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Abstract 

The aim of this thesis is to investigate the effectiveness of Active Labour Market 

Policies (ALMP) in reducing unemployment in European transition and non-

transition economies. The theoretical framework proposed to analyse the 

effectiveness of ALMPs in reducing unemployment indicates that these policies 

affect unemployment through several different mechanisms. ALMPs can facilitate 

the matching process, increase productivity, increase labour supply and competition 

in the labour market, reduce welfare losses of the unemployed and serve as a 

stimulus to unemployed individuals‘ willingness to work. This research is based on 

both a country-level analysis using a sample of European transition and non-

transition economies (for 2005-2015) and individual-level analysis using cross-

sectional data (2012) for Kosovo. The country-level analysis assesses the ALMP 

effectiveness using two different strategies. The first one investigates the effect of 

ALMP expenditure (as share of GDP) on the flow from unemployment to 

employment using a Fixed-Effects panel model and finds a positive effect, in line 

with expectations. The economic significance of this finding, however, is 

questionable since the increase in the outflow from unemployment is relatively 

small. The second strategy investigates whether the ALMP expenditure (as share of 

GDP) reduces the unemployment rate in a dynamic panel analysis, using a 

Generalised Methods of Moments (GMM) estimator. This strategy, also, investigates 

the relative effectiveness of different measures by separately including variables to 

account for: Training, Employment Incentives, Supported Employment and 

Rehabilitation, Direct Job Creation and Start-Up Incentives. The results from the 

second approach find no significant effect of any of the ALMPs in reducing the 

unemployment rate. The analysis of the ALMP effectiveness at the individual level 

in Kosovo explores the following measures: On the Job Training, Internship Scheme 

and Institution and Enterprise Training.  This analysis focuses on the following 

outcomes: beneficiaries‘ probability of finding a job post-participation; beneficiaries‘ 

probability of increasing job search and beneficiaries‘ probability of having an 

employment contract. The empirical findings indicate that participation in one of 

these active measures is associated with a higher individual‘s probability of being 

employed compared to a non-participant, however the results differ subject to model 

specification. In addition, the findings also suggest that among employed individuals 

those that participated in ALMPs are more likely to be in informal employment.  

Finally, an assessment of the policy implications for European economies seeking to 

increase and sustain employment through active measures is provided based on the 

empirical evidence presented in this thesis. 
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1.1 Introduction 

The main purpose of Active Labour Market Policies (ALMPs) is to provide means 

for skill enhancement and intensify job-search activity which would improve 

employment prospects of the unemployed. ALMP help ensure the return of the 

unemployed in the labour market as fast as possible with the most optimal job match. 

During the last decade, in part due to the global financial crisis, unemployment has 

reached one of the most daunting levels in the history of the European economies. 

This issue is even more pronounced in many of the European transition economies 

because of the already high unemployment inherited from the period of break-up of 

socialist system and transition to the market system. During the process of transition, 

the issue of skill mismatch made high rates of unemployment a persistent feature of 

their labour markets.  

In the current economic situation, European economies have put a greater emphasis 

on policies dedicated to improving human capital having realised how essential they 

are to achieving higher rates of employment, improving the quality of work and 

raising labour productivity. Some authors have argued that raising expenditure on 

ALMPs along with improving coordination of employment strategies in European 

economies can help reduce unemployment rates both in short and long-term 

(Calmfors et al., 2002; Van Vliet and Koster, 2011). According to Banociova and 

Slavomira (2017, p.3), „a country that supports expenditures on ALMP in long-term 

has a more stable employment development than a state that provides smaller 

contributions for labour market measures, particularly in the times of negative 

economic development‟.  

Section 1.2 of this chapter introduces the aim and objective of the thesis while 

section 1.3 discusses the structure of the thesis. The characteristics and trends of the 

labour market indicators are discussed in section 1.5.1 and 1.5.2 and the extent of 

expenditure on active labour market policies (ALMPs) in section 1.6.1. The labour 

market indicators and the level of expenditure on ALMPs are analysed in the light of 

the data provided by Eurostat, International Labour Organisation (ILO), 

Organisation for Economic Co-operation and Development (OECD) and World 

Bank. Since there is considerable variation, the data for the European Union – 15 
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Western European countries
1
, Central and Eastern Europe (CEE)

2
 and South East 

Europe (SEE)
3
 are compared. In accordance with the focus of this thesis, this chapter 

also discusses separately the labour market indicators and the expenditure on 

ALMPs for Kosovo in sections 1.5.3 and 1.6.2.   

1.2 Aims and objectives of the thesis  

ALMPs are designed to address skill mismatches and labour imbalances, increase 

productivity and prepare the unemployed for the rapid changes in the labour market. 

An essential attribute of ALMPs is to enhance human capital and shift from an 

‗employment‘ to ‗employability‘ paradigm, i.e., their aim is not merely to provide 

the unemployed with a job, but to enhance their skills so they become capable of 

finding and retaining employment. Investigations of ALMP effectiveness to increase 

employability in western economies are numerous, but evaluations of these policies 

in European transition economies are still rare and lack the use of sophisticated 

methodology.  The critical review of empirical studies provided in sections 2.3 and 

4.4.1 highlights that there are relatively few studies analysing the ALMP 

effectiveness in transition economies, either at the individual or country level. The 

poor quality and unavailability of data has impeded the thorough research of the 

ALMP effectiveness in transition economies. The data from administrative records 

typically do not provide detailed information needed by current evaluation 

methodologies for the micro-econometric analysis and follow-up surveys are also 

rare. Studies based on experimental designs are largely missing for transition 

economies even though they are considered as the ‗gold standard‘ in evaluation 

methodology.  

In most cases there is the possibility that an individual could be eligible to participate 

in more than one active measure, hence the relative effectiveness of these policies 

should be analysed in an econometric framework that allows for multivalued 

treatment. Until recently, the evaluation methodology did not allow for multivalued 

                                                           
1 The 15 EU Western Countries consist of Austria, Belgium, Denmark, Finland, France, Germany, 

Greece, Ireland, Italy, Luxembourg, Netherlands, Portugal, Spain, Sweden, United Kingdom. 
2 Central and Eastern European (CEE) is the group of countries comprising: Bulgaria, Croatia, the 

Czech Republic, Hungary, Poland, Romania, the Slovak Republic, Slovenia, and the three Baltic 

States: Estonia, Latvia and Lithuania. 
3
 The South East Europe (SEE) 6 consists of Albania, Bosnia and Herzegovina, Montenegro, FYR 

Macedonia Kosovo and Serbia. Kosovo is excluded from the discussion here since it will be discussed 

separately in section 1.3.3. 
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treatment. The estimation technique used for the individual level analysis in this 

research project uses a more sophisticated evaluation technique which allows 

analysis of this aspect. To the best of authors‘ knowledge this is the first study to use 

a double robust estimator to assess the ALMP effectiveness. This estimator allows 

for both the treatment model to address the selection issue and the outcome model to 

account for variables affecting the outcome. Also, this research project fills a gap in 

literature for transition economies, as the first study using an advanced econometric 

methodology to analyse the effectiveness of ALMPS in Kosovo. Finally, to the best 

of authors‘ knowledge, there are no studies that analyse the effect of participation in 

an ALMP on an individual‘s probability of finding employment in the formal sector 

as opposed to the informal sector. The empirical analyses in chapters 5 and 6 of this 

thesis aim to fill this gap in the literature. 

There are also very few empirical studies using country level data to investigate this 

topic for transition economies. This thesis contributes to the empirical literature by 

assessing the ALMP effectiveness in increasing matching efficiency and reducing 

unemployment rate for transition economies. In order to compare the effectiveness of 

ALMPs between transition and non-transition economies and due to the limited data 

for transition economies, the country level analysis was extended to include the 

European non-transition economies.   

Motivated by these gaps in the literature explained above, the aim of this thesis is to 

investigate the effectiveness of ALMPs in transition and non-transition economies in 

reducing unemployment. The following objectives were set to accomplish the aim of 

the thesis:  

1. To provide a comprehensive and critical review of the theoretical framework 

of unemployment and the multiple effects of ALMPs in reducing it; 

2. To provide a critical review of the empirical studies analysing the 

effectiveness of ALMPs in European Transition and Non-Transition 

economies;  

3.  To empirically analyse the effectiveness of ALMP expenditure as share of 

GDP in reducing unemployment at the economy-wide level in European 

transition and non-transition economies; 
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4. To critically review different evaluation methodologies and empirical studies 

analysing the ALMP effectiveness at the individual level in addressing the 

issues of the missing counterfactual and selection bias; 

5. To empirically evaluate the overall and relative effectiveness of three active 

measures implemented in Kosovo: On-the-Job Training, Institution and 

Enterprise Training and Internship Scheme on finding employment, 

searching for jobs and, conditional on being employed, having an 

employment contract. 

6. To synthesise policy recommendations for improving the effectiveness of 

these policies as a tool to reduce unemployment among vulnerable groups 

such as youths and the low-skilled unemployed. 

1.3 Structure of the thesis  

In order to address the above objectives the remainder of the thesis is structured as 

follows. The aim of chapter 2 is to develop a theoretical framework to analyse the 

relationship between ALMPs and unemployment and to review empirical studies 

which have investigated ALMP effectiveness at the economy-wide level. To address 

the first objective of the thesis, this chapter analyses the underlying theories of 

unemployment, utilising the NAIRU framework developed by Layard, Nickell and 

Jackman (1991) and the hysteresis hypothesis. A modified version of NAIRU by 

Calmfors (1994) is used to analyse the multiple effects of the ALMPs in the labour 

market. Given that this thesis places a particular focus on the European transition 

economies, this chapter will discuss the theoretical explanations of the causes and 

consequences of the high unemployment rates in transition economies comparing the 

structuralist view of unemployment and the hysteresis hypothesis. Furthermore, this 

chapter argues that the transition economies may be characterised by multiple 

equilibria in the labour market which can result in an economy getting stuck in a 

‗bad-job/low-skill equilibrium‘. One characteristic of the latter can be the presence 

of a large informal sector. The empirical studies reviewed in chapter 2 reach no 

agreed consensus regarding the effectiveness of these policies. This theoretical and 

empirical review will be used as the basis for empirical analysis of the effects of 

ALMPs at the individual (chapters 5 and 6) and the economy-wide level (chapter 3). 
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Having critically reviewed previous theoretical and empirical research on the ALMP 

effectiveness, chapter 3 continues to addresses objective three and investigate the 

following research question: Are ALMPs in European economies (transition and 

non-transition) effective in reducing unemployment at the economy-wide level? To 

answer this question, chapter 3 employs two empirical strategies using two separate 

datasets to assess the ALMP effectiveness for European transition economies and 

non-transition economies. The first one assesses the efficiency of the ALMP 

expenditure as share of GDP in matching the job-seekers with vacancies using static 

panel modelling techniques. The second strategy assesses the efficiency of these 

policies in reducing the unemployment rate using a dynamic panel modelling 

approach.   

Assessing the effectiveness of ALMPs at the individual level is not an easy task 

because of the missing counterfactual data (an individual cannot be in two different 

states: beneficiary and control at the same time). Hence, chapter 4 addresses 

objective four by critically discussing various evaluation methodologies employed in 

microeconomic policy analysis. This chapter also partially addresses objective two 

by reviewing the empirical studies investigating the effectiveness of ALMPs at the 

individual level.  

Having discussed the evaluation methodology and reviewed the empirical research 

on the effectiveness of ALMPs, chapter 5 addresses objectives five and six and 

answers the following research question: Which of the following three active 

measures, On the Job Training (OJT), Institution and Enterprise Training (IET) and 

Internship Scheme (IS), is more effective in increasing an individual‟s probability of 

undertaking active job search, finding employment and having an employment 

contract in Kosovo? This chapter employs two different empirical strategies. The 

first one is a multinomial probit regression model with a three category dependent 

variable which equals zero if the individual is unemployed at the time of the survey, 

one if the individual is employed with an employment contract and two if the 

individual is employed without an employment contract. Given that the beneficiaries 

of these active measures are selected based on a certain set of criteria, a potential 

issue in this empirical investigation is selection bias. Hence, the second empirical 

investigation addresses selection bias using the Inverse Probability Weighting – 

Regression Adjustment (IPWRA). This approach is a doubly robust estimator which 
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uses both treatment and outcome models and it can achieve unbiased estimates even 

if one of the models is incorrectly specified. Another novelty of this empirical 

approach is that it allows for a multiple treatment model thus this evaluation study is 

the first one to assess the effectiveness of multiple active measures in the same 

framework.  

In order to analyse the overall effectiveness of the active measures, chapter 6 

extends the analysis of the previous chapter by using an additional dataset, Labour 

Force Survey (LFS) for Kosovo, to create a control group. This chapter also 

addresses objective five and six and answers the following research question: To 

what extent the active measures implemented in Kosovo affect the beneficiaries‟ 

probability of finding employment and receiving an employment contract? This 

empirical analysis uses the same evaluation methodology as chapter 5, IPWRA, to 

assess the ALMP effectiveness.  

Chapter 7 provides the conclusion to the thesis, synthesising the main findings of 

this research and contributions to knowledge of the theoretical and empirical 

analysis. Based on these findings policy recommendations with regard to increasing 

ALMP effectiveness in Kosovo are discussed. This chapter also analyses the 

limitations of the research programme reported in this thesis and develops 

suggestions for further research on this subject.  

1.4 Transition process and the labour markets of European 

transition economies 

This section provides a brief overview of the impact of the transition process on the 

labour market indicators in European transition economies. A more comprehensive 

discussion about the transition process and unemployment is provided in section 2.3.  

During the pre-transition period, open-unemployment did not exist; it was during the 

transition process that unemployment emerged and became a persistent feature of 

most of the transition countries (Boeri, 1997; Nesporova, 2002). The rise of 

unemployment was a direct consequence of the dramatic collapse of output that 

transition economies were facing with the shift from the rigid trade relationships of 

the central planning system to a market economy (Burda, 1993; Lehman and 

Muravyev, 2011).  
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The fall in labour demand, which continued after the initial fall of output, was also a 

consequence of the inefficient use of labour resources or labour hoarding in the pre-

transition period which became apparent after privatisation (Adam, 1982; Bruck et 

al., 2007). Labour hoarding can be defined as ―a situation where an establishment is 

paying for more worker-hours than is necessary to produce current levels of output‖ 

(Pissarides, 1991, p. 3). Though the labour hoarding is not easy to be estimated a 

number of studies suggest that between 15 to 30 percent of the employed in CEE 

countries were hoarded labour (Gora, 1991; Nesporova, 1991). 

In most of the transition economies initially non-agricultural self-employment was 

non-existent, while most of the employment was concentrated in large 

conglomerates (Boeri, 1998). The restructuring of labour markets involved large job 

losses in heavy industries and agriculture, while light manufacturing and services 

were being developed (Boeri, 1992). Almost six million people lost their jobs in the 

Central and Eastern European countries (CEECs) and many withdrew permanently 

from labour market (Hoti, 2003).  According to researchers, the skills acquired in the 

state sector were often not suitable for employment in the private sector which 

induced persistence in unemployment – many skills have become obsolete due to 

changes in new forms of firm organization and technology (Burda, 1993; Boeri, 

1997, Nesporova, 2002). Hoti (2003) argues that the occupational adjustment 

requires time and this is what makes unemployment in transition countries persistent.  

As figure 1.1 shows, in general, the transition countries experienced robust economic 

growth from the mid-90s, which was faster than that of the EU15 until the global 

financial crisis. The labour markets of European countries responded to the decline 

in output during the financial crisis by a sharp decrease in employment rates, a rapid 

rise in unemployment rates, a reduction in working hours and fall in real wages 

(Burda, 1993; Leon-Ledesma and McAdam; 2004; Lehman and Muravyev, 2011). 

Figures 1.1 and 1.2 show that there are differences between the CEE and SEE in 

growth of GDP per capita and the employment to population ratio. During the first 

stages of transition, SEE countries experienced the deepest recession and still remain 

the slowest growing. The cause of this slow recovery in this region has mainly been 

attributed to the conflict in the Former Yugoslavia. 
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Figure 1.1 GDP per capita for EU15, CEE and SEE countries, 1993 to 2016 

 
Source: World Bank database (2018)  
 

Figure 1.2 Employment to population ratio for EU15, CEE and SEE countries, 1993 

to 2016 

 
Source: World Bank database (2018)  

The nature of jobs has also changed during the transition process: informal, 

temporary and casual employment has increased.  A study by Schneider and 

Williams (2013) found that although the shadow economy had fallen from 37.9% in 

1999 to 33.7% of official total GDP in 2007 for transition countries, the shadow 

economy in those countries remained larger than the average of 116 developing 

countries (26.2%) and the 25 OECD countries (13.0%). The average level of 

informality of the CEE countries had fallen further by 2015 to about 23%, however, 

it still remained higher than EU15 average (13.5%). Among the European transition 

economies, Bulgaria has the highest informality with 31% of the official GDP while 

the Czech Republic and Slovakia with lowest with about 15% of the GDP 

(Schneider, 2015).   
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1.5 Labour market indicators   

The previous section identified that after nearly three decades of transition and more 

than a decade of the start of the global financial crisis unemployment remains an 

important issue in both developed and transition European economies. Considering 

that this thesis focuses on European countries, this section will examine the gravity 

of unemployment issue in these countries. Section 1.5.1 and 1.5.2 will discuss the 

labour force participation and unemployment rate, respectively, for EU15 compared 

to CEE and SEE countries. A specific summary of the labour market in Kosovo is 

provided in a separate section, 1.5.3. 

1.5.1 Labour Force Participation  

During the first stages of the transition period, CEECs together with high and 

persistent unemployment, typically experienced a huge fall in labour force 

participation. Due to a lack of job opportunities, some unemployed became 

discouraged and withdrew from the labour market. From the macroeconomic point 

of view, the cost of the low labour force participation rates is similar to that of high 

unemployment since both reduce the labour force available and as such diminish 

growth potential. As figure 1.3 shows that since 2005 the labour force participation 

(LFP) rates for CEECs have increased continually, almost reaching those in EU 

Western economies.  

Figure 1.3 Labour Force Participation Rate, % of total working age population 

 
Source: Eurostat (2018) for EU countries and ILO (2018) for SEE 
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According to the Eurostat database (2018), in 2017 the economically active labour 

force accounted for more than 72% of the working age population in EU transition 

economies compared to 74% in EU Western Economies. However, the LFP figures 

for South East Europe 6
4
 (presented in figure 1.3 only from 2008 to 2016 due to 

missing data) suggest that participation rates are much lower compared to both CEE 

and EU economies, with an average of just 54% of the working age population. 

Apart from Kosovo, the labour force participation rate in Bosnia and Herzegovina 

remains the lowest among the transition countries at just 43.2% on average in 2016 

and has not changed much since 2005. 
 

Considering age, one apparent trend is that the participation of the population aged 

15 to 24 in the labour market is decreasing over time in the EU 15; the participation 

of this group has dropped from about 48% in 2005 to about 43% in 2017 (Eurostat 

database, 2018). However, as figure 1.4 shows, there are notable differences among 

countries where the participation of youth in Ireland dropped from 66% in 2005 to 

46% in 2017 or in Spain from 47% to 33%. On the other hand, the participation rates 

for CEECs remained on average constant; however, it increased from 36% in 2005 to 

46% in 2017 in Estonia and from 25% to 35% in Lithuania. As figure 1.4 shows, the 

participation rate of this group in SEE countries has fallen. A particularly large 

reduction is observed in Albania where it fell from 50% in 2002 to just 31% in 2015 

(ILO database, 2018). This may be partly explained by the substantial increase in 

higher educational enrolment by young cohorts in the region that led to their delayed 

entry into the market (World Bank, 2013b).  

                                                           
4
 Kosovo is excluded from the discussion here since it will be discussed separately in section 1.3.3. 
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Figure 1.4 Youth Labour Force Participation aged 15-24 

 

Source: Eurostat (2018) for EU member states and ILO (2018) for SEE. 
Note: For SEE countries the figure presents data for 2008 and 2015 due to missing data.  

 

During the socialist period, the female labour force participation rates in CEECs, 

except for Western Balkan Countries, were very high by international standards 

(Nesporova, 2002; Lehman and Muravyev, 2011). The transition process initially 

reduced both female and male LFPs and brought down female labour force 

participation to the EU level and that of males well below to that of the EU level. 

Female LFP is also low in the SEE region but here there are additional explanatory 

factors to the transition process that include cultural reasons and traditional roles 

assigned to women. Also, the social benefit system is seen as cause of inactivity in 

some cases such as that of Montenegro, where the introduction of life-long benefits 

for mothers of at least three children in 2016 resulted in more than 15,000 women 

applying for this benefit, consequently causing many of them to withdraw from the 

labour market (World Bank, 2017). Women‘s LFP in Albania fell in comparison to 

pre-transition period but remained on average constant from 2005 to 2016 at about 

47%. The lowest female participation rate in the Western Balkans countries is that of 

Bosnia and Herzegovina with about 32%. In Croatia and Bulgaria the female 

participation rates remained quite unchanged during this period at around 45%.  As 

seen in figure 1.5, the gender differences in labour force participation in the CEECs, 

in general are much larger than those in EU 15, expect for Italy where the gender gap 

is 19.1 percentage points (pp) compared to Romania (18 pp) and Poland, Czech 

Republic and Hungary (14 pp). The gender participation gap in SEE is considerably 

larger compared to both EU15 and CEECs. Apart from Kosovo, which is discussed 

in the next section, the gender gap for FYR Macedonia and Bosnia and Herzegovina 
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are the largest among the European transition countries of around 25 and 24 

percentage points in 2015 (ILO, 2018).   

Figure 1.5 LFP rates by gender (%) for EU15, CEECs (2017) and SEE (2015) 

 

Source: Eurostat database (2018) for EU member states and ILO (2018) for SEE.  

 

Considering the analysis of the educational attainment in most of the transition 

countries the highest proportion of the labour force consists of workers with 

completed secondary education. According to the Human Capital theory, educational 

achievement is considered to be crucial determinant of the labour supply. In the post-

transition period secondary and tertiary education have become more valuable and 

skills obtained in higher education increase the probability of gaining employment 

considering the structural changes in the pattern of employment (Boeri and Terrell, 

2002). Countries with the highest proportion of those who have only completed 

primary education in the SEE region are FYR Macedonia with more than 28 percent, 

followed by Bosnia and Herzegovina and Kosovo with 20% of the labour force in 

2012 (ILO database, 2018). The proportion with completed higher education in 

Montenegro‘s labour force was just over 10% followed by Serbia with 12.5% 

compared to FYR Macedonia with about 19% in 2017 (ILO database, 2018).  

1.5.2 Unemployment Rates and Duration  
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unemployment was not common. Masked unproductive employment was mainly in 

the public administration sector and in inefficient state-owned enterprises. 

Privatization of the state-owned enterprises led to a drastic increase in 
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in agriculture and heavy industry, which was initially expected to be absorbed by the 

expansion of light manufacturing, construction and services (OECD, 1992; 

Mickiewicz, 2010). In most of the CEECs job-destruction in the public sector was 

not followed by an equal amount of job-creation in the private sector leading to an 

employment decline (World Bank, 2005; Kovtun et al., 2014). In recent years, the 

unemployment in CEECs has fallen from the double digits, the only country still 

having double digit unemployment rate in Croatia with 11.1% while the Czech 

Republic has the lowest unemployment rate of 2.9% in 2017. However, 

unemployment in the South East Europe 5 is the highest amongst the European 

transition countries, and it remains a major economic and social challenge (ILO 

database, 2018). As can be seen in figure 1.6, even though the unemployment rate 

has fallen in these countries since 2005, it still quite high compared to the average of 

EU15 and CEE countries with an average of 18% in 2017. Apart from Kosovo, the 

countries with the highest unemployment rate in the region are Bosnia and 

Herzegovina (BiH) at about 25% and Former Yugoslav Republic of (FYR) 

Macedonia with 23%. 

Figure 1.6 Unemployment rate for EU15, CEE and SEE 

 

Source: Eurostat database (2018) for EU15 and CEECs and ILO database (2018) for SEE 

 

Long-term unemployment, consisting of persons who are unemployed for one year 

or more, is very high in most of the transition countries and has been increasing in 

some of them since 1995 (Eurostat database, 2018).  The persistent low-job creation 

in the private sector in the SEE has increased the possibility of persistent 
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database, 2018). However, the data show that there are differences in long-term 

unemployment between CEECs where Slovakia has the highest figure of long-term 

unemployed with 62% while Poland the lowest with 31% of the total unemployed. 

SEE countries exhibit much higher long-term unemployment; in FYR Macedonia 

and Montenegro the proportion of long-term unemployment is more than 77% 

(Eurostat database, 2018). The ‗true‘ unemployment rates in CEECs may be lower 

than the figures provided by Labour Force Survey, since a significant number of 

workers considered unemployed may actually work in the informal sector. However, 

some potential workers are disheartened or discouraged from seeking employment 

and withdraw from the labour market. This is particularly true for Western Balkan 

countries (KAS, 2017; GoS, 2016).  

 

As discussed in section 1.4, in post-transition economies labour markets are 

characterized by a high degree of skill mismatch due to slow skill adjustments during 

periods of restructuring (Bejakovic and Mrnjavac, 2014). This mismatch further adds 

to the difficulties of improving the labour market as the jobseekers will need to 

acquire necessary skills in order to benefit from the available employment 

opportunities.  
 

Figure 1.7 Qualification mismatch in EU15 and selected CEECs, 2015 

 
Source: OECD database (2018)  
 

As seen in figure 1.7, the qualification mismatch
5
 was, on average in 2015, much 

higher in the EU15 than in the CEECs. Given that this measure captures both, over-

qualification and under-qualification, one may suggest that the mismatch in EU15 

might be primarily due to over-qualification.   

 

                                                           
5
 The OECD measures the qualification mismatch indicator by comparing each individual‘s education 

level to the level required in their occupation. The ‗normal‘ qualification level that is required in an 

occupation is defined as the qualification level that is most observed among people employed in that 

occupation. People can be over-qualified when their qualification level exceeds the one that is usually 

required in their occupation, or under-qualified, when they have a qualification level below.  
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Unemployment among youths is even higher than the general unemployment. In 

comparison to adults, young workers face a disadvantageous labour market situation. 

The 2017 youth unemployment rates for Greece (43%), Spain (38%) and Italy (34%) 

are higher than any of new EU member states where the highest rate is that of 

Croatia (27%). As mentioned in a World Bank report (Bogetic et al., 2012) and 

illustrated in Figure 1.8, youth unemployment is a particularly daunting problem for 

the SEE countries. In several SEE states youth unemployment rates is almost 50% 

for FYR Macedonia while 62% for Bosnia and Herzegovina, much higher than the 

two extreme cases in the Eurozone: Greece and Spain (EBRD, 2013; ILO database, 

2018).  
  

Figure 1.8 Youth Unemployment rate for EU15, CEEC and SEE, 2005 and 2017 

 

Source: Eurostat (2018) for EU member states and ILO (2018) for SEE. 
Note: For SEE countries the figure presents data for 2008 and 2015 due to missing data for 2005 and 

2017. Data for Montenegro for 2008 is missing.  
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unemployment in Kosovo.  Hence this section will provide a brief analysis of the 
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distinct history which is reflected in the current labour market situation. Kosovo was 
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contracted by 50% compared to its pretransition level (Hoti, 2017).  Kosovo‘s post 

1999 economic recovery has been very slow in tackling the inherited structural 

unemployment problem and the depleted human capital stock. Kosovo is known for 

its young population and also large-scale emigration which affect the size and the 

age composition of the labour force (Hoti, 2017). Nearly one third of the population 

is under the age of 15 which implies that there are a large number of new entrants 

into the labour force each year.  

The labour market performance in Kosovo is the poorest when compared to other 

Balkan countries and European Union member states. As figure 1.9 shows, low 

labour force participation (LFP) remains one of the most critical issues in the labour 

market in Kosovo. Of those of working age, in 2017 only 42.8% were participating 

in the labour force (economically active) meaning that they were either employed or 

unemployed (i.e., actively seeking work and available to work) (KAS, 2017). Part of 

the reason for the difference between Kosovo and Balkan countries is that Kosovo 

has a very young population and has experienced a significant expansion of higher 

education in recent decades, thus many of these young people are still in education 

and categorized as inactive. The discouragement of the labour force participants is 

widely persistent, out of the 733,341 inactive population, 165,712 people did not 

search for a job because they did not believe that there are job opportunities for them 

(KAS, 2015).  

Figure 1.9 Main labour market indicators: Kosovo, 2002 to 2017 

 
Source: KAS (2002 to 2017) 
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responsibilities and the absence of (affordable) childcare are among the reasons for 

the low women participation in the labour force (Democracy for Development, 

2015). In addition, women‘s low LFP in Kosovo is also related to stereotypical 

gender roles that certain occupations are not considered suitable for women. As 

noted by a World Bank report (2002) in times of limited labour demand and social 

policies to support women, they become more easily discouraged than men and 

withdraw from the labour market.  

Only 29.8% of the working age population was employed in 2016; only 12.7% of 

working age women were employed compared to more than 46% of men (KAS, 

2017). Despite being low, the employment rate has been increasing steadily over the 

years from about 21% in 2002 to almost 30% in 2017 (see figure 1.10). Across 

different age groups the employment rate was highest among 35-44 years old 

(40.5%). The lowest employment rate is among the young population (15-24 years 

old) at just over 11.2%, where the employment rate for young women is only 5.2% 

while around 12% for young men. Figure 1.10 also shows that the higher the level of 

education the higher possibility of being employed; about 57% of those who have 

university degree are employed  

Figure 1.10 Employment rate (% of active population) by age, gender and education, 

2017 

 

Source: KAS (2017) 
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In addition to the low employment rate in Kosovo, vulnerable employment, which 

refers to self-employment without employees or those who are employed in any 

family business without pay is around 23.1% of total employment. Men are more 

likely to have vulnerable employment (24.4%) compared to women (18.3%). In 

terms of the contractual agreement, more than 78% of respondents in the LFS had an 

individual contract. With regard of those who have a contract, more than 70% had a 

temporary contract (no gender differences) and only 5% of the employed were 

entitled to the benefits of the social security schemes in the job. 

Of the entire working age population, according to the LFS 2017, the unemployment 

rate in Kosovo was 30.5%, it was higher for women (36.6%) than for men (28.7%). 

As presented in figure 1.11, the unemployment rate in Kosovo has dropped 

significantly since 2002 from 55% to about 30% in 2017. The majority (71.5%) of 

unemployed have been unemployed for more than a year. According to the LFS 

(2017), the likelihood of becoming long-term unemployed increases with age and 

women are also more likely to become long-term unemployed compared to men, 

except for young women. With regard to the age groups, the unemployment rate of 

the youth population is the highest among all age groups at about 52.7%, where 

63.5% of women of this age are unemployed compared to 48.4% of men. The 

likelihood of a young person being unemployed is twice as high as that of older 

workers and the difference is more pronounced among males.  

Figure 1.11 Unemployment rate (% of active population) by age, gender and 

education, 2017 
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Source: KAS (2017) 
 

This exceptionally high youth unemployment in Kosovo is related to the weak 

demand for labour (Corbanese and Rosas, 2007). Even though the rate of job 

creation has been improving in Kosovo, the amount of new vacancies is not rising at 

the pace of the inflow of the new labour participants (USAID/UNDP, 2009). In 

Kosovo the share of youths aged 15 to 24 not employed, not in education and not in 

training (NEET) is very high of more than 27% of the young population (KAS, 

2016). This raises concerns about their future employability and detachment from the 

labour market. Despite lack of good job opportunities, there are other factors which 

might have affected youth unemployment and idleness such as low quality of 

education and incompatibility of education programmes with the labour demand, 

lack of practical work during school, lack of career counselling, limited information 

about the labour market demand and lack of networking (MLSW, 2017). This makes 

the young entrants to the workforce often relatively unskilled and poorly prepared, in 

terms of both job-related and employability skills (USAID, 2009; MLSW, 2017).  

A significant emigration of its population has been an integral part of Kosovo 

throughout history. As presented in figure 1.12, the emigration of Kosovo population 

increased dramatically in the 1990s‘ due to the conflict in former Yugoslavia which 

resulted in a grave political and socio-economic situation in Kosovo. Given poor 

employment opportunities in Kosovo during this period, emigration was considered 

as the only option to escape unemployment and poverty, to contribute towards 

household income and increase their welfare. According to Human Rights Watch 

during this period there was a ‗forced emigration of 350,000 Kosovo Albanians‘ and 

it was mainly the young population who escaped the country (Gollopeni, 2016). The 

emigration culminated in 1999 when an estimated 850,000 Kosovo Albanians were 

evicted from their homes to the neighbouring countries (Albania, FYR Macedonia 

and Montenegro) leading to mass emigration. While the largest number of refugees 

returned to Kosovo after the conflict was over, about 100,000 ethnic Serbs left 

Kosovo to Serbia and the north of Kosovo (Elsie, 2011). According to KAS (2014), 

in 1998 and 1999, 51,728 Kosovo Albanians (21,973 and 29,755, respectively) or 

about 13.6% of all emigrants left the neighbouring countries to Europe and other 

countries (Haxhikadrija, 2009).  
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Figure 1.12 Emigration of the Kosovo population (expressed in number of people), 

1969 to 2010 

Source: KAS (2014) 

The emigration during the 1990s was mainly due to the political situation while 

socio-economic situation was the main reason for emigration during the other 

periods of migration. The latest stage of migration was in 2014 and 2015 when 

approximately 100,000 citizens left Kosovo towards Western European countries 

mainly due to low job opportunities and the loss of hope for better domestic 

economic prospects in the near future (Gollopeni, 2016). According to Kosovo 

Agency of Statistics (2014), in 2011, 21.4% of Kosovo‘s population was living 

abroad (that was approximately 381,000 persons).  

The level of remittances received by transition countries have frequently been a vital 

source of external finance for these countries after incoming foreign direct 

investment (World Bank 2006; Hoti, 2009). Kosovo was ranked as one of the 

countries with the highest percentage of remittances on GDP; in 2014, 16.1% of 

GDP comprised of remittances while this percentage dropped in 2015 to 13% 

(Ministry of Economic Development - MED, 2018). Most of the remittances are 

used for consumption like food and clothing (35.4%), other expenditure on such as 

electrical equipment, cars and weddings (24.8%), renovating houses and buying new 

ones (19.6%) while a smaller amount of remittances goes on education and medical 

care (10.6%) (MED, 2018). Education is one of the accelerators of the countries‘ 

economic growth and many studies suggest that the number of high-school drop-outs 

has fallen due to the remittances (MED, 2018).  
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The emigration of population affects the composition and size of the labour force 

and it also affects the skill composition of labour left in the country of origin. In a 

study of 24 countries with large scale emigration, the share of highly skilled 

emigrants was not more than 10% of the population (Adams, 2003). More 

specifically, a study by Hoti (2009) suggests that 7.4% of Kosovar individuals with 

completed higher education (about 11,000) live out of the country. Many studies 

have emphasised a positive relationship between education and emigration since it 

gives people the incentive to acquire higher education in order to be marketable 

internationally (Ivļevs and King, 2010). This is commonly referred to as the ‗brain 

drain‘ and it is considered as damaging to the country of origin as much as the 

emigration (Hoti, 2009). Emigration of highly skilled workers makes the country less 

attractive to foreign direct investment, it affects the level of income and increases the 

fiscal burden of people left in the country etc. Skilled and unskilled workers are 

frequently complementary in the process of production and the absence of the former 

can make the later less productive (Docquier and Rapoport, 2004; Hoti, 2009). Given 

peoples‘ incentive to migrate and the lower employment opportunities in their home 

country, the ALMP participants in Kosovo, analysed in chapters 5 and 6, might also 

use the training acquired to emigrate to countries where their new skill can be 

utilised.  

1.6 Types of ALMPs  

Having so far discussed the labour market indicators in European countries with 

particular attention to Kosovo, this section investigates the ALMPs which are 

recognised as one of the essential policy instruments to alleviate labour market 

mismatch and to fight high unemployment rates. This section provides a brief 

discussion of the types of ALMPs and their aim in the labour market, with an 

extended analysis of the multiple effects of these policies being provided in section 

2.2.3. The following section sheds light on the level of ALMP expenditure in EU15 

and transition economies. This serves as starting point for the analysis of the 

relationship between ALMPs and unemployment in the following chapter.  

ALMPs are a group of policies used by governments to promote employment, 

growth and equality (Calmfors et al., 1994; Rueda, 2006). The main aim of these 

policies is to enhance labour supply, increase labour demand and improve the 
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functioning of the labour market. Policy makers recognize ALMPs as potentially 

being a direct instrument in reducing unemployment through enhancing information 

exchange, increasing the skills and employability of the unemployed and improving 

the matching of vacancies and job-seekers (Calmfors et al. 2002). Moreover, these 

policies can affect labour demand by reducing the hiring costs, thus facilitating job-

creation in the labour market. Some policy-makers view ALMPs not as a cure for 

large-scale unemployment, but rather as a treatment for specific types of 

unemployment or specific groups of unemployed individuals. The multiple effects of 

ALMPs are analysed in detail in Chapter 2. 

There is a wide variety of ALMPs among European countries. Kluve (2006) 

classified ALMP interventions into six core categories; the same classification that 

was suggested and is now used by the OECD and Eurostat.  

1. Training is the most common active policy encompasses classroom training, on-

the-job training and work experience. The primary aim of the training 

programmes is to enhance human capital through improving skills needed for 

employment and to increase the productivity of the participants. This measure 

can either provide more general knowledge such as language courses and basic 

computer courses, or specific vocational programmes that can also increase 

occupation-specific skills such as craft and operative skills.  

2. Subsidised private sector employment that comprises measures that increase job-

opportunities in the private sector. This measure aims to alter workers and/or 

employers behaviour with regard to private sector employment. The most 

common measure is the wage subsidy which aims to encourage employers to 

increase job-opportunities for new workers and/or to maintain those jobs that are 

under threat of being made redundant The financial subsidy is typically paid to 

employers but may be paid directly to supported employees for a fixed period of 

time, and is often targeted at the long-term unemployed. This category also 

encompasses grants for self-employment and start-up businesses, which can 

include a combination of training, financial support and management advising 

for a fixed period of time (Kluve et al., 2006). 

3. Subsidised public sector employment (public works) aims to offer job 

opportunities in the public sector through direct job creation. These measures are 

usually targeted at disadvantaged groups with the objective of keeping the 
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participants in the labour market and preventing loss of human capital during the 

period of unemployment.  

4. Job search assistance and sanctions aim to increase the effectiveness and 

intensity of the job search process (Card et al., 2010; Butschek and Walter, 

2013). The main objective of job search assistance is to increase the efficiency of 

the job matching through job search courses, job clubs, counselling and 

monitoring and sanctions applied in the case of noncompliance with 

requirements. This active measure can be managed by private agencies but 

historically public job search services have dominated provision. In many 

countries the Public Employment Services (PES) predominantly target long-term 

unemployed and disadvantaged groups while private agencies target white-collar 

and more privileged employees. This active measure includes also benefit 

sanctions or specified reductions in (or loss of) unemployment benefits if the 

unemployed refuse to accept an offered job or do not apply sufficient effort in 

their job search.  

 

The first four active measures are descriptions of the programme types while the 

next two focus on specific target groups for ALMPs. In many countries, ALMPs 

have been used to address inequality and are targeted at disadvantaged individuals in 

the labour market (Card et al., 2010).  

 

5. Youth programmes include the above mentioned active measures applied 

specifically to the young unemployed usually aiming to increase their 

employability skills (World Bank, 2008), e.g. through training programmes, 

subsidies and job search assistance.  

6. Measures for the disadvantaged groups such as training may be used to assist 

specific groups of unemployed. Examples of such measures include support for 

females enter male dominated occupations and increase their income level 

(Bergman and Van den Berg, 2006),support for immigrants and minorities‘ in the 

labour market through language and induction courses and subsidised 

employment (Butschek and Walter, 2013). 

 

In practice, classifying actual programmes into these categories is frequently difficult 

since most national programmes combine two or more active measures targeted to 
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the same group (Calmfors et al, 2002). Measures that encourage desirable behaviour 

such as training, job search assistance and subsidies are usually called ‗‘carrots‘‘ 

while imposing threats on the unemployed such as benefit sanctions are called 

‗‘sticks‘‘ (Kluve and Schmitt, 2002).  

1.6.1 ALMP expenditure in EU member states 

Transition countries‘ labour markets are characterised by specific features which 

affect the potential of ALMPs to improve labour market performance. For instance, 

the extent and speed of structural changes means that any feasible implementation of 

ALMPs would not be sufficient to absorb the workers displaced during transition 

period. The limited capability of the labour markets in transition economies to create 

new jobs led to a stagnant pool of unemployment with the tendency to become long-

term unemployment. As discussed in section 1.3.2, most of the transition economies 

are characterised by chronic long-term unemployment. In developed countries the 

unemployed workers are disproportionately from marginalised groups, those with 

low attachment to the labour market or who face trouble finding employment at the 

beginning of their working life. In contrast, the pool of unemployment in transition 

countries typically contains large numbers of the core labour force, those possessing 

large stock of human capital and who have high attachment to the market. The 

stagnant pool of unemployment further led to high deterioration of human capital. 

Job competition in transition labour markets is much stronger than in developed 

countries thus the unemployed who participate in the active programmes may not 

have the same experiences and outcomes as those in other countries (Lehman and 

Kluve, 2008).  
 

ALMPs became popular in European countries in the 1990s and have continued to 

increase in scale and scope, however there is heterogeneity in the expenditure 

dedicated to these measures. Figure 1.13 presents the ALMP expenditure as share of 

GDP for both the EU15 and CEECs
6
. As the graph shows, the EU 15 countries 

allocate considerably more expenditure on ALMPs as a % of GDP than the new 

member states. In CEE countries, regardless of their generally high unemployment, 

the spending on ALMP is limited, which is not surprising since transition countries 

have faced great fiscal pressures. As seen in figure 1.13, on average in 2015 the 

                                                           
6
  Comparative data for ALMP expenditure in SEE is not available.  
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ALMP expenditure as percentage of the GDP in CEE countries was 0.24% compared 

to 0.62% in the EU15. During the Global Financial Crisis an intensification of 

ALMP expenditure was undertaken in many EU countries, despite the budget 

constraints and capacity issues which have constrained their growth (Gama et al. 

2015). However, after 2012 there was no significant increase in these expenditures 

(Numanovic et al., 2016).    
 

Figure 1.13 ALMP Expenditure as a share of GDP; EU15 and CEE 

 
Source: Eurostat database (2018) 

 

Although the data in figure 1.13 reflect some general trends in total expenditure on 

ALMPs, the difference between countries cannot be easily generalised. Figure 1.14 

shows that Denmark is the highest spender among the EU15 countries allocating 

more than 1.4% expenditure as share of GDP while Greece allocates only 0.18%. 

Amongst the CEECs only the level of ALMP expenditure in Hungary is comparable 

with those of high spenders in the EU 15 with 0.79% of GDP, whereas all other 

countries are low spenders, with Romania spending only 0.019%, and Latvia and 

Estonia spending about 0.10% of GDP in 2015. Despite the fact that Balkan 

Countries in recent years have considerably increased the amount spent on active 

policies, it is still much lower than that of the EU 15. The level of expenditure of the 

ALMPs in Serbia was about 0.2% of country‘s‘ GDP while Albania spent only 

0.05% in 2015 (Numanovic et al., 2016).  
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Figure 1.14 ALMP Expenditure as a share of GDP; EU15, CEE and selected SEE, 

2016 

 

Source: Eurostat (2018) for EU member states and Numanovic et al., (2016) for SEE 

countries.  
Note: Data for UK is not available. Data for Italy, Albania, Bosnia and Herzegovina (BiH) FYR 

Macedonia and Serbia are for year 2015.  

 

Figures 1.15 and 1.16 tend to capture the relationship between ALMP expenditure as 

share of GDP and unemployment rates for both the EU 15 and CEE for 2015. Figure 

1.15 shows that there might be pattern relating the ALMP expenditure and 

unemployment rate for EU 15 countries. Figure 1.15 shows that the low spenders on 

ALMP as a % of GDP tend to have high unemployment rates, such as Greece, Spain, 

Portugal and Italy whereas countries that allocate more expenditure to ALMPs such 

as Finland, Sweden and Denmark tend to have lower unemployment rates. On the 

other hand, in the CEECs no clear relationship between ALMP expenditure and 

unemployment rate can be observed.  
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Figure 1.15 Unemployment rate and ALMP Expenditure as a share of GDP for 

EU15 countries, 2015 

 
Source: Eurostat database (2018) 

Figure 1.16 Unemployment rate and ALMP Expenditure as a share of GDP for CEE 

countries, 2015 

 
Source: Eurostat database (2018) 

 

Figure 1.17 shows that the coverage rate of the unemployed persons by ALMP (the 

share of registered unemployed benefiting from ALMPs in a given year) also varies 

greatly between countries. Except for Hungary (44.3%), every other country in CEE 

and SEE is below the EU average (23.6%). The lowest activation coverage is that of 

BiH and FYR Macedonia, the activation policies cover only 2.4% and 6.5% of 

registered unemployed respectively (Numanovic et al., 2016). The low coverage in 

these countries can partially be explained by the high unemployment which suggests 

that the number of unemployed assisted by these policies is too small and inadequate 

for these labour markets characterised by many challenges. 
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Figure 1.17 ALMP Coverage rate of unemployed persons (%); EU15, CEE and 

selected SEE, 2016 

 
Source: Eurostat (2018) for EU member states, Numanovic et al., (2016) for Albania, BiH 

and FYR Macedonia and Gerovska (2017) for Serbia.  
Note: Data for UK, Greece, Italy and Luxembourg is not available. Data for Ireland and Netherlands 

is for year 2014, Albania, Bosnia and Herzegovina (BiH) and FYR Macedonia is for year 2015.  

As explained in section 1.4, active measures mainly target the low-skilled, long-term 

unemployed and marginalised groups and those groups that have problems entering 

the labour market. In a well-functioning implementation of the active policies, the 

predetermined target groups should be set so as to minimise deadweight and 

substitution effects
7
. Candidates for participation in active measures are usually 

selected based on particular criteria where all the registered unemployed from a 

given target group can apply. According to Steendam et al. (2010), the 

implementation of active measures in Germany and Belgium were especially 

successful partially due to well-defined target groups and the selection of 

participants based on the criteria. On the other hand, the ALMPs in transition 

countries, such as Albania, FYR Macedonia and BiH, did not follow the pre-set 

criteria for selection, but rather recruited from all the unemployed. Numanovic et al. 

(2016) emphasise that the targeting was not sufficiently personalised in these 

countries and there is no well-established institutional mechanism that could identify 

the needs of the job-seekers and help them through the employment process. The 

ILO (2014) also highlighted that in Albania vulnerable groups have limited inclusion 

in the active measures with current policies being poorly targeted on this category of 

job-seekers. 

                                                           
7
 The substitution effect leads to the substitution of one category of workers with the ALMP 

beneficiaries because they are less costly.  The deadweight effect leads to employing the same 

individuals that would have been employed even in the absence of such programmes. More details 

about these two effects are provided in section 2.2.3. 
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1.6.2 ALMPs in Kosovo  

One of the main objectives of the Ministry of Labour and Social Welfare in Kosovo 

is to increase employment through ALMPs (MLSW, 2017). However, the number of 

registered unemployed benefiting from ALMPs in Kosovo remains relatively low, 

mainly due to the limitations of the budget and staff of the Employment Agency of 

Kosovo. According to MLSW (2017), only about 10% of the 101,773 registered 

unemployed in 2016 benefited from ALMPs. The number of the ALMP 

beneficiaries, however, seems to be increasing since in 2015 only 6,966 registered 

unemployed benefited from these policies compared 10,419 in 2016. Table 1.1 

presents the ALMPs in Kosovo during 2016, where vocational training in VTC 

(Vocational Training Centre) is the largest active measure with 7.6% of total 

registered unemployed.   
 

Table 1.1 The number of ALMP participants in Kosovo, 2016 

Indicator  Classification by Eurostat  

Number of 

participants 

in 2016 

% of 

registered 

unemployed 

in 2016  

Employment through 

ALMPs 

Active Labour Market 

Programmes  1,781 1.8% 

Of which:       

Public jobs  Creating jobs   819 0.80% 

Salary subsidy  

Incentives for permanent 

employment  474 0.50% 

Apprenticeship work  

Labour market measures: 

Support to interns  434 0.40% 

Self-employed  Incentives for self-employment 54 0.10% 

Vocational training 

 Active Labour Market 

Programmes  7,687 7.60% 

Of which: 

   Vocational training in 

VTC  Institutional training  6736 6.60% 

On-the-job training  Training on the job  951 0.90% 

Source: MLSW (2017) 

 

Similar to many Balkan Countries, ALMPs in Kosovo were introduced through 

support of  international funds such as European Agencies, the German Government, 

the Swiss Government, the Government of Finland, the Luxembourg Government 

and United Nations Development Programme (UNDP) etc. Due to data 

unavailability, this thesis will focus only on a fraction of ALMPs implemented in 
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Kosovo, those implemented by UNDP in cooperation with the Ministry of Labour 

and Social Welfare. While this section briefly depicts the ALMPs implemented by 

UNDP, section 5.2 provides an extensive examination of the design and targeting 

and detailed data analysis of the active measures investigated.  

This ALMP programme launched in 2007 (which was a continuation of the 

Employment Project which was implemented from 2005) and was targeted mainly at 

low-skilled young women and men aged 15 to 29 without previous work experience. 

The programme was implemented in seven regions in cooperation with regional and 

municipal employment offices and private sector enterprises. The programmes‘ 

prime objective was to increase the employability of youths in Kosovo. The ALMPs 

funded by the UNDP in Kosovo comprise the measures presented in table 1.2.  

 

The total number of beneficiaries up to June 2016 was 13,285. The active measure 

with the largest number of beneficiaries is On the Job Training with 4,429 

beneficiaries, the Public Works projects with 3,194 followed by Wage Subsidies and 

the Internship Scheme with 2,794 and 1,175 respectively (UNDP, 2014). From the 

total number of beneficiaries at least 50% were women, 21% were from minorities 

and 56% were from rural areas. 

Table 1.2 ALMPs implemented by UNDP and MLSW in Kosovo during 2005 – 

2016 
 

 Active labour market measures    

No. of beneficiaries in total 

since 2005 

 Public Works projects   3194 

 On the Job Training (OJT) 2007  4429 

 Pre-Employment Training (PET) 2007 – 2008      79 

 Wage Subsidies (WS)  2794 

 Internship Scheme (ISch)  1175 

 Institution and Enterprise based training (IET) 2008    373 

 Training at a local school 2007 – 2008      40 

 Professional practice in enterprise for VET students  1138 

The Self-Employment Programme     63 

 Total Beneficiaries 13,285 

Source: Active Labour Market Programme for Youth, UNDP, 2016 

The above-mentioned interventions applied in Kosovo helped young people to 

establish interaction with labour market for the first time through enhancing 

employability and vocational skills. According to the UNDP‘s Annual Report (2014) 

the ALMP programmes have successfully provided equal opportunities to youths 
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and the disadvantaged and integrated minorities and other low-skilled groups into the 

labour market. In 2008 and 2012, two different external evaluations of the 

programmes concluded that the ALMPs generated positive benefits and they 

increased the chances of the participants getting employed (Mukavilli, 2008; 

Kavanagh, 2012). Even though the ALMPs implemented were considered 

successful, the Labour Force Survey results show that the youth unemployment rate 

in Kosovo still remains high. Both of the previous evaluation studies were largely at 

a descriptive level of analysis, providing only a comparison of descriptive statistics 

between treatment and control groups. Kavanagh (2012) uses a control group of only 

150 individuals in comparison to 1,082 treated which raises doubt as to the reliability 

of the analysis. Mukavilli (2008) uses a more balanced sample, though the latter is 

small, 399 individuals where 100 are control individuals. Neither of the studies used 

an advanced evaluation methodology to assess the ALMP effectiveness thus they do 

not account for potential selection bias. Chapters 5 and 6 use the same data as 

Kavanagh (2012), though the latter will also utilise the Labour Force Survey data 

collected in 2012 while employing the most recent evaluation methodology.  

1.7 Conclusions 

This chapter provided the initial analysis of the labour market indicators and ALMP 

expenditure and coverage in European transition and non-transition economies. 

Given the focus of this thesis, particular emphasis was given to Kosovo. Transition 

economies experienced a large drop in labour force participation rates and an 

increase in unemployment during the first stages of transition process. Labour force 

participation has increased steadily in CEE economies almost reaching those in 

Western European economies in recent years. The unemployment rate in CEE has 

also dropped continually during the last decade and on average it is lower than that 

of the EU15. The unemployment rate in SEE, however, still remains very high and 

the long-term unemployment rate is also much higher than in the other regions as is 

the size of the informal sector. This chapter also assessed expenditure on ALMPs, 

comparing the expenditure of European transition and non-transition economies. The 

figures presented in section 1.6.1, point out that transition economies allocate 

considerably less expenditure, as a % of GDP, to ALMPs compared to non-transition 

economies. It is also observed that the non-transition economies allocating higher 

expenditure to ALMPs have lower unemployment rate. This pattern of the 
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relationship between ALMP expenditure and unemployment rate, however, is not 

observed in transition economies. The transition economy with the most daunting 

problem of unemployment is Kosovo, despite its high unemployment rate the 

expenditure allocated to ALMP is very low compared to other countries in the 

region.  

The first part of this chapter presented the aim, objectives and the structure of this 

research project. Given the high unemployment rates in transition economies and the 

goal of ALMPs in enhancing individuals‘ skills and improving employment 

opportunities, this thesis aims to analyse to what extent these policies can reduce 

unemployment in European transition and non-transition economies. Section 1.2 

pointed out the lack of empirical studies for transition economies, especially those 

employing more advanced evaluation methodologies. This thesis fills this gap in the 

literature by evaluating ALMPs in European transition and non-transition economies 

using the most recent techniques. The following chapter will critically analyse the 

theoretical framework through which the effectiveness of ALMPs can be empirically 

investigated. 
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2.1  Introduction 

Chapter 1 provided an introduction to the state of the labour markets in European 

transition economies, with special reference to Kosovo. It focused on the factors 

influencing their high rates of unemployment and the types and scope of Active 

Labour Market Policies (ALMPs). One of the main objectives of this second chapter 

is to provide a critical assessment of the theory of the Non-Accelerating Inflation 

Rate of Unemployment (NAIRU) based on the framework of Layard, Nickell and 

Jackman (1991) and the role of ALMPs in reducing unemployment. Layard, Nickell 

and Jackman is the most commonly used theoretical framework to analyse the 

NAIRU. This theoretical framework will be used to set the ground and critically 

review the arguments for analysing the multiple effects of the ALMPs at the 

individual and economy-wide level. The hysteresis hypothesis of unemployment will 

be critically analysed. Given the context of European transition economies, a less 

restrictive version of NAIRU, the structuralist view of unemployment, will be 

developed to evaluate the nature of unemployment.  

A major gap in the theoretical and empirical literature is the analysis of the 

effectiveness of ALMPs in the context of countries with high informal employment. 

An important objective of this chapter is to provide a concise and critical assessment 

of the arguments associated with the relationship between ALMPs and informal 

employment and what are the mechanisms through which ALMPs could provide 

incentives for the switch from informal to formal employment. 

Chapter 1 observed that disadvantaged labour and, particularly, youth unemployment 

is one of the main targets of the ALMPs. However, the literature review shows that 

youth unemployment has not been the focus of empirical studies resulting in a gap 

between the aims and the results of these policies. Data unavailability in European 

transition economies frequently limits empirical studies assessing the effectiveness 

of ALMPs on youth unemployment. This chapter has a particular focus on 

investigating the theoretical explanations of the causes of youth unemployment in 

transition economies with particular emphasis on Kosovo.  

The rest of this chapter is organised as follows. Section 2.2 reviews two theoretical 

approaches, the traditional NAIRU theoretical model and the Hysteresis hypothesis 

and provides a thorough discussion on the effects of ALMPs in the context of 
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Layard-Nickell-Jackman model. Section 2.3 discusses the causes and characteristics 

of unemployment in labour markets in transition economies which will be followed 

by a review of the empirical studies that assessed whether the nature of 

unemployment in transition economies conforms more to the structuralist or the 

hysteresis hypothesis. Since the empirical analysis in chapter 3 will also include 

European non-transition economies, section 2.5 will review more recent  empirical 

studies for these countries. The theory of the duality of the labour markets in the 

context of transition economies is analysed in section 2.6 while section 2.7 provides 

a discussion of the causes of youth unemployment in transition economies. Finally, 

in section 2.8 the conclusions of the chapter are summarised.  

