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Abstract 

Membranes can potentially offer low-cost CO2 capture from post-combustion flue gas. 

However, the low partial pressure of CO2 in flue gases can inhibit their effectiveness 

unless methods are employed to increase their partial pressure. Selective-Exhaust Gas 

Recirculation (S-EGR) has recently received considerable attention. In this study, the 

performance of a dense polydimethylsiloxane (PDMS) membrane for the separation of 

CO2/N2 binary model mixtures for S-EGR application was investigated using a bench-scale 

experimental rig. Measurements at different pressures, at different feeding concentrations 

and with nitrogen as sweep gas revealed an average carbon dioxide permeability of 2943 

± 4.1%RSD Barrer. The bench-scale membrane module showed high potential to separate 

binary mixtures of N2 and CO2 containing 5 to 20% CO2. The permeability was slightly 

affected by feed pressures ranging from 1 to 2.4 bar. Furthermore, the separation 

selectivity for a CO2/N2 mixture of 10%/90% (by volume) reached a maximum of 10.55 at 

1.8 bar. Based on the results from the bench-scale experiments, a pilot-scale PDMS 

membrane module was tested for the first time using a real flue gas mixture taken from the 

combustion of natural gas. Results from the pilot-scale experiments confirmed the 

potential of the PDMS membrane system to be used in an S-EGR configuration for capture 

of CO2.  

1. Introduction 

Global warming is due to anthropogenic release of carbon dioxide and other polyatomic 

gases into the atmosphere [1]. Atmospheric CO2 concentration has increased from 275 to 



387 ppm over the past century and is currently around 407 ppm [2]. Combustion of fossil 

fuels (e.g., coal, oil, natural gas) for power generation is the leading source of increasing 

atmospheric CO2 levels accounting for almost half the annual CO2 emissions [3]. As power 

generation via fossil fuels produces cheap and reliable electricity, demand for them will 

continue over the short to medium term, hence solutions to mitigate the release of CO2 are 

urgently needed [1].  

Carbon capture and storage (CCS) is a family of technologies that offer the potential to 

mitigate CO2 emissions [3]. Recent research on CCS technologies has been considerable 

as governments seek to reduce the carbon emissions released from power generation [4]. 

Strategies to reduce CO2 emissions from power generation can be classified into three broad 

categories [3,5].  

• Oxy-fuel combustion [6,7]: A concentrated oxygen feed is reacted with a fossil fuel 

(e.g., coal, gas, oil) to produce a highly-concentrated exhaust stream of CO2. The 

exhaust stream can be recycled back into the fossil fuel burner, and ultimately the 

concentrated CO2 stream is captured and stored.  

• Pre-combustion [8–10]: A gasification process partially oxidises a fossil fuel (e.g., 

coal) under high temperature and pressure to generate a synthesis gas that can be 

reformed to produce CO2 and hydrogen. The CO2 can be recovered and the 

hydrogen-rich fuel used in the combustion process.  

• Post-combustion [11,12]: A fossil fuel is combusted and CO2 is removed from the flue 

gas.  

Among these three strategies, post-combustion capture technologies have the key 

advantage that they can be retrofitted to existing plants [13]. Commonly studied approaches 

for post-combustion capture include absorption in liquids (e.g., monoethanolamine (MEA)) 

[14], adsorption onto solids (e.g., activated carbon) [15,16], cryogenic distillation [17], and 

membrane separation [18]. Carbon capture via chemical absorption using MEA or other 

amines is the most advanced technology, as it is well established in the gas industry, and a 

number of pilot and demonstration studies have been undertaken around the world to 

demonstrate its potential for use in CO2 capture from power plant flue gas [19,20]. However, 

liquid amine absorption has several drawbacks. Energy requirements for regeneration of the 

solvent are considerable and result in overall power plant efficiency losses of 10-14% 

[21,22]. Moreover, solvent degradation due to secondary reactions, e.g., with SOx, is another 



issue that increases material replacement and disposal costs as well as contributing to 

environmental pollution [23].  

Gas separation membranes compete well with liquid sorption technologies and have less 

environmental impact, and have a small technology footprint that can be more easily 

retrofitted to existing power plants with fewer modifications. Most importantly, compared to 

MEA and other amine systems, a multi-stage membrane system demands lower specific 

energy for separating CO2 at low concentrations in flue gas [24]. 

Membrane gas separation is a pressure-driven process whereby the partial pressure 

difference between feed and permeate drives separation of target gas molecules across the 

membrane [25]. Industrial membrane gas separation processes have mainly focussed on 

nitrogen production, air drying [26] and natural gas treatment [27]. For CO2 separation, 

membranes have been used to remove CO2 from methane (CO2/CH4 separation), either for 

natural gas processing [28], or purification of recovered landfill biogas [29]. 

