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ABSTRACT Due to energy and throughput constraints of visual sensing nodes, in-node energy conservation
is one of the prime concerns in visual sensor networks (VSNs) with wireless transceiving capability. To cope
with these constraints, the energy efficiency of a VSN for a given level of reliability can be enhanced by
reconfiguring its nodes dynamically to achieve optimal configurations. In this paper, a unified framework
for node classification and dynamic self-reconfiguration in VSNs is proposed. The proposed framework
incorporates quality-of-information (QoI) awareness using peak signal-to-noise ratio-based representative
metric to support a diverse range of applications. First, for a given application, the proposed framework
provides a feasible solution for the classification of visual sensing nodes based on their field-of-view
by exploiting the heterogeneity of the targeted QoI within the sensing region. Second, with the dynamic
realization of QoI, a strategy is devised for selecting suitable configurations of visual sensing nodes to
reduce redundant visual content prior to transmission without sacrificing the expected information retrieval
reliability. The robustness of the proposed framework is evaluated under various scenarios by considering:
1) target QoI thresholds; 2) degree of heterogeneity; and 3) compression schemes. From the simulation
results, it is observed that for the second degree of heterogeneity in targeted QoI, the unified framework
outperforms its existing counterparts and results in up to 72% energy savings with as low as 94% reliability.

INDEX TERMS 3D field-of-view modelling, dynamic reconfiguration, energy optimization, node
classification, quality-of-information, reliability analysis, visual sensor networks.

I. INTRODUCTION
Visual Sensor Networks (VSNs) have attracted the atten-
tion of both the research community and the industry for
over a decade. By embedding a visual sensor, processor and
a wireless transceiver within a tiny low-powered sensing
node, VSNs are capable of autonomously sensing multi-
dimensional signals i.e. images, and implementing complex
signal processing algorithms. Compared to a traditionalWire-
less Sensor Network (WSN), the visual sensing in a VSN
significantly enhances the level of detail in the acquired data
and consequently increases feasibility for a diverse range of
applications such as surveillance [1], [2], object detection
and tracking [3], [4], health care monitoring [5], [6], and
many others. Cooperation can be exploited among visual
sensing nodes for intelligent sensing and processing of the
data acquired from the targeted sensing environment, inde-
pendent of the given application. In order to facilitate such

intelligent sensing within a visual sensing node, a dynamic
coverage modelling approach can be employed to obtain the
3D Field-of-View (FoV) information.

Energy is a scarce resource in VSNs due to the resource
constrained nature of its nodes and the possibility of deploy-
ment in inadequately resourced areas to support complex
algorithms [7], [8]. Therefore, the main challenge in design-
ing VSNs is to utilize resources optimally while maintaining
a certain degree of reliability, as per the given application.
Efficient utilization of network resources and optimization
of processing algorithms lead to the conservation of energy
resulting in increased lifetime. Furthermore, the performance
and lifetime of a network is characterized by its configuration.
The configuration space of a network is defined by the set
of parameters that actively control the quality and amount
of acquired data. These parameters include resolution, frame
rate, aperture, exposure time and level of visual data
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compression for networks comprising of static visual sensing
nodes. In addition to these, the orientation and FoV param-
eters are also considered for the configuration of networks
comprising of Pan-Tilt-Zoom (PTZ) capable visual sensing
nodes [9].

Reconfiguration can be defined as the process of updat-
ing one or more parameters that form the configuration
space of the network to achieve a specific goal, for exam-
ple, maximum detection reliability with minimum possi-
ble energy consumption. Implementing self-reconfiguration
schemes dynamically within a visual sensing node to achieve
a specific goal for a given application can result in improved
reliability and optimized energy consumption configuration.
This paper is focused on the quality-of-information (QoI)
aware node classification and self-reconfiguration of visual
sensing nodes to select optimized parameters for resource
constrained scenarios. QoI is defined in literature as the
degree to which the data is suitable for a given application
or a decision making process [10]–[12]. Within the context
of surveillance applications, QoI reflects the degree to which
the data produced at the output of a visual sensing node
accurately quantifies the actual event being monitored [13].
In order to enhance the sensing and processing intelligence
within a VSN, heterogeneity can be introduced in the target
QoI based on the characteristics of the targets expected to
be monitored within the sensing nodes’ FoV. However, due
to the strict orientation requirement and directional nature
of visual sensing nodes within a 3D plane, handling wide
range of heterogeneity within target QoI is a challenging
task. In this paper, QoI is characterized by the quality of the
visual data provided by a sensing node and quantified by a
peak signal-to-noise ratio (PSNR) based metric, as in [13].
Furthermore, the configuration of a visual sensing node for
optimization is considered to be the amount and quality of the
visual data for transmission. In VSNs, the energy consumed
during the communication phase (i.e. transmitting and receiv-
ing visual data) is significantly higher than the processing
phase [14]–[16]. Therefore, optimizing the amount of visual
data based on the targeted QoI thresholds prior to trans-
mission can result in energy savings. In this context, the
parameter that forms the network’s configuration space is the
level of compression employed by a visual sensing node.

The contributions of this paper are summarized as follows:
1) A dynamic self-reconfiguration scheme for resource

constrained VSNs is proposed as a function of the
targeted QoI threshold to be ensured based on the
application design criteria. Utilizing the proposed in-
node processing model, the scheme yields optimized
configurations for visual sensing nodes resulting in
substantial energy savings. Subsequently, providing
the system design engineers with a trade-off model
between reliability and energy efficiency.

2) A 3D coverage modelling scheme is proposed for
visual sensing nodes to dynamically obtain their FoV
information. The proposed scheme can be utilized in
the network initialization phase to support intelligent

sensing by making the sensing nodes aware of the
targeted sensing environment.

3) By the heterogeneous realization of the targeted
QoI within the sensing regions, a QoI-centric scheme
is proposed for the classification of visual sensing
nodes. The proposed coverage modelling and node
classification schemes, coupled with the in-node pro-
cessing model are incorporated in the proposed unified
framework. The unified framework provides feasible
solutions to guarantee targeted QoI satisfaction
with optimized energy utilization in resource con-
strained VSNs.

4) An analytical model is formulated to quantify the per-
formance reliability as a function of the targeted and
delivered QoI thresholds. For a given application, the
proposed analytical model provides the system design
engineers with the confidence bounds for fine-tuning to
the required QoI thresholds while attaining the desired
reliability.

The rest of the paper is organized as follows: Section II
reviews the state of the art in visual sensor networks, focusing
on network reconfiguration and limitations of the existing
schemes. Section III provides the system model. Section IV
presents the proposed framework. Section V provides the
performance analysis of the proposed framework. Section VI
presents an analytical model to evaluate the proposed frame-
work’s performance reliability. Finally, Section VII con-
cludes the paper and discusses future scope of the work.

II. RELATED WORK
In the recent years, a significant number of research stud-
ies have been conducted on network reconfiguration. The
interests in this context lie in the optimization of: sensing
nodes’ spatial coverage, task allocation, resource utilization
and visual data for transmission. Such optimizations aim
to provide energy efficient solutions for the lifetime maxi-
mization of VSNs. Some notable schemes from the existing
literature for optimization in resource constrained scenarios
are discussed here.