2.2 A Theoretical Framework for the Analysis of ALMPs 

In the theoretical field there are currently two main unemployment hypotheses: the 

Non-Accelerating Inflation Rate of Unemployment (NAIRU) and Hysteresis. The 

first emphasises the presence of a Non-Accelerating Inflation Rate of Unemployment 

(NAIRU) which is the equilibrium rate of unemployment and hypothesises that there 

is no long-run trade-off between unemployment and inflation (Ball and Mankiw, 

2002). This view of the NAIRU is that there is a level of the unemployment rate 

below which the inflation rate accelerates while above it the inflation rate 

decelerates; thus if the unemployment rate is always equal to the NAIRU, the 

inflation rate will be constant in the long-run aside from the effects of short-run 

shocks (Fair, 1999). This theory was firstly proposed by Phelps (1968) and Friedman 

(1968) who argue that shocks have only temporary effects on the equilibrium rate 

and unemployment will tend to get back to that rate in the long-run. The traditional 

view of the NAIRU implies that the equilibrium unemployment rate changes slowly 

over time due predominantly to demographic factors. A less restrictive version of the 

NAIRU was developed by Phelps (1994) which allows the equilibrium rate to 

deviate in response to shocks in the underlying economic factors determining the 

equilibrium rate such as: the real interest rate (Blanchard, 1999), productivity growth 

(Pissarides, 1990) and the labour market institutional framework such as the 

generosity of the unemployment benefit system, other non-wage income, etc. 

(Marjanovic and Mihajlovic, 2014). This is referred to as the Structuralist view and 

suggests that most shocks cause a temporary divergence from the natural rate of 

unemployment but if the shock is strong enough it might cause a shift in the 
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equilibrium rate to a higher level. According to Papell et al. (2000) the structuralist 

view suggests that unemployment is stationary around a process that is subject to 

structural changes.   

The increase of unemployment during the oil shock in the 1970s made the hysteresis 

hypothesis popular. This hypothesis states that shocks may have a permanent effect 

on the unemployment rate over the long-run path. The hysteresis hypothesis implies 

that after a shock the unemployment rate may never return to the previous 

equilibrium rate because of labour market rigidities explained by insider-outsider 

interactions and by human capital depreciation and social stigma related to the long-

term unemployed (Blanchard and Summers, 1986, 1988; Layard et al., 1991). Thus, 

this hypothesis emphasises that unemployment is not a stationary process. 

Additionally, it is also possible to observe a ‗persistence‘ in unemployment which 

implies a very slow speed of adjustment and it needs a long period of time to revert 

to the equilibrium rate after the shock.  

Considering the high unemployment rate in transition economies, discussed in 

Chapter 1, it is important to observe the nature of unemployment and assess whether 

it is better explained by the NAIRU or the Hysteresis hypotheses in order to design 

appropriate measures directed to reduce unemployment. If unemployment patterns 

are in accordance with the NAIRU, then it can be reduced through institutional 

measures such as a reduction in unemployment benefits, increasing labour market 

flexibility and labour mobility, reducing the strictness of the employment protection, 

introducing more active labour market policies to enhance skills through labour 

training and so on. If the unemployment in transition economies exhibits more 

hysteresis effects, besides applying the same policies as to reduce the NAIRU, 

policies should also be directed at increasing aggregate demand through monetary 

and fiscal policies.  

Both hypotheses concerning the determinants of the unemployment rate will be 

critically reviewed in the following sections. Sub-section 2.2.1 will establish the 

determinants of NAIRU in the Layard, Nickell and Jackman (1991) approach which 

is most commonly used when analysing the macroeconomic effect of ALMPs. Sub-

section 2.2.2 will provide a critical discussion on the hysteresis hypothesis and the 
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implications of the insider-outsider hypothesis. A review of the effects of ALMPs at 

the economy level is provided in section 2.2.3.   

2.2.1 Layard, Nickell and Jackman’s approach to the NAIRU 

The most popular version of the NAIRU is the model developed by Layard, Nickell 

and Jackman (1991). This model assumes an economy of imperfectly competitive 

profit-maximising firms facing exogenously determined product market conditions 

and predetermined capital and technology (Layard et al., 1991). The model assumes 

that firms and labour have a certain bargaining power to set the price of output in the 

case of firms and the price of supplied labour in the case of workers. The model is 

consistent with the efficiency wage framework or a wage bargaining model.  

The equations of price and wage setting introduced below illustrate the main points 

of the model. According to Blanchard (2006), the price-setting and wage-setting 

relations resemble the labour demand and labour supply in a neoclassical model of 

labour market analysis. 

            2.1 

    where          2.2 

where   is the aggregate value added price (GDP deflator),   is the aggregate level 

of wages,            are the expectations of the future prices and labour costs, 

respectively,   
  is the level of expected demand in the economy,  ̅ is the level of 

output in the economy corresponding to full utilisation of resources,   is the 

aggregate unemployment rate,   is the fixed labour force,   is the capital stock and 

   is the is the effect of wage-push factors such as unions and the generosity and 

coverage of unemployment benefits.  

The behaviour of firms is captured by equation 2.1, where the firms set prices as a 

mark-up over labour costs which depend on  demand conditions, i.e. on the 

difference between expected demand and the level of output in the economy 

corresponding to full utilisation of resources (  
   ̅), the difference between the 

actual aggregate value added price and expected price        and productivity 

      . As expressed by equation 2.2, real wages       are influenced by firm 

specific factors such as the productivity      , on one hand, and the labour market 
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specific factors such as the difference between the actual and expected wages    

   , the unemployment rate  , and wage-push factors   , including union 

bargaining strength and unemployment benefits. Layard et al. (1991) note that an 

important assumption of the model is that the measure of productivity in the price 

mark-up and wage equations are exactly the same, which suggests that the capital 

and labour are perfect substitutes for each other.  

Equations 2.3 and 2.4 below present the aggregate side of the economy.  

     ̅                                                                                                                       2.3 

                                                                                                                           

Where ɛ is the technology shock,    is the actual aggregate demand,   stands for 

exogenous demand factors such as monetary or fiscal policy shocks, and   is the 

money stock.      ̅   expresses the difference between the actual aggregate 

demand and the level of output corresponding to full utilisation of resources. 

Equation 2.3 expresses the relationship between the output and the unemployment 

rate which suggests that for a given ɛ, a rise in the unemployment rate will be 

accompanied by a fall in the output. Equation 2.4 expresses the relationship between 

the aggregate demand and the exogenous real factors such as fiscal policies denoted 

by   and nominal money balances      .  

In the long-run, it is assumed that the expectations regarding future wage and price 

are fulfilled thus there are no wage and price surprises, thus w = w
e
 and p = p

e 
and 

no difference between expected and actual demand      
 . Substituting equation 

2.4 into 2.1 and equating equation 2.1 with 2.2 will give the long-run unemployment 

and wage equilibrium presented in equations 2.5 and 2.6.   

   
        

     
                                                                                                                     2.5 

       
             

       
 

     

       
                            2.6 

From equation 2.5, one can see that unemployment equilibrium is determined by the 

exogenous wage pressure    and the parameters of the wage and price equations 2.1 

and 2.2,    and    respectively. The equilibrium level of unemployment does not 

depend on the difference in growth rates of capital and labour, the latter only 
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influences the real wage as seen in equation 2.6. This follows from the equality of 

the coefficients of the trend productivity expressions in the price and wage 

equations. Layard et al. (1991) explain that if these coefficients were different it 

would give unemployment a trend dependent upon productivity growth. However, 

these authors acknowledge that such a trend is not observed in the data hence their 

assumption. The long-run equilibrium level of unemployment is not influenced by 

either monetary or fiscal policies. A key feature of the model is that the exogenous 

demand side policies do not influence this equilibrium as described in equation 2.5.  

In the short-run, however, expectations may not be achieved which causes the level 

of unemployment to diverge from its equilibrium rate. This generates the negative 

relationship between inflation and unemployment; when the unemployment falls 

below the natural rate, the inflation rate rises and vice versa. Thus    in equation 2.5 

may be presented as the Non-Accelerating Inflation Rate of Unemployment – 

NAIRU.  

A graphical representation of the NAIRU is presented in Figure 2.1 which is based 

on Layard et al. (1991). It presents the price setting curve which is the graphical 

illustration of equation 2.1 and the wage-setting curve corresponding to equation 2.2. 

The point where the two setting curves intersect represents the equilibrium thus both 

workers and firms have fulfilled price and wage expectations. To the right of the 

intersection, the inflation rate rises while on its left it falls.  

Figure 2.1 Layard–Nickell-Jackman Framework 

 

Source: Layard et al. (1991) 
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Layard et al. (1991) also incorporated the hysteresis hypothesis into their NAIRU 

model by introducing the short-run change of unemployment in the price and wage-

setting equations   . This term stands for the unemployed workers fired in the last 

period which captures the influence of recently laid-off workers on real wages and 

equilibrium unemployment. The hysteresis hypothesis was pioneered by Blanchard 

and Summers (1986) when analysing the persistent high unemployment rates in 

Europe during the 1970s and 1980s. Blanchard and Summers (1986) argued that if 

uncommonly large shocks can increase unemployment rate for a sufficient length of 

time, it is likely that the level of NAIRU will increase. The model by Blanchard and 

Summers (1986) implies that it is the bargaining power of the remaining employees 

(insiders) that sets the new wage level for the whole labour market which will 

determine the level of unemployment. The greater the bargaining power of the 

insiders, the higher the wage level and the higher the unemployment rate. The 

following section will discuss the hysteresis hypothesis and the sources of the insider 

power that can determine the wage level and unemployment rate.  

2.2.2 The Hysteresis hypothesis and Insider-Outsider theory 

Some scholars suggest that the labour market displays a form of hysteresis 

(Blanchard and Summers, 1986; Layard et al., 1991; Ball and Mankiw, 2002; Gali, 

2015). An aggregate shock, such as negative productivity shock or an external 

globalisation shock, would influence unemployment by causing it to diverge from its 

natural rate and then could have a permanent effect on it, since the unemployment 

rate will not return to the initial equilibrium after the shock (Blanchard and 

Summers, 1986; Cuestas and Ordonez, 2011).  

The insider-outsider theory assumes that there is a long-term employment 

relationship between firms and their workers. According to Blanchard and Summers 

(1986, 1987) and Lindbeck and Snower (1988), the main element of the insider-

outsider theory is wage rigidity and the power of the insiders in the wage-setting 

mechanism. Blanchard and Summers (1986) point out that unemployment 

hysteresis/persistence can result from the ‗membership rule‘ which considers the 

employed as the insiders who ignore the outsiders (the unemployed) in wage-setting. 

Insiders are concerned with maintaining their desired level of wages in their current 

jobs while not ensuring employment opportunities for outsiders. An unanticipated 
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negative structural shock increases the unemployment level which will reduce the 

number of insiders in the labour market. Even though some previous workers lose 

their insider status, the smaller group of insiders will in the future set wages at the 

level to maintain this new lower level of employment.  

According to Lindbeck and Snower (1988), insiders‘ power comes about as the 

result of the turnover costs which make it costly for employers to recruit new 

employees to replace current ones. Considering that insiders have experience and 

accumulated skills during their working period in the firm, it will be costly to fire 

insiders and hire outsiders who will require additional costs such as greater 

supervision, additional job-specific training and so on. In addition, insiders‘ turnover 

requires costly firing procedures and severance payments. Taken together these 

turnover costs give power to insiders since these costs may not be recovered in the 

form of lower unit labour costs associated with new workers. Hence the larger the 

turnover costs for the employer, the more power insiders will gain in setting wages 

above the market clearing level. Given the higher wages, jobs become more 

attractive which will result in higher labour supply relative to labour demand leading 

to a higher involuntary unemployment. The key point made by Lindbeck and Snower 

(1988) is that not only are these turnover costs likely to be significant, they are 

highly likely to be influenced by insiders. Since the employers have to bear some of 

these costs, they may not have an incentive to replace insiders with outsiders. 

Lindbeck and Snower (1987, 1988, 2001) also emphasise that insiders may increase 

cooperation with each other (individually or collectively) in the production process 

in order to boost their wage level. This cooperation will not take place with potential 

undesired entrants (outsiders) which would further lower the productivity of the 

outsiders.  

As explained by Blanchard and Summers (1986), the existing employees hold 

‗membership status‘ as insiders in the firm. Lindbeck and Snower (1988) extended 

the basic framework to allow for the membership status to be acquired and lost at 

different rates. The recently unemployed workers may maintain their status and new 

employees may need to be employed for a continuous period of time to acquire that 

status. Layard et al. (1991) also categorise the long-term unemployed as outsiders, 

arguing that the short-term and long-term unemployed are not comparable in a sense 

that human capital can deteriorate the longer the individual is unemployed. The long-
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term unemployed subsequently can be less competitive in the labour market and less 

attractive to the employer (Calmfors and Lang, 1995; Dobbie, 2006; Gali, 2015). 

Additionally, the individual might get accustomed to being unemployed and reduce 

their job-search intensity (Ball and Mankiw, 2002; Leon-Ledesma and McAdam, 

2002). Employers frequently use the duration of unemployment as a screening 

mechanism when hiring new employees so the longer one is unemployed the lower 

chances to be considered employable (Dobbie, 2006). 

In conclusion, under the hysteresis hypothesis in addition to reforming the structure 

of labour market, such as labour market institutions, wage bargaining legislation and 

union power, policy makers can seek to reduce unemployment through engineering a 

number of positive shocks to the labour market through stimulating aggregate 

demand.  

The following section will analyse the various effects of ALMPs based on the 

theoretical approach of Layard, Nickell and Jackman (1991) outlined above. This 

section will be followed by a discussion on the nature of unemployment in transition 

economies and a review of empirical studies that discuss whether unemployment in 

these countries conform to the structuralist or hysteresis hypotheses.    

2.2.3 Effects of Active Labour Market Policies at the Economy Level 

The effectiveness of ALMPs needs to be analysed in a framework where the 

determinants of the labour market equilibrium are explicitly addressed. The labour 

market analysis developed by Layard et al. (1991) is now used as that base 

theoretical framework for assessing the economy wide effects of the ALMPs in the 

labour market framework. Calmfors (1994) modified the LNJ model to make a 

distinction between regular employment in the labour market and participation in 

active programmes. In this model, the proportion of individuals in the labour force 

who participate in active measures are deducted from the regular labour force. This 

is illustrated in the Figure 2.2 by a leftward shift of labour force curve. The 

difference between unemployment at the initial equilibrium point (point A in Figure 

2.2) and the reduced labour force is referred to as open unemployment. Thus, regular 

employment refers to the employment excluding participants in the active 

programmes, even though from the employee point of view the subsidised jobs are 

perfect substitutes for regular employment (Calmfors, 1994). According to Calmfors 
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et al. (2002), ALMP effects can influence the labour market either through the wage-

setting or the price-setting schedules.  

Using this framework, the following effects of ALMPs will be discussed and 

illustrated in Figure 2.2 and in equation 2.5:  

 Effects on the matching process  

 Productivity effects  

 Effects on labour force and competition in the labour market 

 Deadweight loss and substitution effects 

 Reduced welfare losses for the unemployed 

 Work – test effects  

Effects on the matching process - Active labour market policies traditionally are 

thought to facilitate the matching process in the labour market which has frequently 

been regarded as their primary function (Calmfors et al., 2002; Card et al., 2010; 

Schmidl, 2014; Escudero, 2018). This is achieved through several channels.  

Firstly, ALMPs may enable the qualifications and skills of the beneficiaries to be 

better adapted to the structure of the demand for labour. More particularly, as 

explained in Chapter 1, this would be the effect of training and re-training 

programmes, where the beneficiaries can acquire skills based on the requirements of 

unfilled jobs. Secondly, through participating in the active programmes, the 

unemployed individuals‘ job-search activity may be encouraged and better targeted. 

Finally, active labour market programmes can substitute for the regular employment 

experience and thus reduce employers‘ uncertainty about the employability of the 

beneficiaries. This effect would be predominantly attributed to subsidised 

employment and on-the-job training.   
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Figure 2.2 Economy wide effects of ALMPs on wages and regular employment

 

The number of unemployed job-seekers relative to that of vacancies would be likely 

to decrease when a better matching process is achieved in equilibrium. This would 

affect both the wage-setting and price-setting schedules in the model. The initial 

equilibrium is point A in Figure 2.2.  The firms‘ costs decline because vacancies are 

filled more quickly and due to that, firms provide more vacancies which is 

equivalent to an increase in the labour demand. This effect can be interpreted as a 

rightward shift in the price-setting curve from PS0 to PS1 in Figure 2.2, thus from 

equilibrium point A to equilibrium point F. In the equation of the equilibrium 

unemployment 2.5, this effect is depicted by a decrease in parameter    which 

captures firm‘s mark-up of prices on their costs. 

  
  

            

     
                                                                                                         

Furthermore, the same effect also deteriorates the position in the wage bargaining 

process of the existing employees (or unions) relative to firms. The argument is that 

since the firm can expect to fill the vacancy easier, the firm has a better bargaining 

position relative to existing employees. Since this effect improves the matching 

effectiveness, it reduces the employers‘ incentive to attract labour by pushing up 

wages. Thus this can induce a downward shift of the wage-setting curve from WS0 

to WS1 in Figure 2.2. This is illustrated in Figure 2.2 as a shift in the equilibrium 
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from point A to B and in the equation 2.8 by a decrease in parameter    which 

captures the bargaining position of existing employees relative to firms. Both effects 

increase regular employment but the net effect on real-wage is unclear.  

  
  

            

     
                                                                                                          

The effect on the matching process might be negative given the reduced search 

behaviour of the active programme participant, i.e. the so-called lock-in effects (Van 

Ours, 2001; Schmidl, 2014). The job search intensity of participants in ALMPs is 

highly likely to decrease during the training period. Except for job search assistance, 

the lock-in effect has been found to be important for all types of active measures, 

especially for subsidised employment (Van Ours, 2001, 2002; Sianesi, 2008; 

Schmidl, 2014). One must also take into account that search intensity might have 

been reduced before participating in the programmes. In such cases, the search 

intensity of the beneficiary before and during ALMP participation is expected to be 

lower than that of the openly unemployed (Holmlund and Linden, 1993; 

Hamalainen, 2002; Sianesi, 2008; Schmidl, 2014).  

Productivity effects - One of the most desired effects of active policies is the 

increase in the productivity of the job-seekers (Hamalainen, 2002; Kluve et al., 2007; 

Card et al., 2017). As pointed out in Chapter 1, active measures are mainly targeted 

at the long-term unemployed and disadvantaged labour in general. Taking into 

account that the productivity of the targeted individuals is frequently relatively low 

due to human capital deterioration or other reasons, one of the aims of the active 

programmes is to offset this tendency through training. Subsidised employment also 

serves the same purpose through increasing the beneficiaries‘ experience and 

additional learning on-the-job. The consequent effect of the increase in productivity 

on employment is uncertain. When the labour becomes more efficient, the scale 

effect tends to increase employment because of the tendency to extend output 

because unit labour costs fall, ceteris paribus. The fall in unit labour costs is captured 

by a decrease in parameter    in equation 2.9. This effect would result in a rightward 

shift on the price setting schedule from PS0 to PS1 thus leading to a higher regular 

employment. The new equilibrium point is reflected by a shift from point A to point 

F in Figure 2.2.  
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On the other hand, since a given output can be produced with a smaller number of 

workers, the substitution effect tends to reduce the number of employees. These 

effects make the result of productivity effects on regular employment ambiguous. 

The increase in productivity might also increase the beneficiaries‘ reservation wages 

which results in real wages going up at any given level of regular employment i.e. a 

leftward shift of the wage-setting schedule from WS0 to WS2. This is illustrated in 

Figure 2.2 as a shift from point A to point G and in equation 2.10 by an increase in 

parameter   which reflects a higher level of real wages but leaving the employment 

rate unchanged. 

  
  

            

     
                                                                                                    

According to Calmfors et al. (2002), the net effect of the increase in productivity on 

the wage and price settings depends on the magnitude of these two opposing effects 

of active policies. 

Another important potential effect of active policies is to transfer labour from low 

productivity to high productivity sectors through training and other programmes 

which aim to enhance the skills of the unemployed (Calmfors et al., 2002; 

Speckesser, 2004; Card et al., 2010; Card et al., 2017). When the skills of the 

unemployed are enhanced it is expected that labour supply transfers from low to high 

productivity sectors. This effect is presented in Figure 2.3. The economy consists of 

two sectors: a low-productivity sector (price schedule I) and a high-productivity 

(price schedule II) sector. Figure 2.3 shows that the wage-setting curve has different 

slopes corresponding to these two sectors. The higher the employment rate in the 

sector the steeper the wage-setting curve, meaning that employers will have to offer 

higher wages to employ higher-productivity labour. Labour demand is assumed to be 

higher in the high-productivity than in low-productivity sector. After the successful 

completion of active programmes low-productivity labour will be transferred to the 

higher-productivity sector. Calmfors et al. (2002, p.17) point out that ―the labour 

demand as a share of sectoral workforce at a given real wage falls in the high 

productivity sector where labour supply increases, and rises in the low-productivity 
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sector where labour supply decreases‖.  This result is illustrated as a shift of the 

labour demand (price-setting curve) to the left in the high productivity sector and a 

shift to the right for the low-productivity sector. Thus, the demand for high-

productivity labour falls while the demand for low-productivity labour increases. 

Having in consideration that the wage-setting schedule has a steep slope, the high 

productivity workers will face a substantial fall in the real wages while the low 

productivity workers will face only a marginal increase of real wages. On the other 

hand, employment of low-productivity workers can increase by a larger amount than 

the fall of the employment of high-productivity workers. Therefore, the net effect on 

employment of the reallocation of the labour force between the two sectors is 

expected to be positive.  

Figure 2.3 Reallocation of unemployed between high-productivity and low-

productivity sectors 

  

Source: Calmfors et al. (2002) 

Effects on labour force and competition in the labour market - One of the most 

important effects of the ALMPs is to preserve the size of the labour force since due 

to the discouragement amongst the unemployed, especially long-term unemployed, 

in the absence of such policies the labour supply will tend to shrink, other things 

being equal. Figure 2.4 illustrates the anticipated effect of active measures on labour 

force participation. Participating in active programmes increases the motivation to 

actively search for jobs which counteracts the ―discouraged-worker effect‖ of 

unemployed. Active measures tend to increase labour force participation, hence a 
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positive labour supply effect would be illustrated with a rightward shift of the labour 

force curve (the vertical curve presented in Figure 2.4). However, in the absence of a 

secondary effect this would result in a higher unemployment level.  

The effect of active policies on increased competition for jobs can be analysed 

within the insider-outsider framework (Blanchard and Summers, 1986; Calmfors, 

1994; Calmfors and Lang, 1995). As discussed in Chapter 1, active programmes 

target the outsiders in the labour market, typically the young unemployed, long-term 

unemployed, people out of labour force, women, immigrants etc. It is the increased 

competition from outsiders following a successful active programme that 

discourages insiders from putting upward pressure on wages. The lower level of real 

wage would incentivise employers to raise the employment level resulting in a 

rightward shift of the wage-setting curve. Thus, an initial increase in the 

unemployment rate which raises competition for jobs in the labour market puts 

downward pressure on real wages and subsequently results in firms hiring more 

workers. This effect is shown in equation 2.11 by an increase in parameter   which 

captures the increase in the unemployment rate and illustrated in Figure 2.4 with a 

shift from WS1 to WS2 resulting in equilibrium point change from A to B
8
..  

  
  

        

         
                                                                                                                 

Figure 2.4 The effect of ALMPs on labour force and competition in the labour 

market 

 

Source: Calmfors et al., (2002) 

                                                           
8
 In Figure 2.2 this effect is also illustrated with the shift from equilibrium point A to point D. 
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Deadweight loss and substitution effects
9
 - Active policies might also have 

unintended negative effects in the labour market such as crowding-out regular 

employment (Dahlberg and Forslund, 1999, Kluve et al., 2006; Schmidl, 2014). Two 

such unintended effects induced by active policies are: the substitution and 

deadweight effect. The first effect leads to the substitution of one category of 

workers with another because relative wage costs have changed, in this case in 

favour of the active programme beneficiaries. The deadweight effect leads to 

employing the same individuals that would have been employed even in the absence 

of such programmes. These effects are most likely to occur in case of subsidised 

employment and job creation schemes. These effects are expected to reduce regular 

employment which results in a leftward shift of the price-setting curve from PS0 to 

PS2 in Figure 2.2 and a new equilibrium point from A to C which tend to reduce real 

wages (Calmfors, 1994; Calmfors et al., 2002).  

  
  

        

     
                                                                                                                  

Reduced welfare losses for the unemployed – Active policies‘ objective is to 

increase the welfare of participants since it increases their expected future level of 

income. Additionally, beneficiaries may experience improved emotional and 

psychological well-being compared to remaining unemployed (Calmfors et al., 

2002). Beneficiaries may perceive participation in the active programmes as 

meaningful thus increasing their well-being. Another objective of active programmes 

is to improve their future income and prospects in the labour market and increase 

their probability of getting a job and remaining employed thus participation in these 

programmes decreases the risks of future ‗unemployability‘. All of the above effects 

of ALMPs reduce the welfare difference between having and not having a job, so 

that they increase the wage pressure under the process of collective and individual 

wage bargaining. The individual workers acquire wage bargaining power relative to 

employers since now they possess more employable skills. Trade unions have also 

an incentive to negotiate higher wages because even if workers risk losing their jobs 

as a consequence of wage rises they face better opportunities of finding alternative 

                                                           
9
 According to Kluve et al. (2007) another negative effect of ALMPs is the displacement effect. This effect tends 

to crowd out from the market firms or workers receiving no subsidies. Because it is less costly for the subsidised 

firm to increase its output, the unsubsidised firm becomes less competitive in the market and reduces the regular 

employment. In the context of this thesis, the displacement effect is regarded as another substitution effect. 
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employment. This is reflected in the equation 2.13 with an increase in wage push 

factor    which leads to an increase in real wages and higher unemployment. This 

effect is illustrated in Figure 2.2 as an upward shift of the wage-setting curve where 

the equilibrium unemployment moves from point A to point E. 

  
  

            

     
                                                                                                         

Work-test effects – A certain number of recipients of unemployment benefits may 

not be interested in searching for work and thus are not expected to be willing to 

participate in active programmes. In a labour market with high unemployment it is 

not easy to identify the individuals who are not willing to be employed. Thus 

participating in the active measures may serve as a ‗work test‘ for the eligibility of 

unemployment benefits, since those who are not interested in being employed will 

prefer to continue receiving unemployment benefits. In countries where participation 

in the active programmes is mandatory to obtain the unemployment benefits, this 

work-test effect is expected to reduce aggregate unemployment. However, according 

to Calmfors and Skedinger (1995), this effect is not expected to substantially reduce 

the number of benefit claimants or the amount of the open unemployment since 

those who are placed in the programmes in order to renew their unemployment 

benefits are not really interested in remaining in the labour market. In such cases, it 

is expected to seriously weaken the efficiency of active programmes in terms of re-

employment probabilities.  

In conclusion, active measures may have a number of different effects in the labour 

market. The above discussion reveals that it is likely to be quite difficult to assess the 

net effect of active measures since these individual effects may counteract each 

other. In the context of transition economies, the effects of ALMPs are likely to be 

even more complex to assess due to the peculiarities of the labour markets in these 

countries and their high unemployment rates and large informal sectors.  

The next section provides a discussion of the causes of unemployment and the 

characteristics of unemployment in transition economies followed by a review of 

studies which assessed the structuralist vs. hysteresis hypothesis of the nature of 

unemployment in these economies. This section will be followed by a critical 
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literature review of empirical studies assessing the employment effects of active 

measures at the economy level in transition countries. 

2.3 Unemployment and the Transition process  

As Chapter 1 established, the labour markets in European transition countries 

initially showed relatively high unemployment rates, which in many cases reached 

double-digit figures. During the early period of transition, the fall in output came as a 

consequence of the institutional and structural changes associated with economic 

transition, economic liberalisation and the emergence of product market competition. 

The process of these structural changes that shook labour markets in transition 

countries led to a rise in unemployment (Boeri, 2001; Boeri and Terell, 2002; León-

Ledesma and McAdam, 2004; Munich and Svejnar, 2009; Cuestas and Gil-Alana, 

2010; Cuestas and Ordonez, 2011; Kovtun et al., 2014).  

In the literature the evolution of unemployment in transition countries has been 

explained by two basic mechanisms: reallocation and restructuring (Blanchard, 1997; 

Mickiewicz and Bell, 2000; Mickiewicz, 2010). Reallocation refers to the process 

through which the resources like capital and labour are being allocated from the state 

to the private sector. The elimination of state subsidies resulted in a contracted 

output and shrunk labour demand in the state sector (Blanchard, 1997). The 

liberalisation was also associated with the removal of restrictions and taxes on the 

new private firms. However, the initial result of liberalisation was an adverse shift of 

demand for labour by state firms rather that a favourable shift of private demand for 

labour, and therefore an increase in unemployment.  

Because of the lack of incentives in command planning, many enterprises in the pre-

transition economies were too large, their products were of poor quality and there 

was extensive hoarding of capital and labour. Thus, the restructuring of these 

enterprises was necessary to improve productivity and to increase international 

competitiveness. According to Blanchard (1997), the deep restructuring in the 

transition economies had two relevant dimensions. First, the existing employees did 

not have the right skills for the international open market so had to be replaced. A 

considerable number of plants were being shut down and even those that were 

successfully privatised did not retain all their original employees Second, the capital 

equipment of the public firms in communist countries was typically old and 
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technologically obsolete. Restructuring during transition required a large capital 

enhancement to replace the old one. Since the state firms now faced severe financial 

constraints from governments and were unlikely to restructure, in order to raise the 

capital and enhance workers‘ skills governments were motivated to start programmes 

for large-scale privatisation.  

However, the privatisation plans were mostly limited in scope and frequently very 

slowly implemented especially in heavy industry and mining (Mickiewicz, 2010). 

One of the obstacles to privatisation seemed to have been the opposition of insiders, 

the employees of the enterprises who had power vis-à-vis government to block the 

privatisation process. The employees perceived the privatisation as putting their jobs 

at risk while those remaining employed would be paid lower wages. The Russian 

privatisation process attempted to overcome this obstacle by enlisting the support of 

insiders in the firm and by giving them a large stake in the privatisd firms 

(Blanchard, 1997). This approach was also followed in some Commonwealth of 

Independent States (CIS) countries and to a lesser extent in CEE countries.  

With respect to accessing new capital, enterprises had incentives to generate profit 

and use these earnings to buy new equipment. These earnings, however, were 

usually insufficient to extend the technology and equity financing was mostly not 

available. Equity investors were not interested in investing in enterprises where the 

majority of the stakeholders were employees who might end up using new funds to 

increase their own wages. In slow-reform countries, there were a large majority of 

enterprises or sections of industry that operated under strict budget constraints due to 

their support of existing employees in these old enterprises. As a consequence, they 

were not able to finance new investment. Thus, the capital shortages in transition 

economies caused insufficient labour demand leading to unemployment hysteresis. 

This lack of efficient and prolonged restructuring caused persistent high 

unemployment in the slow-reform transition economies (Mickiewicz and Bell, 2000; 

Mickiewicz, 2010). 

In transition economies, especially those in South Eastern Europe, employment 

protection legislation consists of a very basic job security law and provides very 

limited coverage of the areas commonly regulated in the EU, while the enforcement 

of these laws is typically not prioritised by governments (Kolev and Saget, 2005; 
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Corbanese and Rosas, 2007; Mojsoska-Blazevski, 2016). Weak enforcement of 

employment protection legislation (EPL) in transition economies undermines the 

incentives that EPL provides for employers and employees to invest in human capital 

which in turn will result in negative effects on basic employment security for 

workers, productivity, competitiveness and overall efficiency.  

In Kosovo labour legislation does not include unemployment assistance and provides 

a very limited social safety net which comprises of two broad categories.  The first 

one is the pension system (old-age assistance programme) while the second category 

is the social assistance which comprises two sub-categories: the first for families 

where no one is able to work and the second for families with a child under 5 where 

only one member is able to work, but cannot find a job. The coverage and 

effectiveness of this safety net is inadequate to provide insurance for the unemployed 

and the loss of earnings during unemployment. The common argument that a rigid 

labour market is caused by excessive labour legislation does not explain high 

unemployment in all ETEs. E.g. Kosovo has a low index of labour market regulation 

with the labour market freedom index for Kosovo in 2018 being 58 ranking as 

moderately free from regulation (Heritage Foundation, 2018).   

Chapter 1 provided a detailed discussion of labour market indicators which showed 

that labour markets in transition economies suffered from high youth unemployment, 

large regional disparities in unemployment, long-term unemployment spells and low 

employment to population ratios. During the communist era, large enterprises were 

frequently the main providers of jobs for an entire region. Large regional disparities 

in unemployment emerged when many of these large enterprises collapsed during 

early transition. The population in communist countries tended to be attached to a 

specific locality and their reliance on local social networks further limited their 

geographical mobility (Mickiewicz, 2010). On the other hand, during early transition 

transport fares increased, further increasing the immobility of labour force between 

regions which contributed to the stagnant regional unemployment differentials. 

Economic restructuring in transition economies has also triggered skills mismatch in 

the labour market (Bartlett, 2013). As discussed above, the new jobs created 

frequently require different skills from those inherited from the communist era. The 

privatisation of the state enterprises, the new Small and Medium Enterprises (SME) 
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and foreign direct investment which brought new technology also required more 

adaptable and soft skills. On the other hand, the educational and training systems in 

transition economies has not been developed to meet the new requirements of the 

labour market (Arandarenko and Bartlett, 2012; Bartlett, 2013). Even if individuals 

hold the right qualification from the official educational system, they might not have 

the skills required to effectively perform in that particular occupation (Kupets, 

2015). This skill mismatch plays an important role in the persistence of the long-

term unemployment since skill mismatch typically increases with the length of the 

spell of unemployment.   

The high share of long-term unemployment along with persistent regional 

differences and lack of relevant skills and geographical mobility provide an 

indication that labour markets in transition economies frequently exhibit structural 

mismatches which is related to an overall economic imbalance reflecting structural 

problems in the economy. According to Nesporova (2002), although cyclical 

unemployment can be evident during economic recessions it is less important than 

structural unemployment, while frictional unemployment is not a significant source 

of unemployment in most European transition economies. The rest of this section 

provides a review of empirical studies assessing whether the unemployment in 

transition countries displays characteristics in line with the structuralist or hysteresis 

hypothesis.  

There has been a growing interest in recent years to test whether the unemployment 

in European transition countries fulfil the structuralist view or the hysteresis 

hypothesis; the evidence is rather mixed. Using aggregate data for twelve transition 

countries, Leon-Ledesma and McAdam (2004) employed stationarity tests 

controlling for structural breaks and business cycle effects. The findings from this 

study suggest that unemployment dynamics in these countries are structuralist in 

nature, meaning that temporary shocks do not have any permanent effect on 

unemployment rate. However, the authors observed the existence of multiple 

equilibria around which the economy fluctuates after large shocks. This pattern is 

especially evident for the Czech Republic, Lithuania and Slovakia. Furthermore, 

Camarero et al. (2008) applied unit root tests with structural breaks for Central and 

Eastern European Countries (CEEC) and found evidence against the unemployment 

hysteresis and in support of the structuralist view of unemployment that temporary 
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shocks induce slow adjustments to the equilibrium rate of unemployment but do not 

have permanent effects on it. The same result was found when using panel data and 

also when testing separately for each country. Cuestas and Ordonez (2011) applied 

panel unit root testing for eight CEEC that joined the EU in 2004 and found evidence 

to support the validity of the structuralist theory in four out of eight countries: 

Hungary, Poland, Latvia and Slovenia. 

 Moreover, when testing for co-movement of the unemployment rates in these 

countries, evidence suggests there are common factors that drive the unemployment 

rate in transition countries which might be related to the process towards their 

integration in the European Union. Gozgor (2013) also applied a unit root test for ten 

CEEC, however they found evidence to support the validity of hysteresis hypothesis 

for these countries. Marjanovic and Mihajlovic (2014) used unit root tests, panel unit 

root tests and also structural break analysis and find mixed results for CEEC. When 

applying unit root tests they found evidence to support hysteresis theory for all 

transition countries, except Bulgaria, Estonia, Lithuania and Romania. The results 

from panel unit root testing suggest mixed results for transition countries. Since the 

observation period of this study (monthly data for period 2000 to 2013) was subject 

to some crisis event, these authors raised concerns that their results might lead to 

wrong conclusion. Marjanovic and Mihajlovic (2014) divided the period of 

observation into two sub-periods to identify when structural breaks may have 

occurred. The results provide evidence that before the great recession of 2007, 

unemployment in transition countries showed hysteresis behaviour, while after the 

recession the unemployment rate become stationary at higher levels.  

Bukowski et al. (2013) investigated the impact of shocks and rigidities in the labour 

market. This empirical study employed a Structural Vector Error Correction Model, 

using a panel of quarterly data from 1996 to 2007. The investigation concluded that 

positive labour demand shocks determine increases in employment and reductions in 

unemployment in the short-run. Positive labour supply shocks were found to 

increase unemployment; this is especially the case in Poland which may be the result 

of specific institutional factors such as their welfare system (Nesporova, 2002). The 

rigidity of wages was found to be an important factor determining unemployment in 

transition countries.  
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Lehman and Muravyev (2009) analysed the impact of labour market institutions on 

labour market outcomes in European transition economies. Such institutions include 

employment protection legislation, active labour market policies, duration of 

unemployment benefits, the tax wedge on labour and union density. The results 

show convincing evidence that stronger employment protection legislation depresses 

the employment-to-population ratio and it substantially increases youth 

unemployment. Findings from the study indicate a smaller impact of other labour 

market institutions and policies on labour market outcomes.  

Cazes (2002) investigated the effects of labour market institutions on different labour 

market outcomes for both transition and OECD countries. The investigation of Cazes 

also put emphasis on the strictness of employment protection legislation in transition 

countries considering that labour market in many of these countries have been rigid 

and granted workers a higher degree of job security. The study found that high 

collective bargaining coverage and payroll taxes tend to increase the long-term 

unemployment while the presence of more powerful trade unions seems to increase 

the overall unemployment rate. The findings also suggest that a long duration of 

unemployment benefits and high labour taxes increase youth unemployment rates. 

Cazes found that stronger employment protection legislation might reduce both 

employment rates and labour force participation rates.  

The evaluation of ALMPs at the economy wide level in transition economies have 

utilised mainly the matching function which attempts to capture the efficiency of 

matching under the assumption that these policies increase search and matching 

efficiency. The following section provides an introduction to the conceptual 

framework of this approach and a review of empirical studies using matching 

function in European transition economies. 

2.4 Conceptual Framework of the Matching Function and a 

Review of Empirical Studies for Transition Economies  

As section 2.2.3 discussed, raising the efficiency of the matching process between 

the unemployed and employers (through enhancing their human capital, re-locating 

jobs or workers and/or increasing the search intensity of the job-seeker) is regarded 

as one of the main functions of active policies. Human capital enhancement may be a 

crucial element where the labour market displays structural mismatches, which are 
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likely to be especially important in transition countries. Most of the empirical 

research in assessing the effects at the economy level of ALMPs in European 

transition countries has focused on modelling matching functions. As utilised in 

these research studies, the matching function typically regresses the exit from 

unemployment to employment, i.e. the number of successful matches between the 

previously unemployed and unfilled vacancies, on the vacancy stock, the 

unemployment stock and a set of variables measuring ALMPs.  

The matching function is attractive for empirical studies since it enables modelling 

of the mismatch in the labour market with minimum complexity. This approach 

summarizes the mechanism of bringing together firms who advertise vacancies and 

the unemployed who are searching for jobs through employment agencies, reading 

advertisements in the newspapers or utilising their social networks. As Petrongolo 

and Pissarides (2001, p. 391) review, ‗the key idea is that this complicated exchange 

process is summarised by a well-behaved function that gives the number of jobs 

formed at any moment in time in terms of the number of workers looking for jobs, the 

number of firms looking for workers, and a small number of other variables‘. The 

simplest form of the matching function is M = m(U,V), where M is the number of 

matches created or jobs filled in a given period of time, U is the number of 

unemployed workers searching for a job while V is the number of open vacancies. 

Layard et al. (1991) acknowledge that the matching function accounts for the 

mismatch that measures the degree of heterogeneity in the labour market across 

different dimensions such as the skill groups, industrial sectors and regions. It is 

often encountered that the skills possessed by workers are not compatible with those 

required in current vacancies which lengthens the duration of search. Industrial 

sector mismatch would prevail when industries require specific skills which may not 

be available amongst current job-seekers.  Regional differences in unemployment 

may also be persistent because of low labour and/or job mobility. Layard et al. 

(1991) also suggest that there might be additional imbalances caused by temporary 

structural shocks such as those which arise from the business cycle. However, since 

both reflect imbalances of labour demand and supply, Layard et al. (1991) suggest 

that, for practical purposes, they should be referred by the generic term ‗mismatch‘. 

The concept of mismatch bears some relationship to the concept of structural 
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unemployment which by definition is the unemployment arising from fast structural 

changes such as those experienced by transitional economies. 

The microeconomic foundation of the matching function is based on the search 

phenomena of the economic agents in attempt to create efficient matching. Efficient 

matching can be defined as the ability of unemployed to find a match in a relatively 

short period of time. The average time that it takes for a match to be created depends 

on how the firm and worker search for a match. In matching function models returns 

to scale are likely to play an important role.   

The empirical analysis of the matching function is similar to the Cobb-Douglas 

production function; so when the sum of the coefficients of unemployment and 

vacancy stocks is equal to unity, it implies constant returns to scale (CRS) while 

when it exceeds (is less than) unity it implies increasing (decreasing) returns to scale 

(IRS). It is usually assumed that the matching function ensures CRS, meaning that an 

increase in size of labour market in terms of vacancies and unemployed workers 

would increase the matching efficiency at the same magnitude. Some models use a 

matching function allowing IRS which indicates positive externalities with respect to 

labour market size (Munich et al., 1998; Stevens, 2002). Petrongolo and Pissarides 

(2001) emphasise that because of the heterogeneity of workers and jobs, the 

transition probabilities and the mean duration of unemployment spells and unfilled 

vacancies will differ across the labour market. According to Petrongolo and 

Pissarides (2001) the dependence of the mean transition probabilities on the number 

of workers and firms engaged in search is an externality and the matching function 

can give a measure of the extent of these search externalities. If the elasticity with 

respect to unemployment in the matching function equation (M = m(U,V)) is    and 

the elasticity with respect to vacancies is   ; then      measures the negative 

externality of unemployed towards other unemployed workers (congestion 

externality – when a rise in new entrants in the unemployment pool reduces the 

matching efficiency of the existing unemployed or the employed workers who search 

while being employed) while the    measures the positive externality from the 

unemployed to firms (an increasing search and matching intensity with rising 

unemployment). Similarly, the positive externality from firms on searching 

unemployed (thick-market effect) is measured by    and negative externality of 

firms on other firms (congestion externality) is measured by     . When IRS 
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prevails, there could be more than one equilibrium because of strong positive 

externalities of high search intensity (Munich et al., 1998). In one equilibrium, firms 

and workers put more search effort to create a match which creates higher returns 

from the search effort while in another equilibrium the search effort from both firm 

and workers can be low resulting in a low matching rate and higher unemployment.   

Some studies suggest that labour markets in CEE countries may be characterised by 

multiple equilibria which makes the matching function with IRS an appropriate 

choice to analyse the labour market in these countries (Munich et al., 1998, Munich 

and Svejnar, 2009). Appendix 2.1 examines how multiple equilibria may prevail in a 

labour market according to Snower‘s (1994) model and provides an explanation of 

why CEE countries may have been caught in a low-skill, bad-job equilibrium.  

Based on the theoretical model of Snower (1994), multiple equilibria can result in a 

‗low-skill, bad-job equilibrium‘ and a ‗high-skill, good-job equilibrium‘. Snower 

argues that labour market can fall into a ‗low-skill, bad-job trap‘ which entails a 

preponderance of jobs that are associated with low wages, low productivity and little 

opportunity to acquire training or enhance human capital. In this context, firms do 

not provide a lot of skilled vacancies because there is not enough skilled labour and 

these vacancies would be difficult to fill. Snower refers to this as the ‗vacancy 

supply externality‘. Similarly, workers are not incentivised to acquire skills since 

there are few skilled vacancies and as such the skills would be likely to remain 

under-compensated. This is regarded as the ‗training supply externality‘. If firms 

provide skilled vacancies it raises the workers‘ returns to education and training, 

however firms do not pay for the workers‘ education. By the same argument, 

workers who acquire training and education increase firms‘ returns to opening 

vacancies for skilled jobs. Snower argues these two externalities reinforce one 

another and can induce an insufficient level of training.  

Snower‘s (1994) model suggests that the higher the aggregate number of skilled 

workers and vacancies for skilled jobs the higher the average wage paid to workers. 

Since high-skilled workers are more productive it means that more is being produced 

in this sector and the firms will also generate higher profit. Thus, a policy 

implication for countries with a high proportion of low skilled workers and seeking 

to move to the good-job equilibrium is to subsidise education in order to produce 
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higher skilled workers or to subsidise skilled employment directly in firms. In the 

context of this thesis, the shift to the good equilibrium may be assisted by increased 

subsidises for training, wage subsidies for skilled workers and other ALMPs. 

However, since the bad-job equilibrium is likely to be a stable one, Snower (1994, 

p.19) argues that small subsidies may not be enough to shift from the bad to the good 

equilibrium and only a ‗„big push‟ in the form of sufficiently large skilled 

employment subsidies is required before the sector can be propelled toward the 

high-skill, good-job equilibrium‟. 

The dependent variable in studies using a matching function can be the total outflow 

from unemployment, the flow from unemployment to employment, or the total 

number of hires (Petrongolo and Pissarides, 2001). A major limitation of using this 

approach is that data on outflows from unemployment into employment is usually 

unavailable, so the measure on total outflows from unemployment is usually used in 

these studies ignoring other flows in the labour market such as outflows from 

unemployment to inactivity and job-to-job flows. The former are likely to be 

relatively large in early and mid-transition. Studies have also included additional 

explanatory variables that may influence matching in a systematic way such as 

variables to account for regional differences and district size, demographic variables, 

level of education, level of wages (Coles and Smith, 1996) and output per head 

(Munich et al., 1998) etc.  

Usually, a distinction is made between ordinary and augmented matching functions 

where the latter take into account that workers and jobs are heterogeneous. Lehman 

(1995) uses the augment matching function to account for the search effectiveness of 

the unemployed workers. The search effectiveness is dependent on different factors 

with one of them being ALMPs which, as discussed in section 2.2.3, are assumed to 

have positive effect on matching efficiency. The size of ALMPs is measured in the 

model in various ways such as the expenditure on ALMPs at the regional or country 

level, the number of the unemployed participating in active programmes during a 

specified period, number of hours a worker spent in a subsidised job, etc.  

Studies have also discussed the appropriateness of the assumption that not only the 

stocks of unemployment and vacancies influence the efficiency of matching 

(Petrongolo and Pissarides, 2001; Coles and Petrongolo, 2002). These studies argue 
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that flows (inflows of new vacancies and unemployed in a certain period in the 

labour market) play an important and significant role in explaining the efficiency of 

matching. This is referred to as stock-flow matching. Coles and Smith (1996) make a 

sharp distinction between the stocks and inflows; they argue the unemployed stock 

should not be matched with the stocks of vacancies because they were participants in 

the previous matching round but did not match. The analysis of stock–flow matching 

can be better understood when analysing the entrance of new unemployed individual 

into the labour market. The new entrant in the unemployment pool searches for a job 

in a bulk of advertisements before deciding to apply. Coles and Smith assume that 

there is a positive probability that even after applying for all the advertised jobs there 

will be no match because the unemployed does not meet the requirement of the 

employer. So, for a new entrant into unemployment there are two possibilities; the 

unemployed may achieve a match or they will continue to remain in the 

unemployment pool. In the first case, that would mean that the new entrant (the 

inflow) in the unemployment pool is matched with a vacancy in the existing vacancy 

stock. On the other hand, if the new entrant does not find a suitable match with the 

existing stock of vacancies, it is reasonable to believe that he might have to wait for 

the new inflows into vacancies to create a match. In this case, it is the vacancy 

inflow that is matched with an unemployed in the existing stock of unemployment.  

According to Munich and Svejnar (2009), the matching function captures the 

unemployment dynamics assessing the extent to which high unemployment in 

transition countries is a result of the following three causes: a) economic structural 

mismatch, (b) macroeconomic policies or external shocks and (c) the ongoing 

transition from planned to market economy. The first cause suggests that the high 

unemployment is a result of an inefficient matching created by poorly designed 

labour market policies and institutions which tend to reduce individuals‘ search 

effort, increase skills depreciation, induce high reservation wages or geographical 

mismatch. In such cases, both unemployment and vacancy stocks tend to be high 

simultaneously. The second factor implies that high unemployment is caused by low 

demand for labour resulting from tight macroeconomic policies or external 

contractionary shocks such as a globalisation shock; this would be marked by a low 

vacancy stock relative to the inflows into unemployment which will cause high 

unemployment. While the third factor causing high unemployment implies that due 
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to the unfinished transition process, net job destruction in firms is still ongoing; thus 

it would be manifested with high unemployment stock caused by high inflows into 

unemployment relative to the number of vacancies.  

Munich and Svejnar (2009) estimate a matching function of the outflows from 

unemployment with three explanatory variables: the number of unemployed in a 

district, the number of individuals flowing into unemployment and the number of 

vacancies in a district during a period of time, for five transition countries and one 

Western country (the Czech Republic, Hungary, Poland, Slovakia, East and West 

Germany). The main limitation of the study is that it uses total outflows from 

unemployment rather than outflows to employment thus it fails to identify the 

specific job-related flows in the labour market. The results from the estimation of the 

matching function show that the coefficients on unemployment, vacancies and 

inflows to unemployment vary across these countries. The results from the 

estimation of the matching function show positive but small coefficients for the 

vacancy stock and large positive and significant coefficients for unemployment stock 

suggesting that unemployment stock is an important determinant of the outflow. In 

the second specification a variable measuring inflows into unemployment was 

included in the model. The coefficients of the inflows into unemployment range 

from 2.0 for Poland to 4.3 for Slovakia compared to the coefficients for existing 

unemployment stocks which range from 0.74 for Czech Republic to 2.59 for Poland. 

Based on the larger magnitude of the coefficients of inflows to unemployment 

compared to existing unemployed, this result suggests a higher efficiency of 

matching for newly unemployed.  

The estimation of returns to scale suggest that there is increasing returns to scale for 

all but one of these countries ranging from 2.40 for Hungary to 1.56 for West 

Germany (the sum of coefficients of three explanatory variables should exceed unity 

in order to have increasing returns); Poland is an exception with constant returns to 

scale. Because the coefficient of inflows to unemployment is the highest among the 

three explanatory variables, it is this coefficient that generates increasing returns. 

Given the low vacancy stocks, this might suggest that it is the new entrants into the 

unemployment pool who disproportionately match with the existing vacancies, while 

those previously unemployed remain unmatched; which leads to a high matching 

efficiency but also high long-term unemployment. In general, the study finds 
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evidence to support the hypothesis that in transition countries high unemployment 

might be a result of the low number of vacancies and high inflows to unemployment. 

As these authors emphasise, this outcome is consistent with the hypothesis that 

unemployment in transition countries is predominantly caused by tight 

macroeconomic policies and external shocks (which cause the low number of 

vacancies, e.g. low labour demand relative to unemployment and inflows) and on-

going restructuring in transition countries (high number of inflows into 

unemployment).  

Table 2.1 provides a summary of the empirical studies assessing ALMP 

effectiveness in transition countries at the economy-wide level. Only two empirical 

studies have employed panel regression analysis to assess the economy-wide effects 

of ALMPs: Cazes (2002) for 8 European Transition countries while Lehman and 

Muravyev (2009) extended the sample to 27 transition countries. Cazes (2002) and 

Lehman and Muravyev (2009) for CEEC and CIS transition countries found 

considerable evidence that an increase in the expenditure on ALMPs will lead to a 

reduction in the overall unemployment rate and especially the youth unemployment 

rate.  

The results for transition economies using a matching function are influenced by the 

methodology used in terms of the model specification, the inclusion of additional 

control variables that affect the outflows from unemployment, whether they use 

static or dynamic models and the extent to which they account for endogeneity of the 

explanatory variables. Some of the studies employing matching functions found 

evidence of positive effects; other empirical studies have not detected any impact, 

while some even found evidence of a negative impact of ALMPs on outflows from 

unemployment. When using the matching function approach, Burda and Lubyova 

(1995) found positive but modest effects of expenditure on ALMPs on outflows 

from unemployment for the Czech and Slovak Republics. However, these results 

should be taken with caution since the study does not account for demand 

conditions. Positive effects of expenditure on employment subsidies and public 

works per members on the outflow from unemployment of the regional labour force 

were found by Munich et al. (1998) for the Czech but not for Slovak Republic, 

though this difference is predominantly attributed to different demand conditions in 

the two countries. In their study, Munich et al. account for the economic activity in 
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the regional level by the ratio of industrial output to the labour force, the number of 

firms with fewer than 25 employees per member of labour force and the ratio of the 

value of agricultural production to industrial production. 
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Table 2.1 Summary of studies on economy wide effects of ALMPs for European Transition Economies and selected Western Economies 
 

 
Studies of European transition economies based on chronological order (year of publication)  

Study Country Data Dependent Variable   Estimation technique Results 

Boeri and 

Burda, 1995 

Czech Republic  Regional 

Employment 

Offices  

1991 – 1994  

Number of individuals flowing from 

unemployment into jobs  
Matching Function: 

Dynamic Panel models 

ALMP variables:  

Spending on programmes 

at the district level per 

year, inflows of positions 

(i.e., available slots in the 

various programmes) and 

inflows per quarter of 

persons into ALMP 

programs (i.e., filled 

positions).  

Small positive effect of all ALMPs on 

exits from unemployment into jobs. 

Burda and 

Lubyova, 1995  

Czech and 

Slovak 

Republics  

Regional 

Employment 

Offices 

1991 - 1994  

Number of individuals flowing from 

unemployment into regular 

employment 

Matching Function 

ALMP Variable: 

Regional ALMP 

spending. 

 

Modest positive effect of ALMPs on 

exit rates from unemployment into 

employment.  

Lehman, 1995  Poland  Regional 

Administrative 

data 

 Outflow of the registered unemployed 

into regular un-subsidised jobs 
Matching Function: 

Ordinary Least Squares 

(OLS) 

ALMP variable: Stock of 

participants in training 

and re-training measures 

Insignificant effects of ALMPs. 
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Puhani and 

Steiner, 1996  

Poland LFS and 

National 

Labour Office 

(NLO)  

1992 – 1994  

1. Outflow rates from unemployment 

into employment and  

2. Outflow rates from employment into 

unemployment 

Matching Function: 

Random and Fixed 

Effects  

ALMP variables:  

Regional expenditure on 

public works, intervention 

works and public training.   

No significant effect of ALMPS exp. 

on the outflow rates from 

unemployment to employment.  

Intervention works and public training 

expenditure raises the outflow rate 

from employment into unemployment.  

Munich, 

Svejnar and 

Terrell, 1998 

Czech and 

Slovak 

Republics  

Regional 

Administrative 

data  

The number of individuals flowing 

from unemployment in certain district 

and time  

Matching Function:  

ALMP variable: 

Expenditures on ALMP 

per members of district 

labour force.  

Small positive effects of ALMP 

expenditure on outflows from 

unemployment 

Puhani, 1999 Poland Labour Force 

Survey and 

Ministry of 

Labour 

1992 – 1996  

1. Outflow rates from unemployment 

into employment and  

2. Outflow rates from employment into 

unemployment 

Matching Function: 

Dynamic Panel models 

ALMP variable:   

Regional ALMP 

expenditure.  

Small positive effect of public training 

programmes in reducing 

unemployment  

Dmytrotsa, 

2003 

Ukraine  National 

Employment 

Offices  

2000 - 2002 

Outflow from unemployment  Matching Function: 

OLS 

ALMP variable: 

Number of registered 

unemployed placed in 

different measures; 

Amount of information 

given by the PES.  

Positive effect of increasing exit from 

unemployment for public works and 

training programmes. 

Dmitrijeva 

and Hazans, 

2007  

Latvia  Regional 

Employment 

offices  

1998 - 2003 

Outflows from the pool of registered 

unemployed into regular employment  
Matching Function:  

ALMP variable: 

The share of trained and 

re-qualified unemployed 

in the pool. 

Positive and statistically significant 

impact of the share of trained 

unemployed on outflows to 

employment. 

Jeruzalski and 

Tyrowicz, 

2009  

Poland Regional 

Administrative 

data  

2000 - 2008 

Log of monthly outflows to 

employment out of unemployment 

(unemployed de-registered due to 

commencing employment). 

