
Classifying collaborative approaches for Cloud Based
Collaborative Software Development

Stanley Ewenike, Elhadj Benkhelifa and Claude Chibelushi

School of Computing and Digital Technologies,
Cloud Computing and Applications Research Lab

Staffordshire University, Stoke of Trent, UK.
Stanley.Ewenike@research.staffs.ac.uk, (e.benkhelifa, cc.chibelushi)@staffs.ac.uk.

Abstract— Software development is an activity involving a
remix set of different people, tools, practice culture, etcetera, and
working towards an end goal. Achieving the goal necessitates that
all these aspects work together towards the end goal.
Furthermore, the size, complexity, longevity and tight delivery
timelines of software projects, form part of the rationale for
collaboration in software development processes. With the advent
of Cloud computing, these factors have become more
pronounced. Other factors such as increased distribution, have
also become part of the rationale increasing the need for better
collaborative approaches. Collaboration can take numerous
forms and dimensions, but that does not necessarily mean that
any form of collaborative approach is good for every scenario or
context. There is no “one size fits all” approach. Different
development contexts may require different collaborative
approaches for greater effectiveness. So, which collaborative
approach is right, and which is wrong, for Cloud-based software
development lifecycle? This paper reviews literature with an aim
of presenting a classification for collaborative approaches
towards context-aware Cloud-based software development.

Keywords—cloud; collaborative software development;
collaborative approach; classification

I. INTRODUCTION

The broad nature of collaboration in activities, in terms of
coverage, composition and process, makes classification a way
of simplification. This could be via identification of salient or
implicit features within a given scenario or context. A good
classification would make it easier to identify and assemble
necessary building blocks for an adequate collaborative
approach for a given scenario, context, or even activity.
Software development process is a collective activity by nature,
requiring joint efforts to work towards achieving a common
goal[1], [2]. This implies a need for collaboration. This is
further buttressed by the decentralization and concurrency
introduced by emerging technologies and paradigms such as
cloud computing. Although these, bring about efficiency in
certain aspects of the process, they introduce complexities and
complications in other areas of the Software development
process. Some of these areas include co-ordination,
communication and awareness, amongst others [3].

The focus in this research is on collaborative approaches to
Cloud-based software development. Software development
departments and organizations in the cloud are getting more
decentralized with increasing distribution in location,

processes, cultural practice and team makeup [4], [5].
Accessing and housing software applications in the cloud,
implies a need for a change in how software is developed [6]
These changes give rise to novel challenges, as well as,
increase demand for different kinds of software, highlighting
the increasing importance of adopting collaborative approaches
and tools [1].This warrants a review and analysis of existing
collaborative approaches. Identification and classification of
existing collaborative approaches to software development, is
of great importance [3]. This would contribute towards better
understanding, analysis, characterization and evaluation of
these approaches and any gaps therein. Sequel to this is,
investigation of better ways, paradigms and technologies to
leverage, towards addressing challenges in collaborative
software development in the Cloud. This would facilitate better
insight and understanding when seeking to develop
frameworks and architectures to enhance the collaborative
development process[7].

Prior to classifying collaborative approaches for Cloud-
based Software development, it is necessary to review literature
to identify trends and gaps which emphasize this need. This
helps with alignment of classification with this research
domain. The primary aim of this research is: a review of
existing collaborative approaches, in alignment with gaps
identified from a synthesis of related literature, for the proposal
of an adequate classification of collaborative approaches for
Cloud-based collaborative software development. This would
facilitate design and development of better architectures, tools,
techniques, methodologies and processes, for supporting
collaborative software development in the Cloud.

This paper is structured around literature findings and
evidence. The structure of this paper is laid out as follows.
Section I introduces this research, the aim of the paper as well
as, contextual background for the research. Section II provides
related work. Section III explores collaborative approaches and
proposes a classification of collaborative approaches for Cloud-
based collaborative software development. Section IV
concludes the paper with suggestions for future direction.