Despite these benefits, membrane systems remain untested at scale and a number of 

operational challenges must be overcome before successful integration with full-scale power 

plants can be realised. Particular challenges are gas composition, pressure, and 

temperature. Flue gas composition varies depending on the type of fossil fuel used and the 

method of combustion. Carbon dioxide content (by volume) can range from 4% for a gas 

turbine plant to 7-10% for a natural gas-fired boiler, to 15% for coal power plants [3]. This 

partial pressure difference will also influence CO2 flux (drive) across the membrane, thus 

affecting separation performance. Measures to enhance the partial pressure driving gradient 

include: (1) increasing pressure on the feed side; (2) increasing CO2 partial pressure in the 

feed gas (e.g., increasing CO2 content of flue gas); and (3) enhancing CO2 partial pressure 

gradient on the permeate side (e.g., using a sweep gas, or replacing the sweep gas with 

vacuum) [24]. Increasing or decreasing the carbon flux will often introduce an energy 

penalty, e.g., compressors or vacuum pumps [30]; however, solutions can be found to 

achieve benefits and mitigate energy penalties. An integrated solution might include exhaust 

gas recirculation [24] with membrane recovery, which increases the CO2 content of the 

recycle stream. This approach generates a higher CO2 content in the flue gas, which should 

benefit (operation and economics) subsequent final capture techniques (e.g., MEA). This 

type of integrated approach that uses selective-exhaust gas recirculation (S-EGR) has been 

described previously [31]. 



Research on scalable membrane systems is often focussed on simulation modelling of pilot-

scale operations and membrane material performance, and for a review of research on novel 

membrane materials for recovery of CO2 from flue gas, the interested reader can refer 

elsewhere [32–35]. Most lab-scale permeation studies characterise membrane performance 

under extremely well controlled conditions. Few studies currently explore the challenges of 

membrane application under practical conditions.  

Feng and Ivory studied the separation of CO2 from combustion flue gas using hollow fibre 

membranes [36]. Hagg et al. performed a numerical simulation of CO2 separation from the 

flue gas generated from a power plant [37]. Favre et al. studied the energy input necessary 

to recover CO2 from flue gas [38]. Unfortunately, less information is available on the use of 

sweep gas to recover CO2 in a membrane unit. A techno-economic simulation investigating 

the influence of sweep gas on CO2/N2 membranes for post-combustion capture showed that 

using sweep gas in a cascade membrane system provided an energetic advantage over a 

cascaded membrane unit reliant on compression only [24]. Merkel et al. simulated a two-

stage, two-step membrane system that combined a countercurrent flow regime and a 

vacuum to recover CO2 from flue gas when the flue gas was used as the sweep gas [12]. 

They showed that sweep operation has the potential to lower the CO2 capture energy 

penalty significantly, but that more than 50% of combustion air must be used as sweep to 

maximise energy savings. Similarly, Merkel et al. simulated the use of a S-EGR approach 

in a natural gas combined cycle and showed that the use of air as a sweep stream could 

provide low-cost CO2 capture [39]. Similar results were obtained for a two-stage, two-step 

membrane system with air sweep for capturing CO2 from a coal-fired power plant [40].  

Despite these contributions, few studies show CO2 separation via membrane at the pilot 

scale, and to the authors’ knowledge fewer still studies provide experimental data on such 

systems. Here, we have explored the use of a membrane separation unit designed to 

recover, and recycle, CO2 from the exhaust stream of a 100 kW natural gas-fired burner. 

The goal was to study the overall performance of the membrane-assisted S-EGR for CO2 

capture under challenging conditions appropriate for natural gas-fired plants.

Here, a polydimethylsiloxane (PDMS) membrane was used to separate CO2 from CO2/N2

mixtures, with a bench-scale rig and these results (CO2 permeation, selectivity, sweep 

gas/feed ratio) were then used to explore this concept in a pilot-scale unit.  



2. Experimental Materials 

2.1 Small-scale PDMS membrane  

Experiments conducted at both bench scale and pilot scale used a PDMS membrane filter. 

The module used for the bench-scale studies was a Permselect PDMSXA-1.0 (Med Array 

Inc., USA), and the total available surface area of the membrane fibres was 1 m2.  

The PDMS membrane consisted of 12 600 hollow fibres bundled, contained within a 

polycarbonate housing, and sealed with a polyurethane resin. The module has an inlet and 

an outlet port for fluid communication with the inside of all the hollow fibres (also referred to 

as the tube and lumen side), and one inlet and two outlet ports for fluid communication to 

the outside of the hollow fibres (also referred to as the shell side).  

Each fibre has an inside and outside diameter of 190 and 300 µm, respectively, and a wall 

thickness of 55 µm; the membrane’s physical characteristics are given in Table 1.  