Matching Function: 

Two Stage Stochastic 

Frontier and 

Difference-in 

Difference.  

ALMP variable: The 

share of registered 

unemployed 

participating in ALMPs.  

 

Significant negative effects of ALMPs 

in outflows to employment (high lock-

in effects or essential ineffectiveness of 

ALMPs). 
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Tomic, 2012  Croatia  Regional 

Administrative 

data 

2000 - 2011 

Number of employed persons from the 

CES Registry during the month 
Matching Function: 

Stochastic Frontier 

Estimation 

ALMP variable:   

Share of persons in 

ALMP in total number 

of unemployed in each 

regional office at the 

year end 

ALMP variable is significant and 

positive but very small 

Studies of European non-transition economies based on chronological order (year of publication) 

Study Country Data Dependent Variable   Estimation technique Results 

Anxo et al. 

(2001)  

France and 

Sweden  

Regional level 

data  

1. Employment demand decrease due 

to hiring / stock of employment 

demands at the end of the month 

(DEFM) (France)  

 

2.Number of unemployed people 

leaving unemployment towards 

employment/ unemployment stock at 

the end of the month (Sweden) 

Matching function : 

Fixed Effects  

ALMP variable: Inflows 

to four different ALMPs.  

Positive but small effect of ALMPs. 

Better work when targeted at long-term 

unemployed.  

Hujer et al., 

2002  

West and East 

Germany  

Regional 

Administrative 

data  

1999-2001 

Job Seekers Rate – the rate of total job 

seekers and ALMP participants 

relative to the labour force  

Dynamic modelling for 

West Germany – diff. 

and sys GMM and OLS 

and within estimator 

for East Germany  

ALMP variable: The 

stock of participants in a 

specific type of 

programme relative to 

the total rate of job 

seekers 

Negative effects for vocational training 

and job creation schemes. Insignificant 

effect; questionable results due to the 

small dataset.  

Hujer and 

Zeiss, 2005 

West Germany  Regional 

Employment 

office data  

2003 – 2004  

Outflow from unemployment to 

employment  
Matching Function: 

Dynamic Panel models, 

GMM. 

ALMP variable:  

Inflows from 

unemployment into job 

creation schemes. 

 

Job creation schemes reduce the 

inflows into regular employment in the 

first 12 months after a programme 

extension (suggesting lock-in effects). 

In the period between 12 and 18 

months after a programme extension it 

does not affect the inflows into 

employment.  
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Altavilla and 

Caroleo (2006)  

Italy  Regional 

Administrative 

data  

1996 - 2001 

Unemployment rate and Labour Force 

Participation  
GMM and Panel 

Vector Autoregressive 

ALMP variable:  The 

total number of 

participants 

in a programme in a 

particular region divided 

by the total 

working-age population 

in the same region 

ALMPs significant in reducing 

unemployment rate and increasing 

participation rate. 

Hujer and 

Zeiss (2006)  

West Germany  Regional 

Administrative 

data  

2003-2004 

The flow from unemployment to 

employment  
Matching function: 

Stock-flow combination 

(GMM; choice of lags 

higher than the training 

period to avoid the 

locking-in effect)  

Small regional level effect (possible 

substitution effect when compared to 

the microeconomic effect on the 

individual where the effect is 

significant in increasing individuals‘ 

probability to get employed. 

Hujer et al., 

(2007) 

West Germany Regional 

Administrative 

data  

Outflows of unemployed individuals 

into regular, non-subsidised 

employment  

Matching function: 

Dynamic model 

(GMM) with spatial 

effects using two 

different weights 

Insignificant or negative effects of the 

policies. 

Altavilla and 

Caroleo, 

(2009) 

Italy  Regional 

Administrative 

data  

1997 - 2007 

Employment rate and Participation rate  Panel factor-

augmented vector 

autoregressive   

ALMP variable:   
The ratio between the 

number of participants in 

ALMP and the working-

age population in the 

same region. 

Increase the job reallocation and boost 

reemployment. Increase labour force 

participation. ALMPs are effective 

only in regions with lower labour 

market rigidity.  

Dauth et al. 

(2010)  

Austria  Regional level 

data  

2001-2007 

1.The number of matches in a region 

and  

2. The regional job-seeker rate 

Matching Function: 

Difference and System 

GMM  

ALMP variable: The 

stock of participants in a 

certain programme 

relative to the number of 

job-seekers. 

Positive effects of job schemes in the 

non-profit sector, wage subsidies, and 

apprenticeships on the regional 

matching function and the job-seeker 

rate. 

Arranz et al., 

(2013) 

Spain  Regional 

Administrative 

data  

1987 – 2010 

1. Levels of employment (total 

employment and 

temporary employment),  

2. Unemployment and labour force, 

Difference and system 

GMM 

ALMP variable:  

Incentivized contracts to 

Expenditure on job-creation 

programmes and the number of 

participants in vocational training 

programmes have little or no effect on 
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employment rate (employed 

population as a proportion of the 

working-age population),  

3. Unemployment rate (unemployed 

population as a proportion of the 

labour force), 

4. Temporary employment rate 

(number of temporary contracts 

divided by the 

number of workers in wage 

employment) and  

5. Labour market transitions (flows 

between unemployment and 

employment, and between temporary 

and permanent employment). 

promote permanent jobs; 

No. of participants in 

vocational training; 

Expenditure on job-

creation programmes; 

No. of indirectly 

incentivized contracts.  

the transitions from unemployment to 

employment. Incentivised contracts to 

promote permanent jobs have small 

positive effect on transitions from 

unemployment to employment and 

from temporary employment to 

permanent employment.  

Studies using samples of mixed countries, based on chronological order (year of publication) 

Study Country Data Dependent Variable   Estimation technique Results 

Cazes, (2002) 19 OECD and 

8 transition 

countries 

(Bulgaria, 

Czech 

Republic, 

Estonia, 

Hungary, 

Poland, 

Russian 

Federation, 

Slovakia, 

Slovenia) 

OECD database 

and National 

sources  

Five dependent variables: 

1. Unemployment rate  

2. Long-term unemployment rate  

3.  Youth unemployment rate 

4. Employment rate 

5. Labour Force Participation rate  

Panel data regressions 

ALMP variable: 

The ratio of GDP 

spending on ALMP to 

the unemployment rate. 

Significant ALMP effects: reduces 

unemployment rates and increases 

employment and labour force 

participation rates.  

Estevao (2003) 15 Industrial 

Countries  

 

National level 

data  

1985 - 2000 

The share of the working-age 

population employed in the business 

sector. 

Ordinary Least 

Squares (OLS) 

ALMP variable:  

ALMP expenditure as 

share of GDP 

Increase business employment. Direct 

subsidies to employment creation are 

more effective in raising employment 

rates in the business sector than 

expenditures on training or PESs.  
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 Bassanini and 

Duval (2006)  

21 OECD 

countries 

National level 

data  

1982 – 2003  

1.Unemployment rate and  

2. Employment rate  
Fixed Effects and 

Instrumental Variable 

approach 

ALMP variable: ALMP 

expenditure as share of 

GDP 

In general increases employment rate 

and reduces unemployment rate. The 

most consistent result is that of training 

programmes.  

Lehman and 

Muravyev, 

(2009)  

Eastern Europe 

and Central 

Asia  (27 

countries) 

OECD, 

EUROSTAT 

for EU member 

states and 

World Bank 

and IMF for 

SEE and CIS 

countries 

1995 – 2008  

1.Employment to population Ratio  

2. Unemployment rate  

3. Long-term unemployment rate  

4. Youth unemployment rate  

Random and Fixed 

Effects 

ALMP variable:   

The expenditure of 

ALMP as a percentage 

of GDP. 

ALMP significant in reducing youth 

unemployment rate, long-term 

unemployment and unemployment rate. 

Oesch (2010) 21 OECD 

Countries 

National level 

data 

1991 – 2006  

Unemployment rate of unskilled 

workers. 
OLS 

ALMP variable: ALMP 

spending as % of GDP 

divided by 

unemployment rate  

ALMP expenditure reduces 

unemployment rate of unskilled 

workers.  

Murtin and 

DeSerres 

(2014)  

11 OECD 

countries  

National level 

data  

1985-2007 

Unemployment outflow rate 

(measured as the number of hires 

divided by the number of unemployed)  

Matching function; 

Instrumental variable 

approach. 1st stage OLS 

dep. Var. labour 

market tightness, 2nd 

stage instrumental 

variable.  

1st stage OLS, 2nd stage 

differences GMM.  

ALMP variable:  

Spending on ALMPs per 

unemployed worker 

normalized by a proxy of 

average income (GDP 

per worker). 

No effect of ALMPs on unemployment 

outflow rate.   

Escudero 

(2018)  

31 OECD 

countries  

National level 

data  

1985 - 2010 

1.Unemployment rate, 

2. Employment rate,  

3. Labour force participation of the 

overall and low-skilled population and 

4. Low-skilled unemployed rate.  

Instrumental Variable 

approach  

ALMP variable:  
Expenditure on ALMPs 

per unemployed person. 

In general, positive effect of ALMP on 

the labour market: reduce 

unemployment and increase 

employment and participation rate.  
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Taking into consideration that the matching mechanism can work differently in 

different regions, Puhani (1999) ran separate regressions for industrial, agricultural 

and modern regions however the evidence of the effects of ALMPs did not differ. 

Jeruzalski and Tyrowicz (2009) critiqued the study of Puhani (1999) arguing that it 

used data from a period when Poland was experiencing an overall reduction in 

unemployment (period from 1992 to 1994). Thus, they point out that the positive 

effects found in Puhani (1999) might not present the real effect of ALMPs in this 

country. In contrast, Jeruzalski and Tyrowicz (2009) used data for a period with both 

an increase and decrease in unemployment (period from 2000 to 2008) and found 

strong evidence that an increase in number of participants in training programmes, 

subsidised private employment and public works reduced the outflow from 

unemployment into employment for Poland.  

In order to account for regional differences, Lehman (1995) included dummy 

variables to indicate whether a region belongs to heavily industrialised, agricultural 

or developed region.  Lehman found no evidence that the stock of the unemployed in 

public training and re-training and public works programmes impact on the flow out 

of unemployment to employment for Poland in any of the observed regions. Results 

from Kwiatkowski and Tokarski (1997), for the same country, found negative effects 

of expenditure on public works and loans to enterprises on outflows from 

unemployment, no effects of training and start-up loans but positive effects of 

expenditure of public works on outflows from unemployment. Lenkova (1997) also 

found no evidence that increasing the number of participants in training led to an 

increase in the flow out of unemployment for Bulgaria. A limitation of both Lenkova 

(1997) and Kwiatkowski and Tokarski (1997) is that they do not account for demand 

conditions or region-specific differences. 

Munich et al. (1998) emphasise that empirical studies that have not controlled for 

region size have biased results. The reason for this is that the region size is likely to 

be correlated with the matching parameters. The higher correlation of unemployment 

and vacancy stock with the regional level characteristics, the greater the likelihood of 

incorrect estimates. Munich et al. (1998) refer to this as spurious scale effect. The 

spurious effect can be avoided if the study uses panel data together with region-

specific time-invariant effects (Puhani, 1999; Dimitrijeva and Hazans, 2007; 

Jeruzalski and Tyrowicz, 2009). In contrast to most of the empirical studies using a 
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matching function which do not control for region specific characteristics and 

demand conditions, Munich et al. (1998) control for the following regional variables:  

the proportion of unemployed who have secondary or tertiary education, the density 

of population in the region and a range of variables to account for labour demand 

and economic activity and the distance from the district capital to account for labour 

mobility.  The study did not find any significant effect of ALMPs in outflow from 

unemployment.  

Since ALMPs induce can externalities in the labour market, such as substitution 

effects and deadweight loss, macroeconomic studies are capable of capturing these 

effects by using aggregate data. Two of the studies conducted in transition countries 

have found that these externalities may be significant. To assess whether active 

programmes have any indirect effect or whether they can prevent unemployment to 

occur in the first place, Puhani and Steiner (1996) and Puhani (1999) use two 

dependent variables: the outflow from unemployment into employment and the 

outflow from employment into unemployment. Puhani (1999) finds evidence of a 

weak positive effect of expenditure of ALMPs on outflows from employment into 

unemployment suggesting that these active programmes induce substitution effects; 

i.e. firms might want to fire workers who are employed without a subsidy in order to 

hire unemployed individuals whose wage is partially subsidised. Findings from 

Puhani (1999) indicate that an increase of €100 on the expenditure on public training 

and intervention works will lead to one employee being substituted by an 

unemployed individual who has completed one of these active measures. 

Nevertheless, Puhani and Steiner (1996) and Boeri (1996) emphasise that ALMPs 

can still serve a purpose to promote equality if they are targeted at the disadvantaged 

groups.  

Some of these studies recognise that ALMP variables might be endogeneous if more 

resources are allocated to regions within a country where the unemployment rate is 

high the results might be biased through this reverse causation (Boeri and Burda, 

1996; Puhani, 1999; Dmitrijeva and Hazans, 2007; Jeruzalski and Tyrowicz, 2009). 

Puhani (1999) addresses the issue of endogeneity by using lagged, instead of current, 

ALMP expenditure to account for the fact that it takes some time until such 

expenditure can have an effect on the labour market. Similarly, Dmitrijeva and 

Hazans (2007) argue that the issue of endogeneity can be accounted for by using a 



74 
 

variable that measures the number of unemployed who have completed training. So, 

for instance, if there is an increase in ALMP expenditure in period t in response to 

current worsening labour market, while participants expect to complete the training 

in 4 months, these individuals will only appear in the fourth lagged variable (when 

using monthly data) thus arguing that the outcome of participants will not be affected 

by the current increase in expenditure on ALMP. This approach, however, is only 

applicable when studies use monthly data which is common for studies using 

regional level data but not for those using country level data. However, this might 

not be a good approach to account for endogeneity. Munich and Svejnar (2009) 

argue that the explanatory variables in the matching function are pre-determined by 

the matching process of the previous periods, thus they suggest that in order to 

obtain consistent estimates, a study needs to apply the first difference approach of 

estimation of the matching function (                         ). According to 

Munich and Svejnar (2009) further lags of the      will be uncorrelated to      arguing 

in favour of the method of estimation with instrumental variables. Boeri and Burda 

(1995) also use dynamic panel data models to account for endogeneity when 

assessing programme effectiveness for the Czech Republic and find small positive 

effects of ALMP expenditure on exit rates from unemployment.  

 Jeruzalski and Tyrowicz (2009) and Tomic (2012) both employ a two-stage 

stochastic frontier estimation technique. The estimations include monthly and year 

dummies. In the first stage of the estimation only the explanatory variables of 

unemployment and vacancies stocks and flows are included, along with monthly and 

year dummies. The second stage estimates technical efficiencies
10

 by accounting for 

the characteristics of local labour markets and different individual search intensities 

(Ibourk et al., 2004). The covariates included in the second stages include the 

vacancy to unemployment ratio to capture the labour market tightness, regional 

unemployment rate, share of females in total unemployment, share of young 

individuals in the pool of unemployed, share of long-term unemployed, share of low-

skilled and high-skilled unemployed among the jobless, size of the labour market, 

net income per capita and a measure to account for ALMP coverage rate (Tomic, 

                                                           
10 Technical efficiency can be defined as the ratio of observed output to maximum feasible output. If 

technical efficiency is equal to 1 it shows that the individual obtains the maximum feasible output, 

while it is smaller than 1 provides a measure of the shortfall of the observed output from maximum 

feasible output. 
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2012) or number of ALMP participants (Jeruzalski and Tyrowicz (2009). Tomic 

(2012) found a positive, but very small, effect of active measures, while Jeruzalski 

and Tyrowicz (2009) found a negative effect of active measures on matching 

efficiency.  

In conclusion, most of the studies using a matching function are limited in a sense 

that they do not account for aggregate demand. An additional limitation of the 

studies using a matching function is that the dependent variable is usually outflows 

from unemployment. This data limitation does not allow one to observe the direction 

of transitions of labour, i.e. whether the unemployed transitions to employment, to 

inactivity or if there are any job-to-job transitions. Munich at al. (1998) argue that 

when using regional level data, not accounting for regional specific characteristics 

would lead to biased coefficients while very few of studies in transition economies 

account for such differences. Based on this argument, Munich et al. (1998), Lehman 

(1995) and Dmitrijeva and Hazans (2007) used regional dummies to account for 

region specific effects, Tomic (2012) used regional population density as a proxy to 

account for the size of social network and flow of information, Jeruzalski and 

Tyrowicz (2009) used the size of labour market (the total number of unemployed, 

inflows and job offers), while Puhani (1999) ran separate regressions for different 

regions.   

With regard to effects of ALMPs at the economy wide level, the results are mixed. 

This may be a result of the: different methodologies used, different measurements of 

the ALMP variable, different control variables included in the models, the different 

period of data analysed or how studies have accounted for potential endogeneity. 

Findings from Puhani (1999), Dmytrosa (2003) and Dmitrijeva and Hazans (2007) 

suggest that training induce positive transitions from unemployment to employment 

while Lehman (1995) found no evidence of training on transition to employment. 

Lehman (1995) and Kwiatkowski and Tokarski (1997) found evidence to suggest 

that private subsidised employment increases the outflows from unemployment. The 

results from Jeruzalski and Tyrowicz (2009) suggest that all active measures reduce 

the outflow from unemployment to employment.  

The following section provides a critical review of recent empirical studies for non-

transition economies, their methodologies and the data used. It will also review 
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studies using mixed samples combining both transition and non-transition 

economies. Finally, it will provide a brief comparison of the results between studies 

of transition and non-transition economies.  

2.5 Review of Empirical Studies for Non-Transition Economies 

The evidence on the effectiveness of the ALMPs in reducing unemployment (or 

increasing employment) from studies using data for non-transition economies 

appears to be far from conclusive. Studies using regional and national level data 

differ in terms of the estimation technique used, the time frequency of the data, the 

dependent variable and also the definition of the independent variables.  This section 

will review a set of recent studies (published since 2000) of the effectiveness of 

active policies in non-transition countries. This section will initially review the 

studies using regional level data for single country samples (based on chronological 

order) followed by the studies using national level data for samples with mixed 

countries. The summary of the reviewed studies are provided in Table 2.1.  

In order to compare the effectiveness of different ALMPs in France and Sweden, 

Anxo et al. (2001) use monthly regional level data, applying a fixed effect model 

using different model specifications for the two countries depending on the data 

availability. The dependent variable used in the analysis of ALMP effectiveness for 

France is the ‗ratio between the employment demand decrease due to hirings and the 

stock of employment demands at the end of the month‟ while for Sweden is the ‗ratio 

of the flow from unemployment to employment and unemployment stock at the end of 

the month‘. One advantage of this study is that it distinguishes between three 

different ALMPs: (i) employment creation schemes in the public sector; (ii) wage 

subsidy schemes in the private sector; and (iii) training schemes. The evidence from 

this study suggests that ALMPs have in general a positive impact on outflows from 

unemployment to employment. According to the results, the most effective measure 

in both countries are employment creation schemes in the public sector. Wage 

subsidies and training measures seem to have a smaller aggregate impact. It might be 

possible that the effect of training is underestimated because training is generally 

heterogeneous and the analysis of their aggregate effect is more complex. Also, as 

argued in section 2.2.3, the effect of training takes longer to materialise due to lock-

in effect. This study does not assess the effectiveness of ALMPs in the medium or 
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long-term but only the period instantly after the completion of the measures. From 

the review of other studies, it can be observed that both wage subsidies and training 

measures might be more effective in medium or long-term hence suggesting that 

there might be a lock-in effect related to these results (Van Ours, 2001; Dauth et al., 

2011; Schmidl, 2014). Anxo et al. (2001) ignore completely the simultaneity bias by 

arguing that this is an issue only in the unemployment equations and not in the 

matching function, because in the latter the dependent variable is not the direct 

object of political decisions. Another justification why this study does not address 

the issue of simultaneity is that the authors claim there is no clear joint variation of 

the unemployment and the number of ALMP participants for the time period 

analysed. A limitation of this study is that the dependent variables, especially the one 

for France, are quite complex and difficult to interpret. 

A study by Hujer et al. (2007) investigates the aggregate effect of various ALMPs in 

West Germany using monthly regional level data for a two-year period from 2003 to 

2004. This study uses a dynamic specification of the matching function while 

accounting for spatial interactions, assuming that the changes in employment exit 

probabilities in one region depend on the changes in labour market conditions in the 

neighbouring regions. In addition, Hujer et al. are able to use detailed information on 

the duration of employment spells of participants after the completion of the 

measures. This analysis accounts for different ALMPs in Germany: training 

programmes, job creation schemes, measures promoting qualifications and wage 

subsidies. The ALMPs are measured as the stock of participants in the different 

programmes while the dependent variable is the outflows of unemployed individuals 

into regular, unsubsidised employment. The study additionally accounts for possible 

endogeneity of the ALMPs by including several lagged values of the policies in the 

matching equation. The evidence from the study suggests in general a negative to 

insignificant effect in the both short and long-run of the ALMPs analysed. According 

to Hujer et al. an explanation for this may be that after the measure ends, firms 

replace the former subsidised employees/trainees as the measure ends with new 

subsidized employees/trainees.  

To assess the effectiveness of different ALMPs in reducing the unemployment rate, 

youth unemployment rate and increasing the employment rate in Italy, Altavilla and 

Caroleo (2006) use monthly regional level data from 1996 to 2002. The study 
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employed three different estimation techniques: Fixed Effects (FE), a dynamic panel 

modelling (difference and system Generalised Methods of Moments - GMM), and 

Panel Vector Autoregressive (P-VAR).  They also distinguished between different 

active policies considered: mixed cause contracts (work contracts that include the 

training of the worker during working hours), subsidies for long-term or short-term 

employment (these subsidies consist of reducing payroll taxes or transferring a part 

of unemployment benefits to the employers), incentives for the stabilization of short-

term contracts (these measures are used to transform short-term contracts like 

internship contracts into long-term contracts) and incentives for self-employment. 

The variables measuring active policies have been constructed as the total number of 

participants in a programme in a particular region divided by the total working-age 

population in the same region. The results from the dynamic specification suggest 

that the active policies analysed are effective in reducing unemployment and 

increasing employment and there is no great discrepancy between the results from 

GMM, FE and P-VAR estimators. Additionally, the results from the P-VAR suggest 

that the unemployment rate in North and South regions of Italy respond differently to 

ALMP shocks (an increase in ALMP participants to working-age population ratio).  

The authors argue that this might be due to a higher degree of labour market rigidity 

in the South, which might suggest that the efficiency of the labour market should be 

improved.  

Dauth et al. (2010) also uses a matching function to assess the effectiveness of 

various ALMPs in Austria on a rich quarterly data at regional level from 2001 to 

2007 using a dynamic specification. To control for further influences on the 

variables of interest, the authors add data on the structure of job-seekers such as the 

shares of different age and qualification groups, the shares of female, long-term job-

seekers and the share of job-seekers with a migration background. To take into 

account a possible lock-in effect, several temporally lagged values of the policy 

variable were also included. Since the effects of different ALMP programmes can 

vary, the authors include the individual programmes as shares of all-jobseekers. 

Since the ALMPs of one region could also affect the labour outcome of other 

regions, the authors include a spatially lagged dependent variable. The study found 

that the regions with the larger shares of job-seekers older than 50 and younger than 

25 had fewer matches compared to those with higher shares of job-seekers between 
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the age 25 and 50. The same applies to the regions with large share of females and 

long-term job seekers. The study found mixed evidence with regard to the 

effectiveness of the ALMPs. The most effective measure in Austria for the period 

observed were a wage subsidy and apprenticeship scheme (this measure provides 

internship training positions to challenged young persons), while there was no 

evidence that vocational training, active job search and orientation and job training 

measures had any significant effect on the matching process. There was a strong 

negative effect of job schemes in non-profit organisations and the authors argue that 

this might be due to stigmatisation of participants. The findings also suggest that 

active measures with long-duration tend to be more likely to have lower matches 

hypothesised to be due to lock-in effects.  

Some of the recent studies use large samples of mixed countries such as Bassanini 

and Duval (2006), Estevao (2007), Oesch (2010), Murtin et al. (2014) and Escudero 

(2018), all these studies use data at national level for non-transition economies 

except for the last one which uses both transition and non-transition economies. 

Even though these studies use different estimation techniques and have different 

sample sizes, the overall findings point to the effectiveness of ALMPs in reducing 

unemployment or increasing employment and labour force participation. In a few 

cases the results become statistically insignificant but none of them found evidence 

of a negative effect of these policies. Many of the studies using mixed samples are 

aware of the potential endogeneity problem when assessing the effectiveness of 

ALMPs and have tried to control for it using instrumental variable methods. A 

common limitation of the studies using mixed samples is that they rarely 

disaggregate between various ALMPs, leaving the studies unable to distinguish the 

effectiveness of individual policies.  

Bassanini and Duval (2006) using static panel models on a sample of 21 OECD
11

 

countries do not find consistent effects of ALMPs. This study applies separate model 

specifications for the unemployment and employment rates using ALMP expenditure 

as share of GDP to assess the effectiveness of ALMPs. When using fixed effects, the 

ALMPs are found to be statistically significant in reducing unemployment and 

                                                           
11

 Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, Ireland, Italy, Japan, the 

Netherlands, Norway, New Zealand, Portugal, Spain, Sweden, Switzerland, United Kingdom and 

United States.   
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increasing employment rates. However, when using an instrumental variable 

approach (IV), where the ALMP variable is instrumented by its lagged values, the 

results become insignificant. Bassanini and Duval also examine the effect of 

different ALMPs, decomposing them into five categories: public employment 

services (PES) and administration, training programmes, youth measures, subsidized 

employment and measures for the disabled. The findings suggest the effect of 

training programmes is the only ALMP which is significant and consistent in all 

specification models in increasing the employment rate and reducing the 

unemployment rate.  

In his study, Estevao (2007) analyses the effects of ALMPs on increasing the 

business employment rate (the share of working-age population employed in the 

private sector). The study argues that the business employment rate is a better 

measure (dependent variable) compared to the unemployment rate. This is because it 

avoids overestimating the policy importance of ALMPs by automatically excluding 

cyclical increases in public sector employment, which do not represent real 

improvements in labour market functioning. Estavao used a panel dataset of 15 

industrialised countries12 for 1985 – 2000 in a linear regression specification 

accounting for a set of institutional and other control variables. To account for the 

potential endogeneity of ALMPs, the study also uses the lagged values of ALMP 

expenditure as share of GDP but the results were not different from the basic 

specification. The overall findings suggest a positive effect of ALMPs on increasing 

the business employment rate (employment in the private sector).   

Oesch (2010) focuses particularly on the unemployment rate of low-skilled workers 

to analyse the ALMPs effectiveness and policies such as wage-setting institutions, 

employment regulation, monetary policy and also globalization effects. This study 

also uses OLS regressions for 21 OECD
13

 countries during the 1991 – 2006 period 

divided into four periods. The econometric analysis does not address the endogeneity 

of the ALMPs or the persistent nature of the unemployment rate, however the 

findings consistently supported the hypothesis that investing in ALMPs results in a 

                                                           
12

 Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, the Netherlands, New 

Zealand, Norway, Spain, Sweden, the United Kingdom, and the United States. 
13 Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, 

Netherlands, Portugal, Spain, Sweden, United Kingdom, Norway, Switzerland, Australia, Canada, 

New Zealand and the United States. 
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lower unemployment rate of low-skilled workers. The main limitation of this study is 

that it uses OLS, which in case of panel data produces biased and inconsistent results 

because the country specific effects are omitted and potentially correlated with other 

regressors.  

Murtin et al. (2014) assess the effectiveness of the labour market policies on the 

unemployment outflow rate (the number of hires from the pool of unemployed 

divided by the number of unemployed) for 11 OECD countries14 for a period 

between 1985 and 2007. This is one of very few studies which use a matching 

function for cross-country analysis of the effectiveness of ALMPs. Murtin et al. use 

a two-stage instrumental variable approach where in the first stage the dependent 

variable is the labour market tightness measured as v/u (vacancy to unemployment) 

ratio. The study instrumented the labour market tightness by business cycle shocks 

(measured by the output gap) as well as labour market institutions that are 

considered to have an impact on market tightness but not on matching efficiency 

which include the tax wedge and its interaction with the characteristics of wage 

bargaining systems. In the second stage estimation the unemployment outflow rate is 

estimated on predicted market tightness and a set of other institutional variables such 

as the characteristics of unemployment benefit systems and the degree of 

employment protection. The study found consistent evidence to suggest that ALMPs 

increase labour market tightness however the effect of ALMPs on matching 

efficiency is not significant.  

Escudero (2018) increased the sample to 31 OECD countries (including some 

transition economies) using annual country-level data over the period 1985 - 2010. 

This study uses a set of dependent variables such as the unemployment rate, 

employment rate, labour force participation rate and the share of low-skilled 

unemployed in total unemployed. The author argues that using the latter dependent 

variable would assess whether ALMPs are providing incentives to the unemployed 

for acquiring new skills or to enterprises for enhancing the demand for low-skilled 

workers. An advantage of this study is that it particularly focuses on the low-skilled 

unemployed and marginalized groups. Escudero applies the instrumental variable 

approach to account for the endogeneity of the policy variables using real 
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 Australia, Belgium, France, Germany, Japan, Norway, Portugal, Spain, Sweden, the UK and the 

USA 
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expenditure on ALMPs per unemployed person as the instrument. In order to control 

for multicollinearity, the study included a set of active policies (training, 

employment incentives, supported employment and direct job-creation) into one 

cluster while start-up incentives and job-rotation and job-sharing are included 

separately in the model. Another advantage of this study, which is absent in any 

other study analysing the effectiveness of ALMPs, is that it accounts for different 

aspects of implementation of the policies in trying to explain the differences in the 

performance of ALMPs between countries. Three different measures of the ALMP 

implementation were included in the specification. The first one is the overall 

expenditure on programme administration as a percentage of total expenditure on 

ALMPs. The second measure is the continuity in the implementation of programmes 

measured by the dynamics of ALMP expenditure; this is captured by the difference 

between the fluctuations (measured by the standard deviation) in real GDP growth 

and the growth rate of ALMP spending.  The third variable measures the timing of 

the ALMP expenditure, i.e. whether the policies are implemented in a counter-

cyclical or pro-cyclical manner. To assess this, a dummy variable was created taking 

the value of one if expenditure on ALMPs ran parallel to changes in the 

unemployment rate and counter the economic trend (policies were implemented 

counter-cyclically) and zero otherwise. The main limitation of the clustering of 

different ALMPs is that the separate effect of the individual policies cannot be 

estimated. 

The results from this study point to positive effectiveness of the policy cluster on all 

dependent variables. Most importantly, the findings from this study suggest that 

these ALMPs particularly improve the labour market outcomes for the low-skilled 

unemployed. The findings suggest that the start-up incentives are effective in 

reducing general unemployment and increasing employment, however with a lower 

magnitude and lower significance than in the case of the low-skilled unemployed. 

Importantly, the findings for the implementation variables also suggest that an 

increase in the share of administrative expenditure on ALMPs, which potentially 

indicates quality of administration, is associated with a reduction of unemployment 

and increase in employment and participation rates. Additionally, the study also 

included interaction terms between the policies and the implementation variables and 

found interesting results suggesting that when the ALMPs are implemented counter-
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cyclically (counter the economic trend), the effect of ALMP expenditure on reducing 

unemployment will be higher.  

Similar to the studies for transition economies reviewed in the previous section, 

studies for non-transition economies also do not find a consensus with regard to the 

effectiveness of ALMPs. Given that one of the main goals of ALMPs is to increase 

matching efficiency, studies using single country sample usually employ the 

matching function approach for both transition and non-transition economies, 

although they differ in the estimation technique used.  Altavilla and Caroleo (2006) 

found that employment creation schemes in public sector are the most effective 

among other measures in increasing matching efficiency. On the other hand, the 

results from Dauth et al., (2010) suggest that employment schemes in non-profit 

organisations have negative effect in matching efficiency possibly resulting from 

stigmatisation of the beneficiaries. Subsidies in the private sector are found to have 

more positive effect in increasing employment (Estevao, 2003; Altavilla and 

Caroleo, 2006; Bassanini and Duval, 2007; Dauth et al., 2010). However, some 

studies suggest that these measures are likely to induce deadweight and substitution 

effect (discussed in more details in section 2.2.3) hence the net effect of these 

policies could be small or even zero (Estevao, 2003; Bassanini and Duval, 2007; 

Arranz, 2013; Escudero, 2018).  Estevao (2003) suggests that subsidies in the private 

sector could be more effective in reducing unemployment if they are better targeted 

and if they are implemented with better monitoring process. To avoid deadweight 

and substitution effects, these subsidies would be more effective if they target 

specific unemployed groups such as low skilled and long-term unemployment rather 

than general unemployed (Anxo et al., 2000; Altavilla and Caroleo, 2006; Arranz, 

2013; Escudero, 2018). Similar results for subsidies in the private sector were found 

also for transition economies (Lehman, 1995; Kwiatkowski and Tokarski, 1997).  

The results for training measures for non-transition economies are mixed, similar to 

those for transition economies. Studies suggest that vocational training, on the job 

training and general training have very small or no effect at all in increasing 

employment (Anxo et al., 2001; Estevao, 2003; Hujer et al., 2007; Dauth et al., 2010; 

Arranz et al., 2013). Anxo et al., (2001) argue that the ineffectiveness of training 

might be due to the lock-in effect and it is expected that this measure might become 
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effective only in the long-run. However, in their study, Dauth et al., (2010) even 

after taking account of this issue still find the same result. In contrast, some studies 

have found evidence to suggest that training measures are the most favourable 

among all the active measures in increasing employment (Bassanini and Duval, 

2007; Escudero, 2018).  

Active job search and counselling seem to have a positive effect in increasing 

employment in the short-term (Bassanini and Duval, 2007; Escudero, 2018). 

According to the results of some studies, the self-employment and start-up measures 

also seem to be effective (Altavilla and Caroleo, 2006; Escudero, 2018).   

The focus of this research is to analyse the effectiveness of ALMPs in transition 

countries which are characterised by large informal sectors. The next section will 

review the empirical studies which investigated the existence of informal labour 

markets in transition economies.  

2.6 Labour Market Duality and Informal Labour Markets  

The estimations of Schneider et al. (2010) suggest that the size of informal 

employment is relatively large in the transition countries. Recently, there has been an 

increased interest in investigating the effectiveness of ALMPs in countries with large 

informal sectors even though there is no established theory of the interaction 

between ALMPs and informal employment. This section will focus on the 

segmented labour market and the causes of informal employment, followed by a 

review of empirical studies estimating the existence of segmented market in 

transition economies.  

The dual labour market theory was developed by Doeringer and Piore (1971) who 

directed their analysis towards the continuing poverty and unemployment amongst 

segmented and disadvantaged workers in poorer urban areas in the United States of 

America. The development of the dual labour market theory came after the failed 

attempts by government to increase the economic participation of marginalised 

workers such as women and minorities. Doeringer and Piore (1971) conceptualised 

the labour market as consisting of two different sectors with high within sector 

mobility but restricted mobility between sectors. The theory of labour market duality 

supports the idea that the two labour market sectors are able to function independent 
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of each other because both sectors are divided by demand and supply side processes. 

In this context, the supply side refers to the characteristics of the worker such as 

level of education and the level of skills but also their perceived and actual attitude 

towards work. While the labour demand side comprises of the characteristics of jobs 

such demand for certain level of education and skills and employment protection and 

security.  

Doeringer and Piore (1971) distinguished the two sectors according to individual and 

job features and refers to them as primary and secondary sectors. The privileged 

members of the labour market are allocated to the primary sector which is regulated 

and offers employment protection and job security. The employment in this sector is 

stable, provides relatively high wages and good advancement prospects. 

Additionally, the primary sector also offers individuals bargaining power and the 

protection of the trade unions which is an important feature of the job security of the 

employees.  

The secondary sector comprises mostly of low-skilled jobs which usually do not 

need specific training to perform the job. According to the dual labour market 

theory, it is raw labour power that is required in this sector. Workers do not have 

employment protection and also do not have the possibility to complain because of 

lack of support from the trade unions. The secondary sector is very much 

unregulated and there are no seniority privileges as in the primary sector. 

Additionally, individuals who work in the secondary sector display a certain set of 

individual characteristics which are different from those in the primary sector. The 

individual‘s manners such as poor discipline, carelessness and high absenteeism 

make the workers in the secondary sector less reliable and trustworthy.  

The literature on the dual labour market argues that disadvantaged individuals in the 

labour market, such as women, youth, ethnic minorities and people coming from 

poorer social class are trapped in the informal sector of the labour market. Peck 

(1996) argues that workers are social actors and their employment prospects are 

predetermined out of the labour market. In a society where females are viewed as the 

child bearers while the males are expected to be the breadwinners of the family, their 

constructed social gender identities reflect also their prospects in the labour market 

(Bauder, 2001). This typically reflects the situation in many European transition 
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economies shown in Chapter 1, where males are more prone to be engaged in formal 

employment when they are head of the family and have children while females in 

same circumstances would be more likely to be informally employed. Further, the 

allocation of workers to jobs is a reflection of the ‗social class situation‘ where the 

social groups tend to remain in the same social class. Because of social closeness, the 

entrance to the two sectors is controlled by social groups such as gender, ethnic and 

groups of different social class. In European transition economies it is the most 

deprived social class and unskilled workers are over represented in the informal 

employment (Kogan, 2011). Migrants and minorities, for instance, face higher 

barriers to entry in the formal employment because they do not always have 

information and appropriate social network about the vacancies and formal jobs 

(Julia et al., 2015). Cultural differences also play an important role in allocation of 

the labour force into the two sectors. Bauder (2001) and Jackson (2012) link the 

cultural identification with economic opportunity and labour market outcomes. The 

cultural aspect associated with behaviour, norms and ethics influence individuals to 

pursue different educational goals and occupational choices which in turn will 

impact their opportunities in the segmented labour market. When recruiting, 

employers use the level of completed education and related characteristics, such as 

full-time or part-time education, private versus public, whether the workers dropped 

out of school, as a screen. In spite of representing workers‘ productivity, these 

educational biographies represent the workers‘ vulnerability which are more prone to 

be taking up jobs in the informal sector (Kogan, 2011). As discussed in Chapter 1, in 

European transition economies workers with lower education level comprise the 

largest share in the informal sector.  

However, Fields (1990) and Maloney (2004) acknowledge that the informal sector 

also attracts a segment of workers who participate in this sector by choice. Fields 

(1990) divided the informal sector into two subsectors, one which consists of 

disadvantaged workers where entrance is easy (the easy-entry informal sector) and 

the second where there are barriers to entry such as requirement of higher capital and 

skills (the upper-tier informal sector). The upper-tier sector entails long-term 

relationships between employers and employees, operates flexible hours and 

locations and employment of family members in this sector tends to be preferred. 

Typical upper tier informal sector activities are individually-owned and operated taxi 
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cabs. There is a relatively high cost involved in purchasing a taxi which entails 

barrier to entry, hours of work can be regular or irregular and the owner can employ 

an additional driver to operate during the night shift (Fields, 1990). The easy-entry 

subsector is better understood as opportunity of last resort or as a survival strategy 

for the excluded workers, while in the upper-tier subsector workers participate 

voluntarily. 

In contrast to the view of dual labour market, the two sectors might not necessarily 

be divided by the entry restrictions but the features of two sectors may co-exist in the 

same labour market (Maloney, 1999; 2004; Cunningham and Maloney, 2001). 

Maloney (2004) argue that informal workers make the decision to enter the labour 

market taking into consideration both sectors; the worker then will choose whichever 

sector offers a higher earning opportunity and also other higher benefits. In this 

context, Maloney (2004) argues that there is high mobility of workers between the 

two sectors. When Maloney (2004) and Fields (1990) argue the voluntary 

engagement of workers in the formal sector, they use this argument only for those 

who are self-employed or micro-entrepreneurs. As observed from the information 

analysed in Chapter 1, in transition economies informal self-employment is fairly 

rare and informal workers are overwhelmingly informal dependent employees 

(Slonimczyk, 2014). In this context, informal employment in transition economies is 

predominantly characterised by easy-entry informal rather than upper-tier informal 

markets.  

There is a considerable literature which analyses the factors that contribute to the 

emergence of informal labour markets. Regulatory distortions in formal labour 

markets, such as a relatively high minimum wage and strong union bargaining 

agreements may keep the wage in the formal sector above the market clearing level. 

Labour costs might also increase when taking into account benefits and severance 

pay which would result in inflated wages. High tax burdens and social security 

contributions increase the size of the informal sector; the larger the difference 

between the labour costs and the after-tax earnings the stronger the incentive to 

engage in informal employment (Schneider and Enste, 2000; Eilat and Zinnes, 2002; 

Schneider and Williams, 2013). Thus, labour market regulations and policies may 

tend to increase artificially labour costs and cause the labour market sector to be 
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divided. Subsequently, those who are not able to get an employment in the formal 

sector will be subject to find work in the informal sector.  

There are a few empirical studies that have analysed the labour market segmentation 

in transition economies. Haltiwanger and Vodopivec (1999) estimated labour market 

transition during the early transition period and found evidence to suggest that 

Estonia experienced high levels of mobility between informal and formal sectors. 

Earle and Sakova (2000) used multinomial logit analysis to distinguish between 

employers and own-account self-employed while comparing both groups to 

employees and the unemployed in six transition economies (Bulgaria, Poland, Czech 

Republic, Slovakia, Hungary and Russia). They distinguished between employers 

who are considered as genuine business owners and own-account self-employed 

whose background is more ambiguous. Earle and Sakova suggest that own-account 

self-employed are typically engaged in the informal economy. This study also 

examined the earnings differences between individuals in different labour market 

states. The findings suggest positive earning differentials of own-account self-

employed compared to employees for all six transition countries and also positive 

selection into informal self-employment suggesting that these workers have a 

comparative advantage at being micro-entrepreneurs.  

Pages and Stampini (2007) also analysed wage differentials in three transition 

countries (Albania, Ukraine and Georgia) but found no evidence of a positive formal 

wage premium to informal salaried jobs and also found high mobility from informal 

to formal salaried jobs. In contrast, the findings from this study suggest that there is 

very low mobility between informal self-employment jobs and formal employment 

which suggest that there exist barriers to movement in both directions.  

Another study for Serbia used regression-based models to identify the determinants 

of the level of main job earning inequality between formal and informal sector 

(Krstic and Sanfey, 2010). The findings suggest that there is greater inequality of 

earnings in the informal sector relative to the formal sector. One possible reason for 

this is the minimum wage which was enforced in the formal sector during the period 

examined (2002 – 2007). The findings from the study suggest that there is high 

between-group earnings inequality of the same educational level of informal and 
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formal workers. The earnings inequality increased between 2002 and 2007, which 

highlighted the growing advantage of the formal employment.  

Lehman (2015) analysed the labour market segmentation of the Russian labour 

market employing two different approaches. The first approach used is the wage gap 

regression to assess if there is any wage gap between workers who are employed in 

formal and informal sectors. In order to assess whether there are barriers between 

formal and informal sectors, the second approach used is an estimation of mobility 

probabilities between labour market states. In order to assess the wage difference the 

study divided the informal employees into groups of high and low skilled. The study 

also assessed if individual ‗subjective‘ risk attitudes are linked to the labour market 

states. Findings from the wage regressions suggest that low skilled informal 

employees experience a significant wage penalty, while informal employees with 

high skills have the same wages as their formal counterparts. This finding suggests 

that the labour market for high skilled workers is integrated, while low skilled 

informal workers are faced with a segmented labour market. When analysing the 

mobility of workers in different sectors, Lehman divided employment into five 

distinct states: involuntary informal dependent employment, voluntary informal 

dependent employment, formal dependent employment, informal and formal self-

employment. The study found strong evidence to suggest that formal employees are 

the most risk-averse while self-employed and informal employees have the highest 

propensity to take risk.  

Empirical evidence on the existence of segmented labour markets in transition 

economies is mixed and no straightforward conclusion can be drawn. From the 

empirical findings one can argue that in transition economies there exist earning 

differential for low-skilled workers (Krstic and Sanfey, 2010; Lehman, 2015), 

however the same result is not found for high-skilled workers (Pages and Stampini, 

2007; Lehman, 2015). When analysing the mobility between informal and formal 

sectors, findings from Pages and Stampini (2007) indicate that there is low mobility 

between the two sectors while those from Haltiwanger and Vodopivec (1999) 

indicate high mobility. However, when analysing informal self-employment, the 

findings from Earle and Sakova (2000) and Pages and Stampini (2007) suggest that 

there is low mobility between informal and formal self-employment suggesting that 

the labour market for self-employment is highly segmented.  
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Considering the large informal sectors in transition economies there are significant 

additional policy implication for the effectiveness of ALMPs. According to Katz 

(1996), the effects of lowering labour costs are conceptually equivalent to providing 

wage subsidies to employers. Katz suggests that the effect of a reduction of labour 

costs is only clear cut when the supply is perfectly elastic or perfectly inelastic. In an 

extreme case, when the labour supply is perfectly elastic the result will be the 

increase in employment. In a pool of low skilled unemployed or informal workers, 

and where there is a statutory minimum wage, firms will expand employment 

without having to raise wages. While, in the other extreme, when the labour supply 

is perfectly inelastic the result will be an increase in wages because the subsidies will 

be passed on to employees, however no additional jobs will be created. As explained 

by Lehman and Muravyev (2012), the most realistic scenario in European Transition 

Economies is when the labour supply is positively elastic, a reduction of labour cost 

can lead to higher level of employment. Based on the empirical evidence, Katz 

(1996) argues that low skilled workers face higher elasticity of labour demand and 

supply than skilled workers. Thus, an increase in wage and direct subsidies for low 

skilled workers would provide an incentive to firms to employ more formal workers 

as opposed to informal ones and comply with employment legislation such as 

providing written contracts for their workers. Lehman and Muravyev (2012) argue 

that in the case of high structural unemployment this effect would be particularly 

large because these subsidies will reduce the skill mismatch. 

Transition economies‘ labour markets might be characterised by multiple equilibria. 

As explained in Snower‘s model (1994), the good equilibrium consists of a 

predominance of high-skill workers in the formal sector, while the bad equilibrium 

consists of a high proportion of low-skill workers in the informal sector. Taking into 

consideration that low-skilled workers are more likely to be engaged in the informal 

sector in transition economies, wage subsidies can improve employment prospects 

for this category of workers through lowering labour costs of the firm. Access to 

such subsidies provides incentives for a firm to switch from informal to formal 

sector. Skills enhancement of the informal workers through training or labour 

counselling, as active measures, might also improve their employment prospects in 

the formal sector. As discussed in section 2.2.3, training and on-the-job training 

increase employee‘s skills which in turn increase their productivity and as a 
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consequence will assist a transfer of the low-skilled labour from low-productivity 

(i.e. informal sector) to high-productivity sector (formal sector). In this context, 

ALMPs perform best when designed to target the low-skilled, that are mainly 

concentrated in the informal sector in transition economies, and as such ALMPs 

provide incentives for the firms to employ more formal workers rather than informal 

ones.   

2.7 Conclusions  

This chapter has provided a critical review of different theories of unemployment 

and the effectiveness of ALMPs at the economy wide level. It also discussed the 

causes of high unemployment rates and large informal employment in transition 

economies and provided a detailed discussion on empirical methodology widely 

used to evaluate the ALMP effectiveness at the economy level. Section 2.2.3 

concluded that there is a considerable number of identified effects of ALMPs: effects 

on the matching process, productivity effects, effects on labour force and 

competition in the labour market, deadweight loss and substitution effects, reduced 

welfare losses for the unemployed and work-test effects. The effects of ALMPs have 

been analysed based on the theoretical framework of Layard, Nickell and Jackman 

(1991). The discussion of the effects of ALMPs concluded that these effects can 

counteract each other and can also cause negative externalities in the labour market. 

Having found no explicit theoretical explanation of the effectiveness of ALMPs in 

the context of high informal employment, this chapter sought to analyse the role of 

active measures as incentives for firms to switch from informal to formal 

employment. This chapter also discussed the causes of general and youth 

unemployment in European transition economies and reviewed the empirical 

evidence assessing the nature of unemployment in these economies. The findings 

from the empirical studies are mixed, with most inclining to support the structuralist 

hypothesis of unemployment in transition economies. The matching function 

approach is the empirical methodology mostly employed for the analysis of ALMPs 

at the economy wide level. Matching functions have been acknowledged in the 

empirical literature as an appropriate approach to analyse the matching efficiency in 

the labour market in transition economies since they allow for Increasing Returns to 

Scale. As discussed in this chapter, labour markets in transition economies might be 
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characterised by multiple equilibria; with many ETEs, especially in South Eastern 

Europe, being trapped in a low-skill bad-job equilibrium. 

The conceptual framework of the matching methodology has been critically assessed 

in this chapter and will be used in Chapter 3 as the basis for the empirical analysis to 

evaluate the effectiveness of ALMPs in selected European transition economies. The 

discussion in this chapter also provides the theoretical framework for the empirical 

evaluation of ALMP at the individual level which will be conducted in Chapters 5 

and 6.  
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3.1 Introduction  
The analysis of the underlying theoretical framework and review of the empirical 

studies using matching function discussed in Chapter 2 provide the basis for the 

empirical analysis to be conducted in this chapter. As argued in Chapter 2, active 

labour market policies can impact on the labour market either through the wage-

setting or the price-setting schedules. Specifically, ALMPs have been argued to have 

the following potential effects on the labour market: effects on the matching process, 

productivity effects, effects on the size of the labour force and the level of 

competition in the labour market. The review of the empirical research of the 

transition context studies indicated that there is currently no solid consensus with 

regard to the effectiveness of ALMPs. Thus, this chapter provides additional 

empirical evidence in assessing the effectiveness of different active labour market 

policies at the economy-wide level.   

Most of the empirical studies assessing the effects of ALMPs have employed a 

matching function. These investigations have typically used the flow from 

unemployment to employment as the dependent variable and have employed regional 

administrative data on a quarterly or monthly basis. Because for the selected sample 

of countries, neither quarterly nor monthly data is available for variables measuring 

ALMPs, this chapter will utilise only annual level data for the period 2010 to 2015 

for European transition economies. The sample was further expanded to account for 

European non-transition economies in order to compare the effectiveness of ALMPs 

between the two groups of countries and due to the limited data available for 

transition economies. The second empirical approach will use a different dependent 

variable and estimation approach: separately including variables to account for the 

following active measures: training, employment incentives, supported employment 

and rehabilitation, direct job creation and start-up incentives. Data and model 

specifications of the two approaches are developed separately and the final models 

will be presented at the end of each discussion.  

This chapter is organised as follows. Section 3.2 provides a description of the active 

policies analysed in this empirical chapter. Section 3.3.1 provides a discussion of the 

model specification and data sources, while 3.3.2 will discuss the possible 

endogeneity of the ALMP variable. Section 3.3.3 will provide an explanation of the 

estimation methodology used for the first model which will be followed by section 
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3.3.4 which discusses the key descriptive statistics for the matching function and the 

main empirical findings. Section 3.4.1 will provide the model specification for the 

second approach where the dependent variable is the unemployment rate. Section 

3.4.2 provides a discussion of the estimation methodology used for dynamic panel 

models, their key advantages and possible limitations. Findings from the second 

model will be provided in section 3.4.3 while section 3.5 presents the conclusions of 

this chapter.  

3.2 Classification of Active Labour Market Policies according to 

Eurostat  

The ALMP variables are derived from Eurostat databases. Policy categories used in 

this chapter thus follow the Eurostat classification and definitions (Eurostat, 2016). 

These categories are: 

1. Labour market services – ―are all services and activities undertaken by the 

PES together with services provided by other public agencies or any other 

bodies contracted under public finance, which facilitate the integration of 

unemployed and other jobseekers in the labour market or which assist 

employers in recruiting and selecting staff” (Eurostat, 2018, p.13). This 

service covers the ad hoc information about the available vacancies, training 

and other forms of assistance together with job-brokerage services for 

employers. Labour market services also include individualised counselling 

aiming to provide a planned path for job-seekers towards durable 

(re)employment. These services also include all the administration, 

management and coordination of the employers and servicers engaged for all 

categories of ALMPs.  

1. Training – includes different forms of training aiming to improve the 

employability of target groups. There are three categories of training which 

are defined depending on the amount of time participants spend in the 

classroom or workplace with purpose of instruction. The first one is 

institutional training which covers measures where majority of the time is 

spent in the training institutions (at least 75% is spent on school, college, 

training centre etc.). The second form of training is the workplace training 

which covers those activities that are mostly spent in the workplace with 
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purpose of instruction by the supervisor (75% in the workplace) or entirely 

based on learning by doing or learning by experience. The third category is 

where training in which the time is more evenly split between on and off-the-

job.  

2. Employment incentives – ―covers measures that facilitate the recruitment of 

unemployed persons and other target groups, or help to ensure the continued 

employment of persons at risk of involuntary job loss” (Eurostat, 2018, p.17). 

These are subsidies for open market jobs which might exist or can be created, 

most likely in the private sector but also in public and non-profit sectors. The 

subsidy typically covers some remuneration for the employed person while a 

majority of the labour costs is covered by the employer.  

3. Supported employment and rehabilitation – ―covers measures providing 

subsidies for the productive employment of persons with a permanently (or 

long-term) reduced capacity to work‖ (Eurostat, 2018, p.18). This measure 

consists of subsidies for the employment of individuals with a long-term 

unemployment, disabled job-seekers, those who are going through 

rehabilitation after an accident or illness, recovering drug-addicts and other 

groups who are not work-ready and may benefit from rehabilitation.  

4. Direct job creation – ―covers measures that create additional jobs, usually of 

community benefit or socially useful, in order to find employment for the 

long-term unemployed persons otherwise difficult to place” (Eurostat, 2018, 

p.19). This usually refers to subsidised jobs for temporary, non-market jobs 

which would not exist without the help of public intervention. This subsidy 

aims to assist the unemployed by increasing their employability. 

5. Start-up incentives – ―covers measures that promote entrepreneurship by 

encouraging the unemployed and other target groups to start their own 

business or to become self-employed” (Eurostat, 2018, p. 20). This form of 

subsidy can be distributed through cash benefits or indirect loans, provision 

of facilities, business advice etc. These measures may also support new 

businesses to take on their first employees from the target groups. Start-up 

incentives are accounted as ALMPs only when they target specified groups 

of unemployed or non-participants, generally available business start-up 

subsidies are not included in this category.    
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The following section provides an explanation of the approach taken in the first 

empirical investigation of this chapter. Section 3.3.1 provides the model 

specification while section 3.3.2 discusses the potential endogeneity of the ALMP 

variable and assesses the instrumentation strategies used by previous empirical 

studies. Following this discussion, section 3.3.3 provides an explanation of the 

estimation techniques for panel data employed in this empirical investigation. while 

section 3.3.4 discusses the empirical results.  

3.3 Empirical Approach for Model 1 – Matching Function  

In order to provide an overview of the effects of the ALMPs on the national labour 

markets this chapter will use two model specifications. The first model is a matching 

function where the dependent variable is the outflow from unemployment to 

employment, i.e. the number of matches made between the unemployed and unfilled 

vacancies. This section will discuss the specification of the model of the outflows 

from unemployment to employment, where the key variable of interest is measured 

as total expenditure on ALMPs as percentage of GDP. The section below provides a 

discussion of the model specification.  

3.3.1 Model Specification  

As elaborated in Chapter 2, the effectiveness of ALMPs is most appropriately 

assessed through the matching function approach. The suitability of the matching 

function approach lies in the minimal complexity of this approach. A matching 

function summarizes the mechanism of matching the vacancies advertised by firms 

and the unemployed who are searching for jobs through employment agencies, 

reading advertisements in the newspapers or utilising their social networks. The 

simplest form of a matching function is a model where the dependent variable is the 

outflow from unemployment to employment and it is regressed on two main 

explanatory variables: (i) the number of unemployed workers searching for a job and 

(ii) the number of open vacancies.  A detailed explanation of the matching function 

and its‘ appropriateness in assessing the effectiveness of ALMPs is provided in 

section 2.4. 

It was argued in Chapter 2 that not only do the stocks of unemployment and 

vacancies affect the efficiency of matching but also the flow of new entrants into the 
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pool of unemployment and flows of the new vacancies into the existing stock of 

vacancies. Chapter 2 explained that the unemployment stock at period t cannot be 

simply matched with the vacancy stock at time period t. Hence in order to find a 

match, the existing unemployed may wait until the next period when new vacancies 

(flow of new vacancies) are opened and similarly the existing vacancies may remain 

open until new entrants join the unemployment pool (inflows to unemployment pool) 

(Coles and Smith, 1996; Petrongolo and Pissarides, 2001). Following this argument, 

only the lagged values of unemployment and vacancy stocks are included in the 

model. With regard to the flow independent variables, due to data limitations, only 

the variable accounting for the flows of new entrants into the unemployment will be 

included in the model. The stock-flow matching is depicted in Figure 3.1.  