II. RELATED WORK

Software development is a collaborative activity, involving
divergent and convergent activities carried out by people or
teams, in an environment, towards achieving a set of objectives
or outcome[8][9]. The Software development process refers to

978-1-5386-3148-5/17/$31.00 © 2017 IEEE 47

the entire process of developing software, encompassing: a
team, framework of activities, set of practices providing
guidelines for designing, developing, testing, deploying,
maintaining and managing software[10]. This includes the
interactions too. The entire process involves different parts
working together towards a goal. This process spans the entire
development lifecycle and is usually embodied in a defined
high-level abstraction usually referred to as a software
development model[11]. Software development models
facilitate and guide a set of tasks or activities to transform
problem definitions and requirements into software[10]–[12].
Various types of software development models, adapted as
different methodologies, are essentially efforts aimed at
standardizing and improving the process of developing
software[7]. A typical software development project usually
comprises a team made up of people of diverse cultures,
skillset, technical expertise, technological and non-
technological viewpoints, either, working together on different
tasks, or separately on complementary tasks at each stage of the
process towards a common goal, all the while ensuring
communication via a variety of tools or medium[4]. This in
itself, calls for efficient collaboration and management in the
software development process [9].

The collaborative software development process comprises
of divergent and convergent activities carried out by people or
teams, in an environment, towards achieving a set of objectives
or outcome[4]. Analyzing various collaborative approaches,
methods and tools in the different phases of the software
development process helps in vertically organizing all existing
fragmented approaches, and aligning them with the value chain
[3]. This contributes towards development of a framework to
act as a process model for implementing a vertically
collaborative and continuous software development process. At
the time of this research, most collaborative approaches are
horizontally collaborative, mostly asynchronous or partially
synchronous, rarely context-aware and mostly not developed
with distributed environments in mind [3], [5], [7], [13].

Collaborative Software development in the Cloud,
introduces complexities and contexts, amidst other factors, that
were hitherto, either non-existent or less pronounced [2]. These
are sometimes underestimated, ignored, or sometimes not
given enough consideration and planning. This undermines the
collaboration in the process, randomizes the process, and
impacts the ability to facilitate a reproducible, sustainable,
context-aware collaborative software development process in
the Cloud [10]. This has led to need for: identification of
reliable ways of managing and measuring collaboration and
other success factors within the process; new methodologies
and ways of enhancing effective collaboration within the
lifecycle development process; effective ways of managing
complexity and ensuring synchronous regularity, as well as,
verifiable outputs and outcomes at the various stages of the
collaborative development lifecycle process [9], [14], [15].
Furthermore, development of key dimensions for analyzing and
benchmarking the collaborative process is necessary step
towards continuous process improvement and sustainability.
This would translate into the ability to consistently reproduce
the enhanced process, and ultimately, standardization in the
form of frameworks, architectures and standards.

 To date, the focus of majority of R&D efforts in the area of
Cloud-based software development is at best imbalanced. Most
concentrate on specific aspects of the development process,
resulting in insufficient attention being paid to other aspects
equally undermining collaboration. A review of related
literature reveals that very little R&D efforts have been devoted
towards enhancing collaboration in software development in
general, as well as, in the Cloud [9], [14]–[20]. A few efforts
have been devoted towards asynchronous collaboration;
isolated collaboration in specific aspects of the process, such as
coding activities; use of open-source tools for contributing,
improving, and managing code [4], [5], [14], [21]. There has
been very few efforts devoted towards developing
classifications for collaborative approaches for software
development, and none for Cloud-based software development
[3], [4], [22]–[24]. Table II below summarizes some of the
areas of R&D efforts from the last seven decades, as well as,
effects from these efforts that have further contributed towards
undermining real-time collaboration and reducing the overall
effectiveness of the development process. Although these
efforts represent valid contributions and important enablers,
they are still missing important aspects that enable a more
effective collaborative cloud-based development process[15],
[25].