Table 1. Structural characteristics of membrane module utilised 

Membrane Material PDMS (Silicone) 

Membrane Type Dense Hollow Fibre 

Fibre ID µm  190  

Fibre OD µm  300  

Fibre Wall Thickness µm  55  

Fibre Count # 12 600 

Membrane Area m2 1.0  

Module Length m  0.14  

Module Diameter m  0.06 

Fittings/Connection Size in Barbed “1/4” 

Shell/End Caps Polycarbonate 

Fittings Material Polycarbonate 

Potting Material Polyurethane 

Other Materials of Construction Polypropylene, Acrylic 

2.2 Experimental Conditions 

Gas measurements were obtained using a transportable multi-gas Fourier-Transform Infra-

Red spectroscope (FTIR) analyser, Protir 204M (Protea, UK). The FTIR analyser uses 

nitrogen as the reference gas and has pre-loaded calibration methods for 28 gas species 

including CO2, O2, N2 and H2O.  

A simulated gas feed was prepared by blending different molar ratios of CO2 and N2 and 

verifying composition using the FTIR analyser. During experiments, retentate and permeate 

streams were sampled a minimum of two times each to confirm composition. Finally, all gas 

flow rates were monitored using a series of rotameters. All fittings were comprised either of 



stainless steel or plastic tubing. Gas for all bench-top studies was supplied via cylinders 

operating at 3 bar and CO2 and N2 purities were 99.9%.  

2.3. Bench-top experimental configuration 

Mixed gas permeation tests were conducted on a continuous flow membrane separation 

unit. The concurrent mode of operation was used for testing the membrane module. A 

schematic of the apparatus used is shown in Fig. 1 

In order to identify the optimum incoming flow rates for the separation, recovery of CO2 from 

the feed stream at different feed and sweep rates was studied. The sweep-to-feed flow ratio 

is defined as: 

�� =
��
��

(1)

where Qs and Qf are the gas flow rates in the sweep and feed stream, respectively.   

Preliminary tests were carried out by feeding 5 dm3/min of a CO2/N2 gas mixture with the 

composition of 10/90% (by volume). Pure nitrogen was used as a sweep gas and was 

Fig. 1. Continuous flow setup used for CO2/N2 permeation tests 
Fig. 1. Continuous flow setup using concurrent configuration and N2 as sweep gas for CO2/N2 permeation tests 



supplied to the shell side of the membrane at different sweep-to-feed flow ratios. CO2

recovery was investigated by varying the sweep flow rate from 2 to 10 dm3/min. The flow 

rates were chosen according to the operating conditions suggested by the manufacturer. 

The separation capability of the membrane was investigated by feeding different CO2/N2

mixtures with different compositions: 5, 10, 15, 20% (by volume) of CO2 (see below). 

Furthermore, the permeation experiments were undertaken with feed pressures ranging 

from 1 to 2.4 bar in order to evaluate some key membrane properties. The sweep gas 

pressure was maintained at approximately 1 bar. Both air and 100% nitrogen were used as 

sweep gas. All experiments were carried out at room temperature (~21°C). Feed flow was 

introduced on the lumen side of the membrane with the sweep flow on the shell side. A back-

pressure regulator on the retentate line allowed the required feed pressures to be applied in 

the module. The retentate and permeate flow rates were measured using a main rotameter 

before the FTIR analyser. Nevertheless, constant flow rates were maintained at ca. 10 

dm3/min on the feed and sweep side. All composition measurements were taken into 

account for the determination of the permeation parameters once the continuous system 

reached steady state.  

To characterise the separation properties of the membrane various parameters were 

determined from the compositions, pressures and flow rate measurements. The permeability 

of a gas component i through the membrane was calculated as: 

Pi =
Q� y

Δp��� A
l =

N�

Δp��� A
l (2)

where Pi (Barrer) is the permeability of a gas component i, l (cm) the thickness of the dense 

layer, Qp (cm3 s-1) the gas flow rate in the permeate stream, A the effective permeation area 

and Ni (cm3 (STP) cm-2 s-1) the steady state flux of component i. A log-mean pressure drop 

(Δplni, cmHg) was used as the driving force according to the cross-flow design of the module 

studied and was defined as: 

Δp��� =
(p�,� − p�,�)− (p�,� − p�,�)

ln[(p�,� − p�,�) (p�,� − p�,�)⁄ ]
(3)



where pf,i, ps,i, pp,i and pr,i are partial pressures for component i in feed, sweep in,  permeate 

(sweep exit) and retentate (flue gas exit) sides, respectively. In this way, the permeability 

was expressed in units of Barrer (1 Barrer = 10-10 cm3 (STP) cm cm-2 cmHg-1 = 3.35 x 10-16

mol m m-2 s-1 Pa-1).  

