventional scheme is quantified in terms of the transmission energy cost. The av-

erage transmission energy cost incurred per node to achieve various homogeneous

QoI target thresholds with the proposed and conventional schemes supported by

2D-DWT and 2D-DCT are calculated and compared. It is observed from the

comparison that for any given target QoI threshold, the proposed QoI-aware self-

reconfiguration scheme minimises the transmission energy cost and thus, enhances

the energy efficiency of visual sensing nodes within a resource constrained network.

6.1.4 Unified Framework with Heterogeneous QoI Reali-

sation

In order to support intelligent sensing within VSNs, visual sensing nodes are re-

quired to be aware of the sensing environment within their FoV. This thesis pre-

sented a 3D coverage modelling scheme for visual sensing nodes to dynamically

obtain their FoV information. Due to the time-varying nature of the targets’

characteristics monitored within a visual sensing node’s FoV, heterogeneous QoI

realisation in VSNs is more suitable as compared to its homogeneous counter-

part. Energy efficiency within the network can be achieved by dividing the overall

sensing environment into smaller sub-regions and utilising heterogeneous target
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QoI thresholds. Based on its 3D spatial coverage coordinates, each visual sens-

ing node within the network needs to be allocated a suitable local target QoI

threshold. Therefore, a QoI-centric scheme is proposed in this thesis for the clas-

sification of visual sensing nodes into a suitable level of heterogeneity. A unified

framework is developed by incorporating the 3D coverage modelling scheme, QoI-

centric node classification scheme and the in-node processing model. The proposed

unified framework enhances the sensing and processing intelligence of VSNs by self-

reconfiguring the sensing nodes based on their 3D FoV and given heterogeneous

target QoI thresholds. Since maintaining a particular acceptable reliability level is

paramount in many VSN applications, an analytical model is formulated to gauge

the performance reliability of the proposed unified framework as a function of the

targeted and delivered QoI thresholds. Depending on the given application, the

analytical model assists the system design engineers to attain the desired level of

reliability by fine-tuning to the required QoI thresholds.

The energy efficiency and reliability of the proposed unified framework is eval-

uated through experiments. A 3D sensing environment is considered for visual

sensing nodes deployment and the degree of heterogeneity up to 2 is considered.

The proposed 3D coverage modelling and QoI-centric node classification schemes

are employed to assign each visual sensing node a local target QoI threshold.

The energy consumption of the proposed unified framework is compared with the

existing state-of-the art techniques utilising 2D-DWT and 2D-DCT based com-

pression schemes. A comparison with tight and relaxed heterogeneous target QoI

thresholds is presented and it is observed that the proposed framework results in

significant amount of energy savings compared to its counterparts leading to an

improved network lifetime. From the analysis of the proposed framework’s per-

formance reliability, it is noticed that higher QoI thresholds lead to an improved

reliability. Moreover, it is found that the proposed unified framework provides

suitable information retrieval reliability. Hence, the utilisation of the proposed

framework in resource constrained scenarios is justified due to its energy efficiency
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and tuneable reliability.

6.2 Research Limitations

Although the proposed frameworks result in substantial energy savings and demon-

strate their suitability for utilisation in resource constrained VSNs, the following

aspects of this research require further investigation.

• Colour features are used in the proposed FoV characterisation framework for

object detection and feature extraction due to their implementation simplic-

ity and low storage requirement. However, colour features are sensitive to

lighting changes in the environment. Therefore, the utilisation of low-level

colour features with suitable high-level features can be considered to enhance

the efficiency of the feature extraction process.

• The self-reconfiguration scheme proposed in this thesis provides a trade-off

model between reliability and energy efficiency. It results in optimisation

based on the QoI target thresholds given by the system design engineers.

However, further investigation is required to automate the process of QoI

target thresholds calculation depending on the application and criticality of

events being monitored by the sensing nodes.