An optimization technique based on particle swarm opti-
mizer is proposed in [18] to obtain the most suitable camera
position and configuration while achieving a given coverage
objective. The proposed solution takes into account both the
coverage and visual quality of the acquired visual data, and
it is capable of reconfiguration in case of cameras failures.
In [19], an occlusion-aware method is proposed to dynam-
ically obtain the optimal configuration of cameras’ pan, tilt
and zoom parameters in the network for coverage maxi-
mization. Dieber et al. [20] proposed a centralised resource-
aware evolutionary algorithm that addresses coverage and
task assignment problems in resource constrained VSNs.
The proposed solution provides optimal configuration for
cameras selection, frame rate, resolution and assignment of
tasks. Authors in Kyrkou et al. [21] proposed an adaptive
market-based solution for the energy-aware assignment of
tasks to cameras in resource constrained networks resulting in
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FIGURE 1. Visual sensing node’s 3-dimensional projection model [17].

lifetime maximization. Considering 2D environment in
Halder and Ghosal [22], authors proposed a scheme which
employs a location-wise strategy for pre-determined deploy-
ment of sensing nodes attaining energy balancing and leading
to optimized network lifetime.

An energy efficient image prioritization framework is pro-
posed in [23] to select relevant information before transmis-
sion to the sink node. Based on salient motion detection,
the proposed approach reduces the transmission cost of the
visual information. Chow et al. [16] proposed an energy
efficient framework for on-demand image transmission in
visual sensor networks. Intra-neighbourhood processing and
combining protocol is developed for overlapping regions to
transmit images upon request to the mobile sink which leads
to reduced energy consumption in the network. An energy
efficient architecture for image processing and a protocol for
communication in VSNs are proposed in [15]. Employing the
proposed object detection architecture with DWT processing,
the proposed approach leads to a reduction in image trans-
mission cost. In [24], an energy efficient image compressive
transmission scheme is proposed for resource constrained
scenarios. The proposed scheme incorporates region of inter-
est extraction with block-based compressive sensing to devise
an energy-driven strategy for image quality control.

Although the existing work in literature provides solutions
to optimize the energy consumption in resource constrained
scenarios, many existing schemes assume simplified 2D cam-
era model and sensing environment. Moreover, the existing
schemes do not consider the heterogeneous realization of
targeted QoI within the sensing region and dynamic target
threshold based optimization of visual data prior to transmis-
sion. In contrast, the unified framework proposed in this paper
incorporates 3D FoV modelling with dynamic realization
of visual data to achieve heterogeneous target QoI thresh-
olds. To the best of our knowledge, this is the first formula-
tion which jointly considers the utilization of heterogeneous
target QoI thresholds in sensing sub-regions with dynamic
reconfiguration of visual sensing nodes to achieve targeted

threshold based optimization. The proposed framework leads
to reduced energy consumption within the network while
maintaining an acceptable degree of reliability.

III. SYSTEM MODEL
Suppose a region of interest with surface area AT and volume
VT is to be monitored for a surveillance application. For this
purpose, consider the deployment of a VSN which consists
ofN visual sensing nodes and one sink node. The placement
of nodes within the region of interest can either be random
or deterministic. Suppose each visual sensing node within
the network is represented by {VS ˜̀| ˜̀ = 1, 2, 3, . . . ,N }. The
sensing nodes VS1,VS2,VS3, . . . ,VSN capture images,
represented by I1, I2, I3, . . . , IN respectively, and process
them for feature detection and object extraction. The 3D sens-
ing model of a visual sensing node [17] is depicted in Fig. 1;
where R is the sensing range, θh and θv are the horizontal
and vertical FoVs respectively; θe and φa are the elevation
and azimuth angles respectively; h2 and w2 are the height
and width of the ABCD-plane respectively; h1 and w1 are the
height and width of the image plane respectively; and f is
the focal length. It is assumed that the visual sensing nodes
are static; therefore, θe and φa are assumed to be constant for
each sensing node. Moreover, the effective sensing range R of
a visual sensing node for a given application can be estimated
from [17] and is assumed to be known.

Energy conservation is a primary issue within resource
constrained VSNs which is expected to be achieved by
dynamic self-reconfiguration, for example, by the realiza-
tion of the targeted QoI thresholds at each visual sensing
node to fine tune its parameters. The self-reconfiguration
model employed within each visual sensing node is illus-
trated in Fig. 2. Let Cc = {Cc

1,C
c
2,C

c
3, . . . ,C

c
n̂} be the set

of criteria provided by the design engineer for a given
application and Cs = {Cs

1,C
s
2,C

s
3, . . . ,C

s
ñ} denotes the set

of parameters in the network configuration space. Suppose
Co = {Co

1 ,C
o
2 ,C

o
3 , . . . ,C

o
n̆ } represents the set of objectives

to be achieved, for example, coverage maximization, energy
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FIGURE 2. Visual sensing node self-reconfiguration model.

preservation, redundancy management and optimal task clas-
sification between visual sensing nodes. Based on particular
reconfiguration criteria Cc, the considered set of parame-
ters Cs and the current configuration state sc; the process
of reconfiguration takes place dynamically within a visual
sensing node to obtain a new configuration state ŝn and
achieve particular goals Co. The self-reconfiguration model
depicted in Fig. 2 incorporates a learning-assisted strategy
for the selection of optimal parameters during the decision
making process. The algorithms for the management of nodes
within VSNs can be classified into centralized and distributed
categories. Distributed algorithms are preferred over the cen-
tralized ones due to the complexity and scalability issues of
the latter [25]. Moreover, the distributed algorithms reduce
bottlenecks and improve resilience against network failures
as they do not rely on a single central node for decision mak-
ing. Therefore, in this paper, a distributed decision making
strategy for reconfiguration is devised where each node takes
the decision independently to accelerate the decision making
process. The list of key symbols used in this paper along with
their definition is given in Table 1.

IV. PROPOSED FRAMEWORK
The proposed unified framework to enhance the energy effi-
ciency of VSNs by achieving targeted threshold based opti-
mization is presented in Fig. 3. In the proposed framework,
training and calibration takes place in the pre-deployment
phase which consists of training dataset selection, object
appearance modelling, redundant feature removal, quality
estimation and learning, as shown in Fig. 3a. In the post-
deployment phase, the framework incorporates 3D coverage
modelling with QoI-centric node classification, image cap-
ture, feature detection and object extraction, sensor-to-object
distance estimation, self-reconfiguration and redundant fea-
ture removal, as shown in Fig. 3b.

A. TRAINING AND CALIBRATION
In the proposed framework, training and calibration takes
place only in the pre-deployment phase. Therefore, once
this task is accomplished, the proposed framework does not

TABLE 1. Key symbols and their definition.

require any further training in the post-deployment phase;
consequently, facilitating the feasibility of the proposed
scheme for resource constrained scenarios. The training and
calibration process is discussed in the following sections.