Membrane selectivity was also estimated. Generally speaking, membrane selectivity is the 

relative permeability of different gas species in a mixture. For a binary mixture, the ideal 

membrane selectivity, 	��/�
����� of component A over B can be calculated by determining the 

ratio of pure gas permeability for species A and B: 

��/�
����� =

��
��

(4)

In a binary mixture species A might affect the permeability of species B and in this case the 

separation membrane selectivity ��/�
��� can be determined as the ratio of the permeabilities: 

��/�
��� =

��
��

=
��/∆��
��/∆��

(5)

To complete the characterisation of the separation properties of the membrane the amount 

of gas captured from the feed stream was taken into account by introducing the recovery 

(also called recovery ratio) of the gas separated, defined as: 

� =
���

���
(6)

where Qp and Qf are the gas flow rates in the permeate and feed stream, y and x the 

concentration of the permeant in the permeate (sweep out) and feed stream, respectively.  

2.4. Pilot-scale materials and methods 



The pilot-scale 100 kW CO2 membrane rig facility employed in this study used a 100 kW 

MP4 Nu-Way burner fuelled with city natural gas and ambient air supplied by a centrifugal 

fan. Combustion gas mixture was controlled via an electronic gas proportional valve that 

maintained stoichiometric ratios. The rig was designed to operate in various modes (e.g., 

recirculation, recirculation with membrane, no recirculation) and for this reason it was 

equipped with two heat exchangers using cooling water, of which the second one was 

required to reduce the flue gas temperature to about 40°C before entering the membrane 

unit to avoid exceeding its maximum allowable temperature. A water removal system was 

also installed. The system is shown schematically in Fig. 2.  

Fig. 2. Schematic representation of the pilot-scale rig 

Fresh ambient air was used as the sweep gas and was provided via fan. Also, the flue gas 

entering the membrane module was moved by a small brushless fan. The separation unit 

used a PDMS hollow-fibre membrane module, NAGASEP GS-M20-35S (Nagayanagi Co. 

Ltd, Tokyo) of the following main specifications (Table 2): 

Table 2. GS-M20-35S main specifications 

Thickness of the hollow-fibre membrane 20 µm 

Area of the hollow-fibre membranes 35 m2

Number of hollow fibres 133 000 

Outer measurements 230 mm (D) x 564 mm (L) 



The module included both an inlet and an outlet port to enable fluid communication with the 

inside of all the hollow fibres (lumen side). It also had a single inlet and outlet port for fluid 

communication to the outside of the hollow fibres (shell side). 

The system operated at atmospheric pressure. Orifice plates were used to calculate the flow 

rates. Thermocouples were used to measure the temperature of the gases at each 

membrane inlet. Differential pressure meters were used to measure the pressure drop within 

the system. 

Flue gas and sweep air mass rates were calculated from the flow rates as determined by 

the orifice plates. The global mass balance for the system as well as the partial mass 

balance (e.g., on CO2) were determined, to enable calculation of the retentate and permeate 

mass flow rates, using:  

�
��� + ��� = ���� + ����

��� ⋅ ��� + ��� ⋅ ��� = ���� ⋅ ���� + ���� ⋅ ����
                                                                (7) 

where: 

FIN is the mass flow rate of the flue gas; FOUT is the mass flow rate of the retentate; SIN is 

the mass flow rate of the sweep air; SOUT is the mass flow rate of the permeate; while x and 

y are the corresponding mass fractions for a generic component (e.g., CO2). 



3. Results and Discussion 

In this section the results for the bench-scale experiments are reported in terms of CO2

recovery for different sweep-to-feed flow ratio, permeability of CO2 and N2 as a function of 

feed pressure and membrane selectivity for CO2/N2. Similar to the bench-scale case, the 

membrane performance in the pilot-scale experiments was evaluated in terms of 

permeability and selectivity of the PDMS membrane to CO2 and CO2 recovery. 

3.1 Bench-scale experiments 

3.1.1 Influence of sweep-to-feed flow ratio on CO2 recovery 

The first set of experiments analysed the effect that the sweep-to-feed flow ratio had on the 

membrane’s capability to recover CO2 from a feed stream composed of binary mixtures of 

CO2 and N2. Pure nitrogen was used as a sweep gas. 

Results describing the recovery of CO2 from the feed stream are shown in Fig. 3; this set of 

tests used a concurrent configuration, a feed pressure of 1 bar, concentration of CO2 in feed 

of 10%, flowrate of feed of 5 L/min, and pressure of the sweep gas of 1 bar. They show that 

the performance of the system was influenced by the variation of the sweep-to-feed flow 

ratio. From an operational perspective, CO2 recovery reached a point of diminishing return 

at a sweep-to-feed flow ratio of about 1. Operation below this sweep ratio results in 

significantly reduced CO2 capture, while operation above this ratio causes a significant 

increase of power input vs. amount of CO2 captured, in agreement with an earlier study [39]. 

Research has shown that the use of a vacuum, rather than a sweep gas, will increase the 

partial pressure gradient across the membrane leading to better rates of CO2 recovery [12]. 

Despite this, the use of a sweep gas was preferred in this study because of the use of the 

permeate stream to enrich the incoming combustion air in the exhaust gas recirculation 

system. 