Figure 3.1 The process of stock-flow matching 

 
Source: Munich and Svejnar (2009), p.10. 
Note: UEflow is the number of people transitioning from unemployment to employment and Uflow is 

the number of people transitioning to the unemployment pool. 

Theories of search and matching generally do not suggest a specific functional form 

but most of the studies use a Cobb-Douglas function written in a deterministic form 

of discrete observations as following:  

                                                     

                                

The observational unit is the country i, at year t. The dependent variable, 

           , is the flow from unemployment to employment during period t, 

              and                  are the number of unemployed and vacancies 
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at the end of period    , respectively,     is the unobserved time invariant country 

specific effect and      is the idiosyncratic error term. This form of matching function 

will be augmented to account for the effects of ALMP expenditure as a share of GDP 

and control variables which are presented in table 3.1 and are discussed individually 

below. 

According to Munich and Svejnar (2009), unless the matching function exhibits 

constant returns to scale, not controlling for respective labour market size may lead 

to biased coefficients (omitted variable bias). The bias arises from the positive 

correlation between                             and the labour force size 

     . The direction of bias would be negative if the unemployment and vacancy 

stocks are positively correlated with labour force size and matching displays 

increasing returns to scale. On the other hand, a positive bias would be present in 

case of negative correlation of these variables or decreasing returns to scale. The bias 

is greater the greater is the  correlation between the measures with the labour force 

size. Hence, labour force size,      , is included in the model to adjust for the labour 

market size and avoid the omitted variable problem.  

As the review of the empirical studies emphasised in Chapter 2, an individual 

recently entering unemployment (flow into unemployment) typically has a higher 

probability to match with existing vacancies (stocks) compared to those that were 

unemployed in period t-1, since it is expected that a match would have happened 

already if the previous period‘s vacancies were suitable (Coles and Smith, 1996; 

Petrongolo and Pissarides, 2001; Coles and Petrongolo, 2003). To reflect this ‗stock-

flow‘ matching and assess the matching efficiencies of the new entrants, two flow 

variables accounting for the new entrants in the unemployment from the inactive 

state,          , and from employment,          , are typically included in the 

model. As section 2.3.1 pointed out, empirical studies for transition economies so far 

did not distinguish between the flows into unemployment from different labour 

market states. When comparing the two flows, individuals transitioning from 

employment to unemployment would typically be more attached to the labour 

market, thus it is expected that they would have higher matching efficiency 

compared to those transitioning from an inactive state to unemployment. Due to 

being inactive for a certain period, workers recently joining the labour market might 
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face a longer search period before finding a job because they have less information 

about the open vacancies. Moreover, employers might prefer hiring those who until 

recently were employed rather than those who were inactive because the former may 

be expected to be, on average, more productive.  

Different groups of the unemployed may have different search intensities, might be 

more adaptable and might have different willingness to accept specific job offers 

such as those for temporary jobs and also, employer attitudes may differ towards 

these groups (discrimination and expectations regarding potential productivity). 

Given the analysis presented above, the specific groups included in the model are the 

share of young unemployed (ShYoungUn), the share of long-term unemployed 

(ShLongUn), and the share of unemployed women (ShWomen).  Several studies 

using a matching function argue that the share of youths in total unemployment is 

expected to increase the number of transitions from unemployment to employment 

due in part to youths usually demonstrating higher adaptability and higher search 

intensity (Jeruzalski and Tyrowicz, 2009; Tyrowicz and Wojcik, 2010; Tomic, 

2012). In addition, young people are more likely to accept temporary jobs and they 

are expected to move in and out of employment more often compared to their older 

counterparts. The share of long-term unemployed as percentage of total 

unemployment is included in the model because the long-term unemployed (more 

than one year) might be expected to have different unobserved characteristics 

compared to those short-term unemployed. As discussed in Chapter 2, the long-term 

unemployed may be discouraged, stigmatised as being less-productive and have 

deteriorated human capital. According to Tomic (2012), the share of long-term 

unemployment may capture both business cycle effects and more structural 

difficulties (employers‘ behaviour, skill or occupational mismatch). An increase in 

the share of long-term unemployment is expected to reduce the number of 

individuals transitioning from unemployment to employment, ceteris paribus, thus 

the sign of this variable is expected to be negative. Women are also expected, ceteris 

paribus, to have lower search efficiency and experience lower matching compared to 

men (Tomic, 2012; Barnichon and Figura, 2015). This is because of discrimination 

in the labour market: some employers tend to prefer men for certain occupations for 

reasons unrelated to potential productivity (Anker, 1997). Also, women are expected 

to spend more time with childcare and other family responsibilities hence reducing 
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their search intensity. Due to occupational segregation and perceived and actual 

discrimination, women may reduce their search for higher paying and more desirable 

positions but disproportionately search for temporary jobs and lower ranking jobs. In 

this context, Tomic (2012) argues that labour markets with a larger percentage of 

females searching for jobs will tend to have lower matching efficiency.  

The augmented matching function will include a variable measuring the expenditure 

on ALMPs as share of GDP, ALMPExp. The effects of ALMPs were extensively 

discussed in section 2.2.3; it is expected that an increase in the ALMP expenditure as 

a percentage of GDP will increase the number of individuals transitioning from 

unemployment to employment. As also discussed in Chapter 2, Snower (1994) 

argues that there should be a large infusion of ALMPs in the labour market in order 

for these policies to be effective in shifting the bad-job equilibrium to the good-job 

equilibrium. Hence, the size of ALMPs might exhibit nonlinear relationship with the 

dependent variable and the quadratic form of ALMP is included in the model to 

adjust for this potential nonlinear relationship.  

Control Variables  

A control variable measuring Passive Labour Market Policies (PLMP) (the total of 

Out-of-Work income maintenance and support and Early Retirement policies) 

measured as expenditure on PLMP as a percentage of GDP (PLMPExp)
15

 is included 

in the model based on the theoretical rationale that more generous unemployment 

benefit systems affect the willingness to accept a job via different mechanisms 

(Scarpetta, 1996; Nickell, 1997, Cazes, 2003). Bassanini and Duval (2006) argue that 

higher unemployment benefits available to the unemployed for a longer period 

reduce job search intensity thus weakening the job-matching process. Also those 

unemployed receiving unemployment benefits will tend to have higher reservation 

wages, thus reducing the effectiveness of these unemployed as potential fillers of 

vacancies since it becomes more costly for employers to hire new workers. Nickell 

(1997) also points out that when unemployment is high and more persistent, 

                                                           
15

 A variable measuring the expenditure per PLMP beneficiary was considered to be included in the 

model instead of the PLMP expenditure as share of GDP. However according to Eurostat (2016), data 

on the number of beneficiaries are not reliable, hence variable expenditure per PLMP beneficiary 

could not be calculated.  
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countries may increase the level of benefits to support the unemployed, so the 

causality is not from benefits to unemployment but rather the other way around. 

However, the empirical evidence does not show a clear consensus with regard to this 

relationship (Scarpetta, 1996; Nickell, 1997; Cazes, 2002; Nunziata, 2002; Lehman 

and Muravyev, 2009). It is expected that an increase in PLMP expenditure as 

percentage of GDP will reduce the number of individuals transitioning from 

unemployment to employment, i.e. will reduce matching efficiency.  

As argued in section 2.4, a variable measuring the size of the informal economy 

(Informality) is included in the model to assess its effect on the matching efficiency. 

Schneider and Williams (2013) emphasise that there is a dispute regarding the most 

appropriate methodology to assess the scope of the informal economy since because 

of its‘ nature it is quite difficult to measure. This investigation uses estimates of the 

size of informality by Schneider (2015) based on the MIMIC (Multiple Indicator and 

Multiple Cause) estimation procedure. Schneider and Williams (2013) explain that 

the informal economy can be estimated quantitatively based on the causes and 

indicators of the informal economy. The causes of informal economy include the 

level of the tax burden and the intensity of regulation, while indicators include 

money demand, official national income figures and total hours worked in the 

economy. According to Buehn and Schneider (2012), the relationship between 

unemployment and the size of the informal economy is theoretically ambiguous. 

When the unemployed search and take jobs in the informal labour market the 

behaviour of unemployment depends on whether or not informal workers are 

considered unemployed in official statistics. In the case when the informal worker is 

considered unemployed, the flow from unemployment to employment estimate 

would not change. On the other hand if informal workers are considered employed, 

the flow from unemployment to employment increases and one would observe a 

positive relationship between the dependent variable (lnUEflow) and the size of the 

informal economy (Informality). The data used for this empirical analysis are based 

on national Labour Force Surveys which are designed to cover informal 

employment. Considering the arguments presented above, the expected sign of 

informal economy is positive: i.e. the higher the informal economy the higher the 

flows from unemployment to employment. It can also be argued that there might be 

a reverse causality between the informality variable and the dependent variable 
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which could result in endogeneity. Schneider and Williams (2013) argue that higher 

unemployment might give rise to informal employment because those unemployed 

who are unable to find a job in the formal sector will be compelled to work in the 

informal sector.  Having argued a possible endogeneity issue, the lagged value of 

variable Informality is included in the model.  

GDP growth (GDPgrowth) is another control variable included in the model 

specification to capture the labour demand fluctuations within countries. The values 

of this variable are expressed in annual percentage growth rate of GDP at market 

prices based on constant 2010 U.S. dollars. Following the theoretical arguments of 

Cazes (2002) and Lehman and Muravyev (2009), GDP growth aims to better account 

for macroeconomic shocks and demand fluctuations. It is expected that an increase 

in GDP growth, ceteris paribus, increases the number of transitions from 

unemployment to employment
16

.  

The model also incorporates the relationship between the matching efficiency and 

the level of the economic freedom. The testable hypothesis is that countries with 

greater economic freedom have a larger number of transitions from unemployment 

to employment. Greater economic freedom encourages a higher level of 

entrepreneurial activity and creation of small businesses (Kreft and Sobel, 2005). It 

also affects the transitions from unemployment to employment by reducing the 

regulatory and financial costs on employers in the country (Karabegovic and 

McMahon, 2008). This investigation will use the Economic Freedom Index 

(EcoFreeIndex) constructed by the Heritage Foundation which is based on a set of 

10 different aspects (Property rights, Freedom from corruption, Fiscal freedom, 

Government spending, Business freedom, Labour freedom, Monetary freedom, 

Trade freedom, Investment freedom, Financial freedom). The economic freedom 

indices are based on a 10 point scale with higher values representing greater 

freedom. The expected sign of this variable is positive, i.e. the higher the economic 

freedom of a country, the larger the number of matches.  

Labour Freedom Index (LabFreeIndex) is included in the model to account for 

various aspects of the legal and regulatory framework of a country‘s labour market, 

                                                           
16

 GDP growth may not affect transitions into employment positively if at the same time productivity 

increases proportionately (Nordhouse, 2005; Balls, 2008). 
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including regulations concerning minimum wages, laws inhibiting layoffs, severance 

requirements and measurable regulatory restraints on hiring and hours worked. This 

index is also derived from the Heritage Foundation and is also based on a 10 point 

scale with higher value of the indicator representing a more flexible labour market. 

In general, empirical research supports the argument that rigid labour markets have 

the tendency to hinder job creation and tend to be associated with higher levels of 

unemployment (Nickell, 1997; Bassanini and Duval, 2006; Bernal-Verdugo et al., 

2012) and those mostly affected are the young unemployed (Botero et al., 2004). It is 

expected that greater labour market freedom, ceteris paribus, increases the number of 

transitions from unemployment to employment. The model uses lagged values of 

EcoFreeIndex and LabFreeIndex because it is believed that a lag exists between the 

time when the government policies are implemented and the effect of these policies 

on the labour market, hence it is reasonable to model the transition from 

unemployment to employment as a function of previous period‘s government 

policies (Heckelman, 2005; Garrett and Rhine, 2011). 

Given that education has a major influence in the labour market outcomes (Card, 

2001; Grossman, 2006; Oreopoulos and Salvanes, 2009), this investigation will test 

the hypothesis that more educated individuals are more likely to find jobs than their 

less educated counterparts. The level of education is included in the model with two 

variables that capture the share of labour force that attained or completed secondary 

(EduSecondary) or tertiary education (EduTertiary) as the highest level of education. 

An increase in share of individuals in the labour force with higher levels of 

education, ceteris paribus, is expected to increase the number of transitions from 

unemployment to employment.  

The Population Density (PopDensity) variable intends to capture the probability that 

a contact is established between the right worker and employer (Ibourk et al., 2004; 

Tomic, 2012). The variable measuring population density serves as a proxy for the 

size of social networks and the efficiency of information transmissions. Ibourk et al. 

(2004) argue that the population density variable tends to adjust for the effects 

‗labour market thickness‘. A thick labour market represents a higher and more 

effective number of participants in the market, employers and workers, which tends 

to improve the search efficiency either through increasing returns to scale in search 
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or through increased flexibility in each agent‘s choice of where to search (McLaren, 

2003). Coles and Smith (1996) argue that search efficiency improves in a labour 

market with a higher population density because the communication between parties 

close to each other requires lower effort and costs. However, Kano and Ohta (2005) 

suggest that the heterogeneity of the job seekers and vacancies may be higher in 

more densely populated areas increasing search frictions. Thus there might be 

difficulties in the matching process despite the agents being close to each other in a 

geographical sense. Ibourk et al. (2004) and Wahba and Zenou (2005) introduce the 

quadratic form of the population density variable. Wahba and Zenou (2005) 

conclude that as long as population density remains an (undefined) ‗reasonable size‘, 

it has a positive impact on matching efficiency, but this effect might become 

negative for labour markets with very high population densities. Following this 

argument, the quadratic form of Popdensity is included in the model to capture the 

potential nonlinear relationship between population density and the dependent 

variable. It is expected that an increase in population density increases the number of 

transitions from unemployment to employment up to a point and then have a 

negative impact of the matching efficiency.  

In order to examine the difference in matching efficiency between transition and 

non-transition economies an additional variable (Transition) is created: a dummy 

variable taking value of 1 if it is a transition or post-transition economy and 0 

otherwise. Also, an interaction term between Transition and ALMPExp (TransAlmp) 

is also introduced to examine potential differences in the effectiveness of ALMPs in 

the two groups of countries.  
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Variable description, labels, the expected signs and data sources are summarised in 

table 3.1 presented below.  

Table 3.1 Variable Specifications and Expected Signs – 1
st
 approach 

Variable Name  Variable Description  Expect

ed Sign  

Data Source  

Dependent Variable 

UEflow  

 

The flow from unemployment to employment at the end of 

period  , i.e. the number of successful matches  

  

EUROSTAT  

Main Variables of Interest    

UnemSt  The number of unemployed at the end of the period 

 

 EUROSTAT  

Vacancies  The number of job vacancies at the end of the period  EUROSTAT  

IUflow  The number of new entrants from inactive to 

unemployment stock at the end of the period  

 EUROSTAT 

EUflow The number of new entrants from employment to 

unemployment stock at the end of the period  

 EUROSTAT 

ShYoungUn  The share of youth unemployment in total unemployment   + EUROSTAT  

ShLongUn The share of long-term unemployment in total 

unemployment 

- EUROSTAT 

ShWomenUn The share of women unemployment in total 

unemployment 

- EUROSTAT 

ALMPExp 

 

 

 

 
1.TrainSh 

2.EmpIncSh  

3.SupportSh 

4.DirectJobSh 

5.StartupSh 

Active labour market policies measured as expenditure as 

percentage of GDP and  

Different types of active policies measured as share of 

ALMPExp: 

  

1. Share of expenditure on training in total ALMP 

expenditure,  

2. Share of expenditure on employment incentives in 

total ALMP expenditure,  

3. Share of expenditure on supported employment and 

rehabilitation in total ALMP expenditure, 

4. Share of expenditure on direct job creation in total 

ALMP expenditure  

5. Share of expenditure on start-up incentives in total 

ALMP expenditure. 

+ EUROSTAT 

Control Variables     

LFor Total labour force comprises people aged 15 and older 

who meet the International Labour Organization definition 

of the economically active population: all people who 

supply labour for the production of goods and services 

during a specified period. It includes both the employed 

and the unemployed.  

+/- WORLD 

BANK 

Informality MIMIC index measure of the size of the shadow economy. + Schneider 

(2015)  

PLMPExp 

 

Passive labour market policies measured as expenditure as 

a % of GDP 

- EUROSTAT 

PopDensity Population density is midyear population divided by land 

area in square kilometres. Population is based on the de 

facto definition of population, which counts all residents 

regardless of legal status or citizenship.  

+ WORLD 

BANK 

EduSecondary 

 

 

EduTertiary 

1. Labour force with secondary education - The share of 

the total labour force that attained or completed 

secondary education as the highest level of education. 

2. Labour force with tertiary education - The share of the 

total labour force that attained or completed tertiary 

+ 

 

 

+ 

WORLD 

BANK 
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education as the highest level of education. 

GDPgrowth  Annual percentage growth rate of GDP at market prices 

based on constant local currency. Aggregates are based on 

constant 2010 U.S. dollars. GDP is the sum of gross value 

added by all resident producers in the economy plus any 

product taxes and minus any subsidies not included in the 

value of the products. It is calculated without making 

deductions for depreciation of fabricated assets or for 

depletion and degradation of natural resources. 

+ WORLD 

BANK 

LabFreeIndex  A quantitative measure that considers various aspects of 

the legal and regulatory framework of a country‘s labour 

market, including regulations concerning minimum wages, 

laws inhibiting layoffs, severance requirements, and 

measurable regulatory restraints on hiring and hours 

worked. 

+ The Heritage 

Foundation  

EcoFreeIndex The overall measure of economic freedom based on 10 

different aspects (Property rights, Freedom from 

corruption, Fiscal freedom, Government spending, 

Business freedom, Labour freedom, Monetary freedom, 

Trade freedom, Investment freedom, Financial freedom). 

+ The Heritage 

Foundation  

Transition Dummy variable taking value of 1 if it is a transition 

economy 

  

TransAlmp Interaction term between Transition and ALMPExp   

 

3.3.2 Endogeneity of Active Labour Market Policies and Potential 

Instrumental Variables 

In macroeconomic evaluation studies of ALMP effectiveness in reducing 

unemployment and improving matching efficiency, a fundamental issue is that 

ALMP cannot be treated as strictly exogenous. The level of ALMP expenditure may 

depend on the labour market situation, so it is not only ALMP expenditure that may 

affect the unemployment rate but it is also possible that the unemployment rate 

affects the level of ALMP expenditures, e.g. governments base their ALMP 

expenditure decisions on the magnitude of the problem they face. Ignoring the latter 

could lead to a correlation of the ALMP variable with the error term and 

consequently to inconsistent estimates of the effects.  

In attempting to address this causality issue, studies have applied different 

approaches and used different instrumental variables. Scarpetta (1996) and Elmeskov 

et al. (1998) have used a time invariant variable measuring the average ALMP 

expenditure per unemployed person relative to GDP per capita over the period of the 

available data. Since these are time invariant country-specific averages over the 

observed period of time, the authors argue that there is no endogeneity bias. An issue 

with this approach is that it requires the assumption that country-specific effects are 
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randomly distributed. Similarly, Blanchard and Wolfers (2000) apply country-

specific effects while using the same instrumental variable as Scarpetta (1996) and 

Elmeskov et al. (1998). This approach seems not suitable because, this empirical 

analysis needs variation in ALMP expenditure over time in order to estimate its 

effect on the unemployment rate. This is especially important for the second model 

of this empirical analysis, given the long period of data used (2005 to 2014). When 

analysing ALMP effectiveness for the Czech Republic, Boeri and Burda (1996) use 

quarterly data while using the average of ALMP expenditure per unemployed for a 

period of four quarters. In conducting a cross-country analysis, Escudero (2018) 

assumes that the ALMP expenditure as a share of GDP is not endogenous if each 

government commits a given fraction of GDP to ALMP which does not change with 

the unemployment rate, effectively assuming away the possibility of endogeneity.  

To create an instrument for the ALMP expenditure variable, Nickell and Layard 

(1999) and Boone and Van Ours (2004) have renormalized the percent of GDP 

expenditure on ALMP on the lagged unemployment rate.
17

 Boone and Van Ours 

(2004) also introduced shares of expenditure on separate ALMP categories in total 

expenditures as explanatory variables. Whereas the variable measuring the ALMP 

expenditure may be subject to endogeneity, share variables are not expected to be 

endogenous.   

Potential instrumental variables proposed in previous studies include political 

factors, the proportion of welfare recipients, national unemployment rate and 

vacancy rate (Hagen, 2003; Hujer and Zeiss, 2005; Escudero, 2018). It has been 

argued that left-wing political parties have a stronger preference for expenditure on 

ALMP than liberal-conservative parties (Calmfors and Skedinger, 1995; Büttner and 

Prey, 1998; Hagen, 2003; Escudero, 2018).  Hagen (2003) when analysing the 

matching efficiency of ALMPs in Germany, uses the proportion of votes in the 

national election for liberal-conservative parties as an instrument to account for the 

potential endogeneity of the ALMP measure. Escudero (2018) uses a set of different 

indicators of the political party in office: the first one is the cabinet composition 

measured as the percentage of right-wing or left-wing parties in total cabinet posts 

                                                           
17

 The instrumental variable is:       
       

              
, where u is the unemployment rate and l is the labour 

force. 
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weighted by the days in office while the second indicator corresponds to the 

Schmidt-Index which takes the value of 1 to 5 depending on whether there is a 

dominance of right-wing or left-wing parties in office. Other instruments used by 

Escudero (2018) include a continuous variable accounting for the number of years 

that have passed since a change in government in that country and an indicator 

taking the value of 1 if a reform to ALMPs was put in place in that year in the 

country and 0 otherwise. Despite their wide use in empirical studies, these particular 

instrumental variables may not to be appropriate when analysing the effectiveness of 

ALMPs in transition economies. One reason is that the political system in many 

transition economies is not defined strictly based on a left-right dimension as in the 

Western economies. 

Another instrumental variable proposed by Hagen (2003) and Escudero (2018) is the 

national unemployment rate. They argue that because it is the central issue in 

determining the judgement by the voters, then a government might seek to reduce 

open unemployment by increasing the number of participants in active measures. 

Since this variable is used as the dependent variable in the second model and is 

highly correlated with the dependent variable in the first model in this empirical 

analysis, it cannot be used as an instrument. Hagen (2003) also argues that the 

national vacancy rate
18

 can be used as instrumental variable arguing that with a 

reduction in the national vacancy rate, government might increase the ALMP 

expenditure in an attempt to reduce unemployment, thus this instrumental variable 

might serve as a business cycle indicator. In the first model, the level of vacancies is 

used as one of the components of the matching functions thus the vacancy rate is not 

an appropriate instrument. Another instrumental variable used by Munich and 

Svejnar (2009) is the share of unemployed who are within 0-3 months before the 

expiration of their unemployment benefits. They argue that the ALMP funds are 

often allocated preferentially to those who lose their entitlement to unemployment 

benefits. Munich and Svejnar (2009) include another variable as an instrument to 

account for ALMPs which is the share of high-school graduates in the total 

population of their age cohort arguing that a significant portion of ALMP funds is in 

employment subsidies for school leavers. This study is specifically modelled for 

                                                           
18

 Measured as: Number of job vacancies / (number of occupied posts + number of job vacancies) * 

100 
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Germany and both these instrumental variables are appropriate for this country but 

not necessarily for other countries. Hence, these instrumental variables may not be 

appropriate to use for the empirical analysis in this chapter. In general, the 

instrumental variables mentioned above which are commonly used to account for 

endogeneity when assessing the ALMP effects at the economy level do not provide 

an adequate set of instruments. They typically have hardly any predictive power of 

the effectiveness of ALMP measures and are still likely to be correlated with the 

residual term of the regression equation. Most of the studies analysing the 

effectiveness of the ALMPs at the economy wide level suggest a lagged ALMP 

variable as the more appropriate instrumental variable (Puhani and Steiner, 1996; 

Puhani, 1999; Hagen, 2003; Hujer and Zeiss, 2003; Munich and Svejnar, 2009). 

Puhani and Steiner (1996) argue that it takes a period of time until the ALMP 

policies can show any effect on the labour market. In this context, they suggest that 

lagged policy variable adjusts for endogeneity of the ALMPs. Thus, the dynamic 

panel model seems to be the preferred model when analysing ALMP effectiveness 

(Puhani, 1999; Hujer and Zeiss, 2003; Hujer et al., 2004; Munich and Svejnar, 

2009). Hujer et al. (2004) also point out the importance of the number of lags to be 

included in the specification. In Hujer et al. (2004) where they use quarterly data in a 

dynamic panel model (system Generalised Methods of Moments), they include four 

lags of the ALMP measure because, in context of their study, ALMPs have a 

duration of about 8 to 10 months. Boeri and Burda (1995) also apply a dynamic 

panel in a quarterly dataset; however, in attempting to avoid endogeneity, they use 

the yearly average of ALMP expenditure per unemployed. As discussed in Chapter 

2, Munich and Svejnar (2009) apply three different estimators for several Central 

and Eastern European economies (Czech Republic, Slovakia, Hungary and Poland). 

They use a monthly dataset and apply fixed and random effects, instrumental 

variable estimator and a dynamic panel data model for a matching function 

approach. Considering the possible endogeneity of the ALMP measure and that of 

other components of matching function, unemployment and vacancies, it is 

concluded that dynamic panel modelling is the preferred approach because the 

‗internal instruments‘ account for endogeneity.  

In order to address the potential endogeneity of ALMP expenditure, we applied an 

instrumental variable approach using two different instruments: the lagged value of 
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ALMPExp and variable Cabinet Party Composition Index which takes value of 1 to 

10 depending on whether there is a dominance of left-wing or right-wing parties in 

the cabinet (CompGov). The endogeneity test from instrumental variable approach 

suggested that ALMPExp can be treated as exogenous in the model specification 

including all explanatory variables in the matching function (the estimation from 

instrumental variable approach can be seen in Appendix A3.8). However, taking into 

account theoretical considerations that the ALMPExp is likely to be endogenous we 

use the lagged value ALMPExp in FEDK and FEVK and difference GMM which 

accounts for endogeneity. The following section provides a detailed discussion of 

estimators which will be used in the first model while section 3.4.2 will discuss the 

estimation approach for the second model.  

3.3.3 Estimation Methodology  

According to Baltagi (2005), using panel data would be beneficial to the analysis 

since it provides more information, more variability, less collinearity among the 

variables, more degrees of freedom and it also the accounts for heterogeneity among 

the units and the dynamics of adjustment. The most commonly used methodological 

approach using panel data are fixed effects (FE) and random effects (RE). A crucial 

assumption of the random effects estimator is that the unobserved individual effect, 

  , is assumed to be uncorrelated with the explanatory variables whereas the fixed 

effects estimator allows for correlation between the unobserved individual effect and 

the explanatory variables. In the case when the cross-country component is assumed 

to be correlated with the explanatory variables, the FE estimator allows for the 

constant term to vary across different countries while the coefficients from the RE 

would be biased and inconsistent. Hausman (1978) introduced a test to determine the 

appropriateness of the random effects estimator (Greene, 2002; Wooldridge, 2009). 

The rejection of null hypothesis of the Hausman test suggests that the fixed effects 

are favoured (Greene, 2002; Wooldridge, 2009).  

A potential problem for the fixed effects estimator is the cross-sectional dependence, 

i.e. the dependence of errors across different sectional units. This may be a result of 

spatial dependence, omitted unobserved common components (common shocks) or 
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economic differences (Pesaran, 2004; Sarafidis et al., 2009).
19

 Cross-sectional 

dependence is a common feature of panel data analysis because during the periods of 

global shocks, such as those observed in the 1970s and Global Financial Crisis in 

2008, labour markets across countries are influenced (Gabrisch and Buscher, 2006; 

Bakas and Papapetrou, 2012).
20

 In the presence of cross-sectional dependence, not 

correcting for cross-sectional dependence would result in statistically spurious 

results (Pesaran, 2004). An alternative to the standard FE estimator which corrects 

for cross-sectional dependency is proposed by Driscoll and Kraay (1998). According 

to their results from Monte Carlo simulations, the estimation from the Driscoll-

Kraay estimator provides standard errors which are simultaneously robust to 

autocorrelation heteroscedasticity, and cross-sectional dependency (Driscoll and 

Kraay, 1998; Hoechle, 2007). Autocorrelation and heteroskedasticity are highly 

likely to be present in panel data analysis. Heteroskedasticity is likely to be present 

because countries with differences in terms of their level of economic development 

and size are included in the sample. Autocorrelation can also occur in panel data 

since errors associated with a given period may carry over from the previous time 

period. Hoechle (2007) emphasises that one should be cautious when using Driscoll-

Kraay estimator in panel models which contain a large cross-section but only a very 

short time dimension. 

An important disadvantage of the fixed effects estimator is the inability to estimate 

the time-invariant variables because it uses a transformation to remove the 

unobserved country specific effect and all the time-invariant explanatory variables 

before estimation (Wooldridge, 2009). The fixed effects vector decomposition 

(FEVD) is an estimator which allows for time-invariant variables and slowly moving 

variables through time. It is a three-step estimator where in the first step the standard 

FE is estimated with time-variant variables. The second step uses unit effects which 

is extracted from the regression in the previous stage, and is estimated on time-

invariant and slowly changing variables. During this stage it becomes possible to 

decompose the unit effects into the observed component which is explained by these 

                                                           
19

 It is important to emphasise that for unbalanced panel data it is not possible to verify the presence 

of cross-sectional dependence. 
20

 Theoretically, studies suggest it is reasonable to think that there is cross dependency of the 

countries included in the sample. There is some empirical evidence that suggests that there are 

common factors and interdependence of labour markets in European countries (Cuestas and Gil-

Alana, 2011; Gozgor, 2013). 
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variables and the unobserved component which is the unexplained part. In stage 

three, it uses all time-variant and time-invariant explanatory variables and the 

residuals (unexplained part) from the stage two in a pooled OLS model. Plümper and 

Troeger (2007) after conducting a series of Monte-Carlo simulations suggested that 

this estimator is preferred to pooled OLS and RE in treating time-invariant and 

slowly changing variables. They suggest that this estimator has better finite sample 

properties and it produces more accurate estimates. Plümper and Troeger (2007) 

argue that even inconsistent FEVD estimates might be more reliable than consistent 

FE estimates because the presence of slowly changing variable in a FE setting can 

produce imprecise coefficients. Moreover, they argue that a FEVD estimator is more 

efficient because it produces a smaller within and between variance.
21

 In the case of 

this empirical investigation using FEVD becomes possible to account for time-

invariant variables in our model, such as Transition (dummy variable accounting for 

transition or post-transition economies in the sample), and the slowly-changing 

variable TransALMP (the interaction term between Transition and ALMPExp).  

Munich and Svejnar (2009) suggest that in panel data analysis a suitable within 

transformation of equation (3.1) can be used to remove the unobserved effect using 

both mean deviations from country specific means (fixed effects) and first 

differences. In the matching function, explanatory variables, unemployment and 

vacancy stock, are predetermined by the previous matching process through flow 

identities. Following Munich and Svejnar‘s (2009) argument that the components of 

the matching function (UnemSt, Vacancies) are predetermined by their previous 

values but also considering the endogenous nature of ALMPExp variable, 

Generalised Method of Moments (GMM) would be the ideal choice in this case. 

However, it could not be used due to a small sample size.  

The following section presents evidence from the matching function with fixed 

effects estimator using lagged level of the explanatory endogenous variable 

ALMPExp. Moreover, all the models for this analysis have been augmented by 

including a set of time dummies to account for universal time-related shocks 
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In contrast, some studies criticised this estimator suggesting that the efficiency gains are not as 

evident as argued by the previous study (Breusch et al., 2011; Greene, 2011). Greene (2011) 

emphasised a drawback of this estimator being its unreliability because it produces small standard 

errors. However, Plümper and Troeger (2011) argued that the updated Stata ado file has taken into 

account this critique and the new standard errors are closer to the true sampling variance.    
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(Roodman, 2006). According to Sarafidis et al., (2009), these dummies are expected 

to diminish the cross-sectional dependence arising from time shocks. Assuming that 

all countries are affected by these shocks in the same way, the time-dummies will 

remove the ‗homogenous‘ component of the cross-sectional dependence.   

3.3.4 Empirical Results  

To empirically test the hypotheses developed in this chapter, a panel dataset 

consisting of 14 European transition and non-transition economies for the period 

2010 to 2015 is used. The choice of countries and time period for this empirical 

analysis was determined by data availability. The data for the dependent variable, the 

flow from unemployment to employment, is available only for 2010 to 2015 and for 

the following European transition economies: Bulgaria, Croatia, Czech Republic, 

Estonia, Latvia, Lithuania, Hungary, Poland, Romania, Slovenia and Slovakia. 

While data for the European non-transition economies are only available for the 

Netherlands, Sweden and Norway. The analysis using a matching function should 

ideally be conducted with frequent periods of observation such as quarterly or 

monthly. However, the variables measuring the expenditure of ALMPs are not 

available quarterly for country level analysis and this empirical investigation is 

therefore compelled to use annual data. 

The descriptive statistics in table 3.2 show that some of the variables have a high 

number of missing values so a major concern for this empirical analysis is the low 

number of observations. It seems that there are missing values for more recent years 

since the data have not been collected for some of the variables. From table 3.2 one 

can observe that there are some variables that exhibit a large difference between the 

transition and post-transition economies (TE) and western economies (WE). Table 

3.2 shows that the TEs unemployment consists of a large share of long-term 

unemployed. The mean of variable ShLongUn shows that almost 50 percent of 

unemployment stock is comprised of individuals who have been unemployed for 

more than a year in TEs. The same variable for WE in the sample is 25 percent. 

There is also a difference between two sets of countries for the variable ShYoungUn 

where the young unemployed as share of total unemployment stock in transition 

economies is only 19.3 percent compared to 34 percent for western economies. 

There is a considerable difference between the two sets of countries in the 
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expenditure on Active and Passive Labour Market Policies; table 3.2 shows that 

western economies have higher expenditure as percentage of GDP dedicated to both 

Active and Passive LMPs compared to transition economies. The Informality 

variable shows that transition economies have much higher informality size with the 

mean of the MIMIC index of 24.7 compared to western countries with 12.5.   

Table 3.2 Descriptive Statistics for Transition and Non-Transition Economies – 1
st
 approach 

Transition Economies: Bulgaria, Croatia, Czech Republic, Estonia, Latvia, Lithuania, Hungary, 
Poland, Romania, Slovenia and Slovakia 

    Variable |        Obs     Mean    Std. Dev.       Min        Max 

    lnUEflow |         66    10.53        .77        9.21      12.44 

     ALMPExp |         54    .24          .16         .02       .77 

    lnUnemSt |         66    12.54        .88       10.64     14.39 

 lnVacancies |         57    9.60         .88        7.60     11.47 

    lnEUflow |         66    10.25        .74        8.98     12.18 

    lnIUflow |         66    10.34        .92        8.98     12.49 

      lnLFor |         55    14.83        .96       13.44     16.72 

    ShLongUn |         66    49.61       9.16       31.1      70.2 

   ShYoungUn |         66    19.27       3.66       12.46     27.62 

   ShWomenUn |         66    45.57       3.65       36.69     53.35 

  PopDensity |         66    84.23      34.94       30.95    136.62 

     PLMPExp |         54      .42        .18         .13       .91 

 Informality |         66    24.72       5.12       14.1      32.6 

   GDPgrowth |         66     1.95       2.17       -3.79      7.6 

LabFreeIndex |         66    61.77      11.81       39.4      85.5 

Western European Countries: the Netherlands, Sweden and Norway  

    lnUEflow |         18    11.14        .69       10.12     11.79 

     ALMPExp |         17      .68        .26         .37      1.08 

    lnUnemSt |         18    12.52        .79       11.35     13.39 

 lnVacancies |         17    11.26        .32       10.82     11.79 

    lnEUflow |         18    10.89        .69        9.74     11.74 

    lnIUflow |         18    11.38        .62       10.51     12.17 

      lnLFor |         15    15.41        .51       14.77     16.01 

    ShLongUn |         18    24.78       8.07       17.7      42.9 

   ShYoungUn |         18    34.01       4.19       25.73     38.82 

   ShWomenUn |         18    46.08       2.98       39.78     51.03 

  PopDensity |         18   178.39     232.53       13.39    503.02 

     PLMPExp |         17      .87        .60         .33      2.20 

 Informality |         18    12.50       2.32        9        15.1 

   GDPgrowth |         18     1.68       1.62       -1.06      5.99 

LabFreeIndex |         18    53.48       6.25       44.6      66.3 

 

The variance inflation factors (VIFs) presented in table 3.3
22

 and the correlation 

matrix in appendix A3.1 indicate that there is high collinearity between some of the 

variables. Flow variables, lnUEflow, lnEUflow and lnIUflow, lnUnemst, Vacancies 
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 The final models also include the quadratic terms of ALMPExp and Popdensity. 
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and lnLFor are by definition correlated with each other. From the correlation matrix 

in appendix A3.2, it is observed that correlation among these variables goes up to 

0.97. With regard to the VIF values, when the VIF value is higher than 10 it 

indicates a problem of multicollinearity (Kutner et al. 2004). Appendix A3.1.2 shows 

that there are variables that pass this threshold. According to Wooldridge (2009), to 

deal with potential multicollinearity one should increase the sample size or drop 

variables that are causing the problem. In the case of this empirical analysis, it is 

impossible to increase the sample, whilst dropping variables may cause omitted 

variable bias. 

The variable with the highest VIF value is lnLFor, however as explained in section 

3.2 it is a key variable in the matching function and not including this variable in the 

model would result in biased coefficients. The variable with the second highest VIF 

value is EduSecondary with 51.71 and from the correlation matrix it can be observed 

that it is highly correlated with variable measuring the share of long-term 

unemployment ShLongUn and with EduTertiary, thus this variable is dropped from 

the model. In order to gain degrees of freedom, a choice was made between variables 

EcoFreeIndex and LabFreeIndex
23

; the latter is kept in the model because 

LabFreeIndex captures the government policies, the labour laws and regulations 

which more directly tend to improve labour market performance. Furthermore, 

combining the flow variables, lnEUflow and lnIUflow, into one variable was 

considered however, it does not significantly improve the collinearity diagnostics 

therefore they are included separately in the final model (see Appendix A3.1.2). 

Variables ShLongUn and ShYoungUn are also highly correlated with each other 

while variable ShYoungUn is also highly correlated with lnVacancies. Dropping the 

share variables, ShYoungUn, ShLongUn and ShWomenUn from the model improves 

the mean VIF. These three variables assess the matching efficiency of these 

subgroups of unemployed, however, they are not considered essential in this 

empirical analysis. Hence, the first specification includes these variables and the 

second does not. The VIF collinearity diagnostics of the final model are presented in 

table 3.3. The mean VIF value has dropped significantly from 27.91 from the initial 

model to 14.05. The only variables with VIF values above threshold of 10 (Kutner et 

al., 2004) are components of the matching function (lnLFor, lnUnemst, lnVacancies, 
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 Neither of these variables has high VIF value nor are highly correlated with other variables.  
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lnUEflow, lnEUflow and lnIUflow), which are expected to be correlated with each 

other, but are essential and hence they are kept in the model.  

Table 3.3 VIF Collinearity Diagnostics – 1
st
 approach  

    Variable |       VIF       1/VIF   

-------------+---------------------- 

      lnLFor |     56.66    0.017649 

    lnIUflow |     20.37    0.049101 

    lnEUflow |     19.80    0.050512 

lnVacancie~1 |     19.53    0.051207 

lnUnemplST~1 |     14.52    0.068868 

  PopDensity |      8.94    0.111806 

 PLMPExplag1 |      8.09    0.123612 

 ALMPExplag1 |      6.44    0.155202 

 EduTertiary |      5.08    0.196992 

Informalit~1 |      5.00    0.200001 

   GDPgrowth |      2.10    0.476909 

LabFreeInd~1 |      2.04    0.489056 

-------------+---------------------- 

    Mean VIF |     14.05 

Following the analysis of different estimation methodologies presented in section 

3.3.2, the empirical results and diagnostic tests from the preferred estimator will now 

be presented. The first estimations for RE and FE are presented in appendix tables 

A3.2.1 to A3.2.3 in the appendix section A3. The Hausman test was used to 

determine the appropriateness of the RE estimator for this empirical analysis
24

. The 

null hypothesis of no systematic differences between the FE and RE coefficients is 

rejected, though with a borderline p-value = 0.089. Thus, the FE estimator is 

considered the more appropriate approach.  

The next step is to check the diagnostic tests of the models. The results from several 

diagnostic tests (modified Wald test for group wise heteroskedasticity, the 

Wooldridge test for autocorrelation in panel data and the test for serial correlation in 

the residuals) suggest that there is no presence of serial correlation but there is the 

presence of heteroscedasticity in the errors in the econometric models (see Appendix 

A3.2.4 and A3.3.4). For unbalanced panel data the cross-sectional dependence 

cannot be tested, however, as argued in section 3.3.2, panel data usually are subject 

to this issue. In order to be sure that the effects of cross-sectional dependence are 
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 Option sigmamore is used as it is recommended by Cameron and Trivedi (2009) which specifies 

that both covariance matrices, from FE and RE estimates, are based on the estimated disturbance 

variance from the efficient estimator. 
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rectified, the Fixed Effects Driscoll-Kraay (FEDK) estimator is used. As discussed in 

the previous section, this estimator corrects for heteroscedasticity, cross-sectional 

dependence and serial correlation even though serial correlation is not an issue in 

this case. The estimated results from FEDK are presented in table 3.4.  

Table 3.4 Estimated Results 

  (1) (2) (3) (4) 

 FEDK FEDK FEVD FEVD 

VARIABLES lnUEflow lnUEflow lnUEflow lnUEflow 

  
 

  
  ALMPExplag1 0.369* 0.269* -0.0159 -0.439 

 
(0.118) (0.0868) (0.258) (0.398) 

lnUnemplSTlag1 0.227 0.476*** 0.419** 0.742** 

 
(0.135) (0.0784) (0.166) (0.321) 

lnVacancieslag1 -0.112 -0.159 0.00986 -0.135 

 
(0.143) (0.156) (0.121) (0.229) 

lnEUflow 0.0969 0.0558 0.299 -0.0838 

 
(0.101) (0.108) (0.178) (0.386) 

lnIUflow 0.431 0.435* 0.353** 0.754* 

 
(0.189) (0.139) (0.147) (0.360) 

lnLFor 1.443 -0.264 -0.233 -0.684 

 
(1.027) (0.991) (0.330) (0.638) 

ShYoungUn 0.00873 
 

0.0163 
 

 
(0.00734) 

 
(0.0173) 

 ShLongUn 0.0152 
 

-0.00512 
 

 
(0.00774) 

 
(0.00556) 

 ShWomenUn 0.00461** 
 

-0.00584 
 

 
(0.000852) 

 
(0.0117) 

 PLMPExplag1 0.0674 -0.0402 0.140 0.0350 

 
(0.157) (0.148) (0.208) (0.574) 

Informalityl1 -0.168 -0.104 -0.0151 0.0231 

 
(0.145) (0.134) (0.0188) (0.0363) 

GDPgrowth -0.0164 -0.0124 -0.0175 -0.0108 

 
(0.0120) (0.00907) (0.0141) (0.0260) 

LabFreeIndlag1 0.0129** 0.0124** 0.00520 0.0121 

 
(0.00262) (0.00268) (0.00662) (0.00880) 

EduTertiary 0.0134 0.0175* 0.0232 0.0614** 

 
(0.0128) (0.00736) (0.0134) (0.0232) 

PopDensity 0.0334 0.0788** 0.00412 0.0285 

 
(0.0361) (0.0193) (0.0103) (0.0192) 

PopDen2 -2.35e-05 -7.57e-05*** -8.37e-06 -5.45e-05 

 
(3.85e-05) (1.08e-05) (1.78e-05) (3.32e-05) 
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Transition 
  

0.0254 -2.350 

   
(0.850) (1.940) 

TransAlmp 
  

0.216 -0.569 

   
(0.271) (0.462) 

Constant 0 0 1.230 3.477 

 
(0) (0) (2.637) (4.923) 

Observations 49 49 49 49 

R-squared 
  

0.997 0.996 

Number of groups 14 14 14 14 

Standard errors in parentheses 
   *** p<0.01, ** p<0.05, * p<0.1 
    

Because within estimators do not allow for time-invariant variables, an alternative 

estimator is used. The discussion provided in section 3.3.2 introduced Fixed Effects 

Vector Decomposition as the estimator with similar features with fixed effects that 

produces consistent estimates for the coefficients of the time invariant variable, 

Transition and slowly changing variable, TransAlmp. The preferred models for 

interpretation remain FEDK models 1 and 2 because they address the issues 

mentioned in the previous paragraph while FEVD models 3 and 4 will be referred to 

only for time-invariant variables.
25

  

Table 3.5 presents the means of the variables and the calculations of the effects of 

the selected independent variables of interest on the dependent variable for models 1 

and 2. This will help to establish a clearer idea of the scale of the effects. As may be 

seen from table 3.4, the estimated coefficient of the lagged value of ALMPExp is 

significant and has the expected sign in models 1 and 2. Since the quadratic term of 

ALMPExp was insignificant in all the specifications and considering the small 

sample size used for this analysis this variable was excluded from the final 

specifications (Appendix A3.4.5 and A3.4.6 provides estimations with the quadratic 

term of ALMP). Because it is highly unlikely that ALMP expenditure as share of 

GDP will increase by 1 percentage point during a single year (this would imply a 

huge increase), the results for this variable will be interpreted using an increase of 

0.1 percentage point.  

                                                           
25

 Year dummies are included in the models, however they are not presented in table 3.4. 
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Table 3.5 Calculation of the effects of the selected variables 

  Mean 
An increase 

by 0.1 pp 

An increase by 

1 % 
Model 1 Model 2 

UEflow 63900 - -  - - 

ALMPExp 

(%) 
0.3548 0.4548 

  
0.0369*63900 = 

2357.91 

0.0269*63900= 

1718.91 

UnemSt 307055.6 
  

3070.556 - 
(0.476*63900)/1

00 = 304.164 

IUflow 65055.56 

  
650.5556 - 

 

(0.435*63900)/1

00 = 277.965 

 

The estimated results presented in table 3.5, suggest that an increase by 0.1 

percentage point of expenditure on ALMPs as a share of GDP, from a sample mean 

value of 0.35 to 0.45 (see table 3.5), will increase the flow from unemployment to 

employment in the following year by 3.69 percent, ceteris paribus; to be more 

specific it would increase the number of matches made each year by about 2,358 on 

average. As seen in table 3.4, in model 2 (where variables ShLongUn, ShYoungUn 

and ShWomenUn are excluded from the model) ALMPExp has a somewhat smaller 

coefficient; an increase by 0.1 percentage point of expenditure on ALMPs as a share 

of GDP will increase the flow from unemployment to employment in the following 

year by 2.69 percent, thus it would increase the number of matches made each year 

by 1,718 on average. 

While the estimated coefficients on the main components of the matching function, 

unemployment stock and flow from inactivity to unemployment, are significant only 

in model 2, other components of the matching function are insignificant in both 

models.  The elasticity of flows from unemployment to employment with respect to 

the unemployment stock is highly significant in model 2 where the share variables 

(ShLongUn, ShYoungUn and ShWomenUn) are excluded from the model which 

suggests that a part of the effect of unemployment stock might be captured by these 

variables. The estimated results from model 2 suggest that an increase by 1 percent 

in the unemployment stock from the mean value in the sample, i.e. an increase by 

about 3,070 persons in the unemployment stock, is associated with outflows to 

employment increasing by 0.476 percent from the mean value, or approximately by 

304 persons each year, ceteris paribus.  
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The variable measuring the flow from inactivity to unemployment is significant at 10 

percent significance level only in model 2 while that measuring the flow from 

employment to unemployment is insignificant in both models. The estimated results 

suggest that an increase by 1 percent of IUflow from the mean value in the sample, 

or an increase by 650 persons who join the unemployment pool from inactivity, is 

associated with an increase in the number of matches made by 277, other variables 

remaining constant. Based on the results presented in table 3.5, more than 42 

percent
26

 of those who enter the unemployment pool from inactivity get employed in 

the same year compared to approximately 10 percent of those already in the 

unemployment pool in line with the expectation that new entrants might have better 

matching efficiency compared to those already in the unemployment pool.   

In view of the theoretical discussion in chapter 2, the results in table 3.6 present 

returns to scale (RTS) for matching function, i.e. whether the following terms are 

jointly significant and equal unity,                                        

                           . When the sum of coefficients equals to unity it 

implies constant returns to scale, meaning that an increase in the size of labour 

market in terms of one of the matching function components would increase the 

matching efficiency by the same magnitude. When the sum of coefficients is lower 

than the unity, the labour market exhibits decreasing returns to scale meaning that an 

in increase in labour market would increase the matching efficiency by a lower 

magnitude. Finally, when it exceeds unity it implies increasing returns to scale where 

positive externalities of the search intensity of unemployed workers and vacancies 

might prevail, creating more than one possible equilibrium. In this analysis, the 

hypothesis that the sum of these coefficients is not significantly different from 0 is 

rejected in all the estimated models (see table 3.6 below, and table A3.5 in appendix 

3). However, while the sum of the coefficients from models 1 and 2 point to 

decreasing returns to scale (0.64 and 0.81) the sum of coefficients from models 3 and 

4 suggest that there is increasing returns to scale in the matching efficiency (1.08 and 

1.28).  

  

                                                           
26

 The ratio of employed people to those entering unemployment pool from inactivity is 277.9/650.5= 

0.4272; the ratio of employed people to those the unemployment stock 304.164/3070.556=0.099.  
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Table 3.6 Returns to Scale (RTS) 

lnUEflow   |      Coef.               Std. Err.           t           P>|t|         [95% Conf. Interval]  

Model (1) |   .6421577        .1653083          3.88       0.030       .1160728    1.168242 

Model (2) |   .8081077        .1892566          4.27        0.024       .2058087    1.410407 

Model (3) |    1.08037         .2345406          4.61        0.000       .5773303    1.583409 

Model (4) |    1.276409        .4374473        2.92        0.010       .3534757    2.199342 

Model (5)
27

|    1.310651        .161662        8.11       0.004        .7961702    1.825132 

Model (6) |    1.141365        .2996006        3.81       0.032        .1879018    2.094827 

However, the estimation of RTS should be interpreted with caution because the 

sample includes both transitional and non-transitional countries with different labour 

market characteristics. The reviewed studies for transition economies reviewed in 

Chapter 2 consistently found evidence to suggest that the labour markets in these 

countries experience increasing returns to scale, thus multiple equilibria, but such a 

pattern is not observed in non-transition economies. Hence, additional regressions 

were run only for transition countries using the same specification as in model 1 and 

2 (see Appendix A3.5); the sample was reduced to only 37 observations. The RTS 

estimations from these additional models are presented in table 3.6 as model 5 and 6. 

These estimations both point to increasing returns to scale suggesting that in 

transition economies labour markets might exhibit multiple equilibria consistent with 

the results from other empirical studies (Camarero et al., 2008; Munich and Svejnar, 

2009) However, the sample is small and these results should be treated with caution.  

With regard to control variables, in model 1 variables ShWomenUn is significant but 

does not have the expected sign while LabFreeIndex is significant and has the 

expected sign. In model 2, LabFreeIndex, EduTertiary, PopDensity and its‘ 

quadratic term are significant and have the expected signs. The coefficient of 

ShWomenUn suggests that an increase in share of women in the pool of 

unemployment by 1 percentage point is associated with an increase of matching 

efficiency by 0.4 percent. This result might suggest that women accept more often 

temporary jobs compared to their male counterparts. The lagged value of 

LabFreeIndex is significant in both models 1 and 2 and has the expected sign; this 

result suggests that an increase by 1 unit of LabFreeIndex will increase the 

transitions from unemployment to employment by 1.29 percent in the following year 

in model 1 and 1.24 percent in model 2, other variables remaining constant. The 

variable EduTertiary is significant at 10 percent level only in model 2. An increase 

                                                           
27

 Models 5 and 6 only include transition countries; see appendix A3.3.2 for estimated results. 
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in the share of individuals who have attended or completed tertiary education as the 

highest level of education in the labour force by 1 percentage point will increase the 

matching efficiency by 1.75 percent. In accordance with our expectations, the 

estimated population density coefficients imply a concave relationship between 

matching efficiency and density. The calculation of the turning point suggests that if 

population density increases beyond 1,676 people per square kilometre then it would 

impact negatively the flow from unemployment to employment
28

. Other control 

variables are consistently insignificant. As explained above, FEVD is used to 

account for the invariant variable Transition and slowly changing variable 

TransAlmp. These variables are insignificant in both models.   

Due to the small sample size used for analysis of the matching efficiency, it was not 

possible to distinguish between the effects of different types of ALMPs. The 

following section will expand the analysis of the effectiveness of ALMPs using a 

GMM estimator for a larger number of countries included in the sample and with a 

longer time period.  

3.4 Empirical Approach for Model 2  

3.4.1 Model Specification   

As argued by Munich and Svejnar (2009), GMM would be a better choice for the 

matching function considering that the components of the matching function 

(UnemSt and Vacancies) have a dynamic nature thus are in part predetermined by 

their previous values and the endogenous nature of the ALMPExp variable. However, 

it was not possible to utilise this approach since the data for the dependent variable 

(the flow from unemployment to employment – lnUEflow) and the main variables 

composing the matching function (lnVacancies, lnEUflow, lnIUflow) are available 

only for a short period of time and for a limited number of countries thereby 

restricting the size of the sample. The small size of the sample also does not allow an 

assessment of the effectiveness of different types of ALMPs (training, employment 

incentives, supported employment and rehabilitation, direct job creation and start-up 

incentives).  

                                                           
28

 Turning point = - Popdensity/(2*Popden2)= -0.0788168/ (2*(-0.0000235)) =1,676.95 
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Hence, the second empirical approach (GMM) uses a different model specification 

where a new dependent variable is used, the unemployment rate (UnemRate). The 

data for the second empirical approach is available for a longer time-span and for a 

higher number of countries which allows overcoming the disadvantages of the first 

empirical approach – the endogenous nature of the ALMPExp and the dynamic 

nature of the dependent variable UnemRate. The justification for using this second 

approach is thus twofold. Firstly, to assess the effectiveness of the ALMPs in 

reducing the unemployment rate in a larger dataset for a higher number of countries 

and the larger sample allows a comparison of the effectiveness of the different types 

of ALMPs mentioned above.  

As in the matching function model, the quadratic form of ALMP is included in the 

model to account for a possible non-linear relationship between ALMP expenditure 

and the unemployment rate. Since an increase in ALMP expenditure as a share of 

GDP is expected to reduce the unemployment rate, see Section 2.2.3, the expected 

sign for ALMPExp is negative while the expected sign for the square term of 

ALMPExp is positive.The dependent variable for this analysis is the unemployment 

rate, UnemRate, defined as the unemployment as a percentage of the active 

population.  

Table 3.7 presented at the end of this section summarizes the variable description, 

labels, the expected signs and data sources. 

Control Variables  

Studies consistently have argued that the relatively high unemployment benefits for a 

relatively long duration have a positive effect on the unemployment rate (Scarpetta, 

1996; Nickell, 1998; Elmeskov et al., 1998; Nunziata, 2002; Bassanini and Duval, 

2006). Unemployment benefits may increase the unemployment rate via two 

mechanisms. First they reduce job search intensity, thus reducing the willingness of 

the unemployed to accept job offers. Secondly, because they lower the economic 

cost of being unemployed, unemployment benefits put upwards pressure on workers‘ 

reservation wages thus reducing the number of filled vacancies and increasing job 

separations (Bassanini and Duval, 2006). The variable PLMPExp, measured as the 

PLMP expenditure as share of GDP, is included in the model to account for this 

relationship. The expected sign of this variable is positive, thus an increase in 
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PLMPExp is expected to lead to an increase in unemployment rate. As argued in 

section 3.3.1, unemployment benefits are frequently higher when the unemployment 

level is high and persistent, pointing out the potential endogeneity of this variable 

(Nickell, 1997). Following this argument PLMPExp is treated as endogenous.  

The variable Informality, as in the model specification for matching function, is 

based on Schneider‘s (2015) MIMIC estimation procedure. In this model 

specification the size of informality and unemployment rate are expected to have a 

negative relationship, thus an increase the size of informal economy might attract 

unemployed to search for jobs in the informal sector thus reducing the 

unemployment rate
29

. Additionally, as explained in section 3.3.1, there is potential 

reverse causality between the two variables: a high unemployment rate may give rise 

to a larger informal economy as due to lack of jobs in the official sector, the 

unemployed turn to the informal sector for job opportunities. Thus, Informality 

should be treated as endogenous.  

In order to control for the possible influence of demographic factors on the 

unemployment rate, this specification also includes the variable PopDensity
30

. 

