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Highlights: 

 A protocol for sEMG placement is defined and validated for intrinsic foot muscles 

 Four of six intrinsic muscles showed good correlation for the validity of the protocol 

 Flexor hallucis Brevis and Abductor Hallucis muscles did not show good validity. 

 Improved protocols and technology of EMG of the intrinsic foot muscles are required 

 

 

 

Abstract  

Background 

The use of surface EMG (sEMG) to record muscle activity is common place yet due to restrictions in 

technology studies on the intrinsic foot muscles have been limited or only fine wire instruments have 

been used.  

Aim 

This paper looks at the potential reliability of a sEMG protocol for assessing the intrinsic foot muscles.  

Methods 

Six intrinsic muscles were defined using ultrasound and muscle function testing. A protocol for sensor 

placement was created with repeatability and reliability testing of the protocol conducted by three 

separate testers on three subjects over two different time frames. Inter tester and Inter session 

repeatability and reliability was measured with ICC and percentage standard error of measurement.  

Results 

Although there was good correlation between Extensor Digitorum Brevis, Dorsal Interossei, Abductor 

Digiti Minimi and Flexor Digitorum Brevis there was increased variability and poor correlation for 

Flexor hallucis Brevis and Abductor Hallucis. The percentage standard error of measurement did not 

support the high ICC values indicating a lower precision of measurement. 

Significance 

Variability between testers and sessions shows an inconsistent reliability of sEMG and further work is 

required with protocols focussing on grouping muscles to improve the understanding of the intrinsic 

foot muscles. 
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Introduction 

Electromyography (EMG), the study of the muscle function through inquiry of the electrical signal the 

muscles emanate [1], has been explored since Luiggi Galvani in 1791, whereas the study through 

surface EMG (sEMG) was not introduced until Piper in 1912.  Since these early works, the equipment 

available for detecting sEMG has evolved dramatically and allows researchers, practitioners and 

clinicians access to the rich neurophysiological data sEMG can offer. Studying muscle function through 

sEMG however requires adherence to strict guidelines to ensure the physiological data is truly 

represented and interpreted.  Specific guidelines for sEMG sensor placement allow for standardised 

methodologies, thus to reduce variation in sEMG measures across laboratories or clinics and on 

different participants [2]. Such guidelines currently make sEMG sensor placement recommendations 

for a selection of commonly investigated muscles, but there lacks evidence-based protocol on sEMG 

sensor placement for many muscles, including the muscles of the feet 

Intrinsic foot muscles are small and thus pose difficulties in isolating anatomically and physiologically 

correct placement of sEMG sensors.  The Abductor Hallucis is a superficial muscle located on the 

medial border of the foot and sEMG of this muscle has been examined during various movements, 

including standing from a seated position [3], performing Hallux exercises [4], performing arch 

exercises [5] and with the use of foot orthoses [6]. There is little explanation in these studies to define 

the location of the sEMG electrodes to gather data from abductor hallucis, making repeating these 

protocols difficult to reproduce.  

Further work on other intrinsic foot muscles include using sEMG to study the activity of Extensor 

Digitorium Brevis and Flexor Digitorium Brevis during walking but again there is limited anatomical 

location and description of sensor location [7]. The lack of standardised sensor location for sEMG of 

the intrinsic foot muscles leads to large variability to exist between research groups and limits 

comparisons and collaboration.  

There has been an attempt to develop standardised protocols for sEMG of the intrinsic foot muscles 

[8] which explains a more specific anatomical landmark description for sensor placement and utilises 

ultrasound to locate the muscle belly of Abductor Hallucis. The expansion of this work to consider 

further intrinsic foot muscles and provide clear protocols for clinicians and researchers to capture 

meaningful and repeatable sEMG data could lead to better quality research findings and clinical 

applications.  Therefore, the initial aim of this report is to define a protocol for sEMG sensor placement 

of the foot with a secondary aim of testing the inter and intra reliability of the protocol with signal 

quality objective measures for novice investigators.  

Method  

Establishing the sEMG Protocol 

The initial experimental testing was to identify a protocol to define which of the intrinsic muscles are 

recruited for the movements of the foot and digits, specifically flexion/extension and 

abduction/adduction of the digits as well as discrete rotation of the midfoot.  One female participant 

(42 years 66kg, 174cm) was recruited and consented for exploratory investigations on muscle location 

and function of the right foot. An Ultrasound, probe MSK LA523E (Esaote, Mylab25, Italy), was used 

to define the intrinsic muscles of the foot accompanied with isolated muscle testing of movement in 

all 3 planes of the foot accompanied with flexion/extension and abduction adduction of the digits. 

