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ABSTRACT In this paper, we explore surveillance and target detection applications of Internet of
Things (IoT) with radio detection as the primary means of sensing. The problem of surveillance and target
detection has found its place in numerous civilian and military applications, and IoT is well suited to address
this problem. Radio frequency (RF) sensing techniques are the next generation technologies, which offer
distinct advantages over traditional means of sensing used for surveillance and target detection applications
of IoT. However, RF sensing techniques have yet to be widely researched due to lack of transmission
and computational resources within IoT. Recent advancements in sensing, computing, and communication
technologies have made radio detection enabled sensing techniques available to IoT. However, extensive
research is yet to be done in developing reliable and energy efficient target detection algorithms for
resource constrained IoT. In this paper, we have proposed a multi-sensor RF sensing-based target detection
architecture for IoT. The proposed target detection architecture is adaptable to interference, which is caused
due to the co-existence of sensor nodes within IoT and adopts smart sensing strategies to reliably detect the
presence of the targets. A waveform selection criterion has been proposed to identify the optimum choice of
transmit waveforms within a given set of sensing conditions to optimize the target detection reliability and
power consumption within the IoT. A dual-stage target detection strategy has been proposed to reduce the
computational burden and increase the lifetime of the sensor nodes.

INDEX TERMS Energy efficiency, Internet of Things (IoT), multi-sensor, RF sensing, target detection.

I. INTRODUCTION
IoT consists of low cost, easy-to-use, easy-to-deploy network
of active or passive sensor nodes, which are deployed within
the sensing region. Depending on the nature of the sensing
application, the sensor nodes can be deployed either ran-
domly or in an organised fashion. Once deployed, the sensor
nodes collect data, which can be used to perform tasks such
as surveillance, remote monitoring, etc. The sensor nodes
are equipped with one of more sensing devices with limited
power, processing, and communication capabilities. Sensor
nodes collectively monitor the sensing region and respond to
the occurrence of unexpected events or relay the information
to a centralised control centre. The control centre, which
is usually equipped with additional power and processing

resources, collects the data from all the sensor nodes and
makes a decision regarding the occurrence of the event.

In recent times, IoT [1], [2] have experienced increased
attention in civilian, industrial, and military applications.
Due to low-cost and cooperative nature of sensor nodes, IoT is
well suited for surveillance applications [3], [4]. Some of the
surveillance applications of IoT include battlefield surveil-
lance, remote monitoring in urban environments, intrusion
detection, etc. Sensor nodes can be deployed in hazardous
battlefield environments to monitor enemy activities while
keeping the human operator at safety. Depending on the
nature of the sensing application, the sensor nodes can either
actively interact with the sensing environment or passively
monitor the same. Jaigirdar et al. [5] have discussed the
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introduction of active sensor nodes within the sensing region.
While active sensor nodes allow aggressive sensing strategies
to achieve increased reliability, the increased power con-
sumption within resource limited sensor nodes must be taken
into account while designing the network. Within the existing
literature, to the best of author’s knowledge, limited research
has been done towards developing RF sensing based IoT.

For IoT deployed in harsh sensing environments, there
is a need to develop robust target detectors, which provide
reliable target detection rates while being computationally
efficient. Most often within IoT, the sensor nodes are required
to operate in harsh sensing environments in the presence
of clutter and interfering signals. The sensor nodes while
co-existing with the other sensor nodes are required to pro-
vide reliable target detection rates while using the limited
available power and processing capabilities. Our proposed
target detector is expected to give an energy efficient solu-
tion to the problem of target detection under these sensing
conditions. To optimise the target detector, we divide the
target detection procedure into initialisation and operational
stages. Preliminary time-invariant estimations are performed
in initialisation stage and the final decisions are made using
the received signal samples obtained during the operational
stage. Amount of data transfer between the sensor nodes and
the control centre has a severe impact on the lifetime of sensor
nodes. We proposed compressive sensing to reduce the trans-
missions costs. Finally, we propose a waveform selection
strategy to optimise the reliability and energy efficiency of
the target detector. The main contributions of this paper are
as follows:

1) RF sensing based target detection architecture for
surveillance applications of IoT has been proposed in
this paper.

2) An optimised dual-stage target detection strategy has
been proposed to improve the computational efficiency
of the target detector.

3) To increase the lifetime of the sensor nodes we propose
compressive sensing where the sensor nodes are only
required to transmit reduced number of compressed
received signal samples to the control centre.

4) We propose a waveform selection criterion to optimise
the energy efficiency and target detection reliability
of the sensor nodes within the IoT while co-existing
with the other sensor nodes.

Rest of the paper is organised as follows: The existing liter-
ature related to our work is elaborated in Section II. Problem
formulation for the proposed IoT and the expected received
signal models are discussed in Section III. Inverse covari-
ance estimation procedure for target detection is discussed
in Section IV and elaborated in Appendix. In Section V
we derive the test statistic for the proposed target detector.
In Section VI we discuss the waveform selection criterion for
co-existence of sensor nodes within IoT. Simulation results
are discussed in Section VII followed by conclusion and
future work in Section VIII.

II. RELATED WORK
Sensing the presence or absence of a target is one of
the primary objectives of IoT for surveillance applications.
Traditionally, IoT used infrared, magnetic, seismic, acous-
tics, optics, etc. as primary means of sensing. Intrusion
detection for surveillance applications is a problem, which
is well suited for IoT. However, RF sensing based target
detection within IoT has not yet been widely researched.
RF sensing involves transmitting RF signals into the sensing
region and detecting reflected components of the transmitted
signals to detect the presence of targets [6]–[8]. Some of
the major advantages of using RF sensing are no line-of-
sight requirement, ability to distinguish between targets and
non-targets, ability to operate through obstacles, ability to
estimate range and velocity of the targets, etc. Commercial
widespread applications of RF sensing have not yet been
possible due to limitations over power consumption and
processing requirements. With the development of micro-
power impulse radios, RF sensing based IoT has become a
possibility. Ultra-Wideband (UWB) technology was devel-
oped at Lawrence Livermore National Labs [9] which uses
micropower impulses as against to conventional narrowband
transmissions. Micropower impulses in UWB technology are
transmitted for a short duration of time and hence contain
little energy. Ditzel and Elferink [7] designed a low-power RF
sensing platform based on UWB technology and investigated
the power budget and energy breakdown for the sensor node.
These sensor nodes are compact and low powered which
makes them ideal for IoT. Subsequent developments [10]
resulted in designing RF sensing based autonomous network
of sensor nodes with significant improvements in sensing
range and power consumption. An autonomous sensor net-
work is expected to have the ability to gather the sensing data
and use intelligent design framework to support autonomous
decision-making capabilities to detect and track targets within
the sensing range.