Population density tends to capture the geographical concentration of economic 

activity and the size of social networks, i.e. a labour market with higher population 

density tends to reduce the unemployment rates (Coles and Smith, 1996; Ibourk et 

al., 2004; Lahtonen and Hynninen, 2005; Tomic, 2012). On the other hand, a high 

population density may also have an adverse effect on the unemployment rate 

because labour markets with a higher population density are associated with higher 

labour supply. In a labour market with a constant labour demand, all other variables 

remaining equal, higher population density, i.e. higher labour supply will tend to 

increase unemployment rate. Thus the expected sign of this variable for this model 

specification is ambiguous.  

According to theoretical expectations, the likelihood of being unemployed is 

unequally divided among groups with different education qualifications (Card, 2001; 

Oreopoulos and Salvanes, 2009; Nunez and Livanos, 2010). Less educated people 

                                                           
29

 As argued in section 3.3.1, informal workers are considered employed by the Labour Force Survey, 

thus an increase in the informal employment will lead to a reduction of the unemployment rate.  
30

 A variable measuring population growth, PopGrowth, was also considered, however this 

specification did not have the correct diagnostic tests.  

https://scholar.google.com/citations?user=DzIH2c0AAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=O2D8_UUAAAAJ&hl=en&oi=sra
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tend have higher unemployment rates compared to better educated people. 

EduTertiary, measured as the share of labour force with tertiary education as their 

highest level of education, is included in the model to test the hypothesis that a 

higher share of individuals in the labour market who have completed higher 

education will have a negative effect on the unemployment rate.  

It is assumed that the unemployment rate is partly determined by the demand 

conditions which in this specification is captured by the growth rate of GDP (Cazes, 

2002; Lehman and Muravyev, 2009; Escudero, 2018). Theoretically, it is expected 

that an increasing demand has a negative impact on the unemployment rate, although 

this effect might not be immediate. As Levine (2013) pointed out, as long as GDP 

growth exceeds the growth in labour productivity then employment will rise, and if 

employment growth is more rapid than labour force growth, the unemployment rate 

will fall. Thus over an extended period of time, the relationship between GDP 

growth and unemployment rate is expected to be negative. GDPgrowth is included in 

the model to account for this relationship.  

As discussed in section 3.3.1, the Labour Freedom Index (LabFreeIndex) accounts 

for various aspects of the legal and regulatory framework of the labour market (see 

also table 3.7 for details of the variable definition). Theoretically, labour markets 

with lower flexibility will obstruct job creation and will tend to keep labour markets 

rigid, especially at the turning points of the business cycle (Tasci and Zenker, 2011).  

More rigid labour institutions are consistently found to be associated with higher 

unemployment rate over a longer period of time (Nickell, 1997; Bassanini and 

Duval, 2006; Tasci and Zenker, 2011; Bernal-Verdugo et al., 2012). Following this 

argument, the expected sign of LabFreeIndex is negative, i.e. a higher degree of 

labour market freedom, ceteris paribus, is expected to reduce the unemployment rate.  

Because there the current implementation of labour market policies will need a 

period of time to have an effect on the labour market the lagged value of 

LabFreeIndex is included in the model.  
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Table 3.7 Variable specifications and expected signs – 2
nd

 approach 

Variable Name  Variable Description  Expect

ed Sign  

Data Source  

Dependent Variable 

UnemRate  

 

Unemployment as a percentage of the active population 

  

EUROSTAT  

Main Variables of Interest    

ALMPExp 

 

 

 
1.TrainSh 

2.EmpIncSh  

3.SupportSh 

4.DirectJobSh 

5.StartupSh 

Active labour market policies measured as expenditure as 

a percentage of GDP and  

Different types of active policies measured as a share of 

ALMPExp: 

1. Share of expenditure on training in total ALMP 

expenditure,  

2. Share of expenditure on employment incentives in 

total ALMP expenditure,  

3. Share of expenditure on supported employment and 

rehabilitation in total ALMP expenditure, 

4. Share of expenditure on direct job creation in total 

ALMP expenditure  

5. Share of expenditure on start-up incentives in total 

ALMP expenditure. 

- EUROSTAT 

Control Variables     

Informality MIMIC index measure of the size of the shadow economy. - Schneider 

(2015)  

PLMPExp 

 

Passive labour market policies measured as expenditure as 

a % of GDP 

+ EUROSTAT 

PopDensity Population density is midyear population divided by land 

area in square kilometres. Population is based on the de 

facto definition of population, which counts all residents 

regardless of their legal status or citizenship.  

+/- WORLD 

BANK 

EduTertiary Labour force with tertiary education - The share of the 

total labour force that attained or completed tertiary 

education as the highest level of education. 

 

- 

WORLD 

BANK 

GDPgrowth  Annual percentage growth rate of GDP at market prices 

based on constant local currency. Aggregates are based on 

constant 2010 U.S. dollars. GDP is the sum of gross value 

added by all resident producers in the economy plus any 

product taxes and minus any subsidies not included in the 

value of the products.  

- WORLD 

BANK 

LabFreeIndex  A quantitative measure that considers various aspects of 

the legal and regulatory framework of a country‘s labour 

market, including regulations concerning minimum wages, 

laws inhibiting layoffs, severance requirements, and 

measurable regulatory restraints on hiring and hours 

worked. 

- The Heritage 

Foundation  

 

3.4.2 Estimation Methodology – Generalised Methods of Moments 

(GMM) 

Since the data used for this empirical investigation is panel data, there are several 

estimators that can be utilised including standard Fixed Effects (FE) and Driscoll-

Kraay FE and Generalised Methods of Moments (GMM). As discussed in Chapter 2, 

unemployment is persistent over time since the current rate of unemployment is 



128 
 

dependent upon the past rate of unemployment, thus possible endogeneity is an 

issue. It is necessary to apply a dynamic panel analysis in this case since the 

unemployment rate is determined by an adjustment of the unemployment rate toward 

a ‗natural‘ or ‗equilibrium‘ rate of unemployment which will differ across states 

(Heckman, 1981; Layard et al., 1991; Mühleisen and Zimmermann, 1994; Hyslop 

1999; Arulampalam et al., 2000; Stewart, 2007; Frijters et al., 2009). The inclusion 

of the lagged dependent variable on the right-hand side of the equation will allow us 

to examine the state dependence of unemployment from the previous rate of 

unemployment. Given the possible endogeneity using FE or OLS would be subject 

to different drawbacks and the best possible choice would be a dynamic model 

(Munich and Svejnar, 2009; Escudero, 2018). When using an OLS estimator, 

particularly when not controlling for country specific effects, the most severe issue is 

endogeneity. Nickell (1981) established that OLS and FE estimates of the lagged 

dependent variable‘s coefficient in a dynamic panel model are biased because they 

are correlated with the error term and this possible bias cannot be ignored. As 

discussed by Baltagi (2005), the OLS estimator tends to be upward biased with 

respect to the autoregressive parameter thus violating the classical OLS assumption. 

In contrast to the OLS estimator, the within estimator, such as FE, accounts for 

country specific effects correlation by transforming the data so that the country 

specific effect is removed. However, this transformation is appropriate for static 

models only, generating biased results in dynamic panel data models because it 

produces a correlation between the lagged dependent variable and the error term. 

This bias has been corrected by Kiviet (1995) and Bruno (2005) who suggested 

applying least squares dummy variable estimator (LSDVC). However, the 

disadvantage of this approach is that it assumes that explanatory variables are 

exogenous thus it is not appropriate in this empirical study. As discussed in section 

3.3.2, variable ALMPExp is expected to be determined by a policy reaction function, 

i.e. the level of ALMP expenditure is determined by the level of unemployment for 

each country. In order to handle the endogeneity issue a dynamic panel model is 

applied, as suggested by Arellano and Bond (1991) and Blundell and Bond (1998).  

A common strategy to deal with the above-mentioned problem is to use a difference 

or system GMM estimator (Arellano and Bond, 1991; Blundell and Bond, 1998). 

According to Roodman (2009), the GMM estimator is an appropriate methodological 
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approach for samples with shorter time periods (T) relative to the number of groups 

(N). Moreover, this approach is appropriate for samples where the independent 

variables are not strictly exogenous; have heteroscedasticity and autocorrelation 

within groups and are not normally distributed. 

The sample used for this empirical analysis has a time-dimension (T) of 9 years and 

number of groups (N) of 28 countries. The time period available is from 2005 to 

2014, though a few countries in the sample such as Croatia and Malta have data 

available only for a shorter time period. The time period used in this chapter seems 

to be larger than the period used previously by Arellano and Bond (1991) and other 

studies (Blundell and Bond, 1999; Mangan et al., 2005; Pugh et al., 2008). This 

seems to not be a concern, because as suggested by Hayakawa (2008), the GMM 

estimator can generate efficient estimates even with a time dimension of 20. 

Roodman (2006, p.42) argues that ‗if T is large, dynamic panel bias becomes 

insignificant, meanwhile, the number of instruments in difference and system GMM 

tend to explode with T‘. The unbalanced panel dataset of 28 countries included in 

this analysis is quite low compared to Monte Carlo simulations based on Arellano 

and Bond (1991) where they use about 140 groups. However, according to Roodman 

(2006) ‗large number of groups‘ has no precise definition, but a panel with number 

of groups lower than 20 would be worrisome. Based on Roodman (2006), the panel 

data used for this chapter passes the ‗threshold‘ of the number of groups and time 

dimension.   

As discussed in section 3.3.2, empirical studies have difficulty justifying the 

appropriate external instruments for ALMPs for countries under analysis. GMM is 

specifically designed to account for endogeneity of the explanatory variables through 

the matrix of internal instruments. Arellano and Bond (1991) suggest estimating a 

first difference model where the differenced lagged dependent variable is 

instrumented by either the level or the first difference of the second lag of the 

dependent variable. This would be valid under the assumption that the error term in 

not serially correlated and the lag of explanatory variables are weakly exogenous. If 

the error term in the differenced equation is correlated with the first difference of the 

lagged dependent variable (        , Anderson and Hsiao (1982) suggest using the 

lag of the second difference (       ) or second lagged level (        of the 
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dependent variable as instrument. Arellano and Bond (1991) suggest that in the first 

difference model the lagged dependent variable can be instrumented not only the 

first lagged level but also for longer lags such as       ,        etc. Arellano and Bond 

(1991) and Kiviet (1995) conclude that lagged levels as instruments are more 

efficient with relatively smaller variances compared to levels or differences. 

Evidence from the Monte Carlo simulations from Arellano and Bond (1991) suggest 

that the estimates from GMM estimators yield much smaller variances compared to 

other estimators using instrumental variables hence the main approach used in the 

empirical analysis will be GMM.  

A potential shortcoming of the difference GMM estimator is that the coefficient 

estimated may be biased if variables follow a random walk (Roodman, 2009), if the 

explanatory variables are persistent over time and if the time dimension of the 

sample is small (Blundell and Bond, 1998). Some studies have identified some 

further limitations of the GMM estimator, arguing that the lagged levels may be 

weak in explaining the dynamic nature of the dependent variable especially when the 

dependent variable is persistent (Ahn and Schmidt, 1995; Blundell and Bond, 1998). 

According to Roodman (2006), the difference GMM would perform poorly when the 

dependent variable follows a random walk because past levels cannot predict the 

future changes suggesting that the lagged levels are not good instruments for 

differenced dependent variable. Another disadvantage of the difference GMM, when 

using unbalanced panel data, is that it magnifies the gaps in the data and it does not 

make use of all available information i.e. when one observation is missing it means 

two observations will be lost because the difference cannot be calculated.  

In order to address these problems, a system GMM estimator is developed to 

combine two different equations; (i) the equation of first differences, (ii) the equation 

in levels (Arellano and Bond, 1991; Blundell and Bond, 1998). A system GMM 

estimator increases the efficiency of the estimates by allowing for exploitation of 

additional moment conditions from the data in levels (Arellano and Bover, 1995). 

Additionally, when the dependent variable follows a random walk, studies argue that 

the past changes are a better predictor of future levels than the levels (Blundell and 

Bond, 1998; Roodman, 2006). System GMM also performs better for unbalanced 

panel data because it makes use of more information than the difference GMM and 

allows for inclusion of time invariant variables as opposed to difference GMM which 
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wipes out all the time invariant variables. However, despite the noted advantages of 

system GMM, it proved not to be feasible in the sample used for this empirical 

analysis because it uses a higher number of instruments compared to the number of 

countries. Hence, the estimator used for this analysis is the difference GMM because 

it uses a smaller number of instruments.   

As mentioned earlier in this section, the GMM estimators allow for 

heteroscedasticity, autocorrelation and do not require any assumption about the 

distribution (Greene, 2002; Roodman, 2006). There are two options in GMM that 

can produce robust estimation; one-step and two-step estimation. In the one-step 

estimation, standard errors are robust to heteroscedasticity and autocorrelation within 

individuals using a covariance matrix which is independent of the estimated 

parameters (Roodman, 2006). The two-step estimation constructs a sandwich proxy 

for the covariance matrix with initial parameter obtained from one-step estimation 

and the second step where this matrix is used to reweight the moment conditions 

(Roodman, 2006). Two-step GMM estimation is robust to heteroscedasticity and 

within-individual autocorrelation. An important issue with the two-step estimation is 

that when the number of instruments is large and the sample is small size, the 

standard errors are found to be downward biased (Arellano and Bond, 2001; Bond, 

2002; Windmeijer, 2005). In this case the Windmeijer (2005) finite sample 

correction, which is superior to the cluster-robust one-step standard errors; without 

correction the standard errors tend to be severely downward biased. This correction 

is found to greatly reduce the problem of bias, especially for difference GMM 

estimator for which the simulation is performed. Hence, based on this discussion, the 

efficient two-step difference GMM estimator will be used with Windmeijer (2005) 

robust standard errors with small-sample correction using option ‗two robust small‟. 

Furthermore, Sarafidis et al. (2009) suggest that all models should include time 

dummy variables to control for possible cross-sectional dependency arising from 

spatial dependence, common shocks and economic distance.  

As mentioned previously in this section, because the first difference equations (both 

in difference and system GMM) are constrained to lose information when using 

unbalanced panel data, Arellano and Bover (1995) suggest using a common 

transformation called the ‗forward orthogonal deviations‘. Roodman (2006, p.20) 

notes that ―the orthogonal deviations, instead of subtracting the previous 
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observations from the contemporaneous one, it subtracts the average of all future 

available observations of a variable‖, thus it minimizes data loss in unbalanced 

panels because it uses all the information available. In this context, Rodman (2006) 

also suggests that the lagged observations remain valid instruments because they are 

not involved in computation of the orthogonal deviations. Therefore, as suggested by 

Roodman (2006), since unbalanced panel data is used for this empirical analysis and 

in order to preserve the sample size, orthogonal deviations will be applied using 

option ‗orthog‟.  

A major drawback of GMM estimators is that they may use a large number of 

instruments which may overfit endogenous variables, weaken the diagnostics used 

for validity of the instruments and provide biased estimates of the covariance matrix 

of the moments. There is no specific guidance on what is the optimal number of 

instruments; however, the general rule of thumb proposed by Roodman (2006) is that 

the number of instruments should be lower or equal to the number of groups in the 

sample. According to Roodman (2006), the instrument matrix can restrict the lag 

ranges that are used in generating the set of instruments, thus the number of 

instruments will be reduced. Roodman (2006) suggests this can be done by using the 

‗collapse‟ option.   

As discussed above, the instrumentation of the dependent variable in a dynamic 

model is justified because it is predetermined within the model by the previous 

values of other regressors, while being independent of their present values. This 

instrumentation can also be used to address the issue of endogeneity of the 

explanatory variables which are correlated with the past error terms. The validity of 

the instruments for treatment of endogenous variables is diagnosed with the Sargan 

and Hansen tests of overidentifying restrictions, which are robust to 

heteroscedasticity. According to Roodman (2009), the p-value of the Hansen test of 

overidentifying restrictions approaching unity and those lower than 0.25 should be 

viewed with caution. Difference in Hansen test is also used to test the subset of 

instruments for individual variables since it can affect the overall Hansen test.  

The GMM estimator can create a large number of moment conditions and a large 

number of instruments; the estimator creates an instrument for each variable, for 

each period and each lag distance of the corresponding period (Roodman, 2006). The 
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instruments as lags of the explanatory variables are used under the assumption that 

errors are not autocorrelated, which would mean that they are correlated with the 

instruments. Considering this, to ensure the validity of the instruments a test for 

autocorrelation is used, first-order and second-order serial correlation (referred to as 

m1 and m2), which examines the hypothesis of no second-order serial correlation in 

the error terms. The GMM estimator requires that there is first-order serial 

correlation but no second-order serial correlation in the residuals.  

3.4.3 Empirical Results 

As discussed above, the dataset for this model is larger, comprising of a larger 

number of countries and longer time period. The descriptive statistics in table 3.8 

show that this dataset is unbalanced since some of the variables have a number of 

missing values for some countries. However, there is no indication of data missing 

for a specific reason other than randomly, thus this not expected to influence the 

reliability of the estimations. Table 3.8 shows that there are some differences in the 

summary statistics between transition and non-transition countries which might 

affect the final estimated results for this empirical analysis.  

The collinearity diagnostics do not suggest there is cause for concern. From table 3.9 

one can see that the mean VIF value is 4.47 while none of the individual VIF values 

exceed the threshold of 10. The correlation matrix presented in Appendix A3.5 also 

shows that correlation among independent variables is not likely to cause 

multicollinearity in this case.  

Table 3.8 Descriptive Statistics for Transition and Non-Transition Economies - 2
nd

 approach  

Transition Economies: Bulgaria, Croatia, Czech Republic, Estonia, Latvia, Lithuania, 
Hungary, Poland, Romania, Slovenia and Slovakia 

    Variable |        Obs        Mean    Std. Dev.       Min        Max 

    UnemRate |        143      10.001      3.73         4.3       19.8 

     ALMPExp |        122        .21       .142        .019       .768 

     TrainSh |        122      25.45      23.38        .130      91.30 

    EmpIncSh |        122      27.93      18.33        .757      82.61 

   SupportSh |        122      11.45      17.96           0      64.96 

 DirectJobSh |        122      28.12      23.36           0      91.28 

   StartupSh |        120       7.22       9.76           0      44.59 

     PLMPExp |        123        .37        .21          .08      1.35 

 Informality |        143      25.93       5.32         14.1      35.9 

   GDPgrowth |        143       2.98       4.62        -14.81     11.89 

LabFreeIndex |        121      61.02      11.79         39.4      85.5 

 EduTertiary |        132      23.42       7.09           10      39.7 
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  PopDensity |        143      85.02      34.06         30.95    136.62 

Western European Countries: Austria, Belgium, Cyprus, Denmark, Finland, France, 
Germany, Greece, Ireland, Italy, Luxembourg,  the Netherlands, Norway, Portugal, Spain, 
Sweden and the United Kingdom 

    Variable |        Obs        Mean    Std. Dev.       Min        Max 

 UnemPActPop |        234       8.18        4.48         2.5       27.5 

     ALMPExp |        213        .54         .33         .03       1.56 

     TrainSh |        213       39.73      19.02        7.73      80.21 

    EmpIncSh |        213       30.62      21.19        2.91      85.35 

   SupportSh |        208       16.53      18.51           0      74.71 

 DirectJobSh |        194       10.74      11.12           0      49.33 

   StartupSh |        212        3.75       7.16           0      43.81 

     PLMPExp |        216        1.24        .68         .16       3.05 

 Informality |        234       16.41       5.75         7.5       28.7 

   GDPgrowth |        234        1.28       2.82        -9.13       8.46 

LabFreeIndex |        198       60.11      15.20          31        100 

 EduTertiary |        216       29.34       7.86         10.8       47.8 

  PopDensity |        221      153.62     123.07         12.5     503.02 

 

Table 3.9 VIF Collinearity diagnostics – 2
nd

 approach  

    Variable |       VIF       1/VIF   

-------------+---------------------- 

     TrainSh |      9.94    0.100554 

   SupportSh |      9.42    0.106180 

 DirectJobSh |      8.47    0.118106 

    EmpIncSh |      7.97    0.125412 

     PLMPExp |      2.98    0.335200 

     ALMPExp |      2.94    0.340154 

  PopDensity |      1.94    0.516439 

 Informality |      1.87    0.534752 

LabFreeIndex |      1.25    0.797896 

 EduTertiary |      1.22    0.820811 

   GDPgrowth |      1.13    0.884683 

-------------+---------------------- 

    Mean VIF |      4.47 

 

Based on the model discussed in section 3.4.1, the empirical estimation utilised the 

empirical software STATA using the xtabond2 command developed by Roodman 

(2009). Both system and difference estimators were considered, however only 

difference GMM was feasible in the case of this analysis because it uses a smaller 

number of instruments compared to system GMM (the estimation from system 

GMM is provided in the Appendix A3.7.3).  The lagged dependent variable, 

ALMPExp and its square term and PLMPExp are treated as endogenous and as such 

are instrumented with their own lagged levels. The choice of lags is determined by 

model diagnostics. The initial specifications included a minimum number of lags, i.e. 

starting from one lag for the lagged dependent variable and other variables. Since the 
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initial specification failed diagnostic tests for instrument validity, higher order lags 

(three or four lags) are included until the specification achieves acceptable 

diagnostics. In addition to limiting the number of lags, as suggested by Roodman 

(2006), collapsing the instruments is used to reduce the count of instruments and to 

obtain more parsimonious model. Considering the potential endogeneity of 

Informality and LabFreeIndex, they are also specified as endogenous and 

instrumented through internal instruments via GMM. However, the specification 

failed the instrument validity tests and increased the number of instruments higher 

than the number of cross-sectional units (see Appendix A3.4). Both these variables 

are instrumented with their first lagged levels in the instrumental variable equation. 

The results show that the Hansen J test of overidentifying restrictions take the value 

of 0.310 and 0.370 in the two models respectively, suggesting the validity of the 

instruments for treatment of the endogenous variables. The null hypothesis of 

autocorrelation in differences of errors is rejected for the autocorrelation in 

differences of errors. It is also important to check the validity of subsets of 

instruments; the difference-in-Hansen test also known as C-test (Baum, 2006). The 

null hypothesis of the difference-in-Hansen is that the specified variables are proper 

instruments, i.e. that the set of examined instruments is exogenous. The results 

suggest that there is no sufficient evidence to reject the hypothesis (see Appendix 

A3.7.1 and A3.7.1).  

The difference-in-Hansen test was also conducted in order to test for cross-sectional 

dependence. The results suggest that the null hypothesis of the validity of the 

instruments for lagged dependent variable cannot be rejected in both models. 

Following the suggestion of Bond et al. (2001), an additional test of the validity of 

dynamic panel estimation is performed to check whether the lagged dependent 

variable lies between the lower bound of FE and upper bound of OLS estimates. As 

appendix A3.7.3 shows, both model specifications satisfy this condition. Having 

analysed all these diagnostic tests, it is concluded that the model is well specified 

which can be used for interpretation of the results presented in table 3.10. As 
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discussed in the previous section, the preferred estimator is two-step robust 

difference GMM which accounts for heteroscedasticity.
31

   

Having obtained the final specification with acceptable diagnostics, the final 

estimated results are presented in table 3.10. The F-test for the joint significance of 

the independent variables rejects the null hypothesis, suggesting that the independent 

variables collectively have explanatory power with respect to the dependent variable. 

The dynamic specification, through the lagged dependent variable, contains the 

history of the independent variables. This variable is highly significant in both 

models, suggesting that there is a high persistency of the unemployment rate. The 

coefficient of the lagged dependent variable suggests that a 1 percent increase in 

unemployment rate in the previous period is associated with an increase of about 

0.80 percent in the unemployment rate in current period. The results in table 3.10 

show that the variables of interest, ALMPExp and its quadratic term are not 

significant in either of the models 1 or 2. Model 2 includes variables measuring the 

share of each individual ALMPs (TrainSh, EmpIncSh, SupportSh and DirectSh, 

while StartupSh is a left out of the regression as the omitted category) to assess 

whether different active policies are effective in reducing unemployment rate. These 

variables TrainSh, EmpIncSh, SupportSh and DirectSh are also insignificant in 

model 2. The insignificant result might be because the dataset is combined to 

account for two different sets of countries which have distinctive differences.  As 

discussed in section 2.4 and 2.5, different ALMPs might have different effects in 

different contexts and for different sub-groups of unemployed and those differences 

might cause the overall insignificance.  

Of the control variables, GDPgrowth is significant in both models. The estimated 

results indicate that an increase in the GDPgrowth of 1 percent will reduce the 

unemployment rate by 0.32 percent, other variables remaining constant (0.34 in 

model 2). Variable LabFreeIndex is significant in model 1 and in line with our 

expectations, an increase in the labour freedom index of 1 unit will reduce the 

unemployment rate by 0.05 percent. Other control variables have signs in line with 

our expectations but are insignificant in both models.  

                                                           
31

 There is no need to test for a normal distribution because the GMM estimator does not rely on that 

assumption.  
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Table 3.10 Estimated results from Difference GMM 

 

3.5 Conclusions  

This chapter has applied two different empirical approaches. The first one is the 

matching function using FEDK and FEVD in a panel dataset for 11 countries for 

years 2010 to 2015 while the second approach is a dynamic panel data estimator, 

  Model 1 Model 2 

VARIABLES UnemRate UnemRate 

      

L.UnemRate 0.803*** 0.811*** 

 

(0.0898) (0.125) 

ALMPExp -1.766 -2.654 

 

(4.305) (5.008) 

ALMPEx2 0.654 1.866 

 

(1.844) (1.944) 

TrainSh 

 

-0.00624 

  

(0.0294) 

EmpIncSh 

 

0.000588 

  

(0.0286) 

SupportSh 

 

0.0227 

  

(0.0252) 

DirectJobSh 

 

0.00301 

  

(0.0378) 

PLMPExp 1.507 1.220 

 

(1.019) (1.102) 

Informality -0.284 -0.0840 

 

(0.731) (0.655) 

GDPgrowth -0.320*** -0.340*** 

 

(0.0537) (0.0449) 

LabFreeIndex -0.0545** -0.0243 

 

(0.0260) (0.0220) 

EduTertiary -0.0696 -0.00906 

 

(0.0641) (0.0577) 

PopDensity 0.0306 0.0428 

 

(0.0297) (0.0324) 

Observations 211 194 

Number of CountryID 28 27 

F-test 

F(21, 28)     =    300.67                                       

Prob > F      =     0.000                                  

F(25, 27)     =   1230.04  

Prob > F      =     0.000                                  

Arellano-Bond (AR1) test  Pr > z =  0.008 Pr > z =  0.016 

Arellano-Bond (AR2) test  Pr > z =  0.163 Pr > z =  0.182 

Sargan test Pr > chi2 =  0.404 Pr > chi2 =  0.553 

Hansen test Pr > chi2 =  0.310 Pr > chi2 =  0.371 

No. of Instruments 23 27 

Standard errors in parentheses 

 *** p<0.01, ** p<0.05, * p<0.1 
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difference GMM, using a panel data for 28 countries for years 2005 to 2014. Section 

3.3.2 provided a critical review of the endogeneity of the ALMP variable and 

discussed possible choices for the instrumental variables used by empirical studies. 

However, the instrumental variables used by empirical studies were argued not to be 

the optimal choice for this empirical analysis.  

As discussed in section 3.3.2, the preferred empirical approach in previous studies 

analysing the effectiveness of the ALMP was a matching function using a dynamic 

panel estimator because it addresses the potential endogeneity of the ALMPs. Since 

the data for matching function component variables are not available for a long 

period, the dynamic panel estimator could not be applied hence FEDK and FEVD 

using the first lag of the ALMPExp were applied. The results from FEDK suggest 

that an increase in ALMP expenditure as a share of GDP will increase the flow from 

unemployment to employment, however this effect is not economically significant. 

Consistent with the findings from other studies, the estimated results from FEDK, 

when using a restricted sample of transition countries only, point to increasing 

returns to scale in the transition from unemployment to employment, suggesting that 

transition economies‘ labour markets might exhibit multiple equilibria. Same results 

are also found when using FEVD.  

The second approach uses a larger dataset with a larger number of countries included 

in the sample and a longer time period. With the larger dataset it became possible to 

include variables which measure expenditure on individual ALMPs: training, 

employment incentives, supported employment and rehabilitation, direct job creation 

and start-up incentives. The difference GMM estimations did not find any evidence 

of a significant relationship between ALMPExp and unemployment rate. Variables 

measuring the shares of different types of ALMPs to total ALMP expenditure are 

also insignificant. As discussed above, one possible explanation for the insignificant 

results might be that different ALMPs have different effect in different contexts and 

for different sub-groups, hence cancelling out their effect.  The results also show that 

the lagged value of the dependent variable, the unemployment rate, is highly 

significant with a coefficient one of 0.8 which suggests that the unemployment is 

highly persistent. As argued in section 2.2, when unemployment exhibits 

persistency, besides applying labour market policies, the focus should be on 

increasing aggregate demand to stimulate job creation. Having found no significant 
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effect of ALMP expenditure at the country level on the transitions from 

unemployment to employment and reducing the unemployment rate, the following 

empirical chapters 5 and 6 will investigate the effect of the ALMPs at the individual 

level on increasing an individual‘s probability of being employed, having an 

employment contract and actively searching for jobs.  
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4.1 Introduction 

Having analysed the labour market in the European transition and non-transition 

economies in chapter 1 and established the potential importance of ALMPs as a 

factor in reducing unemployment in chapter 2, the thesis followed with an empirical 

analysis of the effectiveness of ALMPs in the European countries at the country 

level in chapter 3. This chapter will provide an assessment of the methodology 

applied in evaluating ALMPs in preparation for the upcoming empirical analysis in 

chapters 5 and 6. The aim of this chapter is to: (i) analyse the evaluation 

methodologies employed in microeconomic policy analysis and identify the key 

assumptions within the common frameworks; and (ii) review the empirical evidence 

specifically for European transition economies.  

The central problem faced by microeconomic evaluation is the issue of 

counterfactual data since an individual cannot be in two different states at the same 

time. Thus, the key role of this chapter is to examine the evaluation problem and the 

construction of counterfactuals for the reliability of the results, since it is the 

important part of making the comparison between two different states. It is crucial to 

understand whether a particular active programme has been successfully designed, 

targeted and implemented and at the same time to evaluate the impact of ALMPs on 

the participants‘ future labour market outcomes. Assessing the effectiveness of the 

ALMPs is not an easy task and it remains a concern to researchers. The evaluation 

analysis becomes even more difficult in a quickly changing environment, which is 

the case in most transitional economies. There have been a substantial number of 

evaluations of ALMP effectiveness in Europe conducted by independent researchers 

and researchers commissioned by government bodies, though there are very few 

evaluations for transition economies.  The evaluation studies in transition economies 

have mostly used different matching estimators and have had less focus on other 

evaluation methods.  

According to Heckman et al. (1999), the choice of the most appropriate estimator 

depends on three factors: the assignment of individuals into the programmes, the 

quality of data available and the specific question to be answered. In social 

experiments the assignment of the participants into the programmes is performed 

randomly, hopefully assuring balance in observed and un-observed characteristics of 
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the treated and control persons i.e. the characteristics of the two groups are similar 

hence comparable (Heckman et al., 1996; 1999). In contrast, in observational studies 

the assignment into the programmes is not random and thus causes possible selection 

bias. Choosing from the wide range of available evaluation methods when analysing 

the microeconomic effectiveness of active policies is a big challenge for researchers  

Heckman et al. (1996; 1999) place a high emphasis on the importance of the quality 

of data to produce unbiased impact estimates. The observational data should ideally 

be obtained from the same source for the treatment and control groups and it should 

provide a rich set of variables. Evidence from some studies suggests that evaluations 

using observational data produce different estimates and generate conclusions which 

deviate from those drawn from experimental studies (LaLonde, 1986; Smith and 

Todd, 2005). Since social experiments are considered to represent the ‗gold 

standard‘, researchers have tried to find an evaluation method that by using 

observational data will produce unbiased results just as social experiments ideally 

do. However, some studies found evidence that matching estimators succeed in 

replicating experimental results while also arguing that this method does not 

represent a ‗magic bullet‘ that can solve the selection problem in every case (Deheija 

and Wahba, 2002; Smith and Todd, 2005). 

The chapter is organised as follows.  Section 4.2 provides a detailed explanation of 

the evaluation problem, with particular emphasis given to the construction of the 

counterfactuals. This section will provide arguments for using Propensity Score 

Matching and more specifically how this method may correct for any selection bias 

followed by an assessment of the efficiency of different matching methods. Section 

4.3 will provide a review of the evaluation methodologies used when investigating 

the effectiveness of ALMPs at the individual level while section 4.4 reviews the 

evaluation methodologies adopted to date in transition economies. Section 4.5 

provides the conclusions of the chapter.  

4.2 Evaluation Methodology: The evaluation problem and the 

construction of counterfactuals  

Most microeconomic evaluation studies of active labour market policies are based on 

the potential–outcome approach to causality (Rubin, 1974; Heckman et al., 1999; 
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Caliendo et al., 2011; Schmidl, 2014; ) persons are expected to occupy one of two 

mutually exclusive states: treated or un-treated.  The individual indicator    is 

associated with the indication of receiving a treatment, where      if a person 

participates in the programme and      otherwise. The ideal assessment is what 

would happen to individual   in the labour market if   participated in a programme 

       relative to the state when   did not participate in a programme       . 

The second term is not possible to observe. 

The outcome for the individual   who has participated is denoted as         while 

the outcome in the case where the individual   has not participated in a programme is 

             Where increasing the employability of those undertaking treatment 

is the key objective of the intervention then the labour market outcomes can be 

defined as ‗‘0‘‘ if not employed and ‗‘1‘‘ if employed which gives the possibilities 

of an individuals‘ outcome before and after the treatment as             

              . The evaluation analysis seeks to assess the causal impact of the 

treatment on labour market status. The actual outcome (  ) for individual   can be 

written as: 

                                                                               4.1 

The individual treatment effect would be given by the difference 

                                                                                 4.2 

Equation 4.2 is the fundamental evaluation problem. To evaluate the impact of the 

treatment, both outcomes with and without the treatment need to be observed. 

Unfortunately, the outcome of both states of one individual at the same time can 

never be observed. The outcome of the treated individual had he not been treated 

(   ) is not observable hence it needs to be estimated which also implies that the 

treatment effect cannot be directly observed but needs to be estimated.  

Some studies, focus on the population average treatment effect on the treated (ATT) 

(Caliendo et al., 2011; Schmidl, 2014) which is formally given by:  

       |         |         |                                      4.3 
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The final term of equation 4.3,     |   ), is the expected outcome had treated 

individuals not participated in any programme. This is regarded as the counterfactual 

outcome that is impossible to be observed. Thus, the evaluation problem is the 

problem of finding an appropriate counterfactual that can be identified from the 

observational data. The only distribution of the individual outcomes that can be 

directly observed are the frequency distribution of the outcome        for 

participants and the outcome             for non-participants. The frequency 

distribution of the outcomes of both individuals in different groups can be observed 

by the set of the individuals‘ characteristics    and also by the outcome of the pre-

treatment period    
 ; the pre-treatment period is denoted as   . Taking into account 

this conditioning information will allow correcting for selection on observable 

characteristics. Therefore, constructing an appropriate control group of non-

participants will help to alleviate the evaluation problem.  

In order to understand the identifying assumptions of the evaluation approaches used 

in the literature, a brief explanation of experimental and non-experimental designs is 

provided below. 

Experimental studies completely replicate the intervention that will be implemented 

in the field; these studies provide, in principle, a convincing approach to the 

evaluation problem. The main idea of the experiment is the randomised selection of 

individuals into treatment and control groups. Individuals who would have chosen to 

participate in the programme would be excluded from the programme participation 

through a random mechanism. The process is under considerable control of the 

researcher about the individual compliance with the programme. As a consequence, 

randomization will generate a complete balancing of the relevant observable and un-

observable variables across treatment and control groups (when the sample size is 

sufficiently large enough), which will enable comparability between the groups and 

does not require any sophisticated statistical analysis.  

Non-experimental or observational studies are not conducted under the control of the 

researcher. This evaluation design gathers information on the labour market 

outcome(s) of participants and non-participants and utilises this information to 

achieve results similar to those from the experimental design. In this case the 

selection or assignment into the active programmes is done by labour office 
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administrators or individuals may select themselves for programmes they anticipate 

to be beneficial for themselves. While the randomised experiment guarantees the 

balancing of observables and un-observables of the treatment and control 

individuals, the non-experimental study tends to use the observable information 

while the remaining difference in characteristics will be attributed to chance. 

Accordingly, the difference in the means of outcomes for participants and non-

participants will be attributed to the programme effect.  

In non-experimental designs, the treated and untreated are selected groups that would 

be likely to have different outcomes even in the absence of the programme, thus 

leading to a selection bias problem (Rodríguez-Planas and Benus, 2010). Even when 

treated and untreated individuals have comparable observed characteristics, the two 

groups are likely to differ in unobserved characteristics (Hämäläinen, 1999). The 

problem of selection bias can be diminished through imposing some identification 

assumptions. The evaluation methods are designed to estimate the counterfactual and 

at the same time taking into account the problem of selection bias. Matching 

estimators, as one of the evaluation methods, will tend to balance the characteristics 

in the two groups when using observational data. While in contrast in the social 

experiments a difference in baseline characteristics may exist (Austin, 2011). 

According to Rosenbaum (1998), matching estimation is feasible where there are 

differences in the pre-treatment characteristics of the treated and untreated 

individuals that are important for the outcome.  If treated and control individuals 

have similar pre-treatment characteristics the selection bias would not arise and as 

such a simple estimator would be sufficient to assess the difference in outcome.  

The choice of which evaluation method to use is an important one because  the 

impact estimates are sensitive to the estimator chosen and deviate from the 

benchmark of experimental estimates (LaLonde, 1986; Heckman et al., 1999). 

According to Smith and Todd (2005), this is not surprising since the different 

estimates are dependent on different identification assumptions about the outcome 

and participation used by different estimators. The following section provides an 

overview on the evaluation approaches commonly used in ALMP evaluations and 

alternative methodologies using observational data. 
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4.3 Evaluation strategies for observational studies  

An evaluation approach involves a comparison between the treated and untreated 

individuals. Evaluation methods are designed to take into account the estimation of 

counterfactual outcomes as well as to control for selection bias. Despite the fact that 

the quality of data available is one determining factor, the choice of the evaluation 

methodology also depends on the mechanism by which the individuals are allocated 

to programmes. Blundell and Dias (2009) refer to this as the ‗assignment rule‘ and it 

is an important component in the choice of the evaluation method used. Each method 

employs different assumptions and unless an appropriate method is being used the 

results will not be reliable (Blundell and Dias, 2009). The adequacy of each of the 

approaches, the data required and the necessary assumptions are briefly discussed 

below. This discussion will provide the motivation for the later use of Propensity 

Score Matching in the analysis of the effectiveness of ALMPs considering the 

available data.  

Heckman et al. (1999) distinguish three prototypical solutions to the evaluation 

problem:  

Before and after estimator – this is the most common approach for constructing a 

plausible counterfactual. It comprises a comparison of treated individuals with 

themselves in the pre-treatment period t‟. The underlying identification assumption 

of this method is that taken over the population of all treated individuals, the average 

of actual outcome in period t‟ is equal to the population average of what these 

individuals would have experienced in period t had they not participated in the 

programme. It therefore requires considerable stability in the economic environment. 

The validity of this assumption may be violated due to the changes in the overall 

state of the economy between different points of time, or changes in the life cycle 

position of the cohort. Even the anticipation of the individual participating in a 

programme may change an individual‘s motivation and behaviour in the pre-

treatment period. This type of study requires longitudinal or repeated cross-section 

data from the same population where at least one section is from the pre-treatment 

period. 
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Cross-section estimator – this method compares the labour market outcomes of 

treated and untreated individuals at the same point of time. The results from this 

approach would be biased when using non-experimental or observational data since 

there will presumably be permanent difference in personal characteristics of 

individuals who participated and those who did not. This approach would be more 

suitable in an experimental design where individuals are randomly selected in 

treatment and control groups in which case the characteristics of the two groups 

would be closely related. The main assumption of this approach is that, on average, 

individuals who do not receive treatment have the same no-treatment outcome as 

those who do, had they not been treated.  This assumption will be satisfied if the 

participation in the programme is independent of outcomes in the no-programme 

state in the post-programme period (Heckman et al., 1999). In addition, this approach 

is not vulnerable to the problems that arise in the before-after estimator if the 

macroeconomic environment and aging process have the same effect on both 

participants and non-participants. 

Difference-in-difference estimator – is defined as the difference in average outcome 

of the before and after the treatment of treated individuals minus the difference in 

average outcome before and after treatment of the control individuals. The 

interpretation of this technique is the difference of a simple estimator between the 

actual outcome and the outcome that would occur in the post-treatment period in a 

hypothetical case where the treatment group had no treatment. This is a widely used 

evaluation method and considered by many to be the most efficient method when 

combined with propensity score matching (Smith and Todd, 2005). However, it 

requires longitudinal or repeated cross-section data.  

4.3.1 Matching estimation – Propensity Score Matching  

Matching estimation is used to estimate the treatment effect based on observational 

data. This estimation is based on the principle that participants should be matched 

with non-participants (control group) conditional on pre-treatment observed 

covariates. The outcome is then compared between the matched pairs and the 

difference in outcomes is attributed to the treatment. There are two matching 

techniques: Exact Covariate Matching and Propensity Score Matching. Exact 

Covariate Matching creates matched pairs of treated and un-treated individuals based 
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on identical covariates, i.e. identical age, gender, educational level etc. Matching can 

be difficult when the dimension of conditioning variables is large, i.e. the more 

variables used to match by the more difficult it gets to match individuals. This 

phenomenon is known in the literature as the ‗curse of dimensionality‘ (Stuart, 2010; 

Todd, 2010). Since the dimensionality increases exponentially with the number of 

covariates X, it becomes impossible to find a match for each observation when more 

than a few variables are being used. This is a serious limitation of Exact Covariate 

Matching even in cases of a large sample since it leads to many individuals not being 

matched (Rosenbaum and Rubin, 1983; Blundell and Dias, 2009). Rosenbaum and 

Rubin (1983) suggest that it is sufficient to match on Propensity Scores, i.e. to match 

the treated and un-treated individuals by their probabilities to enter a given 

programme conditional on the observed covariates. Rosenbaum and Rubin (1983) 

have shown that if the Conditional Identification Assumption (CIA - explained 

below) is valid for the variables X it would also be valid for the estimated propensity 

scores. Replacing the set of variables X with the estimated propensity scores to 

match the observations will reduce the matching problem to only one dimension, that 

of propensity scores, thus simplifying the matching procedure. In this context, 

participants are similar to non-participants based on their propensity to be treated in 

a particular active programme but it does not necessarily mean that all the 

characteristics of the matched pair are exactly the same. The propensity score of each 

of the individuals is estimated from a bivariate model (either logit or probit) using a 

set of variables determining the treatment participation and the outcome. The set of 

variables to be accounted for in the propensity score estimation is discussed in more 

detail below. Rosenbaum and Rubin (1983) showed that matching on propensity 

scores, instead of matching on a high-dimensional matrix of potential characteristics, 

will also balance the characteristics of the two groups through balancing the 

propensity score values and will lead to a higher number of matched pairs. In other 

words, conditioning on the propensity scores allows one to replicate an experiment 

setting, conditional on observed covariates.  

Regardless of the type of matching, matching estimation is based on two 

assumptions. The first assumption is the Conditional Independence Assumption 

(CIA) (also referred to as un-confoundedness or selection on observables) which 

denotes that there are sufficient observable data (X) such that the outcomes or the 
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treatment effects (Y) are independent from the programme participation (D) (Rubin, 

1974; Gerfin and Lechner, 2002; Christensen, 2009; Bonin and Rinne, 2014):  

            |                                                                4.4 

The CIA is in general a strong assumption and obliges inclusion of a range of 

relevant independent variables influencing both participation in the active 

programmes and the outcome variables (Bryson et al., 2002; Bonin and Rinne, 

2014). This assumption tends to mimic as much as possible the experimental 

approach of random assignment (Austin, 2011). According to this, it is assumed that 

the unobserved characteristics are trivial and do not particularly affect the outcome 

in the absence of treatment. Participants may adjust their behaviour in order to 

become eligible to participate in a programme and this information may not be 

observable to the evaluator. However, when a rich dataset is available this 

assumption is likely to hold and conditional on observable characteristics the 

selection process will mimic randomisation just as in an experimental setting.  

The second assumption is common support or the overlapping of the covariates of 

the participants and non-participants. As explained by Schmidl (2014) this 

assumption ―requires that all characteristic values appearing in the treatment group 

also appear in the control group” (p. 137). In the case when the characteristics are 

observable only for treated individuals, one is unable to predict how these 

characteristics are related to the outcome of the control individual. The condition is 

written as:  

       |                                                          4.5 

Under these assumptions, the distribution of the counterfactual and the observed 

outcome for the participants and the comparison group are the same, conditional on 

the vector of covariates.  

    |            |                                                4.6 

Even when using propensity scores instead of exact covariates to create matching 

pairs, the problem of finding quality matches does not disappear completely.  The 

non-treated group may not have some of propensity scores similar to the treated 
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group which may lead to omitting the treated observations from the sample resulting 

with a narrow common support. The essence of matching estimators is to compare 

similar individuals and the common support assumption assures that the matched 

treated and control individual share similar characteristics. In the absence of 

common support, incomparable individuals are likely to have different observable 

characteristics and are more likely to differ in unobservable characteristics. 

However, in an attempt to increase the quality of matching one may lose too many 

observations from the treated group which is important, particularly for multiple 

treatment programmes (Bryson et al., 2002).  

One of the most important steps when evaluating with propensity score matching is 

choosing the relevant covariates X. The literature suggests that a rich set of variables 

that simultaneously affect the choice probabilities and the outcome should be 

included in the estimation of the propensity scores; however, there is no consensus 

regarding which variables to include (Heckman et al., 1999; Austin 2011). Possible 

sets of variables to be accounted for when estimating the propensity scores include: 

the set of all measured baseline covariates (i.e. variables which are not influenced or 

modified by the treatment such as age, gender, household condition, etc.);  the set of 

variables that are associated with treatment assignment (this set of variables depends 

on the specific characteristics related to the assignment or selection on the 

programmes such as the admission criteria, distance from the employment/training 

centres etc.); the set of variables that affect the outcome (potential confounders, 

basically all the variables that affect the labour market state or earnings such as 

demographic variables, labour market histories, economic condition etc.); and the set 

of variables that affect both treatment assignment and outcome level (true 

confounders) (Austin, 2011). Brookhart et al. (2006) suggest that including the 

variables that only affect the treatment assignment will produce greater variance of 

the estimated treatment effect. In many settings, it is safer to include in the 

propensity score model all baseline covariates that affect both treatment assignment 

and the outcome (Austin, 2011). Steiner et al. (2010) also suggest that the optimal 

modelling strategy is to include a large set of covariates since this approach will be 

more likely to satisfy the CIA condition. The socio-demographic characteristics of 

potential participants along with their educational background are likely to be very 

important in the context of ALMP evaluations (Bonin and Rinne, 2014). Previous 
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studies suggest that individuals‘ labour market histories are important determinants 

of the participation in active labour market programmes, as they are of the 

individuals‘ labour market outcomes (Heckman et al., 1999). Therefore, dummies 

representing different intervals of duration of unemployment before the treatment 

should be included in the analysis. As explained, selection bias may arise also from 

unobserved characteristics, such as motivation to participate in a particular 

programme and orientation to paid employment. It is more likely that highly 

motivated individuals will be more likely to get a job. On the other hand, selection 

bias may also be attributed to the role of administrative staff in selecting participants. 

In such cases administrators may choose the best of applicants to participate in a 

programme, thus the programme effects may be over-estimated. Therefore, 

controlling for differences in observable characteristics may yield unbiased results 

(Bryson et al., 2002). As recognised by Bryson et al. (2002), motivation to 

participate and get a paid job may be correlated with the pre-treatment 

unemployment duration; thus including this variable in the propensity score 

estimation may capture the motivation effect and thus reduce the bias.  

Even though the discussion so far has implicitly assumed that individuals can 

participate only in one homogenous programme, the type of treatment may be 

heterogeneous in terms of duration, content of training courses or provider of 

courses.
32

 The discussion in section 2.2.3 showed that labour market outcomes may 

be affected by the intensity and the quality of the programme that an individual has 

participated in and there may also be dynamic selection effects when participating in 

programmes one after the other (possibly to remain eligible for state transfer 

payments). Based on Rubin‘s model of binary choice of participation, more recent 

studies extended it to account for multiple treatment (Imbens, 2004; Hirano and 

Imbens, 2001; Gerfin and Lechner, 2002; Emsley et al., 2008; Tan, 2010). Gerfin 

and Lechner (2002) show that similar properties as in the binary treatment model 

(Rosenbaum and Rubin, 1983) also hold in the multiple treatment framework.  

A relevant issue in the Propensity Score Matching technique is the choice of the 

matching algorithm. Previous evaluations suggest different algorithms for matching 

                                                           
32

 In the case where a person participates in more than one programme, the effect of each programme 

in isolation would be very difficult to assess.  
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of treated and untreated units and there is no consensus on which matching algorithm 

is superior to the other (Morgan and Harding, 2006). Appendix 4.1 provides an 

assessment of different matching algorithms, their advantages and disadvantages and 

identifies potential cases when these methods are more appropriate.  

4.3.2 Inverse Probability Weighting – Regression Adjustment 

Based on the assumptions outlined in section 4.2 and the previous discussion, the 

treatment and control groups can become comparable by conditioning on the 

propensity scores which then can identify the treatment effect. Section 4.3 focused 

on methods based on matching with propensity scores while this section will expand 

the discussion of methods based on doubly robust estimation, because of its‘ 

advantages in the case of analysing multiple treatment programmes. Given that the 

aim of chapter 5 is to investigate the relative effectiveness of three different active 

measures, the chosen method for this empirical analysis is a doubly robust model, 

the Inverse Probability Weighting – Regression Adjustment (IPWRA). This 

estimator produces the parameter of interest while allowing for multinomial 

treatment modelling. Given this major advantage, the IPWRA seems to be a suitable 

choice in our setting. The discussion on the multivalued treatment variable is a recent 

one (Imbens 2000 and Lechner 2001). The doubly robust approach has been 

discussed by Hirano and Imbens (2001), Emsley et al. (2008) and Tan (2010), but to 

the best of our knowledge there is no study that combines regression and weighting 

to evaluate the effectiveness of the active labour market programmes. However, a 

few studies have used this technique in other fields such as estimating the earnings 

returns to different educational programmes (Uysal, 2015).  

IPWRA is a doubly robust model estimator because it uses one model to predict the 

treatment probability and an outcome model to predict the outcomes for each 

specific treatment. The IPW tends to adjust the outcomes of the control subjects by 

weighting them with the inverse of the estimated propensity scores. It creates 

weights similar to the sampling weights that are used to weight survey samples 

which are representative of specific populations. This estimator forms a synthetic 

sample in which the distribution of measured covariates is independent of the 

treatment assignment (Austin, 2011). 
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IPWRA uses a three-step approach to estimate Average Treatment Effects on 

Treated (ATET). The first is the estimation of treatment model and computation of 

the propensity score weights. These weights are defined by the inverse of the 

propensity score if the subject has joined a treatment and the inverse of 1 minus the 

propensity score if the subject is in the control group (received no treatment or 

received another treatment). The second step is to predict outcomes for each subject 

through fitting the weighted regression models of the outcome for each treatment. 

The third step is to produce the average treatment effects on the treated which is the 

difference in the means of specific treatment outcomes. 

An estimation of the parameter of interest     , using the inverse weights equal to 

1/  ̂ if      or 1/     ̂  if       is obtained as the difference between the 

average outcome of the treated and the reweighted average outcome of the non-

treated. According to Lunceford and Davidian (2004) the doubly robust estimator is 

defined as follows:  
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            4.7 

 Where   (  )      |  =        for D = 0 or D = 1 are predicted values from the 

regressions of the outcome on the baseline covariates where the coefficient estimates 

and predicted values are obtained from the regressions carried out separately for each 

treatment group with the same model specification. This approach provides 

consistent estimates of the effects because the treatment is assumed to be 

independent of the potential outcomes after conditioning on the covariates.  

The standard errors reported in the doubly robust estimators correct for the three 

steps in the process when producing the parameter of interest. A particular concern 

associated with IPWRA is that it is very sensitive to large values of the propensity 

scores as they receive disproportionately large weights in the construction of the 

counterfactual. However, the common support (overlap) assumption ensures that 

predicted inverse-probability weights do not get too large. This estimator deals with 

the poor properties of the finite sample by normalising the weights of the propensity 

scores to one (Imbens, 2004; Emsley et al., 2008; Uysal, 2015). 
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The most important advantage of this estimator is that it gives unbiased estimates if 

only one of the models, the treatment or the outcome model, is specified correctly 

(Bang and Robins, 2005; Emsley et al., 2008; Uysal, 2015). This allows for two 

opportunities to obtain the accurate results. The simulations of Emsley et al. (2008), 

Tan (2010) and Uysal (2015) demonstrated that the doubly robust estimates remain 

consistent even if one of the underlying models is mis-specified. Because of the 

frequency of model mis-specification, the doubly robust model is desirable.  

4.4 Review of empirical studies   

The previous sections provided a review of the available evaluation methodologies 

usually used to assess the effectiveness of the ALMPs. In addition, sections 4.3.2 and 

4.3.3 reviewed in more depth the Propensity Score Matching approach and also 

offered justification for using this method in evaluating active measures. In chapter 2 

it was argued that the ALMPs, including measures such as job search assistance, 

labour market training, and wage subsidies among others, have a potentially 

important impact in combating unemployment. Seeking to identify the evidence that 

allows us to draw a conclusion with regard to the effectiveness of the ALMPs this 

section provides a critical review of the recent studies that used Propensity Score 

Matching in European countries. In addition, the review will focus more specifically 

on studies for European transition economies.   

4.4.1 Evidence from Europe with special reference to European 

transition economies 

The adoption of ALMPs was seen as an important instrument to tackle the relatively 

high unemployment rates in transition economies. It is therefore valuable to question 

this perception and to assess what level and type of these policies could be 

appropriate in the context of the labour markets of transition economies. It is widely 

known that labour markets in these countries have different characteristics compared 

to those in Western countries (see chapters 1 and 2). There are relatively few studies 

analysing the impact or the effectiveness of ALMPs in the transition contexts and 

their results are diverse. Summaries of the main microeconomic evaluations in 

European transition economies and selected non-transition economies are presented 

in table 4.1. While in Western countries the quality of data has been increasing, the 

most important issue for transition economies remains the quality of the micro data. 
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Administrative records do not usually provide enough information to carry out 

micro-econometric evaluations, thus most of the studies in transition economies do 

not rely only on this data source. Follow-up surveys of the registered unemployed or 

participants of the programmes in general are also rare and do not support the ever 

increasing need to conduct a thorough micro-econometric evaluations. Most 

programme evaluations analyse only the partial effect on the treated. The mean 

effect of ‗the treatment on treated‘ is measured by the labour market outcome, either 

employment probability or earnings after the treatment. Table 4.1 shows that for 

transition economies the outcome variable tends to be unemployment and 

employment probability, which is in line with the objective of these policies in 

ETEs, while only a few studies investigate the effect of active measures on the level 

of earnings. The methodologies of evaluation studies in transition economies tend to 

follow the same identification strategies as those in other European countries. The 

studies have relied either on hazard rate analyses or on different variants of selection 

on observables, mostly through different matching estimators.  Matching estimators 

seem to be mostly used in transition economies (Puhani, 2002; Leetmaa and Vork, 

2003; Rodriguez-Planas and Benus, 2006; Kluve et al. 2008; Bonin and Rinne, 2014; 

Mojsoska-Blazevski and Petreski, 2015; Bratti et al., 2017; Potluka, 2017; Štefánik 

et al., 2018; Popescu and Roman, 2018; Adamecz-Völgyi et al., 2018) along with 

duration models (Puhani, 2002; Van Ours, 2001; Micklewright and Nagy, 2005), 

with a few exceptions  using selection models (Vodopivec, 1999; Petreski, 2018). 

The following sections provide a review of the main empirical studies of the 

effectiveness of ALMPs in transition economies. 

In terms of the data used, European evaluations mostly use cross-sectional data 

controlling for selection bias. In recent years, active policies have become more 

diverse and policymakers seem to have increased their focus on measures for 

specific target groups. The majority of the micro-econometric evaluations are based 

on non-experimental designs, while with respect to the identification strategies most 

of the studies use matching estimators or duration models. Regarding the time-span 

effectiveness of the active measures, evaluations in European countries mostly focus 

on the short-term effects (outcomes six to twelve months after completion of the 

programme), while in more recent years some studies consider also the long-term 
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effects (outcomes between two to three years after completion of the programme) 

(Mojsoska-Blazevski and Petreski, 2015; Card et al., 2017; Štefánik et al., 2018).  

