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Abstract

With the widespread adoption of Internet-connected devices and the prevalence of ap-

plications in the Internet of things (IoT), devices in smart homes can generate enor-

mous amounts of data. There is a requirement for machine-learning techniques to learn

from historical patterns and predict future activities. There is an increased interest

in machine-learning techniques that can provide useful and interesting services in the

smart home domain. The areas that machine-learning techniques can help advance are

varied and ever-evolving. Predicting and classifying the Activities of Daily Living (ADLs)

of inhabitants in a smart home environment are key modules to automate smart home

devices. Some prominent examples include uses for entertainment, elderly care, health-

care, and security. The abilities of the machine-learning technique to find meaningful

spatio-temporal relations of high-dimensional data and to learn from streaming datasets

are important requirements.

Recently, the Hierarchical Temporal Memory (HTM) theory has been presented as a

biologically-inspired machine-learning theory that attempts to mimic the neocortex, the

front part of the human brain. The main features of the HTM theory include the ability to

learn and predict temporal patterns. The HTM theory and its computational implemen-

tation, Cortical Learning Algorithms (CLA), present a potential alternative to traditional

machine intelligence. This research aims to apply a new biologically inspired machine

intelligence technique based on the HTM theory and its CLA implementation to classify

ADLs of inhabitants by analysing data captured from different sensors in a smart home

scenario.

This research started by reviewing existing research in classification and prediction of

ADLs. A comprehensive evaluation of state-of-the-art machine learning techniques and

their application in the context of smart homes has been carried out as a primary re-

search. HTM theory and its implementation the CLA have been studied, and experi-

ments were conducted to identify the weaknesses and limitations of applying the HTM

theory and the CLA for activity classification in the smart home environment.

To test and evaluate the performance of a proposed machine intelligence technique,

there is a need for a dataset that represents the ADLs in a smart home scenario. Due

to the excessive cost of building real smart home datasets and the lack of real datasets

from smart homes, to tackle this issue, as a secondary contribution to knowledge, this

research used OpenSHS (Open Smart Home Simulator), an open-source, cross-platform

3D smart home simulator. In addition, forty-two ADL datasets, Simulated Activities

of Daily Living Dataset (SIMADL) were extracted from the OpenSHS tool and made

available publicly.



This research proposes multi-region CLA techniques to learn short- and long-term pat-

terns. Two novel multi-region CLA techniques featuring a multiple spatial pooler and

temporal memory regions that incorporate a hash encoder and a Multi-Layer Perceptron

(MLP) classifier were proposed and applied. While, the hash encoder can deal with

multi-dimensional datasets, because of the existing encoders of the standard NuPIC en-

coders are prepared to deal with a single column or a small number of columns and

the MLP classifier was used rather than the classifiers used in the current implementa-

tion of CLA to produce meaningful predictions. Additionally, the two novel multi-region

CLAs, Parallel Spatio-Temporal Memory Stream (CLA2) and Cascaded Temporal Memo-

ries Stream (CLA3) were developed to learn short- and long-term patterns from, stream-

ing datasets. To remove the limitation of memory management of the original CLA that

contains one spatial pooler and one temporal memory, the original CLA learns using one

memory level, such model learns either short-term or long-term patterns, not both of

them. A novel CLA2 was proposed and developed, to cope with learning both short-

term and long-term patterns. CLA2 can learn both short-term and long-term patterns

in parallel. CLA2 includes two spatial poolers and two temporal memories to simulate

short-term and long-term memories. The number of cells per column was decreased in

the first region to learn short-term patterns. In the second region, the number of cells

per column was increased to learn long-term patterns and the outputs of both regions

were concatenated into one vector. The second proposed algorithm (CLA3) has three

regions, one spatial pooler, and three cascaded temporal Memories (TM) regions, where

the first region learns smaller features, and the second and third regions are more ab-

stract in order to learn and recognise patterns and concatenates the outputs from all

three regions into one vector.

An evaluation and comparison of the proposed algorithms against state-of-the-art su-

pervised machine-learning techniques and the standard CLA for classification was con-

ducted using both the simulated smart home SIMADL dataset, generated using the

OpenSHS, and the ARAS dataset, that comprises data captured from real-world activities

of residents residing in two houses, the obtained results for the real datasets offered less

performance than the synthetic datasets. Because the inhabitants are asked to record

their activities manually, it was prone to human errors. The real-world dataset ARAS

House A is inconsistent because one of the inhabitants left the house for long period of

time, which impacts the performance results. The results of the proposed algorithms

for the classification of ADLs show that its performance are promising. For the CLA2,

the average overall F-measure for all the synthetic datasets, SIMADL and the real-world

datasets, ARAS is 84.88%, while the highest F-measure (86.87%) was achieved by the

Convolutional Neural Network (CNN) model. The (CLA2) has achieved an F-measure of

92.63% for House B of the real-world ARAS dataset, which outperforms state-of-the-art

classification models. For the CLA3, the average overall F-measure for all the synthetic

and real datasets is 84.50% . The proposed algorithms improve the best performance of

base-line (standard) CLAs by an average F-measure of 51.81% overall.
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Chapter 1

Introduction

1.1 Problem Definition

Existing homes consist of many systems for energy, lighting, heating, cooling, etc. that

could generate enormous amounts of data. This collective of devices and the data pro-

duced can be sent to the Internet to form what is called the Internet of Things (IoT).

Stakeholders such as homeowners, city officials, businesses and citizens need to anal-

yse this generated data to make timely decisions. Learning from historical events and

attempting to predict future events is an essential requirement for the future home.

Homeowners require a technique that allows them to receive predictions of the con-

sequences of their activities to inform interventions. They also would like to measure

the success of their interventions. Machine intelligence techniques have the potential to

help homeowners to analyse the data gathered from their homes and to predict future

activities within their homes. Although several attempts have been made to use machine

intelligence techniques to make our homes smarter, however, such methods are not de-

signed to learn from a stream of data, hence there is a need to investigate alternatives.

Recently, Hierarchical Temporal Memory (HTM) theory has been presented as a bio-

inspired machine learning theory that attempts to mimic the Neocortex, the front part

of a human brain. HTM main features include the ability to learn and predict tempo-

ral patterns. Although, HTM and its computational implementation, Cortical Learning

Algorithms (CLA), presents a potential alternative to traditional machine intelligence,

however, this new technology has not been fully investigated in the context of smart

homes, apart from work proposed by (Otahal & Stepankova, 2014). Moreover, up to the

knowledge of the researcher, the literature does not include a comprehensive study that

identifies the limitations and weaknesses of applying CLA in smart homes.
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1.2 Aim

The aim of this research is to propose a new biologically-inspired machine intelligence

technique to classify and predict ADLs of inhabitants, within a smart home environ-

ment, and to evaluate its performance. The HTM theory will be used as the base for

the proposed technique. The first phase of this project includes the application of HTMs

implementation, the CLA, in a smart home environment. Then, the evaluation of the

performance of the CLA in smart home scenarios will take place to identify its weak-

nesses and limitations. In the second phase, the CLA will be modified to improve its

performance in order to meet the requirements of the application at hand.

1.3 Objectives

The objectives of this project are to:

1. Carry out a literature review covering related work on the Internet of Things (IoT),

its major applications, requirements and challenges and more specifically on smart

homes,

2. Carry out a literature review on the use of machine intelligence techniques for

prediction and classification,

3. Analyse the literature review to evaluate the requirements for machine intelligence

techniques to classify events within the context of smart homes,

4. Study HTM theory and its implementation, the CLA, including its learning and pre-

diction capabilities, investigate the use of (HTM) theory as effective classification

algorithms for smart homes,

5. Apply the CLA in the context of smart home,

6. Use a smart home simulator and extract relevant datasets, that simulate the smart

home environment, to test the proposed algorithm, using a dataset,

7. Evaluate the performance of the CLA to identify its weaknesses and limitations,

8. Propose a new algorithm to improve CLA performance in the smart home domain,

9. Evaluate the test results and assess the proposed algorithm against state-of-the-art

machine learning techniques.
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1.4 Research Questions

• What are the weaknesses and limitations of applying the HTM theory in smart

home domain? And, how to overcome these limitations?

• To what extent is the HTM theory suitable for classification of ADLs in smart home

domain? And, how can we exploit the potential of HTM in this application?

1.5 Scope of the Research

This research implements a classification algorithm based on HTM theory and its CLA

implementation. The proposed algorithm attempts to classify ADL of inhabitant’s that

are captured from different binary sensors in a smart home scenario.

IoT paradigm contains several applications, for example, smart home, smart cities, smart

building, etc. The smart home is one of the most important parts of the IoT paradigm.

Smart home consists of Passive, Reactive, Proactive statements or behaviours, each sen-

sor generates enormous amounts of data. There is a need for a machine learning algo-

rithm that has a level of intelligence that is able to perform modelling, reasoning and

integration such vast amount of data. Machine learning techniques could be divided into

three categories based on their learning type: supervised learning, unsupervised learn-

ing and reinforcement learning. Each technique use its own probabilistic, statistical

methods and sequence-learning algorithms, Figure 1.1 shows the scope of this research.

The smart home is a small-scale example of a smart city, where city officials need to link

and correlate data combined from various sources and make sense of the changes in

such data over time. However, the data of a smart city are difficult to find. The smart-

home domain has been chosen as the case study for this project because smart home

datasets are available in the public domain.

The machine learning algorithms covered in Figure 1.1 are not application-specific and

have been used across different application areas. Although, this research has chosen the

smart home domain as a case study representative of an IoT application area. However,

the machine learning algorithms shown in Figure 1.1 are capable of scaling up to other

IoT application areas but further investigation is required to empirically test them in the

other domains.
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FIGURE 1.1: The Scope of This Research.

1.6 Challenges

These challenges include the design of an efficient machine learning algorithm that can

classify ADLs, the evaluation of different machine learning algorithms in this context
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which requires a suitable dataset that represents different smart home scenarios.

• Activity Prediction

The prediction of the inhabitants activities in a smart home environment is a chal-

lenging task. This is because a smart home requires certain types of intelligence,

such as adapting to the users changing habits, being able to deal with streaming

data and coping with noisy data such as missing data and faulty sensors data.

(Minor et al., 2015), (Fatima et al., 2012) summarises the challenges of activity

prediction and classification in a smart home as:

1. ) the data generated in a smart home includes multi-dimensional features,

hence, the activity recognition in a smart home domain requires a multi-class

classification method which is prone to errors,

2. ) the data readings from sensors are always noisy which makes it difficult

to exploit the relationships between spatial and temporal attributes of these

readings..

• Performance Evaluation

Although there are many technological advances in the field of IoT, there are

equally as many obstacles related to the implementation and evaluation of newly

proposed IoT technologies. This is particularly seen when addressing practical or

realistic conditions for real world deployments (Sanchez et al., 2014). Evaluating

the algorithm’s performance for activity classification through metrics is challeng-

ing because some algorithms requires parameter tuning for each task that affects

the algorithm’s performance (Minor et al., 2015).

• Smart Home Dataset Generation

The development, testing, and evaluation of machine learning algorithms and per-

vasive computing requires suitable datasets. The evaluation of such machine learn-

ing algorithms is further limited by the lack of real datasets from smart homes.

Due to the limitations and high cost of building real smart home datasets, there

is a need for powerful simulation tools that can represent the home inhabitant’s

daily activities. These simulation tools can generate datasets with higher flexibility

(Cook et al., 2009),(Bouchard et al., 2010), (Synnott et al., 2015).
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1.7 Main Contributions

The main contributions to knowledge of this research project, ordered by importance,

include the following:

• Two novel techniques that learn user patterns and allow the home user to obtain

predictions based on the HTM theory and CLA. This is envisaged to be achieved

by proposing two novel multi-region CLA techniques that include a hash encoder

and an MLP classifier.

• The forty-two SIMADL datasets are generated using simulation tool (OpenSHS)

for ADL classification problems that simulates a smart home environment.

• A review of existing research in classification and prediction of ADLs and carries

out a comprehensive evaluation of state-of-the-art machine-learning technique ap-

plications in the context of smart homes.

1.8 Research Methodology

Researchers must adapt a strategy to answer their research questions. Research methods

include two common research approaches: qualitative and quantitative. The choice of

method depends on the type of research (Brannen, 2005).

1.8.1 Quantitative Research

Quantitative research is the process of data collection, analysis, and interpretation to ob-

tain the results of a study. It is used by investigators to monitor and measure phenomena

via statistical and mathematical methods. Quantitative research defines a numerical or

statistical design approach to research. Quantitative research builds on current theories,

making it specific in its surveying and experimentation (Williams, 2007).

1.8.2 Qualitative Research

Qualitative research is a method that involves discovery, such as an exploration paradigm

that happens in natural environments, which leads investigators to develop a level of

knowledge by sharing current experiences. One identifier of qualitative research is a
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social phenomenon explored from the researchers perspective. There are many new

issues and subjects that can be discovered through the opinions of certain people. It

creates non-numerical data, using methods such as case studies, ethnographic studies,

and interviews (Williams, 2007).

Due to the nature of the data and the use of machine-intelligence techniques based on

the HTM theory and its CLA implementation to classify activities of daily living (ADLs)

of inhabitants in a smart home, this current research adopts a quantitative research

approach in the design, implementation, testing, and evaluation stages. This research

uses a 3D simulation tool (OpenSHS) to simulate a smart-home environment for ADL

classification problems, where data can be generated and stored to create a dataset. The

datasets can be used to evaluate and test the performance of machine-learning models.

The hypothesis is that HTM and its CLA are able to integrate and learn patterns from

streaming datasets to classify activities. The dataset is used with state-of-the-art machine-

learning algorithms to compare the performance with the proposed techniques. In the

evaluation stage, the system output is quantitatively measured to evaluate its effective-

ness through metrics, depending on the evaluation criteria. As shown in Figure 1.2 the

research methodology, objectives, methods are presented.

FIGURE 1.2: Research methodology, objectives and methods.

1.9 Organisation of the Thesis

This thesis is structured as follows:
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• Chapter 1 covers the problem definition, project’s aim, objectives, scope of the

research, research questions, challenges and main contributions.

• Chapter 2 reviews the IoT literature and focuses on smart home applications and

machine intelligence algorithms for the smart home covering, middleware, intelli-

gence, context-awareness, related work, analyses and research the gap.

• Chapter 3 introduces the concept of the Hierarchical Temporal Memory (HTM)

theory and its components, Sparse Distributed Representation (SDR), encoder,

spatial pooler, temporal memory, CLAClassifier as well as the implementation of

the theory, Cortical Learning Algorithm (CLA).

• Chapter 4 introduces the Smart Home SIMADL Datasets generated by OpenSHS for

classification problems. This chapter is structured as follows: Section 2 presents

the related real-world datasets and simulation tools in the literature. Section 3 ex-

plains OpenSHS architecture and how this research uses it to generate the SIMADL

datasets. Section 4 presents the methodology to generate the SIMADL datasets.

Section 5 provides a description of the SIMADL datasets, as well Usability study.

• Chapter 5, First section: introduces the Hash SDR Encoder for Smart Home. Ex-

plains the Hash Encoder, problem definition for the Hash encoder, how does the

hash function work. Second section: introduces the classifier. Explains Multi-Layer

Perceptron, Backpropagation algorithm and how the application of the MLP classi-

fiers works. Third section: introduces the multi region HTM, offers biological short

and long-term memory, illustrates the capacity of sequential memory to represent

different forms, reviews the related work multi-region HTM in the literature, Ex-

plains the proposes multi-region CLA techniques - Parallel Spatio-Temporal Mem-

ory Stream and Cascaded Temporal Memories Stream, how the proposed model

works and analysis both of them.

• Chapter 6 includes two parts; the first part covers evaluation methodologies, the

second part describes the preparation of the real-world datasets, ARAS, the syn-

thetic SIMADL datasets, parameter selection for the CLA model, evaluates the pro-

posed algorithms against state-of-the-art supervised machine-learning techniques

and and base-line (standard)CLAs, presents the test results.

• Chapter 7 concludes the thesis and includes a summary, future work, as well as,

the original contributions.
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Chapter 2

Literature Review

2.1 Introduction

This chapter reviews the IoT literature including the major issues, enabling technologies,

middleware, context-awareness and focuses on smart home applications and machine

intelligence algorithms for the smart home covering, intelligence, related work, analyses

and research the gap.

2.2 Internet of Things (IoT)

The first use of the term IoT was in the early twenty-first century, in 1999, by Kevin Ash-

ton, regarding his idea to link some digital devices that exist around us in a household in

a way that allows us to know their status remotely (Ashton et al., 2009). The IoT is a so-

phisticated concept for the Internet that proposes that all of the things in our lives could

be connected to the Internet or could be connected with each other to send and receive

data to perform specific functions through the network. Recently, the IoT has emerged as

an umbrella that covers different technologies concerning the connection of our things

(devices) using the Internet. The IoT attempts to link distributed devices and sensors by

using information technology, this enables new classes of applications and services. An

enabled physical object is easily integrated into a network to become active in business,

commerce or other services. Although the obvious benefits from the IoT, however, there

are a number of issues that hinder the advances of IoT applications for example, the

automation, standardization, security and privacy issues (Miorandi et al., 2012), (Haller

et al., 2009). Automation is a challenging problem for developing automated systems to

control devices in the home. (Youngblood et al., 2005a) presented agent architecture in
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order to automate a smart home that used techniques to decrease residents interactions

by 72.2%. (Cook et al., 2003) designed an intelligent environment called MavHome

that includes prediction algorithms to predict the inhabitant’s next action to automate

repetitive tasks for the residents. Standardisation, heterogeneity, and interoperability

between devices in the Internet of things (IoT) are challenging problems. They require

developing a multifaceted technology approach to the IoT in order to exchange infor-

mation and communicate between two or more devices (Elkhodr et al., 2016). Google

discussed a new networking protocol in order to find a standard for connection among

devices in a home. However, there are many companies establishing standards for the

IoT, such as Intel, Qualcomm, and GE (Neagle, 2014). There are security and privacy

threats when using it. Attacks must be intercepted, data should be authenticated, access

controlled and the privacy of customers need to be considered (Weber, 2010). Sarma

and Giro concluded that there are still two issues, at least until the research community

finds an optimal IoT solution in the future: preserving security and putting the user back

in control and moving to the IoT. They proposed a solution to solve issues related to the

diversification of the Internet to an IoT with new accessibility methods in the digital

world. Their research proposes two approaches to deal with these issues: The Identinet

approach, where identities are at the end point of all communications, and a concept

designated by a digital shadow. The Identinet can represent an entity that includes de-

vices, people and software. Digital shadowing presents a concept of entities which use

nodes, services and equipment infrastructure in individual contexts. This can help users

to attach to multiple entry points which keep a consistent view (Sarma & Girão, 2009).

2.2.1 Major Issues

There are many obstacles facing the IoT vision such as standardisation, fragmentation

and interoperability. (Bandyopadhyay & Sen, 2011) identified some major issues in IoT.

They were seeking to achieve complete interoperability among connected devices and

support these devices to become more intelligent and be adaptive to the changing habits

of the user. The standardisation is another major issue facing the widespread of archi-

tectures, identification schemes and protocols to be working together. The lack of stan-

dardisation leads to fragmentation of the IoT. (Atzori et al., 2010) conducted a compre-

hensive survey about the IoT. In a system which contains massive numbers of nodes, the

number of required IPv4 addresses to identify each node is limited and it is not enough.

Thus, in order to solve this issue, IPv6 addresses will be used for low-power wireless

communication nodes within Low-power Wireless Personal Area Networks (6LOWPAN)

context and is enough to identify any object.
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2.2.2 Enabling Technologies

The realisation of the IoT vision was facilitated by using sophisticated communication

technologies such as Radio-Frequency Identification (RFID), Wireless Sensor Networks

(WSN) and 6LoWPAN. (Srivastava & Saxena, 2006) presented a study that wireless tech-

nologies play an important role among radios and humans. (Juels, 2006) RFID is used

in order to observe objects in real-time. It is not needed to be in line-of-sight, therefore

it allows for mapping the real world into the virtual world. (Welbourne et al., 2009)

created a mini IoT network utilising the RFID Ecosystem in order to enable users to con-

trol their personal RFID data, they carried out a study for one month to assess trends in

adoption using the applications and the users’ reactions. Fosstrak1 is a project that con-

centrates on the management of RFID relevant applications, It is an open source RFID

software platform that implements the EPC Network specifications. (Gubbi et al., 2013)

identified many technologies including the RFID and WSN as enabling technologies that

are probable to drive IoT research in the future.

2.2.3 Middleware

The IoT middleware is a software that serves as an interface between different IoT com-

ponents, a networked operating system and smart home applications. The middleware

is used to overcome issues, such as integrating heterogeneous features, security and in-

teroperability (Issarny et al., 2007). (Kawsar, 2009) and (Kawsar & Nakajima, 2009)

offered a document-centric framework for constructing distributed smart object systems.

There are many applications for smart objects that can be presented as a group of tasks

in a document to solve the heterogeneity issue of smart objects. Infrastructure can ad-

minister the smart objects; hence, application development will be fast and straightfor-

ward. The framework provided by the programming abstraction enables the application

developers to expand the tasks of smart objects; hence, it can improve many of the func-

tionalities for smart objects where there are available alternatives to achieve the needs

and requirements of the IoT vision. (Bandyopadhyay et al., 2011) presented a study

about the existing middleware in the IoT field. IoT requires cooperation with hetero-

geneous, device management, interoperation, context awareness, security and privacy,

and managing data volumes. Especially context awareness, it must be within the IoT

middleware to work in a smart home. The study illustrated a lack in context awareness;

hence, it needs to understand the functions in the existing IoT middleware to improve

it.
1http://www.fosstrak.org/(accessed February-2019)
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2.2.4 Context-Awareness

The large number of sensors could be pervasive in a smart home within the IoT paradigm.

It is difficulte to control each smart device for the user, a smart home requires certain

specific kind of intelligence, the smart devices and sensors should be capable to adapt to

the users changing habits. The smart devices generate raw data, in order to understand

and benefit from those raw data, there is a need for algorithms that can integrate, model,

reason. Context-aware computing is a system that can provide its users with relevant

information about an environment, a person, device or an application, anywhere and

anytime, using contextual information related to a users task (Abowd et al., 1999). The

first term ‘context-aware’ was used through (Schilit & Theimer, 1994). Context-aware

computing is able to understand sensor data. (Perera et al., 2014b) presented a survey

study of the IoT paradigm and context-aware computing. Additionally, the study focused

on the analysis of context-aware computing by reviewing 50 context-aware computing

projects. Each project in this field, from 2001 to 2011, was critically evaluated and

addressed proposed solutions to further research in this field. (Perera et al., 2014a) con-

ducted a survey that context-aware computing has played a critical role during the last

decade of ubiquitous computing and also it will be expected to do a significant role in

the IoT paradigm.

2.3 Smart Home

Home automation has existed for some time; now the technology is at a stage where

individual households can make use of it. Home automation provides comfort, home

energy management, security and can help the elderly and disabled to receive quality

care (Bartram et al., 2011). (Bartram et al., 2011), proposed the design and imple-

mentation of an interactive system which provides citizen awareness of resource use.

It provides simple and efficient management of a house system to enhance daily activ-

ities, but although this approach has great potential to help residents with sustainable

living, there are many challenges as to how the technology is integrated with the home

environment. A smart home includes sensors, actuators, middleware and a network.

2.3.1 Definition

A smart home connects different devices and pervasive computing systems in homes

to deal with each other, which are automatically controlled remotely from the Inter-

net. Many terms apply for smart homes, such as smart house, home automation, and
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adaptive home(Alam et al., 2012). There are many definitions of smart homes.

“The smart home concept is the integration of different services within

a home using a common communication system. It assures an economic,

secure and comfortable operation of the home and includes a high degree of

intelligent functionality and flexibility (Lutolf, 1992).”

This definition focuses on home automation and does not focus on the role of home

intelligence. Another definition by (Berlo et al., 1999) defines a smart home as

“A home or working environment, which includes the technology to allow

the devices and systems to be controlled automatically, may be termed a

smart home. ”

This definition covers the smart home domain that contains several devices and appli-

ances that can be automatically controlled remotely. (Briere & Hurley, 2011) defined it

as

“a smart home as a harmonious home, a conglomeration of devices and

capabilities based on home networking.”

This definition is general and is not specific to the smart home idea. Intertek in 2003

published a more accurate definition to express a smart home:

“A smart home is a dwelling incorporating a communications network

that connects key electrical appliances and services and allows them to be

remotely controlled, monitored, or accessed (Alam et al., 2012).”

According to Intertek, there are three factors that a home requires to be smart:

• Internal network: A smart home contains various types of home appliances, sen-

sors, and services that can be connected through the cable or wirelessly to the

internal network.

• Intelligent control: A smart home gateway is integrated to connect different smart

home devices to provide the homeowner with control of various applications.

• Home automation: Home automation enables various smart home appliances,

sensors, and devices to link and work with services to provide intelligent home

services outside the home.
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An additional definition by (Satpathy, 2006) is more suitable for the smart home con-

cept:

“A home which is smart enough to assist the inhabitants to live indepen-

dently and comfortably with the help of technology is termed as smart home.

In a smart home all the mechanical and digital devices are interconnected to

form a network, which can communicate with each other and with the user

to create an interactive space. ”

But does not focus on how it can be automatically controlled remotely. (Alam et al.,

2012) stated:

“we can define the smart home as an application of ubiquitous computing

that is able to provide user context-aware automated or assistive services in

the form of ambient intelligence, remote home control or home automation.”

This definition is inclusive for the smart home concept.

2.3.2 Classification

Smart Home Environments (SHEs) intersect with several research areas, such as com-

puter networks, computer engineering, applied computing, and embedded systems. The

focus of smart environments is identified with interactions between multiple agents, and

the smart environment is able to present services that improve the performance of a

smart home (Cook, 2009).

1. A home automation system includes many home appliances, electronic devices,

and smart devices, such as washing machines, lighting systems, smoke detectors,

etc. Whose functions may be divided into sensors, actuators, or both (Jih et al.,

2006).

2. A control system that combines a human user with software to control and manage

the home that receives information from sensors and instructions sent to actuators

to perform specific tasks in SHEs.

3. A home automation network has the capability for the smart home to connect and

work among the home automation and control systems.

The SHEs contain two parts, hardware and software. (Badica et al., 2013) illustrated a

classification of SHE according to the following information discussed below.
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2.3.3 Structure

The home automation system has a huge number of home appliances and electronic

devices, which are selected based on certain applications. With the increase in new

emerging technologies of home appliances and electronic devices, (Fortino et al., 2012)

presented a new smart object concept to explain sophisticated electronic devices and

home appliances.

The smart object is divided into three parts: 1) the object in the real world represents

the physical part, 2) the hardware infrastructure grants processing power to allow smart

capabilities to the object, and 3) the software layer supplies smart capabilities. The

home automation network contains a network component technology and communica-

tion protocols.

The network component can be of any type whether powerline, bus line, or wireless.

Powerline communication is a communication technology that transmits information

through current power cables, it reuses the in-home electrical network, it is low cost but

less reliable. The bus line home networks are local area networks in which each device

is connected to a main cable. It can be used via physical media, such as switches, hubs,

and routers, to transfer electrical signals. Bus line home networks are simple to expand

and are reliable. However, they suffer from some disadvantages for the home resident,

require cabling systems, and are not easy and fast to set up and connect to the Internet.

Wireless home networks are wireless networks that are not connected through any ca-

bles, such as infrared (IR) or radio frequency. The use of a wireless network avoids the

costly cables and devices that provide convenience and mobility for home residents.

(Gomez & Paradells, 2010) presented several communication protocols that are used for

home networks. There are three types: 1) proprietary protocols for private companies,

2) public protocols for the public, and 3) standard protocols through the standardisa-

tion organisation. There many home network protocols, such as IEEE 802.15.4/Zig-Bee,

IEEE 802.11/Wi-Fi, and 6LoWPAN.

The control system is more complicated in the SHE. Smart homes require a system that

is able to react to the inhabitants’ behaviour for a particular task, such as controlling the

temperature or reacting to a smoke alarm or leaving the oven on for too long, through

combining reactive and proactive behaviours to provide new services to the smart home

inhabitants to improve their quality of living. In the literature, there are many methods

that are proposed to develop advanced control systems for the SHE, such as artificial

intelligence and multi-agent systems.

• Wireless Sensor Networks

Pervasive computing systems contributed by wireless sensor network (WSN) tech-

nologies provide the integration of technology into a smart home environment.
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The WSN is a set of wireless sensor nodes that are small, consume very low power,

and are used to monitor or change physical status, such as temperature, humidity,

light, and sound (Pirbhulal et al., 2017).