Power consumption is one of the main design constraints
within a sensor node. Ditzel and Elferink [7] have designed
a sensor node for RF sensing based applications, which
consumes 10mA at 3V and provides a sensing range up
to 10m. While working prototypes have already been devel-
oped, extensive research is yet to be done in develop-
ing reliable and computationally efficient target detectors.
Dutta et al. [6] have considered Neyman-Pearson based
binary hypothesis detector to be a suitable target detector.
Meguerdichian et al. [11] and Phipatanasuphorn and
Ramanathan [12] have proposed a target detector, which
uses the average signal strength as measured by the sensor
nodes to detect the presence of targets. While such methods
are simple to implement and computationally less complex,
their target detection reliabilities are poor due to high false
alarm rates. Inmany of the practical surveillance applications,
IoT are required to operate in harsh sensing environments
and the low complexity target detectors proposed for IoT
exhibit increased false detection rates and reduced reliability.
Real time experiments on Mica2 motes showed that the false
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alarm rates of the decisions taken based on the data from
a single sensor can be as high as 60 percent [13]. In [10],
authors have proposed an IoT with multiple sensor nodes
distributedwithin the sensing region. Varshney [14] discussed
data fusion to improve the target detection reliability. A net-
work of distributed sensor nodes is designed in [15]–[17]
where the sensors are grouped together by a control centre
which can adopt joint scheduling approach [18]. The dis-
tributed network can provide improved sensing coverage and
connectivity with efficient energy consumption. A distributed
network of sensor nodes can be seen as a multiple-input
multiple-output (MIMO) system that transmits a waveform of
known shape and detects the reflected echoes from the target.
The presence of multiple sensor nodes within the sensing
region increases the probability of detecting the presence of
targets. However, the signals transmitted from the neighbour-
ing sensor nodes interfere with each other and reduce the
target detection reliability. In the existing literature, various
target detectors [19]–[24] have been proposed by the authors
to provide improved target detection performance. However,
the proposed target detectors are computationally intense and
incompatible with resource constrained IoT. The presence
of objects within the sensing region, which interact with
the transmitted signal result in clutter returns. Since, clutter
returns appear similar to the target returns, the presence of
clutter leads to increased false detection rates and reduced
reliability. In this paper, we design a target detector, which
operates within the sensing and operational constraints of IoT.
The proposed target detector is expected to provide an accept-
able trade-of between power consumption, target detection
reliability and computational complexity.

III. PROBLEM FORMULATION
We have considered a low power surveillance system,
which is supported by IoT. To achieve increased reliabil-
ity within the low power applications of IoT, we consider
RF sensing as the primary means of sensing. The proposed
IoT consist of clusters of sensor nodes, which are dis-
tributed within the sensing region. Each cluster consists of a
control centre and a group of receiving nodes, which are
distributed within the sensing region. It is assumed that
the control centre is equipped with sufficient resources to
transmit the desired RF-signal into the sensing region. The
received signal model at the receiving nodes is summarised
in Fig. 1. The receiving nodes co-ordinate among them-
selves to detect the reflected components of the transmitted
RF-signal.

Let there be a cluster of Ns sensor nodes. If the signal is
transmitted for a time period of T sec 0≤ t ≤ T , at a sampling
rate of fs, let s be aNt×1 vector representing the time-limited,
finite energy transmit signal. Therefore, total energy allocated
to each transmission period is

E =
∫ T

0
s2(t)dt =

Nt∑
i=1

s2(i) = sH s (1)

FIGURE 1. Proposed Sensing Scheme for Internet of Things.

When a waveform s(t) is transmitted, the receiving nodes are
expected to receive a direct arrival and reflected components
of the transmitted signal where the reflected components
are characterised by a time delay. It is assumed that the
transmitting and receiving nodes are synchronised so that
the reflected signals can be distinguished from the direct
arrivals. The sensor nodes also receive interfering signals
from the neighbouring clusters. The control centre is assumed
to have the knowledge of the transmitting waveforms from
the neighbouring clusters. If yi(t) is the received signal at the
ith sensor node, then we can write,

yi(t) =
tn∑
k=1

s(t) ∗ aik (t)+
bn∑
k=1

hk (t) ∗ bik (t)

+

cn∑
k=1

cik (t)+ wi(t), 0 ≤ t ≤ Ty (2)

Where ∗ denotes convolution operator. Ty is the total time
period over which the received signal samples are collected,
s(t) is the reference transmit waveform, ak (t) is the impulse
response corresponding to the k th target return and tn is the
number of targets within the range bin. hk (t) is the is the
k th interfering signal, bk (t) is the impulse response corre-
sponding to the k th interfering signal and bn is the number
of interfering nodes. w(t) is the thermal noise.
Let the impulse response of the target return be negligible

for a time duration of Ta. Hence the received signals have to

13348 VOLUME 5, 2017



S. K. Bolisetti et al.: RF Sensing-Based Target Detector for Smart Sensing Within IoT

be observed for an extended duration of time which is given
by Ty = T + Ta. The discrete Ny × 1 received signal data at
the ith sensor node is represented as,

yi[n] =
tn∑
k=1

Saik [n]+
bn∑
k=1

Hkbik [n]+
cn∑
k=1

cik [n]+ wi[n]

ai = [a1, a2, . . . , aNa ]
T , i = 1,2 . . .Ns

bi = [b1, b2, . . . , bNa ]
T , i = 1,2 . . .Ns (3)

Where yi is the Ny×1 received signal data at the ith receiving
node, Ny = Nt + Na - 1. ai is the Na × 1 unknown impulse
response associated with the target return at the ith receiving
node; bi is the Na × 1 unknown impulse response of the
interfering signal at the ith receiving node; ci is the clutter
return at the ith receiving node. Noise is assumed to beAWGN
with unknown variance. S is the Ny × Na convolution matrix
of s(t), H is the Ny × Na convolution matrix of h(t) and can
be written as in [25], [26],

S =



s(1) 0 . . . . . . 0

s(2) s(1)
. . . . . . 0

...
...

. . .
. . . 0

s(Nt ) s(Nt − 1) . . . s(1) 0
0 s(Nt ) s(Nt − 1) . . . s(1)
... 0 s(Nt ) . . . s(2)
...

... 0
. . .

...

0 0 . . . 0 s(Nt )


(4)

H=



h(1) h(0) h(−1) . . . h(2− Na)

h(2) h(1)
. . . . . .

...
...

...
. . .

. . .
...

h(Nt ) h(Nt − 1) . . . h(1)
...

... h(Nt ) h(Nt − 1) . . . h(1)

... h(0) h(Nt ) . . . h(2)

...
... h(0)

. . .
...

h(Ny) h(Ny − 1) h(Ny − 2) h(0) h(Nt )


(5)

The convolution matrices S and H allow us to denote the
continuous time convolution operator (∗) in (2) into discrete
form. In (3) while the impulse responses a, b and noise
variance are unknown but deterministic however, clutter is
unknown. Before proceeding to the target detector design, the
problem of unknown clutter has to be addressed.