Table 1: Summary of a review of seven decades of R&D efforts and effects on
the development process

Decade Summary of trends and R&D efforts

1950s Emphasis was adoption of other branches of science to aid in
the evolution of software processes and methodologies.
Introduced increasingly unpredictable and diverse range of fast-
growing problems.

1960s Application of low-risk, fast, out-of-the-box processes for
approaching and solving software development problems. This
method often introduced defects, needing patches or rework.

1970s Use of structured and formal methods in a bottom-up approach
towards goal-oriented and purposeful software projects, with
priority given to early elimination of errors. Often required pre-
determination of system’s purpose and domain understanding.
Resulted in issues with compliance, scalability, reusability, and
process overheads.

1980s Adoption of various approaches towards increasing
productivity in software projects. Mainly directed towards
aspects such as: staffing, architecture, compliance, component
reuse, process improvement and maturity. Productivity
increased, but skepticism flourished, whilst the rate and scale of
innovation reduced.

1990s More emphasis on reducing the time to market software,
improving usability and usefulness of software, as well as
maximizing returns on investment. Popular methods of this
decade include agile methods, product reuse, concurrent
processes and rapid composition methods. This sometimes
resulted in overambitious and unrealistic milestones and
deadlines; incomplete specifications, incompatibility, and lots
of time spent on rework and integration

2000s Use of adaptable methods e.g. model and plan-driven methods,
hybrid agile methods, as well as service-oriented architectures.
These were adapted towards addressing dynamic increases and
changes in business and stakeholder needs. More attention was
paid towards integrating systems and software engineering.
Negatives include: issues with scalability, and clashes in
models and methods used

2010s Emphasis on creation and adoption of value-based methods,
enterprise architectures, enabled by emerging paradigms. These
were geared towards: ease of use for end users to build own

978-1-5386-3148-5/17/$31.00 © 2017 IEEE 48

systems, scalability, global connectivity, agility, and use of
diverse processes, components, platforms, skills, and practice
and on-demand resources as services. These have introduced:
complexity, distribution, proliferation of incompatible tools and
inadequate methods, time zones differences, development
culture and practice clashes, problems with continuous
synchronous integration, compatibility with legacy applications
and traditional processes and practices.

 The concept of leveraging the Cloud to create or enhance
collaboration in different activities is shaping up and gaining
solid ground in a lot of areas and field[7]. Reasons for this
include: to address the inefficiencies and inconsistencies of
traditional processes and environments for tighter synchronous
collaboration, as well as, align software development with
current trends and changing business requirements; leverage
new concepts and methods for optimal development process,
economies of scale and efficient use of resources; efficient
management, automation, context-aware linking and sharing of
information [4], [7]. Literature review shows that most current
solutions offered in Industry as 'Cloud-based solutions', offer
more support for the coding and deployment stages of the
software process, and less for other stages such as the
requirements gathering stage, the testing stage and the design
stage. Some of the solutions attempt to integrate social
communication by featuring some social communication tools
[26]–[29]. In the same way that merely developing applications
compatible with the Cloud does not make the application
Cloud-agnostic, merely integrating social communication tools
or features with a Cloud-based IDE does not necessarily make
the development environment a collaborative Cloud-based
development platform. Arguably, integrating social networks in
the enterprise with Cloud development environments would be
an approach towards enabling or enhancing collaboration in
Cloud development environments. However, leveraging the
Cloud for a fully collaborative development environment is
more than that. Some authors [30] presented an interesting
cross-section on existing Collaborative Software development
tools and environments grouped by colors based on key
characteristic features.