Every sensor node contains five units. A microcontroller component or unit is able

to process observed data. The microcontroller plays an important role in sensor

nodes to analyse and process observed data from its sensor node or data received

from another sensor node. After the microcontroller has processed these data, it

sends the information to a neighbouring or other sensor node. The memory unit

is where the data and information are stored. Each sensor node has a tiny amount

of memory, and there is a short period of time to store data before analysing and

transferring the data to neighbouring or other sensor nodes. Sensor node units

sense the environment. The sensor node is a tool that converts data from ana-

logue to digital. This unit transfers data sent or received to a format that fits the

nature of the data in the microcontroller unit. The sensor node receives a signal

from the sensor and converts the signal from analogue to digital to send it to the

microcontroller for more processing (Bhattacharyya et al., 2010). Communication

is one of the most important units or components of the sensor node that executes

an exchange of the aggregated data from various sensor nodes. It is one of the

most energy-consuming units due to transmitting and receiving data between var-

ious sensor nodes. There are many technologies to transmit data and information,

such the standard IEEE 802.15.4/ZigBee, Bluetooth, and power supply units. Each

sensor node requires a power supply that has a greater life. Normally, each sensor

node is supplied with batteries, and they can be recharged. There are several fac-

tors that influence energy consumption, such as how long it takes for transmitting

and receiving data and the environmental conditions in the surroundings, such as

the temperature.

There are two categories of sensor nodes. A passive sensor is used to detect

and reply to any change from environmental conditions, this kind of sensor is

a microwave instrument. Passive sensors include two kinds of sensors, the omni-

directional sensor is a sensor that detects any input from the physical environment

without really manipulating it by active probing. This type of sensor requires

energy just to amplify analogue signals, and each sensor is self-powered, which

uses power from the environment, for example, light sensors, smoke detectors,

microphones, pressure and parking sensors, etc. Passive narrow-beam sensors are

another kind of passive sensor, which are able to use direction. This sensor detects

a given direction of the physical environment, for example in a passive camera,

which does not need to be supplied with energy. The passive narrow-beam sen-

sors are used in smart home environments and are fit for internal applications, for
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example monitoring, healthcare applications, and home automation. In a smart

home, for example, when the inhabitant installs a pressure sensor on the couch

and the inhabitant sits on the couch, the pressure sensor can detect this and emit

a signal (Skubic et al., 2009a), (Bhattacharyya et al., 2010).

Active sensors are those sensors that are required to be supplied with energy, such

as radar sensors and temperature sensors. Active sensors emit radiation to detect

objects and places in the surrounding environment. Then, the reflected radiation

from that object or place is detected by the sensor and is measured. The benefit

of an active sensor is that it can measure the reflected radiation anytime. There is

no specific time to measure it, and there is no need for a natural source of energy.

In smart homes, one example of an active sensor is when the inhabitant installs

temperature sensors to measure temperature in the home (Bhattacharyya et al.,

2010), (Yang et al., 2010).

• Wearable Sensors

Wearable sensor devices are used for assisting people to provide health care, for ex-

ample, monitoring, managing home appliances, continuously monitoring medical

status, emergency detection, etc. These devices can be integrated into a wearable

wireless body area network, and the devices can be embedded or implanted in

the human body. Different wearable or implanted items in the human body are

able to collect a large amount of data to provide caregivers with useful and im-

portant information about the health status of their patients when this technology

is integrated in the telemedicine system (Darwish & Hassanien, 2011), (Rashidi &

Mihailidis, 2013) presented a study conducted on wearable sensors in smart home

applications. There are several sensors, such as the accelerometer, gyroscope, and

global positioning system (GPS), that are used for detecting inhabitant activities

and mobility. Some studies have generated datasets from the smart home environ-

ment using a smartphone that collects the accelerometer and gyroscope data from

participants (Casale et al., 2011).

• Ambient Sensors

Ambient sensors are several pervasive sensors throughout each room that are

equipped with many sensors that include home appliances, electronics, light, and

temperature. All sensors work with each other to capture the interactions of the

residents (Pauwels et al., 2007). Although ambient sensors are able to detect

geospatial information on the inhabitant activities in smart home environments,

ambient sensors are not associated with a specific location. Ambient spatial intelli-

gence is used for tracking inhabitant motions and for finding the relation between

spatio-temporal events in the environment (Duckham & Bennett, 2009).

(Chen et al., 2015) compared ambient sensing data and wearable sensing data.
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The ambient sensors are stable and generate data that are more accurate than

data found by wearable sensor devices on the human body. Many ambient sensors

can be installed in rooms to identify activities with multiple residents, but wear-

able sensors employ a small number of sensors to collect data from the human

body.

2.3.4 Architecture

The architecture is a system design that contains all of the hardware components within

a computing system. With the recent rise of the IoT, ubiquitous and pervasive computing

has become widespread, which requires an increase of computational power of devices,

leading SHE architectures in a direction from being centralised to distributed.

(Ahsan & Bais, 2018) discussed the huge amount of data generated from sensors. There

is a need to process the data, and there are two methods: a central computer or multiple

distributed processors around sensors.

• Centralised Architecture:

The control system is achieved through a computer system that is responsible for

the data captured from smart homes by sensors, user interfaces, and applications

of the control algorithms and the transmission instructions to the actuators. The

central computer is called the home gateway. The central computer or the gateway

allows the home inhabitant to control and manage the home. It is enabled for the

smart home to connect and work with services outside the home via the Internet.

• Distributed Architecture:

In a distributed SHE architecture, the computational resources of smart objects

assist the distributed architecture to establish software into the nodes of the smart

home network(Catarci et al., 2008)

2.3.5 Projects and Applications

There are several research projects, applications, and uses for smart homes. (Alam et al.,

2012) offered the classification of smart home projects based on specific tasks: comfort,

healthcare, and security. (Badica et al., 2013) identified four major application areas of

smart homes: (i) elderly/ageing/home care, (ii) energy efficiency, (iii) comfort/enter-

tainment, and (iv) safety/security. Each area can be associated with other areas, such as

security with home care.
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• Comfort/Entertainment:

This application is one of the main goals of smart home research to provide inhab-

itant comfort. There are two types to achieve comfort and entertainment for resi-

dents. The first is increasing the level of automation of routine activities through

knowledge of the inhabitants’ activities of daily living, habits, and behaviours. The

second is remote control capabilities for home appliances and home tasks, such as

turning up the air conditioner when the temperature is high in the home.

• Elderly/Ageing/Home Care:

This application attempts to address the needs of elderly people due to the recent

increase of the ageing population in the developed world. In a study conducted

by the World Health Organization (WHO), the number of elderly people aged 60

or older will continue to grow and will reach 2 billion in 2050 (10 Facts on Age-

ing and the Life Course) 2. Thus, some of them have lost mobility, sensorial, or

cognitive skills that leave elderly people unable to live independently. Ubiquitous

computing technologies can provide two services for security and independency.

Although there are existing systems, the development of such systems in the home

for safety is limited by the focus on only elder monitoring and emergency detec-

tion (Taleb et al., 2009).

(Alam et al., 2012) illustrated a healthcare project in a smart home that provides

healthcare support for elderly people and healthy people. There are two health-

care services. The first one can be applied on a website to produce health reports

locally. The second one uses a remote healthcare service to provide and support

elderly people in emergency situations.

1. Local monitoring:

Sometime elderly people require monitoring of certain activities of daily liv-

ing to estimate health conditions. When something happens that is abnormal,

the alarms send an alert to the medical office or homeowner. The research

team at Tampere University of Technology, (Vainio et al., 2008) proposed a

proactive fuzzy home control system. An adaptive fuzzy logic algorithm is

used to assess the test on the acquired results to help elderly people live au-

tonomously at home. This system is able to recognise routines. The patterns

gained from the daily routines will be beneficial for assisting elderly people.

It provides inhabitants’ information, such as sleeping disorders, medications,

diabetes data, and blood pressure.

2. Remote monitoring:

Sometimes older adults need monitoring of certain daily activities to estimate

2http://www.who.int/features/factfiles/ageing/en/ (accessed 28November-2014)
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a medical situation. Health care and safety are significant features for elderly

people in the home. Those tasks include a fall detection mechanism, smoke

alarm sensors, oxygen sensors, etc. Remote monitoring is used as a health-

care service to provide their families and caregivers with useful and important

information. The home observes the older adults using physiological sensors

and communicates with their families and caregivers automatically in health

emergency cases. Some smart home projects were discussed to provide re-

mote patient-monitoring services. There is a need for real-time homeowner

intervention from outside the home.

(Barnes et al., 1998) proposed low-cost technological solutions to assist in

the care of elder people through British Telecom and Anchor Trust in Eng-

land, which monitored the activities of daily living of elderly people. It can

be used to enhance the provision of care to elderly with reduced human inter-

vention. Their technique discovers the occupants’ movement using IR sensors

and magnetic communicators at the entrance of the household doors. There

are many sensors used in the home, such as temperature sensors and alarm

sensors, which detect anomalies and contact the control centre or homeown-

ers.

3. Safety/Security:

Safety is an important application of a smart home. Safety mechanisms iden-

tify abnormal behaviour by monitoring the inhabitants’ daily activities in the

SHE, for example, fire, falls of older adults, and slow movements. Tech-

niques can be used to find correlations between spatial and temporal aspects

of the dataset to detect abnormal situations (Ni et al., 2015). Security detects

malicious behaviours in the SHE, such as unauthorised access for malicious

purposes, user impersonation, thieves, and privacy violation. Smart homes

are more susceptible to security and privacy threats. There are many anomaly

detection techniques that can be used to identify an abnormal behaviour. It

is one of the main issues in this domain. Due to the nature of the data, a SHE

contains huge volumes of data that need to be inspected. However, there are

tools and systems that can be used to increase the security in a smart home,

such as video surveillance, remote monitoring, alerting, and alarms.

• Energy Efficiency:

Energy saving is a significant topic because of frequent climate change. There is a

universal direction and request for energy saving to increase the effectiveness of

energy consumption. Smart home technologies play an important role in increas-

ing energy efficiencies (Bhati et al., 2017). Recently, the technological advance

demands usage of more energy. However, there is limited energy from the lack of
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resources. In Europe, 40% to 45% of power consumption occurs in buildings and

from inhabitants’ activities (SBCI, 2007). Consequently, household energy savings

in smart homes can be understood as using technology in energy savings.

Home automation provides a means for energy management and supports feed-

back on consumption at device level. Recently, (Harle & Hopper, 2008) proposed

the use of sensing networks to analyse and respond to user behaviour in smart

environments to improve energy use management.

With the focus on energy consumption, (Weiss et al., 2009) proposed an inter-

active system that provides instantaneous feedback on energy usage in the house-

hold. They have uploaded the application to the internet in order to provide power

management that enables the user to monitor consumption on a smartphone.

(Pipattanasomporn et al., 2012) focus on intelligent home energy management in

a smart home environment, using a home energy management (HEM) algorithm

in order to demand responsive applications. Their results showed that the HEM

algorithm enables proactivity and facilitates efficient control, managing appliance

operation to keep the sum household consumption under a specified demand limit.

In addition, a new smarter network is called the smart grid. It increases the normal

electricity delivery system by using more sophisticated communication and infor-

mation technologies to reduce the power consumption. Additionally, it attempts to

exploit the potential of renewable energy sources (Saponara & Bacchillone, 2012).

(Badica et al., 2013) specified two main application areas regarding to energy con-

sumption:

1. Energy saving using smart technologies in the smart home is aimed to de-

crease energy consumption and enables the occupant or control system to

control the power reduction at home by turning off all appliances that are

not in use, by turning them on when the inhabitants need them, or by setting

the devices at a low-power status. After determining the settings for energy

at home based on the inhabitants’ activities of daily living, the settings can

be controlled locally or remotely. Smart homes allow homeowners to control

the devices, appliances, and systems automatically (Torunski et al., 2012).

2. The smart grid is the electrical network in which communication technolo-

gies are used, such as smart meters that works with 4G networks to col-

lect information from sensors, consumption points, and power generators.

This method is integrated into the network management. It is automated to

improve the efficiency and reliability of the generation and transmission of

electricity to the electricity consumers (Speer et al., 2015). The smart grid
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exploits technologies that improve network fault detection and network self-

repair without the intervention of technicians. It provides the electricity price

to the consumer to reduce power consumption at peak times.

(Jahn et al., 2010) presented a system that integrates into the SHE energy effi-

ciency features using the Hydra 1 middleware framework. They used this frame-

work to settle the heterogeneous issue, which offers the challenge of executing

interoperation among devices in a SHE. It uses a wireless network to take data

from home appliances and sensors and combines the wireless power sockets to

reach a target power consumption. It can use the data for monitoring, controlling,

and analysing the consumed energy in each device. It automatically provides the

homeowner with all details, such as the electricity price, how much energy is used,

and the meter readings.

2.3.6 ADLs Monitoring

One of the projects that used supervised techniques is MavHome which aims at creating

a smart home environment that acts as an intelligent agent by reading the sensors’ data

and intelligently manipulating the environment using device controllers. The project

proposes a scalable architecture to achieve goals. Each agent in MavHome architecture

is composed of four layers, which are the decision layer, the information layer, the com-

munication layer, and the physical layer. The relevant layer to the research at hand is the

decision layer, which is responsible for deciding the agent’s action based on the gathered

information. The project uses a Smart Home Inhabitant Prediction (SHIP) algorithm

which works by searching and matching recent sequence of events with previously cap-

tured sequences. They have evaluated their proposed algorithm, on a real dataset and

it scored a classification accuracy of 53.4% and 94.4% on a synthetic dataset, they have

been used their own datasets, which is not available in public domain. The simplicity

of the SHIP algorithm is one of its strengths. However, it has a limitation of not being

able to operate in an online fashion. The whole historical activities must be stored and

processed offline. To overcome this limitation, the project developed Active LeZi (ALZ),

which is a sequential prediction algorithm. They tested this algorithm performance on a

synthetic dataset and it scored 87% accuracy. Moreover, the project applied a Task-based

Markov Model (TMM) and it scored 74% accuracy on a 30-day synthetic dataset (Cook

et al., 2003) (Lesser et al., 1999b) (Das et al., 2002).

(Hussein et al., 2014) developed a theoretical design for disabled people in a SHE. The

simulation was conducted to capture activities of daily living data from their SHE for el-

derly or disabled people in real life, their dataset is not available in public domain. They

proposed the use of a neural network and a Recurrent Neural Network (RNN) because
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of the suitably of RNN to handle sequential data. Neural network testing result accuracy

was 95% in the fire alarm prediction, while the user behaviour prediction accuracy ap-

proached 80%.

(Assim et al., 2006) presented a prototype of a system in a SHE, which can make deci-

sions without human intervention, adapt to daily living activities, and provide automa-

tion for smart home appliances to achieve the inhabitants’ quality life. It can cooperate

with multi-agent systems to share knowledge. Multi-agent systems have more benefits

when there is more than one agent. Each agent performs various tasks and can interact,

share knowledge, which has a worthy effect on the system performance (Alam et al.,

2012).

(Lesser et al., 1999a) designed and implemented a smart home simulation with multi-

agent systems to control an intelligent environment, where each agent is distributed and

performs a specific task. The agents interact and share resources and knowledge with

each other and use various coordination protocols to distribute tasks among them. It

can adapt to changes in the environmental input.

(Mozer et al., 2005) developed an adaptive house to monitor elderly people in a SHE.

This adaptive home aims to adapt proactively to changes to assist the inhabitants by

learning and observing their activities of daily living to meet their needs. They used a

neural network algorithm. They described the adaptive home that facilitates control-

ling the temperature of each room and the lighting separately to provide a convenient

environment and save energy for inhabitants, but there were limited applied artificial

intelligence features. Due to the limited use of neural networks, although Artificial Neu-

ral Networks (ANNs) have more potential. (Begg & Hassan, 2006) indicated that ANNs

have effective capabilities to work particularly with the automated monitoring and man-

age the devices and home appliances in a smart home.

(Chan et al., 1995) developed a smart home automation system for observing elderly

and disabled people. The ANN was used, and they used different sensors that were in-

stalled in 12 rooms. The dataset represents real activities captured from the residents

to evaluate the ANN algorithm to classify activities of daily living in smart homes and to

detect anomalous behaviours. Moreover, the convergence rate for the ANN was reported

at 90%, their dataset does not available for researchers.

(Mozer, 1998) developed a smart home automation system to manage essential con-

venience systems to save energy, such as lighting, air heating, water heater, etc. This

system is programmed to learn and monitor inhabitants’ activities of daily living in a

SHE and to predict their activities. The ANNs have been used to predict these actions,

but there is a lack of interaction among the users and the proposed system; all these

systems are becoming automatic.

(Cavone et al., 2011) proposed an agent approach to manage normal behaviour in SHEs.
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Their system used the butler agent that can be employed to learn and infer from inhab-

itants’ activities. It can automatically adapt proactively to changes of the user. The

system provides interaction among users and the system by presenting some services to

the user that can be accepted, cancelled, or modified. The butler benefits from the user

feedback to improve future conduct. This system can be divided into four categories:

1. The sensor agents present information about the user context and sensors, such as

temperature, lighting, air heating, water heater, etc.

2. The butler agent manages the smart home. Its learning, reasoning, and inferencing

model works to achieve the desires of the user, and it chooses the workflow related

to certain targets and needs.

3. Effector and interactor agents for controlling devices and actuators can be con-

trolled automatically or controlled between the user and the system.

4. The housekeeper agent works as a mediator and identifies all active agents in the

home, and it knows what each agent is able to achieve.

In the real era of smart homes, there are many technologies and applications that al-

lows efficient communications between home appliances and inhabitants and enables

automation, monitoring, and remote control capabilities for home appliances and home

tasks (Lobaccaro et al., 2016).

The Episode Discovery (ED) prediction algorithm was used to identify repetitive events

to automate the next series of events (Dixit & Naik, 2014). (Gopalratnam & Cook, 2004)

research focuses on the role that predictions play in the field of artificial intelligence and

machine learning for creating smart systems that are able to make decisions more reli-

ably. The smart home environment requires the ability to predict a sequence of events.

They used Active LeZi (ALZ), which is a sequential prediction algorithm. They tested

this algorithm performance on their own synthetic datasets, which are representative of

interactions among inhabitants and the smart home. Machine Intelligence Algorithms

include a variety of techniques, technologies and methods. This research aims to pro-

pose a machine learning algorithm that can learn the inhabitants’ daily living activities

that can predict such activities using supervised learning techniques applicable in smart

home environments. There are some research studies and research surveys that have

covered most aspects of a smart home. e.g. (Amiribesheli et al., 2015) presented their

survey of many smart home research studies and explained some algorithms.
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2.4 Machine Intelligence Algorithms for Smart Homes

Machine learning has been widely applied to develop probabilistic and statistical meth-

ods and sequence-learning algorithms to predict activities of daily living (ADLs) of in-

habitants. Machine learning techniques can be divided into three categories based on

the availability of labelled datasets, as such:

• Supervised learning is the process of an algorithm learning from a training dataset

with labels, this technique is used when there is full availability of the ground truth

labels. This is because, in smart homes, most homes and home appliances have

extremely variable layouts, and residents conduct their activities in various ways.

The same activity might use completely different sensor activation depending on

the inhabitant’s changing habits; therefore, to deal with variability, supervised

learning is used, which is mostly the case in synthetic datasets that are generated

using simulation tools.

• Semi-supervised techniques are used when parts of the ground truth labels are

available. This is usually the case in real-world datasets because the inhabitants

are asked to record their activities manually. This approach is prone to human

errors.

• Unsupervised techniques are used when there are no ground truth labels available

for the ADLs. In this situation, clustering techniques are used to group similar ADLs

into clusters. However, clustering techniques alone do not classify and predict

ADLs. They are usually used with other techniques to facilitate certain aspects of

the learning model, such as performing a pre-processing step of the data (Tapia

et al., 2004) (Bourobou & Yoo, 2015).

This thesis used supervised learning techniques for activity classification in a smart

home. These techniques require the full availability of the labels to train from because

most homes have changing layouts, and inhabitants perform their activities in various

ways. The same activity might use a completely different sensor activation depending

on the inhabitants changing habits. To deal with variability, there is a need to use super-

vised learning techniques in smart home environments. (Tapia et al., 2004) illustrated

using supervised learning when there are labels available for the ADLs, which provides

a promising approach to recognise the activity in a smart home.

Machine learning is a technology that enables algorithms to learn from experience in

an existing dataset. When there are massive amounts of data, machine learning learns
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from the training data to recognise complex patterns and make prediction decisions.

Machine-learning techniques have three main approaches that will be discussed in the

following points.

• A classification problem is a supervised learning approach in which the models

learn from a training dataset with labels and then use the model to classify new

labels for the data. The model can predict and label an unseen example with a

class. The output labels could use a binary classification, such as a person is male

or female or mail is spam or not spam, and it could use a multiclass classification,

such as activity labels in a smart home or in speech recognition. The input data

are classified into discrete linear or nonlinear categories:

1. Linear classification or logistic regression: Individual features are fed to

the model to obtain a binary output, such as 0,1 or yes/no. These types of

problems are called binary classification problems.

2. Nonlinear classification: When features are fed to the model to predict out-

put that uses more than two label classes, These types of problems are called

multi-classification problems (Gunn et al., 1998).

In classification tasks, the classifier should learn from input variables in the dataset

to predict discrete values for output variables. The classifier predicts the label or

class with the highest correlating probability for new observations. For predict-

ing the weather, it could record the weather forecast of the city for the whole day

regarding whether is it going to rain today or not. Another application in a classifi-

cation problem is when the mail service uses the classification technique to classify

the mail as spam or non-spam. The classifier trains itself on a dataset to analyse

user behaviours for a long period of time. Relying on this knowledge, the classifier

can predict whether new mail belongs to the non-spam class (the inbox folder) or

spam class. As this research mentioned, the model is able to use the classification

to predict more than two classes, for example in a smart home environment that

includes multiclass classifications, such as sleep, eat, personal, work, and leisure.

There are many types of classification algorithms in machine learning, such as

support vector machines, decision trees, neural networks, etc (Alpaydin, 2009).

• A regression problem is a supervised learning approach that tries to predict a con-

tinuous value. The regression is used to estimate the relationship between vari-

ables. The regression is used to predict the numeric data, such as temperature or

price rather than discrete categories and labels, for example predicting a house

price from its space or the salary for a job based on its advantages. Thus, the rela-

tionship between the variables is estimated by a linear function. The regression is
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similar to the classification problem, attempting to evaluate a function that maps

the input to the output depending on early observations. However, the regression

problem attempts to evaluate a real number or value instead of classes or labels.

There are several kinds of regression algorithms. They can be used based on the

type of problem. Linear regression is used when research has one feature; for ex-

ample, it predicts the price of a house knowing its square feet. However, researchs

sometimes require more details about the house, such as the number of bedrooms,

bathrooms, city, etc. To predict the value, there is a need to add two or more other

variables, so multiple regression is used. There are some regression algorithms

that have the ability to deal with high-dimensional data. Multiple linear regres-

sion is used when research has several different variables, such as x1, x2, ..., xn. In

a polynomial regression, it uses the same variable x1 but with different powers, so

instead of x2 it has x12. It uses a variable with different powers. There are several

observations and then a line that fits the data. Sometimes simple linear regression

is not suitable to rectify that using a polynomial regression. There are many types

of regression algorithms in machine learning, such as linear regression algorithms,

multiple regression algorithms, polynomial regression algorithms, and least-angle

regression algorithms (Gunn et al., 1998), (Pedregosa et al., 2011).

• A clustering problem is an unsupervised learning approach that that uses cluster-

ing to group similar datapoints into sets. Clustering aims to assign similar dat-

apoints in the same cluster and different datapoints into different clusters. The

clustering technique does not have labels available that can be used for training

phases. There is a concept of distance between the datapoints to group the data-

points together into many clusters that are similar. Clustering works with low and

high-dimensional space, and it can determine the similarity using a distance mea-

sure (e.g. Euclidean, Manhattan, or Minkowski) (Marsland, 2011), (Pedregosa

et al., 2011).

However, the clusters suffer from disadvantages. In cluster problems, the ability

to separate classes from each other exists, but in high-dimensional space, they

will sometimes overlap with each other, datapoints mix with each other, and it is

difficult to locate obvious boundaries among the clusters.

The k-means algorithm divides a set of datapoints into separate clusters. The al-

gorithm tries to calculate the average of the datapoints in the cluster by choosing

an initial centroid location in the middle of each cluster. It allocates every data-

point to the cluster based on the nearest centroid by distance, such as Euclidean

distance. It iterates the same steps until the k-Means algorithm does not make a

new cluster, which is called a stable cluster (Marsland, 2011).
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The spectral clustering algorithm is an unsupervised learning algorithm that at-

tempts to decrease the dimensions of the datasets to reach affinity among dat-

apoints, so the algorithm can represent the datapoints. This technology is easy

carry out. It uses standard linear algebra, so it offers good solutions (Von Luxburg,

2007). The cluster technique is used in many fields in machine learning, such as

pattern recognition, image analysis, and information retrieval. There are many

types of clustering algorithms in machine learning, such as the mean-shift cluster-

ing algorithm, k-means algorithm, and spectral clustering algorithm.

In the real era of smart homes, there are many technologies and applications that al-

lows efficient communications between home appliances and inhabitants and enables

automation, monitoring, and remote control capabilities for home appliances and home

tasks (Lobaccaro et al., 2016). A project focusing on a smart home in an intelligent

environment is MavHome. This project describes an architectural style and the role of

prediction algorithms within the architectural design. This type of design requires pre-

diction algorithms to foresee the inhabitant’s next action to automate the recurrence

tasks for the inhabitant (Cook et al., 2003). This model of a smart home will be able

to make decisions and increase automation to achieve inhabitant‘s comfort and save en-

ergy. Consequently, the focus is on prediction algorithms that can recognise the next

event. The Episode Discovery (ED) prediction algorithm was used to identify repetitive

events to automate the next series of events (Dixit & Naik, 2014). (Gopalratnam & Cook,

2004) research focuses on the role that predictions play in the field of artificial intelli-

gence and machine learning for creating smart systems that are able to make decisions

more reliably. The smart home environment requires the ability to predict a sequence

of events. They used Active LeZi (ALZ), which is a sequential prediction algorithm.

They tested this algorithm performance on synthetic datasets, which are representative

of interactions among inhabitants and the smart home. Machine Intelligence Algorithms

include a variety of techniques, technologies and methods. This research aims to pro-

pose a machine learning algorithm that can learn the inhabitants’ daily living activities

that can predict such activities using supervised learning techniques applicable in smart

home environments. There are some research studies and research surveys that have

covered most aspects of a smart home. e.g. (Amiribesheli et al., 2015) presented their

survey of many smart home research studies and explained some algorithms.

2.4.1 Support Vector Machines (SVMs):

Support Vector Machines (SVMs) are supervised learning models used for classification

and regression analysis (Cortes & Vapnik, 1995). Also, SVMs have many benefits, high
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dimensional feature space. SVMs are effective when the number of samples is less than

the number of the dimensions in the dataset. Moreover, SVMs can be efficient on mem-

ory usage. SVMs can be used with different kernel functions which will allow the model

to learn complex decision function. On the other side, SVMs have some disadvantages

such as over-fitting, which can occur when the number of features is greater than the

number of samples (Pedregosa et al., 2011).

SVMs have been used in the literature for the classification of ADLs in the health do-

main. Health Smart Home is one of these efforts which includes real data collected from

various sensors, to evaluate the SVM algorithm. (Fleury et al., 2010) installed many

sensors and microphones in the environment and obtained a classification accuracy of

75% and 86% using a polynomial kernel and a Gaussian kernel respectively .

2.4.2 Hidden Markov Model (HMM):

Hidden Markov Model (HMM) is an unsupervised generative probabilistic model. The

HMM deals with hidden states, which means the state is not observed directly. The tran-

sition from one hidden state to another can be modeled as a Markov process. The HMM

is suitable for sequential datasets. States have a probability distribution on the likely

output symbol (Baum & Petrie, 1966).

(Alemdar et al., 2013a) applied a HMM to classify ADLs of smart home multi-inhabitants.

They proposed the use of HMM because it appropriately handles sequential data. The

hidden states were modeled to be the activities’ labels and the observations are the

sensors’ readings. To evaluate the accuracy of the model, They had been developing the

ARAS dataset. The dataset represents real-world activities captured from multi-residents

in two real houses. HMM average accuracy was 61.5% in house A, while house B the

average accuracy approached 76.2%.

(Babakura et al., 2014) applied a HMM based decision model in smart homes in order

to solve heterogeneous problem that presents the challenge of executing interoperation

among devices in smart home environment. HMM is able to learn such subsystems.

They used the dataset from events that occurred in a smart home building that contains

more than 6000 events, obtaining a classification rate accuracy of 95.7%.

2.4.3 Decision Trees (DT):

Decision Trees (DT) are supervised non-parametric learning models used for classifica-

tion and regression. Non-parametric learning models do not assume that a probability

distribution generated the data. A DT model learns simple condition rules inferred from

the labelled data. Thus, a DT model is easy to interpret and understand. Moreover, the
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model usually offers good performance and its time complexity is low. Some machine

learning algorithms cannot work with certain data types. However, Decision Trees are

able to work with categorical and numerical datasets alike. For multi-label classifica-

tion problems, DT can work and offer good solutions. Very little data pre-processing

is required when creating these models. However, DT suffer from some disadvantages.

DT cannot work with missing values without preparing the dataset. They are prone

to over-fitting and can produce complex models that are sensitive to small changes in

the dataset, which do not generalise well and may produce unstable models. There are

some datasets that can be hard for the DT to learn. Moreover, it is not guaranteed that

the learned DT is the optimal tree (Pedregosa et al., 2011).