IV. CLUTTER ESTIMATION
We consider clutter to be comprised of all the fixed scatterers
within the sensing region. Due to the nature of sensor nodes
with short range sensing capabilities, the dominant scatterers
that contribute to clutter are assumed to be non-varying over
extended periods of time. The cluttered nature of the sens-
ing environment produces additional transmit signal echoes,

which arrive at the sensor nodes along with the target returns.
The vector ci in (3) is a Ny × 1 vector containing the clut-
ter returns. In the existing literature, authors have proposed
modelling clutter as a Compound-Gaussian process [27]–[29]
i.e., as a product of two independent random variables.

c =
√
ςg (6)

Here the speckle, g is a complex Gaussian with covariance
matrix 6 and ς is the clutter texture component and is
usually a real nonnegative scalar. Kraut et al. [30]–[32] and
Scharf and McWhorter [33] have addressed the problem of
target detection in the presence of clutter with known covari-
ance structure but unknown level. However, the presence of
a noise component whose power is independent of clutter is
largely ignored. We consider a disturbance vector consisting
of noise and clutter signals, which can be estimated from
secondary data,

n =
√
ςg+ w (7)

Rd = ς6 + σ
2I (8)

Where n is the disturbance vector and Rd is the disturbance
covariance matrix. I is a M × M identity matrix where M
is the length of the received signal vector. 6 is the clutter
covariance matrix which is unknown to the target detector.
Noise variance σ 2 is deterministic and unknown. Estima-
tion of these unknown parameters is addressed in the later
sections. Clutter covariance estimation has been addressed
by the authors in the existing literature [34]–[36]. If clutter
texture is gamma-distributedwithmeanµ and order ν, texture
distribution function can be written as,

f (ς ) =
1
0(ν)

(
ν

µ

)ν
ςν−1e−

ν
µ
ς

ς ≥ 0 (9)

Where 0(ν) is the gamma function of order ν. The uncon-
ditional probability density function (pdf) of the disturbance
vector n can be obtained by averaging f (n|ς ) with respect to
its texture distribution f (ς ) [37].

f (n) =
∫
∞

0

1

πNyNs |ς6 + σ 2I|

× exp
[
− nH (ς6 + σ 2I)−1nH

]
f (ς )dς (10)

However, the detection strategy based on this clutter model
is difficult to implement within resource constrained IoT as
it involves unknown parameters and computationally intense
numerical integrations with respect to clutter texture distri-
bution. It can be recalled that the disturbance covariance
matrix Rd is the sum of unknown stationary clutter and ran-
dom deterministic noise. We now derive a simple strategy to
estimate clutter from the disturbance covariance matrix. The
clutter covariance matrix, ς6 is assumed to have a known
structure whose rank r is significantly less than M which is
usually true in many practical applications.

Let λdi and 8di (i = 1, 2 . . .M ) be the ith eigenvalue
and the corresponding ith normalised eigenvector respectively
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of the disturbance covariance matrix Rd . Since Rd is sym-
metric, the disturbance covariance matrix can be expressed
as 8dλd8

H
d . Similarly let λci and 8ci be the ith eigenvalue

and the corresponding ith normalised eigenvector respectively
of the clutter covariance matrix 6. It must be noted that λc
and 8c here are unknown. From (8) λd can be written as,
λd = ςλc + σ

2I. Therefore, Rd can be expressed as,

Rd = 8d (ςλc + σ 2I)8H
d (11)

Finally, inverse covariance matrix is given by,

R−1d = (8H
d )
−1(ςλc + σ 2I)−1(8d )−1

= 8d (ςλc + σ 2I)−18H
d (12)

To solve (12), we need to obtain the inverse of (ςλc + σ 2I).
Clearly (σ 2I)−1 and (ςλc+σ 2I)−1 always exist. Fundamental
matrix inversion lemma may be used to solve this problem if
the rank of λc is 1. However, based on our previous assump-
tion, when the rank of λc is r such that 1 ≤ r �M. Therefore,
matrix inversion lemma may not always be applicable. When
σ 2I and (σ 2I + ςλc) are non-singular, from [38] inverse of
(σ 2I+ ςλc) is given by,

(σ 2I+ ςλc)−1 = κ−1r − vrκ
−1
r δrκ

−1
r

vk =
1

1+ tr(κ−1k δk )

κ−1k+1 = κ
−1
k − vkκ

−1
k δkκ

−1
k (13)

Where κ1 = σ 2I; Following the results from [38], the
matrix ςλc can be decomposed into a sum of matrices of rank
one i.e., ςλc =

∑r
i=1 δi and rank of δi is one. Solving (12)

and (13) recursively gives us the inverse of the disturbance
covariance matrix as,

R−1d = σ
−2C (14)

Detailed explanation is given in Appendix. Here C is the
clutter projection matrix given by,

C ≈ I−
r∑
i=1

8di8
H
di (15)

When clutter returns are significantly stronger than the noise
power, the dominant eigenvalues in λd which correspond
to the clutter returns can be easily distinguished from the
remaining eigenvalues of λd . The clutter projection matrix C
can be easily obtained from the eigenvectors corresponding
to the dominant eigen values of Rd .

V. TARGET DETECTOR DESIGN
The performance measure of IoT as a surveillance system;
while dedicated to detecting the existence or non-existence of
targets, is the degree of reliability on such decision-making
process. The two possible outcomes of this decision mak-
ing process are occurrence and non-occurrence of the target
which is modelled as a binary hypothesis testing problem.
The two possible hypotheses are H0 and H1; where H0 repre-
sents the absence of a target and H1 represents the presence

of a target. The received signal models corresponding to these
hypothesis H0 and H1 at the control centre are,

H0 : y[n] =
bn∑
k=1

Hkbk [n]+ n[n]

H1 : y[n] =
tn∑
k=1

Sak [n]+
bn∑
k=1

Hkbk [n]+ n[n] (16)

Here, a = [a1, a2, . . . , aNs ]
T and b = [b1, b2, . . . , bNs ]

T .
Our objective is to develop a target detector which has the
ability to make a distinction between hypothesis H0 and H1
based on the received signal samples which are corrupted
by noise, clutter and interfering signals. A test statistic is
generated which is measured against a predefined threshold
based on which a decision is made regarding the existence
or absence of a target. The test statistic for the proposed
target detector is generated from the likelihood ratio function
within which the unknown parameters are estimated using
Maximum Likelihood Estimator (MLE). The threshold γ is
generated such that the maximum false alarm rate is restricted
to a permissible limit. To design a target detector, the pdfs of
the received signal samples y[n] under hypothesis H0 and H1
is required to be defined. Using the inverse covariance esti-
mate from (14), the pdfs under hypothesis H0 (17) and
H1 (17) are written as,

f (y|b, σ 2,H0)

=
1

(πσ 2)NyNs |C−1|

×exp
[
−1
σ 2

(
(y−

bn∑
k=1

Hkbk )HC(y−
bn∑
k=1

Hkbk )
)]
(17)

f (y|a,b, σ 2,H1)

=
1

(πσ 2)NyNs |C−1|
exp
[
−1
σ 2

(
(y−

tn∑
k=1

Sak

−

bn∑
k=1

Hkbk )HC(y−
tn∑
k=1

Sak −
bn∑
k=1

Hkbk )
)]

(18)

Case 1 (Detector Design With Known σ 2 and 1 Interfering
Node): In this case we assume that the noise variance is
known to that target detector and only one neighbouring
sensor node is contributing to interference i.e., bn = 1. This
is applicable to the scenario where sensor nodes are widely
scattered and the interference from the other sensor nodes is
negligibly weak. The test statistic, T for the proposed target
detector is obtained from the pdfs defined in (17) and (18)
where the unknown parameters are replaced by their MLEs
as,