1) DATASET SELECTION
In order to initiate the training and calibration process, a
suitable dataset is selected. For a given application, the type
of targets expected to be monitored within the FoV of visual
sensing nodes have to be considered for such selection.

2) OBJECT APPEARANCE MODELLING
In the proposed framework, reconfiguration is initiated based
on the appearance of the object within a visual sensing
node’s FoV. As an object moves closer to a visual sens-
ing node, its pixel occupancy within the captured image
increases resulting in an increased number of redundant fea-
tures. On the other hand, if the object moves away from
a visual sensing node, the reduction in its pixel occupancy
within the captured image leads to a reduced number of
redundant features. Therefore, object appearance modelling
plays a prominent role during training and calibration of
visual sensing nodes.

Suppose Ir denotes a training image of size D+ × D−

captured from a reference distance Rr ≥ Rl containing only
the object of interest; where Rl is the minimum possible
distance to capture a suitably sharp image of the object of
interest. Let Rd be the sensor-to-object distance such that
Rr < Rd ≤ Ru; where Ru is the maximum distance to capture
an object of interest’s suitably sharp image. For an object
captured from sensor-to-object distance Rd , it’s appearance
at the reference distance Rr can be modelled as,

Îr =
(
Ir ↓ D±d

)
↑ D±u (1)
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FIGURE 3. (a) Training and calibration process in the pre-deployment phase. (b) Proposed unified framework for node classification and
self-reconfiguration in resource constrained VSNs to achieve targeted threshold based optimization.

where ↓ denotes the image down-sampling operator, ↑ rep-
resents the image up-sampling operator; D±d and D±u are the
down-sampling and up-sampling factors given by,

D±d = D±
(
Rr
Rd

)
D±u = D±

(
Rd
Rr

)
(2)

3) REDUNDANT FEATURE REMOVAL
In resource constrained VSNs, energy conservation can be
achieved through redundant feature removal, which leads to
the minimization of the transmission cost. Suppose αlc to α

u
c

be the dynamic compression range; the possible compression
ratios can bewritten as ac = {αlc, α

l
c + Sc, αlc + 2Sc, . . . , αuc }

and the resulting bits per pixel values can be denoted by ab as
ab = {αb(l)|l = 1, 2, 3, . . . , lm}; where Sc is a positive scalar
step-size, lm =

⌊
(αuc − α

l
c + Sc)/Sc

⌋
and (b c) refers to the

floor function.

4) QUALITY ESTIMATION
As discussed earlier, redundant features can be removed to
optimize energy consumption of the visual sensing nodes.
However, such removal may affect the quality of the visual
data. Therefore, the impact of redundant feature removal on
the quality of the acquired visual data must be taken into
consideration to achieve an acceptable level of reliability for
the given application. In the proposed framework, PSNR is
used as a quality metric, which is realized with the system’s

dynamic PSNR range in dB (ζ l to ζ u) to obtain the QoI
index λ as,

λ =
10 log10

(
A2

M

)
− ζ l

ζ u − ζ l
(3)

where λ ∈ [0, 1], λ = 0 refers to the QoI index of ζ l , λ = 1
refers to the QoI index of ζ u,A is themaximum possible pixel
value in Ir andM represents the Mean Squared Error (MSE)
given by,

M =
1

3(D+D−)

D+∑
x=1

D−∑
z=1

[
Ir (x, z)− Îr (x, z)

]2
(4)

Suppose the set of possible sensor-to-object dis-
tances is given by r = {Rr ,Rr + Sr ,Rr + 2Sr , . . . ,Ru}
and let λλλ = {λp | p = 1, 2, 3, . . . , pm} be the respec-
tive quality metrics calculated using (3); such that
λ(1) ≥ λ(2) ≥ λ(3) ≥ . . . ≥ λ(pm); where Sr is a positive scalar
step-size and pm = b(Ru − Rr + Sr )/Src. For a dynamic
sensor-to-object range Rr to Ru and dynamic compression
range αlc to α

u
c , the resulting quality metrics can be given by,

3 =


λ1,1 λ1,2 . . . λ1,pm
λ2,1 λ2,2 . . . λ2,pm
...

...
. . .

...

λlm,1 λlm,2 . . . λlm,pm

 (5)

where λ(·,1) ≥ λ(·,2) ≥ . . . ≥ λ(·,pm) and λ(1,·) ≥ λ(2,·) ≥

. . . ≥ λ(lm,·).
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5) LEARNING
Let t̂m be the set of t̃ training images used for learning
and {3i|i = 1, 2, 3, · · · , t̃} be their respective quality
metrics. Suppose 3l̃ denotes the compressive calibration
matrix (CCM) which serves as a reference to reflect the
impact of feature redundancy removal on the quality of the
acquired visual data for t̃ training images; and it is calculated
by,

3l̃ =
1
t̃

t̃∑
i=1

3i (6)

The training and calibration process terminates after learning
of the CCM and it is assumed that CCM is known to each
visual sensing node in the network for utilization during its
self-reconfiguration phases. The fidelity of CCM is quanti-
fied within a confidence bound [e−, e+], measured in dB,
given by,

e± = D±(ζ u − ζ l) (7)

where D− = min
{
(3i −3l̃)

∣∣i = 1, 2, 3, · · · , t̃
}
, D+ =

max
{
(3i −3l̃)

∣∣i = 1, 2, 3, · · · , t̃
}

and (·) represents the
mean.

B. 3D COVERAGE MODELLING
Consider the visual sensing node’s 3D projection model
shown in Fig. 1 where sensing node VS is located at the
origin of the cartesian coordinate system i.e. (0, 0, 0) and the
sensor’s optical axis overlaps onto the y-axis with X = 0 and
Z = 0. Within the context of a VSN, whereN sensing nodes
are present, each sensing node VS ˜̀ ( ˜̀ = {1, 2, 3, . . . ,N })
is identified by its location which is described by the local
cartesian coordinates s = [X ˜̀,Y ˜̀,Z ˜̀, 1]T, azimuth angle φa
and elevation angle θe. In the simplest scenario, the sensor’s
optical axis is assumed to be parallel with the y-axis, thus the
azimuth and elevation angles can be given byφa = π

2−
θh
2 and

θe =
π
2 −

θv
2 respectively; where φa is measured clockwise

and θe is measured counter-clockwise.
For a particular sensing range R, suppose p =

[Xo,Yo,Zo, 1]T represents the coordinates of O2 which are
calculated by,

p = [Xo,Yo,Zo, 1]T = [X ˜̀,Y ˜̀+R,Z ˜̀, 1]
T (8)

Consider a more complex scenario where the sensor’s opti-
cal axis is not parallel to the y-axis. Let θya be the horizontal
angle from y-axis to the sensor’s optical axis measured clock-
wise. For a particular azimuth angle φa, θya is calculated by,

θya =


φa +

θh

2
+

3π
2
, 0 <

(
φa +

θh

2

)
<
π

2

φa +
θh

2
−
π

2
,

π

2
≤

(
φa +

θh

2

)
≤ 2π

(9)