• The performance of the proposed self-reconfiguration scheme is evaluated

by using the LDHF dataset which contains facial images only. Therefore,

datasets containing different types of objects can be used during the training

and calibration process in the pre-deployment phase to enhance the intelli-

gence of the visual sensing nodes.
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6.3 Future Directions

This thesis contributes to the area of VSN design and implementation by resolving

some issues faced due to its resource constrained nature through optimised visual

sensing nodes characterisation and feature utilisation. There are several strategies

for future extension of the work presented in this thesis which comprise of the

following:

6.3.1 Resource-Aware Task Classification and Self-

Reconfiguration

Task allocation is a critical issue in VSNs due the complex nature of sensing and

processing tasks. Resource-awareness can be introduced in visual sensing nodes to

dynamically manage the available resources in an energy efficient manner. There-

fore, in addition to the task classification scheme presented in the thesis, the

residual energy at a visual sensing node can be considered for energy efficient task

allocation. Furthermore, the selection of a suitable visual sensing node configu-

ration for feature redundancy removal can be based on the residual energy. As a

visual sensing node’s residual energy falls below a pre-determined threshold, the

target QoI thresholds can be reduced in order to maximise feature redundancy

removal, resulting in transmission energy cost minimisation and network lifetime

maximisation.

6.3.2 Node Deployment Technique to Achieve Network

Barrier Coverage

Within the context of sensor networks, barrier coverage utilises the sensing nodes

to monitor the boundaries of critical infrastructures. The main aim of barrier

coverage is to guarantee detection of intruders crossing the barrier of the network.
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The majority of the research studies found in literature on barrier coverage con-

sider WSNs and thus, assume sensing nodes having an isotropic sensing model.

However, many applications require VSNs to be employed, which comprise of vi-

sual sensing nodes having a directional sensing model. Therefore, the existing

schemes for barrier coverage assuming an isotropic sensing model are not feasi-

ble for such applications. Thus, for applications utilising VSNs, the proposed 3D

coverage modelling scheme can be considered for the development of a reliable

method to achieve network barrier coverage.

6.3.3 Coverage and Redundancy Management

Coverage maximisation and redundancy management is a challenging task in re-

source constrained VSNs. Utilisation of the proposed 3D coverage modelling

scheme to develop reconfiguration models for coverage and redundancy optimi-

sation of PTZ capable visual sensing nodes can be considered. This is expected to

provide energy efficient solutions for collaborative management of visual sensing

nodes’ orientation and FoV parameters based on the criticality of events to prolong

the network lifetime.

6.3.4 Reliable Monitoring for Health Care Applications

Although, a number of research studies have been conducted for health care ap-

plications; however, only a few of them consider the joint utilisation of scalar and

visual sensors for cooperative and intelligent sensing that leads to an enhanced

overall system reliability. Therefore, the proposed FoV characterisation scheme

can be employed for health care applications (such as monitoring elderly well-

being) to obtain optimised visual sensing node configurations. Furthermore, the

proposed self-reconfiguration scheme can be utilised with a Wireless Body Area

Network (WBAN) comprising various sensor types such as blood pressure, pulse
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etc. The information obtained from WBAN can be considered for reconfiguring

the visual sensing nodes such that a particular required level of reliability is main-

tained.

6.4 Routing Protocol for Real-time Visual Data

Delivery

Real-time multimedia delivery is one of the key objectives in next-generation of

wireless networks [204, 205]. Although, many research studies are present in the

existing literature for data routing in WSNS; however, the conventional WSN

routing protocols are not suitable for visual content delivery in VSNs. Therefore,

an energy efficient routing protocol can be developed and incorporated within the

proposed unified framework for applications where real-time visual data delivery

is desirable. Furthermore, the visual data processing time can be characterised

for the proposed self-reconfiguration scheme. Such characterisation is expected to

support the routing protocol in delivering real-time visual data to the sink node

by resolving the synchronisation problems.

6.5 Practical Implementation of the Proposed

Schemes

The experiments presented in this thesis to evaluate the performance of the pro-

posed task classification, node classification and self-reconfiguration schemes are

conducted utilising the MATLAB simulation platform. One of the strategies for

future work can be the practical implementation of the proposed schemes within

visual sensing nodes to evaluate the network performance within the context of

energy efficiency and reliability. Furthermore, feasible solutions for multi-objective
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optimisation to self-reconfigure the visual sensing nodes can be obtained and im-

plemented for VSN performance enhancement.
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