DT can be used to classify ADLs of smart home inhabitants. E-ID5R is an extension of the

DT algorithm to allow it to work with multi-label classification problems (Prossegger &

Bouchachia, 2014). The accuracy of E-ID5R was evaluated using the same ARAS dataset

(Alemdar et al., 2013a). E-ID5R classification accuracy approached 40% on house A and

82% on house B.

2.4.4 Stochastic Gradient Descent (SGD):

Stochastic Gradient Descent (SGD) is an iterative algorithm used to find the minimum

and maximum value of a function. Usually, it is used with convex loss function to find

the minimum error. It can be used with linear classifiers, such as SVMs, for classification

and multi-label classification problems. It is able to work and scale with large datasets.

However, it needs several hyper-parameters to be set, such as the learning rate and the

number of iterations (Pedregosa et al., 2011).

The logistic regression with SGD algorithm were applied in order to develop a scalable

diagnosis model for health care applications. To assess the proposed algorithm, they

used the Cleveland Heart Disease Database (CHDD) which collected data from wear-

able body sensors used to measure the blood pressure and heart disease rate. Logistic

regression with SGD algorithm enabled the model to predict and classify the heart dis-

ease status. The accuracy of training and validation on the data sample was 81.99% and

81.52% respectively (Manogaran & Lopez, 2017).

2.4.5 AdaBoost:

AdaBoost is a supervised learning algorithm used for classification and regression. The

algorithm uses a group of weak learners or weak prediction models. The final prediction

is the result of all the predictions from the weak learners combined. Thus, the model

can be thought of as a majority voting system. AdaBoost can be used for multi-label
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classification problems as well (Freund & Schapire, 1997; Pedregosa et al., 2011).

(Logan & Healey, 2006) proposed the use of AdaBoost algorithm to deal with the clas-

sification of eating and meal preparation in the smart home. In order to reduce the

number of sensors and focus on using the main sensors required for this task, they used

the dataset from the MIT PlaceLab project. The authors used only 8 sensors from over

300 sensors, obtaining a rate accuracy of 82%.

2.4.6 Hierarchal Temporal Memory (HTM):

The HTM theory attempts to model the architecture and structure of the neocortex, the

front part of a human brain. The focus of the theory is on the neocortex because it is

envisaged to be where the human intelligence resides. The CLA is a machine learning

algorithm that is based on HTM theory, which aims to explain the structural and algo-

rithmic characteristics of the neocortex (Hawkins & Ahmad, 2016).

The HTM theory and its algorithmic implementation, the CLA, have been applied in

many domains. Such as vision (Škoviera & Bajla, 2013; Arel et al., 2010), natural lan-

guage processing (NLP) (Webber, 2015), and anomaly detection in smart homes (Ota-

hal & Stepankova, 2014). (Otahal & Stepankova, 2014) presented a study, which used

HTM and its CLA to classify “healthy” and “sick” patients using a dataset that contains

70 patients. The dataset captures Electrocardiography signals (ECG). The CLA perfor-

mance was slightly better than the multi-layer neural network, they illustrated benefits

to use CLA that no preprocessing and It takes no more time to training. (Lee & Rajabi,

2014) conducted a study of the Numenta Platform for Intelligent Computing (NuPIC)

that used HTM and its CLA for prediction and anomaly detection. They used the real-

world DASHlink aviation dataset. In the evaluation, they compared the CLA against

Scikit-learns linear regression, obtaining a prediction with more accuracy than CLA, and

anomaly detection, obtaining a low accuracy rate. They recommended attempting to

understand HTM and its CLA to modify its performance, although HTM and its CLA are

still being developed (Lee and Rajabi, 2014).

(Zhang et al., 2017) used the HTM system to propose an understanding action integra-

tion framework for skill learning. The model receives the input data from an RGB-D

camera. The encoding region converts the input data to SDRs, and the HTM system

learns the SDRs and predicts the future sequences. The accuracy of the proposed frame-

work was evaluated using the shaking hands skill on a humanoid NAO robot.

(Škoviera & Bajla, 2013) applied an HTM to classify images that use colour features

instead of images and features at the grey level. The HTM performance was good.

(Mattsson, 2011) proposed the use of the HTM system to recognise images. Some items,
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such as vegetables and fruit in a store, do not have barcodes for self-scanning. The main

image converts to a binary array that is fed into the HTM. The HTM system is able to

capture the colour, size, spatial space, and rotations of two kinds of fruit, obtaining a

prediction rate accuracy of 97.5%.

2.4.7 Multi-layer Perceptron (MLP):

A Multi-layer Perceptron (MLP) is a feed-forward artificial neural network model, it

maps values of input data onto a value of suitable output. It contains multiple hidden

layers which are between the input and output layers. Each node is a neuron and every

layer is fully connected to the next layer via weights. For each neuron, a weighted sum is

calculated from the previous layer and then the result is passed to an activation function.

After applying the activation function, the result is passed to the next layer. There

are several types of activation functions, such as the sigmoid function, the hyperbolic

tangent function and the softmax function. The MLP model uses back propagation for

training the network in order to reduce the error (Rosenblatt, 1961). The structured

perceptron is an extension of the standard perceptron that can predict structured data

and usually it is used with an inference algorithm, such as the Viterbi algorithm (Collins,

2002; Zhu et al., 2008).

The Back Propagation Neural Network (BPNN) has been applied to classify ADLs in a

smart home. To assess the proposed algorithm, they used The Centre for Advanced

Studies in Adaptive Systems (CASAS) that is a project for creating real smart homes

for the researchers in this field. They demonstrated that the size of the neurons play

important role to reduce the error rate (Fang & He, 2012).

2.4.8 Long Short Term Memory (LSTM):

Long Short-Term Memory (LSTM) is a Recurrent Neural Network (RNN). The LSTM

model is good for classifying and predicting sequences, such as recognition of speech

and handwriting. In regular RNNs, it is hard to train the model when the dependency

of prediction has been seen a long time ago. This problem is known as the “long-term

dependency problem” (Bengio et al., 1994). LSTM is an extension of RNNs to overcome

this problem (Hochreiter & Schmidhuber, 1997).

Deep convolutional and LSTM units framework was proposed in the domain of Human

Activity Recognition (HAR) (Ordóñez & Roggen, 2016). It was used deep convolutional

to extract special features from sensors data and LSTM to model temporal dynamics.

The proposed framework was validated on two datasets, Opportunity dataset and Skoda

32



Chapter 2 Literature Review 2.5. Intelligence

dataset (Roggen et al., 2010a; Zappi et al., 2008). The framework obtained 96% F1 score

on the Skoda dataset and 93% F1 score on the Opportunity dataset.

2.4.9 Convolutional Neural Network (CNN):

Convolutional Neural Network (CNN) work like other neural networks but have a differ-

ent construction. They are usually used to recognize visual patterns through images and

videos. CNN can work with image data without requiring pre-processing for the data

(LeCun et al., 1998). CNNs were applied in different domains such as natural language

processing (NLP) and recommender systems.

(Zeng et al., 2014) proposed the use of CNNs algorithm to recognize the inhabitants’

ADLs. The CNNs were able to capture local dependency of the activities and showed

good scale invariance. Three datasets (Skoda, Opportunity, Actitracker) were used vali-

date the proposed technique. The technique accuracy is 88%, 77%, and 97% on Skoda,

Opportunity, and Actitracker respectively.

2.5 Intelligence

The term artificial intelligence (AI) has now become widely used. Moreover, AI is de-

fined as the intelligence that machines and programs show that mimic the human brain

and its working methods, such as the ability to learn, infer, and respond to unpro-

grammed events in the devices. This means how to make computers, software, and

machines exhibit intelligent behaviour. In 1956, John McCarthy presented his definition

of AI as “the science and engineering of making intelligent machines” (McCarthy et al.,

2006). At a conference on the campus of Dartmouth College in 1956, the modern field

of AI research was founded, and the presenters and attendees Allen Newell (CMU), Her-

bert Simon (CMU), John McCarthy (MIT), Marvin Minsky (MIT), and Arthur Samuel

(IBM) became the leaders of AI research for many decades (Russell & Norvig, 2016).

The Dartmouth proposal in 1956 at the Dartmouth Conference was that each aspect

of learning or any other feature of human intelligence can be simulated by a machine

(McCarthy et al., 2006). If the machine works intelligently like a human, its intelligence

is similar to human intelligence. Alan Turings theory offered that, ultimately, we can

only prove the intelligence of a machine based on its performance. This theory forms

the basis for the Turing test (Turing, 2009). Hawkins developed a theory that explains

how the human brain works in order to combine neuroscience and computing that en-

ables a modern understanding of intelligence itself, which assists in creating intelligent

machines (Hawkins & Blakeslee, 2007).
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2.5.1 What Is the Type of Intelligence That a Smart Home Needs (Re-

quires)?

Currently, smart sensor networks have been extended from their past capabilities. Con-

sequently, the Internet of Things has been further developed. Smart sensors will inter-

act without human intervention, via machine-to-machine communication. Each sensor

streams huge volumes of data, and this data is processed in order to provide homeown-

ers with useful information. This would allow them to be alerted if an event takes place

and to make decisions as required (Chen, 2012). (Evans, 2011) presented a study about

the relations between the number of devices connected to the Internet and the world

population. In 2003, the world population was 6.3 billion people and devices connected

with the Internet numbered more than 400 million, but in 2010, the world population

was more than 6.8 billion and devices connected with the Internet numbered more than

12 billion. Obviously, there is an increased number of sensors that will generate a huge

volume of data. In order to work with streaming data, which has changed over time,

there are requirements to identify types of intelligence that are needed by smart homes.

2.5.2 Machine Learning Algorithms Requirements

The requirements for machine learning algorithms to classify and predict events in smart

homes can be summarised as:

• to integrate and learn patterns from different sensors and to predict future events,

• to classify and predict events in a smart home domain,

• to be able to learn from historical events and attempting to predict future events

is an essential requirement for smart homes,

• to find correlation between spatial and temporal aspects of the data set.

• to automatically deal and adapt with changes in the sensory input, without pa-

rameter tuning,

• to be more robust to noisy data which is common in smart home settings.

2.5.3 Research the Gap

Most of the previous work has targeted specialised environments for smart home, they

have basic functionalities, nowadays smart homes require intelligence as mentioned in
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next section. Important research in the area of the IoT has been carried out, particularly

with regard to the influence and spread of networked computing on automation and the

enabling of supportive and acclimated services in smart homes. The majority of previous

work has targeted specialised environments for in-home care, such as the context-aware

home (Kientz et al., 2008).

There are many research efforts concerning a smart home environment, with some re-

search focused on using a machine intelligence technique in a domestic environment.

However, existing machine intelligence techniques do not fulfil effectively, all smart

home requirements. As (Minor et al., 2015) concluded, some algorithms in the smart

home domain are subject to error when predicting the inhabitants’ behaviour, when

multiple inhabitants are living in the same home, multi-class classification is needed

which is challenging and difficult task. Due to the nature of the data a smart home

environment, there are multi-dimensional features available from the difference sen-

sors. The data readings from sensors are always noisy and subject to many uncertain

variables such as missing data and faulty sensors. Finding relationships between spatial

and temporal aspects of the sensors readings to achieve high accuracy classification is

needed (Minor et al., 2015; Fatima et al., 2012). The evaluation of the machine learn-

ing algorithms is limited by the lack of standard real datasets from smart homes that

are publicly available. Due to the high cost of building real smart home datasets, there

is a need for powerful simulation tools that can represent the activities daily living of

inhabitant’s (Cook et al., 2009; Bouchard et al., 2010; Synnott et al., 2015). These

simulation tools offer flexibility, scalability and accessibility for the researcher (Alsham-

mari et al., 2017; Bouchard et al., 2010). This project proposes the use of HTM theory

and its CLA implementation, as it is capable of mimicking the neocortex and hence can

learn the inhabitant’s activities, and it can predict future events and find meaningful

spatio-temporal relations of high-dimensional data. The hypothesis is that HTM and its

CLA has the capability to integrate and learn patterns from streaming dataset acquired

from different sensors to predict future trends. This is what is required for a machine

intelligence technique to integrate information from the smart home environment.

2.6 Why is CLA used for smart home

HTM theory is implemented within NuPIC, which is an open source project based on

HTM. The HTM code in NuPIC can be used to analyses streaming data. (Cui et al.,

2016) conducted a comparison of the HTM model with other state-of-the-art algorithms

in (neural networks). The model illustrates features that are important for sequence
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learning, including online learning, and is able to deal with multiple predictions and

robustness to sensor noise, as well as fault tolerance. HTM sequence memory is not

specifically about how the brain works and solves problems, but also is usable to classi-

fication, prediction and anomaly detection.

2.6.1 Online Learning

HTM is an online learning system that works by learning and predicting in one step or

multiple time steps in the future, it works with the streaming of data that changes over

time, it does not need conventional training or testing data sets that leads to improve the

rate accuracy over time, obtaining high results. The smart home has many sensors, and

each sensor generates a huge volume of data. Smart home requires machine intelligence

algorithms that can deal with the streaming of data which has changed over time. NuPIC

is a memory system that is able to learn and predict, there is no requirement to save all

of the streamed data.

2.6.2 Noise Tolerance

Due to the nature of the data in smart home, it is noisy. HTM theory has Sparse Dis-

tributed Representations (SDRs) to encode the data. SDRs are one of principal compo-

nents of the HTM theory. They are biologically inspired by the neurons activities in the

neocortex. SDRs might lose a lot of columns and cells, however it is able to produce

the same predictions. One of their most important properties is their capability to resist

noisy data, even if the data is noisy or warped, it grants the exact same output to the

temporal memory.

2.6.3 Robustness and Generalisation

Most machine-learning algorithms require optimising a set of hyperparameters tuning

for each task, so they should automatically handle problems without parameter tuning

(Held et al., 1996; Sharma et al., 2000). HTM does not require any parameter tuning

because HTM uses the same parameters, which were selected according to known prop-

erties of real cortical neurons, and the same cortical region is to be used for multi tasks

(Hawkins & Ahmad, 2016). NuPIC is able to work with many different scenarios, it is

also able to specify settings from one house and generalise them to other houses.
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2.6.4 Conclusion

This chapter reviewed the IoT literature, smart home applications and machine intelli-

gence algorithms typically used in the smart home arena. A comprehensive review of

the state-of-the-art machine learning algorithms was executed and their advantages and

disadvantages discussed. To classify and predict ADL of the inhabitant’s in smart home

environment, there is a need for machine learning algorithms that possess a level of

intelligence that can automatically adapt itself to changes in the user ADLs. The ma-

chine learning technique should be able to cope with both streaming and noisy data.

In order to test and evaluate the proposed machine learning techniques, there is a

need to have a dataset which represents the ADL in a smart home (For more details

on datasets see Chapter 4). The HTM and its CLA have the capability to integrate and

learn patterns from a streaming dataset and find meaningful spatio-temporal relations

in high-dimensional data. As the topic and associated algorithms has been discussed, it

is proposed that HTM will become the preferred algorithm, the chapter 3 investigates

HTM in details.
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Chapter 3

Hierarchical Temporal Memory

3.1 Introduction

Humans have five senses: touch, smell, vision, taste and hearing, through which they

are able to speak a language, understand spoken languages, recognise visual patterns

and so on. However, when comparing a human with a computer, they are very differ-

ent, and the computer is unable to perform exactly like a human. Although modern

computers have a number of existing technologies such as Neural Networks (NN), it

is a computing system; its contents are many processing elements (neurons) that are

connected with each other. They process information via their changing state when

receiving external inputs (Robert, 1989), Artificial Intelligence (AI) combines the sci-

ence and engineering in order to make smart machines. Where there are many tasks

using computers to understand human intelligence (McCarthy, 2007), Support Vector

Machines (SVM) are part of machine learning in order to group classification problem

that related learning algorithms. It analyses data used for classification which means

supervised, unsupervised machine learning, and regression analysis (Cortes & Vapnik,

1995), Artificial Neural Networks (ANN) are formed for information processing, math-

ematical or computational model, it is inspired by biological neural networks such as

the brain. The ANN is able to learn by example, such as pattern recognition in large

of data or data classification, use artificial neurons to mimic the human brain (Siganos

& Stergiou, 1996), and Deep Learning is a new branch or part of Machine Learning

research, where the aim is to combine Machine Learning with Artificial Intelligence. It

is learning many levels of representation and abstraction in order to inspire recognition

of data, for example text and images (LeCun & Ranzato, 2013). Which are smart, im-

plementable and have the capability to fulfil performance requirements for a number of

practical applications, the computers performance is still far behind that of a human.
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The neural network models are simple when comparing neural networks with complex-

ity of the human brain that includes billion of neurons, where each one is connected to

many of neurons (Johnston, 2008). HTM theory was developed by Jeff Hawkins and

Dileep George and with great interest by Hawkins and his group at Numenta. (Hawkins

et al., 2011) Jeff Hawkins proposed HTM which is not a new theory but collects ex-

isting ideas. He developed it in order to mimic the neocortex, a model of neocortical

computation. This theory is so close to the findings from neuroscience (Byrne, 2015).

The Hierarchical Temporal Memory Cortical Learning Algorithm (HTM CLA) is the novel

path of approaching problems in Machine Learning and Artificial Intelligence. HTM CLA

gave support in the utilisation of knowledge of cortical structure and machine learning

technology to solve the problems in this area. The HTM network is a new form of neural

network where HTM is member in a family of biologically inspired machine learning

algorithms such as Convolutional Neural Networks and Deep Belief Networks (Price,

2011). The author focuses on the knowledge of biological intelligence to build smart

machines. Although Neuroscience illustrates the behaviour of neurons and the function-

ing of the brain, however, our knowledge about our neuronal circuitry is still limited.

The HTM CLA is a new approach that attempts to fill the gap between neural mecha-

nisms and intelligent behaviour (Price, 2011).

In this chapter, this research introduces HTM theory that presents how the neocortex

works and explains the neuroscience of how the brain biologically works. It illustrates

how an ANN works that attempts to mimic the human brain.

3.2 Biological Neural Network

The human brain consists of around 10 billion biological neurons in the human cortex

that connect with each other through synapses. The number of synapses in a single

neuron may reach a thousand synapses. The human brain is able to receives the signal,

process it, and send it by the axon in the nervous system. The biological neural network

is composed of the soma (cell body), the axon, dendrites, and synapses. Axons connect

to dendrites by synapses, and dendrites interact with their neighbours or other neurons

through the synapses as shown in figure 3.1. When the total of the input signals (action

potential) into one neuron exceeds a threshold, it will fire a neuron. During the learn-

ing phase, a synapse may increase (excite) or decrease (inhibit) action potential. This

connection between neurons gives them the ability to store information, images, sound,

and other signals that reach them through the five senses. This allows them to learn

through repetition and from errors. Neuroscientists have made progress on how the

human brain works in terms of learning, remembering, recognising objects, and making

decisions. A hierarchal system is one of the discoveries that gives the human brain the
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ability to process input data. Each region has a specific functionality, and the higher we

go in the hierarchy, the higher the abstraction (Zurada, 1992).

FIGURE 3.1: The biological neural network (Devineni, 2015).

3.3 History of Neural Networks

(McCulloch & Pitts, 1943) conducted a study about how the brain works and tried to

recognise the ability of the brain to produce highly complex patterns using many neurons

that are connected. It has been simulated using simple electronic circuits. They made

a model of a neuron, known as the McCulloch and Pitts model (MCP neuron), and it

contributed to the development of Artificial Neural Networks (ANNs). (Hebb, 1949)

explained that the synapses between the neurons become strong when used more. It

means that there are a number of neurons next to each other but two of them are

moving the data intensively. It forms strong lateral connections between the cells that

process and transmit neural activation. In the future, when given the same input, those

cells will be excited. (Rosenblatt, 1958) proposed the concept of the perceptron that

passes inputs by pre-processors, which are called association units that are pattern de-

tectors, and the perceptron is a pattern recognition device. (Minsky & Papert, 1969)

published a book that illustrated there was a limited of one perceptron, it cannot per-

form perfectly for exclusive OR (XOR) operations. In 1986, multilayer perceptrons were

the solution to this problem, through the extension of the single-layer architecture to

use an extra layer called a hidden layer. (Eluyode & Akomolafe, 2013) conducted a

comparative study between biological and artificial neural networks regarding how to

combine a computer and brain. The computer can effectively compute arithmetic and

logic operations. However, the brain is able to learn and recognise patterns of varia-

tion (Chen et al., 1986). There are several computing manufacturers that have tried to

produce a machine that can process data as patterns, similar to the work of the human

brain. (Eluyode & Akomolafe, 2013) evaluated the advantages of biological and artifi-

cial neural networks to compare them and to determine the features of the biological
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TABLE 3.1: Analogy between biological and ANN neural-networks (Eluyode & Akomo-
lafe, 2013).

Biological Neural Network Artificial Neural Network
Soma Unit
Dendrites Input
Axon Output
Synapse Weight
Potential Weighted sum
Threshold Bias weight
Signal Activation

neural network, which can be adapted for creating an intelligent machine. The authors

focused on neural network criteria, for example structures, hidden layers, processing

units, etc. There are many components in biological neural networks. However, artifi-

cial neural networks also include several components that are equivalent, as shown in

Table 3.1. They illustrated that biological neural networks have many neurons, and the

interconnection method between neurons is absolute. Dendrites send input signals to

the cells, and a synapse is placed to store the information. Through the learning step, a

synapse may increase or decrease the action potential. After the cell produces a signal,

the axon is able to convey an output signal to another cell. In artificial neural networks,

the grouping comes through building layers, and the connections pass signals from one

neuron to another, where each unit receives many inputs and produces output. It is simi-

lar to the axon in the biological neuron, and learning occurs by adjusting the connection

weights between units, similarly to what happens in the synapses. The axon forwards a

signal that reproduces from cell to cell, and the other cell receives the signal as an input

that the axon combines with the dendrites near the cell. While artificial neural networks

focus on the weights and adjusting the connection weights between units, they do not

focus on distal dendrites.

3.4 HTM: Overview

The HTM is a special approach to machine-learning techniques, which begins from the

neuroscience of the neocortex. The focus of the theory is on the neocortex because it is

envisaged to be where human intelligence resides, and the theory is attempting to learn

how intelligence works in it. Additionally, the purpose of studying the neocortex from

the computational side is to build, design, and implement machine-learning models.

The neocortex is the sheet covering the higher brain. The size of the neocortex is around

2.5mm thick and contains billions of brain cells or neurons. There are parts under the

neocortex that are engaged in the essential tasks of life, such as sleeping, eating, etc.
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However, these activities do not represent any real intelligence. In the neocortex, the

images, information, and everything received from the sensors are stored. The neocor-

tex is able to learn and remember and recognise patterns in life. The neocortex is the

location of human intelligence in the brain. The neocortex is split into many regions.

The regions connect with other regions in a hierarchical structure. Each region receives

the raw sensory data from the lower region and passes it up to higher regions.

The regions contain many cellular layers (slices), and the structure of each one of these

layers is almost identical. Every region of the neocortex, such as the auditory and visual

regions of the brain, have the same structure. This shows that the brain performs the

same cognitive operations across all regions. This common operation tries to reason

and understand the information coming from the sensors. The recognition is different

in the higher regions compared to the lower regions. The lower regions of the hierarchy

learn primitive objects. For example, in the visual system, the lower regions recognise

primitive shapes and edges of the observed image. The higher in the hierarchy, the more

sophisticated and abstract these recognised objects become. In the hierarchy, there is a

correlation of ideas, activities, other memories, and some ideas or information stored

in the neocortex that are understood over time and become more abstract. There are

collaborations between these regions to achieve certain cognitive goals.

The HTM is a memory system based on recalling previously learned sequences of mem-

ories. At every time step, the HTM model learns and updates its beliefs about the world

and adapts to this new information. From these historical memories, the HTM model

is able to predict future events or patterns. Recently, ANNs, convolutional neural net-

works, recurrent neural networks, and deep learning have achieved great successes, but

they are not a faithful biological modelling of how the neocortex works.

The ANN includes one or multiple hidden layers and one input and one output layer.

Each layer is a collection of nodes representing the neurons. Each node receives its in-

put from connections from the previous layer. The connection between these nodes has

a certain weight. The output of a node is a weighted sum of the connected synapses

from the previous layer. In ANNs, the node is called a point neuron, as shown in Figure

3.2 (a).

There are many types of neurons in the neocortex. The most common biological type is

the pyramidal neuron, as shown in Figure 3.2 (b). Every pyramidal neuron has several

thousands of synapses distributed across their dendrites. Through the learning phase

in a biological neuron, the synapse can be excited and form strong connections, or the

connections can be weakened, and the synapses will disconnect.

The pyramidal neuron has three sources of input. First, input coming from the proximal

dendrites represent the feed-forward input. Second, input coming from the distal den-

drites form lateral connections to neighbouring cells. Third, input coming from apical

dendrites receives the feedback from higher regions as shown in Figure 3.2 (c).
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The HTM artificial neuron usually has many synapses that form connections to the den-

drites, similar to the pyramidal neuron as shown in Figure 3.2 (c). During the learning

phase, the synapse connections can be strengthened or weakened. This process is the

essence of learning in the typical ANNs. However, in the HTM, each synapse has bi-

nary states that can be either connected or disconnected. What determines the state

of the synapse is the strength of the connection, which is a scalar value (similar to the

weights in ANNs). If the strength exceeds a certain threshold, the synapse is said to

be connected, otherwise it is disconnected. The HTM neurons attempt to model a more

realistic representation of the real neurons in the brain than the point neurons (Hawkins

et al., 2011), (Hawkins et al., 2016),(Hawkins & Blakeslee, 2004b).

FIGURE 3.2: Biological and artificial neurons (Hawkins et al., 2016).

3.4.1 HTM Concept

HTM was developed at the Numenta Association (Hawkins et al., 2011) (George, 2008).

HTM contains a hierarchical architecture as mentioned in (Hawkins & Blakeslee, 2004b).

Jeff Hawkins developed it in order to mimic the neocortex. HTM contains a hierarchical

architecture. HTM has many regions and those regions are connected together through

elements. The lower level receives its inputs through a small region that comes from the

senses. The lower level of output is passed up to the higher levels of the hierarchy to

match receptive fields (Hawkins et al., 2011).

Programming HTM, is very different from programming traditional computers because

HTM is trained by a stream of sensory data as it is a memory-based system. HTM net-

works are trained many times on varying data, storing many patterns and sequences.

In HTM, data storage and access are logically different from standard models that have
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been used for programming up till now. This is because classic computer memory has a

flat organisation that enables it to carry out every kind of data organisation and struc-

ture, and programmers can control the storing of information. In HTM, however, mem-

ory is restrictive and organised hierarchically, so its memory is inherently time-based

where the information is stored in a distributed way. Although their main functions

are based on hierarchy, time and sparse distributed representations, unlike in classic

computing, HTM networks can be used as general purpose computers (Hawkins et al.,

2011). HTM networks contain regions sorted into a hierarchy where the regions are

considered as important parts of memory and prediction. In the hierarchy, each region

represents one level. Each level has a region, and each region has many elements, with

many elements connected to parents although elements are at different levels. This al-

lows the integration of many HTM networks that have more than one sensor or source.

In order to explain in more detail about levels and regions, a region refers to the in-

ternal function of a region while the level refers specifically to the role of the region

within the hierarchy. Hierarchies have many benefits, including decreased training time

and memory usage. It can be a simpler solution for prediction problems with a single

HTM region. The concept of regions wired in a hierarchy and the connection of regions

with each other mimics the biology of the human brain, the regions can either receive

inputs directly from the senses or after they have passed many regions (George, 2008),

(Hawkins et al., 2011).

3.4.2 Hierarchy

The HTM networks contain regions arranged in a hierarchy, in which each region com-

bines a spatial pooler and temporal memory that have hundreds of cells arranged in

columns. Each region has many elements that are connected to other regions through

elements at different levels. The input comes from lower regions as feed-forward input,

or feedback is received from higher regions. In HTM, however, memory is organised

hierarchically to reduce training time and memory usage.

3.4.3 Sparse Distributed Representations (SDRs)

The neocortex has many neurons that can be interconnected, but only a small number

of the neurons are active at one time: this is called encoding, in “sparse distributed rep-

resentation”, “sparse” means that only a small percentage of neurons are active at one

time. The active bits usually constitute around 2% of the whole SDR array. “Distributed”

means that the activation of many neurons is required in order to represent something
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meaningful (Hawkins et al., 2011). The neocortex has many neurons, each region rep-

resents a small number of the neurons that are active at one time, from which the bits

have semantic meaning, called Spares Distributed Representation (SDR). Each SDR has

a number of active bits representing a semantic meaning. When two SDRs in the exact

same position are active bits, called the overlap, the two SDRs have similar semantic

meanings (Hawkins et al., 2016).

The SDR is the fundamental information representation in the CLA. This point offers

mathematical definitions and notations. (Ahmad & Hawkins, 2015) presented several

definitions and mathematical notations:

• Binary arrays (SDR): The SDR is an array that includes a set of zeros and a small

percentage of ones. The size of an array is denoted by n, where n is indicated as

a fixed total number of bits. In an SDR, x contains an n-length vector of binary

data, and i refers to the index location of a number in an array, such as x =

[b0, b1, . . . , bn−1].