This enabled assessment of how each muscle contributed to movement and gave an objective 

measure of these movements. [9-11].  This combined assessment of ultrasound [8] and muscle 

function [10,11] resulted in the following 6 intrinsic muscles being identified, with specific functional 
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tests, as key for motions of the foot and therefore were selected for the assessment of sEMG, (muscles 

overlying each other and in close proximity were amalgamated as one): 

 Extensor Digitorum Brevis (EDB) 
 Dorsal Interossei (DI) 
 Abductor Digiti Minimi (AbdDM) 
 Flexor Digitorum Brevis (FDB)/Quadratus Plantae (QP) 
 Flexor Hallucis Brevis (FHB)  
 Abductor Hallucis (AbH) 
 
From the 6 identified muscles, the midpoint of the muscle was defined by ultrasound [9] and relevant 

marks were made on to the skin in removable pen. The sEMG sensors were then placed on the 

midportion of the muscle aligned with the orientation of the muscle fibre direction and affixed to the 

skin. Initial sensor placement was tested using the Delsys Trigno system (Delsys Inc., Natick, MA) and 

the associated Delsys EMGworks Acquisition (version 4.2, Delsys Inc., Natick, MA) software. The 

sensors utilised were 6 x Delsys Trigno Mini Sensors (Sampling rate 1926Hz; 16-bit resolution; 20 ±5 

Hz - 450 ±50 Hz bandwidth filter; 909V/V gain and 10mm inter-electrode distance) for which the 

reference electrode component was placed on the distal third of the tibia (Figure 1.).  

>>> insert FIGURE 1 here >>> 

Extensive pilot sEMG signal testing were completed on each of the defined muscles. The participant 

was asked to complete muscle tests for each of the 6 muscles defined by Kendall et al [11]. This 

included toe flexion/grip, toe extension, toe splay, hallux flexion and abduction against resistance. The 

sEMG sensor location was modified for each muscle based on the quality of the signal for each test. 

On satisfactory signal recording 3 x maximum voluntary contractions (MVC) Tasks, with 5 repetitions 

were recorded for repeatability. The final anatomical position of the sensor placement was then 

recorded to describe the final protocol (Table 1).  

>>>Insert TABLE 1 here >>> 

Reliability of sEMG protocol for intrinsic foot muscles 

After approval from the University Research Ethics Committee, an experimental study was conducted 

to examine the validity and reliability of the determined sEMG protocol. Three volunteer novice sEMG 

testers consented to take part, all three testers had not used sEMG before the protocol was provided. 

Data was collected from 3 randomly recruited participants (1=Female/32years 

2=Male/48years/68kg/169cm 3=Female/41years/63.5kg/171cm) who also consented to taking part 

in testing which was undertaken across two separate sessions 5 weeks apart.  

The protocol (Table 1) was individually issued to the 3 testers (A,B & C) and included description of 

how to prepare the sensors and the skin for measurement. Participants, who had no prior training for 

the foot exercise tests, were asked to lie prone, roll up the trouser leg of their right foot and follow 

the instructions of the tester.  All testers applied the sEMG on all six muscles of each participants’ right 

foot. This was undertaken in a blinded scenario where no tester observed other testers whilst placing 

the electrodes on the participant. The participants were then asked to undertake three MVC tasks 

(held for 5 seconds), with five repetitions 30 second rest period between each contraction. The MVC 

tasks were chosen to give maximum contraction of all 6 muscles during gross movements of the 

forefoot digits to ensure that activity of the muscles was detected. These actions were performed with 

no resistance and participants were asked to:  

1) Maximum flexion of digits  
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2) Maximum extension of digits 

3) Maximum spread of all digits 

Then the six individual muscle function tests that isolated that muscle (Table 1) were performed using 

the same regime, 5 seconds of contraction, 5 times with a 30 second rest period between each 

contraction, to isolate muscle activity from each of the defined muscles above. This methodology was 

then repeated 5 weeks later (Session 2) using the same testers, participants and protocol.  

Data Processing and Analysis 

The sensors themselves have an analog filter (20 ±5 Hz - 450 ±50 Hz bandwidth filter). The raw sEMG 
collected through these sensors was used to gain a Root Mean Square (RMS) of the background noise 
as well as the contraction signal. This was computed using Matlab (version R2015b) with an RMS 
moving average (1 – second) window filter.  