Fig. 3. CO2 recovery at different sweep-to-feed-flow ratios (Temperature = 21°C, flowrate of feed = 5 L/min, CO2 concentration in the 
feed stream = 10% and using pure N2 as the sweep gas) 

Sorption of CO2 onto the membrane is driven by pressure. Therefore, the effect of changing 

the feed-side pressure on the permeability of the PDMS membrane was investigated by 

varying it from 1 bar to 2.4 bar, setting the flow rates from both sides at 10 L/min and keeping 

the remaining operating conditions the same as described for the aforementioned set of 

tests.  

The mean values of the permeability coefficients for CO2 and N2 were estimated to be 2943 

± 4.1%RSD and 295 ± 12.8%RSD Barrer, respectively.  This calculation assumed a membrane 

contact area of 0.63 m2 (determined by the inner diameter of the fibres). The inner 

membrane area was used for these calculations, instead of the outer membrane area, 

because permeating flow was from the lumen side of the fibres outwards. Furthermore, 

permeability has been shown to be independent of the feed regime (via shell or lumen side) 

[41]. 

Silicone rubber membranes, like PDMS, have been used in various gas separation 

processes and many studies have assessed the performance of CO2 and N2 separation 

(e.g., [42–44]). The calculated permeability values are in good agreement with those 

determined in similar studies reported in the literature. Merkel et al. [43] studied the 

permeability of pure N2 and CO2 in rubbery PDMS material through a membrane cell, at a 



temperature of 23°C, a feed pressure of 1.38 bar and using vacuum. The authors calculated 

permeabilities of 380 and 3200 Barrer for N2 and CO2, respectively. Similar results were 

observed by Jha et al. who reported a pure gas permeability of CO2, at 20°C and a 

differential pressure of 1.033 bar, of 2645 Barrer [42]. Other studies, using similar systems 

and working with CO2/H2 mixtures, calculated CO2 permeability in PDMS membranes of 

2680 [41] and 2848 Barrer [45]. Most studies, however, were conducted using pure gas 

streams under highly controlled conditions and, thus, represent a best-case scenario. 

Though these permeability values can be used to estimate membrane performance at scale-

up, it is unclear what effect gas mixtures might have on CO2 permeability and thus recovery 

in a real system. 

3.1.2 Effect of feed pressure on CO2 separation performance 

Experiments with varying differential pressure across the membrane (from 0 to 1.4 bar) were 

performed to determine the effect of feed pressure on CO2 separation. The remaining 

operating conditions were set up as follows: flowrate of feed = 10 L/min, flowrate of sweep 

= 10 L/min, feed/sweep ratio = 1. The membrane unit has an upper pressure limit of 3 bar, 

after which the membrane unit might suffer irreversible damage. A binary mixture of CO2

and N2 at a ratio of 10/90 (by volume) was supplied to the lumen side and N2 used as the 

sweep gas. Results showing the change in partial pressure of carbon dioxide in the retentate 

and permeate streams for each measurement are included in Fig. 4. 



Fig. 4. Carbon dioxide concentration at different pressures evaluated in retentate (●) and permeate (○) (Temperature = 21°C, 
sweep/feed ratio = 1, flowrate of feed = 10 L/min, CO2 concentration in the feed stream = 10% and using pure N2 as the sweep gas)

It is evident from Fig. 4 that increased recovery of CO2 occurred with increasing feed 

pressure. Carbon dioxide concentration is reduced with increasing feed pressure in the 

retentate, decreasing by about 14% under a feed pressure of 1 bar and by about 35% under 

2.4 bar, while in the permeate the opposite behaviour was observed. Hence, the results 

indicate that CO2 was enriched in the permeate stream, reaching a final concentration of 

about 0.03 (V V-1) under a feed pressure of 2.4 bar. This relationship with a degree of 

proportionality between concentration and pressure applied has been observed previously 

in rubbery dense polymers [46,47]. Also in these studies, it was observed that when higher 

pressure is applied to the membrane, the concentration of the different permeated species 

is also higher. Therefore, improvements in CO2 separation from a feed stream could be 

achieved by increasing the operational pressure across the membrane system, but at scale-

up, this will come with the added cost of compressing the gas [12]. 

The effect of varying the pressure of the feed stream on CO2 and N2 permeability was also 

analysed (Fig. 5). The remaining operating conditions used for these tests were: feed/sweep 

ratio = 1, flowrate of feed = 10 L/min, pressure of sweep = 1 bar. 