• Overlap: Overlap is an operation to identify the similarity between two SDRs using

an overlap score. The overlap score is determined by the number of active bits

overlapping between two SDRs, when two SDRs in the exact same position are

active bits. The overlap score may be calculated as the dot product when there are

two SDRs, such as x and y:

overlap(x, y) = x · y (3.1)

• Matching: To ensure two SDRs are matching, but not an exact match as mentioned

earlier regarding the overlap, the parameter θ is used, which denotes the threshold

to determine a match between two SDRs. When the overlap score exceeds the

threshold, it is either a match or not an exact match. For two SDRs x and y:

match(x, y) = overlap(x, y) ≥ θ. (3.2)

We can determine an exact match by setting . To determine a true match through

tuning , the parameter should be less than or equal to the active bits.

• Sparsity: The sparsity is a percentage of (the number of active bits to the total

number of bits), where w refers to the number of active bits. This equation is

indicated by s; for example, for SDR x, the sparsity can be computed using the

equation below:

s(x) =
w

n
(3.3)
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3.4.4 Time

HTM theory argues that time is very important in learning, inference and prediction, so

all HTM systems obtain time changing inputs through training. Time plays an important

role in how the brain actually understands the world, according to the HTM theory.

When the brain receives the sensory input patterns that are captured from an object, it

needs time in conjunction with the stream of the sensory input to recognise the object.

Without this time-changing input of the object, the brain cannot recognise the object.

HTM needs to recognize these patterns and train on data that have been received from

sensors over time (Hawkins et al., 2011).

3.5 Cortical Learning Algorithm (CLA)

The cortical learning algorithm (CLA) is the computational implementation of HTM

theory that attempts to mimic the neocortex. The CLA model has been tested and imple-

mented in software by Numenta‘s project Nupic. The CLA is an algorithm that performs

the operation of a single region. This region includes the spatial pooler and the tem-

poral memory, which are two significant components of this algorithm. The CLA’s main

features include the ability to learn from every cell in the input space and its relationship

to each column, where each column represents the semantic meaning. Each cell in that

column represents that same meaning but in a different context and predicts temporal

patterns (Hawkins et al., 2011), (Agrawal & Franklin, 2014).

3.5.1 Understanding How the Cortical Learning Algorithm Works

The CLA is a machine-learning algorithm that is based on HTM theory, which aims to ex-

plain the structural and algorithmic characteristics of the neocortex (Hawkins & Ahmad,

2016). A typical CLA model consists of four main components. The first component is

the encoding component, which can contain one or more encoders that read the in-

put data and convert them to an SDR. The next component is the spatial pooler, which

receives the outputted SDRs from the encoder. The spatial pooler learns the spatial fea-

tures of the passed SDR and creates another SDR and output it to the next component.

The third component is temporal memory, which learns the temporal changes in the

SDRs. Finally, for prediction and classification problems, a CLA classifier component sits

at the top of the CLA model. The CLA/SDR classifier component decodes the state of

the CLA model and produces predictions (Hawkins et al., 2016). Figure 3.3 shows the

process flow of the NuPIC framework .
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FIGURE 3.3: Work flow of an HTM application.

3.5.2 Cell States

The cells (neurons) in the CLA region can be in one of three different states: active,

inactive, and predictive. The active state refers to the cells that can become active when

signals are received from proximal dendrites. Second, the inactive state refers to the cells

that have not received sufficient signals from proximal dendrites or distal dendrites. The

third is the predictive state that receives sufficient signals from the distal dendrites.

3.5.3 How the Cortical Learning Algorithm Learns

Learning occurs by changing the effectiveness of the synapses, which affects connections

between neurons. Synapses have a binary on/off state, and the synapses have perma-

nence that is a floating-point number from 0.0 to 1.0 and represents the strength or

weaknesses of the connection. If the strength of the permanence exceeds a threshold,

the synapse will be connected. In the CLA, the cell contains two inputs, input from the

proximal dendrites that represent the feed-forward input received from sensory input

or outputs of the lower-level region, as shown in Figure 3.2 (c). The green is a proxi-

mal dendrite. The second input is received from the distal dendrites that form lateral

connections to neighbouring cells that belong to the same CLA region. As shown in Fig-

ure 3.2 (c), the blue denotes many distal dendrites. All dendrites of a cell have many

synapses (Hawkins et al., 2011).

3.6 Components of CLA

3.6.1 Encoder

An encoder receives the a sensory’s data type and converts it to an (SDRs), which will

be fed into an HTM, similar to an ASCII code representing the data on a computer. The

encoder extracts the output that consists of ones and zeros. NuPIC, the open source

project, has already used sets of encoders such as Scaler encoder, date encoder and
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category encoder, etc. The encoder selection depends on the data type. When the

sensory input has semantic meaning, similar data must output extremely overlapping

SDRs (Purdy, 2016).

3.6.1.1 Characteristics of Encoders

(Purdy, 2016) offered how to represent data as SDRs in NuPIC. Although there are many

encoders available, the NuPIC does not fulfil the requirements for most applications.

However, in order to create a new encoder, the following rules should be considered

when encoding data:

1. Semantic meaning: Any two similar sensory inputs should have overlapping ac-

tive bits.

2. Deterministic: Each same input must always take the same resulting SDR as out-

put.

3. Fixed-in dimensions: The output SDRs should have a fixed total number of bits.

4. Fixed-in sparsity: The number of active bits should be constant for the resulting

SDRs.

3.6.2 NuPIC Encoders

3.6.2.1 Encoding Numbers (Scalar Encoder)

Standard NuPIC includes many encoders that can deal with numerical data types. The

scalar encoder can be utilised to encode integers and floating-point number. The figure

3.4 represents 2D SDRs with certain parameters set by a user to determine the total

number of bits, minimum value (1), maximum value (40). Any number larger than 40

gets the same encoding. Unless the periodic flag is set, the active bits will cycle and loop

from the beginning of the allocated space. and The number of buckets can be computed

by this equation n−w+1. The buckets enable the user to determine the total number of

bits (n) and the number of active bits indicated by (w) to encode the data. In this figure

3.4, There are overlapping bits between the number 1 and the number 2 (bit at index

(1) and the bit at index (2), staring the index with zero). The higher the similarity is,

the higher the number of active overlapping bits.
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FIGURE 3.4: The Scalar Encoder [1, 2, 3, 4.., 40] using encoding the parameters
n = 40, w = 3,minV al = 1,maxV al = 40.

TABLE 3.2: Represents the number of buckets.

1 → [1 1 1 0 0 0 0 0 0 0]

2 → [0 1 1 1 0 0 0 0 0 0]

3 → [0 0 1 1 1 0 0 0 0 0]

4 → [0 0 1 1 1 0 0 0 0 0]

5 → [0 0 0 1 1 1 0 0 0 0]

6 → [0 0 0 0 1 1 1 0 0 0]

7 → [0 0 0 0 0 1 1 1 0 0]

8 → [0 0 0 0 0 1 1 1 0 0]

9 → [0 0 0 0 0 0 1 1 1 0]

10 → [0 0 0 0 0 0 0 1 1 1]

The buckets are the window of active bits for a scalar encoder with n=10, w=3. Table

3.2 above shows each number with its SDR. It is obvious that the number of unique

SDRs is 8, which represents the number of buckets :

n =10, w=3, buckets= 8.

n - w + 1.

buckets= 10 - 3 +1 = 8.

calculate the total number of bits,

n = buckets + w - 1

n = 8 +3 - 1 =10

The scalar encoder has many interfaces to determine the total number of bits, and, in

each way, maintains the required encoder properties. The resolution parameter can
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replace the parameter (n) if the resolution of the encoder is important to the user. For

example, when resolution=1, w=1, minVal=1, maxVal=10, the encoder will be able

to encode ten unique SDRs. If the resolution=2, the encoder will be able to encode

twenty unique SDRs. In other words, if the user wants to encode integer values from

1 to 10, the user can set the resolution=1 which will give every integer one unique

representation. If the user wants to encode decimal values, the resolution should be

increased. For example, if resolution=2, w=1, minVal=1, maxVal=10, the encoder

will be able to distinguish between the number 1.0 and the number 1.5 as each one

will have a slightly different SDR. The higher the resolution is, more representations

are available to encode small decimal values. The scalar encoder is facing a problem

with some numeric data, if the minimum and maximum values are not known in the

data. This is because the scalar encoder requires the user to identify certain minimum

and maximum value to be able to allocate the required number of bits. Hence, it is

not possible to make any changes through the learning process. Allowing the use of

the adaptive scalar encoder that adapts to the users changing parameter settings. The

adaptive scalar encoder is an improvement over the regular scalar encoder and does not

require the minimum and maximum values to initialise the encoder. It adapts to the

data that it receives by tracking the minimum and maximum values. It is noted that

the adaptive scalar encoder does not support a resolution parameter. In order to clarify

the way it works an adaptive scalar encoder through pass the encoder the scalar values

(1, 2, . . , 10) two times and presents the resulting SDRs. Table 3.3 below shows

the first pass. When receiving the first number the encoder will make it the minimum

value, when receiving another value bigger than first value the encoder will make it the

maximum value.

TABLE 3.3: Adaptive Scalar Encoder through first pass.

1 → [1 1 1 0 0 0 0 0 0 0]

2 → [0 0 0 0 0 0 0 1 1 1]

3 → [0 0 0 0 0 0 0 1 1 1]

4 → [0 0 0 0 0 0 0 1 1 1]

5 → [0 0 0 0 0 0 0 1 1 1]

6 → [0 0 0 0 0 0 0 1 1 1]

7 → [0 0 0 0 0 0 0 1 1 1]

8 → [0 0 0 0 0 0 0 1 1 1]

9 → [0 0 0 0 0 0 0 1 1 1]

10 → [0 0 0 0 0 0 0 1 1 1]

And now the second pass values (1, 2, . . . , 10):
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1 → [1 1 1 0 0 0 0 0 0 0]

2 → [0 1 1 1 0 0 0 0 0 0]

3 → [0 0 1 1 1 0 0 0 0 0]

4 → [0 0 1 1 1 0 0 0 0 0]

5 → [0 0 0 1 1 1 0 0 0 0]

6 → [0 0 0 0 1 1 1 0 0 0]

7 → [0 0 0 0 0 1 1 1 0 0]

8 → [0 0 0 0 0 1 1 1 0 0]

9 → [0 0 0 0 0 0 1 1 1 0]

10 → [0 0 0 0 0 0 0 1 1 1]

When receiving the first number the encoder will make it the minimum value, when

receiving another value, the encoder will shift to the left and creates a sliding window

of active bits, which include the range from a set of values.

3.6.2.2 Category Encoder

A categorical encoder is used to encode categorical data inputs, as shown in figure 3.5,

such as cat, dogs, etc. Sometime the data contains discrete data, unrelated or related

(such as days of a week). The encoding in these situations should try to reduce the over-

lap among the category encodings. To determine a few numbers of bits for each option,

the encoding of each option has active bits, for example of the weekday/weekend en-

coding. This encoding is very important to deal with data streams; there are the various

input patterns between weekday and weekends that make it easy for the HTM systems

to recognise and learn separate predictions for the two periods.

Figure 3.5 shows three categorical values (cat, dog, bird) and the resulting SDRs after

encoding them with the category encoder. It is worth noting that the first bucket is

allocated for any unknown categorical value other than the known values (cat, dog,

bird) with the following parameters: w=3.

FIGURE 3.5: The Category Encoder.
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3.6.2.3 SDR Category Encoder

Similar to the scalar encoder, the category encoder faces an issue when the categorical

values are not known. This is especially the case in online prediction. The NuPIC de-

velops the SDR category encoder to overcome this problem of knowing all values that

can be passed to the encoder. The SDR category encoder work by assigning each cate-

gorical value a random and distributed number of active bits while trying to reduce the

probability of having overlaps between the resulting SDRs.

3.6.2.4 The Date Encoder

The date encoder is similar to a scalar encoder with the periodic flag turned on. Actually,

it relies on the scalar encoder and it just provides a better interface for dealing with

dates. There are many parameters that will be determined through the date encoder:

• timeOfday:Which specifies the time of the day in hours.

• DayOfWeek:Which specifies which day it is (Monday = 0 to Sunday = 6).

• Weekend:Which is a Boolean value (true or false). Whether the date is a weekend

or not, it will be on or off. Figure 3.6 shows the date encoder encoding a date and

time value using the season parameter. The first input is in May and the second

one is in June. Therefore, there are overlapping between the two SDRs. Unlike

the last input which is in December which has no overlapping bits with the first

two inputs.

FIGURE 3.6: The Date Encoder.

3.6.3 Spatial Pooler

The spatial pooler is the second component of HTM/CLA. The base function of the spa-

tial pooler is to receive an input (as input space) from the encoder and transform it to an
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SDR. The input space has many input bits. To maintain a fixed sparsity for these inputs,

the spatial pooler maintains a specific sparsity to maintain the semantic meaning. The

spatial pooler is able to deal with input space and convert it into an output vector of

a different size with sparse active bits within a fixed number of active mini-columns as

shown in figure 3.7. The spatial pooler learns from every cell in the input space and

from its relationship to each column. Each column contains a number of proximal den-

dritic segments, which is a set of potential synapse connections to a subset of the input

bits, determining a subset of the input space that is connected to each column according

to the synapses that have permanence value. When the permanence value is above the

threshold, the synapses will be connected. Each column includes potential connections

(cells) from input space within a certain radius around it. It does not include all input

space. Some cells of the input space are connected to the active column. The overlap

score of each column is activated by a number of synapses on each column connected to

active input bits in the input space.

Active Mini-Columns

Inactive Mini-Columns

Input Space

Spatial Pooler

Active Input

Inactive Input

Po ential Connections

FIGURE 3.7: A mini-column in the SP and its receptive field (Alshammari, 2018).

The spatial pooler requires a specific number of columns that should be set in pre-

training the CLA model. The spatial pooler exploits these columns to contribute to the

learning process. The spatial pooler uses a boosting method, which attempts to en-

hance the losing column to be more powerful and compete to learn the coming inputs.

Boosting is used to split up various patterns, which share a minimum of active columns.

It enables the temporal memory to distinguish various patterns. Each synapse is con-

nected, and the synapses will be activated. The number of active synapses is multiplied

by a boosting factor. This boosting factor is specified through how many times a column

is active. After boosting, the column will be active with the highest number of active

synapses. The winning column is based on a threshold that is set by the user. When
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the columns are winning with the highest overlap as active, it will inhibit their neigh-

bouring columns from winning; thus, a small percentage of columns are active in this

time. During the learning, many permanence values that will increment and decrement

will be updated. Depending on when the synapses are connected to the active bits in

the input space, permanence will be increased. When the synapses are connected, the

inactive bits are decreased (Hawkins et al., 2016) (Cui et al., 2017).

3.6.4 Temporal Memory

Temporal memory is the third component of HTM/CLA. The temporal memory learns

SDRs generated by the spatial pooler and makes prediction patterns next. It illustrates

how cells (neurons) in the neocortex can remember spatial sequences in the context of

prior inputs by activating particular cells in each column. Temporal memory performs

two tasks: 1) learn temporal changes in the SDRs generated through SP over time and 2)

predict future patterns on the basis of the temporal context of each input. The temporal

memory includes three phases. The first phase determines which cells in the active

columns will become active. When a column becomes active, this is because it looks

at all the cells within each active column to feed-forward input. When none are in the

predictive state, it will activate all cells in this column, which is called bursting. When

each cell in the active column is already in the predictive state, only those cells become

active. In the first step in the sequence, all cells are active within each active column

because they have never seen the input pattern in a context before. The current input

pattern matches only the activating cells in the predictive state. If the input pattern is

expected, only those cells will become active, or all cells in the column will activate when

the input pattern is unexpected. In the second phase, select cells become a predictive

state. The distal input forms lateral connections to other cells. The cell segments in the

predictive state form lateral connections to the cells that are active in the current time

step and go through the dendrite segment and count all active synapses, and those above

the threshold become predictive. All the cells in the columns may be in a predictive

state, going through the dendrite segment and calculating all the connected synapses to

active cells. When the number of active synapses exceeds the threshold, the segment

becomes active. All the cells with active dendrite segments are put into a predictive

state. We have two types of dendrite segments, proximal and distal. Synapses connect

to dendrite segments. The proximal dendritic is the feed-forward input from the input

space. Each HTM cell has one proximal dendrite, when a column becomes active due

to receiving a signal from the proximal dendrites. In the third phase, the synapses are

updated. All the synapses have permanence values that are modified on the basis of the

segment. When the distal dendrite segment becomes active, the increment or decrement
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of the permanence of those synapses is according to active cells or inactive cells. When

the cell correctly predicts the feed-forward input, the permanence of those synapses for

the segments is incremented and the wrong predictions are penalised (Hawkins et al.,

2016).

3.6.5 Classifier

The last component of the HTM model is called the Classifier which decodes the state of

the HTM model and produces predictions. Data comes in scalars, categories, data/time,

etc. The encoder receives the data and converts it to SDR. Then, it passes the SDR to the

SP and then to the TM. The model can be used with typical architecture of applications

such as to perform prediction, anomaly detection, and sequence classification. The clas-

sifier is needed to perform prediction problems. Many regions such as SDR Classifier,

CLA Classifier, KNN Classifier, and Anomaly scores/likelihood can be added to the HTM

model in order to perform the required application. These regions are not biologically

inspired. The current implementation of the CLA in the NuPIC framework has several

classifiers: the k-nearest neighbour (KNN) classifier, CLA classifier, and the SDR classifier

which are presented in the following sub-sections.

3.6.5.1 K-nearest Neighbours Classifier

The KNN classifier is a predictive model used for classification. Most predictive models

are focused on datasets to determine data patterns, but the KNN ignores some data and

predicts a new instance based only on the number of nearest neighbours of the point.

An element is classified by a majority vote of the nearest neighbours measured by Eu-

clidean, Manhattan, and Minkowski distances so that the distance value is calculated

among a new example with all examples in the dataset using distance functions. The

implemented NuPIC KNN classifier has some advantages, such as an optimised C++

class. It is suitable for sparse vectors and able to operate in an online fashion. Moreover,

it provides different distance methods (e.g. Euclidean, Manhattan, and Minkowski)

(Numenta KNN Classifier, 2017). Within NuPIC, there is an implementation of the KNN

algorithm, and the it has been applied in many domains, such as vision problems and

classification of images (Fallas-Moya, 2015), as well as object tracking based on hier-

archical temporal memory (HTM) classification. The KNN technique is not biologically

inspired. The KNN classifier includes many parameters, such as the following:
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• k: is an integer value specified by the user and must be an odd number that is used

to determine the value of the variable k, which expresses the number of nearest

neighbours for each point.

• rawOverlap: is suitable for binary input.

• Norm: determines the kind of distance functions, such as Euclidean, Manhattan,

and Minkowski, to measure the distance between classified patterns and a new

pattern proposed to be classified.

3.6.5.2 CLA Classifier

The CLA classifier is necessary to decode the state of the CLA model and produce predic-

tions. The CLA classifier receives the SDR output from the TM (active cells), Predicted

Field (PF), bucket index, and record number from the encoder. It seeks to learn a func-

tion of this information at that time step, and it generates a probability distribution for

the PF. The label with the highest associated probability is considered the output.

The CLA classifier receives the SDR output from the temporal memory (the activation

pattern) and the target input from the encoders describing the input to the system at

that time step. In the learning phase, the history of the classification is recorded for

every bit in the activation pattern. The history is weighted, where the latest activity has

more effect than the older activity, and the alpha parameter manages this weighting.

In the inference phase, every active bit in the activation pattern is checked. It searches

for the most likely classification based on the history stored for that bit, the probability

distribution over the PF is determined, and the votes on these to obtain the output.

As shown in Figure 3.8, all fields are passed to the encoder and converted to an SDR,

the CLA Classifier also receives the ground truth labels to learn from. The CLA Classifier

also receive the bucket index and Record number . The CLA Classifier output is a

probability distributions of the predicted labels and the label with the highest associated

probability is considered the output.

We assume that streaming data are fed to the system. Most machine algorithms are set

up as spatial problems that predict values at the same time (t). When comparing with

the CLA Classifier it is predicting a future value at time t + k (where k is the predicted

number of steps into the future). Other problems to consider are that the dataset could

be split into training data and test data. In the training phase, the predicted field is

given to the algorithm, but the testing data does not give this algorithm a predicted field

directly (a ground truth label) to the algorithm, for it to do the classification. The CLA

Classifier does not resemble the biological function of the human brain. Although it is

able to predict next time step. In order to work the same way as a human brain, there
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is a need for many hierarchies of various modalities. (Balasubramaniam et al., 2015),

(Numenta CLA Classifier, 2017), (Classifiers NuPIC, 2017).

The CLA classifier contains many parameters:

• Alpha: is a parameter that serves to change the output parameter to identify how

far back to remind. It is applied in predictions. When the prediction is a categorical

value, there is no need to use the moving average.

• The parameter steps: contains the number of steps into the future that the clas-

sifier predicts, which is determined by the user.

FIGURE 3.8: A CLA Classifier workflow.

3.6.5.3 SDR Classifier

The SDR classifier also receives the SDR output from the temporal memory and the tar-

get input from the encoders. It maps the input SDR to the class labels and produces a
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probabilistic distribution over all class labels. In the inference phase, a weighted summa-

tion of all the inputs are calculated, and then the output is passed to a softmax nonlinear

function to determine a probability distribution of class labels. In the learning phases,

during the training of the data, the output units are checked. When the results are not

satisfactory, there is a need to adjust the weights to reduce the error rate and maximise

the likelihood of the model.

The aim of the SDR classifier is similar to the CLA classifier. It attempts to infer the out-

put from SDR (active cells in TM) in the top region in the hierarchy. The SDR classifier

learns among active cells in TM at time t, and the PF is fed at time t +k (where k is the

number of steps into the future to predict), the record number and bucket index from

the encoder. The SDR classifier maps the SDR (active cells) to class labels. The output

is a probabilistic distribution on all classes. The predicted labels and the label with the

highest associated probability are considered the output.

The SDR classifier applies a single layer, the feedforward classification neural network.

The network has input units that comprise the array of TM active cells (0, 1) and output

units.

The SDR classifier includes many parameters:

• Steps: The step is a parameter that is identified by the user. This is how many

steps to predict the value of this predicted field into the future.

• Alpha: Alpha is a hyper-parameter used to adjust the weights through the learning

phase. The lower the Alpha, the slower the learning rate goes along the downward

slope. The larger the value, the faster adaptation to the data1, (Classifiers NuPIC,

2017), (Yuwei, 2017)2.

The properties of the SDR classifier derived from HTM are as follows:

• The HTM has the ability to learn from a streaming data in an online fashion that

adapts to the users changing parameter settings.

• The HTM is able to deal with multiple predictions simultaneously. In the learning

phase, it estimates the full predicted distribution at each step. It reinforces correct

prediction sequences and penalise the wrong prediction.

• In HTM, the TM output is SDR that contains ones and zeros. Each active cell that

has a value of 1 needs a weight, and there are sets of weights in a matrix that

update these weight values at each step to avoid overfitting.
1http://nupic.docs.numenta.org/1.0.3/api/algorithms/classifiers.html
2https://github.com/numenta/nupic/pull/3066
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3.7 Planning for the CLA

The typical process for creating CLA models starts with a parameter optimisation step.

This step is called swarming in the CLA, which uses Particle Swarm Optimisation (PSO),

to assess the model performance for the given task. In this step, the model will be exe-

cuted on a dataset and search the parameter space and optimise for the best parameters

for that model. Then, the second step is carried out which is the training phase of the

model. Finally, the model is tested on a portion of the dataset that it has never seen

before and the performance of the model is calculated afterwards (Lee & Rajabi, 2014).

The whole process is facilitated by the Online Prediction Framework (OPF), which is a

software framework developed by Numenta to streamline the model creation, optimisa-

tion, and evaluation.

3.8 Particle Swarm Optimisation (PSO)

Swarming is used to set the parameters of the model on the dataset. Swarming is a

procedure that selects the best model of several options for a given dataset. The swarm

process can assess several models and produce the best model based on the lowest

error rate on the given dataset. There are many components in NuPIC that require

parameter values to configure them. Swarming provides the best parameters to tune

every component, such as encoders, spatial poolers, temporal memory, and classifiers. It

attempts to evaluate a number of parameters. There is an extremely large search space;

thus, swarming uses efficient methods and intelligently reduces the search space to gain

the best performance model and reduce time3.

3.9 Summary

In this chapter it was defined how neurons in the neocortex work, explained how the hu-

man brain works by combining neuroscience and computing findings that enable a mod-

ern understanding of intelligence itself, which assists in creating intelligent machines.

The Chapter covered the concept of the HTM theory and its CLA implementation that

includes four components: The first one is the encoder which receives the data and con-

verts it to (SDRs). The second one is the Spatial Pooler which receives the outputted

SDRs from the encoder and learns the spatial features of the passed SDR. The third one

is the Temporal Memory which learns the temporal changes in the SDRs by activating

3http://nupic.docs.numenta.org/1.0.0/guides/swarming/running.html
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particular cells in each column. The last component of CLA is the CLA Classifier, SDR

Classifier which decodes the state of the CLA and produces predictions. HTM models

require training and testing data that properly labelled, hence a dataset that is repre-

sentative of the application at hand is needed to be developed in order to test, analyse

and validate the application of HTM models in the context of smart homes, chapter 4

discusses the generation of such datasets.
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Chapter 4

SIMADL: Simulated Activities of

Daily Living Dataset

4.1 Introduction

Recent developments in technology have increased the adoption of smart devices and

sensors in smart homes. With the realisation of the Internet of Things paradigm (IoT),

the number of these internet-connected devices is likely to grow. In a study conducted

by (Gartner, 2017), the number of connected Things is 8.4 billion devices in 2017. This

number grew by 31% from 2016 and the study predicts that the number will continue

to grow and will reach 20.4 billion connected devices by 2020. Moreover, the spending

on IoT services that provide design, development, and implementation of IoT solutions

was estimated to reach $273 billion by the end of 2017.

With the widespread usage of smart devices in smart homes, these environments will

generate an enormous amount of streaming data. These generated data has the poten-

tial to provide novel services to the smart home inhabitants to improve their standards

of living. These services can benefit from the analysis of this generated data.

Machine learning has been widely applied to develop probabilistic and statistical meth-

ods and sequence-learning algorithms to classify and predict ADLs of inhabitants. Nowa-

days, machine learning models and their contribution to the Internet of Things (IoT)

applications are becoming one of the most active and interesting research areas (Al-

shammari et al., 2018a). The smart home is one of the most prominent applications of

the IoT paradigm. There are many advantages for adopting smart home technologies

such as monitoring energy consumption, security, automation, entertainment, eldercare,

etc. To implement machine learning techniques in any of the previous applications, a
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representative dataset for that application is required. The dataset will be used to train

and test the machine learning models to evaluate and validate their performance.

There are real smart home datasets available in the literature (e.g., (Alemdar et al.,

2013b; CASAS, 2009; PlaceLab, 2005; Chavarriaga et al., 2013)), however, they lack

the flexibility to cope with the recent advancements in sensor techniques, and they are

costly to build and construct. Up to the knowledge of the author, there is a lack of real-

world datasets targeted at classification, in the context of smart homes that are publicly

available (Cook et al., 2009; Bouchard et al., 2010; Synnott et al., 2015).

Smart home simulation tools are an alternative to constructing real smart homes. These

tools allow the researcher to design a smart home suitable to the application that they

are investigating to generate a representative dataset. There is less cost and effort in-

volved in this process, and the smart home simulator can cope with new emerging tech-

niques. However, many of these simulation tools are not available in the domain as an

open-source project, or they lack the flexibility and accessibility for both the researchers

and the participants.

The simulation tools regarding dataset generation approache can be categorised into

two approaches, model-based and interactive approaches. The model-based approaches

generate datasets using pre-defined scripts that generate events, probability of the oc-

currence of events, and their duration. On the other hand, the interactive approaches

capture the sensor activities and log them to the dataset in real-time. Examples of model-

based approaches include (Lee et al., 2015; Kormányos & Pataki, 2013; Bouchard et al.,

2010). Examples of interactive approaches include (Synnott et al., 2014; Ariani et al.,

2013; Fu et al., 2011).

The two approaches suffer from disadvantages for the researchers and the participants

alike. Model-based approaches allow the researcher to generate big datasets in short

periods of time. However, the generated datasets do not capture realistic and fine-

grained interactions that happen in real smart homes. The interactive approaches can

capture these fine-grained interactions because they capture the output of the sensors

directly to the dataset. However, the interactive approaches produce smaller datasets

and take more time for the participants to perform their habits. Most of the interactive

tools focus on context-awareness applications and not on generating datasets.

OpenSHS is an open-source, 3D, cross-platform simulation tool that follows a hybrid

approach and combines the advantages of both approaches. It allows the researcher to

design a smart home model specific to their research problem and generate a sufficiently

large dataset in reasonable time while retaining the fine-grained interactions that the

participants are performing.
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This chapter presents datasets generated by OpenSHS for classification problems. The

remainder of this chapter is structured as follows: Section 4.2 presents the related work

in the literature. Section 4.3 explains OpenSHS architecture and how it has been used

to generate the datasets. Section 4.4 presents the methodology to generate the datasets.

Section 4.5 provides a description of the generated datasets. Section 4.6 presents ADLs’

classification . Section 4.6.1 presents ADLs’ classification in OpenSHS. Section 4.7 pro-

vides a usability study.

