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Abstract 

Database performance tuning is a complex and varied active research topic.  With enterprise relational database management 

systems still reliant on the same set-based relational concepts that defined early data management products, the disparity between 

the object-oriented application development model and the object-relational database model, called the object-relational impedance 

mismatch problem, is addressed by techniques such as object-relational mapping (ORM).  However, this has resulted in generally 

poor query performance for SQL developed by object applications and an irregular fit with cost-based optimisation algorithms, and 

leads to questions about the need for the relational model to better adapt to ORM-generated queries.  This paper discusses database 

performance optimisation developments and seeks to demonstrate  that current database performance tuning approaches need re-

examination.  Proposals for further work include exploring concepts such as dynamic schema redefinition; query analysis and 

optimisation modelling driven by machine learning; and augmentation or replacement of the cost-based optimiser model. 
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1. Introduction 

Relational database systems (RDBMS) underpin a large number of today's business enterprise applications, ranging 

from payment processing systems for e-commerce websites to large-scale Customer Relationship Management 

(CRM) systems. Based on the seminal work of Codd [14], RDBMS have been in use for almost half a century and 

RDBMS performance tuning is a well-understood field. Relational databases have been extended over time to include 

object-oriented support and integration with external languages [35] and as application development paradigms have 

advanced, performance issues have emerged. This is particularly the case when dealing with non-static, fluctuating 

application models which interface with RDBMSs through paradigms such as entity-framework modelling. Automatic 

generation of SQL can lead to sub-optimal query performance, and one response to performance issues has been the 

emergence of NoSQL databases. However, relational databases remain the most widely used database technology, 

especially in traditional business environments, and there is a need to identify new  approaches for performance tuning 

to keep pace with the progress in application development methodologies. This paper reviews existing RDBMS 

performance optimisation methods and techniques to identify the strengths and limitations of traditional approaches 

in the current database environment and suggests directions for future work. The rest of this paper is organised as 

follows. Section 2 gives the context of the investigation. Section 3 discusses current approaches to database 

performance tuning and Section 4 gives the conclusions and suggestions for future work. 

 

2 Research Approach  

A systematic literature review of RDBMS performance tuning approaches was conducted.  Stage 1 was to seed and 

search the literature, identifying seminal papers through key phrase searches. There is an extensive literature on 

relational performance tuning and for this reason, Stage 2 ranked the papers using a citation function to prioritise key 

sources. Stage 3 was to analyse the resulting sources, extracting the topics and key conclusions, and fitting them into 

a directed graph. The process was then iterated, using the results from Stage 3. More than 100 highly cited papers 

were identified but the volume of material relating to RDBMS performance tuning means that only the sources 

identified as most relevant are discussed in this paper.  The process is shown in Fig. 1. 

 

 

 
Figure 1:  Source Identification Strategy 

 

A memo-ing approach adopted from grounded theory was used to structure the research and support the 

identification of themes. This approach meant that a large amount of data could be identified, analysed, categorised 

into a taxonomy, linked and summarised quickly, while examination of each source yielded valuable information in 

the form of related topics and general learning. A limitation of the approach was that the method is retrospective. For 

this reason, the review was expanded to ensure that more recent research was also included.  
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3 Performance Tuning  

From the literature review, three key areas relating to query performance were identified, database design, query 

optimisation and query design. 

 

3.1 Database Design Considerations 

Relational databases are based on relational set theory and effective RDBMS design supports queries based on the 

relational algebra. From the starting point of Codd [14], extensions and revisions to the model were frequent; Google 

Scholar lists over 6,400 individual published academic papers and books containing the keywords ‘relational database’ 

from 1980 to 1985 alone. However, although relational design concepts are well understood, adherence to good 

database design patterns is not enforced in the industry, nor arguably is it now even encouraged [1]. The primary 

technique for achieving optimal relational design is normalisation [15, 16], although normalisation is often criticised 

for unnecessary complexity [8]. Westland [44] cites the inefficiencies caused by the application of normalisation  - 

one instance is that the number of tables the query must reference causes an increase in JOIN operations, complexity 

of filters, and consequently an overall increase in query execution cost.  Optimising JOIN performance is a continuing 

theme in the relational database literature  ([4], [5], [9], [10], [30], [31], [46]). A key assumption in the work on JOIN 

optimisation is that query design is driven by the schema design; in other words, that queries are developed to work 

with a given schema as efficiently as possible. This is not necessarily the case with SQL queries generated by 

applications or through mapping. Techniques such as entity-framework modelling are not well-suited to creating 

queries that run efficiently against heavily-normalised or complex schemata.  

 

3.2 Query Execution Optimisation 

Indexing is used to reduce the computational and I/O subsystem loads when fetching data. The most widely used 

type of index is the B/B+ tree index [19] although other types of indexes are common [40]. The limitations of indexes 

include performance penalties on write-heavy tables [17] and the overhead of indexes themselves [38]. Storing 

redundant indexes can lead to unnecessary overheads associated with maintenance and storage. Poor query design can 

mean that the RDBMS engine cannot apply indexes accurately, meaning that indexing can become inefficient. Other 

strategies to improve relational performance include partitioning ([26]); load balancing ([3]); and varying transaction 

isolation levels ([20], [29]).  As with performance tuning based on efficient design, the underpinning assumption is 

that optimisation strategies implemented at database level will be used in queries developed at application level and 

that the query design is based on an understanding of relational optimisation techniques, which as already noted is not 

necessarily the case for queries automatically generated by object-relational mapping.  