Similarly, let θye be the vertical angle from y-axis to the
sensor’s optical axis measured counter-clockwise. For a

particular elevation angle θe, θye is calculated by,

θye =


θe +

θv

2
+

3π
2
, 0 <

(
θe +

θv

2

)
<
π

2

θe +
θv

2
−
π

2
,

π

2
≤

(
θe +

θv

2

)
≤ 2π

(10)

By adjusting the azimuth and elevation angles to fit a par-
ticular region of interest within the sensing node’s FoV, the
coordinates of O2 are expected to change. The problem of
calculating the new coordinates of O2 can be classified into
three cases. In the first case, suppose φa is adjusted to capture
a particular region of interest within the sensing node’s FoV
and θe is kept constant i.e. θe = π

2 −
θv
2 . This results in

0 < θya < 2π whereas θye remains consistent i.e. 0. In the
second case, suppose θe is adjusted to capture a particular
region of interest within the sensing node’s FoV and φa is
kept constant i.e. φa = π

2 −
θh
2 . This results in 0 < θye < 2π

whereas θya remains consistent i.e. 0. In the third case, sup-
pose both φa and θe are adjusted to capture a particular region
of interest within the sensing node’s FoV. This results in 0 <
{θya, θye} < 2π . There are two possibilities for changing the
azimuth and elevation angles in this case: (a) azimuth angle
is adjusted first followed by the elevation angle, (b) elevation
angle is adjusted first followed by the azimuth angle.

Based on the above discussion, let ĉ ∈ {1, 2, 3a, 3b}
denotes Case 1, Case 2, Case 3a and Case 3b respectively.
The new coordinates of point O2 are represented by p′ĉ =
[X ′o,Y

′
o,Z
′
o, 1]

T and derived as,

p′ĉ = T
−1
9ĉTp (11)

In (11), T is the translation matrix given by,

T =
[
J t
z 1

]
(12)

where J is a 3×3 identity matrix, t represents the transforma-
tion coordinates given by t = [−p(1),R − p(2),−p(3)]T and
z denotes a 1× 3 all-zeros vector.
9 ĉ is expressed as,

9 ĉ =

[
2ĉ zT
z 1

]
(13)

where2ĉ denotes the rotationmatrices21,22,23a and23b
given by [26], [27],

21 =

 cos θya sin θya 0
− sin θya cos θya 0

0 0 1

 (14)

22 =

[
1 0 0
0 cos θye − sin θye
0 sin θye cos θye

]
(15)

23a =

[
cos θya sin θya 0

− cos θye sin θya cos θye cos θya − sin θye
− sin θye sin θya sin θye cos θya cos θye

]

23b =

 cos θya sin θya cos θye − sin θya sin θye
− sin θya cos θya cos θye − cos θya sin θye

0 sin θye cos θye


(16)
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Let S be the sampling interval, the coordinates of sy points
on the y-axis within the sensing node’s FoV are represented
by py as,

py = {S, 2S, 3S, . . . ,R} (17)

For a particular point py(·) on the y-axis, the coordinates of sx
points on the x-axis and sz points on the z-axis are denoted by
px and pz respectively, and given by,

px =
{
γ−x , γ

−
x + S, γ−x + 2S, . . . , γ+x

}
(18)

pz =
{
γ−z , γ

−
z + S, γ−z + 2S, . . . , γ+z

}
(19)

where γ−x , γ+x , γ−z and γ+z represent the x-axis lower bound,
x-axis upper bound, z-axis lower bound and z-axis upper
bound respectively which are expressed as,

γ+x

γ−x

}
= X ′o ± py(·) tan

(
θh

2

)
(20)

γ+z

γ−z

}
= Z ′o ± py(·) tan

(
θv

2

)
(21)

and

sx =
⌊
γ+x − γ

−
x + S

S

⌋
(22)

sz =
⌊
γ+z − γ

−
z + S

S

⌋
(23)

The total number of points in cartesian coordinates within a
sensing node’s FoV are derived as,

tp =
sy∑
ĭ=1

2py(ĭ) tan
(
θh
2

)
+ S

S

2py(ĭ) tan
(
θv
2

)
+ S

S


(24)

where sy =
⌊
R
S

⌋
.

Suppose cx , cy and cz represent the set of 3D coordinates
within a visual sensing node’s FoV and are defined as,

cx =
{
cx(1), cx(2), cx(3), . . . , cx(tp)

}
cy =

{
cy(1), cy(2), cy(3), . . . , cy(tp)

}
cz =

{
cz(1), cz(2), cz(3), . . . , cz(tp)

}
(25)

where each respective pair
(
cx(·), cy(·), cz(·)

)
denotes the 3D

cartesian coordinates of a point within a sensing node’s FoV.
Algorithm 1 proposes a 3D coverage modelling scheme for

visual sensing nodes to calculate cx , cy and cz.

C. QoI-CENTRIC NODE CLASSIFICATION
In resource constrained scenarios, the utilization of a
homogeneous target QoI threshold may reduce the energy
efficiency of a VSN. This is due to the fact that compared to
others, some regions under VSN coverage may offer relax-
ation in the requirement of maintaining a particular QoI
threshold. Furthermore, due to the time-varying nature of the
targets’ characteristics monitored within the visual sensing

Algorithm 1 Proposed 3D Coverage Modelling Scheme for
Visual Sensing Nodes
Input:

The sensing node’s coordinates [X ˜̀,Y ˜̀,Z ˜̀, 1]T, the
azimuth angle φa, the elevation angle θe, the horizontal
FoV θh, the vertical FoV θv, the sensing range R and the
sampling interval S.

Output:
cx , cy and cz representing the 3D coverage coordinates of
a visual sensing node.

1: lc← 1

2: py = {S, 2S, 3S, . . . ,R}

3: sy←
⌊
R
S

⌋
4: for ĭ← 1 to sy do

5: Set φa =
π

2
−
θh

2
and θe =

π

2
−
θv

2
for θya = 0 and

θye = 0.

6: Calculate the coordinates of O2 by substituting
R = py(ĭ) in (8) as,

[Xo,Yo,Zo, 1]T = [X ˜̀,Y ˜̀ + py(ĭ),Z ˜̀, 1]
T

7: As θya = 0 and θye = 0,
[X ′o,Y

′
o,Z
′
o, 1]

T
= [Xo,Yo,Zo, 1]T

8: Calculate γ±x and γ±z using (20) and (21) respec-
tively.

9: px =
{
γ−x , γ

−
x + S, γ−x + 2S, . . . , γ+x

}
10: pz =

{
γ−z , γ

−
z + S, γ−z + 2S, . . . , γ+z

}
11: sx ←

⌊(
γ+x − γ

−
x + S

)
/S
⌋

12: sz←
⌊(
γ+z − γ

−
z + S

)
/S
⌋

13: for j̆← 1 to sx do
14: for q̆← 1 to sz do
15: Based onφa and θe for targeted sensingwithin

a 3D plane, calculate θya and θye using (9) and (10)
respectively.