T =
max
a,b f (y|a,b,H1)
max
b f (y|b,H0)

H1
>
<
H0

γ (19)

The MLEs of the unknown parameters are obtained
by differentiating the exponential arguments of the pdfs
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in (17) and (18) with respect to the corresponding unknown
parameter. The corresponding derivatives under hypothesis
H0 and H1 are equated to zero to obtain the ML estimate.
Since C is Hermitian, differentiating the exponential term in
the (18) with respect to b gives us,

HHCHb̂1 = HHCy−HHCS
tn∑
k=1

âk (20)

Here, b̂1 denotes the ML estimate of interference impulse
response under hypothesis H1 and â represents the ML esti-
mate of the target impulse response, which is unknown at
this stage. Similarly, from (17) the ML estimate of b under
hypothesis H0 can be obtained as,

HHCHb̂0 = HHCy (21)

Here, b̂0 denotes the ML estimate of b under hypothesis H0.
With the knowledge of the transmit and the interfering wave-
forms available to the control centre, the reference correlation
matrices are written as,

Rs = SHCS (22)

Rh = HHCH (23)

Rs and Rh can be interpreted as the transmit and interfering
signal correlation matrices respectively. Similarly we define
Rhs which is the reference cross-correlation matrix between
the transmit and the interfering signals as,

Rhs = HHCS (24)

Finally, we define the cross-correlation matrices for received
signal with respect to the transmit and the interfering signals
as Rsy and Rhy which are given by,

Rhy = HHCy (25)

Rsy = SHCy (26)

Using the correlation matrices, (20) and (21) can be rewritten
as,

Rhb̂1 = Rhy − Rhsâ (27)

Rhb̂0 = Rhy (28)

Using (27), the ML estimate of the unknown target impulse
response is obtained by differentiating the exponential argu-
ment in (18) with respect to a and equating it to zero. Solving
this differential equation gives us,

SHQS
tn∑
k=1

âk = SHQy (29)

Q =
(
I−HRh

−1HHC
)H

C
(
I−HRh

−1HHC
)

(30)

Here, â represents the ML estimate of the target impulse
response under hypothesis H1. The test statistic for the pro-
posed target detector in this case is obtained from (19) as,

T = exp
[
−1
σ 2

((
y−

tn∑
k=1

Sâk−Hb̂1
)HC(y− tn∑

k=1

Sâk −Hb̂1
)

−
(
y−Hb̂0

)HC(y−Hb̂0
))]H1

>
<
H0

γ (31)

To solve (31) we apply logarithm on both sides, and use the
correlation matrices defined in equations (23) to (26) which
gives us the desired test statistic,

ln T =
−1
σ 2

(
âHRhs

HRh
−1Rhsâ− Rsy

H â− âHRsy +

×âHRsâ+ Rhy
H b̂1 + b̂H1 Rhy − 2b̂H1 Rhb̂1

)H1
>
<
H0

ln γ

(32)

To optimise the test statistic derived in (32), we adopt a two-
stage target detection model. The proposed two-stage design
model for IoT is summarised in Fig. 2. Considering the oper-
ational nature of IoT with static clutter and known interfering
waveforms, we perform target detection in two stages which
are, 1) Initialisation stage and 2) Operational stage as shown
in Fig. 3. In the initialisation stage, the known knowledge
of clutter and interference statistics are exploited to generate
the measurement and test statistic coefficients. Since the
sensing conditions are expected to be static over a significant
period of time, the initialisation stage is only required to be
performed periodically. In the operational stage, the received
signal data is used along with the test statistic coefficients to
generate the actual measurable test statistic based on which
a final decision is made regarding the existence or absence
of the target. The measurement coefficients which are be
estimated during the initialisation stage can be expressed as,∇1 ∇2

∇3 ∇4

 =
 (QS)(SHQS)−1 Rh

−1HHC

∇1Rhs
H∇2 ∇1SHC

 (33)

Using theML estimates of â and b̂ and themeasurement coef-
ficients in (33), the optimised test statistic for the proposed
target detector can be obtained as,

ln T = yHχy
H0
>
<
H1

− σ 2ln γ (34)

χ = (∇H
3 +∇3)− (∇H

4 +∇4)− (∇3 −∇4)C−1∇H
4

(35)

Where χ is the test statistic coefficient. Since χ and the
measurement coefficients are independent of the received
signal data, they can be generated during the initialisation
stage which reduces the computational complexity during the
operational stage.

VOLUME 5, 2017 13351



S. K. Bolisetti et al.: RF Sensing-Based Target Detector for Smart Sensing Within IoT

FIGURE 2. Proposed RF sensing Based IoT for Surveillance Applications. (a) Measurement of Estimation Coefficients in
Initialisation stage. (b) Proposed Target detection Architecture in Operational Stage.

Case 2 (Detector Design With Unknown σ 2 and 1 Inter-
fering Node): In this case, we assume that the noise variance
is unknown to the target detector. We consider the presence
of only one interfering node. The estimates of the unknown
parameters a and b are obtained as explained in (27) to (29).
The ML estimates of σ 2 under hypothesis H0 and H1 are
obtained by differentiating (17) and (18) respectively with
respect to σ 2 as,

σ̂ 2
0 =

1
NyNs

(
yHCy− Rhy

H b̂0 − b̂H0 Rhy − b̂H0 Rhb̂0

)
(36)

σ̂ 2
1 =

1
NyNs

(
yHCy− Rsy

H â− Rhy
H b̂1 + âH

(
Rsâ

+Rhs
H b̂1 − Rsy

)
+ b̂H1

(
Rhsâ+ Rhb̂1 − Rhy

))
(37)

Here, σ̂ 2
0 and σ̂ 2

1 are the MLEs of noise variance under
hypothesis H0 and H1 respectively. Using σ̂ 2, â and b̂,
the test statistic for the proposed target detector is written
as,

T =
max
σ 2, a,b f (y|a,b, σ

2,H1)
max
σ 2,b f (y|b, σ

2,H0)
=

(
σ̂ 2
0

σ̂ 2
1

)NyNsH1
>
<
H0

γ (38)

Substituting σ̂ 2
0 and σ̂ 2

1 and correlation matrices defined in
equations (23) to (26) gives the desired test statistic as,

T =
q0
q1

H1
>
<
H0

NyNs
√
γ (39)

Where q0 and q1 are given by,

q0 = yHCy− Rhy
HR−1h Rhy (40)

q1 = yHCy− Rhy
HR−1h Rhy + âHRhs

HR−1h Rhsâ

−Rsy
H â− âHRsy + âHRsâ+ Rhy

H b̂1 (41)

+ b̂H1 Rhy − 2b̂H1 Rhb̂1

To optimise the test statistic in (39), we now solve (40)
and (41) by using the measurement coefficients defined
in (33). This leads us to generating the test statistic coeffi-
cients given by,

χ0 = C−∇H
2 Rh∇2 (42)

χ1 = χ0 + (∇H
3 +∇3)− (∇H

4 +∇4)

− (∇3 −∇4)C−1∇H
4 (43)

Here, q0 = yHχ0y and q1 = yHχ1y. Therefore, the opti-
mised test statistic for the proposed target detector is,

T =
(
yHχ0y
yHχ1y

)H1
>
<
H0

NyNs
√
γ (44)

Case 3 (Detector Design With Unknown σ 2 and
n Interfering Nodes): Here we design a target detector for a
generalised scenario with unknown noise variance and multi-
ple interfering nodes i.e., bn = n. Since the interfering wave-
forms are mutually independent, estimating the unknown
impulse responses from each interfering waveform allows us
to dynamically adopt to any changes in the choice of transmit
waveforms within the neighbourhood of the sensor node. The
pdfs of the received signal under hypothesis H0 (45) and
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FIGURE 3. Operational Principle of the Proposed 2-Stage Target Detection
Model.