These values were then processed to give a Signal to Noise Ratio (SNR),  for each sensor location during 
each contraction. SNR is a dimensionless ratio of signal power to noise power within a recording [11]. 
The mean and standard deviation (SD) of SNR across the 5 repetitions for each task for each participant 
was computed for: 

1) Inter-tester, reliability of data between testers,  
2) Inter- session, reliability of data between time frames, 

Additionally, an Interclass Correlation Coefficient test, which adopted a two way mixed absolute 
average measures model, was completed from the processed SNR. A value of above 0.75 is considered 
as good reliability [13]. This was completed using Statistical Packages for the Social Sciences (SPSS) 
software produced by IBM.  Additionally, to assess the reliability of the data, a Standard Error of 
Measurement (SEM) and % SEM test was performed [14], using the following calculations: 

SEM= Sx√1 − ICC    

Where Sx is the pooled SD for either Day 1 and Day 2 or tester ABC. Depending on the outcome 

measure; inter-tester variation and inter-session variation [15]. With the SEM being expressed as a 

percentage of the grand mean, for example: 

%SEM = 
𝑆𝐸𝑀

𝑥1+𝑥2
∗ 100                 %SEM = 

𝑆𝐸𝑀

𝑦1+𝑦2+𝑦3
∗ 100 

 
where x1 is the means of trials on day 1 and x2 is the means of trials on day 2 for each tester ABC and 
then, y1 is the means of trials for tester A, y2 is the means of trials for tester B and y3 means of trials 
for tester C for each day 1 and 2. 
 
Results 

Inter- tester  

Between the testers A, B & C there was a good repeatability for each muscle at either day one or two 

with participant 2 having more reliable outputs. Equally though, low repeatability was also observed 

for each participant for FHB and AbH. However, although the ICC scores appear to show good 

repeatability for some muscles, the % SEM for these muscles do not support this correlation 

measurement, with high %SEM observed indicating lower precision of measurement between testers.  

Individually, the ICC for each muscle indicated that EMG measurement for EDB was the only muscle 

that showed good correlation between testers for each participant. Participant 1 shows the greatest 

variability for each muscle between testers and only had good repeatability for Extensor Digitorum 
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Brevis, ADM and Abd Hal. Participant 2 appeared the most reliable participant for the protocol with 

all muscles having good reliability apart from ADM and Abd Hal. (Table 2) 

>>>Insert TABLE 2 here >>> 

Inter- session  

Similar results were observed over testing between days, showing less reliability for each tester with 

minimal correlation between data, particularly for Participant 1. There were again some strong ICC 

values from participant 2 and 3 for the DI and FDB muscles, but again the %SEM data did not support 

this. (Table 2) 

Discussion  

Any research involving human participants, runs the risk of poor generalisability [16,17]. The lack of a 

consistent correlation between testers and time frames within this protocol, shows that sEMG of the 

intrinsic muscles of the foot is not yet reliable or repeatable and produces data with great variability. 

Fine wire protocols that have explored the same intrinsic muscles appear more reliable [18] but these 

methods are intrusive and can be restricted to the larger intrinsic foot muscles. Similarly, an array of 

sensors has been used to estimate muscle function of the intrinsic foot muscles [19] this method 

creates a generalised model of activity rather than identifying individual muscles.  

The importance of quantifying the muscle activity of the intrinsic foot muscles is evident in key 

thematic areas of biomechanics research and clinical applications such as: the function of the Diabetic 

foot [20,21]; barefoot and minimalist footwear [22,23]; toe strength and falls risk [24-26]. The current 

report was aimed at developing a sEMG protocol to enable mores specific measurement of intrinsic 

foot muscles to enable a greater understanding of the significance in pathology.  

The protocol that was developed underwent pilot testing prior to actual data collection to reduce the 

possibility of anatomical variation between subjects and poor sensor placement between testers. 

However, even though all ultrasound images taken were accurate and matched previous studies 

reporting on intrinsic muscle architecture [9,27] there were restrictions in knowing if the EMG data 

collected was purely from contraction of the individual muscle defined or a combination of signals. 

This is a main restriction with sEMG of the intrinsic foot muscles as the anatomy is complex with 

muscles influencing other muscle activity based on the origin and innervation [28]. Even though the 

exercises used for activation of the muscles are clinically current and have been used in previous 

studies [3-5,29] a grouping of actions rather than identifying specific muscles to test could give 

direction into extending future work. Alternative methods for sensor placement could have included 

identifying the MUAPP (Motor Unit Action Potential Point) as this has been highlighted as the point at 

where a muscles activation is strongest [30]. However, this would have been challenging to stimulate 

the smaller deeper muscles and ultrasound was deemed as most appropriate and has been identified 

as reliable for identifying intrinsic foot muscles [31].  