16: Substitute p = [px(j̆),Y ˜̀ + py(ĭ), pz(q̆), 1]
T

in (11) to obtain the coordinates after rotation p′(·) =
[cx(lc), cy(lc), cz(lc), 1]

T

17: lc← lc + 1

18: end for
19: end for
20: end for
21: return cx , cy, cz

nodes’ FoV, heterogeneous QoI realization in VSNs is more
suitable as compared to the homogeneous QoI realization.
Thus, dividing the overall region of interest within the sensing
environment into smaller sub-regions and realizing hetero-
geneity in the target QoI thresholds is expected to preserve
energy leading to improved network lifetime. In order to opti-
mize the network’s energy consumption based on such real-
ization, each node within the network needs to be assigned
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a local target QoI threshold to be achieved in accordance
with its 3D spatial coverage coordinates. Let Ct

r = [Cĩ
r

∣∣ĩ =
1, 2, 3, · · · , ŝ] be the matrix denoting the 3D coordinates
of ŝ sub-regions and �t = [λĩt

∣∣ĩ = 1, 2, 3, · · · , ŝ] be the
set of their respective heterogeneous target QoI thresholds;
where Cĩ

r = [cĩxr , c
ĩ
yr , c

ĩ
zr ]

T represents the 3D coordinates

of the ĩth region of interest. Suppose Cl̃
s = [cl̃xs , c

l̃
ys , c

l̃
zs ]

T

denotes the 3D coordinates of the region within the l̃ th visual
sensing node’s FoV. Let the total number of points in cartesian
coordinates within the FoV of l̃ th visual sensing node is
represented by t l̃p and suppose t

ĩ
p denotes the number of points

in ĩth region of interest. The degree of overlap between l̃ th
sensing node’s FoV and ĩth region of interest is derived as,

Oĩl̃ =
1

min{t l̃p, t ĩp}

t l̃p∑
ǐ=1

t ĩp∑
ǰ=1

{ ∏
q̂∈{x,y,z}

1

−

[
sgn

(
cl̃
q̂s(ǐ)
− cĩ

q̂r (ǰ)

)]2 }
(26)

where sgn is the signum function.
The value of Oĩl̃ for t

l̃
p < t ĩp is categorized as,

Oĩl̃ =


0, (cl̃xs * cĩxr ) ∩ (c

l̃
ys * cĩyr ) ∩ (c

l̃
zs * cĩzr )

(0, 1), (cl̃xs ⊂ cĩxr ) ∩ (c
l̃
ys ⊂ cĩyr ) ∩ (c

l̃
zs ⊂ cĩzr )

1, (cl̃xs ⊆ cĩxr ) ∩ (c
l̃
ys ⊆ cĩyr ) ∩ (c

l̃
zs ⊆ cĩzr )

(27)

In case of t l̃p > t ĩp, (27) is modified as,

Oĩl̃ =


0, (cĩxr * cl̃xs ) ∩ (c

ĩ
yr * cl̃ys ) ∩ (c

ĩ
zr * cl̃zs )

(0, 1), (cĩxr ⊂ cl̃xs ) ∩ (c
ĩ
yr ⊂ cl̃ys ) ∩ (c

ĩ
zr ⊂ cl̃zs )

1, (cĩxr ⊆ cl̃xs ) ∩ (c
ĩ
yr ⊆ cl̃ys ) ∩ (c

ĩ
zr ⊆ cl̃zs )

(28)

where Oĩl̃ = 0 , 0 < Oĩl̃ < 1 and Oĩl̃ = 1 refer to no
overlapping, partial overlapping and complete overlapping
respectively between a sensing node’s FoV and particular
sensing sub-region.

The l̃ th sensing node is assigned a local target QoI thresh-
old λĩt based on the value of ĩ that satisfies the following
criterion,

ξl̃ = argmax
ĩ

[
1

min{t l̃p, t ĩp}

t l̃p∑
ǐ=1

t ĩp∑
ǰ=1

{ ∏
q̂∈{x,y,z}

1

−

[
sgn

(
cl̃
q̂s(ǐ)
− cĩ

q̂r (ǰ)

)]2 }]
(29)

Suppose H denotes the degree of heterogeneity, such that
H < ŝ. Let m̂ = {1, 2, 3, . . . ,H+ 1} represents a particular
heterogeneity level andNm̂ be the number of nodes classified
within the m̂th heterogeneity level given by,

Nm̂ = N (1− fm̂) (30)

where,

fm̂ = 1−

N∑̃
l=1

1−
[
sgn

(
ξl̃ − m̂

)]2
N

(31)

such that
H+1∑̂
m=1

fm̂ = H; therefore,

Nm̂ =

N∑
l̃=1

1−
[
sgn

(
ξl̃ − m̂

)]2 (32)

such that
H+1∑̂
m=1

Nm̂ = N .

D. IN-NODE PROCESSING MODEL
1) IMAGE CAPTURE
During the data acquisition phase, an image I ˜̀ of dimension
D+ × D− is captured by each visual sensing node VS ˜̀.

2) FEATURE DETECTION AND OBJECT EXTRACTION
LetOb be an object, Sm be the object segmentationmatrix and
Sg be the segmented image. The probability of a pixel (x, z)
in I ˜̀ belonging to the object of interest Ob can be given by,

D(x, z) =

{
1, (x, z) ∈ Ob
0, otherwise

(33)

This can be accomplished by utilizing an appropriate
detection method depending on the given application; for
example, [28] and [29] can be considered for face detec-
tion, [30] can be used for human detection and vehicles
can be detected using [31] and [32]. The pixels probabil-
ities from (33) are indexed at their respective locations in
the object segmentation matrix Sm. Consider a target-driven
approach where each node transmits the acquired data only if
an object of area A is detected within its FoV. The decision is
made based on the following criteria,

ed =

{
1, γp̂ ≥ γt

0, otherwise
(34)

where γp̂ represents the number of pixels an object occupies
and γt denotes the detection threshold given by,

γt =
A× D+ × D− × sin θh × sin θv
4R2 (1− cos θh) (1− cos θv)

(35)

The object of interest is extracted from I ˜̀ by image segmen-
tation using the following equation [33],

Sg = ed · I ˜̀ · Sm (36)

where (·) represents the dot product.
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3) SENSOR-TO-OBJECT DISTANCE ESTIMATION
The level of detail in the captured image I ˜̀ is a function
of the sensor-to-object distance Rd . The object of interest is
obtained after feature detection and extraction as image Sg.
Therefore, for an object of area A being monitored within the
FoV of a visual sensing node, utilizing the output of feature
detection and extraction process, Rd is estimated prior to
reconfiguration, as shown below,

Rd =
1
2

√
A× D+ × D− × sin θh × sin θv
γp̂ (1− cos θh) (1− cos θv)

(37)

4) SELF-RECONFIGURATION
Suppose λt denotes the target QoI in dB to be achieved for a
given application and γb represents the level of compression
employed. Based on the spatial location of an object within
a sensing node’s FoV, each visual sensing node is to be
reconfigured dynamically by maximizing the compression
level for redundant feature removal while achieving the target
QoI threshold. Let M be a matrix of dimension lm × pm and
Ml,p is assigned a value based on the following condition,

Ml,p =

{
1, 3l̃(l,p) ≥ λ̂t

0, otherwise
(38)

where λ̂t = (λt − ζ l)/(ζ u − ζ l).
Considering λt for a particular application, the active com-

pressive calibration matrix (ACCM) 3a is calculated by,

3a = 3l̃ ·M (39)

and the respective transmission energy cost can be expressed
by E as,

E =


E t1,1 E t1,2 . . . E t1,pm
E t2,1 E t2,2 . . . E t2,pm
...