H1 (46) are given by,

f (ȳ|b1,b2 . . . bn, σ 2,H0)

=
1

(πσ 2)NyNs |C−1|

× exp
[
−1
σ 2

(
(y−

bn∑
k=1

Hkbk )HC(y−
bn∑
k=1

Hkbk )
)]

(45)

f (ȳ|b1,b2 . . . bn, a, σ 2,H1)

=
1

(πσ 2)NyNs |C−1|
exp
[
−1
σ 2

(
(y−

tn∑
k=1

Sak −
bn∑
k=1

Hkbk )HC

×(y−
tn∑
k=1

Sak −
bn∑
k=1

Hkbk )
)]

(46)

The test statistic for the proposed detector in this scenario can
be written as,

T =
max

σ 2, a,b1,b2 . . . bn
f (y|σ 2, a,b1,b2 . . . bn,H1)

max
σ 2,b1,b2 . . . bn

f (y|σ 2,b1,b2 . . . bn,H0)
(47)

The unknown estimates of b1,b2 . . . bn under hypothe-
sis H0 and H1 are obtained by performing the procedure
described in (20) and (21) recursively for each interfering
waveform. However, this requires us to solve a complex
nth order differential equation which is computationally
intense. Since it is necessary to estimate each interfering sig-
nal independently, to obtain a generalised solution we define
recursive correlation matrices for the jth interfering signal as,Rhjk

Rhjs
Rhjy

 = HH
j Kj

Hk
S
y

 (48)

Here, Kj is the projection matrix for jth interfering signal
which is measured as,

Kj = (
j∏

l=1

Ml−1)HC(
j∏

l=1

Ml−1) (49)

Mn = I−HnRh
−1
nn H

H
n Kn n6=0 (50)

M0 = I (51)

Generalised solutions for the recursive impulse response esti-
mates of the jth interfering signal under hypothesisH0 andH1
are written as,

b̂j0 = (HH
j KjHj)−1HH

j Kj(y−
n∑

k=j+1

Hk b̂k )

= Rh
−1
jj (Rhjy −

n∑
k=j+1

Rhjk b̂k ) (52)

b̂j1 = (HH
j KjHj)−1HH

j Kj(y− Sâ

−

n∑
k=j+1

Hk b̂k )

= Rh
−1
jj (Rhjy − Rhsjâ−

n∑
k=j+1

Rhjk b̂k ) (53)

Substituting the results in (45) and (46) respectively and
subsequent mathematical analysis reveals that a simple gener-
alised solution for the respective pdfs can be obtained which
are rewritten as,

f (y|σ 2,H0)

=
1

(πσ 2)NyNs |C−1|
exp
[
−1
σ 2

(
yHKn+1y

)]
(54)

f (y|a, σ 2,H1)

=
1

(πσ 2)NyNs |C−1|

× exp
[
−1
σ 2

(
(y−

tn∑
k=1

Sak )HKn+1(y−
tn∑
k=1

Sak )
)]

(55)
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From (49), the subscript n+ 1 for the interference projection
matrix K is chosen to accommodate all n interfering wave-
forms. The interference projection matrix can be obtained
during the initialisation stage using the known information
regarding clutter and interfering waveforms. Hence, the num-
ber of interfering nodes has no impact on the computational
complexity of the target detection procedure during the oper-
ational stage. The control centre gathers the received signal
data from all the sensor nodes within its cluster to detect the
existence of targets. The amount of power consumed during
the data transmission procedure between the sensor nodes and
the control centre has a significant impact on the lifetime
of the sensor nodes. To reduce the transmission costs, we
consider compressive sensing where the sensor nodes are
only required to transmit compressed received signal samples
to the control centre. The received signal data at the ith sensor
node is compressed by projecting it onto a measurement
matrix φi such that ȳi = φiyi, where ȳi represents the
compressed data. The dimensions M × Ny of φi are chosen
such that M � Ny. φi is usually orthogonal i.e., φiφ

H
i = I.

We define compression ratio µ = M
Ny

which is a measure
of compressibility. The choice of compression ratio µ is
chosen as a trade-off between the transmission costs and
target detection reliability. The compressed received signal
data at the control centre can be written as,

ȳ = [ȳ1, ȳ2, . . . , ȳNs]T

= φ[y1, y2, . . . , yNs]T

φ =


φ1 0 . . . 0

0 φ2
. . . 0

... 0
. . .

...

0 . . . 0 φNs

 (56)

Therefore, the pdfs under hypothesis H0 and H1 with the
compressed received signal samples are,

f (ȳ|σ 2,H0)

=
1

(πσ 2)MNs |C−1|
exp
[
−1
σ 2

(
ȳHφKn+1φ

H ȳ
)]

(57)

f (ȳ|a, σ 2,H1)

=
1

(πσ 2)MNs |C−1|

× exp
[
−1
σ 2

(
(ȳ−

tn∑
k=1

S̄ak )HφKn+1φ
H (ȳ−

tn∑
k=1

S̄ak )
)]
(58)

Where S̄ = φS and n is the number of interfering nodes.
The ML estimates â and σ̂ 2 can now be obtained as discussed
previously.(
S̄H (φKn+1φ

H )S̄
) tn∑
k=1

âk

= S̄H (φKn+1φ
H )ȳ (59)

σ̂ 2
0 =

1
MNs

(
ȳH (φKn+1φ

H )ȳ
)

(60)

σ̂ 2
1 =

1
MNs

(
(ȳ−

tn∑
k=1

S̄âk )H (φKn+1φ
H )(ȳ−

tn∑
k=1

S̄âk )
)

(61)

Using (59-61) in (47) gives us the test statistic for the pro-
posed target detector. To optimise the target detection pro-
cedure, we define a measurement coefficient, ∇ for the test
statistic as,

∇ = (φKn+1φ
H )S̄

(
S̄H (φKn+1φ

H )S̄
)−1S̄H (φKn+1φ

H )

(62)

Therefore the optimised test statistic, T ,for the proposed
target detector is expressed as,

T =
(
ȳHχ0ȳ
ȳHχ1ȳ

)H1
>
<
H0

NyNs
√
γ (63)

Here, χ0 and χ1 are test statistic coefficients given by,

χ0 = φKn+1φ
H (64)