4.2 Related Work

In this section, the available real datasets in the literature are reviewed as well as the

simulation tools that allow the researchers to generate synthetic datasets.

4.2.1 Real Datasets

(Alemdar et al., 2013b) published the Activity Recognition with Ambient Sensing (ARAS)

dataset which is a real dataset for complex scenarios of multi-residents. The dataset was

captured for the duration of two months for two different houses and each house had

two inhabitants. ARAS dataset was used to assess ADLs classification algorithms (Alem-

dar et al., 2013b).

The Centre for Advanced Studies in Adaptive Systems (CASAS) is a project for creating

real smart homes for the researchers in this field. (Cook et al., 2013) designed a simple

and lightweight toolkit called “smart home in a box”. The components of this toolkit

are assembled in a single small box and easily installed in a home to be able to provide

smart tasks. They have installed the toolkit in 32 smart homes and generated several

datasets. The datasets are publicly available online (CASAS, 2009).

The TigerPlace (Skubic et al., 2009b) conducted a study on the ageing population. They

used passive sensor networks that were installed in 17 flats within eldercare facility.

They used many kinds of sensors such as motion sensors, pressure sensors, etc. In some

of the flats, the collection of data took more than two years.

Some datasets focus on wearable technologies to monitor and acquire the activities

performed by the participants. The Smartphone-Based Human Activities Recognition

(SBHAR) dataset (Anguita et al., 2013) is one example of such datasets. The authors

collected the accelerometer and gyroscope data of 30 participants who performed sev-

eral ADLs using a smartphone. Casale et al. (2011) and (Bruno et al., 2013) are other

examples of similar datasets.
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The Intelligent System Laboratory (ISL) (Van Kasteren et al., 2010) generated a dataset

from three smart homes in which a single participant was performing his ADLs. The

dataset represent around two months’ worth of data. The first smart home had 14

sensors, the second had 23 sensors, and the third had 21 sensors.

Using a camera feed to capture a participant activity is another approach to recognise

ADLs. (Pirsiavash & Ramanan, 2012) presented a dataset of one million frames captured

from a wearable camera that represent a first-person view. The data was gathered from

20 participants who performed unscripted ADLs in their homes.

The ContextAct@A4H dataset (Lago et al., 2017) is an example of recent datasets that

focus on ADLs. The dataset was generated using a real apartment equipped with many

sensors of different types. The dataset consists of one week’s worth of captured data

during the summer season and three weeks of the fall season. The authors proposed a

new annotation method using temporal logic.

(Chavarriaga et al., 2013) offered the OPPORTUNITY Dataset for Human Activity Recog-

nition, which is a real dataset derived from wearable, object, and ambient sensors. There

are limited established benchmarking problems for activity recognition. They provided

a common database to validate the performance of various machine-learning models.

This dataset allows researchers to test and report the performance of their algorithms

or new emerging methods. The data was read from movement by the sensors as the

inhabitants performed regular daily activities. The data was read from different sensors,

and the real activities were recorded. However, they had difficulty in capturing more

interesting, accurate annotation and fine-grained details.

(Micucci et al., 2017) presented a new dataset that focused on wearable technologies

to observe and acquire human activity recognition and fall detection using an Android

smartphone. The authors collected the accelerometer data of 30 participants. Almost

all of them were female with a wide range of ages in the 18-60 age range. The dataset

contained 11,771 samples of human activities and fall detection. The activities of daily

living (ADLs) consisted 7,579 samples and 4,192 falls totalling 11,771. They have com-

bined the data into nine different activities of ADLs and eight various labelled activities

of falls. Every accelerometer entry has a certain label of ADL (e.g. walking, sitting, or

standing) or the kind of fall (e.g. forward, syncope, or backward). The UniMiB SHAR

dataset allows researchers to study many problems, for example robust features to deal

with falls or the subjective case.

(Youngblood et al., 2005b) presented MavPad and MavLab intelligent environments.

MavPad and MavLab datasets were gathered from intelligent home environments. Mav-

Pad is a dataset generated from a full-time student inhabitant in a campus apartment.
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For MavPad, to control devices in the home, they used 25 controllers, and there are

many sensors used in the apartment, such as temperature, light, smoke detection sen-

sors, etc. The MavLab environment includes meeting rooms, a bathroom, a lounge,

etc. For MavLab, automation techniques and 54 X-10 controllers were used. Every con-

text, for example light, temperature, and door/seat sensors, has a current state for the

sensors, and it is specified by the sensor status.

(Alhafidh et al., 2018) applied some machine-learning algorithms to predict an inhabi-

tant’s next event. To assess the proposed algorithms, they used their own dataset that

is similar the MavPad dataset. The dataset was captured from sensors in an apartment.

They used two kinds of sensors to predict an inhabitant’s activity on a lighting actuator

in a bathroom that had seven sensors installed in the apartment within the local area

first and then 86 sensors located in whole apartment. The data collection took more than

one month, and the dataset was split into training data for one month and test data for

one week, where the models learn from the data. But their dataset not available in the

public domain.

(Ordónez et al., 2013) generated datasets that capture real-world activities from similar

sensor devices in two homes. Each home has extremely diverse settings and layouts.

They used sensors that were installed to observe the inhabitant. They selected the type

of sensor based on simple installation and the least intervention. They focused on using

the wireless sensor networks in smart home environments to scale equal things. They

used passive infrared sensors to reveal movement in a certain place at home. Reed

switch sensors involve actions such as opening and closing a door.

(Van Kasteren et al., 2008) generated a dataset from one house. The dataset was cap-

tured for the duration of 28 days, and the house had one inhabitant. They used 14

state-change sensors that were installed in the apartment. They deployed many types

of digital sensors, such as door sensors, cupboard sensors, etc. The number of sensor

events was 2,120. In addition, they used activity examples. The authors proposed an

annotation method by the occupant using a Bluetooth headset combined with speech

recognition software. They categorised the data into seven activities: leaving the house,

toileting, showering, sleeping, preparing breakfast, preparing dinner, and preparing a

beverage. When there is no activity label annotated, the label is indicated as idle.

(Cook & Schmitter-Edgecombe, 2009) presented a smart apartment testbed on the WSU

campus. The smart apartment has several rooms. The apartment has many digital

and analogue sensors distributed over each room, such as temperature sensors, motion

sensors, water-flow sensors, and observation of oven use sensors. The real data was

gathered from 20 participants/undergraduate students who performed their ADLs. Each

participant performs the following five activities: telephone use, hand washing, meal
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preparation, eating and medication use, and cleaning. They used the sensor network

during the experiment time, and the sensor outputs and state of the different devices

were captured using the sensor network and stored in an SQL dataset.

(Quesada et al., 2015) designed and developed datasets from ADLs in smart homes that

were split in many sections (single, interleave, and multi-occupancy). The dataset was

generated from the smart lab of the University of Ulster. They deployed a sensor net-

work with 14 sensors distributed throughout a kitchen and a living room. The laboratory

has two kinds of sensors: pressure and contact sensors. The sensors produce data, and

the state of various devices are captured and stored in an SQL database. The dataset

was captured from real activities for the duration of one week by multiple inhabitants.

The dataset includes nine ADLs: drinking a glass of water, preparing tea with a kettle,

preparing hot chocolate in the microwave, drinking a glass of milk, calling by telephone,

preparing a hot snack in the microwave, preparing a cold snack, watching TV, and wash-

ing dishes. The dataset was manually labelled by the occupant to determine the move

from one activity to another.

(Roggen et al., 2010b) equipped a sensor network with 72 sensors distributed around

several rooms and objects and on the body. The real data was gathered from 12 partici-

pants. Each participant performed a certain morning context in real time. The average

time for performing ADLs per participant was around two hours, totalling 25 hours of

sensor data. The number of record samples for interaction with objects and the environ-

ment was around 14,000.

(Singla et al., 2009) presented a smart apartment testbed on the WSU campus. From

different sensors, the dataset captured real ADLs that were performed by 20 participants

in the smart apartment. It is an interleaved activity class dataset in which one inhabi-

tant performed an activity while another inhabitant simultaneously performed another

activity. They chose eight ADLs that exist in clinical questionnaires. The activities in the

dataset are filling a medication dispenser, watching a DVD, watering plants, conversing

on a telephone, writing on a birthday card, preparing a meal, sweeping and dusting,

and selecting an outfit. This dataset can be used to evaluate researchers algorithms for

health monitoring in a smart home domain.

(Singla et al., 2010) developed a multi-resident (multi-occupancy) class dataset, in

which two of the inhabitants are carrying out their activities concurrently. They used

a smart apartment testbed on the WSU campus. The dataset was gathered from real

activities of two co-occupants. It was performed by 40 participants. The dataset was

manually labelled with the activity ID and the person ID of the occupant. The tester

took care to time the recorded activities. They choose 15 ADLs that are always regis-

tered in clinical questionnaires.

66



Chapter 4 SIMADL: Simulated Activities of Daily Living Dataset 4.2. Related Work

The dataset is divided into two parts with activity name and type as follows: (Person

A) filling medication dispenser (individual), moving furniture (cooperative), watering

plants (individual), playing checkers (cooperative), preparing dinner (individual), read-

ing a magazine (individual), gathering and packing picnic food (individual); (Person

B) hanging up clothes (individual), moving furniture (cooperative), reading a magazine

(individual), sweeping the floor (individual), playing checkers (cooperative), setting the

table (individual), and paying bills (cooperative). Activities that allow both inhabitants

to cooperate to perform specific activity are labelled cooperative, while other activities

in the dataset can be carried out individually or in parallel.

4.2.2 Simulation Tools

(Synnott et al., 2015) conducted a survey of existing simulation tools for generating

datasets in a smart home environment. They found that, due to the sensors technol-

ogy cost, availability limitations, time considerations and finding the optimal sensors

configurations, simulation tools are valuable assets to have for smart home research.

The authors also identified that most of the available simulation tools focus on context-

awareness applications and not on generating representative datasets. Moreover, sup-

porting multiple inhabitants was one of the features lacking in current simulation tools.

(Cook et al., 2009) presented some challenges facing the evaluation of machine learning

performance and pervasive computing techniques. The authors identified the need to

have real datasets and there is a lack of real datasets in the literature.

(Bouchard et al., 2010) designed a 3D smart home simulator for activity recognition to

overcome the limitations of creating real datasets in a smart home. Many pre-recorded

scenarios were captured from clinical experiments and used to generate datasets.

To evaluate activity recognition algorithms, researchers require good representative

datasets. Due to the high cost of building real smart homes and due to privacy and

ethical issues with the human subjects, (Helal et al., 2011) developed an event driven

simulation tool for researchers in the smart home domain. The developed simulator is

called “Persim” and it can generate realistic datasets for complex scenarios of the occu-

pant’s activities.

An improved version of Persim was developed by (Helal et al., 2012) called PerSim 3D.

This tool helps to generate realistic datasets from the inhabitants’ activities in a smart

home scenario. The major improvement was adding 3D simulations of the inhabitant,

sensors and actuators. In addition, the tool supports the researcher by a Graphical User

Interface (GUI) to envisage the activities in 3D.
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The intelligent environment simulation (IE Sim) was developed by (Synnott et al., 2014)

to generate synthetic datasets that capture ADL of smart home users. IE Sim provides

the researcher with a 2D graphical interface of the floor plan to design a smart home.

The researcher can add different types of sensors such as temperature, pressure sensors,

etc. Then, using an avatar, the simulation can be carried out to capture ADLs. The

output of the simulation dataset is in the homeML (McDonald et al., 2013) file format.

(Lundström et al., 2015) extended an IE simulation that combined a probabilistic model

(Poisson distribution) and the avatar control to increase the realism of the recorded data

by the IE simulation. Thus, this extended version of the IE simulation adopts a hybrid

approach that merges the model-based approach to generate large datasets in a short

period of time, and the interactive approach, which is able to capture fine-grained inter-

actions. The IE simulation is a 2D tool that simulates activities at a constant rate. This

could be an issue when 3D motion data are required for the evaluated algorithms, such

as in anomaly detection algorithms. They used a fast-forwarding feature that enables a

simulation when the activity state has longer periods of low activity, such as sleeping,

where there is no need to carry out the whole activity in real time. They used an inter-

active approach based on an avatar that controled it via a participant. The interactive

approach has the benefit of recording fine-grained details. The participant can manage

the place and time in which the activities happen. The avatar can be interacted with

in the virtual environment via virtual sensors and actuators. The disadvantage of the

interactive approach is the extended time required to generate a sufficient dataset.

(Ariani et al., 2013) developed a simulation tool that uses ambient sensors to record

the interactions of the occupants. The tool uses a map editor that allows the researcher

to design a floor plan for a smart home by drawing shapes on a 2D canvas. The re-

searcher is able to generate datasets for complex and different scenarios via simulation.

The simulation tool could simulate binary motion detectors and binary pressure sen-

sors. Simulations could assist rapid development, which would facilitate the design of

a future smart home. They used the A* pathfinding algorithm to simulate the path of

the simulated participant in the environment. This simulator can support researchers to

determine which sensors are able to react to diverse simulated inhabitant movements.

It used the PIR sensor to detect motion that is sensitive to quick changes in the environ-

ment; thus, if there are any variable factors, they will affect their response, such as the

temperature, volume of the object in motion, the speed of movement, etc. This simula-

tion tool is used to generate data with multiple occupants. During the simulation time,

the sensor outputs are sampled at 5Hz and are stored in the database.

(Buchmayr et al., 2011) developed a simulation tool that is facilely extensible to add

new kinds of sensors. The simulation tool was used to generate and visualise simulated
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datasets that capture data from normal and abnormal ADLs of residents. It is used for

classification problems. They used a 2D approach because the floor plans are available

in 2D, and it is easy to add new types of sensors on the floor plan. The tool can simulate

binary switch, contact switch, and temperature sensors or just emit a signal on activa-

tion, while binary motion detectors and binary pressure sensors periodically emit signals

after activation. During the simulation time, the sensor outputs are stored in a file or

can be sent via the Internet to a server.

(Poland et al., 2009) offered a simulation tool that uses virtual sensor distributions to

capture the interactions of the ADLs of independent living for the elderly. It is a 3D

smart home simulator for dataset generation. They developed the simulation tool to

overcome the drawbacks/challenges of sensor distribution in a smart home. This ap-

proach provides the possibility of customising the right sensor deployment according to

older people’s needs.

(Youngblood et al., 2005b) developed a ResiSim 3D simulator tool that provides real-

time context simulation within a virtual smart environment. It was used to generate

simulated datasets that capture ADLs of inhabitants, and it can be used to build models

for automation. Additionally, they used the collected data from the simulator for visual-

isation to represent the collected data to best provide comprehension and analysis. The

researcher can simulate certain scenarios in smart spaces with several objects. How-

ever, every object requires a separated simulation. The researcher can add and remove

sensors to the virtual home. The ResiSim tool can be divided into three categories: (i)

logical proxy as a real object (e.g. bed or chair), (ii) simulation objects, and (iii) user

interface objects, which enable the researcher to interact with the virtual environment.

The interface can be connected through the Internet to the ResiSim server.

4.3 OpenSHS

Most of the available simulation tools, discussed in Section 4.2.2 follows two approaches

to generate synthetic datasets, model-based and interactive approaches (Synnott et al.,

2015).

The model-based approach relies on already defined statistical models of activities to

generate synthetic data. The statistical model determines the order of events, the prob-

ability of occurrence, and the duration of activities. The model-based approach makes

it easy to generate large datasets in a short period of time. The disadvantage of this

approach is the lack of capturing fine-grained interactions and/or unexpected accidents

that are common in real activities.
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The interactive approach, on the other hand, can capture more interesting interactions

and fine-grained details. This approach uses a virtual avatar controlled by a researcher,

a human participant. The avatar moves and interacts with the virtual environment

equipped with virtual sensors and/or actuators. These interactions can be passive or

active.

An example of active interactions is opening a door or turning the light on or off. Another

example of passive interactions is having a pressure sensor installed on the floor that

detects the movements of the avatar without the avatar explicitly activating the sensor.

The disadvantage of the interactive approaches is how long it takes to generate enough

data: because of the nature of the approach, the interactions must be captured in real-

time.

4.3.1 OpenSHS Advantages

Most of the simulation tools in the literature are not open-source, except for (Bouchard

et al., 2010), which makes it harder for the researcher to acquire the software and

modify it to the experiment’s need. In addition, having a 3D simulation adds to the

realism of the conducted experiment.

OpenSHS is an open-source smart home simulator that allows the participants to sim-

ulate their ADLs in a 3D virtual environment. OpenSHS is developed with open-source

and cross-platform techniques that makes it easy for the researcher to modify the tool

and extend it according to their needs (Alshammari et al., 2017).

The approach that OpenSHS uses to generate datasets can be thought of as a hybrid

approach of the model-based and interactive approaches. OpenSHS offers a replication

mechanism of the recorded ADLs which allows for a quick and large dataset generation,

similar to the model-based approaches. The replications have fine-grained details as the

activities are captured in real-time, similar to the interactive approaches.

OpenSHS has the flexibility to add different activity labels that can be customised by

the researcher and tailored to their needs. It also has a fast-forwarding feature which

facilitates the simulation of long inactivity periods. In this research, OpenSHS is used to

generate the datasets for classification of ADLs problems.
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4.4 Methodology

In this section, the design of the smart home and the contexts to be performed by the

participants is presented, followed by the aggregation and generation of the datasets.

4.4.1 Smart Home Design

A smart home was designed consisting of a bedroom, living room, bathroom, kitchen,

and home office, as shown in Figure 4.1. Each room has several types of sensors.

FIGURE 4.1: The design of the smart home.

The smart home is equipped with twenty-nine binary sensors, as shown in Table 4.1.

Each binary sensor has two states, on (1) and off (0). The sensors can be divided

into two groups, passive and active. The passive sensors do not explicitly require the

participant to interact with them. Instead, they react to the participant movements and

position. An example of this type is the carpet sensor. The carpet sensor turns on when

the participant walks over it.

The other type of sensors are the active sensors. This type requires explicit action from

the participant to change their state, for example, when opening a door or when turning

on the light.
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The activities’ labels included in this dataset are: sleep, eat, personal, work, leisure, and

other.

The participant controls a 3D avatar in first-person view and navigates and performs

his/her ADLs in the virtual smart home environment. Throughout the simulation pe-

riod, OpenSHS will capture and record the state of all the smart devices and sensors

every second. Some activities take a long time, such as staying at the office for studying.

OpenSHS provides a solution for this problem by implementing a fast-forwarding mech-

anism which enables the participants to quickly perform the long constant activities.

During the simulation, when a participant wants to change his/her activity, they can

do that by using the dialogue shown in Figure 4.2. It is worth noting that, when the

participants change their activity label, it does not immediately apply the change in the

dataset. The activity label changes when one of the sensor’s state has changed. This

approach ensures a clean separation when the participant transits from one activity to

another.

OpenSHS uses the concept of a context which is a specific time-frame of interest to the

researcher to be simulated (Alshammari et al., 2017). In this work has chosen to sim-

ulate the interactions of the participants in different contexts. On the weekdays, there

are two contexts, one in the morning and the other in the evening. On the weekends,

there are the same contexts during the day. Thus, there are four different contexts per

participant. The day contexts are “morning” and “evening” contexts. The week contexts

are “weekday” and “weekend”.
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TABLE 4.1: OpenSHS sensors.

# Name Type Description Active/Passive

1 bathroomCarp binary Bathroom carpet sensor Passive

2 bathroomDoor binary Bathroom door sensor Active

3 bathroomDoorLock binary Bathroom door lock sensor Active

4 bathroomLight binary Bathroom ceiling light Active

5 bed binary Bed contact sensor Passive

6 bedTableLamp binary Bedroom table lamp Active

7 bedroomCarp binary Bedroom carpet sensor Passive

8 bedroomDoor binary Bedroom door sensor Active

9 bedroomDoorLock binary Bedroom door lock sensor Active

10 bedroomLight binary Bedroom ceiling light Active

11 couch binary Living room couch Passive

12 fridge binary Kitchen fridge Active

13 hallwayLight binary Hallway ceiling light Active

14 kitchenCarp binary Kitchen carpet sensor Passive

15 kitchenDoor binary Kitchen door sensor Active

16 kitchenDoorLock binary Kitchen door lock sensor Active

17 kitchenLight binary Kitchen ceiling light Active

18 livingCarp binary Living room carpet sensor Passive

19 livingLight binary Living room ceiling light Active

20 mainDoor binary Main door sensor Active

21 mainDoorLock binary Main door lock sensor Active

22 office binary Office room desk sensor Passive

23 officeCarp binary Office room carpet sensor Passive

24 officeDoor binary Office door sensor Active

25 officeDoorLock binary Office door lock sensor Active

26 officeLight binary Office ceiling light Active

27 oven binary Kitchen oven sensor Active

28 tv binary Living room TV sensor Active

29 wardrobe binary Bedroom wardrobe sensor Active

30 Activity String The current participant activity

31 timestamp String The timestamp every second
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FIGURE 4.2: The activities selection dialogue.

4.4.2 The Participants

The participants in this work were chosen randomly. They also have experience with

first-person games which will facilitate the learning curve of the tool.

The number of participants was 7, and the average time it took to conduct the simulation

was 50 minutes (mintime = 30min,maxtime = 75min, stdtime = 14.43min).

For each participant, the following procedures were followed:

1. The researcher guides the participant and shows him/her the virtual smart home.

2. The participant is asked to play with the virtual smart home to get familiar with it.

3. The participant’s familiarity with the virtual smart home is tested by asking him/her

to perform specific tasks.

4. The actual simulation takes place, and the participant is asked to give his/her

actual starting times for each context.

5. The participant is asked to complete the usability questionnaire.

4.4.3 Dataset Aggregation

To accelerate the process of generating the dataset, the participants are asked to per-

form several simulations of the same context. Since the activities of the participants

are recorded in real-time, every simulation will be different and will contain unique

information.
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OpenSHS provides an aggregation algorithm that uses all the real-time recorded simu-

lations to generate a new and random dataset but in a controlled manner (Alshammari

et al., 2017).

For each participant, this research has generated six datasets with unique parameters.

The parameters used to generate each dataset are as follows:

1. Days: 30 and 60 days were chosen.

2. Start-date: 1 February 2016 were chosen.

3. Time-margin: the values 0, 5, and 10 were chosen.

The above parameters generated one month and two months worth of data. For the

one-month set, three variants with 0, 5, and 10 time-margins were considered. The

same goes for the two-month set. This ensures that the generated datasets are different

in the time dimension. Table 4.2 shows a sample of the final dataset.

TABLE 4.2: A sample of the final dataset output.

Timestamp Bed Table Lamp Bed Bath Light Bath Door . . . Activity

2016-04-01 08:00:00 0 1 0 0 . . . sleep

2016-04-01 08:00:01 0 1 0 0 . . . sleep

2016-04-01 08:00:02 0 1 0 0 . . . sleep

2016-04-01 08:00:03 0 1 0 0 . . . sleep

2016-04-01 08:00:04 1 1 0 0 . . . sleep

2016-04-01 08:00:05 1 0 0 0 . . . sleep

2016-04-01 08:00:06 1 0 0 1 . . . personal

2016-04-01 08:00:07 1 0 0 1 . . . personal

2016-04-01 08:00:08 1 0 1 1 . . . personal

2016-04-01 08:00:09 1 0 1 1 . . . personal

2016-04-01 08:00:10 1 0 1 1 . . . personal
...

...
...

...
...

...

4.5 SIMADL Description

In this Section the generated SIMADL datasets from the OpenSHS simulation tool for

classification of ADLs problems in smart home is presented (Alshammari et al., 2018b).

Seven participants were asked to perform their ADLs. The datasets represent around one
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month worth of data. The dataset consists of forty-two files. The naming convention

used for the datasets files is d{x}-{y}m-{z}tm where:

• x is an index number to uniquely identify a dataset;

• y is the number of months generated; and

• z is the time-margin value.

Each classification dataset has a target column of the previously mentioned labels of

the activities. In addition to the twenty-nine binary sensor readings, datasets have a

timestamp column.

Table 4.3 shows a listing of the number of records for all the datasets generated exclud-

ing the header record. It is worth noting that, for each file in the classification dataset,

OpenSHS generated the final output randomly from the record samples.

Figure 4.3 shows seven bar charts of the classification files. Each bar chart shows the

proportions of the training records (the first 60%) and the testing records (the last 40%).

Some files do not have all the labels included because the participants did not perform

that activity, for instance, as shown in the dataset d1 2m 0tm where the participant did

not perform the “work” activity.

Figures 4.4, 4.5 and (Appendix A Dataset) show the frequency of the active sensor

readings that are associated with the “leisure” label in the training and testing samples

which shows that there are slight differences between the two. The remaining labels,

figures, and dataset files are available online at http://datasets.openshs.org .
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TABLE 4.3: The number of records for the forty-two files for classification datasets.

Name Classification Dataset

d1-1m-0tm 18,800

d1-1m-5tm 18,966

d1-1m-10tm 18,828

d1-2m-0tm 38,204

d1-2m-5tm 37,532

d1-2m-10tm 38,012

d2-1m-0tm 37,332

d2-1m-5tm 36,261

d2-1m-10tm 35,687

d2-2m-0tm 75,183

d2-2m-5tm 72,302

d2-2m-10tm 73,526

d3-1m-0tm 39,832

d3-1m-5tm 42,526

d3-1m-10tm 40,730

d3-2m-0tm 77,328

d3-2m-5tm 83,346

d3-2m-10tm 79,933

d4-1m-0tm 40,232

d4-1m-5tm 40,015

d4-1m-10tm 38,629

d4-2m-0tm 80,033

d4-2m-5tm 79,171

d4-2m-10tm 79,176

d5-1m-0tm 27,762

d5-1m-5tm 28,008

d5-1m-10tm 28,450

d5-2m-0tm 55,577

d5-2m-5tm 56,200

d5-2m-10tm 56,919

d6-1m-0tm 81,859

d6-1m-5tm 85,763

d6-1m-10tm 84,672

d6-2m-0tm 165,596

d6-2m-5tm 165,038

d6-2m-10tm 167,282

d7-1m-0tm 49,282

d7-1m-5tm 49,605

d7-1m-10tm 49,769

d7-2m-0tm 100,544

d7-2m-5tm 100,498

d7-2m-10tm 100,502

Total 2,674,910
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(B) d2 2m 0tm dataset
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(C) d3 2m 0tm dataset

FIGURE 4.3: Analysis of the classification datasets with a 60%/40% split for training
and testing records (d1-2m-0tm To d3-2m-0tm ).
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(D) d4 2m 0tm dataset
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(E) d5 2m 0tm dataset
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(F) d6 2m 0tm dataset
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(G) d7 2m 0tm dataset

FIGURE 4.3: Analysis of the classification datasets with a 60%/40% split for training
and testing records (d4-2m-0tm To d7-2m-0tm ).
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FIGURE 4.4: The sensor readings for the leisure activity in the training sample.

FIGURE 4.5: The sensor readings for the leisure activity in the testing sample.

4.6 Classification ADLs

Activities of daily living are tasks that the inhabitants perform in their daily routines.

(Ni et al., 2015) defined ADLs as “the things we normally do in daily living including

any daily activity we perform for self-care such as feeding ourselves, bathing, dressing,

grooming work, homemaking and leisure”. This definition is focused on using smart

homes, especially among older people and healthcare. To identify the limit of an activ-

ity and determine the type of physical activity performed by the occupant, which is an

important feature for smart home applications, this requires a suitable description of the

activities. (Ni et al., 2015) proposed further details of a conceptualisation of activities.

The first one describes the classification of activity, while the second one describes ac-

tivities that are relevant to their conceptualisation. The conceptualisation process labels

activities by description.

80



Chapter 4 SIMADL: Simulated Activities of Daily Living Dataset 4.6. Classification ADLs

1. Classification of activities: The ADLs in the smart home can be classified from

events to analyse and determine to user behaviour at various patterns in smart

environments. An event is an activity carried out by a resident or participant in a

short period of time, such as opening the door, watching TV, etc. In the context

of an inhabitant‘s behaviour in their smart home environment, the definition of

an ADL behaviour can be complicated. The ADL behaviour changes from one in-

habitant to another. Moreover, coarse-grained activity can be classified into many

fine-grained activities, such as preparing meals. When there are children or older

people, this activity will be divided into two or more fine-grained activities. For

example, for the child activity, it could be “preparing meals with milk”, and for

older people, the activity could be “preparing meals without sugar or salt”.

2. Composition of activities: The composition captures these complex ADLs with

many variants of activities to form a composite activity. The sorting of simple

activities might depend on the inhabitant‘s sorting habits. Each activity has a start-

ing/end time, which can communicate with other activities to compose an activity

(Meditskos et al., 2016).

(Ni et al., 2015), (Quesada et al., 2015) identified events that are divided into the three

different categories of activities: 1) a sequential (single) activity performed before or af-

ter another activity with time intervals between two activities, such as preparing coffee

and watching TV, 2) interleaved activities in which the inhabitant performs the activity

while doing another activity, such as opening the door while watching TV (these inter-

leaved activities are very different from the same activity), and 3) synchronous (con-

current) activities are carried out by multiple inhabitants at the same time, for example

multiple residents can study in an office simultaneously.