...
. . .

...

E tlm,1 E tlm,2 . . . E tlm,pm

 (40)

where E tl,p =
{
L(αb(l)) | l = 1, 2, . . . , lm

}
and L(·) denotes a

function for energy cost calculation.
Within the context of the visual sensing node self-

reconfiguration model depicted in Fig 2, the compression
level γb forms the configuration space, target QoI threshold
λt is the reconfiguration criterion and minimization of the
transmission energy costE tl,p is the ultimate objective. Hence,
the following optimization problem can be stated,

minimize E tl,p
subject to β = λt (41)

where β is the QoI delivered by a visual sensing node.
The proposed scheme for dynamic self-reconfiguration of

a visual sensing node within a resource constrained network
is described in Algorithm 2 to find optimal compression level
γb ∈ ab that solves the optimization problem expressed
in (41).

Algorithm 2 Proposed Dynamic Self-Reconfiguration
Scheme
Input:

The target QoI threshold λt , the set of possible sensor-
to-object distances r, the compressive calibration matrix
3l̃ , the system’s dynamic PSNR range (ζ l, ζ u) and the
estimated sensor-to-object distance Rd .

Output:
The new configuration state ŝn of a visual sensing node
to achieve targeted QoI threshold with optimized energy
consumption.

1: M← ∅
2: λ̂t = (λt − ζ l)/(ζ u − ζ l).
3: for p← 1 to pm do
4: if 3l̃(1,p) ≥ λ̂t then
5: M← [M 1]
6: where 1 is a lm × 1 all-ones vector
7: else
8: M← [M 0]
9: where 0 is a lm × 1 all-zeros vector

10: end if
11: end for
12: 3a← 3l̃ ·M
13: γ1← argminp

[
|Rd − r(p)|

]
; p = {1, 2, 3, . . . , pm}

14: t← 3a(1:lm,γ1)
15: γ2← argminp̂

[
|λt − t(p̂)|

]
; p̂ = {1, 2, 3, . . . , lm}

16: β ← t(γ2)
17: E tmin← L

(
αb(γ2)

)
18: γb← ab(γ2)
19: ŝn← γb
20: return ŝn

5) REDUNDANT FEATURE REMOVAL
After the dynamic reconfiguration of a visual sensing node
to obtain a new configuration state ŝn, the removal of redun-
dant features from the segmented image Sg (containing the
detected object) can be expressed as,

Sr = G(Sg, ŝn) (42)

where Sr is a matrix of dimension D̂+ × D̂− representing the
reduced set of features to be transmitted to the sink node,
such that (D̂+ × D̂−) < (D+ × D−); and G(·) is a function
representing the compression method employed such as Dis-
crete Wavelet Transform (DWT), Discrete Cosine Transform
(DCT) etc. The reconstruction takes place at the sink node
and the reconstructed image Ŝg can be given by,

Ŝg = G
−1

(Sr ) (43)

where G
−1

(·) denotes the inverse of G(·).

E. ENERGY MODEL
The performance of a visual sensor network is characterized
by the energy conservation within the network. Fig. 4 shows
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FIGURE 4. Communication energy dissipation model.

the energy dissipation model of a radio transceiver [34],
which is characterized by the energy cost of the transmitter
and receiver units. Let Etx and Erx denote the energy con-
sumed for transmitting and receiving one bit respectively.
Suppose k̂m̂

l̂
and k̃m̂

l̂
represent the number of bits transmitted

and received respectively by l̂ th visual sensing node belong-
ing to m̂th level of heterogeneity. Let Nt and Nr denote the
total number of image frames transmitted and received by a
visual sensing node. Suppose et

l̂
and er

l̂
represent the number

of control signal bits transmitted and received by a visual
sensing node respectively. Within the context of the proposed
framework, each visual sensing node transmits its location,
azimuth and elevation angles to the sink node; and the sink
node sends control signals to each visual sensing node for
classification within a suitable level of heterogeneity. Let nt
and nr be the total number of control signals transmitted and
received by a visual sensing node. The total energy consump-
tion within the communication phase of a VSN is denoted by
Ẽc and obtained as,

Ẽc =
H+1∑
m̂=1

Nm̂∑
l̂=1

[
Etx

(
Nt k̂m̂l̂ + nte

t
l̂

)
+ Erx

(
Nr k̃m̂l̂ + nre

r
l̂

)]
(44)

In order to calculate the energy consumption of the visual
sensing nodes, the energy model of [35] is used. The param-
eters used in this paper to model the energy consumption
of the radio transceiver are given in Table 2. In VSNs, the
energy cost incurred for visual data transmission and recep-
tion is significantly higher than the data processing cost
[14]–[16]. Therefore, only the communication energy cost
is considered in this paper to model the energy dissipation
of a visual sensing node. Moreover, it is assumed that ade-
quate resources are available at the sink node and it is not
constrained by limited energy, data storage and computa-
tional capability. This is a widely adopted assumption in the
literature; consequently, the receive energy cost at the sink
node does not influence lifetime of the VSN and can be
ignored.

V. RESULTS
This section demonstrates the performance of the proposed
framework for resource constrained VSNs. The Long Dis-
tance Heterogeneous Face (LDHF) dataset [36], [37] is used

TABLE 2. Energy-measurement parameters [35].

TABLE 3. Specification of the dataset used for training and calibration in
the pre-deployment phase.

FIGURE 5. An image subset from the LDHF dataset containing cropped
faces for Rr = 1 m.

for training and calibration and its specification is presented
in Table 3. This particular dataset is selected as it provides
a variety of facial images captured with various sensor-to-
object distances, hence making it suitable to be employed
for the evaluation of the proposed framework. Even though
the dataset contains images captured at both daytime and
nighttime, the specification of images captured at daytime is
considered. Keeping the capabilities of visual sensing nodes
into consideration, the original resolution of the test images is
found to be large, therefore, the test images are down-sampled
to a resolution of 512×512. An image subset extracted from
the dataset containing cropped faces is shown in Fig. 5.
In order to conduct experiments for object appearance mod-
elling, reference distance Rr = 1 m, maximum distance
Ru = 40 m and step size Sr = 1 m is considered in the
simulation model. Suppose t̂s denotes a subset consisting
of 15 test images selected randomly from the dataset, i.e.
t̂s ⊂ t̂m. Utilizing the proposed object appearance modelling
approach, the appearance of faces contained in test images
at Rr = 1 is modelled for a range set of sensor-to-object
distance Rd ∈ [2, 40] and the resulting QoI index is shown
in Fig. 6. Due to the fact that moving an object away from a
visual sensing node results in reduced object pixel occupancy,
it can be observed from the results that increasing Rd results
in QoI index reduction; where a higher value of QoI index
refers to a higher QoI within the image. Moreover, it can be
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FIGURE 6. QoI index estimation for object appearance modelling utilizing
test images (TIs) from the LDHF dataset.