χ1 = χ0 − 2∇+∇(φKn+1φ
H )−1∇ (65)

VI. WAVEFORM SELECTION
To meet the power constraints, the sensor nodes transmit
short, low power (mW) electromagnetic pulses into the sens-
ing region and attempt to detect the reflected echoes from the
target. The choice of an appropriate transmit waveform is an
important design parameter for RF sensing based surveillance
applications of IoT. To achieve longevity, optimum choice of
a transmit waveform within IoT must fulfil the necessary cri-
terion to achieve the desired target detection reliability while
operating within the constraints of the available resources.
Brevity of the transmit pulses is required to reduce the trans-
mission costs. To reduce the signal processing complexities,
the choice of a transmit waveform with good correlation
properties is desirable. Gaussian and Monocycle pulses are
the most commonly discussed UWB waveforms. Due to
simplicity and ease of generation, they can be used within IoT
with very low computational cost. However, within a large
sensing region with multiple transmitting nodes, a degree
of diversity in the choice of transmit waveforms among the
transmitting nodes is desirable. Waveforms based on orthog-
onal Gegenbauer and Hermite polynomials are discussed
in [39]–[42]. Waveforms generated using modified
Gegenbauer functions and Hermite functions could be used
to produce ultra-short RF pulses and allow multiple access.
They are also less complex compared to conventional multi-
ple access communication systems.

Modified Gegenbauer polynomials are defined in the
interval [-1,1]. The recurrence relation for the nth order mod-
ified Gegenbauer polynomial is written as,

Gn(β, t) = (1− t2)
2β−1
4

(
2(n+ β − 1)

n
tGn−1(β, t)

−
(n+ 2β − 2)

n
Gn−2(β, t)

)
n 6= 0

G0(t) = 1 (66)
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Where n is the order of the Gegenbauer polynomial and β is
the shape parameter and usually β > −12 . Modified Hermite
polynomials are defined in the interval [−∞ ,∞]. nth order
modified Hermite polynomial is written as,

Hmn(t) = e
−t2
4 (−1)ne

t2
2
dn

dtn
(e
−t2
2 ) n 6= 0 (67)

Hm0(t) = 1

The transmit waveforms discussed in this section are easy to
generate and does not require complex transmitting devices.
They also provide diversity within the choice of transmit
waveforms. However, due to event driven nature of IoT and
spatial displacement of the sensor nodes, orthogonal wave-
forms do not provide a generalised solution to optimise the
target detection reliability. The necessary criteria for opti-
mum choice of the transmit waveform is the ability to make a
clear distinction between its presence and absence within the
received signal components. To analyse the received signal
properties, hypothesis H0 and H1 in (16) are elaborated as,

H0 :

{
H00: y(n) = w(n)
H01: y(n) = Bh(n)+ n(n) (68)

H1 :

{
H10: y(n) = As(n)+ n(n)
H11: y(n) = As(n)+ Bh(n)+ w(n) (69)

Where A and B are the convolution matrices for target and
interfering signal impulse responses and can be expressed
as shown in (4) and (5) respectively. (68) and (69) represent
possible received signal models under hypothesis H0 and H1
which are characterised by existence and absence of the target
and the interfering waveforms. For a matched filter impulse
response f, a reliable decision regarding the existence or
absence of a target can be made when the matched filter
outputs under hypothesis H0 and H1 are clearly distinguish-
able. To measure the ability of the matched filter to make this
distinction, we define Ease of Detection Index (δ) in (70),
as shown at the bottom of this page, which is measured at
3dB SIR. Here ? represents correlation operator. When the
sensing conditions are known, the transmit waveform which
maximises δ gives optimum reliability among the avail-
able choice of transmit waveforms. Within resource con-
strained IoT, the transmit power has a significant impact on
the lifetime of the sensor nodes. The choice of transmit wave-
form while achieving high δ, must also be energy efficient to
ensure longevity of the sensor nodes. The amount of transmit
power required to guarantee a desired SIR at the receiver is
related to various factors such as prorogation losses, target
impulse response, target range, etc. For a given set of sensing
conditions, the energy efficiency of the transmit waveform
is defined by the Energy Efficiency Index (η). η is the ratio
of the amount of transmit power (PTm) required to guarantee

TABLE 1. Comparison of Gaussian and Monocycle pulses autocorrelation
functions.

a desired SIR at the matched filter output to the amount of
transmit power (PTr ) required to guarantee the desired SIR at
the sensor node receiver which is given as,

η =
PTm
PTr
=

max(fH ? Bh)(As)H (As)
max(fH ? As)(Bh)H (Bh)

(71)

η denotes the factor by which the transmit power may be
reduced while ensuring desired SIR at the matched filter out-
put. The transmit waveform which provides optimal balance
between δ and η is chosen based on the criterion given by
the ratio δ/η. Therefore, for a given set of sensing condi-
tions the transmit waveform which maximises δ/η optimises
the target detection reliability of IoT. When a Monocycle
pulse is assumed to be the interfering waveform, δ and η
of the waveforms discussed in this section are summarised
in Table 1. It can be observed that for the given sensing
conditions,G4 andHm4 waveforms generated high δ/η ratios
compared to the other waveforms. Similarly, δ/η ratio of
Hm1 waveform is less than zero which indicates that Hm1
waveform is unsuitable for transmission. In Fig. 4 and Fig. 5,
the matched filter outputs of the received signal models under
hypothesis H0 and H1 with transmit waveforms being G4
and Hm1 respectively are plotted. The transmission periods
of individual sensor nodes within IoT are assumed to be
unsynchronised. The matched filter outputs for all 4 cases of
received signal models in (68) and (69) are plotted. H00 indi-
cates the received signal model under hypothesis H0 where
the target and interfering waveforms are absent. Similarly,
H01 refers to the received signal under hypothesis H0 in the
presence of interfering waveform. Similarly, H10 and H11
refer to the received signal models under hypothesis H1 in
the absence and presence of interfering waveform. From the

δ =
(max(fH ? As)− max(fH ? Bh))(max(fH ? (As+ Bh))− max(fH ? Bh))

max(fH ? Bh)
(70)
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FIGURE 4. Matched filter output for G4 transmit waveform and
interfering Monocycle pulse.

FIGURE 5. Matched filter output for Hm1 transmit waveform and
interfering Monocycle pulse.

plots, it can be observed that, whenG4 waveform is transmit-
ted, a clear distinction existed between matched filter outputs
under hypothesisH0 andH1 which indicates greater detection
reliability. However, when Hm1 waveform is transmitted, no
distinction between matched filter outputs under hypothesis
H0 and H1 can be observed which indicates an uncertainty in
the decision-making process. Hence, optimum choice of the
transmit waveforms among the neighbouring clusters can be
made by analysing the δ/η ratio of the available waveforms
under the give set of sensing conditions.

VII. PERFORMANCE ANALYSIS
In this section, we demonstrate the target detection perfor-
mance of the proposed target detector for IoT in the presence
of interference and clutter. Target detection performance is
quantised in terms of Probability of Detection (Pd ) and Prob-
ability of False alarm (Pfa). Pd is defined as the ability of the
target detector to accurately make a decision regarding the
existence of a target within the sensing region. Pfa is the rate
at which the target detector makes a faulty decision in the

FIGURE 6. Target detection performance of the proposed AIE detector vs
conventional GLRT detector in the presence of interference at SIR = 3dB.