 

Four steps are typically involved in query optimisation in RDBMSs [39]. The cost-based optimizer (CBO) is the 

current approach for the optimization step, replacing rule-based optimisers which are less efficient when dealing with 

complex queries ([12]). It is argued here that we are now also reaching the limits of the cost-based optimiser since 

application and framework generated queries are not necessarily generated in a format which means they fit the CBO 

approach. Cost-based optimisation techniques share the concept of attempting to reduce the cost of a query (measured 

by a variety of factors including time taken to execute; page accesses; selectivity factors; cardinality estimates; data 

density and more).  The object is that the least costly plan is chosen ([2]).  In most implementations, exhaustive 

searches are not undertaken due to the cost of calculation; instead, heuristics or timeout parameters are used as a stop 

condition to select a suitable query plan ([20], [34]). 
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One limitation of the CBO is that cardinality is a principal factor in calculating  the costs of a plan, since the number 

of rows is normally in direct proportion to the disk accesses required or the size of the dataset returned.  Single-

dimensional statistical histograms enable reasonably accurate cardinality estimations given predicates ([33])  

However, when multiple attributes are involved in a query this attribute-value independence (AVI) becomes a problem 

since the cardinality error multiplies proportionally to the number of attributes involved ([18]) and the intermediate 

relations ([13]).  As early as 1988, Kabra and DeWitt [22] proposed generating statistics on intermediate result sets in 

the execution plan and argued that query optimisers were not suited to deal with RDBMS platforms that incorporate 

object-oriented features.  It can also be argued that the CBO is not suited to queries from intermediate object-relational 

mapping tools that are not optimised for the relational model. Wu et al [45] investigated whether cost-based optimiser 

models were now unusable. Another issue is where CBOs are not able to fully assess the query, as with highly nested 

queries, the likelihood of choosing the best plan is lowered. 

 

Trummer and Koch [42] examined a “multi-objective parametric query optimization” approach - replacing costs 

with a function that computes a score from various inputs such as selectivity, predicted execution time or complexity.  

This fits into the CBO model, but arguably shows a change of direction towards more intelligent means of optimisation 

and lends weight to the argument that the relational model and the methods for managing it must evolve to meet the 

expectations of a more dynamic application-led environment. 

 

3.3 SQL Query Design 

SQL has been described as an “elephant on clay feet” ([1]) but SQL syntax is relatively straightforward, despite 

the expansion of the standard.  When the RDBMS encounters a JOIN, it can classify and execute the JOIN in a number 

of different ways; hash JOINs ([4], [5], [10], [46]); the nested-loop JOIN ([31]); the sort-merge JOIN ([9], [21], [30]).  

Improving JOIN performance is a current research area ([3], [26]).  Poor JOIN performance can result from many 

causes including over-normalisation ([20]); data skew, ([24]); or external factors such as network performance ([36]) 

and processor architecture ([23]).  Other related research topics include sort; tuning aggregations ([6], [7]); the role of 

views ([27]); cache management ([11], [43]) using set-based logic over loop-based logic ([37]); optimising for OLAP 

([32]); parallelism in query execution ([25]); and typing data ([41]). 

 

Queries generated by entity-framework modelling tools can produce queries with multiple levels of nesting and 

large numbers of base tables, increasing the number of relations from which to extract data and increasing the query 

execution load through additional operations on the data (filtering and sorting). It has also been recognised that poor 

execution performance may result from automatically-generated SQL syntax produced by an entity-framework 

modeller ([28]). 

 

4 Conclusions and Future Work 

Since the inception of the relational model, there have been few significant changes to fundamental concepts. The 

growth of object-oriented application development in the 1990s led to the demand for support for object-oriented 

components in relational systems and the transition to object-relational systems delivered in the form of programmatic 

elements such as stored procedures and user-defined types, materialised views, and extensions to SQL. The demand 

for better data storage systems led to the incorporation of object-oriented concepts such as R/Python data analytics, 

XML and JSON support, OLAP integration, and user-defined functions. However, the development of entity-

framework models has led to a poor fit between the object-oriented query production process and the query-optimised 

relational database design paradigm. The ubiquity of relational database systems produced a comprehensive set of 

strategies and techniques to optimise query performance, but, as the discussion in this paper shows, these strategies 

and techniques are database-oriented in that they rely for their effectiveness on queries being designed to fit the 
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database, for example, by structuring the query to be accessible to the CBO.  The rise of model-driven queries presents 

new challenges for relational query optimisation, identifying the need for  revisions to the CBO and novel approaches, 

such as dynamic schema redefinition, or augmentation of the CBO with machine learning techniques, in response to 

changing inbound query patterns.  It is intended these approaches will be the underpinnings of our future research in 

this area, and these new approaches in the relational space would improve relational query performance for model-

generated queries and further address the object-relational impedance mismatch problem. 
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