noticed that the decaying characteristics of the test images are
identical and the QoI metrics are bounded within a range of
[−0.043, 0.048] from the mean.
In order to analyze the performance of the proposed

framework, 2D-DWT and 2D-DCT are considered for the
removal of redundant features from the images captured by
visual sensing nodes. These methods are chosen for conduct-
ing experiments due to their suitability for visual sensing
nodes [38] and utilization in many existing schemes [15],
[16], [22]. However, the proposed framework is expected to
support any compression scheme provided that its implemen-
tation is feasible within visual sensing nodes. In the following
discussion, even though 2D-DWT and 2D-DCT are treated
together, they are required to be employed individually and
only one redundancy removal method is required to be used
for a given application. In the experiments, the dynamic com-
pression range αlc = 2 to αuc = 100 and αlc = 2 to αuc = 70 is
considered for 2D-DWT and 2D-DCT respectively, with step
size Sc = 0.5. This particular range is considered because
the quality deteriorates beyond the upper limit and the result-
ing image may not be suitable for object detection. After
redundancy removal and QoI index estimation, (6) is used to
obtain the compressive calibration matrix, which is shown in
Fig. 7a and Fig. 7b for 2D-DWT and 2D-DCT respectively.
It is observed that increasing the level of redundancy removal
results in QoI index reduction. Consequently, the selection
of inappropriate parameters for feature redundancy removal
within visual sensing nodes is expected to affect the taget
QoI achievement reliability. As energy conservation can be
achieved by redundancy removal, CCM shown in Fig. 7a and
Fig. 7b are used for the training and calibration of visual
sensing nodes so that each node is dynamically self-reliant
for the selection of an optimal configuration to minimize its
energy consumption. Furthermore, it is found that compared
to the DCT-aided scheme, the scheme supported by DWT
is much more efficient in terms of the resulting QoI. This
is due to that fact that DWT, at high compression ratios,
results in significantly higher compression efficiency com-
pared to DCT [39]. Therefore, the overall transmission cost

of the DCT-aided scheme is expected to be higher than the
DWT-aided scheme.

A 3D sensing environment of size 50× 50× 10 m3 is con-
sidered for visual sensing nodes deployment and the origin
of the coordinate system is assumed to be at (1, 1, 1). The
number of sensing nodes N within the network is consid-
ered to be 100 and the sampling interval S is 0.1 m. The
horizontal and vertical FoVs are considered to be 48.39◦

and 37.25◦ respectively, as in [17]. The azimuth and ele-
vation angles are bounded within [0◦, 360◦] and [0◦, 155◦]
respectively. Degree of heterogeneity up to 2 is considered,
therefore H ∈ {0, 1, 2} appears in the simulation model.
H = 0 refers to homogeneous target QoI realization; H = 1
and H = 2 refer to heterogeneous realization of target
QoI. The number of control signal bits transmitted (et

l̂
) and

received (er
l̂
) each time the node classification takes place

are 115 and 5 respectively. In the simulation model, the
number of control signals transmission nt = 1 and recep-
tion nr = 1 are considered for simplicity. However, the
proposed framework can support scenarios with dynami-
cally changing QoI by updating the visual sensing nodes’
target QoI thresholds for reclassification within a suitable
level of heterogeneity. The movements of objects within
the FoV of visual sensing nodes are modelled randomly in
the simulation. As this paper focuses on the network self-
reconfiguration, it is assumed that after the capturing of
an image by a visual sensing node in the post-deployment
phase, an appropriate feature detection scheme can be used
for object extraction from the image. It is also assumed that
the sensor-to-object distance is estimated with a reasonable
degree of reliability. Each time a target is detected, the config-
uration of a visual sensing node is obtained dynamically using
Algorithm 2.

Consider a homogeneous realization of target QoI i.e.
H = 0. Let Êtx be the average energy cost incurred per
node for the transmission of one image frame and Êc be
the total transmission cost of Nt image frames, where an
image frame is represented by I. In order to demonstrate the
energy efficiency of the proposed QoI-aware scheme com-
pared to the conventional scheme, their transmission costs
are observed for various target QoI thresholds. Unlike the
proposed scheme, the conventional scheme does not dynami-
cally tune the visual sensing nodes’ parameters for redundant
feature removal and utilizes a constant value of γb to achieve
target QoI threshold λt . The results obtained from the com-
parative analysis for Nt = 150 image frames are presented
in Fig. 8. Let µp and µc denote the energy consumption
averaged over the total number of image frame transmissions
for the proposed and conventional schemes respectively. It
is observed from Fig. 8a and Fig. 8b that average trans-
mission energy consumption per frame of the proposed and
conventional schemes to achieve homogeneous target QoI
threshold λt = 31 dB is: 0.17 mJ and 0.72 mJ respectively
with 2D-DWT; and 0.51 mJ and 1.61 mJ respectively with
2D-DCT. Thus the proposed scheme leads to energy conser-
vation of 76.39% and 68.32% with 2D-DWT and 2D-DCT
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FIGURE 7. QoI index estimation after object appearance modelling and redundant feature removal with: (a) 2D-DWT and (b) 2D-DCT, to
obtain compressive calibration matrix.

FIGURE 8. Comparison of the average energy cost incurred per node to transmit an image frame with the proposed QoI-aware scheme and
conventional scheme for: target QoI λt = 31dB with (a) 2D-DWT and (b) 2D-DCT; target QoI λt = 37dB with (c) 2D-DWT and (d) 2D-DCT.

respectively. Similarly, as shown in Fig. 8c and Fig. 8d, to
achieve target QoI threshold λt = 37 dB, the average cost
of transmission energy per frame for the proposed and con-
ventional schemes is: 6.75 mJ and 11.86 mJ respectively
with 2D-DWT; and 15.74 mJ and 23.81 mJ respectively

with 2D-DCT. Hence, energy savings of 43.09% and 33.89%
are achieved with 2D-DWT and 2D-DCT respectively.

Moreover, a comparison of the overall transmission cost of
the proposed and conventional schemes per node to achieve a
set of given homogeneous target QoI thresholds λt ∈ [30, 40]
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FIGURE 9. Comparison of the average energy cost incurred per node to transmit Nt = 150 image frames with the proposed QoI-aware scheme and
conventional scheme to achieve homogeneous target QoI thresholds with: (a) 2D-DWT and (b) 2D-DCT.

TABLE 4. Comparison of the proposed scheme with existing state-of-the-art techniques for homogeneous (HM) and heterogeneous (HT) QoI realizations.

for Nt = 150 image frames with 2D-DWT and 2D-DCT
is depicted in Fig. 9. The results demonstrate that for any
given target QoI threshold, the proposed scheme minimizes
the transmission energy consumption and thus enhances the
energy efficiency of the visual sensing node.