FIGURE 7. Target detection performance of the proposed AIE detector vs
conventional GLRT detector in the presence of interference at
SIR = −3dB.

absence of a target. Here we consider IoT where the clusters
of transmitting and receiving nodes are deployed within the
sensing region with each cluster accounting for surveillance
within its range. Each cluster is assumed to consist of a
transmitting primary node, which is referred to as a control
centre and receiving nodes. We show through simulation
results that having multiple receiving nodes within each clus-
ter increases the reliability with which the presence of targets
can be detected. For simulations, we consider moderate and
aggressive sensor node deployment strategies. In a moderate
deployment strategy, the individual clusters are widely spaced
and the interference caused by the neighbouring clusters is
relatively low. However, this is achieved as a trade-off with
the target detection reliability as this strategy results in poor
coverage within the sensing region and hence may lead to
increased miss detections. In aggressive deployment strat-
egy, while better coverage within the sensing region maybe
ensured, however the sensor nodes experience increased
interference from the neighbouring clusters. We also consider
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FIGURE 8. Target detection performance of the proposed AIE detector in
the presence of clutter at SCR = 3dB.

FIGURE 9. Target detection performance of the proposed AIE detector in
the presence of clutter at SCR = −3dB.

the presence of a cluttered background environment. Existing
threshold based detection strategies for IoT fail to provide
reliable target detection performance in the presence of clut-
ter. We show that our proposed target detector provides a
more reliable target detection performance in the presence
of clutter. We compare the target detection performance of
the proposed target detector with a simple GLRT detector
under similar sensing conditions. For simulations, we resort
to Monte-Carlo techniques and thresholds are evaluated to
ensure required maximum false alarm rate by resorting to
100/Pfa independent simulations. Acceptable false alarm rate
is assumed to be 10−4. The length Nt of the transmit signal
vector s is assumed to be 32 samples within each cluster and
Na is assumed to be 4. Due to cooperative nature of IoT,
the control centre is assumed to have the knowledge of
the transmit waveforms from the neighbouring sensor nodes
which contribute to interference. However due to spatial dis-
placement of the sensor nodes, the phase of the interfering
waveform is assumed to be unknown. We analyse the target

FIGURE 10. Target detection performance of the proposed AIE detector vs
conventional GLRT detector in the presence of interference and clutter at
SIR = 3dB and SCR = 3dB.

FIGURE 11. Target detection performance of the proposed AIE detector vs
conventional GLRT detector in the presence of interference and clutter at
SIR = 3dB and SCR = −3dB.

detection performances for three different scenarios related
to the sensing conditions. In case1, we simulate the target
detection performance of the proposed target detector in the
presence of interference and clutter respectively and compare
its performancewith that of aGLRT detector in each scenario.
In case2, we consider a harsh sensing environment with both
clutter and interference being present. In case3, we analyse
the performance of the proposed detector with compressive
sensing and its effect on target detection reliability.
Case 1: In this case, the performances of the proposed

detector are analysed in the presence of interference and clut-
ter respectively. In Fig. 6 the target detection performances
of the proposed Adaptive Interference Estimator (AIE) and
GLRT detectors in the presence of interference and absence
of clutter are shown. Results are simulated for the case
of 1,2 and 3 receiving sensor nodes. Signal to Interfer-
ence Ratio (SIR) is assumed to be 3dB and the interfer-
ing waveform is assumed to be G4. SIR at the detector is
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TABLE 2. Performance analysis of the proposed detector in case 1.

TABLE 3. Performance analysis of the proposed detector in case 2.

measured as,

SIR =
‖Sa‖2

‖
∑bn

k=1Hkbk‖2
(72)

This is a relatively moderate sensing environment in the
absence clutter. The test statistic for AIE detector defined
in (62)-(65) can be modified for this scenario as,

T =
(
yHχ0y
yHχ1y

)H1
>
<
H0

NyNs
√
γ (73)

Where χ1 and χ2 are test statistic coefficients given in (64)
and (65). The new measurement coefficients for this case are,

Kj = (
j∏

l=1

Ml−1)H (
j∏

l=1

Ml−1) (74)

Mn = I−HnRh
−1
nn H

H
n Kn n6=0 (75)

M0 = I (76)

In moderate sensing conditions with low interfering signal
strengths, the target detection performances of the proposed
AIE detector andGLRTdetector are nearly identical withAIE
detector slightly outperforming the GLRT detector. In Fig. 7,
the performances of AIE and GLRT detectors are compared
in relatively harsher sensing environment at SIR = -3dB.
Under harsher sensing conditions, the proposed AIE detector
significantly outperformed the conventional GLRT detector.
In Table 2 target detection performances of AIE and GLRT
detectors are summarised. It has been observed that deploying
additional receiving nodeswithin the sensing region increases
the efficiency of the target detector. However, beyond a cer-
tain upper threshold any additional receiving nodes yield no
significant performance gain.
Similarly, in In Fig. 8 and Fig. 9 we show the performances

of AIE and GLRT detectors in the presence of clutter with
Signal to Clutter Ratio (SCR) of 3dB and -3dB respectively.
While the GLRT detector experienced a severe deterioration
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TABLE 4. Performance analysis of the proposed detector in case 3 at 40% compression.

TABLE 5. Performance analysis of the proposed detector in case 3 at 60% compression.

in the target detection performance in the presence of clutter,
the target detection performance of the proposedAIE detector
remained robust. In Fig. 9 it can be seen that in the presence
of strong clutter, the GLRT detector completely failed to
provide reliable detection performance while the proposed
detector showed robust performance. This clearly validates
the significance of the clutter projection matrix in (15) to
achieve increased target detection performance. A detailed
comparison of AIE and GLRT detectors in the presence of
clutter is summarised in Table 2.
Case 2: Here, we simulate a sensing environment which

consists of clutter and interference to analyse the performance

of the proposed target detector. In Fig. 10, we considered the
presence of relatively weak clutter and interfering signals and
the target detection performances of AIE and GLRT detectors
are compared. Similarly, in Fig. 11 and Fig. 12 we compare
the target detection performances of AIE and GLRT detectors
in the presence of strong clutter and interference respec-
tively. GLRT detector failed to achieve reliable detection rates
in harsh sensing conditions and the proposed AIE detector
outperformed the GLRT detector by a significant margin.
The performance evaluations in this case are summarised
in Table. 3. In Fig. 13 and Fig. 14 the performance of
the proposed detector in the presence of multiple interfering

VOLUME 5, 2017 13359



S. K. Bolisetti et al.: RF Sensing-Based Target Detector for Smart Sensing Within IoT

FIGURE 12. Target detection performance of the proposed AIE detector vs
conventional GLRT detector in the presence of interference and clutter at
SIR = −3dB and SCR = 3dB.

FIGURE 13. Target detection performance of the proposed AIE detector in
the presence of multiple interfering nodes and 3 receiving nodes at
SIR = 3dB and SCR = 3dB.