There is need for Cloud-based software development
process to incorporate collaborative concepts and technologies,
as well as, integrate a management layer to effectively manage
the collaboration and resources, aligned with identified
constraints, and identified business requirements and goals[56].
Establishing an adequate classification of collaborative
approaches would: enhance effective interactions between
different aspects of a cloud-based software development
process; ensure that appropriate consideration is given to
existing and changing contexts of collaboration; enhance and
align collaborative activities to defined goals and outcomes;
and lend defined structure to the process. This would greatly
aid in employing and reinforcing principles and concepts
embodied in collaborative approaches in the design and
development of collaborative solutions i.e. models, methods,
frameworks and architectures for cloud-based collaborative
software development [3], [14].

III. CLASSIFYING COLLABORATIVE APPROACHES

The very nature of the software development process as a
group activity requiring joint efforts geared towards a common

goal implies a need for collaboration. A review and
classification of collaborative approaches is necessary to foster
better understanding, analysis, and evaluation of ways to align
and streamline collaborative activities. Sequel to this would be
the investigation of paradigms and technologies to leverage
towards addressing challenges in the collaborative software
development process.

To be able to identify an adequate collaborative approach
for the Cloud-based software development process, it is
necessary to identify the components of a typical development
process, related aspects and contexts that would be present. In
addition, it is also necessary to identify the activities and
practices involved, as well as other points of consideration.
Below are different ways of analyzing collaboration or
collaborative approaches and activities within the software
development process. Different schools of thought exist with
regards to classification of collaborative work within the
software development process [3], [25], [28], [32], [33].

A. Classification based on empirically measured activities
within collaborative software development process

This is broken down into smaller categories for easier
understanding of the interactions and how best to support or
enhance the collaboration within. This classification focuses
more on the main actors, rather than both the actors, the
process, and other related contexts. The four classes are:
Mandatory collaborative activities, Called collaborative
activities, ad-hoc collaborative activities and individual
collaborative activities [4], [23], [33]. Mandatory collaborative
activities refer to formally scheduled activities, and can be
either technical or non-technical. Called collaborative activities
refer to activities initiated primarily to solve a problem, and are
mostly technical in nature. Ad-hoc collaborative activities refer
to those activities that require more than one team member or
process, working on the same task simultaneously.

Figure 1: Classification based on empirically measured development activities

B. Classification derived from objectives of activities

The interactions between the components of the software
development process provides another perspective for
analyzing and classifying collaborative work, as well as

978-1-5386-3148-5/17/$31.00 © 2017 IEEE 49

motivation for enhancing the process [34], [35]. This
classification stems from the need for effective and efficient
interactions between all the aspects and components of the
process or activity, in order to ensure meeting the desired goal.
As such, classification is done based on interactions according
to objectives of the activity[36], [37]. This is depicted in the
figure below, showing a generalized view of stages in a typical
software development project. Within each stage or parent
activity, smaller or sub-activities are carried out, to ensure that
the objectives of the parent activity are met. If the need arises,
these sub-activities are further broken down into sub-sub-
activities, which are further broken down till it gets to the nth
activity. This decomposition goes on and on, depending on
need. Within each activity, interactions take place to achieve
the desired transformation or objective. These interactions may
be sequential or concurrent, subject to dependencies, and may
be in any, or all of the following forms: human to human;
human to non-human; non-human to non-human. These
interactions may involve the sharing of artefacts such as code,
design specifications, requirement documentation and use
cases, test scripts, test specifications, etcetera. Suffice to say,
the larger the project, the more the components, the more the
number of interactions, and the more the artefacts. Hence the
increase in complexity, that would need to be kept track of, and
managed properly. Situations like this in any of the stages, say
for example, the requirements’ stage, could quickly lead to
backlogs of inconsistent and ambiguous user stories or use
cases. Arising results from this include: inadequate or very
poor quality output, oversights, and late schedules[32].