4.6.1 Classification of ADLs in SIMADL Dataset

Each participant performs a simulation of his/her ADL classification to represent ADLs

in various contexts by the OpenSHS interface module. OpenSHS allows the participants

to use a context in which an inhabitant’s daily routines in a certain time period can be

simulated. There are many contexts, such as “morning weekday”, “morning-weekend”,

“evening-weekday”, and evening weekend contexts. The timestamps and dates are de-

fault, but the participant is able to change the default setting if necessary. OpenSHS

provides the participant with six activity labels: sleep, eat, personal, work, leisure, and

other. Each participant classifies the appropriate activity for each specific task. Before

the simulation was conducted, the participant can choose the activity button shown in

Figure 4.2. Through the simulation interval, when the participant performs a specific
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activity, OpenSHS will capture and record the state of all the smart devices and sensors

in the simulation every second. Some activities need to take a long time, such as stay-

ing at the sofa to watch tv. These activities are more difficult to simulate in real time.

OpenSHS provides a solution for this problem using a fast-forwarding mechanism that

enables the participant to identify the time for this activity. The tool will repeat the state

of all the smart devices and sensors based on the specified time period. The participant

should be familiar with the choice of classification of activities. During simulation, when

a participant wants to change from one activity to another, the participant will be able to

perform that change using the dialogue shown in the figure. To ensure a clean transfer of

one activity to another activity, OpenSHS will not directly apply a change in the dataset.

The activity label waits until the sensor state is changed. The participants are perform-

ing several simulations of the same context. It records the activities of the participants in

real time. When participants perform the simulation, each participant simulates his/her

activities in different ways. The participants are able to aggregate their generated sam-

ple activities. OpenSHS provides an aggregation algorithm that uses all the real-time

recorded simulations to generate huge datasets in a short time during simulation. Using

an aggregation algorithm that integrates two approaches, a model-based approach and

an interactive approach, this feature enables OpenSHS to combine the advantages of

both approaches. OpenSHS allows the participant to increase or decrease the activity la-

bels, when the participants want to add more ADL classifications, OpenSHS enables the

participant to determine several activity labels in the virtual smart home environment,

which is customised by the researcher, based on the experiment needs. Additionally, the

tool can be expanded to cover new emerging technologies.

4.7 Usability Study

Assessing the usability of any system is a tricky task because it involves quantisation

of qualitative constructs, such as the participants opinions regarding the ease of use of

OpenSHS.

This research adapted the widely used System Usability Scale (SUS) Brooke et al. (1996)

in order to assess OpenSHS usability from the stand point of the participants. There are

ten statements that each participant will express their agreement/disagreement (similar

to Likert scale). In order to calculate the SUS score, these statements are divided into

two groups. The odd numbered statements (statements number 1,3,5,7,9) and the even

numbered statements (statements number 2,4,6,8,10). The odd statements are positive

and if the participant agrees with them, this will increase the overall score of the system.
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On the other hand, the even statements are negative and will decrease the overall score

if the participant agrees with them.

1. Frequent use (FU): I think that I would like to use this system frequently.

2. System complexity (SC): I found the system unnecessarily complex.

3. Ease of use (EU): I thought the system was easy to use.

4. Need for support (NS): I think that I would need the support of a technical person

to be able to use this system.

5. System’s functions integration (FI): I found the various functions in this system

were well integrated.

6. System inconsistencies (SI): I thought there was too much inconsistency in this

system.

7. Learning curve (LC): I would imagine that most people would learn to use this

system very quickly.

8. How cumbersome the system is (CU): I found the system very cumbersome to

use.

9. Confidence in the system (CO): I felt very confident using the system.

10. Need for training before use (NT): I needed to learn a lot of things before I could

get going with this system.

Our sample consists of seven participants who were asked to answer the SUS ques-

tionnaire. Six were male, and one female and average age of the participants was 30

(minage = 21,maxage = 35). 100% of the sample did play first-person games and all the

participants reported that they use their computers on daily basis. Figure 4.6 shows the

results. The SUS score for this group is 68.21 out of 100 (scoremin = 55, scoremax = 80).

As OpenSHS is based on a game simulation tool, the rationale to choose participants is

based on finding candidates who can use computing game simulators without requiring

excessive time for training. The limitations are that the average age of the participants

was 30 and to repeat the same for a different scenario e.g. with elderly people, the

experiments would need to be repeated using a different set of participants.
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FIGURE 4.6: The result of System Usability Scale (SUS) questionnaire.

This research has chosen SUS because it is easy measure to manage the participants, it

is suitable to use on few sample volume that provides reliable scores and it is robust.

Moreover, it links to other measures of usability e.g. the Software Usability Measure-

ment Inventory (SUMI) Brooke et al. (1996). The questionnaire contains 10 questions,

which are divided into positive and negative questions to prompt the participants to read

the questions more carefully. The usability study results are promising but revealed that

there is a room for improvements. The learning curve (LC) component of the question-

naire was the lowest scoring component and therefore needs improvement. The results

also show that the participants needed some support from a technical person to be able

to use the system as indicated by the (NS) component. Some participants may need

extra training before using this tool.

4.8 Conclusions

This research introduces datasets for the smart home research community, it is for clas-

sification. The datasets are generated using a simulation tool (OpenSHS), and seven

participants simulated their ADLs. The collection of the generated date accumulates to

31 days worth of patterns for datasets. Representative smart home datasets, such as the

ones presented in this research, have direct machine learning applications, mainly for

the training, testing and validation of new models. Different datasets are needed de-

pending on the machine learning target application, i.e., classification, clustering, pre-

diction or anomaly detection. The contributed datasets can be used to validate machine

learning models that perform classification tasks in the smart home domain. Classifi-

cation tasks is applicable to many use cases such as automation, eldercare, healthcare,
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entertainment, security, etc. As this data has been discussed it is important that it is

encoded typically by hashing. Chapter 5 explores different mechanisms to address this.

85



Chapter 5

Proposed Multi-Region CLA

Techniques

5.1 Challenges

This research proposes the application of CLA to classify and predict ADLs of inhabitants

in a smart home environment. However, there are several challenges that have been

addressed by this research, some of these challenges are related to the application do-

main i.e. smart home, and other challenges concern the effective application of the CLA

in the context of a smart home. The data generated from different sensors in a smart

home environment, represent spatio-temporal patterns indicating the inhabitants’ activ-

ities. This research assumes binary outputs from these sensors. This stream of binary

data flows continuously and might be prone to noise. The first of the challenges is to

find meaningful spatio-temporal relations of such high-dimensional binary data. There

is a need for a custom encoder that is more suitable for the nature of the data generated

from smart home environments. Homes have changing layouts, and inhabitants perform

their activities in various ways. The same activity might use a completely different sensor

activation depending on the inhabitant’s changing habits. To deal with this variability,

there is a need to use supervised learning techniques that can cope with each individ-

ual smart home environments. The second key challenge is the selection of appropriate

methods that can learn a sequence of binary data generated from multiple sensors to

infer and predict different ADL patterns. The choice of the used classifier is crucial to

produce meaningful predictions. The third key challenge is that there is a need for a

better memory management of the CLA model to learn short and long-term patterns.

This Chapter proposes two novel multi-region CLA techniques, featured by multiple spa-

tial pooler and temporal memory regions that incorporate a hash encoder and an MLP
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classifier. The first proposed technique includes two parallel spatial pooler and temporal

memory regions. The second proposed technique includes one spatial pooler and three

cascaded temporal memory regions. These settings are proposed to improve the long

and short-term prediction performance in the context of a smart home.

To tackle the first identified challenge, to cope with high-dimensional binary data, the

CLA was tested using standard NuPIC encoders on a smart home dataset. The results dis-

covered the weaknesses of the standard NuPIC encoders with multi-columnar datasets.

Standard NuPIC encoders used do not able to deal with binary data generated from

datasets in a smart home. It is an issue due to the nature of the data in a smart home

that has many sensors, hence there is a need to develop an appropriate encoder that can

deal with these sensors data.

Other research (Alshammari, 2018) was conducted to develop a hash encoder to cope

with this issue for anomaly detection application in a smart home. The CLA performance

was improved for anomaly detection ADL in a smart home that showed increased by

47.5% compared to the standard CLA encoders. Although, in this research, the results

of using the hash encoder with the CLA model, instead of the standard NuPIC encoders

seemed promising and improved the performance of the model. However, based on the

experiments presented in Chapter 6, this improvement was not substantial enough to

supersede the performance of the state-of-the-art algorithms for classification ADLs in

smart home.

Second Challenge: the choice of suitable classifier for smart home environment is cru-

cial. Recently, state-of-the-art algorithms have produced better results than the SDR

classifier used in the CLA based on the experiments presented in Chapter 6. In Chapter

6, different classifiers have been evaluated to select one of them. Our results show that

the MLP classifier outperformed the CLA and SDR classifiers in a smart home environ-

ment. Thus, this research applied the MLP classifier that allows better prediction of the

inhabitant’s activities in a smart home environment.

Third Challenge: To accommodate for long and short-term patterns multi-region CLA

techniques were proposed to learn input patterns from streaming datasets. In the first

proposed technique, Each region learns the patterns to allow different memory models.

In a parallel stream, and every region performs spatio-temporal grouping of the input

patterns. The predictions of the two regions are grouped together with a classifier. The

second proposed technique uses three regions. The first region learns the input and

performs spatial and temporal of the input patterns, and the sequence of outputs (the

active cells) are fed to the upper region TM to learn more abstract patterns and then

passes its active cells to TM in a third region as well. The set of active cells in all TM

concatenates into one array and passes it to the classifier.
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5.2 Hash SDR Encoder

5.2.1 Introduction

Encoding plays an important role in HTM systems and affects its performance. The

encoding region converts input data to SDRs because HTM systems demand data input

in this form to enable them to learn and recognise patterns.

5.2.2 Flexible Encoder

(Purdy, 2016) showed that the biological sensory system possesses constant extent of

values, which can be encoded. One such example is the cochlea. In humans, the ears

have a domain of between 20 Hz to 20 kHz that can deal with sound. When sounds

around us exceed the frequencies in this range, the ears become unable to handle it.

One can create a new encoder and can determine the range, but there is no flexibility to

change the range after the system learns this range. To cope with this issue, an encoder

could be created that possesses a constant number of bits and the ability to encode

without restriction regarding the range of values. This is done through the use of a hash

function. The SDRs produced are quite different, although sometimes there is a small

overlap between two SDRs that are far apart, but the HTM system can recognise these

SDRs. The hash function maps input of any length to a fixed size output. The input

is passed to the hash function, producing output called hash values or digests. Hash

functions are used to identify different inputs and are beneficial for cryptography.

There are many non-cryptographical hashing functions, such as the xxHash CRC32 2

and the Adler-32. The xxHash function is faster and achieves the required conditions,

such as estimating the collision and randomness of the produced hash values or digests.

Thus, this research used the xxHash function (Collet, 2015).

5.2.3 Problem Definition for Hash Encoder

This research has tested the CLA using Algorithms API through the standard NuPIC en-

coders on a smart home dataset. The datasets comprised of many columns representing

the sensors readings and the activity labels. The accuracy and the performance were

evaluated using the standard NuPIC encoders. The results revealed weakness of the

standard NuPIC encoders with multi-columnar datasets. Due to the nature of data in a

smart home with many sensors, there is a need to develop an encoder to deal with these

sensors. This study aimed to understand all of the aspects above in order to develop an
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efficient encoder. A hash encoder was used to rectify the CLA shortcomings with multi-

columnar datasets from a smart home and convert each record uniquely SDRs. The rules

for good encoders mentioned previously were taken into consideration. The Hash en-

coder uses a xxhash function to keep deterministic property. Moreover, the sparsity and

the dimensionality of the output is preserved. Thus, the last three required properties

for good encoders are met. For every sensor, its value was encoded and their output was

concatenated. The concatenation of the sensors’ readings constitute the first half of the

SDR. To achieve the first property, the semantic meaning, the standard NuPIC DateEn-

coder was used to encode the timestamp field. Then, the first hashed part of the SDR

was concatenated with this date encoder output. The result is two parts SDR, where

the first part encodes the sensors’ readings and the second part is dedicated to the date

field.

5.2.4 How Does the Hash Function Work?

Developing a new encoder requires encoding each record in the dataset that has a unique

SDR while maintaining its deterministic property, fixed-in dimensions and sparsity. This

research uses a xxhash function by feeding the input record to a hash function and

converting it to a digest. The output digest is used to present w-bits in the resulting

SDR. The figure 5.1 below shows how the hash works. First phase: each record in

the dataset such as all sensors status (e.g., [0,0,1,0,1,000,1]) that passes to a hashing

function will produce a hash digest. Second phase: The digest will be used to assign the

active bits in the SDR. The digest has many digits through each digit this was presented

by the index of the active bit.
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FIGURE 5.1: How the hash encoder works.

5.2.5 Analysis

Figures 5.2 and 5.3 show a 2D sanity runs HTM models in the browser with interactive

controls. It presents each bit in the SDRs generated through the encoder with different

inputs.
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(B) SDR Category Encoder1 (C) Scalar Encoder1

(D) Hash Encoder1

FIGURE 5.2: The output of SDR Category, Scalar and Hash Encoder for the same input
.

(B) SDR Category Encoder2 (C) Scalar Encoder2

(D) Hash Encoder2

FIGURE 5.3: The output of SDR Category, Scalar and Hash Encoder for another input .
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TABLE 5.1: Example of two different inputs.

Record S1 - S8 S9 S10 - S21 S22 S23 S24 S25 S26 S27 S28 S29 Activity

A → 0 1 0 0 1 0 0 0 0 0 0 sleep

B → 0 1 0 1 0 0 0 0 0 1 1 personal

After reading around 5000 records from the dataset, two records were taken, as table

5.1 shows, in order to illustrate the difference between them. The record A represents

sleep activity, and the record B represents personal activity. When looking to the above

Figure 5.2 and Figure 5.3, they show the SDRs of the two records using ScalarEncoder

and SDRCategoryEncoder. SDRs were generated for various activities such as sleep, per-

sonal and time, and each SDR was a little bit different. When the HTM system predicts

daily activities over time, it faces obstacles to distinguish between activities. Figure 5.2

and figure 5.3 shows the SDRs using the hash encoder. The SDRs generated between

them are extremely unique, which makes it easy for the HTM system to recognise these

activities.

We note that the input space for the ScalarEncoder and SDRCategoryEncoder are similar

and do not change drastically. However, the hash encoder has a completely different

representation for each input. The parameters for the Hash encoder were determined,

empirically through experiments, as follows:

N: dimensionality (total number of bits) is 600,

W: The number of active bits is 1, n: total number of bits for each sensor is 10,

As the smart home’s model used in this research include 29 sensors and each sensor has

10 bits, thus totalling 290 bits for all the sensors. The remaining available bits for date

encoder are 310 bits.

The hash encoder is able to work with high-dimensional binary data and convert each

record uniquely into SDRs because the standard NuPIC encoders are not able to deal

with high-dimensional binary data generated from datasets in a smart home. Hence,

the results using the hash encoder were promising for anomaly detection of ADLs in

the context of a smart home (Alshammari, 2018). It is anticipated that the uses of a

hash encoder for classification of ADLs in the context of a smart home will improve the

results.

The CLA with standard NuPIC encoders were tested on a smart home dataset. The

results of the experiments, presented in Chapter 6, revealed weakness of the standard

NuPIC encoders with multi-columnar datasets. This issue is due to the nature of data in a
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smart home that has many sensors. There is a need to develop a new encoder capable of

dealing with these high dimensional sensors. This research have used an existing Hash

encoder and compared its performance with the models generated by NuPIC algorithm

through standard NuPIC encoders. For more details about these findings and results on

encoders, see the chapter 6.

5.3 Classifier

5.3.1 Introduction

In classification and predictions, applications are required to have a classifier to decode

the state of the CLA model and generate significant predictions, where the classifier

component is at the top of the CLA model. (Balasubramaniam et al., 2015) illustrated a

lack of existing classifiers. It is difficult to infer and predict an output from these SDRs,

and there is excessive memory usage. The current implementation of the CLA, within the

NuPIC framework includes several classifiers: the k-nearest neighbour (K-NN) classifier,

the CLA classifier, and the SDR classifier.

5.3.2 Analysis

The KNN classifier and CLA classifier have been applied in many domains; however,

to the knowledge of the authors, these classifiers do not appear to have improved the

results of the CLA algorithm (Balasubramaniam et al., 2015), (Yuwei, 2017). To analyse

the performance with these classifiers, there are certain qualities for which the variances

need to be investigated between these classifiers.

(Balasubramaniam et al., 2015) illustrated the classifiers used in the NuPIC framework

as the KNN classifier and CLA classifier. The KNN classifier maps the nearest neighbour

and infers the output class, but there is an issue of storing each data point in memory,

which is not suitable for large amounts of data; this implies the need to use excessive

memory. The CLA classifier tries to map the active cells from the TM and learns from

these active cells to predict future values. However, the results are still not efficient.

(Yuwei, 2017) at Numenta developed an SDR classifier to improve the prediction ac-

curacy using a single feedforward neural network that uses the maximum likelihood

estimation. It provides a full predicted distribution. It can be applied for classification

and prediction, which produces better results than the CLA classifier and KNN classifier.
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They clarified that the KNN classifier is used for categorical classification, and it pre-

serves an SDR in memory but does not support the full predicted distribution. The CLA

classifier output is the probability distribution of the predicted labels and votes on the

label with the highest probability. However, the CLA classifier often predicts spurious

outliers or anomalies.

From the previous studies, the major problem with NuPIC framework is the limitations in

existing classifiers; which makes it difficult to infer and predict output from the produced

SDRs. The KNN classifier uses too much memory; thus, it is not currently heavily used.

The CLA classifier has spurious outliers in the prediction, while the latest SDR classifier

tries to remove spiky outliers in the prediction, supporting the full predicted distribution.

The CLA and SDR classifier architectures are not equivalent to what happens biologically

in the brain. They are not biologically inspired. The CLA and SDR classifiers have a

small partial relation to biological use, and there are sequences of numbers to predict

the number of steps into the future.

A (MLP) classifier was implemented to improve the CLA performance. The MLP is a

traditional supervised learning algorithm that uses online decoding. It is also related to

biological neural networks. The test results of the MLP classifier with the SDR classifier

were compared in Experiment in Chapter 6 on the same evaluation methods used. In

the following Section, the MLP classifier was presented that overcomes the problems

that have been presented previously.

5.3.3 Multi-layer Perceptron

The (MLP) is a feedforward ANNs model, and it is a supervised learning model used

for classification. The computational model of the MLP is inspired by the structure and

functional sides of biological neural networks. The MLP maps the values of input data

onto a value of suitable output. The data flow from the input layer to the output layer,

and the MLP includes multiple hidden layers between the input and output layers. Every

layer is fully connected to the next layer. Each node represents a neuron. Each input

node has a weight. A weighted sum is calculated from all the inputs, and then the out-

put is passed to a nonlinear activation function (Pedregosa et al., 2011), (Haykin et al.,

2009), (Heaton, 2008).

After performing the activation function, the output from it is not the final value. It is

passed to the next layer. Each input node contains connections, and each connection

contains a weight. Many weighted interconnections exist between hidden layers, and

the same input node has many connections that connect with many hidden layers with

different weights. The MLP uses backpropagation for training the network to reduce the
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error rate (Rumelhart et al., 1986).

The MLP works in an online fashion for separation and classification between activities.

However, because of the flexibility of ANNs and the ability to handle a nonlinear acti-

vation function, the neural networks represent an iterative method aimed to produce

smaller errors during learning and training the neural network to reach weights that

reduce the error rate. The units are connected between them in the form of interconnec-

tions. The MLP has some disadvantages, including the need for several hyperparameters

to be set, such as the learning rate, number of iterations, and number of hidden layers.

• The ANNs structure:

The ANN consists of an interconnected group of artificial neurons or processing

units, which show similarity to the biological neurons in the human brain. The

connections pass signals from one neuron to another, and each connection has a

weight. Each neuron or unit receives a number of inputs and produces output,

and the ANNs contains multiple hidden layers that are fully connected to the next

layer. The multilayer network includes the input layer, hidden layer, output layer,

and connections.

• Training or Learning in Neural Networks:

There are two methods for training and learning in neural networks. The first

is supervised learning, which provides the ground truth label with each example

in the network. The network learns (adjusts weights) by knowing the difference

between the actual output and target output. One of the most well-known learning

algorithms is backpropagation, which is used for training the network. The second

is unsupervised learning, where there are no labels available for the examples that

are used to group similar examples into clusters.

5.3.4 Backpropagation Algorithm

In the ANN model, a set of inputs are provided for a set of desired outputs, starting

with random values for weights (connection weights) and checking the results against

the training data. The actual outputs and desired outputs are calculated and compared.

When the results are not satisfactory i.e. the two outputs are not similar. Backpropaga-

tion calculates the error and determines the difference in the error in the network. It

tries to adjust the connection weights and biases and goes backward over every step to

reduce the error. The new weights are calculated using an equation based on the input

value, learning rate, error rate, and initial weights. This process is reiterated numerous

times. All parameters can be configured by the user, such as the epoch, batch size, learn-

ing rate, etc (Rumelhart et al., 1986).
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The values move to the output layer after the values have been calculated through the

previous steps. A comparison is made between the values (desiredvalue− actualvalue)
through the following error function equation 5.1:

E = target− output (5.1)

Moreover, there is a need to correct and adjust the weights using the learning process

from the network through the following equation 5.2:

Wi(Final) =Wi+ αβxi (5.2)

where α is the learning rate and β denotes (targetvalue − outputvalue), Wi is weight

and xi is input. It repeats these steps many times using feedforward and backward

(feedforward back propagation), called epoch, until it reaches the best output values

(Haykin et al., 2009).

5.3.5 How ANNs Works

The model for a neural network is called perceptron. There are many inputs and

weights, and this is basically a multiplication. W1 with X1 are multiplied, and W2

with X2, and so on. They are added together and then a bias component is added that

is always weighted. If the sum is greater than zero, then the output will be One, but

when the sum is Zero or less than Zero, then the output will be Zero.

5.3.6 Activation Functions

Activation functions process the input, weighted sum, and bias and calculate them.

When neurons pass the threshold, these neurons fire in a layer. The activation func-

tion processes inputs into units or neural networks. The activation functions that have

neural networks will be examined. There are five common activation functions for neu-

ral networks (Farhadi, 2017).

• Identity Function:

The identity function states that f(x) = x, it is not an activation function, which is

commonly used.

• Linear Function:

The linear function ( or step function) is suitable for binary classification tasks. The

96



Chapter 5 Proposed Multi-Region CLA Techniques 5.3. Classifier

terms ‘positive’ and ‘negative’ refer to the classifier prediction. All positive inputs

make it One, and all negative inputs make it Zero, as in the following equation :

f(x) =

0 if x < 0

1 if x ≥ 1

• Sigmoid Function:

There is a sigmoid that takes the form of a character (S). It is most commonly used

in practical applications that have a range that is only positive numbers e.g. [0, 1].

Whatever the input is, it maps onto [0, 1]. This is used because it has nonlinearity,

and it is easy to differentiate and derive. It is defined as follows equation 5.3:

S(x) =
1

1 + e−x
(5.3)

If one wants to represent positive numbers primarily in a neural network, the

sigmoid function is an appropriate choice for the activation function.

• Hyperbolic Tangent Function:

The hyperbolic tangent is over negative and positive numbers for the output of the

function, which contains [-1, 1]. Therefore, if someone deals with values that are

positive and negative, then this function is used. The derivative can be taken of

both the sigmoid and hyperbolic tangent functions.

• Softmax Function:

The softmax function is used for multiclass classification methods. It provides the

probability distribution for various classes, and it divides each output such that the

sum of the outputs is equal to one. This is used to impart probability. When there

are have many outputs, it can pass outputs to this function and attain the proba-

bility distribution of each. This is useful for finding the most probable occurrence

of the classification where the probability of a class is maximum.

At every time step, the model provides an output, which is the probability distri-

bution. It is summed to one at each time step. The label with high probability is

the output.

5.3.7 Application of the MLP classifiers

The MLP classifier receives input that is a vector containing Ones and Zeros, an SDR

from the TM as shown in figure 5.4. The input feeds into the network so that it arranges

the sets of weights in a matrix layer by layer as shown below in figure 5.4. Every layer

is fully connected to the next layer, and the input is multiplied by the weights. Then,

97



Chapter 5 Proposed Multi-Region CLA Techniques 5.3. Classifier

the activation function is applied, it uses a nonlinear activation function (the softmax

function) to count the probability distributions of class labels. And the results pass to the

next layer. The process continues in the same way until it reaches the last layer. The final

output value is the prediction value or actual value. The output values are compared

with the desired value (target) to determine the difference error among them. Then, the

derivative is calculated backward through each layer and is adjusted using the weights

to reduce the value of the error. This process is repeated until the error is smaller than

certain threshold.

FIGURE 5.4: The CLA working with MLP classifier.

The NuPIC framework classifiers were presented, and the current implementation of the

CLA has several classifiers: CLA, KNN, and SDR. A comprehensive review of the classi-

fiers was conducted, and their benefits and drawbacks were discussed. In this section,

this work tested the CLA using the NuPIC framework on a smart home dataset. The

author proposed and applied the MLP classifier and compared its results with the stan-

dard ones. This research attempts to improve the performance of the classifier for CLA.

The researcher proposed and applied the MLP classifier to provide a better prediction

of the inhabitants activities in a smart home. For more details about these findings on

classifiers, see the chapter 6.
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5.4 Multi-Region CLA Techniques

5.4.1 Introduction

With the rapid growth in neuroscience over the last half century, the interest of scientists

in neuroscience and cognitive psychology to understand how the memory biologically

works has increased. Although there are many studies about memory, no overarching

study has been conducted so far (Poo et al., 2016).

This section proposes two novel multi-region CLA techniques, explaining biological short

and long-term memory and presenting the capacity of sequential memory in the HTM

model. It offers some previous studies for the CLA and the HTM theory in the literature.

The following section introduces the purpose of developing the proposed technique and

an analysis of the reasons behind developing it.

5.4.2 Biological Short and Long-term Memory

Our memories are stored in a short-term memory that is a part of the brain called the

hippocampus. Then, those memories are consolidated in the neocortex for long-term

storage. The study of the neural circuits conducted at Massachusetts Institute of Tech-

nology (MIT) discovered that memories are formed in the hippocampus, which conveys

those memories to other parts of the brain in the neocortex. In a long-term memory, the

cells become silent for a long time until they become functionally mature with time (Liu

et al., 2012).

In 1953,(Shah et al., 2014) Henry Molaison underwent a delicate surgery in the brain

in an attempt to treat epilepsy, but after the operation, he lost the ability to make new

memories. He was able to remember memories only before the surgery. The doctors

discovered that they had accidentally cut part of his hippocampus, but it gave neuro-

scientists the opportunity to infer and understand how memories are created, stored,

and recalled. It was revealed that the hippocampus is very important for forming new

long-term memories. The actual storage process for these memories is performed in a

different part of the brain, in the neocortex. Scientists believe these short-term memo-

ries are formed and stored in the hippocampus before transfer to storage for long-term

memories in the neocortex, vanishing from the hippocampus. In 2012, (Liu et al., 2012)

MIT researchers found a way to classify neurons called engram cells that include specific

memories. This enabled the researchers to trace the circuits engaged in memory storage

and recall. They have derived a technique that helps activate cells using light, and they
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are able to turn cells on or off. They can excite the cells to remember a fear-conditioning

situation (Poo et al., 2016).

The researchers used this technique to excite the cells in a mice through a fear-conditioning

case. The mice underwent minor electric shocks with the aim of creating a frightening

event. Although light can be used to excite cells in mice to remember painful events in

both areas, only the hippocampus area naturally activated the cells. After two weeks,

the researchers tried to activate the cells in the hippocampus area using light, but the

mice no longer exploited those cells to remember but activated the cells existing in the

long-term memory in the neocortex.

5.4.3 Capacity of Different Forms of Sequence Memory

(Leibold & Kempter, 2006) illustrated the capacity of sequential memory. There is a

limit to storing long sequences, and sequential memory can be changed in size to store

minimal sequences. (Hawkins & Ahmad, 2016) explained in the HTM system that there

is no concept to determine how many stored sequences there can be or why the capacity

of sequential memory is not able to store long sequences. The HTM system is able to

learn the changes or transitions between these inputs. Thus, the capacity of the HTM

system can be determined by the number of transitions that can be used with mini-

columns.

The capacity is calculated by cells per column/column sparsity. Each cell recognises a

number of patterns through its basal dendrites. Where the basal synapses form lateral

connections to nearby cells in the region, it learns the transitions of patterns over time.

For example, when 2% of the columns are active, there are 10 cells per column, and

each cell recognises 100 patterns on its basal dendrites. Thus, 50,000 transitions that

can be stored ((10/0.02) * 100).