It is common for evaluation studies to estimate the impact of active measures on 

unemployment and employment probabilities rather than on earnings, which is 

consistent with the objectives of policies (the main objective of the European 

policies is to increase employment rather than alleviate poverty (Eurostat, 2018).  
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Table 4.1 Summary of studies on the effectiveness of ALMPs for European Transition Economies and selected Non-Transition 

Economies, based on chronological order (year of publication) 

Study Country Measure Target 

Group  

Observation 

Period 

Outcome of 

interest  

Methods of estimation Results 

Van Ours 

and 

Lubyova, 

1998 

Slovak Republic 1)PUJ – publicly 

useful jobs 

(employment in 

public sector),  

2)SPJ – socially 

purposeful jobs 

(subsidies in 

private sector) and   

3) Training 

Unemployed  1993 – 1998  

Administrative 

data  

Dummy variables 

 1. value 1 if: 

unemployed did 

not participate in 

ALMP but found 

job 

2. value 1 if: 

unemployed 

participated in 

ALMP and then 

found job,  

3. value 1 if: 

unemployed part. 

ALMP but did not 

find job 

4. value 1 if: 

unemployed 

neither 

participated 

neither found job.  

Multivariate Duration Models  

  

Training and PUJ reduce 

duration of remaining 

unemployed.  

SPJ increase probability of 

being unemployed.  

Puhani, 1998 Poland 1)Training,  

2)Intervention 

Works (subsidies 

in the private 

sector) 

3)Public Works  

Registered 

unemployed  

1992-1996 

Labour Force 

Survey  

Re-employment 

probability 

Propensity Score Matching and 

Exact Matching 

Nearest neighbour without 

replacement  

And a Duration Model  

Training : 

Positive effect for men. 

Significantly positive effect for 

women for one month only.  

Significant positive effect of 

Intervention works and Public 

works for men.  

Vodopivec, 

1999 

Slovenia  1)Public works Unemployed 1992 – 1996  

Administrative  

Exit in individuals 

labour market 

status after 

searching n 

Heckman Two Stage Model  Participants have higher success 

rate of finding employment.  

Women after 6 to 12 months of 

job search have lower rate of 
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months for a job.  

Three values: 0 if 

after n months is 

still unemployed; 

1 if after n months 

is employed; 2 if 

after n months is 

out of labour force 

being unemployed. Young 

participants: +  

Vocational education: -  

Gerfin and 

Lechner, 

2002 

Switzerland  1)Training (5 

types), 

2)Employment 

Programmes(priva

te 

and public; job 

creation which 

does not compete 

with regular jobs), 

3)Temporary 

wage subsidy (in 

the regular labour 

market) 

Unemployed

, UI 

recipients  

1997-1998 – 

Administrative 

data  

The probability of 

being in 

employment and 

out-of-labour 

force 

Propensity Score Matching 

(Multivalued treatment)  

Temporary wage subsidy shows 

a positive effect, employment 

programmes show a negative 

effect and training has mixed 

results. 

Leetmaa and 

Vork, 2003  

Estonia  1)Training  Unemployed

, UI 

beneficiaries  

2000 – 2002  

Administrative, 

Follow-up 

Survey  

Employment,  

Earnings 

conditional on 

being employed 

Propensity Score Matching  

Nearest neighbour with 

replacement 

 

Training increases the 

employment probability and 

earnings.  

Micklewrigh

t and Nagy, 

2005 

Hungary  1)Job search 

monitoring 

 

UI claimants  2003 – lasted 

four months 

Administrative, 

LFS  

Employment 

hazard 

  

Multivariate Duration Model Large significant effect for 

women over 30. , The effect is 

even larger if women over 30 is 

married.   

Men and younger women: no 

effect 

Dorsett, 2006 United 

Kingdom  

Two stage 

programme:  

1.Job-search 

activity 

2. one of the 

options:  

1) Subsidised 

employment,  

Young 

unemployed 

1998 

Administrative 

data 

Employment in 

the week starting 

28 May 2001 

Propensity Score Matching 

 

Subsidised employment is more 

effective in securing 

unsubsidised employment than 

the other options available. 
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2) Full-time 

education and 

training, 

3) Environmental 

task force or 

voluntary sector 

Rodriguez-

Planas and 

Benus, 2006  

Romania  1) Training 

and retraining ,  

2) Small business 

assistance,  

3) Public 

employment, and 

4) Employment 

and relocation 

services 

Disadvantag

ed and long-

term 

unemployed 

1999-2002 

Administrative 

and Follow up 

Survey 

Re- employment 

probability and 

earnings  

Propensity Score Matching 

Kernel-based matching with a 

caliper of 1%. 

 

. 

Training, small business 

assistance and employment 

relocation services have 

positive effects on re-

employment probabilities and 

wages. Public employment 

programme has a negative 

effect.  

Kluve, 

Lehman and 

Schmidt, 

2008 

Poland 1) Training,  

2) Wage subsidies 

in private sector 

 

Unemployed 1992–1996 

Labour Force 

Survey  

 

Out of labour 

force – 0, 

employed – 1 and 

unemployed -2 

Exact Covariate Matching  

  

Training increase employment 

probability for men and women, 

IW does not have any effect for 

women but has a negative effect 

on men.  

Ramos et al., 

2009  

Spain 1)Training  

2)Retraining 

3)Personalised 

employment 

support  

4)Social 

Guarantee 

programmes  

5)Job Creation 

scheme 

6) Integrated 

programmes 

Unemployed 2005  

Administrative 

data  

The probability of 

being employment 

Propensity Score Matching – 

Nearest neighbour without 

replacement  

 

Participation increases the 

probability of becoming 

employed by more than 5%.  

Participating in more than one 

programme is more effective 

than participating in only one.  

Christensen, 

2009 

Denmark  1)Public and 

private on the job-

training,  

2)Residual 

programmes (a 

combination of 

active measures 

targeted at the 

weakest 

Unemployed 

25-50 years, 

UI recipients 

2002-2006 – 

Administrative 

data 

The probability of 

being employed 

and earnings 

(indexed to 2005) 

Propensity Score Matching  Training increases employment 

and earnings 

Women, middle age or older, 

and unskilled benefit the most 

from participation in these 

programmes. 
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unemployed - 

specific in 

Denmark) 

Caliendo et 

al., 2011 

Germany  1) JUMP Wage 

Subsidies, 

2)Wage subsidies,  

3)Short-term 

training,  

4)Further training,  

5) Preparatory 

training,  

6) Job search 

assistance,  

7) Job creation 

Scheme.  

Young 

unemployed  

2002-2008  

Administrative 

data – detailed 

daily 

information 

Short-term and 

long-term effects 

in employment  

Propensity Score Matching –  

Inverse Probability Weighting – 

Matching with strata 

 

Positive long-term employment 

effects for almost all measures 

aimed at employment. 

Insignificant effect on youth 

and low positive effect on low 

educated youth.  

Public sector job creation is 

found to be harmful for the 

medium-term employment 

prospects and ineffective in the 

long-run.  

 

Borra et al., 

2012 

Spain Combination of 

1)Training,  

2)Labour 

Orientation and  

3) Work 

Placements 

Registered 

unemployed 

2004 

Administrative 

data and  

Two follow-up 

Surveys in 2005 

and 2008  

Employment 

probability,  

Earnings, 

Job Security 

Working hours   

at different time 

periods (at 6 and 

36 months of 

completion of the 

programme) 

Propensity Score Matching  

Epanechinikov and Gaussian 

Kernel matching and Radius 

matching 

  

Short-run (6 months): Positive 

effect on employment, job 

security and working hours.  

 

Long-term (36 months):No 

significant effect  

Maibom  et 

al., 2014  

Denmark 1) More frequent 

meeting, 

2) Job search 

assistance and  

3) Early 

mandatory 

participation in 

activation 

programmes  

Young 

uneducated 

and 

educated 

unemployed  

2009 

Administrative 

data  

The probability of 

being in 

employment 

Randomly Controlled Trial   For young uneducated there is 

negative impact of all measures 

on employment 

For young educated there is a 

positive effect for more 

frequent meeting (counselling), 

job search assistance but no 

effect for early activation. 

ILO, 2014  Albania  1)On-the-job 

training,  

2)Wage subsidies 

for job-seekers in 

difficulty (long-

term unemployed, 

young, 

Registered 

unemployed  

2008 – 2013  

Survey  

The probability of 

being in 

employment 

Propensity Score Matching  

Nearest neighbour matching 

with replacement; caliper of 

0.0001. 

  

All three programmes have a 

positive impact; the largest 

impact is that of wage subsidies 

for job-seekers in difficulty.   
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unemployed with 

disability, older 

than 45 with 

lower level of 

education etc.) 

and 3)Internship 

programme 

 

Bonin and 

Rinne, 2014  

Serbia  1)Vocational 

Training, 

2)Temporary jobs 

Unemployed

, UI 

recipients  

2005 –  

Survey  

Unemployment, 

employment in a 

regular job 

including self-

employment, 

employment in a 

seasonal job and  

 

Subjective 

wellbeing 

variables.  

Propensity Score Matching 

using Nearest neighbour 

matching  

The study does not find any 

effect of the programmes on the 

labour market outcomes. 

However, the survey was 

conducted a short period after 

the completion of the ALMPs, 

authors suggest that this might 

have affected the results.  

The positive Impact appears to 

be strong when judged by 

subjective well-being. 

Mojsoska-

Blazevski 

and Petreski, 

2015 

Macedonia  1)Self-

employment 

programme, 

2)Internship, 

3)Training for 

known employer, 

4)Training for 

deficient 

occupations, 

5)Training for IT 

skills   

Registered 

Unemployed 

2012  

Cross-sectional 

Survey data 

Several outcome 

variables 

regarding 

employment and 

subjective 

wellbeing 

Nearest Neighbour Matching 

with replacement and with 

caliper 

Mixed results. Internship 

scheme and Training for known 

employer are more effective in 

increasing employment 

probability. 

Caliendo et 

al, 2017  

Germany 1)Short-term 

training,  

2)Long-term 

training and  

3)Wage subsidies 

Registered 

unemployed 

June 2007 – 

May 2008 

Administrative 

and Survey data  

The probability of 

being in 

employment and 

the level of 

earnings 

Propensity Score Matching 

using Kernel matching and 

Inverse Probability Weighting  

No effect of short-term and 

long-term training on 

employment probability and 

negative effects on earnings. 

Positive effects of wage 

subsidies on employment 

probability and earnings.  

Popescu and 

Roman, 2018  

Romania 1)Vocational 

training  

Registered 

unemployed 

2014  

Survey data  

The probability of 

being in 

employment  

Propensity Score Matching and 

Inverse Probability Weighting 

Positive but modest effect on 

employment probability 
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Štefánik et 

al., 2018 

Slovakia  

 

 

 

 

1)Training and 

2)Internship 

schemes 

Registered 

unemployed  

January 2007 -

April 2008 

Administrative 

data  

The probability of 

being in 

employment 

Propensity Score Matching, 

Inverse Probability Weighting 

and Two-Stage Least Square 

Estimations Using An 

instrumental Variable 

Strong positive effect in the 

long-term after completion of 

the active measures.  

Potluka, 

2017 

Czech Republic 1)Public works in 

social enterprises  

Unemployed  April 2010 - 

June 2014 

Administrative 

data  

The probability of 

being in 

employment 

Propensity Score Matching  Positive effect increasing 

individuals‘ employment 

probability. Strong effect for 

women and beneficiaries older 

than 40 years.  

Petreski, 

2018  

Macedonia, 

Serbia, 

Montenegro, 

Russia, 

Kyrgyzstan, 

Moldova and 

Armenia 

1) Public 

employment 

support services  

Young 

unemployed 

2014 or 2015  

Cross-sectional 

Survey data  

Informal 

employment 

(measured by 

whether the 

individual had an 

employment 

contract) and 

wages  

Two stage Heckman selection 

model  

 

Public employment support 

services decrease probability of 

being employed in the informal 

sector. Insignificant results for 

wages equation.  

Bratti et al., 

2017 

Latvia 1) Vocational 

training 

programme 

Young 

unemployed 

June 2013 -

December 2015 

Administrative 

data 

 

The probability of 

being in 

employment 

Propensity Score and Coarsened 

Exact 

Matching estimators. 

Insignificant effect 

Adamecz-

Völgyi et al., 

2018 

Hungary  1)Supported 

employment 

programme  

Disabled 

unemployed 

January 2004 – 

December 2011 

Administrative 

data  

Probability of 

finding a job and 

not re-entering the 

unemployment 

registry 

Propensity Score Matching 

Use time-window approach of 

matching the treated and 

controls 

Positive significant effect on 

employment probability. 

Positive but smaller effect on 

not re-entering the 

unemployment registry.  
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The definition of the set of characteristics to be included in the propensity score 

estimation is a crucial part of the statistical analysis in Propensity Score Matching 

evaluations. The choice of variables to be included in the propensity score estimation 

varies across European countries and this is partly due to the limitations of available 

data. Variables that capture social demographic characteristics such as age, gender, 

educational attainments are commonly included in the propensity score estimation; 

rarely included are variables that capture living conditions and household situations. 

Due to fertility or other reasons, the effect of ALMPs may differ by gender and it is 

apparent that this covariate needs to be balanced for the two groups (Puhani, 1998; 

Bonjour et al., 2001). Rodriguez-Planas and Benus (2006) point out that the family 

composition and whether the person is the main breadwinner in the family is likely 

to impact upon the decision to participate and should be accounted for. Additionally, 

Caliendo et al. (2011) find evidence that characteristics such as being married and/or 

being a parent increases the probability of participation in active measures.  

Covariates such as region and rural residence are usually included in the studies to 

capture regional heterogeneity in different geographic areas since it is considered 

that regions are an important  determinant of participation in active programmes 

(Kluve et al.,2002; Dorsett, 2006; Rodriguez-Planas and Benus, 2006; Bonin and 

Rinne, 2014; Mojsoska-Blazevski and Petreski, 2015; Bratti et al., 2017). Regional 

variables capture the unobservable local aspects that are correlated with programme 

implementation, with local policies, local infrastructure and labour mobility which 

are relevant for participation decision and participants‘ future labour market 

experience. In order to capture the economic variation, more specifically, some 

studies include regional unemployment rates (Bonjour et al., 2001; Dorsett, 2006; 

Schmidl, 2014) and also regional GDP growth during the year of participation 

(Schmidl, 2014). Schmidl (2014), in addition, captures the seasonal labour market 

conditions by matching individuals by the calendar month of the entry into 

unemployment.  

 The empirical studies usually rely on meaningful approximations to account for 

unobserved characteristics (Kluve et al., 2002; Dorsett, 2006; Schmidl, 2014; 

Caliendo et al., 2017; Adamecz-Völgyi et al., 2018). The pre-treatment labour 

market histories and earnings have been found to be good variables to approximate 
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labour market attachment and aspirations that may affect the programme 

participation (Bryson et al., 2002; Lechner et al., 2013; Bratti et al., 2017). The 

timing of entry into the programmes may vary for participants with different 

characteristics. As an important determinant of the decision to participate in active 

programmes, Caliendo et al. (2011) include the unemployment duration before 

participation over a period of 12 months for youths in Germany. However, due to the 

low number of monthly treatment entries, the study divided this duration into three 

strata (1 to 3 months of unemployment duration; 4 to 6 months and 6 to 12 months of 

unemployment duration) and only individuals with similar unemployment duration 

intervals were compared. Kluve at al. (2002) when using Exact Covariate Matching 

for Poland apply the time-window approach which matches the treated and control 

individuals based on their exact pre-treatment labour market state (being 

unemployed, employed or inactivity state) up to 12 months before participation and 

in addition to other covariates the study matches pairs of treated and untreated based 

on identical pre-treatment histories. Adamecz-Völgyi et al. (2018) in their study for 

Hungary also use the time-window approach to match the treated and controls 

attempting to capture the similar labour market conditions for the two groups. In a 

recent study for Germany, Caliendo et al. (2017) as well as using labour market 

histories they also control for other, usually, unobserved individual characteristics 

such as personality traits, attitudes, expectations, social networks and 

intergenerational information. However, their findings suggest that if comprehensive 

control variables, such as those usually used in modern ALMP evaluations, including 

labour market histories are accounted for in the treatment specification, then the 

addition of other usually unobserved variables add little explanatory power.  

On the other hand, the empirical review of Heckman et al. (1999) suggests that when 

matching with pre-treatment earnings at different times result in biased estimates 

since the matching is created with serial correlated pre-treatment outcomes. In 

addition, Heckman et al., (1999) argue that when these variables are eliminated from 

the estimation, the estimates from non-experimental studies are consistent with those 

from experimental studies. Heckman and Smith (1999) argue that labour force 

dynamics, i.e. being unemployed or out of the labour force, rather than earnings 

determine the participation decision, and thus should be accounted for in the 

propensity score estimation.  
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There are a few studies that capture the impact of the quality of employment services 

in the effectiveness of active programmes (Dorsett, 2006; Schmidl, 2014). Schmidl 

(2014) account for the number of placement offers by the case workers and the last 

contact with the employment services which may be of particular importance to 

measure the labour market performance of youths. The findings of the study suggest 

that young unemployed with the lowest and the highest number of offers are less 

likely to participate in active programmes compared to those with average 

employment offers (Scmidl, 2014). Dorsett (2006) argues that the regional dummies 

included in the estimation would account for the job centre the participant attends, 

hence effectively controlling for the level/quality of services provided to the 

participants.   

Main Findings by Programme 

 Training  

Training usually accounts for the largest share of expenditure on active programmes 

in European countries.  Accordingly, as Table 4.1 shows, more than half of these 

studies investigate the effectiveness of training as an active measure. Earlier studies 

usually did not differentiate between the types of training programmes implemented 

(general training
33

 e.g. training to improve literacy skills and firm-specific training) 

and as such were unable to capture the relative effects of a specific training scheme 

(e.g. Puhani, 1998; Kluve et al., 2002; Leetmaa and Vork, 2003; Rodriguez-Planas 

and Benus, 2006). Hence, one may argue that the results of those studies do not 

provide any clear message to policy-makers as to which training scheme is more 

effective in reducing unemployment.  

More recent studies conducted in European countries have differentiated between the 

types of training (e.g. Lechner, 2001; Schmidl, 2014; Mojsoska-Blazevski and 

Petreski, 2015).  Schmidl (2014) investigated the effectiveness of short-term training 

(from two to eight weeks duration), long-term training (up to one year), participatory 

                                                           
33

 Lowenstein and Spletzer (1999) distinguish between general and specific training: ‗‘...general 

training is defined as a human capital investment that raises a worker‟s productivity at other 

employers to the same extent as at the employer that provides the training. Similarly, completely 

specific training is defined as a human capital investment that increases productivity only at the 

employer that provides the training.‘‘(Lowenstein and Spletzer, 1999, p.711) 
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training (a practical training within a company that tends to help participants to find 

and successfully participate in regular vocational training or unsubsidised education) 

and other active programmes for Germany using an IZA Evaluation Dataset. This 

administrative dataset (composed of more than twelve thousand observations for 

young ALMP participants only) provides detailed daily information on spells in 

employment and social security contribution, unemployment, labour market history, 

socio-demographic characteristics and participation in ALMPs. This amount of data 

allowed the author to estimate monthly treatment effects as the difference between 

the treated and control outcome; for most measures the outcome variable was the 

probability of becoming employed with the exception of participatory training for 

which the outcome was the probability to participate in a vocational training or 

unsubsidised education. The results from the study suggest that the participatory 

training does not improve the post-training level of completed education and 

training. The evidence suggests that training increases the probability of becoming 

employed by 10 percentage points. The study also finds evidence of lock-in effects 

of long-term programmes (participants reduce their effort to search for regular jobs 

during the period of participation) of up to 20 percentage points. The findings 

suggest that training programmes help to overcome the barriers which youths face in 

entering the labour market. A similar study for Switzerland using a very informative 

dataset from the local labour offices analysed the impact of basic short-term training 

and long-term training (Lechner, 2001). The study employed a matching method 

using multinomial choice model to obtain the propensity scores and found no clear 

evidence that the initial training (job counselling and courses in the local language) 

and further vocational training (a combination of trainings including information 

technology courses with longer duration than basic training) affected the probability 

of participants entering employment after completion. 

The majority of the evaluations of training programmes in transition economies tend 

to find a positive effect in the short-term (6 to 12 months) as compared to the long-

term effect (more than a year). The evidence from Poland suggests that individuals 

participating in training programmes have much higher prospects of getting 

employed than they would have in the absence of such measures. Puhani (2002) 

analysed the impact of different active programmes (training and employment 

subsidies) on employment using a Propensity Score Matching and Duration Model 
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employing data from Polish Labour Force Survey (LFS) collected during 1992 to 

1996. Training at the time the data was collected took place within companies and 

also at centres run by the employment offices. The training targeted a very wide 

range of the unemployed, from white collar to blue collar unemployed and the 

training lasted from 3 to 6 months. One important feature of all the active measures 

in Poland at that time was the link of participation in these programmes with the 

entitlement to unemployment benefits.  Participating in one of the programmes made 

the participant eligible for another 12 months of benefit entitlement. The data 

allowed controlling for socio-demographic characteristics, education level, labour 

market history, occupation and industry of employment and place of residence. The 

results from the matching estimator suggest a positive effect on getting re-employed 

for participants in training for both genders although this effect is larger for men (20 

percentage points for men compared to 10 percentage points for women). This 

finding is also supported by the duration model which suggests significant positive 

effects of training for both men and women – participation in training reduced 

unemployment duration by five months for men while two months for women. In 

addition, the results from the duration model suggest that training in comparison to 

private subsidies and public works was more effective.  

Kluve et al. (2008) applied Exact Covariate Matching on the same Polish LFS 

dataset as Puhani (2002). To capture the treatment assignment, the study divided 

individuals‘ labour market history in quarters and matched individuals who were 

unemployed during at least one quarter over the sampling period. This approach 

tends to capture more effectively the changes in institutional set-up and economic 

conditions which are common in transition countries. The labour market history was 

also observed after the treatment; this information was condensed to summarize the 

post-treatment labour market outcome of each individual by the individuals‘ average 

employment rate over the three quarters after the treatment. Kluve et al. (2008) 

estimated the effects of treatment using two samples: the first one without 

accounting for the individuals‘ labour market history while the second taking that 

into account. The results suggest different effects from the two samples. According 

to the findings from the first sample, there is no significant effect of training while 

the results from the second one found that participants have higher post-treatment 

employment rates, by 14 percentage points on average, compared to those who did 
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not participate. Moreover, this finding suggests that had the study not accounted for 

the individuals‘ labour market history, the true effect of the programmes would have 

not been accurately estimated. According to Kluve et al. (2008), training seems to be 

more effective than other programmes and also the trained participants in general 

seem to be equipped with better observable and unobservable characteristics 

enabling them to have better employment prospects.  

An evaluation for Albania also suggests positive effect of on-the-job trainings (ILO, 

2014). The study evaluates the impact of three different active programmes: on-the-

job training, job-seekers in difficulty and an internship programme. It uses a cross-

sectional data from the registered job-seekers who had participated between 2008 

and 2013 or had been selected to participate in the future. The dataset provides a 

limited number of variables on personal characteristics, but no information on 

household or community characteristics except for the region variable dummies. The 

evaluation based on Propensity Score Matching uses age, gender, educational level, 

unemployment duration and regional controls to estimate the propensity scores.  

According to the results, participating in on-the job-training increases the probability 

of becoming employed by 55% after one year compared to non-participants. This 

estimated large effect however, should be interpreted with caution as the control 

group used for analysis was very small. Out of 730 individuals from the treated 

group 608 were out of common support (section 4.3.2 discusses the assumption of 

common support in more detail); only 50 individuals comprised the control group.  

In contrast, the study evaluating the effect of training in Serbia by Bonin and Rinne 

(2014) does not find any effect of vocational training on participants‘ prospects of 

finding a job. Active measures evaluated in this study comprised of vocational 

training and also temporary jobs in the construction sector targeted at the long-term 

and disadvantaged unemployed. Participation in vocational training lasted for three 

months and was full-time. The study used a matching estimator based only on age, 

educational level and place of residence. The active programmes started in January 

2004 while the data was collected through a survey in November 2005. However, the 

survey did not trace the individuals‘ employment histories which seem to be an 

important factor in assessing the effectiveness of ALMPs. The authors also suggest 

that one reason for the insignificant results may be that the survey was conducted 
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only a short period after the completion of the vocational training thus the full effect 

was not captured. 

Positive effects of general training and literacy skills on earnings and re-employment 

probabilities were found for Romania by Rodriguez-Planas and Benus (2006). 

Rodriguez-Planas and Benus used a very rich dataset from Romanian employment 

offices for registered unemployment during the period 1999 to 2002 followed by a 

survey of the participants and non-participants. Propensity Score Matching was used 

to create matching based on a wide range of covariates including socio-demographic 

characteristics, pre-treatment employment history, regional dummies and variables 

that capture local labour market conditions to measure the different employment 

opportunities in specific regions. The study also includes participants‘ earnings 

during the two years period prior to the survey as a proxy for productivity. Training 

targeted the disadvantaged unemployed and comprised vocational training, general 

education and literacy skills. Those who participated in active measures in Romania 

were entitled to one or two months of benefits after they have completed the 

programme. The findings from the study suggest that the effect on earnings is 

particularly large; training increases earnings of participants by 58% compared to 

non-participants. The study also found that training is more effective for young 

participants than for older ones. Furthermore, the evidence suggests that training has 

shortened considerably the duration of receiving unemployment benefits and made it 

almost non-existent among the training participants.  

A more recent study, Mojsoska-Blazevski and Petreski (2015) employ a nearest 

neighbour propensity score matching using a cross-section dataset which allows 

assessing the impact of different training programmes designed and implemented 

specifically in the FYR Macedonia. These measures include training for known 

employer, training for deficient occupations and training for IT skills. The findings 

of this study suggest mixed effects. The most effective of the training programmes is 

the training for known employer which is found to improve the long-term 

employment, reduce the chances of non-employment at any time after the training 

and increases beneficiaries‘ wage. The least effective seems to be the training for IT 

skills which only improves the subjective well-being of the beneficiaries. According 

to the authors, this result might be due to a targeting issue where in training for IT 



170 
 

skills there is a high share of long-term unemployed while for other active measure 

the participants seems to have had a much shorter spells of unemployment of less 

than 1 month.  

Other studies using Propensity Score Matching to evaluate the effectiveness of 

training measures are Štefánik et al. (2018) for Slovakia, Popescu and Roman (2018) 

for Romania and Bratti et al. (2017) for Latvia. The first study also employs Inverse 

Probability Weighting and Two-Stage Least Square Estimations using an 

instrumental variable. Štefánik et al. (2018) find evidence to suggest that the 

vocational training programme increases participants‘ employment probability 

moderately in the medium-term of up to 36 months. After 3 years, the employment 

probability starts to grow to its maximum in the 54th month after the end of 

participation where the difference between treated and control is about 4 percentage 

points. Popescu and Roman (2018) also find a significant positive effect of 

vocational training programme on employment probability of 14 percentage points 

higher than that of a similar control individual. The findings from this study suggest 

that the effect is larger amongst younger beneficiaries than those older than 25, for 

women compared to men and for those who have lower education levels. These 

findings are in line with the expectations that the active measure might be more 

effective for the disadvantaged given that these individuals benefit more from the 

skill enhancement. Bratti et al. (2017) found a positive but insignificant effect of the 

vocational training programme for youths in increasing beneficiaries‘ employment 

probability. Bratti et al. suggest several possible explanations for this result. The data 

used for this study is from a period where there was an increase in the employment 

rate of youths in Latvia hence both treated and control might have found jobs 

independently from the vocational training. Additionally, in order to increase the 

effectiveness of this measure, the authors suggest that vocational training should be 

combined with a job-creation scheme such as tax rebates for employers hiring 

unemployed individuals.  

Van Ours (2001) carried out a multivariate duration model using rich administrative 

data from registered unemployed from 1993 to 1998 in the Slovak Republic to 

analyse the effectiveness of training, public and private employment subsidies. The 

targets of this training were the disabled unemployed, older people, long-term 
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unemployed, young workers and school leavers. The study accounted for pre and 

post-treatment durations of unemployment, personal characteristics, regional 

differences and a variable indicating whether the individual has participated in any of 

the programmes to estimate the transition rate to employment (the speed with which 

participants find a regular job) and the job separation rate (the speed with which they 

terminate a regular job). The analysis concluded that participating in training gives 

participants an advantage in getting a regular job.  According to the findings, training 

participants have a 6 times higher job finding rate than non-participants. This high 

observed impact may have been a result of unemployed entering in training 

programmes only after they have been promised a job. Participation in training did 

not have any impact on the job-separation rate, suggesting that the trained workers 

were not more valuable to retain in the company than those employees who had not 

participated in any training scheme.  

 Job Search Assistance/Employment Services  

There are very few studies evaluating the effectiveness of employment services in 

European transition economies. Job search assistance is typically the least costly 

active measure and most evidence from transition economies also suggests that this 

measure has a positive impact on labour market outcomes. Through raising 

motivation and through monitoring their job-search behaviour these programmes 

generally have a positive effect on the probability of an unemployed individual 

getting back to work.  

The evidence for the Czech Republic suggests that the receipt of employment 

services reduces unemployment duration. Terrell and Storm (1999) utilised a 

duration model to assess both active and passive labour market programmes during 

1992 to 1994 which was in general a period of developing labour market institutions. 

The analysis is focused particularly on one active programme called job brokering 

where the case worker assists the unemployed to set up interviews with potential 

employers. The methodology assesses the probability that someone finds a job with 

the assistance of the case worker comparing to the probability of someone finding a 

job without assistance. The evidence suggest that the unemployment duration is 

shortened only for unemployed groups with longer duration spells, especially 

women, minorities and the less educated.  
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Rodriguez-Planas and Benus (2006) found evidence of positive effects of 

employment services on employment outcome. This study evaluated the 

effectiveness of small business assistance and employment relocation services 

(consisting of job and social counselling, job search assistance, job placement 

services, and relocation assistance). The first one assisted displaced unemployed 

entrepreneurs to facilitate start-ups while the second helped recently unemployed to 

find employment. Their study suggests that participants in the employment 

relocation services in Romania had an 8.45 percentage points higher probability of 

being employed compared to non-participants. However, the positive impact of 

receiving employment relocation services was found for men but not for women. 

The findings for the small-business assistance also suggest positive effects; receiving 

this assistance increases the probability to become self-employed by 8.38 percentage 

points compared to those who did not receive it. This measure also reduced the 

period of receiving unemployment benefits by almost one month. 

Micklewright and Nagy (2008) assess the effectiveness of an increase in the 

monitoring of job search for benefit claimers in Hungary during 2003. The 

experiment uses data from LFS and employment registers to randomly select 

individuals into treatment and control groups. The study includes actions from case 

workers to increase the intensity of job search activity of benefit claimants. The 

treatment group was asked to increase the number of visits to every three weeks; 

during these visits they were asked about the job search activity and reasons for 

those who admitted little or no search activity. There were no actual sanctions of no 

job search activity but the treated were uncertain of the implication of failure. 

Control individuals were not asked to change their intensity in job search activity 

and were required to have a visit in the employment offices only once every three 

months. Multivariate duration models were used to assess the exit rates to 

employment while accounting for personal observed characteristics, a vector of 

employment office dummies, dummy variables with different duration time intervals 

and dummy for membership of the treatment. According to the findings, the treated 

did not, in general, find a job more quickly than the control individuals. However, 

there were positive effects found for married women over 30. 
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A more recent study evaluated the effectiveness of employment services on the 

probability of being employed in the informal sector and the level of wages for seven 

transition economies (Macedonia, Serbia, Montenegro, Russia, Kyrgyzstan, 

Moldova and Armenia) (Petreski, 2018). This study uses a Heckman two stage 

selection model where the variable of interest is measured as a dummy variable 

taking value of 1 if the person received a public employment-support service in any 

of the following forms: advice on how to search for a job; information on vacancies; 

guidance on education and training opportunities; placement in education or training 

programs; and 0 otherwise. The study attempts to address the econometric challenges 

such as the selection into informal job and employment and the endogeneity of the 

variable measuring the public employment-support service. Petreski argues that the 

selection arises because persons who are informally employed may be systematically 

different from those who are unemployed and hence whose (in)formal-employment 

status is unobserved. In the first stage, the probability of having used at least one 

public employment service is regressed on a set of independent variables such as: 

marital status, the number of children living in the household, education of parents 

and the household‘s financial situation. The second stage uses the probability of 

being in informal work as the dependent variable. The study also attempts to address 

the selection issue where the second stage employs an instrumental variable that 

correlates with the endogenous regressor, but is not directly correlated with the 

outcome variable, informal employment. The study uses two instrumental variables: 

the country employment rate at the time the person finished schooling and the 

number of years since the person finished school. The findings suggest that public 

employment support services reduce the probability of being employed in the 

informal sector by 64% compared to a person that did not use this service. In 

addition, in order to assess the effectiveness of different ALMPs, the study separated 

the sample for each active measure using the same methodology. Education and 

training programmes are the most effectives in reducing the probability of being 

employed in the informal sector by more than 21% while advice and guidance 

reduce it by 15%. Providing information on the available job vacancies seems to 

have no effect on the probability of being employed in the informal sector.  
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 Public and Private Sector Employment Subsidies  

Evidence from the evaluations in transition economies suggests mixed results for 

private and public sector employment subsidies. Van Ours (2001) came to 

conclusion that the unemployed that had participated in public employment subsidies 

had significantly higher transition rates to a regular job and very low job separation 

rates compared to those that did not participate. Public employment schemes in the 

Slovak Republic mainly targeted the less qualified unemployed and lasted for 6 

months at the beginning of observed period which was later extended to 9 months 

and after that to 12 months. The author argues that this effect may come as a result of 

signalling; participating in a public subsidy signals a positive attitude towards work 

to potential employers. In contrast, those who participated in the private employment 

subsidies had a lower transition rate to a regular job compared to nonparticipants. 

The private employment subsidies targeted the more qualified unemployed and was 

set for a duration of minimum two years period. Since the duration of this 

programme is quite long, the lock-in effect may be the explanation for its‘ negative 

effect.  The findings of Van Ours (2001) suggest that females, the less educated and 

older participants had lower transition rates to employment i.e. lower speed with 

which they find regular jobs compared to similar non-participants.  

Puhani (2002) suggests that participants of public and private employment subsidies 

are less likely to become employed than non-participants. In this study for Poland, 

the results from the duration model suggest that participation in these programmes 

decrease the transition rate into employment for both men and women but will also 

decrease the rate into inactivity for men. This latter finding may be a positive 

indication that at least these programmes increase labour market attachment. 

Rodriguez-Planas and Benus (2002, 2006) also investigate the effectiveness of 

public employment subsidies along with training, employment services and small 

business assistance using a propensity score matching estimator for Romania. In this 

evaluation, the public employment subsidies are the only active measure that did not 

have positive effect on increasing the employment probabilities or earnings. These 

public employment subsidies were offered in regions with very low employment 

prospects which is argued to be the main reason for their negative effect.  
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A more recent study by Adamecz-Völgyi et al. (2018) uses Propensity Score 

Matching to evaluate the effectiveness of wage subsidies designed to assist the 

disabled unemployed to enter and remain in the labour market through employment 

in public institutions in Hungary. The findings suggest that these policies are 

effective in increasing beneficiaries‘ employment probability by up to 25 percentage 

points compared to that of the control group. The effect is found to be larger for 

women compared to men. A similar study by Potluka (2017), which uses the same 

methodology for a dataset for Czech Republic, also finds positive effects of public 

works in social enterprises on increasing beneficiaries‘ employment probability of 

about 17 percentage points.  

The evidence from a study in Slovenia conducted by Vodopivec (1999) suggests that 

there is an immediate positive effect of public works on employment. Vodopivec 

(1999) utilised a Heckman two stage selection model with a dataset from three 

different sources: the dataset from registered unemployed, the dataset on the receipt 

of benefits and the dataset of the participants of employment subsidies. The study 

controlled for personal characteristics, human capital characteristics and variable 

indicating participation to analyse their effects on the probability of leaving 

unemployment (taking three different states: 0 if unemployed, 1, if employed and 2 

if out of the labour market). These policies gave priority to the long-term 

unemployed, low skilled, disabled unemployed and those living in material hardship. 

The findings suggest an immediate positive effect of public works on employment. 

However, this effect becomes insignificant after 3 months which may be due to 

stigmatisation of the participants. An important finding of the study is that it reduces 

the probability of becoming inactive, thus increasing labour market attachment. 

 ALMPs for Youths  

As there is no evidence on specific youth programmes in transition countries, this 

section will review the evidence found for other European countries. Training 

programmes for youths have mixed effects, however mostly positive, results. The 

evidence from the meta-analysis conducted by Kluve (2010) suggests that active 

programmes that target youths in European countries are less likely to be effective 

than non-targeted programmes. Larson (2009) also found evidence that training 

programmes for youths in Sweden have short-term negative effects on the labour 
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market while zero effects in the long-term. According to some studies, the most 

successful active programme for youths was the New Deal implemented in the UK 

(Blundell et al.; 2004, Dorsett, 2006). The New Deal for Youth Programme 

combined a job-search assistance programme with one of other four programmes: 

subsidised employment, full-time education and training, environmental task force or 

voluntary sector. Dorsett (2006) provides strong evidence, when analysing the New 

Deal for Youth Programme, that the combination of the two programmes job-search 

assistance and subsidised employment for young unemployed were more effective 

than training programmes and job creation schemes. Ehlert et al. (2012) also 

provides evidence that combination of different programmes had positive impact in 

the labour market. According to the authors, the combination of coaching, training 

and temporary work had positive impact, increasing the probability of finding 

employment.  Van den Berg et al. (2012) also found evidence that meeting and 

consulting with case workers had a positive impact on job finding rates for young 

unemployed in Denmark. In addition, Schmidl (2014) suggests that a wage subsidy 

is the most effective programme in the long-term for young German unemployed 

while public sector job creation is found to be harmful for the participants.  

 Explaining the divergence in the findings of evaluations  

From the discussion above one can observe significant differences in the results of 

the studies conducted in transition economies. The overall evidence suggests that 

training, as an active measure, has a positive short-term effect (6 to 12 months). One 

explanation for this finding is that since there is lack of necessary skills and 

qualifications of the unemployed in transition economies and particularly, since the 

long-term unemployed have experienced human capital depreciation, training helps 

directly to rebuild their human capital and increase their productivity. Training may 

work better than other active programmes since its primary aim is to reduce the skill 

mismatch and increase knowledge needed to get back to work.  

The findings reveal that the impact of active measures varies widely between 

different subgroups in the population, emphasising the importance of targeting to 

maximise the effect of the measures. Taking into consideration the level of 

unemployment and extent of long-term unemployment in transition economies, most 

of active measures in these countries target the long-term unemployed and in general 
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the more disadvantaged unemployed which is the case for Slovenia, Romania and 

Serbia (Vodopivec, 1999; Van Ours, 2001; Rodriguez-Planas and Benus, 2006; 

Bonin and Rinne, 2014; Mojsoska-Blazevski and Petreski, 2015, Bratti et al., 2017; 

Adamecz-Völgyi et al., 2018). In addition, the ALMPs in the Slovak Republic used 

different targeting for the active measures; public employment subsidies and 

trainings mostly target long-term disadvantaged unemployed, whereas private 

subsidies target more qualified participants. The findings from the studies in 

transition economies suggest that when targeting long-term and disadvantaged 

unemployed the impact on employment is positive while when targeting the more 

qualified the effect is either negative or there is no effect. The effects also seem to 

differ when comparing different age groups and gender; training and internship 

measures seems to be more effective for the younger unemployed than for older 

ones, while job-search assistance and vocational training seem to be more important 

for women than for men (Terrel and Storm, 1999; Micklewright and Nagy, 2008; 

Mojsoska-Blazevski and Petreski, 2015; Popescu and Roman, 2018). However, there 

seems to be no clear explanation why these active measures are effective for certain 

groups of unemployed and not for others.  

Theoretically, the duration of the active policies is hypothesised to be an important 

determinant of their effectiveness due to lock-in effects:  the participant reduces job-

search effort for a regular job during the period of participation in employment 

subsidies, i.e. the longer the duration of the subsidy the lower probability of getting a 

regular job. Van Ours (2002) and Caliendo et al. (2017) compare different durations 

for subsidised employment for transition economies. The findings seem to be in line 

with the theory; short-term public employment subsidies (6 to 9 months and 9 to 12 

months) seem to have a positive effect on getting employed and while the duration of 

the subsidy increases the effect becomes smaller. The study also suggests that private 

employment subsidies which last for a minimum of 2 years have negative effect on 

getting employed.  

One particular feature of the effectiveness of the active measures is its relation to 

unemployment benefit entitlement. In Poland, participation in one of the active 

measures made the participant eligible for 12 months of benefits after the 

participation (Puhani, 2002; Kluve et al., 2008). This created a cycle of some 

unemployed workers participating in the active programmes in order to claim 



178 
 

unemployment benefits afterwards. In both studies for Poland the results suggested 

negative effects of the public and private employment subsidies on employment 

probabilities. In the case of the Slovak Republic, the public employment subsidy also 

made the participants eligible for another round of benefits after completing the 

programme. This made participants shift between unemployment and subsidised 

employment making this subsidy ineffective. In contrast, the study for Romania, 

suggests in general positive effects when the participant receives unemployment 

benefits for only one or two months at most after completion of the active measure 

(Rodriguez-Planas and Benus, 2006). When there is no enforced link between 

passive and active policies no clear pattern of the effect of active measure can be 

observed.  

Since regions vary in economic strength and as such vary in employment 

opportunities, it is very important for the studies to account for these differences. In 

labour markets where the employment prospects are low the expectation is that the 

active measure will not be very effective. Most of the studies include regional 

dummies to account for this variation. Some ALMPs are designed for specific 

regions with low economic conditions aiming to increase employment such as the 

case of public employment subsidies in Romania. As explained above, these 

employment subsidies had a negative effect on employment which is in line with the 

expectations; when the labour market performance is weak active measures would 

not help in reducing unemployment. A similar finding could be observed in the study 

for the Slovak Republic when evaluating the private employment subsidies.  

It is crucial to note the potential importance of the labour market history of 

participants, because it is likely to capture unobserved characteristics such as 

motivation. Hence, when studies do not account for this variable the results might be 

biased. Studies that have used the same methodology to estimate the employment 

probabilities with and without labour history found quite different results (Kluve et 

al., 2008). Hence, the results of the studies that do not account for this characteristic 

should be interpreted with caution, such as studies for Estonia and Serbia (e.g. 

Leetmaa and Vork, 2003; Bonin and Rinne, 2014).  

Puhani (2002) suggest that stigmatisation may have caused the negative results of 

public and private employment subsidies. When the programme stipend is paid to the 
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employer and not to the unemployed, the employer may perceive participation in 

such programmes as a negative signal of an individual participants‘ productivity. The 

study for Slovenia also suggests that the negative result on employment may be due 

to the stigmatisation of participation in public works. This effect is argued since it is 

known to employers that participants in these programmes are the most 

disadvantaged unemployed and employers perceive them to have low productivity 

(Vodopivec, 1999). 

The studies reviewed above, however, do not evaluate whether active measures have 

any impact at the aggregate level i.e. whether they reduce the overall unemployment 

rate. A positive effect on the individual level does not guarantee a positive effect at 

the aggregate level. It is important to account for displacement and substitution 

effects when assessing the effectiveness of active measures and it cannot be assessed 

through microeconomic evaluation. One method to assess these effects is through 

simulation of active measures in a model of a general equilibrium economy (Jongen 

et al., 2000; De Koning, 2007). However, assessing the impact of the active 

measures at the aggregate level is not easy to conduct as this methodology is more 

sensitive to flawed data and to the model specification than microeconomic analysis.  

4.5 Conclusions   

This chapter has provided a critical review of the evaluation methodologies used to 

assess the effectiveness of the ALMPs. After analysing the evaluation problem and 

the creation of counterfactuals the review has identified several approaches to 

address the issue of selection bias when analysing the effectiveness of ALMPs. The 

Propensity Score Matching approach is analysed in more details and arguments are 

provided as to how this approach tends to replicate the setting of an experiment 

which is highly desirable in these analyses. Further, different matching estimators 

are analysed and comparisons are offered as to which of the estimators is more 

appropriate to create quality matching pairs. Inverse Probability Weighing 

Regression Adjustment is argued to be the most appropriate choice of estimator in 

the context of this thesis. This method provides unbiased estimates if only one of the 

models, the treatment or the outcome model, is specified correctly and it also allows 

multiple treatment modelling in the same framework.  
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In addition, this chapter provides a critical review of studies which evaluate the 

effectiveness of ALMPs. The quality of data available remains one of the issues in 

evaluations in transition economies. The methodologies used for estimation are also 

diverse, however they have mostly focused on matching techniques and duration 

models. The review finds a wide range of results reported in studies conducted for 

different countries and did not provide a clear overview as to which programme is 

more effective and for which target group. Most of the studies from transition 

economies report that training as an active measure improves the employment 

prospects of the unemployed in the short term, however there is no solid evidence 

provided for the long term. At the same time, there is inconclusive evidence on the 

effectiveness of employment subsidies. Chapter 5 will examine the effectiveness of 

the three different active measures: (i) on-the-job training; (ii) internship scheme; 

and (iii) institution and enterprise training, targeted at the young unemployed in 

Kosovo. This evaluation provides additional evidence and contributes to the on-

going debate on the effectiveness of a specific active measure targeted at particular 

unemployed groups.  
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5.1 Introduction  

 The empirical evidence presented in Chapter 4 provided a cross-country analysis of 

the effectiveness of different active labour market programmes with a special focus 

on transition countries. The review of empirical studies suggests that training 

programmes in general are the most effective in improving an individual‘s 

employment prospects; however, it is unclear which type of training is more 

effective. Together with internship measures, trainings seem to be relatively more 

effective when targeted at the young unemployed, while job-search assistance and 

vocational training seem to be more effective when targeted at women. Some studies 

also found that counselling and guidance on small business start-ups increases an 

individual‘s probability of being employed. The evidence from the review of general 

public works subsidies in the private sector is inconclusive. However, none of the 

studies have evaluated the relative effectiveness of different active programmes in 

transition economies, while there are very few relative effectiveness evaluations for 

European countries in general. Therefore, the aim of this chapter is to fill this gap in 

the empirical literature by providing an assessment of the relative effectiveness of 

the three different active measures in Kosovo. Since there is a range of active 

programmes in which an individual can participate, the choice of participation 

should be extended from ‗participation vs. non-participation‘ into a multiple choice 

model (Lechner, 2001).  As Chapter 2 elaborated, this approach provides information 

on whether participants of one programme would have performed better if they had 

participated in another programme. Therefore the main aim of this chapter is to 

evaluate the relative effectiveness of three active measures: On the Job Training 

(OJT), Internship Scheme (IS) and Institution and Enterprise Training (IET). 

This chapter is organised as follows. Section 5.2 provides a description of the three 

active programmes delivered in Kosovo, the groups targeted by these programmes 

and their specific aims while section 5.2.1 provides a critical review of two previous 

evaluations of these programmes. Section 5.3 offers an overview of the available 

data and provides detailed descriptive statistics. Section 5.4 analyses the 

specification of three models of the main determinants of: the probability of being in 

employment at the time of the survey, the probability of actively searching for a job 

for those unemployed at the time of the survey and the probability of having a 

contract for those employed. The models specified in this section will be used for 
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estimating the results of the multinomial choice analysis and for the main analysis of 

this chapter, the Inverse Probability Weighting – Regression Adjustment (IPWRA).  

Section 5.5 presents the findings from both estimation approaches.  Section 5.6 

offers the conclusion on the relative effectiveness of the active measures for Kosovo.  

5.2 Programmes under consideration   

As Chapter 1 elaborated in more detail, the implementation of active measures in 

Kosovo started in 2005 and continues to date. Up to 2013, 11,154 individuals 

benefited from active measures such as: public works, wage subsidies, pre-

employment training, on the job training, internship scheme and institution and 

enterprise training. This chapter will analyse the relative effectiveness of the three 

most prevalent active measures. This section provides an overview of these three 

active programmes under consideration of the analysis which were implemented 

during the period of 2008 to 2010:  Institution and Enterprise Training (IET), 

Internship Scheme (IS) and On the Job Training (OJT). While Chapter 1 provides 

more detailed information on the scale of the active measures for Kosovo, table 5.1 

presents the population of the beneficiaries of the three programmes of interest 

during this period. 

Table 5.1 Beneficiary population over the period 2008 to 2010 in Kosovo 

  2008 2009 2010 Total % 

On the Job Training (OJT) 266 86 632 984 52 

Internship Scheme (IS)  148 211 274 633 33 

Institution and Enterprise Training (IET) 54 79 153 286 15 

Total 468 376 1059 1903 100 

Source: Kavanagh (2012) 

Two of these programmes aimed to give priority to young job-seekers without skills, 

without previous work experience and with low levels of completed education, 

whilst the IS targeted university graduates. At the same time these active 

programmes aimed to balance the gender mix of participants and include ethnic 

minorities and individuals with disabilities. The aim of the programmes was to 

achieve 15% of minority participants. With regard to age, the programme‘s strategic 

aim was to primarily target the age group of 15-29; however the age requirement was 

often modified to achieve a more equitable representation either of women or 

minorities. These programmes targeted young job-seekers who had been 
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unemployed for at least 6 months; this requirement was frequently not applied to 

minorities and women. Employers were required to make efforts to retain the interns 

after the completion of their programmes; not to displace current employees in order 

to employ the participants of the active programmes; and to provide training 

participants access to an experienced supervisor from the company during their 

placement.   

Institution and Enterprise Training (IET) was aimed at supporting job-seekers by 

enhancing their skills and abilities through classroom training in the vocational 

training centres (VTC) and also acquiring job-specific skills and the essential 

knowledge in enterprises, providing the possibility of becoming a permanent 

employee in that enterprise. The target group for this scheme were young, low-

skilled job-seekers who were registered unemployed for at least 6 months, had no 

previous work experience and had not had the benefit of attending and completing 

vocational training. The last criterion was changed subsequently to accept also those 

who had graduated from vocational training. Participants in this active measure 

firstly had to attend pre-employment training of one to three weeks at a VTC to 

enhance their employability skills, team-work skills, work readiness skills, 

information and communication technology and other non-vocational skills. During 

this period the trainer in association with the prospective company specified a list of 

skills that the trainee needed to acquire during the period at the company. Training at 

the company was designed to last 3 months and provide participants with specific 

vocational skills to enable them to remain employed at that company.  

On the Job Training (OJT) mainly targeted vocational education students and 

provided career, occupational health and safety guidance by Public Employment 

Services, and practical learning and training in partner enterprises. OJT offered 

counselling and job-search assistance to potential participants for a four week period 

prior to participation in the training in order to assess the job-seekers‘ suitability for 

alternative employment opportunities. The employment adviser and the job-seeker 

then agreed on an employment plan specifying a suitable occupational profile for 

job-search. If the job-search was unsuccessful, participants were identified by the 

employment adviser as requiring further support. In agreement with the VTC and 

potential employers, the employment adviser prepared a training plan which outlined 
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the competencies to be developed during the training period. OJT provided a 3 

months period of training at companies. In both the OJT and IET programmes the 

employer was paid 50 euros per month for each participant, while the participant was 

paid 100 euro per month. This provided an incentive for the employer to train the 

participant as this amount was expected to cover the net cost of training job-seekers. 

In cases when at the completion of the training the participant was not accepted as a 

regular employee in the company, the employment services supported the job-seeker 

further through advising on other potential employment opportunities.  

The target group of the Internship Scheme (IS) was young university graduates 

without work experience, registered as unemployed for at least 6 months and who 

lived in poor family conditions or received social assistance benefits. This 

programme aimed to help the participants to acquire necessary job experience, gain 

skills and knowledge to perform in the workplace and become unsubsidised 

employees. The interns worked for 6 months in a public institution or private 

enterprise, mainly in human resources, accounting and administration departments. 

Initially, employment service advisers screened and referred job-seekers to 

employers. After the completion of the internship the employer was expected to hire 

the intern; if the intern was not employed then their adviser supported the job-

seekers in finding another job.  

With regard to the design of the active measures, IET programme was designed to 

partially take place in VTC-s as classroom training (up to three weeks) where the 

participant was expected to enhance employability skills, team-work skills, work 

readiness skills, information and communication technology and other non-

vocational skills. The rest of the IET programme would take place in the enterprise. 

The design of the OJT programme, on the other hand, required the training to be 

fully completed within the company. Private employers seem to prefer programmes 

where the candidates were required to complete the full training within the 

companies (Kavanagh, 2012).  Having the candidate in the company during the 

whole training period was viewed to be more beneficial to the employer since it 

equips the participants with the specific skills required for that job.  
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5.2.1 Studies assessing the effects of ALMPs in Kosovo  

There are two studies assessing the effectiveness of ALMPs in Kosovo. The first one 

is by Mukavilli (2008) which covers several ALMPs implemented during 2007 and 

the second study by Kavanagh (2012) which covers the ALMPs analysed in this 

empirical chapter.  

Mukavilli analyses the effect of On the Job Training, Pre-Employment Training, 

Internship Scheme and Employment Subsidies by comparing the percentages of 

beneficiaries and control groups in employment and earnings. This study used a 

small sample of 299 out of 1426 beneficiaries and 100 control individuals. The 

report does not provide any information with regard to how the control individuals 

were selected for the study and whether they are suitable for comparison with the 

beneficiaries. Another limitation of this control group is that the some non-

beneficiaries have claimed to have also participated in some training during this 

period which might have been organised by Non-Governmental Organisations 

(NGOs) or Donor organisations. The findings from the study suggest that the 46% of 

beneficiaries were employed at the time of the survey compared to 20% of the 

control group. More than 38% of OJT beneficiaries have remained employed in the 

same company where they completed their training. With regard to the earnings, 

non-beneficiaries seem to have earned more at the time surveyed of about 193 Eur 

per month compared 175 Eur per month for beneficiaries. The study also found that 

the targeting of beneficiaries was not strictly based on the pre-defined criteria. 

Except for the Internship Scheme which was targeted at young university graduates, 

other active measures targeted mainly young unemployed with less than secondary 

education. However, the beneficiaries seem to have completed higher levels of 

education compared to those in the control group. Mukavilli argues that there are 

several possible reasons for the issue with targeting: the lack of active measures for 

more educated unemployed, possible understating of the educational qualifications 

by applicants in order to become beneficiary, or issues with screening the applicants.  

The second study assessing the effect of ALMPs in Kosovo is the study by 

Kavanagh (2012) which analyses three active measures: On the Job Training, 

Internship Scheme and Institution and Enterprise Training implemented during 2008 

to 2010. This study used the same dataset which is being used for this empirical 
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chapter. The methodology used in this study is also descriptive in nature where the 

effect is assessed based on simple comparison of descriptive means between 

beneficiary and control groups.
34

 The findings from this study suggest that all three 

programmes are very well designed and improve the labour market prospects of the 

participants. With regard to relative effect of the active measures, participants of OJT 

will be more likely to get employed and remain employed in the same company 

compared to other two programmes. Similar to the first study, Kavanagh also 

suggest that there might be an issue of targeting and selecting the beneficiaries. 

According to Kavanagh (2012), IET programme seemed to have had issues with 

recruitment as most of the applicants did not meet this eligibility criterion (not 

having vocational education) and consequently most of the applicants were placed in 

OJT or IS. Afterward, this criterion was adapted to reflect candidates‘ level of 

education thus IET also accepted those who have completed vocational education. 

Even after adapting this criterion, the target number of participants was not met; only 

27% of the initial target was achieved (Kavanagh, 2012). As explained by Kavanagh 

(2012), in order to increase the number of marginalised groups such as women, 

ethnic minorities, and disabled participants in the programmes, the eligibility criteria 

were frequently relaxed.  

Both studies attempt to assess the effectiveness of the ALMPs only through 

descriptive statistics and do not use an advanced evaluation methodology. As 

explained in chapter 4, the experimental data used to analyse the effectiveness of 

these policies are usually not randomised and might be subject to potential selection 

bias. Neither of the studies reviewed above recognise this as a potential issue, hence 

their findings are likely to be unreliable. This chapter will analyse the effectiveness 

of the selected ALMPs in Kosovo by using an advanced evaluation methodology 

which attempts to address the problem of selection bias based on observable 

characteristics.  

The following section will discuss the data used in this empirical analysis followed 

by the model specification for three models. These specifications will be used in both 

empirical approaches: multinomial probit and IPWRA.  