FIGURE 14. Target detection performance of the proposed AIE detector in
the presence of multiple interfering nodes and 3 receiving nodes at
SIR = −3dB and SCR = 3dB.

nodes is shown. From the simulation results, performance
deterioration with increasing number of interfering nodes can
be observed. This has occurred due to unknown phase of the
interfering waveforms.

FIGURE 15. Target detection performance of the proposed AIE detector vs
conventional GLRT detector using compressive sampling in the presence
of interference and clutter at SIR = 3dB and SCR = 3dB and 40 percent
compression.

FIGURE 16. Target detection performance of the proposed AIE detector vs
conventional GLRT detector using compressive sampling in the presence
of interference and clutter at SIR = 3dB and SCR = 3dB and 60 percent
compression.

Case 3:Within resource constrained IoT, the sensor nodes
are expected to operate independently with limited available
power. The lifetime of the sensor nodes is of utmost impor-
tance to ensure longevity of the IoT. It has already been
established in the existing literature that a major share of
the available power is consumed during data transmission
between the sensor nodes and the control centre. Transmitting
compressed received signal samples to the control centre
is observed to be a potential solution to reduce the power
consumption. However, data compression is achieved as a
trade-off with the target detection reliability. Here we inves-
tigate the performance of the proposed target detector using
compressed received signal samples.

In Fig. 15 we show the target detection performances of the
AIE and GLRT detectors using compressed received signal
samples at 40% compression and the results are summarised
in Table. 4. The amount of detection performance loss which
occurred due to compression is also shown in Table. 4.
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Similarly in Fig. 16 performances of the AIE and GLRT
detectors are compared at 60% compression and corre-
sponding summary of detection performances are shown in
Table. 5. It can be observed from the simulation results that
by adjusting the compression ratio adaptively with respect to
the changes in the sensing conditions, compressive sensing
can be implemented without any significant loss in the target
detection performance.

VIII. CONCLUSION
In this paper, RF sensing based surveillance applications of
IoT have been addressed. An energy efficient target detection
architecture, which is suitable for resource constrained IoT
has been proposed. The sensing environments in which IoT
are expected to operate have been considered while deriv-
ing the received signal models and the corresponding pdfs.
We proposed a two-step detection model to optimise the
energy efficiency and detection reliability of the target
detector. The proposed two-step detection scheme, while
reducing the computational burden also reduces the decision-
making time. Our proposed target detection model esti-
mates the interfering signal strengths from each interfering
node, which allows the sensor nodes to dynamically adopt
to changes in interfering waveforms from the neighbour-
ing clusters while providing reliable target detection per-
formance. To reduce the transmission costs, we addressed
compressive sensing scheme where the sensor nodes are only
required to transmit compressed received signal samples to
the control centre.We have shown through simulations results
that under suitable sensing conditions compressive sensing
can be used without any significant loss in target detection
reliability.
Future Work: In our proposed target detection architecture,

the control centre gathers the received data from all the
sensor nodes within its cluster to make a decision regarding
the existence or absence of a target. Using a simple low-
complexity target detector at the individual sensor nodes
may be considered where the sensor nodes are capable of
making a preliminary decision before transmitting the data
to the control centre. This reduces the frequency of data
exchange between the sensor nodes and the control centre
thereby increasing the lifetime of the IoT.While the proposed
target detector provides reliable target detection rates, authors
consider addressing the unknown parameter estimation pro-
cedure in the future work to achieve more reliable target
detection rates.

APPENDIX
INVERSE OF DISTURBANCE COVARIANCE MATRIX
Given Rd in (11), in this section we discuss the procedure to
estimate R−1d . From (12), it can be observed that R−1d can be
obtained by estimating the inverse of (ςλc+σ 2I)−1. Here σ 2I
is a full rank matrix and ςλc is a diagonal matrix of rank r
i.e., ςλc can only have up to r non zero elements. Following
results from [38], the matrix ςλc can be decomposed into a

sum of matrices of rank one i.e.,

ςλc =

r∑
k=1

δk (77)

δiδj = 0M×M i 6= j

Here, δk is a null matrix where only the k th diagonal ele-
ment is non-zero and the rank of δk is one. The solution
to (σ 2I+ςλc)−1 can be obtained by solving (13) recursively.
Based on the initial conditions of (13), the first order recursive
inverse coefficients can be obtained as,

κ−11 = σ
−2I (78)

v1 =
1

1+ trace(κ−11 δ1)

Since, δ1 is a diagonal matrix with only one non-zero diago-
nal element which is λc1, trace(κ

−1
1 δ1) = λc1/σ 2. Therefore,

the first order recursive inverse coefficient can be written as,

v1 =
σ 2

σ 2 + λc1
(79)

Substituting (79) in (13), the second order recursive inverse
coefficients are obtained as,

κ−12 = κ
−1
1 − v1κ

−1
1 δ1κ

−1
1

= σ−2I−
σ−2

σ 2 + λc1
δ1

= σ−2
(
I−

δ1

σ 2 + λc1

)
v2 =

1

1+ trace(κ−12 δ2)

=
1

1+ trace
(
σ−2

(
I−

δ1

σ 2 + λc1

)
δ2

) (80)

From (77), it may be recalled that δ1δ2 is a null matrix.
Therefore, the second order recursive coefficient, v2 can be
obtained as,

v2 =
1

1+ trace(σ−2δ2)

=
σ 2

σ 2 + λc2
(81)

Similarly, from (80) and (81), the third order recursive inverse
coefficients are obtained as,

κ−13 = σ
−2
(
I−

δ1

σ 2 + λc1

)
−

σ 2

σ 2 + λc2
σ−2

×

(
I−

δ1

σ 2 + λc1

)
δ2σ
−2
(
I−

δ1

σ 2 + λc1

)
(82)

As mentioned previously in (77), since δiδj = 0Nc×Nc when
i 6= j, (82) can be simplified as,

κ−13 = σ
−2
(
I−

δ1

σ 2 + λc1
−

δ2

σ 2 + λc2

)
(83)
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To obtain (ςλc+σ 2I)−1, (r+1)th order recursive inverse coef-
ficients are required. Observing Equations (83,80,78) and
using the principle of induction, the (r + 1)th order recursive
inverse coefficient can be obtained which gives the solution
to (ςλc + σ 2I)−1 which is,

(σ 2I+ ςλc)−1 = σ−2
(
I−

δ1

σ 2 + λc1
−

δ2

σ 2 + λc2
· · ·

−
δr

σ 2 + λcr

)
(84)

Substituting (84) in (12), R−1d can be written as,

R−1d = σ
−28d

×

(
I−

δ1

σ 2 + λc1
−

δ2

σ 2 + λc2
· · · −

δr

σ 2 + λcr

)
8H
d

(85)

Usually the clutter returns are significantly stronger than
noise power at the sensing nodes. Under such scenarios, the
following approximation can be made; σ 2

+ λci ≈ λci. Since
8d8

H
d = I, (85) can be rewritten as,

R−1d = σ
−2
(
I−

r∑
i=1

8di8
H
di

)
(86)
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