5.4.4 How Many Times Can the Same Input Represent Different Contexts?

To what extent can the number of the cells be increased in the TM? How can the number

of cells per column affect the TM ability to recognise an input sequence? The SP acti-

vating a group of the mini-columns that have a number of cells. The TM employs these

cells in mini-columns to make temporal relations between sequences of mini-columns

generated by SP. If user has 40 mini-columns with three cells per column, a single input

can be represented in (340) various contexts. The same word can be used in various

sentences, for example (he eats an apple, and she eats a pear), the term eats is in both

sentences. How can the CLA differentiate among them? The CLA uses one cell in the
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same mini-columns. Such a word (eats) has individual representation in different con-

texts. Although the word is in the same mini-column, the cell changes to represent

different contexts. The CLA has the ability to remember long sequences and recognise

different contexts. Increasing the number of the cells in a mini-column provides the CLA

with further capacity for sequence storage, and the CLA can retain long sequences in

different contexts. Each cell in a mini-column has a specific job to perform with con-

textual meaning in the TM. (Hawkins et al., 2016) illustrated that there is a possibility

to increase and decrease the number of cells per column. When user increases the cells

per column, it will increase the probability of encodings of input. They found, after

empirical experimentation, that using more than 10 to 16 cells per column was enough

for most cases; however, increasing cells in the mini-columns can be computationally

expensive. Regarding decreasing the number of cells per column, when one cell per

column is used, the CLA can remember one step back in history. There is limited ca-

pacity to recall longer sequences. Increasing the number of cells per column is suitable

for recognising time-based sequences (temporal context), but using a single cell in the

column is suitable for recognising spatial patterns.

5.4.5 Multi-Region HTM-Related work

The cortical learning algorithm (CLA) in the Numenta Platform for Intelligent Computer

(NuPIC) originally used one CLA region; however, in this research, two regions for the

hierarchy of the CLA were used. When using a single layer in the HTM system, there is a

limit, where the CLA is only able to remember shorter sequences. To settle this problem,

the HTM/CLA systems use multiple layers and more cells in a mini-column, allowing the

CLA to have further capacity that enables the CLA to remember long sequences, like the

columnar structure in a biological neural network (Jeff Hawkins, 2014).

(Agrawal & Franklin, 2014) tested the CLA with two regions, the feedback prediction

used was from the higher region to set the cells in TM in lower region to predictive state.

The performance of the CLA is better with two regions rather than one region.

(Kneller & Thornton, 2015) applied a HTM to detect anomalies and image reconstruc-

tion problems, they used the dataset of facial images. The authors proposed a new distal

feedback method, it was used from higher region to provide more information about ef-

fectiveness of neighbouring regions at a lower level regarding the action of their lateral

regions. They illustrated that the hierarchical message passing reinforces beneficial in-

formation, it cannot be implemented in one region. The feedback has accumulated after
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the temporal pooler in higher level region has run. Their results suggest that the dis-

tal dendrite method seems good and it is further efficient than the predictive coding

extension to the (CLA) PC-CLA approach.

(Rao & Ballard, 1999) presented The Hierarchical Predictive Coding (HPC) model that

transfers message passing (feedback predictions) from the higher region into the lower

region, higher level regions of a hierarchy predicts what input is coming next to send it

to lower-level regions, when there are prediction differences with lower-level activity, it

returns the prediction error. The errors can be used by the predictive estimator (PE) at

each level to rectify its actual assessment that can generate the next input.

Neuroscience suggests that the brain is continuously generating prediction about future

sensory inputs. (Friston, 2010) Friston’s free-energy principle supports this, that the

brain learns and tries to predict sensory input by the minimization of a free-energy

bound on the probability of sensory inputs. When the system updates the probability for

a hypothesis based on the statistics of its sensory input, the systems are doing Bayesian

inference. Bayesian inference is suitable for the dynamic analysis of a sequence of data.

The CLAs attempt to construct generative probabilistic model that is able to predict

future events or patterns based on the probability of the input it receives. Bayesian In-

ference aims to improve performance in the case of prediction uncertainty, thus using

a top-down effect, as the areas or regions higher in the hierarchy have more abstract,

hence passing the predictions to the lower regions improves their knowledge, the CLA

white paper (Hawkins et al., 2011) applied a one region system, one region does not

meet the needs to apply Bayesian Inference. A two region CLAs can be applied using a

Bayesian inference system, as the human brain biologically works (Agrawal & Franklin,

2014). (Hawkins & Blakeslee, 2004a) demonstrated that the lower regions of the hier-

archy learn basic patterns, and these recognised patterns become more advanced and

abstract in the higher regions.

5.4.6 Proposed Parallel Spatio-Temporal Memory Stream Technique (CLA2)

The proposed technique has two regions as shown in figure 5.5, called first and second

region, both regions receive encoded input and is fed to a spatio-temporal grouping.

The second region passes the active cells in the TM to be concatenated with the active

cells in the TM in the first region. The original CLA, which is the implementation of

the HTM theory, includes one spatial pooler and one temporal memory, the model can

learn on one memory level by adjusting some parameters, such as the CellsPerColumn.

The model learns either short-term or long-term patterns, not both of them. A novel

102



Chapter 5 Proposed Multi-Region CLA Techniques 5.4. Multi-Region CLA Techniques

approach has been used in this research, which included two spatial poolers and two

temporal memories to simulate short-term and long-term memories. The functions of

the proposed technique is divided into the following steps:

• Encode input from the dataset.

• The spatial pooling (SP) in the first region learns from the output encoder.

• The TM in the first region learns, predicts, and feeds the indices of the active cells

in the first region to the vector.

• Encode input from the dataset.

• The SP in the second region learns from the output encoder.

• The TM in the second region learns, predicts, and feeds the indices of the active

cells in the second region to the vector.

• The vector concatenates both the active cells from TM in the first and second re-

gions and then moves them to the classifier.

As shown in Listing 1, feeding the input record into a hash function to encode input and

convert it to a digest builds the SDR. The spatial pooler in the first and second regions

receives and learns from the SDR generated by an encoder. The temporal memory in

the first region learns the temporal changes of the SDRs generated by the SP in first

region and predicts and feeds the indices of the active cells in the first region to the

vector. Temporal memory in the second region learns the temporal changes of the SDRs

generated by the SP in the second region and predicts and feeds the indices of the active

cells in the second region to the vector. The vector concatenates both the active cells

from TM in the first and second regions and then moves them to the classifier. The

listing 1 shows the pseudocode of the implementation of the proposed technique.
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Algorithm 1 Parallel Spatio-Temporal Memory Stream .

1: hash← xxhash32Encoder(sensors)

2: procedure CONSTRUCT-SDR(hash, n,w, p)

3: First Region

4: activeArray ← spatiaIPooler(sdr) . Spatial Pooler learns SDR

5: activeColumns← set(findidxs(activeArray))

6: TemporalMemory ← activeColumns . TM learns the transitions of the SDRs

7: F ← GETACTIV ECELLS

8: Second Region

9: activeArray ← spatiaIPooler(sdr)

10: activeColumns← set(findidxs(activeArray))

11: TemporalMemory ← activeColumns

12: S ← GETACTIV ECELLS

13: V ector ← (F, S) . Concatenates two arrays into one vector

14: Classifier ← V ector . Moves the SDR in the vector to Classifier

15: end procedure
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FIGURE 5.5: Parallel Spatio-Temporal Memory Stream.

5.4.6.1 Analysis

This research has been used the CLA in one region; however, state-of-the-art algorithms

have recently produced better results than the CLA based on the experiments presented

in Chapter 6. Thus, there is a need to use two regions in the hierarchy in the HTM

model to improve performance. The first region learns short term patterns and second

region learns long term patterns, in order to remove the limitation of memory manage-

ment of the CLA. There are many model parameters for the TM in each region. After

testing on all datasets, the performance of the CLA model improved when the value

of CellsPerColumn decreased in the TM in the first region to learn short patterns and

increased the cells per column in the TM in the second region to learn long patterns.

It seemed that the performance of the model was affected by changing the number of

cells. However, the performance of the CLA model has significant improvement. Figure

5.6 shows the performance of several (CLA2) with different values for the parameters

CellsPerColumn in first region versus the CellsPerColumn parameter in second region.
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FIGURE 5.6: CLA2 results with different CellsPerColumn values with House-A.

Learning input patterns from streaming datasets with a one-region CLA is restricted by

the number of cells per column applied which limits the model’s memory. One-region is

insufficient to manage short and long-term memory of such huge amounts of streaming

data generated from smart home because the model learns either short-term or long-

term patterns, not both of them. Tackling this issue requires memory management of

the CLA model to learn short and long-term patterns. This research proposes a multi-

region CLA technique to learn short and long-term patterns. When learning short-term

patterns, the proposed technique uses a small number of CellsPerColumn to cope with

short term events. Using such settings, the CLA can learn sequences and remember a

short step back in history. Regarding learning long-term patterns, the proposed tech-

nique uses a large number of CellsPerColumn to enable the CLA to learn patterns and

remember long- term sequences. Every region learns the patterns to provide various

memory levels in a parallel spatio-temporal memory stream, and every region performs

spatio-temporal grouping of the input patterns. The proposed technique concatenates

the predictions of short-term patterns with predictions of long-term patterns into a vec-

tor and then transfers them to a classifier.

5.4.7 Proposed Cascaded Temporal Memories Stream Technique (CLA3)

The proposed technique has three regions as shown in figure 5.7. The first region learns

smaller features and second, third regions are more abstract in order to learn and recog-

nise patterns, the first region learns from the encoder’s output, which is fed to spatio-

temporal grouping, the first region passes its active cells to TM in a second region. The

second region receives the active cells and learns it and then passes up its active cells to
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TM in a third region. The third region receives the active cells and learns it. All regions

pass the active cells in their TM to concatenate together in one vector. The reason for

the message passing is to transfer feedforward predictions from the second and third

regions to be concatenated with the first region in one vector that combines these pre-

dictions to improve knowledge. The functions of the proposed technique can be divided

into the following steps:

• Encode input from the dataset.

• The spatial pooling (SP) in the first region learns from the output encoder.

• The TM in the first region learns, predicts, and feeds the indices of the active cells

in the first region after they have been converted to column indices into the second

region (TM).

• The TM in the second region learns, predicts, and feeds the indices of the active

cells in the second region after they have been converted to column indices into

the third region (TM).

• The TM in the third region learns, predicts.

• All regions feed the indices of the active cells in their TM to concatenate together

in one vector.

• The vector concatenates all the active cells from TM in the first, second and third

regions and then moves them to the classifier.

As shown in Listing 2, the input record is fed, encoded, and converted as noted above

to build the SDR. Again, the spatial pooler in the first and second regions receives and

learns from the SDR generated by an encoder. The temporal memory in first region

learns the temporal changes of the SDRs generated by the SP in the first region and

passes its active cells to the TM in a second region. The second region receives the

active cells and learns the input and then passes it up to its active cells to the TM in

the third region to learn it. All regions pass the active cells in their TM to concatenate

together in one vector. The listing 2 shows the pseudocode of the implementation of the

proposed.
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Algorithm 2 Cascaded Temporal Memories Stream .

1: hash← xxhash32Encoder(sensors)

2: procedure CONSTRUCT-SDR(hash, n,w, p)

3: First Region

4: activeArray ← spatiaIPooler(sdr) . Spatial Pooler learns SDR

5: activeColumns← set(findidxs(activeArray))

6: TemporalMemory ← activeColumns . TM learns the transitions of the SDRs

7: F ← GETACTIV ECELLS

8: Second Region

9: activeColumnsS ← list(getsdr(10, F )) . Convert the active cells to column

indices

10: TemporalMemory ← activeColumnsS . The TM learn it

11: S ← GETACTIV ECELLS

12: Third Region

13: activeColumnsT ← list(getsdr(15, S))

14: TemporalMemory ← activeColumnsT

15: T ← GETACTIV ECELLS

16: V ector ← (F, S, T ) . Concatenates three the indices of the active cells into one

vector

17: Classifier ← V ector . Moves the SDR in the vector to Classifier

18: end procedure
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FIGURE 5.7: Cascaded Temporal Memories Stream.

5.4.8 Summary

The proposed technique of using two or more regions that allow learning input patterns

from streaming datasets provides a more comprehensive representation of patterns be-

cause it used more than the temporal memory in the hierarchy. Every region contains a

certain functionality, and the more regions that are increased in the hierarchy, the hier-

archy is able to predict patterns more robustly. The author proposed and used the two

novel multi-region CLA techniques that include a hash encoder and an MLP classifier to

improve the prediction performance in smart home and compared the results with those

for one region. For the results of using the proposed technique, see the chapter 6.
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Chapter 6

Test and Evaluation

6.1 Introduction

This Chapter introduces descriptions of procedures, evaluation methodology and ex-

periment design. Moreover, the next sections present the preparation of the datasets

and the performance metrics used to evaluate the proposed models. This Chapter pro-

vides the results of applying the base-line CLAs, the proposed techniques of CLA as well

as state-of-the-art supervised learning techniques for activity classification in the smart

home.

6.2 Evaluation Methodology

This research is divided into two phases. The first phase aims to apply and evaluate the

CLA performance to identify its weaknesses and limitations in the smart home domain.

The second phase aims to modify the CLA to overcome the identified weaknesses in the

first phase.

The evaluation of machine learning algorithms is limited by the lack of real datasets

from smart homes. Due to the high cost of building real smart home datasets, there

is a need for powerful simulation tools that can represent the ADLs of the inhabitants.

These simulation tools offer flexibility, scalability and accessibility for the researcher

(Alshammari et al., 2017; Bouchard et al., 2010).

To evaluate the CLA and other state-of-the-art machine learning algorithms perfor-

mance, this research will use real and simulated smart home datasets. The following

subsections describe the preparation of the datasets and the performance metrics used

to assess the quality of the proposed models.
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6.2.1 Real Smart Home Dataset:

For the real-world dataset, ARAS dataset was used (Alemdar et al., 2013a). The dataset

was generated from real activities engaged by multi-inhabitants in two separate smart

homes during a period spanning two months. The dataset contains 20 columns of binary

data that represent the sensor values (0 represents OFF state, and 1 represents ON state)

sampled each second; whereby, column 21 represents the activity labels for Resident 1,

and column 22 represents the activity labels for Resident 2. The residents perform

various labelled activities (27 different activities).

This research used this dataset but has combined the activities into five categories,

namely: Other, Sleeping, Eating, Personal, and Relaxing. Resulting in a total collec-

tion of 25 activities. Another pre-processing step was performed to reduce the size of

the dataset from 86400 records per day to 1,440 records. The reduction was done by

changing the sample rate from seconds per day to minutes per day. The reduction took

care of the sensors’ values that changed in-between minutes by retaining these changes.

This step reduced the overall dataset size from 5,184,000 records to 86400 records. The

motivation behind this step came after the analysis of the dataset which revealed that

most of the transitions of activities take longer than one minute.

6.2.2 Synthetic Smart Home SIMADL Dataset

This research used OpenSHS (Alshammari et al., 2017) which is an open source simula-

tion tool that offered the flexibility needed to generate the inhabitants data for classifica-

tion of ADLs. OpenSHS was used to generate several synthetic datasets that includes 29

columns of binary data representing the sensor values; whereby, column 30 represents

the activity labels for each inhabitant, and column 31 represents the timestamp. The

sampling was done every second. Seven participants were asked to perform their sim-

ulations using OpenSHS. Each participant generated six datasets resulting in forty-two

SIMADL datasets in total. The participants self-labelled their activities during the sim-

ulation. The labels used by the participants were: Personal, Sleep, Eat, Leisure, Work,

Other. The total number of records is 2,674,910 records.

6.2.3 Experiment Design

After the preparation of the forty-two SIMADL synthetic datasets and the two real-world

datasets, the records of each dataset are fed to a machine learning model. For each

dataset, the data was split into two parts: a training part, where the model is learning
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from the data without scoring its performance, and a testing part, where the model’s

classification accuracy is evaluated. The training part size is 80% of the total size of the

dataset and the remaining 20% is used for testing. No shuffling was performed because

the activities have natural sequence progression. All the sensor’s readings were fed to

the tested models with the exception of the timestamp column. The timestamp column

was not included as one of the input features because of the inability for some of the

models to work with this data type and to ensure a levelled playing ground for all the

evaluated models.

6.2.4 Performance Metrics

The performance of the HTM model generated by the standard NuPIC was quantitatively

measured to evaluate its effectiveness, through metrics depending on the evaluation cri-

teria. Examples of evaluation metrics are Precision, Recall and F-Measure. The same

datasets and evaluation procedure will be used with state-of-the-art machine learning

algorithms e.g. AdaBoost, CNN, DTs, HMM, LSTM, MLP, SVM, SGD and SP in order to

compare their performance with the proposed technique. This research uses the same

two datasets, the real and the simulated smart home datasets, to test and evaluate the

performance of the novel approaches, presented in Chapter 5 are using the same evalua-

tion metrics. The novel multi-region CLA techniques that include a hash encoder and an

MLP classifier are based on the CLA but with modification for the first region, encoder

due to the limitations of the standard NuPIC encoder when dealing with multidimen-

sional datasets. In this research creates a custom encoder, a novel modification for the

encoder region so that the data can be fed to the new encoder (a Hash encoder). Instead

of using standard NuPIC encoders.

This research has created a predictive model that encompasses massive data, including

number of activities (labels). In order for the model to correctly predict each activ-

ity, it requires evaluating the performance of the model by metrics, depending on the

evaluation criteria. The evaluation metrics used are Precision, Recall and F-Measure.

The inhabitants’ ADLs usually vary from one inhabitant to another. Moreover, the ratio

of the performed activities for each inhabitant is usually not similar. For example, the

“Sleeping” activity may constitute a bigger portion of the whole activity space. Thus, it

is good to assume that the labels are imbalanced (Ordóñez & Roggen, 2016). Therefore,

simple metrics such as the accuracy metric, shown in equation 6.1, are not suitable for

this type of data.

accuracy =
TP + TN

TP + TN + FP + FN
(6.1)
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A naive classifier that predicts the labels with highest frequencies could get high accuracy

score. To overcome this issue, F1 score (F-Measure) was used. As shown in equation

6.2, F1 score is defined in terms of Precision and Recall.

F1 = 2× (Precision×Recall)
(Precision+Recall)

(6.2)

The precision is the ratio of the relevant points that have been selected by the model to

the total selected points, as shown in equation 6.3, where TP is the True Positives and FP

is the False Positives.

precision =
TP

TP + FP
(6.3)

The recall is the ratio of relevant points that have been selected by the model to the

overall total of the relevant points, as show in equation 6.4, where TP is the True Positives

and FN is the False Negatives.

recall =
TP

TP + FN
(6.4)

The percentage of wrong classifications (PWC) is the ratio of the wrongly classified

classes to the total testing classes.

PWC =
100 ∗ (FN + FP )

TP + FN + FP + TN
(6.5)

6.2.5 Parameter Selection for the CLA Model

The first phase is swarming, the basic method used to find a set of optimized parameters

of the model for a certain dataset. The NuPIC framework is unable to determine the

nature of the data types and structure; thus, using the swarm algorithm is required to

identify and select the best model parameters to be configured before feeding the data

into the CLA. Additionally, it is used to identify the encoder type. The second phase is

training, in which passing each record from the dataset to the CLA model will enable

learning for certain records from the dataset. The third phase is testing, in which passing

a portion of the dataset to the CLA model with learning in a disabled state.
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6.3 Results

In this section presents the overall comparison results of various models and identifies

the overall accuracies associated with each dataset over the supervised machine learn-

ing techniques, as well as the CLA. These results and statistics obviously show each

algorithm’s performance for activity classification with each dataset. This section can

be divided into two parts: first part is base-line CLAs versus proposed multi-region CLA

techniques results and second part is state-of-the-art machine learning techniques re-

sults.

6.3.1 Base-line CLAs Versus Proposed Multi-Region CLA Techniques.

This research used NuPIC version 1.0.3 Algorithms API1 and NuPIC Bindings version

1.0.0 to implement classification for the inhabitants daily living activities. The models

were abbreviated as shown in Table 6.1. As shown in Figure 6.4 the components of each

proposed model were presented. Figures in (6.1, 6.2, 6.3) and (Appendix B Tables of

Results) show a summary of classification’ results this experiment illustrates the perfor-

mance of novel multi-region CLA techniques that combine a hash encoder and an MLP

classifier on the performance of activity classification techniques and the percentage of

correct classification. Moreover, these results tested the CLA using the standard NuPIC

encoders and SDR classifier on smart home datasets.

This study was compared the CLA with the standard NuPIC encoders and SDR classifier

against the CLA with hash encoder and SDR or MLP classifier , as well as two or three

regions with a hash encoder and MLP classifier. CLA3 achieved 66.38% F-measure on

the real dataset from House A, and the highest F-measure score, 92.63%, was achieved

in CLA2 model on the real dataset from House B. In the synthetic SIMADL dataset (Av-

erage), a classification F-measure score of 96.21% was obtained with the CLA3 model.

The base-line CLAs with the standard NuPIC encoders did not produce good results.

The performance of the CLA could have been improved if a custom and more suitable

encoder was used. The high-dimensional and binary nature of the data types in the

datasets was a challenge for the existing encoders. The existing encoders are designed

to work with simple scalar and categorical datatypes.

This research used a new hash encoder for activity classification in a smart home. Its

performance was compared with the CLA with the standard NuPIC encoders; CLA0

achieved a prediction rate in House A of F-measure 61.74%, while the prediction rate in

House B was represented by 88.91% F-measure score. In the synthetic SIMADL dataset

1http://nupic.docs.numenta.org/1.0.3/index.html
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(average), the achieved F-measure by the CLA0 was 89.38%, and it showed better results

than the CLA with the standard NuPIC encoders.

The new hash encoder was used with an SDR classifier in one region (CLA0). Its perfor-

mance was compared with the CLA classifier instead of the SDR classifier using the same

model parameters. The CLA with the SDR classifier produced meaningful predictions,

providing better results than the CLA with the CLA classifier.

The CLA2, CLA3 were competitors in House A, and the forty-two datasets with the state-

of-the-art machine learning techniques. The CLA2 model exceeded the state-of-the-art

machine learning techniques in House B with an F-measure of 92.63%.

The CLA1 model has achieved better results than the CLA0, and the CLA1 model used a

hash encoder with an MLP classifier instead of an SDR classifier in one region. The MLP

classifier could produce meaningful predictions for different ADL patterns.
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FIGURE 6.1: Comparison between different CLA settings and the proposed techniques-
House-A.
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SIMADL dataset.

TABLE 6.1: Abbreviations for the evaluated models

SDRCategoryEncoder CLA with SDR Category Encoder and SDR Classifier

CategoryEncoder CLA with Category Encoder and SDR Classifier

ScalarEncoder CLA with Scala Encoder and SDR Classifier

CLA0 CLA one region with Hash encoder and SDR Classifier.

CLA1 CLA one region with Hash encoder and MLP Classifier.

CLA2 CLA two region (Parallel Stream) with Hash encoder and MLP Classifier.

CLA3 CLA three region (Cascaded TMs) with Hash encoder and MLP Classifier.

FIGURE 6.4: The components of each proposed model.

The results shown in Figures (6.1, 6.2 and 6.3) show different findings. It is obvious that

the obtained results for the real datasets showed less performance accuracy than the

synthetic datasets. Because the inhabitants are asked to assign their activities manually,

it was prone to human errors. The real-world datasets have noisy data, such as missing

data and data from faulty sensors. Especially, the real-world dataset ARAS House A

is inconsistent because one of the inhabitants left the house for long period of time,
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however this has not been shown in the dataset, instead House A shows continuous

activities, which affects the performance results. The CLA0 used a new hash encoder to

deal with the high-dimensional binary data, which explains the increase in performance

over the standard NuPIC encoders, as the standard NuPIC encoders are only able to deal

with a small number of columns. In addition, CLA1 applied the MLP classifier rather

than the SDR classifier. The MLP classifier receives the SDR output from the TM to

produce better predictions. Hence, the MLP classifier outperformed the classifiers used

in the current implementation of CLA. Furthermore, CLA2 has used the multi-region

CLA to remove the limitation of memory management of the original CLA. CLA2 can

learn both short-term and long-term patterns in parallel. In the one-region CLA, the

model learns either short-term or long-term patterns, not both of them. CLA2 settings

have improved the long-term and short-term prediction performance in the context of

a smart home. In addition, CLA3 uses a three-region CLA, where the first region learns

smaller features, and the second and third regions are more abstract in order to learn

and recognise patterns, this allows the CLA3 to produce better performance than the

one-region CLA.

6.3.1.1 The selected model parameters by the swarm optimiser.

The swarm optimiser was applied to find the best parameters for these models under

consideration for both real and synthetic datasets, you can see the suggested model

parameters are shown below

SpatialPooler(

inputDimensions =(4517,),

columnDimensions =(2048 ,) ,

synPermConnected =0.1,

synPermActiveInc =0.05,

synPermInactiveDec =0.1,

globalInhibition=True ,

numActiveColumnsPerInhArea =40,

maxBoost =1.0,

potentialPct =0.8),

TemporalMemory(

columnDimensions = (2048,),

cellsPerColumn =32,

initialPermanence =0.21,

minThreshold =11,

maxNewSynapseCount =20,

permanenceIncrement =0.1,

permanenceDecrement =0.1,

activationThreshold =14,

maxSegmentsPerCell =128,

maxSynapsesPerSegment =32)
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LISTING 6.1: The suggested model parameters by the swarm optimiser.

The swarm optimiser was used to export the CLA models’ parameters, for Standard

NuPIC encoders that contains many types of encoders such as scalar encoder, category

encoder and SDR category encoder. However, the swarm did not generate good models

parameter as shown in Listing 6.1, because the dataset has many sensors.

SpatialPooler(

inputDimensions =(600,),

columnDimensions =(600,),

synPermInactiveDec= 0.0000081 ,

synPermActiveInc =0.05,

synPermConnected =0.1,

globalInhibition=True ,

numActiveColumnsPerInhArea =38,

boostStrength =1.0,

potentialPct =0.8,

TemporalMemory(

columnDimensions = (600,),

cellsPerColumn= 4,

initialPermanence =0.21,

minThreshold =4,

maxNewSynapseCount =20,

permanenceIncrement =0.1,

permanenceDecrement =0.1,

activationThreshold =9,

maxSegmentsPerCell =128,

maxSynapsesPerSegment =32,

LISTING 6.2: The best parameters found for Standard NuPIC Encoders models and SDR

Classifier models in synthetic datasets.

Using the model parameters as shown in Listing 6.2, the CLA has a classification rate

in the forty-two SIMADL datasets of average F-measure with SDR-Category encoder

was 40.22% , the Category encoder achieved 59.87% and the Scalar Encoder achieved

57.38%, although the columnDimensions, inputDimensions were set =1024 in the

Scalar Encoder, to increase the model performance.

Using the same model parameters, the CLA with Hash encoder and SDR Classifier was

applied to the synthetic dataset, the average F-measure was 76.05%. Additionally, the

CLA with Hash encoder and CLA Classifier was used, the average F-measure was 72.61%.

This research attempted to find the best parameters for these models in both real and

synthetic datasets, you can see the suggested model parameters in Section 6.4
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SpatialPooler(

inputDimensions =(1024,),

columnDimensions =(600,),

synPermInactiveDec =0.0007 ,

synPermActiveInc =0.0003 ,

synPermConnected =0.1,

globalInhibition=True ,

numActiveColumnsPerInhArea =20,

boostStrength =1.0,

potentialPct =0.95,

TemporalMemory(

columnDimensions = (600,),

cellsPerColumn= 10,

initialPermanence =0.21,

minThreshold =9,

maxNewSynapseCount =20,

permanenceIncrement =0.1,

permanenceDecrement =0.1,

activationThreshold =9,

maxSegmentsPerCell =128,

maxSynapsesPerSegment =22,

LISTING 6.3: The best parameters found for Standard NuPIC Encoders models and SDR

classifier models in real datasets.

Using the model parameters as shown in Listing 6.3, the CLA with SDR-Category encoder

in ARAS, the real dataset has obtained a classification rate in House A of F-measure was

21.39 %, while that for House B was F-measure 73.62%, the Category encoder in House

A achieved 21.16 %, while that for House B was 74.15%, the Scalar Encoder in House A

achieved 21.67 %, while that for House B was 76.38%. The columnDimensions were set

to = 700 in the SDR-Category encoder and in the Scalar Encoder the columnDimensions

were set to =500.

Using the same model parameters, the CLA with the Hash encoder and SDR Classifier

was applied to the ARAS, the real dataset, the prediction achieved rate of F-measure in

House A was 53.94 %, in House B was 86.71%. Additionally, the CLA with the Hash

encoder and CLA Classifier was applied to House A and the achieved, F-measure was

34.50% in House A, and 84.28% in House B.

# First Region

SpatialPooler(

inputDimensions =(3400,),

columnDimensions =(600,),

synPermInactiveDec= 0.0000081 ,

synPermActiveInc =0.05,

synPermConnected =0.1,

globalInhibition=True ,
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numActiveColumnsPerInhArea =43,

boostStrength =1,

potentialPct =0.8),

TemporalMemory(

columnDimensions = (600,),

cellsPerColumn= 4,

initialPermanence =0.21,

minThreshold =11,

maxNewSynapseCount =20,

permanenceIncrement =0.001 ,

permanenceDecrement =0.001 ,

activationThreshold =12,

maxSegmentsPerCell =128,

maxSynapsesPerSegment =32,

# Second Region

SpatialPooler(

inputDimensions =(3400,),

columnDimensions =(600,),

synPermInactiveDec= 0.0000081 ,

synPermActiveInc= 0.05,

synPermConnected =0.1,

globalInhibition=True ,

numActiveColumnsPerInhArea =43,

boostStrength =1.0,

potentialPct =0.8),

TemporalMemory(

columnDimensions = (600,),

cellsPerColumn= 7,

initialPermanence =0.21,

minThreshold =7,

maxNewSynapseCount =20,

permanenceIncrement =0.000000585 ,

permanenceDecrement =0.000000585 ,

activationThreshold =9,

maxSegmentsPerCell =128,

maxSynapsesPerSegment =32,

# Third Region

TemporalMemory(

columnDimensions = (600,),

cellsPerColumn= 15,

initialPermanence =0.21,

minThreshold =7,

maxNewSynapseCount =20,

permanenceIncrement =0.000000585 ,

permanenceDecrement =0.000000585 ,

activationThreshold =9,

maxSegmentsPerCell =128,

maxSynapsesPerSegment =32,
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LISTING 6.4: The best parameters found for novel multi-region CLA techniques that

include Hash Encoder models and SDR/MLP classifier models.