Fig. 5. Effect of feed pressure on CO2 (●) and N2 (○) permeability (Temperature = 21°C, sweep/feed ratio = 1, flowrate of feed = 10 
L/min, CO2 concentration in the feed stream = 10% and using pure N2 as the sweep gas)

As expected, no significant effect on membrane permeability was observed (Fig. 5). Others 

have observed similar behaviour, for example Sadrzadeh et al. [48] describe a similar 

phenomenon. In their work they show that this behaviour is due to the influence of three 

factors: plasticisation, penetrant solubility and hydrostatic pressure. Taking into account the 

low pressures reached, plasticisation is negligible. The behaviour found is explained 

because the polymer could be compacted or compressed with increasing pressure, resulting 

in diffusivity of the molecules being affected. Therefore, as it was explained also by Ramírez-

Morales [47], results obtained may be imputed to the effect of polymer compression on the 

solution-diffusion mechanism, where permeability is described as the product of diffusion 

(D) and solubility (S) coefficients in the membrane material. Generally speaking, as is shown 

in Table 3, due to the smaller kinetic diameter, the diffusivity of N2 is higher than that of CO2. 

Conversely sorption capability of CO2 in dense PDMS is greater than that of N2 because of 

its higher critical temperature and, consequently, it is more easily condensed (Table 3) which 

was confirmed by the experiments, where CO2 permeability was found to be higher than that 

of N2. Here we are assuming that the differences in operational temperature of 21 and 35ºC 

are not significant in terms of the behaviour of the two gases.  



Table 3. Solubility and diffusivity of N2 and CO2 at 35°C 

Pure gas Critical 

temperature (K) 

Kinetic diameter 

(nm) 

D x 105 (cm2/s) S x 102 (cm3 (STP)/ 

(cm3(polym.) cmHg) 

N2 126.2 0.344 4.00 0.118 

CO2 304.21 0.363 2.63 1.74 

Data obtained from [49–51] 

Nevertheless, for N2 the solubility is quite independent of pressure, and diffusivity decreases 

slightly with the increase of pressure due to the hydrostatic compression of the rubber 

membrane [50]. Conversely, the CO2 solubility increases with high pressure, and its 

diffusivity decreases less than that of N2 with pressure [49,50]. From these considerations 

and taking into account the low differential pressures across the membrane (from 0 to 1.4 

bar) permeability of CO2 and N2 were expected to be only slightly affected and this was 

confirmed by the results illustrated in Fig. 5.  

3.1.3 Separation selectivity 

The effect of operating pressure on the permeation properties of the PDMS membrane unit 

was characterised using bench-scale testing. The potential application of the PDMS polymer 

as a separation membrane depends upon the permeate flux and the selectivity towards the 

gas to be separated.  To characterise the separation performance of a CO2/N2 mixture, the 

permeability values shown in Fig. 6 must be discussed along with other factors such as 

separation selectivity. The separation selectivity at different feed pressures was studied, 

also looking at the corresponding recovery. 

Fig. 6 shows the established separation selectivity and the CO2 recovery at different feed 

pressures. 



Fig. 6. Separation selectivities (6-a) for CO2/N2 mixture and CO2 recovery (6-b) at different pressures (Temperature = 21°C, 
sweep/feed ratio = 1, flowrate of feed = 10 L/min, CO2 concentration in the feed stream = 10%, and using pure N2 as the sweep gas)

Previously it has been shown that the permeability of CO2 through PDMS was higher than 

the permeability for N2. Based on this observation, a higher selectivity of CO2 over N2 was 

expected: the results obtained showed this behaviour (Fig. 6) with separation selectivity 

reaching a maximum of 10.55 at 1.8 bar. Jha et al. studied CO2 ideal selectivity at different 

temperatures and different differential pressures (between feed and sweep pressure) [42]. 

They found, at 20°C with a feed pressure of 1.846 bar and differential pressure of 1.033 bar, 

an ideal selectivity of 10.8. Similar values were found by Yeom et al. who used a PDMS 

membrane cell and carried out experiments on pure and CO2/N2 mixed gases [44]. They 

used a 20%/80% (by volume) CO2/N2 mixture, and found separation selectivity around 11.5 

at 30°C. Given the ideal nature (i.e., pure gas) of the those studies, and the similarities 

between our collective permeabilities, it can be concluded that different constituent gas 

species in mixture will have a limited effect on the diffusion of CO2 across the PDMS 

membrane. This observation is important when considering the separation of CO2 from a 

complex gas mixture.  

From the comparison of the results shown in Fig. 6, it seems that there is a positive effect 

of pressure on the performance of the membrane taking into account the achievable CO2

recovery and the separation selectivity determined. 

Flue gas exits from a natural gas combustor at relatively low pressures such that this 

pressure may not drive membrane separation processes. In the present work, permeation 

tests were conducted under mild conditions (using low pressures in a narrow range), 



considering the objective of a practical membrane involved in the separation of CO2 from 

flue gas of a natural gas combustor. 

The effect of CO2 concentration as a function of feed pressure is shown below in Fig. 7 to Fig. 