Figure 2: Classification based on objectives of development activities

C. Classification based on Software development process
characteristics

This classification focuses on characteristics of the process,
rather than context or activity levels [3], [24]. These
characteristics are grouped into distribution-based
characteristics and process-based characteristics. Distribution-
based characteristics include organizational, spatial and
temporal distributions. Organizational distribution refers to
distribution of the development process based on:
organizational units – these could be exhibiting inter-
organizational or intra-organizational characteristics; or
project-related characteristics – these could be inter-individual

or inter-team; or business-related - these could be either
company-wide or on the scale of the business environment.
Spatial distribution makes the distinction between spatial
distribution and spatial collocation which can occur either
within or across organizations. These characteristics can
include: tacit knowledge transfer considerations, personal
contact considerations, and coordination considerations,
differences in time zones, and development culture and
practice; along with potential impact on collaboration contexts.
Temporal distribution refers to making the distinction between
synchronous and asynchronous characteristics of software
development processes or activities. This includes processing
of requirements, artefacts, or information. Process-based
characteristics include process disciplines, process directions
and process intensity. Process discipline refer to the phases,
also referred to as the disciplines, of the software development
process e.g. requirements gathering/analysis, design,
development etc. Process direction encompasses collaboration
which occurs either within value-creation phases of the
software development process (horizontal), or the collaboration
which occurs in-between value-creation phases (vertical).
Process intensity distinguishes between higher and lower flow
of information and knowledge between the actors of the
process. These are referred to as higher intensity and lower
intensity respectively. The process intensity is dependent on
either work done collectively, or, on collaborative exchange of
information or knowledge between disjoint complementary
activities.

Figure 3: Classification based on both internal and external characteristics of

the development process

D. Classification based on analysis of
interactions between all aspects of the
process

The need for more efficient collaboration within the
process is driven by increasing distribution within teams,
complexity within the process, and need for more efficient

978-1-5386-3148-5/17/$31.00 © 2017 IEEE 50

ways of improving quality aspects of software, as well as
delivery time, to meet changing needs. However, Cloud-based
collaborative software development is yet to reach the level
where the practice and interactions amongst all the
components of the process is routine [13]. Improving the
development process necessitates standardization of
collaborative interactions between diverse set of people, skills,
activities, processes, tools, configurations, specifications, and
other relevant components, across factors such as location,
distance, characteristics, objectives and nature of being.
Analysis of interactions between all components of the
process that contribute to bringing about a successful outcome,
yields another basis for classification[4], [35],

Figure 4: Classification based on analysis of interactions between all

development process aspects

IV. CONCLUSION

Enhancing collaboration in Cloud-based software
development requires the ability to recognize and identify
various possible collaboration contexts, as well as the need for
to vary approaches aimed at these. Knowledge and
consideration of the implicit, and sometimes explicit
differences present, as a result of varying contextual factors
and characteristics, is important for designing collaborative
adequately efficient architectures, frameworks and
methodologies for the cloud-based development process. It
provides awareness of consideration factors, as well as, an
understanding of aspects of collaboration and development

contexts that are going to influence or impact effectiveness
most. This provides a useful means for making trade-offs and
selecting most apposite practice and contingencies when
seeking to leverage cloud capabilities and design solutions to
improve collaboration and efficiency in software development
lifecycle process in the cloud.

REFERENCES

[1] M. Bass, J. D. Herbsleb, and C. Lescher, ‘Collaboration
in Global Software Projects at Siemens: An Experience
Report’, in International Conference on Global
Software Engineering (ICGSE 2007), 2007, pp. 33–39.

[2] J. D. Herbsleb, D. J. Paulish, and M. Bass, ‘Global
Software Development at Siemens: Experience from
Nine Projects’, in Proceedings of the 27th International
Conference on Software Engineering, New York, NY,
USA, 2005, pp. 524–533.

[3] T. Hildenbrand, F. Rothlauf, M. Geisser, A. Heinzl, and
T. Kude, ‘Approaches to Collaborative Software
Development’, in International Conference on
Complex, Intelligent and Software Intensive Systems,
2008. CISIS 2008, 2008, pp. 523–528.

[4] I. Mistrík, J. Grundy, A. Hoek, and J. Whitehead,
Collaborative Software Engineering. Springer Science
& Business Media, 2010.