                                                           
34 The control group used by Kavanagh (2012) was not available to use in this empirical chapter, 

hence chapter 6 will utilise LFS data to create a new control group.  
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5.3 Data and descriptive statistics  

The evaluation analysis employs survey data from the Active Labour Market 

Programmes for Youths in Kosovo which was administered by the United Nations 

Development Programme (UNDP). The data used for the empirical investigation 

presented in this chapter is from a survey carried out by Riinvest, a professional 

research institution in Kosovo, in 2012 on behalf of the UNDP. The interviews were 

conducted face-to-face with a sample of those who had completed participation in 

these Programmes. This dataset contains information on individuals‘ socio-economic 

characteristics, level of education and previous labour market history. Table 5.2 

presents descriptive statistics for individuals who participated in one of three 

categories of the active measures. 

Interviewees had participated in one of these three programmes in 2008, 2009 or 

2010. Since the dataset offers information on participants in three different years, it 

gives the opportunity to observe the treatment effect for different duration periods 

after completing the active programmes. During this three-year period 1903 job-

seekers participated in the three programmes and out of them only 1081 could be 

contacted and surveyed
35

.   

As table 5.2 shows, the distribution of interviewees was similar to the total number 

of beneficiaries, OJT with 52% compared 55%, IS with about 33% compared to 29% 

and IET accounted for 15% of both those surveyed and total participants. More than 

55% of the population of the beneficiaries started their programme in 2010, 20% 

started in 2009 while almost 26% started in 2008. The sample also consists of similar 

distribution; 53% of beneficiaries surveyed started the programme in 2010, 26% 

started in 2009 while 21% started in 2008.   

  

                                                           
35

 There is no information on whether those who dropped out of the active measures are included in 

the sample of the study or not.  
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Table 5.2 Descriptive statistics (selected variables) 

  OJT   IS   IET   

No. of observation 

(share of beneficiaries) 

    303        296         599  

                                   (52%) 

    160          153           313 

                                   (33%) 

78            91             169 

                                   (15%) 

  Male Female 
 

Total  
Male Female 

 

Total  
Male  Female Total  

Active measure duration (in 

months) 
3.81 3.92 3.86 3.94 4.12 4.03 3.62 3.94 3.78 

 
(1.29) (.362) (1.33) (1.27) (1.29) (1.31) (1.16) (1.14) (1.29) 

Employment/training plan 

(discrete variable) 
62.24 62.50 62.37 70.67 65.99 68.33 76.71 87.91 82.31 

Certification (discrete v.)  66.34 70.95 68.64 75.63 71.90 73.76 58.97 70.33 64.65 

Age (in years)* 26.83 26.08 26.46 26.65 25.99 26.32 27.03 25.99 26.51 

 
(4.59) (4.01) (4.33) (3.97) (2.94) (3.52) (4.76) (2.76) (3.85) 

Education (discrete variables)* 
 

  
  

  
  

 Primary School or 

lower  
18.15 15.2 16.68 14.38 11.11 12.74 21.79 18.68 20.24 

High School  44.88 37.5 41.19 43.75 45.1 44.42 50 38.46 44.23 

Tertiary Education or 

higher  
36.96 47.3 42.13 41.88 43.79 42.83 28.21 42.86 35.53 

Unemployed  before 

participation (discrete 

variables) 

86.18 90.71 88.45 77.98 85.05 81.52 87.71 85.07 86.39 

Unemployment duration before participation (discrete 

variables) 
  

  
  

  
 Less than 6 months  19.65 12.58 16.12 6.33 10.45 8.39 10.42 9.26 9.84 

6 to 12 months  29.48 22.52 26 22.78 10.45 16.62 33.33 12.96 23.15 

12 to 24 months  15.03 16.56 15.8 10.13 8.96 9.55 18.75 9.26 14 

More than 24 months  35.84 48.34 42.09 60.76 70.15 65.46 37.5 68.52 53.01 

Unemployed (discrete v.)* 50.38 61.3 55.84 53.33 72.32 62.83 67.16 69.01 68.09 

Active job search (discrete v.) *† 72.73 64.1 68.41 83.61 82.81 83.21 87.5 77.55 82.53 

Employed (discrete variable)* 49.62 38.7 44.16 46.67 27.68 37.17 32.84 30.99 31.91 

Contract (discrete variable)*‡     63.33 80.25 71.79 71.43 93.1 82.27 66.67 80 73.33 

Region (discrete variables)     

 

    

  Prishtina 14.85 19.59 17.22 10.625 7.84 9.23 21.79 32.97 27.38 

Ferizaj  7.26 11.49 9.37 13.75 9.8 11.78 10.26 12.09 11.17 

Gjakova 14.85 11.15 13 16.25 13.73 14.99 8.97 0 4.49 

Gjilan 16.17 21.28 18.73 18.75 24.84 21.79 30.77 32.97 31.87 

Mitrovica 15.51 11.15 13.33 16.25 17.65 16.95 3.85 5.49 4.67 

Peja 8.91 10.14 9.52 12.5 19.61 16.05 8.97 4.4 6.68 

Prizren  22.44 15.2 18.82 11.875 6.54 9.21 15.38 12.09 13.74 

Notes: Standard deviations are presented in parenthesis in the second row of each of the selected variable. 

Discrete variables are measured in %. Averages are presented for continuous variables.  

*At the time of the survey  
 † The variable measuring Active job search was constructed from the following question and includes only 

individuals who were unemployed at the time of the survey: ―Have you actively searched for a job in the last four 

weeks?‖ 

‡ The variable measuring whether an individual had an employment contract was generated from answers to the 

following question only for those who were employed at the time of the survey: ―Do you have (an) employment 

contract at the current job?‖ 
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As pointed out, these active measures were designed to have specific durations; OJT 

and IET active measures were planned to take place over three months, while for IS 

it was six months. Figure 5.1 shows presents that there is a deviation from the initial 

plan for the duration of active measures.  

Figure 5.1 Distribution of the duration for each active measure (months) 

 

One possible explanation for this deviation might be related to the performance of 

the beneficiary during training, i.e. the beneficiaries might have been asked to stay 

longer in the training because they were performing better than those who left early 

or they were less successful and were asked to extend the training duration to 

achieve all of the learning outcomes. Another explanation might be that the firms 

and beneficiaries conspired to extend the training in order to continue to receive 

financial benefits from the government. 

Table 5.2 shows that more than 82% of IET beneficiaries had an 

employment/training plan before training. In contrast, only about 68% of IS 

beneficiaries and 62% of OJT beneficiaries had the individual plan before training. 

This might indicate that this part of the process was not implemented as intended 

which calls into question the quality of the administration of these plans. The highest 

percentage of beneficiaries receiving a certificate of completion at the end of the 

training is for the IS beneficiaries with more than 75% for males and almost 72% for 

females. IET males have the lowest percentage of having a certificate of completion 

with about 59%. There seems to be a relation between receiving the certificate of 

completion and the duration of the active measure as figure 5.2 shows. As the 
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duration of the active measure increases the percentage of individuals having a 

certificate increases. A possible explanation might be that receiving certificate might 

be related to the performance of the beneficiaries; i.e. duration of the measure may 

have been adjusted depending on how much time the beneficiary needed to complete 

the training successfully and receive the certificate.  

Figure 5.2 Percentage of individuals receiving certificate of completion 

 

 In general, there are no substantial differences in the characteristics between the 

participants in three programmes. Table 5.2 shows that the mean age of interviewees 

was slightly above 26 years for each of three categories. There seem to be a very 

small difference in age between men and women. In terms of region, the highest 

number of participants is those living in region of Gjilan with 21% of the sample 

followed by Prishtina with 16% and Prizren with 15%.  Gender seems to be balanced 

in OJT and IS programmes while there was a slightly higher percentage of women 

participants in the IET programme. Even though the aim was to achieve 15% 

participants from minority ethnic groups, the sample consists of 92% participants of 

Albanian ethnicity, 2% Serbian and 3.1% Roma ethnic participants and the rest are 

from other ethnic groups. Having in mind that these programmes targeted job-

seekers receiving social assistance, one would expect to have a high number of this 

category of participants in the sample. However, only 8.9% of the sample consists of 

job-seekers on social assistance. Over 43% of the surveyed beneficiaries had two of 

household adult members registered unemployed, while only 10% have received 

remittances from the family members living abroad.  
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The level of education of the participants was also not as expected. The expectation 

was that OJT and IET participants would not have completed tertiary education. 

Even though the OJT and IET targeted groups were vocational students and low 

skilled young job-seekers, table 5.2 shows that about 42% of OJT beneficiaries and 

35% of IET beneficiaries had completed more than secondary education. However, 

one explanation for this could be that since the completion of the programmes some 

individuals might have pursued higher education. Individuals who participated in the 

IS programme were expected to have a higher level of education since the target 

group was the new university graduates. In contrast, IS participants with a lower 

level of education seem to dominate. Table 5.2 presents a gender difference in 

education between men and women; more women from the sample seem to have 

completed the tertiary level of education than men. This seems to be the case for all 

three active measures. The largest gender difference in education is between the IET 

participants where 43% of women in the sample have completed tertiary level of 

education compared to only 28% of men.  

Women seem to have been subject to higher unemployment before participating in 

the active measures; except for IET women participants. Table 5.2 shows that 88% 

of the IET male participants were unemployed before joining the programme 

compared to 85% of IET females. In contrast, larger percentage of IS and OJT 

females were unemployed compared to men. One of the criteria for eligibility for the 

programmes was to be unemployed before participating in the active measures. 

However, as table 5.2 shows, there seems to be a percentage of beneficiaries that 

‗were not‘ unemployed before training. This information was drawn from the 

question ‗Were you unemployed before the training?‘
36

 .  An explanation could be 

that they were employed in the informal sector before participating in active 

measures and did not report this to the Employment Office. As table 5.2 shows, 

many of those who answered the questions on their unemployment duration prior to 

treatment had long durations of unemployment; 67% of participants of IET were 

                                                           
36

  In the question ‗In the period before participating in active measure, did you look for work?‘, about 

21% of OJT, more than 16% of IS and 9.5% of IET beneficiaries responded that they were looking for 

work. This suggests that some beneficiaries were not actively looking for work independently before 

participating in one of the active measures (as a person being registered as unemployed is by 

definition looking for work through the Employment Office, which is a key eligibility criterion for 

participation in ALMPs).  
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unemployed for more than 12 months while there are 75% of participants of IS and 

58% of OJT participants with the same duration of unemployment. Women, on 

average, were subject to a much longer unemployment duration than men, on 

average; 62% reported to have been unemployed for more than two years. Men 

reported shorter unemployment spells; 45% of them were unemployed for more than 

two years. The largest gender difference in unemployment duration is amongst the 

IET participants. Table 5.2 shows that 68% of women who completed IET 

programme seem to have been previously unemployed for more than 24 months 

compared to 37% of men.   Table 5.2 shows that there are noteworthy differences 

between the unemployment before the participation in the programmes and current 

unemployment. 

Almost 90% of the OJT participants reported to have been unemployed before 

participation while 55% of OJT participants were unemployed at the time of the 

survey. The difference of unemployment before and after completing the active 

programmes is narrower for the IS and IET programmes. At first sight, these figures 

may indicate that OJT was more effective than the other two programmes. 

Individuals in the sample seem to have had high job search activity at the time of the 

survey; IET and IS participants have higher job search activity (83% and 82%) than 

individuals participating in OJT programme (68%) which may also suggest that 

participants in OJT may have performed better in the labour market. 

With regard to employment at the time of the survey, the data show that OJT 

participants had a higher percentage in employment than participants in the other two 

programmes. Forty four percent of OJT beneficiaries, followed by 37% and 31% of 

IS and IET were employed at the time of the survey. Mostly it is the private sector 

that offers employment to the participants. Out of 344 employed individuals in the 

sample, 63% were employed in the private sector followed by 20% employed in 

public enterprises, 10% in government agencies and slightly over 6% were self-

employed.  

It is important to emphasise that half of the employed from the sample have been in 

their current job for more than one year and more than half of them were employed 

at the companies in which they had been beneficiaries of one of the active 

programmes. Of those employed, 63% IS participants had been at the current job for 
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at least a year compared to 56% of their IET and 44% of OJT counterparts. In 

addition, fewer of the OJT participants were employed in the company in which they 

were trained than participants in the other two programmes. It is worth pointing out 

that 78% of those who were employed at the time of the survey claimed to use the 

knowledge and skills gained from the active programmes in their current jobs.  

Table 5.2 also confirms the importance of informality in the labour market in 

Kosovo. Despite OJT participants having a higher employment percentage, the data 

show that only 71% of the employed had a contract in their current job. The figures 

for other two programmes are slightly better; around 82% and around 73% of the IS 

and IET employed participants had employment contracts at their current job while 

62% and 56% were entitled to health insurance and social security contributions and 

paid leave.    

Table 5.3 shows that a higher percentage of female beneficiaries were inactive at the 

time of the survey compared to male beneficiaries of these three active measures. 

Considering that the average age of females in the sample is 26 and the fertility rate 

is highest for age-group 25 to 29 (KAS, 2011), this might be a possible explanation 

for the high percentage of inactivity of females in the sample. The employment 

figures for females who participated in OJT and IS are lower than those of males in 

the same active measures. However, this is not the case for female participants in 

IET. About thirty five percent of OJT male participants in 2008 were employed at 

the time of the survey however this figure declines sharply over the following two 

years. 

Table 5.3 Labour market state by year of participation in the programme and by 

gender, at the time of the survey 

    Inactive Unemployed Employed 
Total  

    Female Male Female Male Female Male 

OJT 2008 4.9% 3.7% 22.2% 21.0% 13.6% 34.6% 100% 

 

2009 8.5% 3.6% 20.6% 27.3% 17.6% 22.4% 100% 

  2010 14.1% 8.2% 27.0% 21.3% 11.3% 18.2% 100% 

IS 2008 17.2% 11.1% 18.2% 19.2% 11.1% 23.2% 100% 

 

2009 16.4% 8.2% 17.8% 21.9% 12.3% 23.3% 100% 

 

2010 7.9% 6.3% 38.6% 28.3% 7.1% 11.8% 100% 

IET 2008 14.7% 5.9% 20.6% 23.5% 20.6% 14.7% 100% 

 

2009 13.3% 6.7% 26.7% 36.7% 

 

16.7% 100% 

  2010 11.0% 6.0% 32.0% 25.0% 14.0% 12.0% 100% 
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A similar pattern, however a smaller decline, can be observed for IS participants. 

The data also suggest higher employment figures for females in all three 

programmes who completed their programme in 2008 compared to females who 

completed in 2010, however the differences are much smaller than those of males. 

The largest employment difference is for females who completed IET, ranging from 

21% of those who participated in 2008, to 0 and 14% of those from 2009 and 2010, 

respectively. These figures may indicate that the active programmes might have 

more of a long-term rather than short-term effect for male participants than for their 

female counterparts. Other explanations for the differences across the years might be 

the variation of labour market conditions or the quality of the delivery of the active 

measures offered in particular years.  

5.4 Model Specification 

This chapter investigates the relative effectiveness of the three different programmes 

described in section 5.2. This section focuses on the specification of three probit 

models of the main determinants of: the probability of those surveyed being in 

employment, the probability of those respondents currently not in employment 

actively search for a job and the probability of those in employment having a 

contract. The objective of this section is: initially, to explain the justification for 

including variables in these model specifications for the multinomial probit 

estimation and secondly, to use these model specifications to create the outcome 

models for IPWRA approach. The multinomial probit model uses a three category 

outcome variable of the individual‘s state in the labour market (unemployed, 

contractually employed and employed without contractual agreement). This 

estimation serves as an initial analysis for evaluating the effects of the alternative 

programmes while the emphasis will be given to the IPWRA approach since it 

attempts to correct for a possible selection bias explained in more details in section 

5.5.2. The justification for using multinomial probit as an initial analysis prior to the 

main estimation approach, IPWRA, in this empirical chapter is not only to 

investigate the relative effectiveness of the three active measures but also other 

relevant determinants of an individual‘s probability of being employed. Multinomial 

probit is chosen since it allows for a three category dependent variable differentiating 

between the probability of an individual not only being employed but rather the 

sector (formal/informal) in which he/she is employed which is an objective of the 
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analysis in this chapter. On the other hand, as explained in details in section 4.3, 

IPWRA is chosen as the most appropriate evaluation methods to analyse the 

effectiveness of ALMPs for several reasons. Firstly, it addresses the possible 

selection bias. Secondly, IPWRA allows for a multiple-choice dependent variable for 

the treatment model, which is appropriate for this analysis because three different 

ALMPs are being assessed (OJT, IET and IS). And thirdly, in comparison to other 

evaluation methods, IPWRA has a doubly robust property meaning that even if one 

of the models, treatment or outcome model, is mis-specified, this method will still 

produce reliable estimates. 

The dependent variable for the initial analysis, multinomial probit model estimating 

the probability to be in one of three labour market states, is defined as:  

- Labour market state (Labstate): equals 0 if the individual is unemployed at 

the time of the survey, equals 1 if the individual is employed and has an 

employment contract and equals 2 if the individual is employed but has no 

employment contract.
37

  

Since IPWRA does not allow for multinomial choice for the outcome model but only 

for the treatment model, this estimation uses three outcome models where the 

dependent variables are defined as follows: 

- Employment (Emp): equals 1 if the individual is employed at the time of the 

survey, zero otherwise;  

- Active job search (Actsrcat): equals 1 if the unemployed individual has 

actively searched for a job in four weeks before the survey, zero otherwise;  

- Employment contract for those employed (Contract): equals 1 if the 

employed individual has signed an employment contract at the time of the 

survey, zero otherwise.  

Models for three dependent variables are analysed and developed separately and the 

final model specifications will be presented at the end of each discussion. The model 

specification and the justification for each variable included in the employment 

                                                           
37

 If a respondent answers that he/she is inactive (in school, training, student, inactive due to family 

responsibilities) the survey was terminated. Hence, the inactive individuals at the time of the survey 

are excluded from the model since they do not answer a set of questions. 
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(Emp) model will be used for estimation of the multinomial probit model. Table 5.4 

presents variable descriptions and their labels.  

Table 5.4 Variables, names and specification 

Information category  Specification details  

Dependent – Outcome 

variables  

Employment (dummy=1 if the individual is employed at the time of the 
survey) 

Active job search for unemployed (dummy=1 if the individual has actively 

searched for a job in four weeks before the survey) 
Employment contract for the employed (dummy=1 if the individual has 

signed a contract with the employer at the time of the survey) 

Emp  
 

Actsrcat  

 
Contract 

Dependent variable of 

the treatment model  

Types of the active measures the individual participated  (dummy =1 if the 
individual received OJT; 2 if the individual received IS; 3  if the individual 

received IET) 

AmType 

Socio-demographic 

characteristics  

 

Male (dummy= 1 if the individual is male)  
Age   

Minority (dummy = 1 if the individual is a member of a minority)  

Disability (dummy = 1 if the individual has disability) 

Received social assistance (dummy = 1 if the if the family of the individual 

receives social or disability assistance or pension at the time of the survey) 

Two members of the family unemployed (dummy =1 if two members of the 
family are unemployed at the time of the survey)  

Received remittances (dummy =1 if the individual received remittances at the 

time of the survey)  

Male 
Age and AgeSq 

Minority 

Disability 

Socialassist 

Twouunemp 

 
Remittance 

Education level  Education level at the time of the survey:  

- Four years or primary school completed - dummy=1 if the individual 

completed four years, primary school or is a high school drop-out  

- High school completed - dummy=1 if the individual completed high 

school 

- University and post-graduate degree  – dummy=1 if the individual 

completed university or post graduate studies 

 
 

Primaryeduc 

 
Secondaryeduc 

 

Tertiaryeduc 

Active measure 

characteristics  

- On the job training (dummy=1 if the individual received this active 

measure)  
- Internship scheme (dummy=1 if the individual received this active measure) 

- Institution and enterprise training (dummy=1 if the individual received this 

active measure) 
Year of completion of active measure  

- 2008 (dummy = 1 if the individual completed active measure in 2008)  

- 2009 (dummy = 1 if1 if the individual completed active measure in 

2009) 

- 2010 (1 if the individual completed active measure in 2010) 

Duration of the active measure  

- 2 months  

- 3 months  

- 4 months  

- 5 months  

- 6 months  

Agreed on an employment plan before participation (dummy = 1 if the 
individual agreed on an employment plan) 

Received certificate after completion (dummy = 1 if the individual received 

certificate)  

OJT 

 
IS 

 

IET 
 

 

AM2008 
 

AM2009 

 
AM2010 

AMDuration 

 
 

 

 
 

EmPlan 

 
Cert 

Labour market history  Job-search 4 week prior to participation (dummy = 1 if the individual actively 

searched for job) 
Duration of unemployment before participation (dummy variables)  

- Less than 6 months  

- 6 to 12 months 

- 12 to 24 months  

- More than 2 years  

Jobsearchbt 

 
 

Undur6 

Undur12 
Undur24 

Undurmore24 

Regional characteristics  Regional dummy variables:  

- Prishtina  

- Mitrovica  

- Gjilan 

- Ferizaj 

- Gjakove 

- Peja  

- Prizren 

Regional Unemployment  
Municipality (dummy = 1 if individual lives in the city where the Vocational 

Training Centre is located)  

 

Pri  
Mit  

Gjil 
Fer 

Gjak  

Pej 
Prz 

Regunmp 

Vtcmncp 
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Model Specification for Employment  

The dependent variable of this specification is employment (Emp) which is a dummy 

variable taking the value of 1 is the individual is employed at the time of the survey 

and 0 otherwise.   

Variables depicting participation in different active measures are included (OJT and 

IS compared to IET). As discussed in section 2.2.3, the duration of the active 

measures may induce lock-in effects for participants thus a continuous variable of 

the duration of the active measure is included in the model (Amduration), even 

though the active measures to be analysed do not last more than six months (Van 

Ours, 2001). As discussed in section 5.3, the duration of the active measures might 

also be dependent on the performance of the beneficiaries; the beneficiaries might 

have stayed longer if they performed well during the training or they were asked to 

finish their training in shorter period if they achieved all the learning outcomes. 

Another reason to include this variable is because the variation of active measure 

duration might have changed because beneficiaries and employers might have 

conspired to extend the duration in order to claim the financial benefits of the active 

measures. In this case, the expected sign of variable Amduration is ambiguous.  

Variables indicating the year in which the participant completed the active measure 

are included in order to capture year-specific differences in labour market conditions, 

the duration of post-completion job search, and potentially the quality of provision of 

the active measures over the years (AM2008 and AM2009 compared to AM2010). 

There is no expectation on the signs of these variables. Variables on whether the 

individual along with employment office administrator/trainer
38

 prepared a plan for 

skills to acquire during the training and for employment before participation 

(EmPlan) and whether he/she received a certificate (Cert) when they had finished 

their programme are also included in the model. The employment plan variable is a 

proxy for the individual‘s utilisation of employment office and VTC services which 

gives potential signals of the labour market performance, motivation and 

commitment to find a new job (Schmidl, 2014). EmPlan may also capture the quality 

of employment office and VTC services. Administrators are aware that close 

                                                           
38

 In this programme, each VTC had a designated trainer whose responsibility was to prepare the 

individual employment/training plans and monitor the implementation of these plans.  
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cooperation with the beneficiaries may result in a higher probability of being 

employed and higher success of the programmes. Hence it is expected that an 

individual who prepared a pre-treatment plan, ceteris paribus, will have a higher 

probability of being employed post-treatment. Receiving a certificate provides a 

signal of successful completion of the active measure and also the skill and ability 

level of the individual. Being certified by the training programme is expected, ceteris 

paribus, to increase the probability of being employed post-treatment. 

As discussed in Chapter 1, the employment gender gap in Kosovo is very high: only 

12.7% of working age women were employed compared to more than 46% of men 

(KAS, 2017). As explained in chapter 2, this gender difference might be partly 

explained by the strength of stereotypical gender roles and the social expectations for 

women in Kosovo and the perception that certain types of jobs are not suitable for 

women. Women are generally expected to take care of housework, children and the 

elderly. The LFS 2012 (KAS, 2012) reports that 28% of women decide not to 

participate in the labour market due to family or personal responsibilities compared 

to only 4% of men. Moreover, the average fertility rate is highest among the females 

aged 25 to 29 in Kosovo as suggested by KAS (2011). Considering that the dominant 

age group of interviewees in the sample is that in which female fertility is high in 

Kosovo it is expected that females will be less likely to participate in the labour 

market. Thus the expectation is that men (variable Male), ceteris paribus, are 

considered to have a higher probability of being employed compared to women.   

Age and its squared term (Age and AgeSq) are also included in the model. According 

to neoclassical theory, age is considered as an important determinant of the labour 

supply and employment since it reflects experience in the labour market. The view in 

the model is that the probability of gaining employment increases with age at a 

diminishing rate (Pencavel, 1974). The human capital theory predicts that the 

probability of being employed increases with age due to an increase in productivity 

until it reaches a peak and then starts to diminish reflecting a decline in productivity 

and deterioration in human capital (Luong and Hebert, 2009). Age might not be a 

good proxy for experience in case of Kosovo due to high levels of unemployment 

and especially the high levels of long-term unemployment. However, this dataset 

does not offer a better measure for experience and therefore age and its‘ square are 
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included in the model to account for a potential non-linear relationship between age 

and the probability of being employed.  

There are empirical studies from other countries confirming persistent ethnic 

inequalities in the labour market (Julia et al., 2015; Zwysen and Longhi, 2018). The 

ethnic background represents differences in cultural background and other 

differences which might reflect a difference in employment opportunities. In the case 

of Kosovo the effect of the Minority variable is ambiguous, since a recent study for 

Kosovo suggests that minority women are more likely to participate in the labour 

market compared to Albanian women (Democracy for Development, 2015).  

 It is recognised from empirical studies that individuals with disability typically face 

more obstacles in finding regular employment (Patterson and Block, 2014; Ameri et 

al., 2018). Hence variable Disability (defined as a dummy variable equal to 1 if the 

individual has a disability) is expected to have a negative sign in the employment 

model.  

 It is a well-established theoretical and empirical proposition that education has a 

substantial impact on labour market outcomes such as earnings and employment 

(Becker, 1964; Brown, 1995; Oreopoulos and Salvanes, 2009; Riddell and Song, 

2011). As discussed in section 2.4, the human capital gained through education is 

expected to increase productivity which is expected to subsequently lead to higher 

labour market performance. Two dummy variables representing secondary 

(Secondaryeduc) and tertiary (Tertiaryeduc) levels of education are included in the 

model (primary education, Primaryeduc, is the reference category).  Higher levels of 

completed education are expected, other things being equal, to increase the 

probability of an individual being in employment post-treatment.  

A variable depicting if the individual has two or more adult family members 

unemployed (TwoUnemp) is included in the model. The intention of this variable is 

to capture several potential mechanisms. This variable is a proxy for an individual‘s 

family connections to the labour market and also for individual‘s motivation to find a 

job. Some studies suggest that the main source of social capital for a youth is their 

family (Yan and Lam, 2006; Knight and Yueh, 2008; McGowan et al., 2015). If 

members of the family (most likely parents) of a young individual are unemployed 

they might lack the necessary social contacts to secure jobs for themselves and their 
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family members. Moreover, the social position of their family might be of a great 

importance to access greater employment opportunities and it also might indicate the 

applicant‘s level of trust to those who are hiring. A recent study for Kosovo found 

that having an additional household member employed (as a proxy for social capital) 

increases women‘s probability of participating in the labour market by 9 percentage 

points, on average (Democracy for Development, 2015).  According to the World 

Bank (2008), in Kosovo neither the unemployed nor enterprises rely to a significant 

extent on the public employment services as a mediator in the job search and 

employment process. As the extended internal labour market hypothesis predicts, 

firms usually use recruitment channels through existing employees who spread the 

knowledge of vacancies to their families (Manwaring, 1984). According to ILO 

(2007), 59% of young workers in Kosovo found jobs through family and friends‘ 

connections which confirm that informal networking is a preferred method for 

recruitment (21.5% were employed through direct recruitment from employer, 

16.6% through advertisements while just 2.9% were placed through the Public 

Employment Services). On the other hand, variable, TwoUnemp, might also pick up 

an individual‘s motivation to become employed and support the family. The impact 

this variable might have on employment is twofold, it might increase the probability 

to be employed due to higher motivation or it might decrease this probability due to 

a lack of social capital, thus the expected sign of the coefficient is ambiguous.  

The model also includes a dummy variable that controls if the individual‘s family 

receives remittances (Remittance). According to the neo-classical theory of labour-

leisure choice, receiving remittances will, other things being equal, reduce the 

probability of an individual being employed in a family receiving remittances 

(Killingsworth, 1983). The individuals receiving the remittances are expected to 

increase their reservation wage
39

 and as such are expected to reduce effort to find a 

job since they are less likely to receive a job offer with wages above their reservation 

level (Amuedo-Dorantes and Pozo, 2006). Previous research has found consistent 

evidence that receiving remittances is associated with a large decrease in the labour 

force participation of both men and women (Amuedo-Dorantes and Pozo, 2006; 

Kim, 2007; Shapiro and Mandelman, 2016). Similar findings are also found in a 

                                                           
39

 In a model of labour force participation, the reservation wage is the lowest wage rate at which a 

job-seeker is willing to accept employment.  
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study for the impact of remittances on labour force participation and employment in 

Kosovo. Findings suggest that being a remittance recipient is associated with a 

higher probability of being unemployed and not searching for job compared to a 

non-recipient (UNDP, 2012). On the other hand, receiving remittances might be a 

result of the individual coming from a poor family and he/she is unemployed. This, 

in turn, might translate into additional pressure to find employment. In contrast to 

findings of the negative effect of remittances on wage-employment, Funkhouser 

(1992) found evidence that remittances have a positive effect on self-employment. 

This is mostly evident when remittances are viewed by the receiving individual as a 

temporary source of income and are used to cover the start-up costs of self-

employment which promises future incomes (Funkhouser, 1992; Adams and Page 

2005; Shapiro and Mandelman, 2016). In the sample used for this chapter, self and 

wage employment are combined into one category, however the number of self-

employed individuals in the sample is only 22 out of 344. Considering these 

arguments the sign of the variable Remittance is ambiguous.  

The variable Socialassist (if the family of the individual receives social or disability 

assistance or a pension) is included in the model to account for non-labour income 

and family wealth.
40

 Research findings suggest that welfare programmes, in general, 

decrease labour force participation and hence the probability of being employed 

(Moffit, 2002; Rejda, 2015; Farber and Valletta, 2015). Williams and Windebank 

(1998) suggest that the social benefits may induce a welfare dependency culture 

among the people who receive it and consequently will reduce the probability of 

being employed. Receiving social assistance for a long period of time induces a 

detrimental attitude and behaviour in terms of self-efficacy, morale, motivation and 

subsequently the level of skills which will make them less attractive in the labour 

market (Harvey, 2014; Abramovitz, 2017). Even though the level of social assistance 

in Kosovo is low, it is believed to increase dependency while also increasing the 

probability to work in low paid or low-quality jobs, often in informal employment 

(World Bank, 2015). On the other hand, this variable also indicates that the 

individual belongs to a poor family hence this might mean that an individual may put 

                                                           
40

 This variable is created from the question: ‗Your family receives social assistance, disability 

benefits and pension?‘ From this question it is not exactly clear whether the beneficiary him/herself or 

someone within the family receives the benefits.  

https://scholar.google.co.uk/citations?user=oC8r8EUAAAAJ&hl=en&oi=sra
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more effort into searching for a job or have a lower reservation wage. The overall 

effect of receiving social assistance on the probability of an individual being in 

employment is thus ambiguous.  

The model also includes dummy variables controlling for the duration of 

unemployment before participation in one of the active measures. Three dummy 

variables measuring the individual‘s pre-treatment unemployment duration were 

included: whether the individual had been unemployed for less than 6 months 

(Undur6), from 6 to 12 months (Undur12) and from 12 to 24 months (Undur24). 

Dummy variable measuring whether the individual had been unemployed for more 

than 24 months (Undurmore24is used as a reference category).  As discussed in 

section 4.3.2 the inclusion of these variables in the model may capture unobserved 

characteristics of the individual, such as motivation for getting a job or labour market 

attachment (Bryson et al., 2002). As the review of empirical studies in section 2.5 

suggests, there may also be a stigmatisation associated with a longer duration of 

unemployment because employers might perceive individuals with long 

unemployment spells as having lower productivity and/or motivation. Thus, shorter 

unemployment spells are expected, ceteris paribus, to increase an individual‘s 

probability of being employed post-treatment.  

The model also includes regional dummies to account for the large regional 

differences labour market conditions in Kosovo. This set of variables is included in 

the model to account for variations in business activity, regional unemployment 

rates, specific labour market environment and the cost of living. This set of dummy 

variables represent the seven regions of Kosovo, the benchmark category being 

Prishtina (Pri) while the others being: Mitrovica (Mit), Gjilan (Gjil), Ferizaj (Fer), 

Gjakove (Gjak), Peja (Pej) and Prizren (Prz). The omitted variable is Prishtina, since 

the interest is focused at the comparison of other regions with the capital city. It is 

expected that individuals living in regions other than Prishtina will have a lower 

probability of being employed due to the lower employment opportunities and level 

of infrastructure development in these regions (including transportation and 

childcare opportunities for women).  The regional unemployment level (RegUnemp) 

was also initially included, but it was subsequently dropped from the model due to 

collinearity thus the regional differences are to be explained only through regional 

dummy variables.  
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The final specification for the employment model is:  

                                                                 

                                                                   

                                                                          5.1 

Model Specification for Active Job Search  

The dependent variable in this specification is a dummy variable taking a value of 1 

if the individual in the sample has actively searched for a job in the four week period 

before the survey, and 0 otherwise. This variable was constructed from the question: 

“Have you actively searched for a job in the last four weeks?” This question was 

only asked to individuals who were unemployed at the time of the survey, thus the 

sample for this specification includes only unemployed individuals. The independent 

variables accounted for in this model are reviewed below.  

Active measure types (OJT and IS, compared to the reference category IET), the 

duration of active measures (Amduration), year of completion of active measures 

(AM2008 and AM2009 compared to AM2010) and whether the participant prepared a 

training/employment plan (EmPlan) are included in the model to assess the impact of 

active measures and their characteristics on the probability to search for jobs. Having 

an EmPlan might increase the probability to search for a new job given that it may 

strengthen an individual‘s motivation and commitment to remain in the labour 

market.  

As discussed in section 1.5.3, women in Kosovo face disproportionate house and 

childcare responsibilities which make them less likely to search for a job. Hence, 

other factors remaining constant, men (indicated by dummy variable Male) are 

expected to have higher probability to engage in active job search compared to 

women. The unemployment rate for youths in Kosovo is the highest among all age 

groups with 52.7% of youth population being unemployed (KAS, 2017). However, 

there is no evidence and thus no clear expectation on whether the young unemployed 

are more likely to engage in active job search. Variables Age and AgeSq are included 

in the model to account for effect of age on active job search.   

In general, the unemployed from ethnic minorities are expected to have lower job 

search intensity due to discouragement from the discrimination they face in the 
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labour market (Thomas and Renick, 1981; Kaas and Manger, 2012). Low social 

capital might also negatively impact their decision to search for a job. However, as 

discussed in the previous model specification, a recent study (see Democracy for 

Development, 2015) found evidence that ethnic minority women are more likely to 

participate in the labour market compared to Albanian women. Taking this finding 

into consideration, there is no clear expectation of the sign of the variable Minority. 

Discrimination in the labour market, lack of workplace facilities necessary for 

disabled people and lack of meaningful employment opportunities are reasons for the 

discouragement of the disabled in the labour market (Burchadt, 2003; Patterson and 

Block, 2014). Hence, the expected sign of variable Disability in this specification is 

negative.   

In the context of the individuals‘ labour-leisure choice, the higher the level of 

education completed the higher is the cost of not participating in the labour market, 

given that the potential wage will be higher if the individual is more educated 

(Riddell and Song, 2016; Ondoa, 2018). In this context, having a higher level of 

education is expected, other things being equal, to increase an unemployed 

individual‘s probability to search for a job.   

Empirical studies also find evidence that those unemployed who receive remittances 

will increase their reservation wage and thus will be less likely to search for a job 

(Kim, 2007). According to a study, the average annual value of remittances in 

Kosovo is EUR 418 per capita in the household which may be considered high 

relative to local wage rates (Democracy for Development, 2015). As discussed in the 

employment model specification, Emp, it is expected that it is mainly individuals 

from poor families with little or no other income receive remittances. This might put 

pressure on the individual to search for jobs. Given these two counteracting 

mechanisms the expected sign of Remittance is ambiguous. Receiving social 

assistance (Socialassist), which is used as a proxy for family wealth, picks up the 

pressure of the individual to search for job more intensely thus it is expected to 

increase active job search.  

Variables measuring unemployment duration spells are included in the model to pick 

up the individuals‘ motivation to participate in the labour market (Undur6, Undur12 

and Undur24 reference category is Undurmore24). Individuals with shorter 
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unemployment spells are expected, ceteris paribus, to have higher active job search 

under the assumption that these signal individuals‘ motivation to remain in the 

labour market thus they will be more willingly to search for jobs.  

As in the previous model, regional dummy variables are included in the model to 

control for regional differences in labour market conditions. It is expected that 

individuals living in regions other than Prishtina, ceteris paribus, to have a lower 

probability to actively search for a job search since other regions offer lower 

employment opportunities and people might more easily become discouraged.  

The final model for active job search model is specified as below: 

                                                                 

                                                                   

                                                                                             

Model Specification for Employment Contract  

The dependent variable for the third model is generated from answers to the 

following question only for those who were employed at the time of the survey: ‗Do 

you have an employment contract at the current job?‘ Therefore, this specification 

uses a dependent dummy variable indicating the incidence of informal employment, 

taking a value of 1 if the employed individual has an employment contract at the 

time of the survey, and 0 if the employed individual does not have an employment 

contract. The explanatory variables included in this specification are discussed 

below.  

Active measure types (OJT, IS and IET) and their characteristics (Amduration and 

Cert) are included as in the previous models. The expected sign of variable Cert is 

positive since it signals a certain level of skills acquired from the training and also 

abilities thus employer may offer him/her better job opportunities. 

Workers search for high quality jobs if they are possible, however their ability to 

acquire this kind of jobs depends on their bargaining power. As discussed in more 

detail in section 2.6, disadvantaged, low-skilled and workers with longer duration 

spells tend to have a lower probability of obtaining employment with a contract, are 

less likely to have health insurance and retirement benefits and are engaged in less 
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secure jobs (McGovern et al., 2004; Julia et al., 2015). As pointed out in the 

literature review in Chapter 2, in most countries women are concentrated in lower 

quality, irregular and informal employment, such as domestic labour work and care 

assistance to the elderly, assistance in small family enterprises which does not offer 

social security and protection (Carr and Chen, 2002; Abramo and Valenzuela, 2006; 

Chen et al., 2006). In contrast, results from the Kosovo LFS (KAS, 2017) suggests 

that women in Kosovo are less likely to work in vulnerable jobs i.e. in unpaid family 

business or being self-employed without employees; 18.3% of employed women 

compared to 24.4% men (KAS, 2017). However, this is mainly driven by the fact 

that employed women in Kosovo are, in general more likely to be employed in the 

public sector. Since this is not the case for the sample being used in this empirical 

chapter (women in this sample are not mainly employed in the public sector), hence 

it is expected that men (Male), ceteris paribus, will be less likely to work without a 

contract compared to women.  

Older workers are expected to have a higher probability to be in formal employment 

than their younger counterparts, other things being equal, because they are likely to 

have gained more labour force experience and seniority (Eilat and Zinnes, 2002; 

Schneider and Williamson, 2013; McCaig and Pavcnik 2015). According to 

McGovern et al. (2004), young workers usually tend to occupy low skilled jobs 

supporting the concept of ‗McJobs‘. The Kosovo LFS (KAS, 2017) also suggest that 

46.2.8% of Kosovo young workers (15 to 25 years of age) work without a contract 

compared to about 21% for all age groups. It is expected that the probability of 

having an employment contract, other things being equal, is lower for young 

individuals and it increases with age. A squared term of this variable is also included 

to test for potential non-linearity in the relationship.  

Section 2.6 also emphasises that skilled workers are more likely to have higher 

quality jobs than low skilled workers (Kogan, 2011; Ondoa, 2018). Since the 

education signals the degree of skills acquired and the educated employees are 

expected to be more productive, they have more bargaining power thus the 

employers will tend to offer better job opportunities to them (Heywood and  Wei, 

2004; Chevalier et al., 2004; Backes-Gellner and Werner, 2007; Schneider and 

Williams, 2013). It is expected that higher levels of education, other things being 

equal, increase the probability of having an employment contract.   
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With regard to minorities, the discussion in section 2.6 emphasises that in addition to 

having barriers to being employed, they also face barriers to progress in their career 

and consequences such as wage differentials, contract types and stability in work, 

hours worked and self or part- time employment. Empirical studies confirm that 

minorities as disadvantaged groups are more likely to be employed in lower quality 

jobs than their counterparts (McCaig and Pavcnik, 2015; Julia et al., 2015).  

According to ILO (2007), there is a difference between Albanians and minorities in 

terms of the employment contracts. Young Serbs and the community of Roma 

Ashkali and Egyptian (RAE) reported twice as high informal employment compared 

to young Albanians. Discrimination has also been argued to be an important factor 

for disabled persons to be employed in the informal sector (Sanderson et al., 2017). 

Thus, the minority (Minority) and the disabled (Disability), if employed, are 

expected to be less likely to have an employment contract.  

Variable TwoUnemp in this context picks up the pressure to be employed regardless 

of the work conditions; hence, if an individual have two or more members of the 

family unemployed, he/she will be more likely to be employed in the informal sector 

(without a contract). The impact of variable Socialassist on the quality of 

employment might be negative; working informally, rather than formally, may be 

preferred by social assistance beneficiaries since it enable them to remain eligible for 

benefits.  

The set of duration variables (Undur6, Undur12 and Undur24 while reference 

category is Undurmore24) are included in the model, for the same purpose as in the 

previous models, to account for unobserved characteristics of the individual such as 

motivation, labour market attachment and employers‘ perception of his/her 

productivity. It is expected that employed individuals with longer unemployment 

spells, ceteris paribus, will more likely be employed in the informal sector. 

Regional differences are also accounted through regional dummy variables as in the 

two previous specifications. Those residing in cities with higher unemployment rates 

are expected to be disproportionately employed in the informal sector, other factors 

remaining constant.  

The final model specification for Contract is as follows:  
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Table 5.5 presents the expected signs of each variable in the three model 

specifications. The following section discusses the results from the multinomial 

probit and the IPWRA.  

Table 5.5 Independent variable – expected sign 

Variable   Expected sign 

Dependent – Outcome variables  EMP ACTSRCAT  CONTRACT 

Male 

Age   

 

Minority 

Disability  

Family receives social assistance 

Two members of the family 

unemployed  

Received remittances   

+ 

+ up to a point; - after 

the turning point 

? 

- 

? 

-/+ 

 

- 

+ 

? 

 

? 

- 

+ 

+ 

 

- 

- 

- up to a point; + after 

the turning point 

? 

- 

-+ 

 

NA 

Four years or primary school 

completed (omitted variable) 

High school completed  

University and post-graduate 

degree   

 

 

 

+ 

+ 

 

 

 

+ 

+ 

 

 

 

+ 

+ 

 

- On the job training   

- Internship scheme  

- Institution and enterprise 

training (omitted variable) 

Year of completion of active 

measure  

- 2008   

- 2009  

- 2010 (omitted variable) 

Duration of the active measure  

Agreed an employment plan before 

participation  

Received certificate after 

completion  

 

 

 

 

 

 

 

 

 

-/+ 

+ 

 

+ 

 

 

 

 

 

 

 

 

 

-/+ 

+ 

 

NA 

 

 

 

 

 

 

 

 

 

? 

NA 

 

+ 

Duration of unemployment before 

participation   

- Less than 6 months  

- 6 to 12 months 

- 12 to 24 months  

- More than 2 years (omitted 

variable) 

 

 

+ 

+ 

+ 

 

 

+ 

+ 

+ 

 

 

+ 

+ 

+ 

 

Regional dummy variables:  

- Prishtina (omitted variable) 

- Mitrovica  

- Gjilan 

- Ferizaj 

- Gjakove 

- Peja  

- Prizren 

 

 

- 

- 

- 

- 

- 

- 

 

 

- 

- 

- 

- 

- 

- 

 

 

- 

- 

- 

- 

- 

- 

 



210 
 

5.5 Results  

5.5.1 Multinomial Probit Model  

The initial analysis uses a multinomial probit model to assess the relative 

effectiveness of the three active measures: On the Job Training (OJT), Internship 

Scheme (IS) and Institution and Enterprise Training (IET). The dependent variable 

used in this model is three categorical variable which: equals 0 if the individual was 

unemployed at the time of the survey, 1 if the individual was employed and had an 

employment contract and 2 if the individual was employed but had no employment 

contract at the time of the survey.
41

 To use a dependent variable with another 

category of whether the unemployed were actively seeking for jobs at the time of the 

survey would be highly data demanding and was not possible with the data at hand.
42

  

Both multinomial probit and logit were considered initially for estimation. Two tests 

were used to check whether the multinomial logit model violates the independence 

from irrelevant alternatives (IIA) assumption.
43

 Comparing the coefficients of 

unrestricted with the first restricted model (where the category formally employed 

was excluded), the calculated standard Hausman test statistic is negative thus no 

conclusion can be drawn regarding the null hypothesis that the ‗difference in the 

coefficients is not systematic‘ (see Appendix 5.1). In addition, a suest-based 

Hausman test was carried out to verify the difference of coefficients on the models; 

the results indicate that the null hypothesis that ‗the odds are independent of other 

alternatives‘ cannot be rejected therefore there is no evidence of a violation of the 

IIA assumption. The same tests were carried out for the unrestricted and the second 

restricted model (where the category informally employed was excluded). For the 

second restricted model, output results from both tests indicate that there is no 

evidence of a violation of the IIA assumption.  

Long and Freese (2006, p.191) suggest that the results from both tests used for IIA 

assumption (Hausman and suest-based Hausman test) should be consistent otherwise 

the results from these tests are unreliable, they quote McFadden (1973): a 

                                                           
41

 In the rest of the section category 1 and 2 of the dependent variable are referred to as formally and 

informally employed.  
42

 200 participants who were inactive at the time of the survey were not included in the sample.  
43

 The IIA assumption implies that adding an additional alternative or changing the characteristics of 

one alternative does not change an individual‘s evaluation of one alternative relative to another 

(Wooldridge, 2010). 
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multinomial logit should be used only in cases where the outcome categories are 

―plausibly assumed to be distinct and weighted independently in the eyes of the 

decision maker‖. Additionally, Wooldridge (2002) suggests that the multinomial 

probit is preferred over the multinomial logit model since it relaxes the IIA 

assumption. Therefore, based on the considerations from the literature, the 

inconsistent results from the standard Hausman and suest-based Hausman tests the 

multinomial logit model seems not to be preferred and only the results from the 

multinomial probit model will be presented. 
44

 

The rest of this section presents the findings of the model on the determinants of 

individual‘s labour market status. The full results from the estimation of multinomial 

probit are presented in Appendix 5.2 while only the average marginal effects are 

interpreted based on suggestions by StataCorp (2013) and are presented in table 5.6. 

In order to interpret the multinomial probit coefficients, one set of coefficients is 

normalised to zero (the reference category), however such normalisation is not 

required when interpreting the average marginal effects. The average marginal 

effects are interpreted for all the three categories of the dependent variable Labstate 

(unemployed, employed in the formal sector and employed in the informal sector) 

and the sum of the average marginal effects for each variable should be equal to zero 

because in order for an increase in one category there should be a decrease in another 

category.  

As the main aim of this chapter is to identify the relative effectiveness of active 

measures, the first variables to be interpreted are those associated with participation 

in three active measures (OJT, IS, Amduration, AM2008, AM2009, Emplan and 

Cert). Results indicate that, other things being equal, participating in OJT decreases 

an individual‘s probability of being unemployed when surveyed by 12.1 percentage 

points (pp) in comparison to participating in IET. An OJT beneficiary, other factors 

being constant, is more likely to be employed informally by 7 pp in comparison to an 

IET with similar characteristics. In contrast, participating in OJT seems not to 

significantly impact the probability to be formally employed though the sign is 

                                                           
44

 When analysing the effect of non-normality for probit models, Wooldridge (2002; 2012), argues 

that when estimating partial effects, it is practically irrelevant if the Beta estimates are inconsistent 

resulting from non-normality. Thus, focusing on the inconsistency of the Beta parameters "largely 

misses the point" of probit modelling. 
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positive. Participating in IS, holding other variables constant, decreases the 

probability to be unemployed by 9.9 pp compared to participating in IET, however it 

is statistically significant only at 10% significance level. Results also indicate that 

participating in IS does not have any different effect on the probability of being 

employed (neither formal nor informal) compared to participating in IET. Overall, 

the OJT programme, compared to the two other programmes, seems to have 

positively influenced the prospects of the participants; however the effect seems to 

be larger for the informal sector employment.  

The duration of the active measure (Amduration) is found to have a statistically 

significant impact in increasing an individual‘s probability to be engaged in informal 

employment.  Informal employment provides much-needed employment 

opportunities which are lacking in Kosovo‘s formal sector, though working 

conditions are often poor. Gaining an income, for most individuals, which supports 

the economic well-being of a worker and his/her family is the primary reason to 

work. Considering that receiving the social assistance is insufficient source of 

income to live a decent life in Kosovo, being informally employed is preferred 

relative to being unemployed. An increase of active measure duration by a month, 

other things being equal, increases an individual‘s probability to be informally 

employed by 2.8 pp. As discussed in section 4.4.2, some studies found strong 

evidence of negative effects of long-term active measures on the probability to find 

employment post-treatment, due to the ‗lock-in effect‘ (Van Ours, 2001; 

Hamalainen, 2002; Sianesi, 2008; Schmidl, 2014). Yet, no study, to the author‘s 

knowledge, has examined the effect of active measure duration on informal 

employment thus these previous results should be taken with caution. 

Results indicate that the impact of active measures becomes more pronounced over 

time. An individual who completed the programme in 2008 (AM2008), holding other 

variables constant, will have lower probability of being unemployed by 13.9 pp 

compared to an individual who completed in 2010. Completing in 2008 also 

increases an individual‘s probability to be employed in the formal sector by 11.7 pp 

compared to those who completed in 2010. AM2008 is statistically significant at 1% 

significance level for both outcomes, unemployed and formally employed. Having 

participated in 2009, decreases an individual‘s probability of being unemployed by 
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8.4 pp while increasing his probability of being formally employed by 8.9 pp   

compared to an individual who completed in 2010. 

Table 5.6 Average Marginal Effects from Multinomial Probit 

  (1) (2) (3) 

Variables Unemployed Formally employed  Informally employed 

OJT -0.121** 0.050 0.071** 

 
(0.047) (0.043) (0.031) 

IS -0.099* 0.072 0.028 

 
(0.054) (0.049) (0.036) 

Amduration -0.016 -0.011 0.028*** 

 
(0.014) (0.013) (0.010) 

AM2008 -0.139*** 0.117*** 0.022 

 
(0.045) (0.040) (0.029) 

AM2009 -0.084** 0.090** -0.005 

 
(0.038) (0.035) (0.025) 

Emplan -0.036 0.018 0.017 

 
(0.038) (0.034) (0.026) 

Cert -0.033 0.098*** -0.065*** 

 (0.037) (0.034) (0.023) 

Age -0.062** 0.019 0.042** 

 (0.029) (0.026) (0.021) 

Agesq 0.001* -0.0001 -0.001* 

 (0.001) (0.001) (0.001) 

Male -0.129*** 0.026 0.103*** 

 (0.033) (0.030) (0.023) 

Disability 0.278* -0.226 -0.051 

 (0.147) (0.149) (0.096) 

Minority 0.233*** -0.117* -0.116** 

 (0.074) (0.071) (0.050) 

Socialassist 0.142** -0.147** 0.005 

 (0.066) (0.062) (0.041) 

Twounempl 0.075** -0.092*** 0.017 

 (0.037) (0.033) (0.024) 

Remittance 0.042 -0.065 0.023 

 
(0.060) (0.056) (0.038) 

Secondaryeduc -0.015 -0.018 0.034 

 
(0.049) (0.046) (0.028) 

Tertiaryeduc -0.053 0.171*** -0.117*** 

 
(0.053) (0.047) (0.036) 

Undur6 -0.277*** 0.180*** 0.096*** 

 
(0.056) (0.051) (0.032) 

Undur12 -0.017 0.022 -0.005 

 
(0.047) (0.044) (0.030) 

Undur24 -0.114** 0.064 0.049 

 
(0.056) (0.051) (0.035) 

Fer 0.129** -0.040 -0.088** 

 
(0.061) (0.055) (0.040) 

Gjak 0.177*** -0.106* -0.070* 

 
(0.065) (0.058) (0.042) 

Gjil 0.116** -0.046 -0.069** 

 
(0.054) (0.048) (0.033) 

Mit 0.385*** -0.335*** -0.049 

 
(0.065) (0.063) (0.036) 

Pej 0.164** -0.021 -0.143** 

 
(0.071) (0.060) (0.056) 

Prz 0.228*** -0.159*** -0.068* 

 
(0.062) (0.056) (0.038) 

Observations 751 751 751 

Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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The discussion in section 4.4.2 pointed out that very few studies have analysed the 

short vs. long-term effects of active measures. Results obtained from the estimation 

presented in table 5.6 are broadly in line with these previous studies. This finding 

might also be explained by the economic environment and the quality of training 

over the period when the training took place, which could not be controlled for in the 

analysis. However, as Chapter 1 indicated, the labour market did not experience any 

significant changes during this period.    

Having acquired a certificate of completion of the active measures (Cert) is 

associated with an increase in the individual‘s average probability of being in formal 

employment by 9.7 pp while it decreases the probability to be in informal 

employment by 6.5 pp. This result reflects the expectations that a certificate signals a 

higher level of individual‘s skills and competences which might imply higher 

productivity (Chan, 2013). As discussed in section 5.3, the percentage of individuals 

who received a certificate of completion increases with the time spent in training. 

This might indicate that receiving a certificate might reflect the individuals‘ ability to 

acquire more skills from the training. Furthermore, being certified may be perceived 

by companies as indicating that the individual have higher abilities and thus are less 

likely to be offered low quality jobs or informal jobs.  

Having an individual plan on acquiring skills during the training (Emplan) seems not 

to be important for any of the outcomes since it is statistically insignificant. One 

explanation for this result could be that these individual plans might have not been 

well implemented and might not be of high enough quality to guide the beneficiary 

in acquiring the necessary skills and employment opportunities.  

The signs of the marginal effects of variables Age and AgeSq are in line with the 

expectations of a non-linear relationship between age and an individual‘s probability 

of being unemployed: the probability of being unemployed reduces with age up to a 

certain point after which it increases. With regard to informal employment, there is 

also a non-linear relationship between age and the probability of being employed in 

the informal sector where the individual‘s probability of being employed in the 

informal sector increases with age up to a turning point after which it reduces. 

However, the squared terms of age are only significant at the 10 percent significance 
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level.
45

 In accordance with expectations, men are less likely to be unemployed and, if 

employed, they are more likely to be informally employed than women.  Holding 

other variables constant, men are found to have a lower probability of unemployment 

by 12.8 pp. Moreover, men are more likely to be employed informally, other things 

being equal, by 10.3 pp.  

As expected, having a disability increases the individual‘s probability to be 

unemployed by 27.8 pp compared to an individual without disability, although it is 

statistically significant only at 10% significance level. A possible explanation for 

this finding might be the low employment opportunities and social barriers that 

disabled individuals face in the labour market.  

These results suggest strong evidence that being an ethnic minority is associated 

with a higher probability of being unemployed at 1% significance level, while being 

associated with a lower probability of being employed formally and informally at 

10% and 5% significance level respectively. Holding other variables constant, being 

from an ethnic minority increases the probability to be unemployed by 23.3 pp while 

decreasing the probability to be in formal employed by 11.7 pp and informal 

employment by 11.6 pp, compared to being an Albanian. This finding is in line with 

empirical studies from other countries, suggesting that lower employment 

opportunities remain for minority ethnic groups (Julia et al., 2015; Zwysen and 

Longhi, 2018).   

Results indicate that whether an individual‘s family receives social assistance and/or 

a pension is an important determinant of an individual‘s probability to be 

unemployed and formally employed. Findings indicate that if an individual‘s family 

receives social assistance and/or a pension, holding other things constant, increases 

an individual‘s probability of being unemployed by 14.2 pp and decreases an 

individual‘s probability of being formally employed by 14.7 pp. However, given that 

to receive the social assistance in Kosovo, it is a criterion that all family members 

should be unemployed, there is a potential endogeneity issue and this result should 

be treated with caution. Receiving remittances does not have a statistically 

significant effect for neither of the outcomes. 