Additional sources of data variability that provided lower precision of measurement came from the 

three subjects tested, whose intrinsic foot muscles provided an inconsistent wide range of data from 

the testing. The recruitment of the subjects tested were not assessed for strength and ability to recruit 

the individual muscles. Neither were the subject’s experts in activating these muscles. Chapman et al. 

[32] found that muscle recruitment can be highly developed and easily defined in expert cyclists and 

poorly developed in novices. Exploration of ability to activate the intrinsic foot muscles may present 

different results. However, the intrinsic foot muscles are reported as being weak or dormant in older 

people [24,25] and it is unclear at what time over a life span this weakness occurs.  An inability to 
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contract the intrinsic muscles immediately could have occurred as testing commenced with a learnt 

response or conditioning of the muscles throughout the testing, increasing the activity within a trial 

leading to variability for each subject.  

Research reporting sEMG of the foot should be interpreted with caution as the protocol for sensor 

placement and the challenges of the anatomy of the foot still need to be advanced. The use of small 

sensors is useful to use in delicate and specific areas however the noise from vibration and adjacent 

and deeper tissue made the variability of the data large and reduced the reliability of the data 

collected. Crosstalk is a phenomenon, which is a result of the electrical conductivity of the soft tissues 

of the body, for the intrinsic muscles there is a high risk of signal crosstalk as well as signal 

contamination as muscles work in unison to perform the movements requested [33-34]. As a muscle 

in one location contracts, due to the electrical stimulation, the electrical signal is detected by a sensor 

placed in a different location. Therefore, due to the anatomy and architecture of the small intrinsic 

foot muscles the cross talk of signals remains high.   

Large number of data trials with selective data cropping to reduce the range of data could be a suitable 

way to manage data in future. However, the challenges of recording intrinsic foot muscle activity 

remain high for good reliable data to be produced.  

Conclusion 

Ultrasound was successfully used to identify the intrinsic muscles of the foot: EDB, DI, ADM, FDB, FHB 

and AbH to produce a protocol for sEMG application of sensors to assess the contraction of these 

muscles. The inter-tester and inter-session variation for the muscles tested showed some good 

repeatability and reliability but there was increased variability in the data collected. The protocol 

outlined in this paper gives an insight into the challenges of gaining valid information and 

understanding of the intrinsic foot muscles and the function with sEMG. Further work on data 

collection and trial variability is recommended to advance the recording of foot sEMG, with a 

particular focus on grouping the muscles for performing specific movements within the foot. 
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Figure 1 – Pilot sensor placement, sensors were moved along the line of the muscle defined from the 

ultrasound shown as marks on the skin. 
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Table 1 sEMG placement protocol describing anatomical position and muscle test with QR codes for video 

demonstration  

Muscle tested Anatomical Placement Sensor Placement Muscle testing activity (Kendall et 

al., 2005) 

QR code link for video 

demonstration 

Sensor 1 

 

Extensor digitorum 

brevis  

 

Styloid process (base the 

5th metatarsal) trace a 

line vertically towards the 

dorsum (top) of the foot 

[1]. Trace a line along the 

dorsum (top) of the 4th 

Metatarsal from the 

metatarsal head.[2] 

Where the lines intersect 

place sensor 1. 

 

Hold the foot and ankle in a 

plantarflexed position. The subject 

extends lesser toes against a flexion 

force placed on the proximal 

phalanx  

 

 

Sensor 2 

 

Dorsal interossei  

Palpate the space 

between the 1st 

metatarsal head [1] and 

the 2nd metatarsal head 

[2]. Place sensor 2 in this 

space halfway along the 

length of 2nd metatarsal. 

 

Hold the foot and ankle in a neutral 

position, allowing movement of the 

metatarsophalangeal joints. The 

subject flexes the lesser digits, while 

resistance is applied to the proximal 

phalanxes  

 

 

Sensor 3 

 

Adductor digiti 

minimi 

On the plantar surface of 

the foot locate the styloid 

process (base of the 5 

metatarsal). [1] Place 

sensor 3 posterior to this 

at calcaneal cuboid joint. 