9. As can be seen in these figures, permeabilities of carbon dioxide at a certain value of 

pressure, slightly increased with CO2 feed concentration. In particular, permeabilities of CO2

were around 2800 Barrer at 5% CO2 feed concentration, around 2900 at 10%, and around 

3000-3100 at 15 and 20%. As shown elsewhere [52], higher concentrations of carbon dioxide 

in the feed stream correspond to higher pressure drive force across the membranes. 

Furthermore, the trend of separation selectivity is similar for all conditions investigated, 

showing the highest value over the feed pressure range of 1.8-2.2 bar. 

Fig. 7. CO2 concentrations obtained using different CO2 inputs (v/v): 5% (7-a), 10% (7-b), 15% (7-c) and 20% (7-d). (Temperature = 
21°C, sweep/feed ratio = 1, flowrate of feed = 10 L/min, and using pure N2 as the sweep gas) 



Fig. 8. Permeability measured using different CO2 inputs (v/v): 5% (8-a), 10% (8-b), 15% (8-c) and 20% (8-d). (Temperature = 21°C, 
sweep/feed ratio = 1, flowrate of feed = 10 L/min, and using pure N2 as the sweep gas) 



Fig. 9. Separation selectivity observed using different CO2 inputs(v/v): 5% (9-a), 10% (9-b), 15% (9-c) and 20% (9-d). (Temperature = 
21°C, sweep/feed ratio = 1, flowrate of feed = 10 L/min, and using pure N2 as the sweep gas) 

3.1.4. Transport of oxygen across the membrane 

Additional experiments were run using air instead of nitrogen as the sweep gas to further 

study the influence of potentially competing gas species in the mixture. Fig. 10 shows the 

CO2 and O2 concentrations in the retentate and permeate at different feed pressures. These 

results were obtained by operating under the same conditions as in previous experiments 

where pure nitrogen was deployed as the sweep gas, with a 10%/90% (by volume) CO2/N2

mixed feed.  



Fig. 10. CO2 concentration in retentate (■) and in permeate (□); O2 concentration in retentate (●) and in permeate (○) at different 
feed pressures. (Temperature = 21°C, sweep/feed ratio = 1, flowrate of feed = 10 L/min, and using pure air as the sweep gas). 

The measurements show that CO2 concentration in the retentate stream is only slightly 

affected by O2 transport, and the CO2 concentrations are quite close to those of the 

experiments with pure nitrogen sweep gas. The O2 concentration in the retentate stream is 

around 0.006 (by volume) in each test. Besides, taking into account the lack of oxygen in 

the feed stream, it is possible to conclude that among all experiments the driving force 

(differential O2 pressure between feed and sweep side) across the membrane is effectively 

the same.  In fact, the amount of O2 crossing the membrane from the sweep to the feed side 

is small compared to the CO2 transfer as shown in Fig. 11a.  



Fig. 11. a) O2 flow rate from sweep air to feed side (○); CO2 flow rate from feed to sweep side (■); b) O2 loss from incoming sweep air 
(●) (Temperature = 21°C, sweep/feed ratio = 1, flowrate of feed = 10 L/min, and using pure air as the sweep gas)

Considering the potential use of the sweep air as the combustive agent for the boiler (S-

EGR system), although a very small portion of the oxygen present in the sweep stream 

passes to the retentate, this aspect must be carefully evaluated for specific cases. For the 

experimental setup and operating conditions used for the present work (bench scale, ideal 

mixture of flue gas, etc.), the loss of oxygen leaving the sweep air stream has been 

estimated to vary between 2.8% (at 1 bar feed pressure) and 3.1% (at 2.4 bar feed pressure) 

as can be observed in Fig. 11b. 

3.2 Pilot-scale rig 

Using the results obtained from the bench-scale study, the same experiments were repeated 

in the pilot-scale rig using a real flue gas mixture from the combustion of natural gas.   

The experiments were carried out after the flue gas concentrations reached steady state. 

The flue gas average composition and the sweep air composition are illustrated in Table 4. 

Minor species (e.g., NOx) were not taken into account for the present study. 

Table 4. Operating conditions for pilot-scale tests and major species composition in the main streams  

Operating conditions Sweep air Flue gas 
(FG) 

Permeate 
(Sweep out) 

Retentate (FG 
out) 

Taverage (°C) 30  40 30 29 

Paverage (bar) 1.04 1.02 1.01 0.30

Flow rate (kg/h) 11.2-48.6 11.2 9.9-46.2 12.5-13.6



Composition major 
species (mol %) 
O2 20.1-22.4 2.5-5.2 18.3-21.3  5.4-7.8 
H2O 0.7-1.1 3.4-9.9 1.9-3.5 1.8-4.6 
N2 76.9-78.9 78.1-81.0 75.6-77.4 77.7-84.0 
CO2 0.0 8.7-13.5 0.5-1.8 5.4-10.6 

Based on findings from our bench-scale studies, the pilot testing began with a sweep-to-

feed flow ratio of approximately 1. Furthermore, to simulate the capability for the membrane 

system to enrich the selective exhaust gas recirculation stream, a portion of the flue gas was 

diverted to the membrane system. The effect of sweep-to-feed flow ratio was assessed 

within a range of 1-4.43.  