[5] F. Fazli and E. A. C. Bittner, ‘Cultural Influences on
Collaborative Work in Software Engineering Teams’,
2017.

[6] L. M. Riungu, O. Taipale, and K. Smolander, ‘Research
Issues for Software Testing in the Cloud’, in 2010 IEEE
Second International Conference on Cloud Computing
Technology and Science (CloudCom), 2010, pp. 557–
564.

[7] Z. Mahmood and S. Saeed, Software Engineering
Frameworks for the Cloud Computing Paradigm.
Springer Publishing Company, Incorporated, 2013.

[8] R. Keil-Slawik, ‘Artifacts in Software Design’, in
Software Development and Reality Construction, C.
Floyd, H. Züllighoven, R. Budde, and R. Keil-Slawik,
Eds. Springer Berlin Heidelberg, 1992, pp. 168–188.

[9] T. Zimmermann and C. Bird, ‘Collaborative Software
Development in Ten Years: Diversity, Tools, and
Remix Culture’, in Proceedings of the Workshop on The
Future of Collaborative Software Development, 2012.

[10] A. Fuggetta, ‘Software process: a roadmap’, in
Proceedings of the Conference on The Future of
Software Engineering, New York, NY, USA, 2000, pp.
25–34.

[11] I. Sommerville, Software Engineering, 9 edition.
Boston: Addison Wesley, 2010.

[12] A. M. Magdaleno, C. M. L. Werner, and R. M. de
Araujo, ‘Reconciling software development models: A
quasi-systematic review’, J. Syst. Softw., vol. 85, no. 2,
pp. 351–369, Feb. 2012.

[13] N. Chanda and X. F. Liu, ‘Intelligent analysis of
software architecture rationale for collaborative
software design’, in 2015 International Conference on

978-1-5386-3148-5/17/$31.00 © 2017 IEEE 51

Collaboration Technologies and Systems (CTS), 2015,
pp. 287–294.

[14] R. Oberhauser, ‘Towards Cloud-based Collaborative
Software Development: A Developer-Centric Concept
for Managing Privacy, Security, and Trust’, in ICSEA
2013, The Eighth International Conference on Software
Engineering Advances, 2013, pp. 533–538.

[15] R. Oberhauser, ‘Cloud-based Collaborative Software
Development: A Concept for Managing Transparency
and Privacy based on Datasteads’, Int. J. Adv. Softw.,
vol. 7, no. 3 and 4, pp. 435–445, Dec. 2014.

[16] R. Al Mushcab and P. Gladyshev, ‘The significance of
different backup applications in retrieving social
networking forensic artifacts from Android-based
mobile devices’, in 2015 2nd International Conference
on Information Security and Cyber Forensics, InfoSec
2015, 2016, pp. 66–71.

[17] J. Cito, P. Leitner, T. Fritz, and H. C. Gall, ‘The making
of cloud applications: An empirical study on software
development for the cloud’, in Proceedings of the 2015
10th Joint Meeting on Foundations of Software
Engineering, 2015, pp. 393–403.

[18] J. Cito, P. Leitner, H. C. Gall, A. Dadashi, A. Keller,
and A. Roth, ‘Runtime Metric Meets Developer:
Building Better Cloud Applications Using Feedback’, in
2015 ACM International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and
Software (Onward!), New York, NY, USA, 2015, pp.
14–27.

[19] B. Boehm, ‘A View of 20th and 21st Century Software
Engineering’, in Proceedings of the 28th International
Conference on Software Engineering, New York, NY,
USA, 2006, pp. 12–29.

[20] B. W. Boehm, ‘Some Future Software Engineering
Opportunities and Challenges’, in ResearchGate, 2010,
pp. 1–32.

[21] L. Hattori and M. Lanza, ‘Syde: A Tool for
Collaborative Software Development’, in Proceedings
of the 32Nd ACM/IEEE International Conference on
Software Engineering - Volume 2, New York, NY,
USA, 2010, pp. 235–238.