[2]  

 

Hold the foot and ankle in a neutral 

position. The subject moves the 5th 

digit laterally against a force applied 

in a medial and slightly plantar-ward 

direction  

 

 

Sensor 4 

 

Flexor digitorum 

brevis 

Quadratus plantae 

On the plantar aspect of 

the foot trace a line along 

the shaft of the 2nd 

metatarsal to the head to 

the medial calcaneal 

tuberosity [1-2]. Then 

from the navicular 

tuberosity trace a line to 

the plantar of the foot [3]. 

Where the lines intersect 

place sensor 4. 

  

Hold the foot and ankle in a plantar 

flexed position with the 

metatarsophalangeal joints hold to 

prevent plantarflexion. The subject 

curls lesser digits while extension 

resistance is applied  
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Sensor 5 

 

Flexor hallucis 

brevis 

 

Plantar surface of the foot 

from the 1st metatarsal 

head [1] place sensor 5 

half way along the 

metatarsal shaft. 

 

 

Hold the foot and ankle in a neutral 

position. The subject flexes the 

hallux against an extension force 

applied to the proximal phalanx  

 

 

Sensor 6 

 

Abductor hallucis 

Trace a line from the 

navicular tuberosity to the 

medial calcaneal 

tuberosity [1-2]. Place 

sensor 6 at the midpoint 

on this line. 

 

 

Hold the foot and ankle in a neutral 

position. The subject resists a 

laterodorsal force applied to the 

hallux   
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Muscle Test Participant 1 Participant 2 Participant 3 

ICC %SEM ICC %SEM ICC %SEM 

EDB ABC  D1 0.44 62.41 0.85 29.43 0.77 32.06 

ABC  D2 0.94 16.20 0.64 33.07 0.73 33.47 

D1 v D2 A -0.04 51.05 0.29 48.69 0.73 33.33 

D1 v D2 B 0.65 43.49 0.90 20.12 0.72 34.77 

D1 v D2 C 0.72 44.45 0.87 26.13 0.79 30.83 

 

DI ABC  D1 0.37 59.33 0.92 38.14 0.82 32.62 

ABC  D2 0.42 36.89 0.93 32.51 0.63 47.38 

D1 v D2 A -1.42 60.45 0.98 17.43 0.23 70.92 

D1 v D2 B 0.35 54.19 0.86 51.22 0.52 47.77 

D1 v D2 C -0.11 70.09 0.91 37.39 0.94 20.09 

 

ADM ABC  D1 0.46 54.65 0.67 26.45 0.71 23.56 

ABC  D2 0.81 29.74 0.53 45.27 0.76 21.82 

D1 v D2 A 0.81 28.90 0.81 21.07 0.57 29.21 

D1 v D2 B 0.77 30.58 0.19 64.25 0.42 31.99 

D1 v D2 C 0.37 62.57 0.40 42.26 0.80 19.83 

 

FDB/QP ABC  D1 0.75 22.14 0.93 20.14 0.76 27.59 

ABC  D2 -1.30 52.95 0.91 19.73 0.94 17.55 

D1 v D2 A -0.77 50.03 0.85 27.24 0.82 25.28 

D1 v D2 B 0.58 30.32 0.84 31.42 0.61 39.66 

D1 v D2 C -2.00 55.33 0.87 23.22 0.90 21.06 

 

FHB ABC  D1 -0.20 73.36 0.86 37.81 0.49 57.05 

ABC  D2 0.40 50.87 0.83 32.91 0.26 46.89 

D1 v D2 A -0.84 78.53 0.68 53.28 0.28 73.16 

D1 v D2 B 0.69 46.25 0.57 51.19 -0.88 80.74 

 D1 v D2 C -0.27 67.47 0.84 38.07 0.58 40.86 

 

AbH ABC  D1 0.41 71.01 0.09 60.48 0.52 37.78 

ABC  D2 0.83 28.97 -0.09 79.80 0.71 28.75 

D1 v D2 A 0.66 47.07 0.04 40.02 0.27 36.99 

D1 v D2 B 0.60 47.52 0.37 68.64 -0.43 90.56 

D1 v D2 C 0.66 47.07 -0.20 84.70 0.49 32.54 

 

Table 2 – ICC (above 0.75 in bold for good reliability) and %SEM for each Participant 1,2& 3 for each muscle 

(EDB extensor digitorum Brevis, DI dorsal interossi, ADM abductor digit minimi, FDB/QP flexor digitorum brevis 

quadratus plantae, FHB flexor hallucis brevis, AdH adductor hallucis) inter-tester AB&C on day 1 and day 2 and 

inter-session between day 1 and day 2 for each tester AB&C. 
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