Fig. 12 shows the carbon dioxide concentrations in the retentate and permeate stream at 

different sweep-to-feed flow ratios. 

Fig. 12. Carbon dioxide concentrations at different sweep-to-feed flow ratios evaluated in retentate (▲) and permeate (○) (a), and 
carbon dioxide recovery at different sweep-to-feed flow ratios (b). (Temperature = 30-40°C, Feed pressure = 1.02 bar, Sweep/feed 

ratio = 1-3, flowrate of feed = 11.2 kg/h, using air as sweep gas)  

Predictably, the CO2 concentration in the permeate stream decreased moderately with the 

increased sweep-to-feed flow ratio, reaching low values as a consequence of the low driving 

force (differential partial pressures). The lowest permeate CO2 concentration (0.5%) was 

found at the sweep-to-feed flow ratio of 4.43 and the highest (1.2%) was found at 1, as 

shown in Fig. 12. The retentate CO2 concentration decreased with the lowest value (5.45%) 

found at the sweep-to-feed flow ratio of 4.43. Furthermore, the CO2 recovery increased with 

the increased sweep-to-feed flow ratio as shown in Fig. 12. The results clearly showed a 

trade-off relationship between the CO2 concentrations in the retentate and permeate, and 

CO2 recovery. This relationship turned out to be advantageous for the CO2 concentration in 



the retentate. Nevertheless, only a comprehensive assessment of the whole separation 

process (including the process efficiency, costs, the flue gas flow rate to be treated, as well 

as the sweep air to use as CO2-enriched combustion air) could allow us to make the choice 

of an optimal sweep-to-feed flow ratio. For instance, in the current study, a sweep-to-feed 

flow ratio of around 3 could be used to provide the approximate best-case scenario for CO2

recovery.  

In the investigation of the separation performance, other species in the system should be 

taken into account. Nevertheless, the operating conditions (e.g., different temperatures for 

the retentate and sweep streams) and the instruments used, did not allow us to properly 

calculate separation properties such as permeability and selectivity of components. In Fig. 

13 water vapour and oxygen concentrations in the retentate and permeate are illustrated.  

Fig. 13. O2 concentration in permeate (○) and retentate (●). H2O concentration in permeate (□) and retentate (■).(Temperature = 
30-40°C, Feed pressure = 1.02 bar, Sweep/feed ratio = 1-3, flowrate of feed = 11.2 kg/h, using air as sweep gas) 

The results in Fig. 13 show that all concentrations were only slightly affected by the increase 

of sweep-to-feed flow ratio. The increase of permeate O2 and permeate H2O could be 

explained by considering the corresponding permeate CO2 decrease at the same sweep-to-

feed flow ratios. Besides, the O2 driving force (O2 differential partial pressure) in the transport 

across the hollow fibres should support the O2 movement from the shell to the lumen side 

of the module. The greater sweep flow rate decreased the time of O2 and membrane contact. 

On the other hand, this could be compared to a reverse-sweep-to-feed ratio decrease for 

the O2 that has a driving force to cross the membrane from the sweep to the feed side. The 



decrease of this reverse ratio leads to a negative effect on the component transport. Water 

vapour and nitrogen displayed negligible movement as a consequence of their small driving 

force.

4. Conclusions 

Through permeation tests it was possible to evaluate the gas separation performance of a 

bench-scale PDMS membrane module for the separation of CO2/N2 binary model mixtures. 

Measurements at different pressures, different feeding concentrations (5. 10, 15 and 20% 

CO2) and with nitrogen as sweep gas revealed an average carbon dioxide permeability of 

2943 ± 4.1%RSD Barrer. The bench-scale membrane module showed high potential to 

separate the binary mixture. The permeability was slightly affected by feed pressures 

ranging from 1 to 2.4 bar. Furthermore, the separation selectivity for a CO2/N2 mixture of 

10%/90% (by volume) reached a maximum of 10.55 at 1.8 bar. Using information from the 

bench-scale experiments, a pilot-scale PDMS membrane module was investigated for the 

first time. A real flue gas was treated at 1 bar and 40°C, using air as sweep gas and varying 

sweep-to-feed flow ratio from 1 to 4.43. The concentration measurements and the CO2

recovery showed that movement of other components across the membrane needed to be 

carefully considered. In real systems, oxygen from the air used as sweep gas, and water 

vapour from the combustion, in particular, would affect the CO2 separation. Therefore, 

further investigations are needed on the influence of O2 and H2O on the separation. At the 

same time, experiments using the CO2-enriched incoming combustion air need to be carried 

out in order to address the experimental study of the S-EGR system, and the impact that 

the transfer of oxygen leaving the sweep gas stream would have on the burner performance. 
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