[22] J. Arsenyan and G. Büyüközkan, ‘Modelling
collaborative software development using axiomatic
design principles’, IAENG Int. J. Comput. Sci., vol. 36,
no. 3, pp. 234–239, 2009.

[23] T. Clear, ‘Dimensions of Collaboration in Global
Software Engineering Teams: Explorations of
“Collaborative Technology Fit”’, in Fourth IEEE
International Conference on Global Software
Engineering, 2009. ICGSE 2009, 2009, pp. 297–298.

[24] G. A. Dafoulas, K. Swigger, R. Brazile, F. N. Alpaslan,
V. L. Cabrera, and F. C. Serce, ‘Global Teams:
Futuristic Models of Collaborative Work for Today’s
Software Development Industry’, in 2009 42nd Hawaii
International Conference on System Sciences, 2009, pp.
1–10.

[25] M. Nordio, H.-C. Estler, C. A. Furia, and B. Meyer,
‘Collaborative Software Development on the Web’,
ArXiv11050768 Cs, May 2011.

[26] S. Ardaiz, ‘Collaborative Communication: Why
Methods Matter’, Triple Pundit People Planet Profit,
Dec. 2011.

[27] C. Gadea, B. Solomon, B. Ionescu, and D. Ionescu, ‘A
Collaborative Cloud-Based Multimedia Sharing
Platform for Social Networking Environments’, in 2011
Proceedings of 20th International Conference on
Computer Communications and Networks (ICCCN),
2011, pp. 1–6.

[28] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, ‘Social
Coding in GitHub: Transparency and Collaboration in
an Open Software Repository’, in Proceedings of the
ACM 2012 Conference on Computer Supported
Cooperative Work, New York, NY, USA, 2012, pp.
1277–1286.

[29] A. Begel, J. Bosch, and M.-A. Storey, ‘Social
Networking Meets Software Development: Perspectives
from GitHub, MSDN, Stack Exchange, and TopCoder’,
IEEE Softw., vol. 30, no. 1, pp. 52–66, Jan. 2013.

[30] XebiaLabs, ‘Periodic Table of DevOps Tools’,
XebiaLabs, 13-Apr-2015. [Online]. Available:
https://xebialabs.com/periodic-table-of-devops-tools/.
[Accessed: 26-Feb-2017].

[31] A. Bento and A. K. Aggarwal, Eds., Cloud Computing
Service and Deployment Models: Layers and
Management. IGI Global, 2012.

[32] H. Hajjdiab and Al Shaima Taleb, ‘Adopting Agile
Software Development: Issues and Challenges’, Int. J.
Manag. Value Supply Chains, vol. 2, no. 3, pp. 1–10,
Sep. 2011.

[33] P. N. Robillard and M. P. Robillard, ‘Types of
collaborative work in software engineering’, J. Syst.
Softw., vol. 53, no. 3, pp. 219–224, Sep. 2000.

[34] A. M. Magdaleno, ‘Balancing collaboration and
discipline in software development processes’, in
Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering - Volume 2, New
York, NY, USA, 2010, pp. 331–332.

[35] D. E. Strode, ‘A dependency taxonomy for agile
software development projects’, Inf. Syst. Front., vol.
18, no. 1, pp. 23–46, Feb. 2016.

[36] P. Barthelmess and K. M. Anderson, ‘A View of
Software Development Environments Based on Activity
Theory’, Comput Support. Coop Work, vol. 11, no. 1–2,
pp. 13–37, Apr. 2002.

[37] N. M. A. Munassar and A. Govardhan, ‘A Comparison
Between Five Models Of Software Engineering’, IJCSI
Int. J. Comput. Sci. Issues, vol. 7, no. 5, pp. 94–101,
2010.

978-1-5386-3148-5/17/$31.00 © 2017 IEEE 52