Consider a heterogeneous realization of target QoI i.e.
H > 0. Modelling the simulations using the parameters
presented in the earlier discussion and incorporating them
within the proposed 3D coverage modelling and QoI-
centric node classification schemes, {f1, f2} = {0.48, 0.52}
and {f1, f2, f3} = {0.64, 0.67, 0.69} are obtained for tar-
get QoI with first and second degree of heterogeneity
respectively. The energy consumption of the proposed

scheme for homogeneous and heterogeneous target QoI
realizations is compared with the existing state-of-the-art
approaches proposed in [15], [16] and [22] and the results
are summarized in Table 4. Scenarios 1a, 2a and 3a present
the performance analysis for homogeneous target QoI realiza-
tion; scenarios 1b, 2b and 3b show the performance analysis
for heterogeneous target QoI realizationwith tight thresholds;
and scenarios 1c, 2c and 3c provide the performance analysis
for heterogeneous target QoI realization with relaxed thresh-
olds. It is observed from the comparison that the proposed
scheme results in substantial energy savings compared to its
existing counterparts and thus leads to an improved network
lifetime. The reason for these energy savings is due to the
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FIGURE 10. System reliability to achieve targeted threshold based optimization. (a) The minimum level of reliability for a range set of target QoI
threshold (λt ) and delivered QoI (β). (b) Proposed framework’s confidence bound for retrieving the information.

dynamic nature of the proposed scheme, where visual sensing
nodes are dynamically assigned a suitable target QoI thresh-
old and reconfigured accordingly. In contrast, the schemes
in [15], [16] and [22] are static for particular target QoI
threshold. Hence, the proposed scheme provides a feasible
solution to enhance the energy efficiency of individual visual
sensing nodes and it is found to be suitable for visual sensor
networks with strict constraints on their available energy.

VI. ANALYSIS OF PROPOSED FRAMEWORK’S
PERFORMANCE RELIABILITY
In order to analyze the robustness of the proposed framework,
an analytical model is developed to calculate the performance
reliability as a function of: the target QoI threshold (λt ) and
the QoI delivered by a visual sensing node (β). Due to the fact
that the fidelity of the compressive calibration matrix is quan-
tified within a confidence bound [e−, e+], the performance
reliability of the proposed framework is bounded between
[P−r ,P+r ], where P±r ∈ [0, 1], and is derived as,

P±r =
{
1− ξ±p , λt ≥ β + e±

1, otherwise
(45)

where ξ±r denotes the probability of failure to ensure the
target QoI satisfaction and it is calculated from (46), as shown
at the bottom of this page with m = 2α̂b−1 (α̂b denotes the

number of bits per pixel), e± is obtained from (7) and Q(·) is
the Q-function given by,

Q(x̂) =
1
√
2π

∫
∞

x̂
e−

1
2 q

2
dq (47)

The robustness of a system employing image processing
algorithms is directly proportional to the PSNR, and Q(·) is a
monotonically decreasing function; thus the realization with
(1 − ξ±p ) leads to a measure of robustness in terms of relia-
bility to dynamically ensure that the targeted QoI is achieved.
Using (7), e− and e+ for the proposed framework are found
to be −0.78 dB and 0.87 dB respectively. Substituting the
parameters in (45) and (46), the probability of ensuring the
targeted QoI thresholds is shown in Fig. 10. The lower bound
P−r obtained with respect to e−, which denotes the minimum
reliability offered by the system for a range set of target QoI
thresholds (λt ) and delivered QoI (β) is shown in Fig. 10a.
It is observed from Fig. 10a that the reliability increases with
the increase in delivered QoI and attains a maximum value
when β + e− ≥ λt .

In order to demonstrate the reliability of the QoI ensured
by the proposed framework, incorporating both e− and e+,
the region between the upper and lower confidence bounds,
representing P±r , is shown in Fig. 10b. It is observed that the
reliability, bounded betweenP−r andP+r shown in the shaded

ξ±p =

Q
102 log(m)−

λt
20 − 102 log(m)−

β+e±
20

α̂b−1∑
k=0

22k

− 0.50

 ·
Q

102 log(m)−
ζu
20 − 102 log(m)−

ζ l
20

α̂b−1∑
k=0

22k

− 0.50


−1

(46)
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region, increases with the increase in target QoI threshold.
This is due to the fact that the impact of the fidelity of the
compressive calibration matrix decreases with the increase
in target QoI threshold and thus enhances the confidence
bound for retrieving the information. A comparison of the
minimum QoI achievement reliability for homogeneous and
heterogeneous QoI realizations is presented in Table 4. In the
case of homogeneous target QoI thresholds of 40 dB, 39 dB
and 35 dB, the reliability of the proposed framework to ensure
that the targeted QoI is achieved is as low as 97.52%, 97.22%
and 95.59% respectively. On the other hand, for heteroge-
neous target QoI thresholds, the proposed unified framework
guarantees as low as 93.88% reliability. Although, compared
to the homogeneous scenarios, the heterogeneous realizations
result in up to 2.68% degradation in the reliability. However,
the latter lead to substantial energy savings and justify the
robustness of the proposed unified heterogeneous framework
of node classification and self-reconfiguration for resource
constrained VSNs. Moreover, the tight and relaxed hetero-
geneous target QoI thresholds provide a trade-off between
energy efficiency and reliability.

VII. CONCLUSION
A novel unified framework for the classification and self-
reconfiguration of nodes in resource constrainedVSNs is pro-
posed. The proposed framework incorporates a QoI-centric
node classification scheme along with a 3D coverage mod-
elling scheme by exploiting the heterogeneity of the targeted
QoI threshold levels within the sensing region. This provides
the flexibility to dynamically classify visual sensing nodes
based on their FoV. This paper also proposes a QoI-aware
dynamic self-reconfiguration scheme to obtain suitable con-
figurations of visual sensing nodes for visual data optimiza-
tion prior to transmission. Bymaking the visual sensing nodes
self-reliant through the training and calibration process in the
pre-deployment phase, the proposed reconfiguration scheme
is fully decentralized, which accelerates the decision making
process. An analytical model is formulated to quantify the
degree to which the targeted QoI thresholds are achieved by
a visual sensing node. For given target thresholds of QoI,
it is observed that the proposed heterogeneous framework
resulted in significant amount of energy savings compared
to the existing state-of-the-art techniques, as reported in the
simulation results, thus enhancing the lifetime of the network.
The energy efficiency of the proposed unified framework
demonstrated its feasibility to assist the system design engi-
neers for speedy deployment of VSNs in scenarios with strict
resource constraints. For the future extension of this work,
the authors intend to utilize the proposed 3D coverage mod-
elling scheme to develop reconfigurationmodels for coverage
and redundancy optimization of PTZ capable visual sensing
nodes. This is expected to provide energy efficient solutions
for collaborative management of visual sensing nodes’ orien-
tation and FoV parameters based on the criticality of events
to prolong the network lifetime.
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