After, empirical testing to find the best model parameters for the proposed model, the

parameters shown in Listing 6.4 have produced better scores. One of parameters in

models’ parameters it calledw, it represents the number of active bits to the total number

of bits, w was selected to be = 12 in all models but in the Parallel Spatio-Temporal

Memory Stream model (CLA2) w was = 21, and also the columnDimensions were set

to = 1200 in the first region and the columnDimensions = 1500 in the second region,

to produce the best results for house A.

6.3.2 State-of-the-Art Techniques Versus Proposed Multi-Region CLA Tech-

niques.

The results of the selected state-of-the-art machine learning models are obtained using

several software packages. Primarily the scikit-learn (Pedregosa et al., 2011) and keras

(Chollet et al., 2015) were used. Due to the various configurations used for certain

models, the models abbreviated as shown in Table 6.2. Using Precision, Recall, and

F-measure as evaluation metrics, the results are shown in Figure 6.5 for House A from

ARAS dataset, Figure 6.6 for House B from the same dataset, and Figure 6.7 for the

synthetic SIMADL dataset. Tables of Results in Appendix B show a summary of the

results classifications.

The overall performance of all the evaluated machine learning algorithms across all

datasets using F-measure score is summarised in Figure 6.8. The results show competi-

tive performance of the evaluated algorithms. However, three of the top five algorithms

are based on neural networks.
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FIGURE 6.5: state-of-the-art machine learning techniques with CLA with ARAS Real House-A.
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FIGURE 6.6: state-of-the-art machine learning techniques with CLA with ARAS Real House-B.
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FIGURE 6.7: state-of-the-art machine learning techniques with CLA with Synthetic SIMADL Dataset (Average).
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TABLE 6.2: Abbreviations for the evaluated models

AB10 AdaBoost with 10 estimators

AB20 AdaBoost with 20 estimators

AB30 AdaBoost with 30 estimators

CLA0 Cortical Learning Algorithm one region with Hash encoder and SDR Classifier.

CLA1 CLA one region with Hash encoder and MLP Classifier.

CLA2 CLA two region (Parallel Stream) with Hash encoder and MLP Classifier.

CLA3 CLA three region (Cascaded TMs) with Hash encoder and MLP Classifier.

CNN Convolutional Neural Network

DT5 Decision Tree with max depth of 5

DT10 Decision Tree with max depth of 10

DT20 Decision Tree with max depth of 20

HMM Hidden Markov Model

LSTM Long Short Term Memory

MLP Multi-layer Perceptron

SVMR Support Vector Machine with RBF kernel

SVML Support Vector Machine with linear kernel

SVMP Support Vector Machine with polynomial kernel

SVMS Support Vector Machine with sigmoid kernel

SGDS Stochastic Gradient Descent with linear SVM function

SGDR Stochastic Gradient Descent with regression function

SGDL Stochastic Gradient Descent with logistic regression function

SP Structured Perceptron

6.4 Discussion

After evaluating the performance of each algorithm for activity classification with each

dataset, the results for different models are shown in the figure 6.5, 6.6 and 6.7. The

results of applying the proposed algorithm and using the hash encoder (CLA0 model)

instead of the standard HTM encoders seemed promising, and it improved the perfor-

mance of the model as well as the CLA1, which model used an MLP classifier in one

region. The CLA1 achieved better results than the CLA0 that used a SDR classifier.

However, recently, state-of-the-art algorithms have produced better results than both

the CLA0 and CLA1 models. This research used two novel multi-region CLA techniques

that include a hash encoder and an MLP classifier (CLA2 algorithm and CLA3 algorithm)

to improve the long- and short-term prediction performance in the context of a smart
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home. The results illustrate the influence of using two novel multi-region CLA tech-

niques on performance for activity classification. Both novel techniques (CLA2 model

and CLA3 model) are able to compete with and surpass the performance of the state-of-

the-art algorithms on some datasets.

The choice of the kernel type used with SVM proved to be crucial. Using a polynomial

kernel produced the worst results especially in House A. While using a linear kernel and

an RBF kernel produced the best results for the SVM algorithm. Increasing the number

of estimators for AdaBoost did not improve the results and the best results obtained

with ten estimators. The algorithms based on neural networks showed superior perfor-

mance over most other algorithms. However, the CLA2 achieved the highest F-measure

(92.63%) of all prediction models for the second house (B) of the real-world, ARAS

dataset. DT, LSTM, SVM and SGD are good candidates for the task at hand. While

HMM, AdaBoost and SGD with regression function showed much less performance ac-

curacy. HMM as an unsupervised algorithm does not compete well with other supervised

algorithms in this context.

In another research effort, the HMM was evaluated on the ARAS dataset and the re-

ported accuracy results for House A is 61.5% and for House B is 76.2% (Alemdar et al.,

2013a). The proposed techniques obtained accuracy results of 53.9% for House A and

92.3% for House B. It is worth noting that the differences in the results could be at-

tributed to the preformed pre-processing steps. The previously mentioned work used

leave-one-out cross validation on the dataset and the reported results were the average

accuracy. For House A, the minimum accuracy was 46.3% and the maximum accuracy

was 88.4% . For House B, the minimum accuracy was 31.1% and the maximum accu-

racy was 96.7% (Emi & Stankovic, 2015). In this work no cross-validation technique was

used because the assumption was that the activities have natural sequence progression

and any cross-validation step will break this assumption.

As expected, the obtained results for the real datasets were more challenging than those

for the synthetic datasets.

The CLA results appeared promising. Both real and synthetic datasets used in this study

were derived from a smart home environment whether real or simulated. These datasets

included multiple binary sensory inputs represented in a multi-column array. The swarm

process with the standard NuPIC encoders was not suitable for a large number of fea-

tures; therefore, it did not provide good model parameters.

This research followed all four rules to apply a new encoder in order to deal with

multi-dimensional datasets and create a new encoder. Hence, the CLA performance
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has achieved consistently good results and is competitive with other machine-learning

algorithms to classify and predict daily activities in a smart home.

(Alemdar et al., 2013a) proposed the application of a HMM to classify the activities

of daily living in multiple house inhabitants. They developed the ARAS dataset to as-

sess their proposed algorithm. They achieved a classification rate of 61.5% in House A,

while that for House B was 76.2% (Alemdar et al., 2013a). (Prossegger & Bouchachia,

2014) used decision trees to classify activities of daily living in multiple house inhabi-

tants. The application was called E-ID5R. They used the same ARAS dataset to assess

their proposed algorithm. The evaluation of the classication of the activities in House

A has a classication rate of 40%, while that for House B is around 82%. The CLA2

and CLA3 have classication rates in House A and House B that were better than their

proposed algorithms in (Alemdar et al., 2013a), (Prossegger & Bouchachia, 2014). How-

ever, decision tree algorithms have achieved good results after a pre-processing step was

performed on the ARAS dataset.

Other studies (Lavesson & Davidsson, 2006), (Domingos, 2012) indicated that the model

parameters play an important role in the performance of the algorithm. Sometimes, the

algorithm is suitable for this task, but if the selection of the model parameters is inappro-

priate, the performance will be low. This research used particle swarm optimisation to

generate the best model parameters, as shown in Listing 6.1, but the swarming step did

not produce the best model parameters, and there is a need to make some changes and

update the model parameters to improve the prediction accuracy, as shown in Listing

6.4.

6.5 Summary

In this chapter, the evaluation methodology and experiment design were illustrated.

Moreover, it described the preparation of the datasets and the performance metrics used

to evaluate the machine-learning technique. Forty-two ADL datasets were generated

from the OpenSHS tool, and ARAS real-world datasets were used to test and evaluate

the quality of the models. It provided more information concerning the results and find-

ings of the supervised learning technique for classification of ADLs including tables and

figures of results. Every experiment started reading each dataset separately one by one

and was fed to the classification model. The dataset was split into 80% for training

the model to learn from the data without scoring, and 20% was used for testing data

in the model with performance scoring. This research found the parameters for these

models in both real and synthetic datasets and suggested the best parameters for CLA
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models. The results revealed that the CLA performance with the standard NuPIC en-

coders was not good compared with the state-of-the-art supervised learning techniques

for classification of ADLs. Both novel multi-region CLA techniques demonstrated good

performance compared with the state-of-the-art machine-learning techniques and they

achieved the best performance than base-line CLAs. The Parallel Spatio-Temporal Mem-

ory Stream model (CLA2) model achieved F-measure for House (A) from the ARAS

dataset was 66.00%, the highest scores F-measure 72.24% was achieved by the CNN.

The CLA2 model achieved F-measure of 92.63% for House (B), which was the best of all

prediction models. The average F-measure for the synthetic SIMADL datasets 96.01%

was achieved the CLA2, the highest F-measure scores 96.44% was achieved by the SP.

performance of both novel multi-region CLA techniques is promising.
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Chapter 7

Conclusions and Future Work

7.1 Summary

The Internet of things (IoT) paradigm includes many applications. The smart home is

one of the most prominent parts of the IoT paradigm. Smart homes contain several

sensors, devices, home appliances, electronics, etc. These sensors can generate a huge

volume of data. Machine-learning techniques can make use of such data to enable an

occupant to automate the control and management of these sensors and devices for

healthcare, elderly care, home energy management, security and safety applications,

etc. Effective machine-learning techniques are required to perform data integration and

learning of ADLs from sensor readings. Such techniques are used to predict and classify

the inhabitant‘s activities. There are many types of machine-learning techniques: su-

pervised, unsupervised, and reinforcement learning. Some techniques use probabilistic

and statistical methods, and others use sequence-learning algorithms. In a smart home

environment, machine-learning techniques need to adapt to the inhabitant‘s changing

habits. Hence, this research has adapted the use of supervised learning techniques.

Various machine-learning techniques have been implemented in smart home environ-

ments. However, the literature review of the classification of ADLs showed a lack of

a comprehensive evaluation of such machine-learning algorithms in this domain. This

work first conducted a review of the current research in predicting and classifying ADLs

and then performed an evaluation of the current state-of-the-art supervised learning

techniques for activity classification in the smart home domain. This study has shown

competitive performance of evaluated techniques. Moreover, the best results of the

state-of-the-art techniques in this domain are achieved by techniques based on neural

networks such as CNN, SP and LSTM.
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To propose machine-learning techniques for the classification of ADLs, there is a need to

capture representative datasets that can be used to train and test the machine-learning

models and to evaluate their performance. The literature review of prediction and clas-

sification of ADLs in smart homes indicated that there is a lack of real-world datasets

due to the excessive cost of building real smart homes. This research used the OpenSHS

an open-source, cross-platform 3D smart home simulator for dataset generation. Additi-

nally, forty-two datasets, SIMADL, were generated using the simulation tool OpenSHS

for the simulation of ADLs in a smart home, where seven participants simulated their

ADLs for different contexts.

This work conducted an assessment of the CLA with the standard NuPIC encoders and

an SDR classifier for activity classification in a smart home. The performance of the

CLA revealed the weakness of using the standard NuPIC encoders with multi-columnar

datasets. Because the dataset in a smart home includes multiple binary sensors, a new

encoder is required to deal with high-dimensional sensors.

The results of using the hash encoder instead of the standard NuPIC encoders appear

promising. However, state-of-the-art algorithms produced better results than the CLA

with the hash encoder. This research proposed two novel multi-region CLA techniques

that comprise a hash encoder and an MLP classifier to improve the long- and short-term

prediction performance in the context of a smart home. The MLP classifier was used to

produce a better prediction of the inhabitant‘s activities in a smart home environment.

The proposed two novel multi-region CLA techniques have been compared against base-

line CLAs, and state-of-the-art algorithms. The Parallel Spatio-Temporal Memory Stream

model (CLA2) achieved average F-measure of 84.88% across all datasets, and the Cas-

caded Temporal Memories Stream (CLA3) scored F-measure of 84.50% across all datasets.

While the best performance of base-line CLAs achieved an average F-measure of 51.80%

over all datasets. Thus, the proposed techniques showed a 33.08% increase in perfor-

mance over the base-line CLA.

The results show that the base-line CLA performance was not good compared with the

state-of-the-art supervised learning techniques for classification of ADLs. the proposed

technique (CLA2) showed 1.99% decrease from the best results of the state-of-the-art

techniques that was achieved by the CNN. Although, in House B of the real-world ARAS

dataset, the CLA2 model has achieved the highest F-measure score of all state-of-the-art

supervised learning techniques.
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7.2 Original Contributions

The original contributions to knowledge of this research project, ordered by importance,

include the following:

• Two novel techniques that learns user’s patterns and allow the home user to ob-

tain predictions based on the HTM theory and CLA, this has been achieved by

proposing two novel multi-region CLA techniques that include a hash encoder and

an MLP classifier. A new hash encoder is applied as a modification of the CLA

to cope with multiple sensor inputs from a smart home. Because of the existing

encoders of the standard NuPIC encoders, such scalar and categorical datatypes

are prepared to deal with a single column or a small number of columns. The

MLP classifier is implemented rather than the classifiers used in the current im-

plementation of CLA to produce better predictions. Moreover, the development

of two novel multi-region CLA techniques aims to solve the issue of the learning

input patterns from streaming datasets in smart homes with the one-region CLA,

which is restricted. the original CLA learns using one memory level, such model

learns either short-term or long-term patterns, not both of them. To remove the

limitation of memory management of the CLA, it uses more regions in the CLA

with a decrease in the number of cells per column to learn short patterns in the

first region. In the second region, the number of cells per column was increased

to learn long patterns to solve the issue. This research proposes multi-region CLA

techniques to learn short and long-term patterns.

• Forty-two SIMADL datasets are generated using the simulation tool (OpenSHS)

for ADL classification problems that simulates the activities taken place in a smart

home environment. The participants can interact and classify many different pat-

terns of activities in the virtual environment. OpenSHS captures and records the

state of all smart devices and sensors every second. The datasets can be used to

evaluate and test machine-learning models, which carry out activity classification

tasks in the smart home domain. The datasets are publicly available online for

the research community to test and validate their models and any new emerging

techniques.

• This research conducts a review of existing research in prediction and classification

of ADLs and carries out a comprehensive evaluation of state-of-the-art machine-

learning technique applications in the context of smart homes.
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7.3 Conclusion

This research reviewed the IoT literature, smart-home applications, and machine-intelligence

algorithms typically used in the smart-home context. The literature review was anal-

ysed to evaluate the requirements for machine-intelligence techniques to classify events

within the context of smart homes.

This research proposed two techniques to predict and handle the classification of ac-

tivities undertaken by inhabitants living in a smart home and presented the validation

and accuracy of the performance of these techniques on smart home data. This research

introduced the concept of machine learning with a focus on the area of smart homes,

moving through the concept and ideology of HTM as a means to predict a temporal

behaviour.

The real-world datasets targeted at classification in the context of smart homes scarcely

exist, and few real datasets are available in the public domain. A simulation tool should

be used rather than building real smart homes because of the time constraints and effort

for the researcher and participants to generate datasets. This work completed a review

of existing simulation tools and approaches and contributed to the usability study for the

OpenSHS tool. To validate and evaluate the accuracy of machine-learning techniques

for classification of ADLs in a smart home there is a need for a good representative

dataset, there is a lack of real-world datasets due to the excessive cost of building real

smart homes, forty-two SIMADL datasets for classification of ADLs were generated us-

ing a simulation tool (OpenSHS). Seven participants simulated their ADLs for different

contexts. The participants’ opinions about the OpenSHS usability were captured using

the SUS. The limitation is that the average age of the participants was 30 and to reuse

the same for elderly people scenario, there is a need to repeat the experiments using

different participants.

Smart homes have various layouts, and the inhabitants perform their activities in various

ways. The same activity might use a completely different sensor activation, depending

on the inhabitants changing habits. This variability represents a challenge for this re-

search. To deal with this variability, this research uses supervised learning techniques

that can cope with each individual smart-home environment.

Simulation techniques were researched, analysed, and synthesised to produce a best

fit for this research. This research used the ARAS dataset, which is captured from the

real-world activities of residents in two houses and a synthetic dataset that is generated

by the OpenSHS simulation tool. In the real-world dataset, the proposed techniques

results show that the predictive effectiveness appears good, although there are many
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inhabitant activities in the dataset. In addition, the CLA results appear promising. The

output from the dataset needed to be encoded, the memory management of the CLA

model is required to learn short and long-term patterns from streaming datasets for

classification of ADLs. Various methods were considered, and suitable solutions were

derived. From these investigations, this research was conducted using the methods and

tools discussed, generating a set of results that were analysed. These, in turn, supported

the hypothesis.

The literature review revealed that such machine-learning algorithms lack a comprehen-

sive evaluation in this domain. This work conducted an evaluation of state-of-the-art

machine learning techniques and their application in the context of smart homes. The

best results of the state-of-the-art techniques was achieved by the CNN.

HTM theory and its implementation, the CLA, have been studied. This work applied

the HTM as its CLA has the capability to integrate and learn patterns from streaming

datasets and to find meaningful spatio-temporal relations in high-dimensional data. The

HTM and its CLA fulfil the requirement for the machine-learning algorithm to classify

and predict events in smart homes. The application conducted an assessment for activ-

ity classification in a smart home using the HTM theory and its CLA implementation.

The evaluation assessed the performance of the CLA that identified weaknesses and

limitations, mainly due to the fact that the data generated from the smart home have

high-dimensional binary data. The researcher applied a new encoder that is more appro-

priate for these data. The researcher used an MLP classifier instead of the classifiers used

in the NuPIC frame-work to improve the prediction accuracy using a multilayer neural

network. Two novel multi-region CLA techniques were developed to learn short-term

and long-term patterns from streaming datasets.

The results have shown that the base-line CLA performance with standard NuPIC en-

coders was not competing with the state-of-the-art machine learning techniques across

all datasets. However, the proposed techniques have improved the CLA performance by

using two novel multi-region CLA techniques. Two novel multi-region CLA techniques

were developed to cope with the problems discovered when using the original CLA to

classify ADLs in the smart home, the proposed techniques (CLA2 and CLA3) can compete

and outperform the performance of the state-of-the-art algorithms on some datasets.

7.4 Future Work

• Due to the nature of the data in a smart home that includes several types of data,

some sensors and devices produce decimal/numeric values, such as temperature
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sensors and power consumption sensors, and some others can be used as binary

sensors for two states, on and off. For future work, a new encoder could be cre-

ated for the CLA to learn input of different types of data generated from multiple

sensors in a smart home, converting it to one unique SDR, and to deal with high-

dimensional binary and non-binary data .Additionally, a new classifier could be

developed that is biologically inspired, which can learn a sequence of different

types of data generated from multiple sensors in a smart home to infer and predict

various ADL patterns.

• To evaluate the performance of machine-learning techniques for activity classifi-

cation in the context of smart homes, an adaptation to the changing habits of the

inhabitant is required, e.g. sometimes the same activity label is selected with vari-

ous sensor activations based on the changing habits of the inhabitants. To test the

machine-learning techniques, datasets must be generated, which include complex

resident patterns. More datasets that explore new complex inhabitant patterns are

needed, these can be simulated using OpenSHS. For future work, the effects of

using different hyperparameters and the resulting accuracy of the model could be

investigated.

• OpenSHS can also be extended to incorporate simultaneous activities, this would

allow the creation of datasets generated from multiple occupants for classification

of ADLs. Instead of binary sensors deployed in the current OpenSHS implemen-

tation, researchers can add different kinds of sensors and devices, such as tem-

perature sensors, pressure sensors, etc. OpenSHS can be also used to visualise

interactivly the performance of the machine learning algorithms as well as smart

home designs. This visualisation would allow researchers to identify drawbacks in

a smart home environment. This will help accelerate the development and propo-

sition of new effective designs. Moreover, within the IoT paradigm, the contributed

datasets will be used to test and validate different IoT frameworks.
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Appendix A

Datasets

FIGURE A.1: The sensor readings for the Eat activity in the training sample d1-1m-0tm
.

FIGURE A.2: The sensor readings for the Eat activity in the testing sample d1-1m-0tm.
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FIGURE A.3: The sensor readings for the Eat activity in the training sample d2-1m-0tm
.

FIGURE A.4: The sensor readings for the Eat activity in the testing sample d2-1m-0tm.

FIGURE A.5: The sensor readings for the Eat activity in the training sample d3-1m-0tm
.
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FIGURE A.6: The sensor readings for the Eat activity in the testing sample d3-1m-0tm.

FIGURE A.7: The sensor readings for the Eat activity in the training sample d4-1m-0tm
.

FIGURE A.8: The sensor readings for the Eat activity in the testing sample d4-1m-0tm.
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FIGURE A.9: The sensor readings for the Eat activity in the training sample d5-1m-0tm
.

FIGURE A.10: The sensor readings for the Eat activity in the testing sample d5-1m-0tm.

FIGURE A.11: The sensor readings for the Eat activity in the training sample d6-1m-0tm
.
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FIGURE A.12: The sensor readings for the Eat activity in the testing sample d6-1m-0tm.

FIGURE A.13: The sensor readings for the Eat activity in the training sample d7-1m-0tm
.

FIGURE A.14: The sensor readings for the Eat activity in the testing sample d7-1m-0tm.

140



Appendix A Datasets Appendix A Datasets

FIGURE A.15: The sensor readings for the Leisure activity in the training sample d1-
1m-0tm .

FIGURE A.16: The sensor readings for the Leisure activity in the testing sample d1-1m-
0tm.

FIGURE A.17: The sensor readings for the Other activity in the training sample d1-1m-
0tm .
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FIGURE A.18: The sensor readings for the Other activity in the testing sample d1-1m-
0tm.

FIGURE A.19: The sensor readings for the Personal activity in the training sample d1-
1m-0tm .

FIGURE A.20: The sensor readings for the Personal activity in the testing sample d1-
1m-0tm.
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FIGURE A.21: The sensor readings for the Sleep activity in the training sample d1-1m-
0tm .

FIGURE A.22: The sensor readings for the Sleep activity in the testing sample d1-1m-
0tm.
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Appendix B

Tables and Figures of Results

B.1 Tables of Results

TABLE B.1: Results base-line CLAs and proposed techniques ARAS Dataset Real House
(A).

Algorithm Precision Recall F-Measure

ScalarEncoder 15.32% 37.56% 21.66%

CategoryEncoder 23.13% 34.40% 21.16%

SDRCategoryEncoder 20.17% 34.32% 21.38%

CLA0 61.82% 64.90% 61.73%

CLA1 58.92% 56.52% 49.94%

CLA2 67.88% 65.62% 66.00%

CLA3 66.75% 68.12% 66.38%
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TABLE B.2: Results base-line CLAs and proposed techniques ARAS Dataset Real House
(B).

Algorithm Precision Recall F-Measure

ScalarEncoder 76.80% 82.56% 76.37%

CategoryEncoder 72.43% 81.16% 74.14%

SDRCategoryEncoder 67.98% 81.02% 73.61%

CLA0 88.56% 90.46% 88.90%

CLA1 92.20% 91.52% 90.98%

CLA2 93.89% 92.98% 92.63%

CLA3 92.20% 91.30% 90.89%

TABLE B.3: Results base-line CLAs and proposed techniques Synthetic Dataset (Aver-
age).

Algorithm Precision Recall F-Measure

ScalarEncoder 57.14% 64.30% 57.38%

CategoryEncoder 63.20% 65.16% 59.87%

SDRCategoryEncoder 42.55% 50.18% 40.21%

CLA0 89.95% 89.61% 89.37%

CLA1 96.27% 96.16% 96.16%

CLA2 96.16% 96.00% 96.01%

CLA3 96.37% 96.20% 96.21%
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TABLE B.4: Result state-of-the-art machine learning techniques with CLA - ARAS
Dataset Real House (A).

Algorithm Precision Recall F-Measure

SVMR 70.09% 70.54% 69.53%

SVML 69.33% 69.93% 69.02%

SVMP 23.44% 36.18% 22.53%

SVMS 67.99% 67.89% 65.70%

SGDS 68.54% 66.91% 66.17%

SGDR 53.12% 42.82% 31.96%

SGDL 66.11% 66.52% 63.93%

DT5 65.52% 67.32% 64.24%

DT10 71.43% 71.60% 70.71%

DT20 73.00% 72.67% 72.03%

AB10 61.51% 65.54% 62.87%

AB20 59.10% 63.55% 60.94%

AB30 59.11% 63.55% 60.95%

HMM 64.77% 52.58% 47.28%

SP 67.68% 68.39% 66.57%

MLP 71.11% 72.28% 70.88%

CNN 72.89% 72.97% 72.24%

LSTM 70.49% 71.32% 70.24%

CLA0 61.82% 64.90% 61.73%

CLA1 58.92% 56.52% 49.94%

CLA2 67.88% 65.62% 66.00%

CLA3 66.75% 68.12% 66.38%
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TABLE B.5: Result state-of-the-art machine learning techniques with CLA - ARAS
Dataset Real House (B).

Algorithm Precision Recall F-Measure

SVMR 92.45% 92.45% 91.00%

SVML 93.63% 91.65% 91.67%

SVMP 79.27% 87.03% 82.38%

SVMS 91.54% 90.89% 90.37%

SGDS 93.48% 91.93% 91.94%

SGDR 89.57% 90.42% 89.50%

SGDL 93.78% 92.30% 91.85%

DT5 90.55% 90.10% 89.61%

DT10 94.42% 91.56% 91.79%

DT20 93.77% 91.70% 91.74%

AB10 67.69% 80.86% 73.34%

AB20 67.69% 80.86% 73.34%

AB30 67.69% 80.86% 73.34%

HMM 90.12% 92.09% 89.59%

SP 92.51% 92.40% 91.80%

MLP 91.43% 91.13% 90.5%

CNN 94.26% 92.09% 92.29%

LSTM 94.26% 92.19% 92.24%

CLA0 88.56% 90.46% 88.90%

CLA1 92.20% 91.52% 90.98%

CLA2 93.89% 92.98% 92.63%

CLA3 92.20% 91.30% 90.89%
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TABLE B.6: Result state-of-the-art machine learning techniques with CLA Synthetic
Dataset (Average).

Algorithm Precision Recall F-Measure

SVMR 96.15% 95.99% 96.00%

SVML 96.05% 95.90% 95.91%

SVMP 91.62% 91.54% 90.93%

SVMS 95.81% 95.68% 95.68%

SGDS 95.33% 95.12% 95.12%

SGDR 41.22% 41.89% 38.28%

SGDL 95.37% 95.21% 95.19%

DT5 91.17% 91.11% 90.64%

DT10 96.37% 96.18% 96.19%

DT20 96.51% 96.36% 96.37%

AB10 82.45% 81.66% 80.38%

AB20 80.04% 76.94% 75.32%

AB30 80.49% 77.38% 76.18%

HMM 87.03% 84.68% 81.99%

SP 96.54% 96.45% 96.44%

MLP 96.24% 96.10% 96.11%

CNN 96.24% 96.07% 96.07%

LSTM 96.55% 96.41% 96.42%

CLA0 89.95% 89.61% 89.37%

CLA1 96.27% 96.16% 96.16%

CLA2 96.16% 96.00% 96.01%

CLA3 96.37% 96.20% 96.21%
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B.2 Prediction accuracy with Ground Truth

FIGURE B.1: The prediction accuracy with Ground Truth for the activities in the testing
phase d1-1m-0tm using ScalarEncoder .

FIGURE B.2: The prediction accuracy with Ground Truth for the activities in the testing
phase d1-1m-0tm using CategoryEncoder.
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FIGURE B.3: The prediction accuracy with Ground Truth for the activities in the testing
phase d1-1m-0tm using SDRCategoryEncoder.

FIGURE B.4: The prediction accuracy with Ground Truth for the activities in the testing
phase d1-1m-0tm using CLA0.
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FIGURE B.5: The prediction accuracy with Ground Truth for the activities in the testing
phase d1-1m-0tm using CLA1. ’sleep’: 0 , ’personal’: 1, ’eat’: 2, ’leisure’: 3, ’work’:4,

’other’: 5

FIGURE B.6: The prediction accuracy with Ground Truth for the activities in the testing
phase d1-1m-0tm using CLA2.
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FIGURE B.7: The prediction accuracy with Ground Truth for the activities in the testing
phase d1-1m-0tm using CLA3.
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Van Kasteren, T., Englebienne, G., & Kröse, B. J. (2010). Transferring knowledge of

activity recognition across sensor networks. In International Conference on Pervasive

Computing (pp. 283–300).: Springer.

Van Kasteren, T., Noulas, A., Englebienne, G., & Kröse, B. (2008). Accurate activity
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