                                                           
45

 The turning point for the unemployment outcome= - Age/(2*AgeSq)= 0.062/(2*(0.001)) = 31;  

The turning point for the informal employment outcome= - Age/(2*AgeSq)=  - 0.042/(2*(- 0.001)) = 

21 
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In accordance with the expectations of the social capital hypothesis, holding other 

variables constant, having two or more unemployed family members increases an 

individual‘s probability to be unemployed by 7.5 pp. Accordingly, other things being 

equal, it decreases an individual‘s probability to be in formal employment by 9.2 pp 

while it seems to have no impact on an employed individual‘s probability to be 

engaged in informal employment. A possible explanation for this finding might be 

the effect of nepotism which seems to be an important determinant of being 

employed in Kosovo. Another explanation could be that the individual might be 

discouraged from the labour market since he/she believes that the probability of 

being employed is low.  

In accordance with theoretical expectations, having completed university, other 

things being equal, increases an individual‘s probability to be formally employed by 

17.1 pp while decreasing the probability to be informally employed by 11.7 pp 

compared to having just primary level education. Having completed secondary 

education seems not to affect individual‘s labour market state compared to having 

primary education.  

In general, results are in line with the evidence from the previous studies suggesting 

that an individual with shorter unemployment spells prior to entering training is 

more likely to be employed (Terell and Storm, 1999; O‘Leary, 2001; Van Ours, 

2002; Micklewright and Nagy, 2008; Kroft et al., 2013). There is evidence that 

having an unemployment spell of no longer than 6 months increases an individual‘s 

probability of being employed, both in formal and in informal employment, 

compared to having an unemployment spell of more 24 months. Results suggest that 

an individual‘s unemployment spells, Undur12 and Undur24, are not statistically 

significant in determining the probability of being employed compared to 

Undurmor24 (the reference category). In conclusion, the findings suggest that 

individuals who have been unemployed for up to 6 months have a higher probability 

of getting employed compared to those with longer unemployment spells (6 to 12 

months, 12 to 24 months and more than 24 months).  

Undur6 is statistically significant at 1% significance level for all three outcomes. 

Results indicate that an individual‘s probability of being unemployed, other things 

being equal, decreases by 27.2 pp for and individual with less than 6 months 
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unemployment spell compared to one with more than 24 months unemployment 

spell. Having only 6 months unemployment spell also increases probability to be 

formally employed by 18 pp and to be informally employed by 9.6 pp. Undur12 

(having unemployment spell between 6 to 12 months) is not statistically significant 

in any of the outcomes. In contrast, having 12 to 24 months unemployment spell 

before participating in the active measures (Undur24) decreases an individual‘s 

probability to be unemployed compared to an individual with more than 24 months 

unemployment spell, other things being equal. The variable Undur24 does not seem 

to influence an individual‘s average probability to be in formal nor informal 

employment.  

Consistent with initial expectations, being from a region other than Prishtina (the 

base category) increases an individual‘s probability to be unemployed and decreases 

the probability to be employed (formally and informally).  An individual‘s 

probability to be unemployed increases by 11.6 pp for individuals living in Gjilan, 

12.9 pp for Ferizaj, by 16.4 for Peja, 17.7 pp for Gjakova, 22.8 for Prizren and 38.5 

pp for Mitrovica in comparison to an individual living in Prishtina. With regard to 

the formal employment, being from Gjakova, Mitrovica and Prizren decreases the 

average probability to be formally employed, other things being equal.  With regard 

to the informal employment, being from a region other than Prishtina, holding other 

variables constant, decreases an individual‘s probability of being informally 

employed.  

5.5.2 Results from the Inverse Probability Weighting - Regression 

Adjustment 

As explained in section 5.2, individual selection into different active programmes is 

not randomised. Selection is a general issue in a non-random sample such as the one 

being used in this empirical analysis. The selection of the participants into 

programmes was based on a set of pre-determined criteria such as age, individuals‘ 

unemployment spells, gender, the level of education etc. As emphasised by Winship 

(1992, p. 328) ―when observations are selected so that they are not independent of 

the outcome variables in the study, this sample selection leads to biased inferences 

about the processes‖. This empirical analysis attempts to address the selection issue 

based on the observable factors. This estimation accounts for the type of the active 
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programme that the individual participated in, the year of participation and the 

duration of the active programme participated and a set of individual characteristics. 

Certain unobserved factors might also influence the treatment model, hence a set of 

variables which may help to capture these unobserved effects are also included in the 

model.  

Firms did not have any influence on selecting participants into programmes, but 

were allowed to choose the active measure in which they participated; hence the 

probability of selection bias arising from firms‘ actions is very small. The issue of 

selection bias can be diminished through imposing the assumptions discussed in 

section 4.3.2; i.e. the conditional independence assumption (CIA) which is also 

referred to as the un-confoundedness or selection on observables and the common 

support or the overlapping assumption. Explained in more details below, all the 

available relevant variables to control for selection into programmes are included in 

the selection model which makes the CIA a reasonable identification strategy in this 

context.  

As explained in section 4.3.4, IPWRA models the treatment assignment and the 

outcome variable in the same estimator (Robins et al., 1995; Robins 2000; Bang and 

Robins 2005). This estimator has a doubly robustness property because it provides 

unbiased estimates even if one of the models (treatment or outcome) is mis-specified 

(Emsley et al., 2008; Wooldridge, 2009; Farell, 2015; Linden et al., 2016). If the 

outcome model functions are correctly specified and selection-on-observables (CIA) 

holds conditional on independent covariates, then the weighted estimators using any 

function of independent variables consistently estimate the coefficients on the 

control and treated sample. Therefore, even if the propensity score estimation is mis-

specified, weighting by functions of propensity score does not cause inconsistency 

for estimating the parameters of the correctly specified outcome model (Wooldridge, 

2009). The IPW estimator weights observations on the outcome variable by the 

inverse of the probability that is observed to account for the counterfactual. When 

the propensity score model is correctly specified, the IPW estimator (under selection-

on-observables assumption) consistently estimates the solution to the unweighted 

population problem. In this case, even if the outcome model is mis-specified but the 

propensity model is specified correctly, IPWRA produces consistent estimates.  
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IPWRA is operationalised in a three-step process. First, the parameters of the 

propensity score model are estimated by multinomial logit modelling and the inverse 

weights are computed for each treatment level. Inverse probability weights are 

derived from the predicted propensity scores, where these are defined by the inverse 

of the propensity score if the individual receives treatment and the inverse of 1 minus 

the propensity score if the individual receives the control. Second, using the 

estimated weights, the outcome models are fitted by a weighted regression for each 

treatment level. Using the coefficients from this weighted regression, treatment 

specific predicted outcomes for each individual are obtained. The final step is to 

produce the average treatment effects on the treated which is the difference in the 

means of the specific treatment and control outcomes.  

As discussed in Chapter 4, a crucial assumption, the conditional independence 

assumption
46

, cannot be tested, thus it is required to include all the presumed 

important variables which affect both the outcome and treatment. Section 4.3.2 

provides an extended discussion of the relevant variables to account in the treatment 

model. Emsley et al. (2008) recommend that the treatment model should include 

variables even if they are thought not to be confounders since it helps to improve the 

prediction of the propensity scores and lowers the bias. The availability of 

informative data is therefore crucial. Based on the selection process of individuals 

into active measures explained in section 5.2, the treatment model controls for all the 

likely important factors in the selection process, such as age, level of education, 

socio-demographic factors and regional variables. Section 4.3.2, explained the 

importance of including the past labour market histories since these variables may 

capture unobservable selection factors such as motivation and interpersonal skills. 

Assuming that the individuals‘ pre-treatment labour market histories might capture 

these unobservable effects, variables measuring an individuals‘ pre-treatment 

unemployment duration (Undur6, Undur12 and Undur24; Undurmore24 is the 

reference variable) and pre-treatment job search activity (Jobserachbt) are included 

in the treatment model. In addition, the administrative staff may select participant 

with better prospects for getting employed after the completion of the training so as 

                                                           
46

 This assumption denotes that the unobserved characteristics are trivial and do not particularly affect 

the outcome in absence of the treatment; thus there are sufficient observable data such that the 

outcomes or the treatment effects are independent from the programme participation. 
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to improve the success rate of the active measures. Also, given that in Kosovo 

nepotism is common, the selection into programmes might have also been influenced 

by it. Besides the pre-treatment unemployment duration, the variable Emplan is 

included in the treatment model. This variable is used as a proxy for unobserved 

characteristics (individual‘s motivation and labour market skills) and might also be a 

signal of the closeness between the VTC administrator and the beneficiary. As 

pointed out in section 5.4, Emplan is also used as a proxy for the quality of 

employment and VTC services. Additionally, the variable Vtcmncp is included in the 

model which controls whether the individual lives in the city where the vocational 

training centres are located. This variable is a proxy for individual‘s proximity to the 

vocational training centre. Economic theory suggests that living closer to the 

vocational centre reduces the costs of attending and therefore, other things being 

equal, makes it more likely that the discounted expected benefits of attending the 

treatment exceed the expected costs (Heckman et al., 1999). Providing that there is a 

large number of variables accounted in the treatment model, it can be concluded that 

the CIA is a reasonable identification strategy in the context of this chapter. It has 

been suggested that the correct specification of the treatment model will increase the 

precision of the doubly robust estimators; therefore, we put particular emphasis on 

the treatment model and balancing the covariates in the treatment and control groups. 

The dependent variable of the treatment model is a three-category dummy variable 

which takes the value of 1 if the individual participated in OJT, 2 if the individual 

participated in IS and 3 if the individual participated in IET. The covariates chosen 

for propensity score estimation are as follows:  

                                                              

                                                                       

                                                                                      

The best fitting treatment model is determined by the Akaike Information Criteria 

(AIC) using ‗bfit‘ command in Stata (Burnham and Anderson, 2004).
47

  This 

command generates a series of candidate multinomial logit models by maximum 

likelihood. These models range from a model including only the first independent 

                                                           
47

 Both Akaike and Bayesian Information Criteria (BIC) were considered, however considering the 

number of observations, AIC is used since it does not depend on the sample size (Burnham and 

Anderson, 2004).  
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variable specified in the model as a single covariate to a model including a fully 

interacted polynomial of the specified order. The sorted treatment model based on 

AIC is considered to be the best fit model and is chosen for the analysis below.  

As an essential objective of the IPWRA is to balance the observable characteristics 

between treated and control subjects. A balancing diagnostic check has been 

performed to find out whether the treatment model specification has balanced the 

covariates or whether there is a difference in the distributions of the covariates.  The 

diagnostics used to verify the balance of the covariates are based on the standardised 

differences in means and ratio of variances before and after weighting of the 

propensity scores for each covariate. Rubin (2001) suggest that the threshold for the 

standardised difference in means should be 0.25.  This diagnostic test is used to 

verify the balance for weighted propensity scores for the three outcome models Emp, 

Actsrcat and Contract. Since the sample is restricted to account only for the 

unemployed and employed respectively for Actsrcat and Contract, the covariate 

balance should be tested separately for each model.  

Figures 5.3, 5.4 and 5.5 show the non-parametric kernel density estimation with a 

triangular kernel and optimal bandwidth chosen by Stata for the propensity scores for 

each treatment for the whole sample. Table 5.7 presents the weighted standardised 

differences for these models. 

 

Figure 5.3 Overlap graph of the probability  assignment to the OJT programme 
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Figure 5.4 Overlap graph of the probability assignment to the IS programme 

 

 

Figure 5.5 Overlap graph of the probability of assignment to the IET programme 

 

For each treatment level, the overlap plots depict the estimated density of the 

predicted propensity scores for that specific treatment level conditional on other 

possible treatment level. IPWRA requires that the predicted propensity scores not to 

be bigger than one or smaller than zero and ‗sufficient‘ (undefined) propensity scores 

to be between this range. The three estimated Kernel density plots show that there is 

enough overlap and the estimated densities cover most of their respective masses. 

Therefore, there is no evidence that the overlap assumption (common support) is 

violated. However, this is the case only when the whole sample is accounted, thus 

only for Emp outcome.  In the cases of the Actsrcat and Contract outcome models 

the sample is restricted to unemployed or employed individuals, respectively. The 

sample is reduced to 385 for Actsrcat and 284 for Contract. With the restriction of 

the sample the weighted propensity scores tend to be less balanced. Nine of the 

weighted standardised mean differences for Actsrcat and twelve for Contract are 

above the 0.25 cut-off recommended by Rubin (2001), thus the results for these two 
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outcomes should be interpreted with caution (the imbalanced means are highlighted 

in table 5.7).   

Table 5.7 Weighted characteristics of three different programme participants in the 

multivalued treatment model. 

   Weighted Standardised Differences  
Outcome 
Variable Emp Actsrcat Contract 

Sample size  775 385 284 

 Variables 

IS vs. 

OJT 

IET vs. 

OJT  

IET vs. 

IS  

IS vs. 

OJT 

IET vs. 

OJT  

IET vs. 

IS  

IS vs. 

OJT 

IET vs. 

OJT  

IET vs. 

IS  

AM2008 -0.102 -0.027 0.079 -0.138 -0.224 0.218 -0.070 -0.366 -0.227 

AM2009 0.000 -0.231 -0.211 -0.129 -0.296 -0.393 0.008 -0.025 0.270 

Emplan -0.067 0.118 0.101 -0.142 0.064 0.193 -0.057 0.157 -0.205 

Age -0.002 -0.014 0.117 -0.118 -0.182 0.146 0.071 0.019 -0.155 

Male 0.047 0.239 0.074 0.067 0.187 0.207 -0.040 0.116 -0.106 

Disability 0.026 0.087 0.069 0.019 0.041 0.027   

 
  

Minority 0.014 0.097 0.124 0.028 0.040 0.228 0.113 0.036 -0.088 

Socialassist -0.037 0.149 0.034 -0.115 -0.043 -0.312 0.029 -0.426 -0.367 

Twounempl -0.032 0.062 0.033 0.044 -0.029 0.054 -0.125 -0.282 -0.356 

Remittance 0.003 -0.031 -0.051 0.022 0.268 0.213 0.003 -0.154 -0.217 

Secondaryeduc 0.074 0.230 0.150 0.073 0.147 0.002 0.008 0.153 0.031 

Tertiaryeduc -0.029 -0.202 -0.153 -0.017 -0.128 -0.202 -0.030 -0.151 0.068 

Jobserachbt 0.048 0.172 0.309 0.171 0.392 0.648 -0.038 0.423 0.561 

Undur6 0.020 -0.011 0.033 0.018 0.063 -0.074 0.034 0.002 0.204 

Undur12 0.027 -0.079 0.005 -0.010 -0.038 -0.249 0.113 0.084 0.176 

Undur24 0.083 0.180 0.203 0.103 0.276 0.227 0.079 0.615 0.402 

Vtcmncp -0.042 -0.160 -0.057 -0.050 -0.058 0.156 0.034 0.190 -0.056 

Fer 0.029 -0.142 0.010 0.170 -0.019 0.159 0.001 -0.103 -0.157 

Gjak 0.091 0.038 -0.018 0.062 -0.083 -0.083 0.056 -0.025 -0.272 

Gjil -0.046 0.199 0.021 -0.028 0.274 -0.141 -0.076 0.131 0.024 

Mit -0.018 -0.187 -0.147 -0.205 -0.361 -0.260 0.149 -0.460 -0.344 

Pej 0.013 0.138 -0.085 0.188 0.350 -0.046 -0.032 -0.163 -0.062 

Prz -0.036 -0.037 0.035 0.018 0.075 0.180 -0.104 0.017 0.419 

 

The employment outcome model is specified as described in section 5.4.1. The same 

approach is followed for the Actsrcat outcome model. However, due to a loss of 

observations the regression model is specified differently for the Contract model. In 

the third outcome model, whether the employed individuals had an employment 

contract, variable Disability and the set of unemployment duration dummies 

(Undur6, Undur12 and Undur24) are excluded from the model. In addition, the 

outcome model also excludes the following variables: Socialassistt, Remittance and 

Twounemp, since there is little variation in these variables for Contract model. Since 

the sample size shrinks to only 284 observations, the outcome model for Contract 

could not converge with these variables included in the model. As the multivariate 
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treatment model has only recently started to be used, there is no discussion in the 

literature of the choice of diagnostics to account for in such cases, thus we follow the 

same approaches as in the binary treatment models (e.g. Austin, 2011).  

The final results from IPWRA approach are presented in table 5.8 and Appendix 5.3, 

5.4 and 5.5. In order to analyse all possible comparisons, (i.e. OJT vs. IET, OJT vs. 

IS and IET vs. IS), two control groups were considered; the first control group is 

those who completed OJT and the second those who completed IS.  

Table 5.8 Average treatment effects on treated (ATT) and Potential Outcome Means 

(POM) for three outcome variables Emp, Actsrcat and Contract 

Standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1 

Model specifications for outcome Emp, Actsrcat and Contract, are based on the specification in section 5.4, In order to gain 

more degrees of freedom, instead of using regional dummy variables, the variable measuring the regional unemployment 

rate, Regunemp is included in the outcome model. In specification of Contract model, due to small sample size few 

variables were dropped from the outcome model, Twounemp, Disability, Socialassist and Remittance and variables 

measuring the individual‘s unemployment duration, Undur6, Undur12 and Undur24. Because it is crucial to attempt 

addressing the selection bias, the treatment model includes all the variables specified in equation 5.4, except for variable 

Disability for Contract model. The complete results of the three outcome models are provided in Appendix 5.3 to 5.5. 

 

OJT as the control group: There seems to be no significant difference in the 

probability of being employed between participants of the IS and OJT programme. 

On the other hand, participating in the IET programme leads to a reduced probability 

to be employed, 18.7 pp lower from the average of OJT participants. Participating in 

an IS programme leads to a 19.2 pp higher probability of an unemployed participant 

being engaged in active job search at the time surveyed compared to the average of 

participants in OJT. Results also indicate that IET employed have an 18.9 pp higher 

 Variables Emp Actsrcat Contract 

No. of obs. 775 385 284 

 Average 

Treatment 

on Treated  

Potential 

Outcome 

Mean 

Average 

Treatment 

on Treated 

Potential 

Outcome 

Mean 

Average 

Treatment 

on Treated  

Potential 

Outcome 

Mean 

 IS vs. OJT -0.055 

 
0.192***  0.059  

Control 

group: 

OJT 
 

(0.043) 

 
(0.0642)  (0.060)  

IET  vs. 

OJT -0.187*** 

 
0.105  0.189***  

 
(0.051) 

 
(0.0690)  (0.071)  

OJT 

 
0.432***  0.647***  0.717*** 

  
(0.033)  (0.0542)  (0.051) 

 

 

Control 

group: 

IS 

OJT  vs. 

IS 0.013  -0.192***  -0.104**  

 (0.049)  (0.0416)  (0.052)  

IET  vs. IS -0.162***  -0.0887**  0.073  

 (0.055)  (0.0388)  (0.062)  

IS  0.422***  0.864***  0.799*** 

  (0.045)  (0.0262)  (0.043) 
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probability of having an employment contract from the average probability of OJT 

employed.  

IS as the control group: In case when IS was defined as the control group, the results 

suggest that participating in IET decreases an individual‘s probability of being 

employed by 16.2 pp compared to the average probability of being employed of IS 

participants. Participants in the IET programme who were unemployed at the time 

surveyed are also less likely to be engaged in active job search by 8.8 pp compared 

to the average job search probability of IS participants. OJT unemployed have a 19.2 

pp lower probability to actively search for jobs compared to the average job search 

probability of IS participants. According to the findings, employed OJT participants 

are 10.4 pp less likely to have an employment contract compared to the average 

probability of having a contract of IS participants. As discussed, the model 

specification was modified and some variables were omitted due to issues with non-

convergence thus this last result should be interpreted with caution. 

In conclusion, these findings suggest a highly significant difference in the 

probability of being employed between OJT and IET participants. OJT participants 

are more likely to be employed, other factors being equal, compared to the IET 

participants. There seems to be no difference between OJT and IS on the probability 

of being employed at the time surveyed. When comparing the IET and IS 

programmes, the findings provide evidence suggesting that IET beneficiaries, other 

things being equal, had a lower probability of being employed compared to their IS 

counterparts. With regard to the job search activity at the time of the survey, the 

findings indicate that unemployed OJT are less likely to search for jobs, other factors 

being equal, than their IS counterparts. Furthermore, IET unemployed beneficiaries 

are less likely to search for jobs, other things being equal, compared to IS 

unemployed beneficiaries. Other factors being equal, an employed OJT participant is 

less likely to have an employment contract then an employed IET. For employed 

individuals in the sample, the difference in probability of having an employment 

contract is insignificant when comparing OJT and IS beneficiaries.   



226 
 

5.6 Conclusions 

This empirical chapter used a cross-sectional dataset collected through a survey in 

2012 to evaluate three different active measures, OJT, IS and IET, implemented in 

Kosovo from 2008 to 2010. This chapter utilised two methodologies. The first one is 

the multinomial probit model to evaluate the effectiveness of these policies and their 

characteristics such as the duration of the ALMPs, the year of completion, having 

received a certificate of completion and having prepared an employment/training 

plan.  As argued in this chapter, the non-random data might be subject to selection 

bias, hence a second empirical approach, IPWRA was chosen since it attempts to 

address this issue based on observable factors.  

The results from the IPWRA suggest that participating in OJT and IS increases the 

probability of being employed compared to participating in IET. The results are in 

line with those from the multinomial probit where both OJT and IS are found to 

reduce beneficiaries‘ probability of being unemployed. Beneficiaries of OJT, 

however, are also more likely to be employed in the informal sector compared to 

beneficiaries of IS and IET; this is also in line with the findings from multinomial 

probit which suggest that OJT beneficiaries are more likely to be employed in the 

informal sector. With regard to the characteristics of the active measures, the results 

from multinomial probit suggest that the longer the duration of the active measure 

the beneficiary is more likely to be employed in the informal sector. The impact of 

the active measures seems to diminish during the years of implementation; i.e. those 

who participated in 2008 and 2009 were less likely to be unemployed and more 

likely to be employed in the formal sector compared to those who participated in 

2010. As discussed above, this may mean that the effect of the ALMPs is more 

pronounced in the long-term rather than shorter-term. Alternative explanations 

include changes in aggregate labour market conditions and/or changes in the actual 

or perceived quality of the active measures implemented in specific years. The 

findings from multinomial probit suggest that receiving a certificate also improves 

beneficiaries‘ probability of being employed in the formal sector and reduces the 

probability of being employed in the informal sector. On the other hand, having an 

employment/training plan before training had no impact on being employed in either 

formal or informal sector which puts in question the quality of these plans.  
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Given that the ALMPs in Kosovo are on a small scale, it is important not only to 

evaluate the effectiveness of participating in one of the measures relative to one 

another but rather to compare the outcomes of those who participate with those who 

do not. This would provide a clearer picture of the effectiveness of ALMPs in 

achieving their main objective, increasing employment prospects of the treated 

compared to that of the untreated. The analysis presented in the following chapter 

provides such a comparison. 
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6.1 Introduction  

Chapter 5 empirically investigated the relative effectiveness of three active labour 

market measures implemented in Kosovo: On the Job Training (OJT); Internship 

Scheme (IS) and Institution and Enterprise Training (IET). That analysis used two 

different estimation techniques: Multinomial Probit and Inverse Probability 

Weighting – Regression Adjustment (IPWRA). This investigation came to the 

conclusion that participants in both OJT and IS had a higher probability, post-

treatment, of being employed compared to their IET counterparts. On the other hand, 

employed IET participants were more likely to have an employment contract 

compared to participants in OJT, i.e. they were more likely to be employed in the 

formal sector. The empirical investigation in this chapter will extend the analysis of 

chapter 5 by assessing the overall effectiveness of the three policies compared to 

being a non-participant. 

As elaborated in chapter 4, when using observational data ideally the control group 

data should be derived from the same data source. In the absence of a control group 

from the same source, the empirical analysis presented in this chapter will construct 

a control group acquired from the Labour Force Survey (LFS) for Kosovo for 2012, 

the same year as the UNDP data used in chapter 5. The estimation techniques used 

for this empirical investigation are Propensity Score Matching (PSM) and Inverse 

Probability Weighting – Regression Adjustment (IPWRA). Both estimation 

techniques attempt to address the potential selection bias. As discussed in chapter 4, 

while PSM uses only binary treatment assignment model, IPWRA allows us to 

extend treatment assignment from the ‗participant vs. non-participant‘ analysis of 

PSM to a multivalued treatment assignment model while utilising an appropriate set 

of covariates which are available for both the treated and control groups. The 

combination of the two estimation techniques sheds light on the importance of 

multivalued treatment model and assessing the effectiveness of each active measure 

in comparison to the control group. Therefore the aim of this chapter is to further 

investigate whether being a participant in one of the three active measures improves 

the likelihood of gaining employment in general and being engaged in the formal 

labour market in particular compared to being a non-participant.  
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This chapter is organised as follows: section 6.2 provides the details on the 

construction of the control group, section 6.3 discusses the specification for both the 

treatment assignment and outcome models while section 6.4 provides descriptive 

statistics for the treated and control groups and presents the results from the PSM 

and IPWRA estimations. Section 6.5 provides a summary of conclusive remarks. 

6.2 Construction of the Control Group 

A key concern in any evaluation of the effectiveness of ALMPs is the construction of 

an appropriate control group based on the selection process that leads the 

unemployed to participate in the programme. Section 5.2 provides a detailed 

description of the three active measures in Kosovo along with the selection criteria 

specified for each of the measures, their duration and descriptive statistics of 

participants. In many studies evaluating programme effectiveness and also in the 

case of this analysis, the choice of the control group is constrained by data 

availability. This section will compare the LFS questionnaire used to construct the 

control group with the questionnaire from UNDP used to construct the dataset for 

participants in the active measures implemented in Kosovo and will assess the 

suitability of the control group for this evaluation.  

Heckman et al. (1999) pointed out the desirability of deriving both the treated and 

control groups from the same data source. Using two different datasets for the treated 

and control might induce measurement differences due to the possibility of different 

definitions and instrumentations of the same outcome variable and covariates. This 

may add an important potential source of bias to the impact estimates reported for an 

active programme (Smith, 1997).  In the case where a survey from a different source 

is used to construct the control group, it is important to ensure that the questions for 

the treatment groups closely match those for the control group. According to Card et 

al. (2011), even minor differences in question phrasing can lead to a quantitative 

difference in the measured outcomes. Hence, identical wording is desirable when 

constructing the dataset. This section identifies these differences and assesses how 

they can be mitigated. Table 6.1 presents the key differences in the questions in the 

two surveys which will be discussed in more detail here.     



231 
 

Questions about the labour market status of respondents are more detailed and 

precise in the LFS dataset compared to those in the UNDP data. The variable 

employed is constructed from the first questions presented in table 6.1. If an 

individual responded to options 3 to 6 in UNDP data and 1 to 5 in LFS data, the 

variable emp takes the value of one while if he/she responded to option 1 in UNDP 

survey and option 6 in LFS then the variable takes the value of zero. Those who 

responded as inactive in the UNDP data are excluded from the sample. From the 

LFS question ‗Why did you not work last week?‘, those who responded that they 

were in school, education or training, maternity leave, had illness or temporary 

disability, personal or family responsibilities are considered inactive and hence were 

also excluded from the sample.  

From table 6.1, one can see that the questions measuring the variable contract are 

quite similar. The constructed variable contract is a dummy variable which takes the 

value of one if an employed individual responded that he/she has an employment 

contract in the UNDP survey. In the LFS data, the variable takes a value of one if the 

answer was options 1 to 4 to the question ‗What kind of contract do you have?.  The 

variable contract takes a value of zero if an individual responded to options 2 and 5 

in the respective surveys.  

The variable measuring social assistance, socialassist is constructed from the 

question in the UNDP questionnaire: ‗Does your family receive any kind of 

assistance (social assistance, assistance for disability, pension etc.)?‘ while in the 

LFS questionnaire the question is ‗Do you receive unemployment benefits?‘. In 

Kosovo, although there are no unemployment benefits per se, the eligibility criteria 

for social assistance are related to unemployment: families must fall within one of 

the following two categories: a) all family members are dependants
48

 and b) there is 

a family member able to work (registered as unemployed) and there is at least one 

child under the age of five and/or an orphan under the age of fifteen. Thus, 

considering the criteria for social assistance in Kosovo, for practical purposes, the 

two indicators can be used interchangeably. Therefore, the variable socialassist takes 

                                                           
48

 Persons with disabilities rendering them unable to work for remuneration, persons who are sixty-

five years of age or older, full-time carers of a person with disability, single parents with at least one 

child under the age of five etc.  
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the value of one if the respondent‘s household receives social 

assistance/unemployment benefits and zero otherwise.  

Table 6.1 Differences of variable definition in the two datasets 
Question in UNDP survey Question in LFS Variables constructed  

Employment  

Today, you are:  

1) Unemployed 

2) Inactive (in school, training, 

student, engaged in family 

responsibilities) 

3) Self-employed  

4) Employed in a public 

agency (central or local) 

5) Employed in a public 

enterprise  

6) Employed in a private 

enterprise  

 

Employment 

During last week, you have: 

1) worked in a regular job (at least one 

hour) for pay (in cash or kind)  

2) worked (at least one hour) in the non- 

agricultural sector  

3) done any occasional job (at least one 

hour) for pay or profit  

4) worked (at least one hour) on a farm  

(if at least part of the production is 

intended to be sold or bartered) 

5) worked (at least one hour) on a farm  

 (if the whole production is only for own 

consumption) 

6) none of the above 

Variable employed 

UNDP survey: 

The variable employed equals 

one for options 3, 4, 5, and 6, 

zero otherwise.  

 

LFS: 

The variable employed equals 

one for choices 1, 2, 3, 4, and 5, 

zero for option 6. 

  

Inactive respondents are 

excluded from the sample.  

Contract (only for employed) 

Do you have employment 

contract?  

1) Yes 

2) No 

 

Contract (only for employed)  

What kind of contract do you have?  

1) Individual 

2) Group 

3) Collective with syndicate  

4) Collective with employer 

5) Without contract 

Variable contract 

UNDP survey: 

The variable contract equals one 

for choice 1, zero for option 2.   

LFS: 

The variable contract equals one 

for options 1, 2, 3 and 4, zero for 

choice 6.  

Received social assistance 

Does your family receive any 

kind of assistance (social 

assistance, assistance for 

disability, pension etc.)? 

1) Yes 

2) No 

Received social assistance 

Do you receive unemployment benefits? 

1) Yes 

2) No 

 

Variable socialassist 

UNDP survey: 

The variable socialassist equals 

one for option 1, zero for option 

2.   

LFS: 

The variable socialassist equals 

one for option 1, zero for option 

2.   

Employment History  

Variable emp2011  

How many jobs did you have 

in 2011?  

 

 

 

 

 

 

 

 

 

Variable emphist 

Constructed from the 

following questions:  

- How many jobs did you 

have in 2008?  

- How many jobs did you 

have in 2009?  

- How many jobs did you 

have in 2010?  

- How many jobs did you 

have in 2011?  

Employment History  

Variable emp2011 

What was your main activity status one 

year ago? 

1) Carrying out a job, including unpaid 

work for family business or farm, 

including an apprenticeship or paid 

traineeship etc.  

2) Unemployed  

3) Pupil, student, in further training etc.  

4) In retirement or early retirement 

5) Permanently disabled 

6) Fulfilling domestic tasks  

7) Other inactive person  

Variable emphist 

Have you ever been in a regular 

employment before? (job as employee, 

self-employed, unpaid family member; 

purely occasional jobs or work during 

vacations should not be considered as 

previous work experience) 

1) Yes 

2) No 

 

 

 

Variable emp2011 

UNDP survey: 

The variable emp2011 equals 

one if the respondent was 

employed in 2011, zero 

otherwise. 

 

LFS: 

The variable emp2011 equals 

one for option 1, zero otherwise.   

 

 

Variable emphist 

UNDP survey: 

The variable emphist equals one 

if the respondent has been 

employed at least once during 

period 2008-2011, zero 

otherwise. 

 

LFS: 

The variable emphist equals one 

for option 1 and if the respondent 

has been employed in 2011, zero 

otherwise.   
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Additionally, when constructing the dataset for programme evaluation, it is 

important to acquire information about the pre-treatment employment status variable 

in order to capture whether the two groups followed a similar outcome path prior to 

treatment. The design of the evaluation would be threatened if this is not the case, 

since there is no assurance that the employment path of the two groups would remain 

constant except for the impact of the treatment. Therefore, in order to generate a 

credible programme evaluation, it is necessary to find a control group for which the 

information on their employment status for several periods prior to joining the 

programme is available (typically at least a year and ideally a longer period) 

(Heckman et al., 1999; Card et al., 2011). 

As discussed in section 4.4.1, the labour market history of the pre-treatment period 

has frequently been found to be a good proxy for an individual‘s motivation to find 

employment, their labour market attachment, interpersonal skills and employers‘ 

preference towards certain workers which might affect programme participation. In 

an attempt to capture these unobserved characteristics, two different variables are 

created. As Emsley et al. (2008) suggest, the treatment model should account for as 

many characteristics as possible, even if these factors are not strictly related to the 

treatment selection, in order to improve the prediction of the propensity scores and as 

such to lower the bias.  

Considering the relevance of labour market history variables, we constructed two 

different variables which measure the employment history of the respondents in the 

sample. If an individual from the UNDP dataset claimed that he/she had at least one 

job during 2011 the variable emp2011 takes value of one and takes the value of zero 

if he/she had no job at all during the same year. While if an individual in the LFS 

dataset responded that he/she was carrying out a job, including unpaid work for 

family business or farm etc. then the variable emp2011 takes value of one, otherwise 

it takes a value of zero.  

Also, to construct an additional variable, emphist, the combined responses to the 

following questions in UNDP survey were used: ‗How many jobs did you have in 

2011?... in 2010?... in 2009? …in 2008?‟. If respondent was employed at least once 
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during this period, variable emphist takes value of one while it takes value of zero if 

he/she was unemployed during the whole period. Considering the high long-term 

unemployment rate in Kosovo, one might argue that if a person was unemployed for 

the whole period 2008 to 2011 it is highly unlikely that this person was ever 

employed. Additionally, because the mean age of the sample of participants is about 

26 and that of the control is about 29, a large group of young individuals might have 

not even been economically active 5 years prior to the survey, therefore, treating 

these individuals as unemployed for the whole period prior to the survey is a 

reasonable assumption in this case. To construct this variable for the control group 

from the LFS survey the combined responses to two questions were used. The first 

question, which was addressed only to the unemployed at the time of the survey in 

2012, is: ‗Have you ever been in a regular employment before?‘. If a respondent was 

in regular employment before, the variable emphist takes a value of one, otherwise 

the variable takes a value of zero. Since the first question does not collect 

information from those who were employed at the time of the survey, the second 

question used is the same one used to create the variable emp2011 which is answered 

also by those who were employed at the time of the survey. Bearing in mind that six 

questions are used to create the variable emphist, it is clear that there are 

measurement differences, hence this variable is used only in the first specification 

and the results are interpreted with caution.   

It should also be acknowledged that the LFS questionnaire does not have a question 

as to whether the individual surveyed has participated in any active labour market 

measure. Thus the estimation might induce contamination bias as some members of 

the control group are likely to have been participants of treatment being evaluated 

(Heckman et al. 1999). However, there is no clear suggestion from the studies that 

discussed evaluation methodology on how to proceed in such case. As chapter 1 

explained, the number of people that participated in active measures from 2005 to 

2012 was just 11,154. The argument for using LFS despite missing information 

about ALMP participation is that the number of participants in Kosovo is very small 

compared to more than one 1 million working age population, which is just 0.9 

percent of total working age population (or compared to more than 400 thousand 

people actively seeking work in 2012) (KAS, 2012) making this source of bias 

negligible.   
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After considering all the measurement differences in the two surveys, the following 

section will discuss the model specification for the treatment and outcome models. 

Section 6.4 will present and discuss the empirical findings from the evaluation 

methodology.  

6.3 Model Specification   

This chapter assesses the overall effectiveness of the three active programmes 

described in chapter 5. Following the discussion in section 4.3.2, one of the most 

important points in evaluation methodology is the selection of relevant covariates for 

the treatment assignment model specification. Empirical studies using evaluation 

methodology suggest using a rich set of variables that affect treatment assignment. 

The potential set of variables include baseline covariates which are not influenced or 

modified by treatment, such as age and gender, while another set of variables include 

those that are related to the selection criteria for the treatment assignment. Section 

5.2 provides a more detailed discussion of the selection of individuals into different 

active measures. This discussion suggests that the participants are not randomly 

selected into these programmes which might lead to a potential selection bias. As 

explained in section 4.3.2, controlling for all the relevant variables that affect the 

selection into these active programmes makes the conditional independence 

assumption (CIA)
49

 a reasonable identification strategy. The second assumption of 

the evaluation methods ―require that all characteristic values appearing in the 

treatment group also appear in the control group” (Schmidl, 2014, p. 137)
50

. 

Considering both assumptions, the choice of variables to be accounted for in both the 

treatment and outcome models will be restricted to those variables that are defined 

(measured) similarly in both the LFS and UNDP datasets.  

In order to satisfy the CIA and considering the selection criteria of participants into 

the programmes, the treatment assignment model accounts for the main relevant 

factors in the selection process. Since active programmes under consideration for this 

analysis are targeted at the young unemployed, the variable age is accounted for in 

                                                           
49

 Also referred to as the un-confoundedness or selection on observables, CIA assumes that there are 

sufficient observable data such that the outcome or the treatment effects are independent from the 

programme participation. Under this assumption, it is assumed that the unobserved characteristics are 

trivial and will not affect the outcome in absence of the treatment.  
50

 This is the assumption of common support or overlapping of the covariates of the participants and 

non-participants. See section 4.3.2 for more details. 
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the treatment model. The descriptive statistics of UNDP data in section 5.3 show that 

the age criterion was not strictly respected and sometimes participants in ALMPs 

were older than 35 in order to increase the number of women or ethnic minorities. 

Taking this into account, both samples are restricted to include individuals of 

working age who are younger than 40 years of age. The treatment model also 

accounts for gender because it was one of the criteria to select the more 

disadvantaged unemployed in the labour market. Individuals receiving social 

assistance and ethnic minorities were also targeted by these programmes considering 

their disadvantage in the labour market. Additionally, an important factor in the 

selection process of these programmes is the education level of participants. The 

OJT programme targeted those unemployed who have completed vocational 

education, the IET targeted those who had not had a chance to start or complete 

vocational education while the IS targeted those who had recently graduated from 

university and had no work experience. To account for the education level, two 

dummy variables are included in the model, secondaryeduc (equals one if individual 

completed secondary education, zero otherwise) and tertiaryeduc (equals one if 

individual completed tertiary education, zero otherwise) while primaryeduc (equals 

one if individual completed primary education, zero otherwise) is the benchmark 

category. As suggested by many studies, individuals‘ labour market history is also 

included in the treatment model since it might capture some unobserved 

characteristics such as motivation, skills and employers‘ preferences towards 

workers with certain characteristics (Heckman et al., 1999; Emsley et al., 2008; 

Kluve et al., 2008; Schmidl, 2014). Variables emp2011 (equals one if individual was 

employed in 2011, zero otherwise) and emphist (equals one if individual was 

employed at least once during the period 2008 to 2011, zero otherwise) are included 

in the treatment model in an attempt to capture these unobserved effects. A variable 

measuring the family size, hhsize, is included in the treatment model since it is 

expected that individuals with larger families are more likely to participate in a 

treatment considering that they might feel more pressured to find employment. An 

interaction between the variable measuring household size and gender is also 

included in the model because it is expected that women are less likely to participate 

in the labour market and in training if the size of their families are large due to caring 

responsibilities.  
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Studies have also emphasised the importance of accounting for regional differences 

since, as explained in section 4.4.1, they capture the local aspects of programme 

implementation, local policies, infrastructure etc. which influence an individual‘s 

decision whether to apply for active programmes. The regional dummy variables, or 

a variable accounting for regional unemployment, are included in the treatment 

model, depending on the size of the sample of the outcome models. Since this 

empirical analysis uses two different outcome models, employed and contract 

(discussed in detail below), the sample for the latter outcome model will be restricted 

to account only for those who are employed. Due to this smaller sample for contract 

model, instead of using regional dummies, regional unemployment rates are included 

to gain more degrees of freedom and improve the balancing of covariates between 

the two groups. 

Similar to the analysis presented in chapter 5, the variable vtcmncp (equals one if 

individual lives in the city where the vocational training centre (VTC) is located) 

was considered to be included in model to account for individuals‘ proximity to the 

vocational training centres. According to Heckman et al., (1999) living closer to 

VTCs reduces commuting costs and other costs related to attending the active 

programmes in the training centres. However, this variable could not be constructed 

for both the treated and control datasets. In section 5.5.2 it is emphasized that firms 

did not have any particular influence on the selection of participants into 

programmes, hence it is considered that the selection bias arising from firms‘ 

preferences is negligible in the context of this analysis. A relevant factor in 

determining an individual‘s programme participation and labour market status is 

nepotism which is considered to be widespread in Kosovo (Corbanese and Rosas, 

2007). The prevailing culture of nepotism in Kosovo might have increased distorted 

selection into the treatment programmes, however no relevant proxy is available in 

either survey.  

Interpersonal skills (which might also capture some unobservable characteristics) 

and an individual‘s health might also be relevant in determining programme 

participation and employment outcome. Neither of the questionnaires provides any 

information about these factors. However, these effects might be captured by 

variables measuring the individuals‘ employment history, emp2011 and emphist. 

Also, some studies point out the importance of accounting for the influence of the 
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behaviour of administrative staff in the employment offices in selecting participants 

into active programmes (see chapter 4). This might capture the closeness of the 

unemployed worker to the employment office and their persistence and motivation to 

remain in the labour market. Considering that the main relevant factors are included 

in the treatment model and assuming that the impact of the variables excluded is 

minimal, then one can assume that CIA is satisfied in the context of this empirical 

analysis.  

Two dependent variables are used in the treatment model. The first one is a binary 

variable which equals 1 if an individual participated in one of the three active 

measures and 0 otherwise. The second is the multivalued variable with four 

categories which equals 0 if an individual is in the control group, equals 1 if he/she 

participated in OJT, equals 2 if he/she participated in IS and equals 3 if he/she 

participated in IET. The model specification for treatment selection is provided in 

the equation below:  

                                                                 

                                                                                  

6.1 

As discussed in section 4.3.4, IPWRA has a double robust property and even if one 

of the models (treatment or outcome) is mis-specified, this estimator will produce 

consistent estimates (Wooldridge, 2009; Emsley et al., 2014). This technique will 

use the following three steps to generate the average treatment effects on the treated. 

The first step is to estimate the parameters of the treatment model and compute 

inverse-probability weights using a multinomial logit model. Using these estimated 

weights, this technique will fit weighted regression models of the outcome for each 

treatment level and will predict treatment specific outcomes for each individual. The 

third step is the computation of the means of treatment predicted outcomes and the 

differences in the means of the treatment effects. 

Model specification for Outcome models – Employment and Employment Contract   

To estimate the overall effectiveness of the active measures, two outcome variables 

are used.  
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- Employment (employed): equals one if the individual was employed at the 

time of the survey, zero otherwise;  

- Employment contract (contract): equals one if the employed individual had a 

signed employment contract at the time of the survey, zero otherwise. 

The following subsection provides the model specification for each of the outcome 

models. Variable description and definitions are presented in table 6.2.  

The variables age and its square term (age and agesq) are included in the model to 

account for a possible non-linear relationship between age and employment. 

Theoretically, age variables tend to capture the experience effect on employment 

probability suggesting that the probability of being employed increases with age, 

reaches a peak and starts to drop after that point. There are empirical studies that 

found evidence that youths are faced with higher levels of economic and social 

uncertainty and hence face a lower likelihood of finding a job, however their 

employment prospects increase with age (Russel and O‘Connell, 2001; Bell and 

Blanchflower, 2015). As discussed in section 5.4, in Kosovo age might not reflect 

the experience considering very high levels of general and long-term unemployment. 

Disadvantaged groups in the labour market are more likely to accept low quality 

jobs, particularly jobs in the informal market. The expectation is that, other factors 

remaining constant, the probability of having an employment contract for a young 

person is low but increases with age. As explained in section 2.5.1, youths in 

transition economies, especially in Kosovo, usually transit from school to low paid 

jobs or informal employment (Corbanese and Rosas, 2007). Bosch and Maloney 

(2010) argue that youths use informal employment as a stepping-stone in the school 

to work transition in order to gain skills that would allow them to get employed in 

the formal sector in the future. Hence, suggesting that the probability of being 

employed in the informal sector is higher for young people but reduces with age. 

Thus, variables age and agesq are included in the employment contract model to 

account for this nonlinear relationship.  
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Table 6.2 Variables, names and specification 

Information category  Specification details Name 

Dependent – Outcome 

variables  

Employment (dummy=1 if the individual was employed 

at the time of the survey) 

Employment contract for the employed (dummy=1 if the 

employee had signed a contract with the employer at the 

time of the survey) 

employed  

 

contract 

Dependent variable of 

the treatment model  

Multivalued treatment (dummy = 0 if the individual is 

part of the control group; 1 if the individual received 

OJT; 2 if the individual received IS; 3  if the individual 

received IET) 

Binary treatment (dummy = 0 if the individual is part of 

the control group; 1 if the individual received any of the 

three active measures) 

mtreatment 

 

 

btreatment 

Socio-demographic 

characteristics  

 

Gender (dummy= 1 if the individual is male)  

Age   

Ethnicity (dummy = 1 if the individual is a member of an 

ethnic minority)  

Received social assistance ( dummy = 1 if the if the 

family of the individual receives social,  disability 

assistance or pension or unemployment benefits)  

Household size (continues variable measured in number 

of the household members) 

gender 

age and agesq 

ethnicity 

 

socialassist 

 

 

hhsize 

Education level  Education level:  

- Four years or primary school completed (dummy=1 

if the individual completed four years, primary 

school or is a high school drop-out) 

- High school completed  (dummy=1 if the individual 

completed high school)  

- University and post-graduate degree  (dummy=1 if 

the individual completed university or post graduate 

studies) 

 

 

primaryeduc 

 

secondaryeduc 

 

tertiaryeduc 

Labour market 

history  

Whether the individual was employed in 2011 (dummy 

=1 if the individual was employed in 2011) 

Whether the individual has been employed at least once 

(dummy = 1 if individual has been employed at least 

once)  

 

emp2011 

 

emphist 

Regional 

characteristics  

Regional dummy variables:  

- Prishtina  

- Mitrovica  

- Gjilan 

- Ferizaj 

- Gjakove 

- Peja  

- Prizren 

 

Regional Unemployment Rate 

 

prishtina 

mitrovica 

gjilani 

ferizaj 

gjakova  

peja 

prizreni 

 

regunmp 

 

A gender variable is included in the model to account for gender differences in the 

probability of being employed. As elaborated in chapter 1, the female unemployment 

rate is substantially higher than that for males. The large employment gender gap in 

Kosovo can be explained by the prevailing social expectations about women. 

Women are more likely to withdraw from labour market due to household and caring 

responsibilities (KAS, 2017). Given this expectation and the prevalent gender 

stereotypes in Kosovo that they are more suitable for certain occupations, employers 

may prefer employing men to employing women. Thus, the expectation is that 
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women have a lower probability of being employed compared to men ceteris 

paribus.  Section 2.4 also emphasised that, in general, marginalised workers, such as 

women, are more likely to participate in the informal labour sector compared their 

counterparts (Chen, 2005; Jackson, 2012).  This is related to social gender identities 

where the male who is the head of the family and has children is considered as the 

breadwinner of the house while women in the same situation are more likely to be 

engaged in vulnerable jobs. However, a report from KAS (2017) suggests that 

women in Kosovo are less likely to engage in informal jobs compared to men, 

however, as pointed out in chapter 5, this is mainly because women are more likely 

to be employed in the public sector. Given that in this sample women are not 

predominantly employed in the public sector, in this empirical analysis employed 

men are expected to be less engaged in the informal sector compared to women, 

other variables remaining constant. 

The relationship between education and labour market performance has been 

theoretically established and analysed empirically by many studies (Becker, 1964; 

Card, 2001; Grossman, 2006; Oreopoulos and Salvanes, 2009; Bussemakers, 2017). 

Human capital formation is expected to translate into increased direct productivity, 

hence individuals with higher levels of education are expected to have a higher 

probability of being employed compared to those with lower levels of education, 

other factors remaining constant. Additionally, through the positive effect of income 

returns, education is expected to reduce the necessity to participate in the informal 

sector (Buehn and Farzanegan, 2013). With higher levels of education, employees 

have more bargaining power thus they will be more likely to have an employment 

contract (Heywood and Wei, 2004; Chevalier et al., 2004; Backes-Gellner and 

Werner, 2007; Corbanese and Rosas, 2007). Variables measuring the level of 

completed education secondaryeduc and tertiaryeduc are included in the model to 

account for the effect of education on the probability to be employed and the 

probability of having an employment contract if employed (primaryeduc is left out 

of the outcome regression as a benchmark category).  

It has been widely recognised by empirical studies that ethnic minorities typically 

have lower employment opportunities due to their ethnicity (McCaig and Pavcnik, 

2015). Ethnic minorities face barriers in the labour market due to their different 
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cultural background, different language and other differences which might induce 

discrimination. The variable minority is included in the model in order to account for 

these differences. As explained in more details in section 2.4, ethnic minorities face 

greater barriers to enter the formal sector due to lack of information about vacancies 

in the formal market, lack of social networks and other related factors (Julia et al., 

2015). They are also more likely to face barriers to professional advancement in their 

existing jobs and improving their employment status from informal to formal status 

(McGovern et al., 2004; Julia et al., 2015). Therefore, the expectation is that ethnic 

minorities, if employed, will be less likely to have an employment contract, ceteris 

paribus.  

According to a number of empirical studies, if an individual‘s family receives social 

assistance, he/she is associated with a lower probability of participating in the labour 

market and as consequence a lower employment probability (Moffit, 2002; Farber 

and Valletta, 2015). There is disincentive for individual to find employment with 

higher levels of unemployment benefits and also benefits that cover long periods of 

unemployment (Nickell, 1997). Considering that in Kosovo the level of social 

assistance is quite low it is unclear whether it influences one‘s decision to join the 

labour force. Thus, the impact of variable socassist on the probability of being 

employed in the context of this analysis is ambiguous. In a study by World Bank 

(2015), receiving social assistance was found to increase the probability of actively 

searching for jobs in the informal market, hence they might feel pressured to be 

employed regardless of work conditions. With regard to the impact of this variable 

on the probability of having an employment contract, it is expected that if the family 

receives social assistance, the person is more likely to be employed in the informal 

sector rather than in formal one in order to continue to claim the social assistance, 

however small in the case of Kosovo. 

The importance of accounting for an individual‘s labour market status history has 

been emphasised by many studies (Rodrigues-Planas and Benus, 2006; Kluve et al., 

2008; Schmidl, 2014). Moreover, these empirical studies have highlighted that when 

an individual‘s status history is not accounted for in evaluations of ALMPs, the true 

effect of these policies cannot be estimated. An individual‘s labour market history is 

a relevant variable since it captures the unobservable characteristics of the individual 
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such as motivation to find a job, non-schooling human capital and preference of 

firms towards specific potential workers (the review of literature in section 4.4.2 

provides more discussion about the importance of this variable). To account for the 

above mentioned effects two variables, emp2011 and emphist, are again included in 

the employment contract outcome model. It is expected that an individual who was 

employed during 2011 or at least once during period 2008-2011, other variables 

remaining constant, will have higher a probability of being employed in 2012 

compared to their counterparts who were unemployed in those years.  Also, if 

employed in 2012, it is anticipated that those employed during 2011 or at least once 

during period 2008-2011 will be more likely to be employed in the formal market, 

i.e. more likely to have an employment contract, compared to individuals who were 

unemployed.  

The place of residence is a relevant variable to account for the differences in the 

demand and supply for labour in different regions. The regional differences are 

expected to arise due to variations in regional unemployment rates, in regional 

economic growth, total job opportunities and alternative jobs available in local 

labour markets. To assess the regional effect on the employment probability six 

dummy variables are included which represent the seven regions of Kosovo 

(Mitrovica, Gjilan, Ferizaj, Gjakove, Peja and Prizren), while the capital Prishtina is 

the benchmark category. The expectation is that individuals living in Prishtina, the 

capital city of Kosovo, will have a higher probability of being employed compared to 

those living in other regions due to their greater employment opportunities, lower 

commuting costs and better care facilities for children and elderly. In the contract 

model a variable measuring the regional unemployment rates is included instead 

because of a smaller sample and in order to gain more degrees of freedom. Other 

factors remaining constant, it is expected that regions with a higher unemployment 

rate increase an individual‘s probability of being employed in the informal sector.  

A potentially important determinant of the future employment status is the household 

size, hence a variable accounting for family size, hhsize, is included in the model. In 

the context of Kosovo where public and private childcare facilities are scarce and 

expensive, it is expected that a larger household will increase a women‘s 

participation in the labour market and might also increase the probability of being 
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employed. However, this depends on the health of the elderly in the family who 

alternatively might need to be taken care of. In order to observe the impact of family 

size on the probability of women‘s employment an interaction between household 

size and gender is included in the model, hhsizegen. The final specifications from 

outcome models, employed and contract are presented below: 

         

                                                           

                                                                   6.2 

                                                                    

                                                                     6.3 

The following section will discuss the descriptive statistics of the covariates for the 

treated and control groups and will present empirical evidence of the treatment 

effects of the binary and multivalued treatment models using different estimation 

techniques.   

6.4 Descriptive Statistics and Empirical Results   

The descriptive statistics for the covariate variables are presented in table 6.3. The 

control group sample is much larger compared to the sample of three active 

measures with 6,906 observations for outcome variable employed and 2,943 for 

observations for outcome variable contract. When initially comparing the means of 

the variables between each active measure and the control group, the differences 

were quite substantial for some variables. Considering that the selection criteria for 

active measures were being young and unemployed the control sample was adjusted 

to account only for individuals within the same age range as that in the treated group. 

As explained in section 6.2, age is restricted to account for individuals of working 

age younger than 40 years of age. In this case, just 12 observations from the 

treatment group (individuals older than 40) are dropped from the sample
51

. Table 6.3 

indicates that the mean of age is lower for the treated with an average of 26 years of 

age compared to the control group with more than 29 years on average.  The mean 

                                                           
51

  The decision to restrict the age at 40 (rather than at 35 as per the programmes‘ eligibility criteria) 

was used in order not to reduce the sample for the treatment group further, as it is crucial to have as 

many treated individuals in the sample as possible.  
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values for the covariates do not show large differences except for the gender 

variable. After excluding the inactive individuals from the sample, the gender 

balance in the control group differs from that of the treatment group: the former is 75 

percent male compared to 47 to 54 percent in the treatment samples.  

Observational data covariates must be balanced either by matching or by weighting 

since, as explained in section 6.3, treatment assignment is related to specific 

covariates which consequently might affect the outcome results. The methodology 

used has to balance the observable characteristics between treated and control 

individuals thus a balancing check will be performed in order to assess whether these 

differences in means will be a problem.  

 

Table 6.3 Descriptive statistics for treated group (OJT, IS and IET) and control 

group 

Because the aim of this chapter is to assess the outcome state of participants in 

ALMPs compared to the outcome state of the control individuals, initially the 

analysis will estimate a binary treatment model where the treatment dependent 

  OJT IET IS Control group 

 

(1) (2) (3) (4) (5) (6) (7) (8) 

VARIABLES N Mean N Mean N Mean N Mean 

Outcome Dependent 

Variables         

employed  470 0.447 241 0.390 136 0.316 6,906 0.567 

contract 192 0.698 85 0.788 41 0.732 2,943 0.850 

Covariates 

        age 470 26.27 241 26.50 136 26.51 6,906 29.41 

agesq 470 702.5 241 715.4 136 713.7 6,906 902.9 

male 470 0.540 241 0.548 136 0.478 6,906 0.748 

socialassist 470 0.083 241 0.120 136 0.074 6,906 0.011 

minority 470 0.064 241 0.083 136 0.081 6,906 0.063 

secondaryeduc 470 0.398 241 0.427 136 0.434 6,906 0.627 

tertiaryeduc 470 0.421 241 0.415 136 0.353 6,906 0.152 

hhsize 470 6.226 241 6.071 136 6.022 6,906 7.716 

hhsizegen 470 3.366 241 3.369 136 3.118 6,906 5.775 

emp2011 470 0.343 241 0.303 136 0.338 6,906 0.577 

emphist 470 0.579 241 0.506 136 0.684 6,906 0.614 

gjakova 470 0.145 241 0.145 136 0.052 6,906 0.121 

gjilani 470 0.206 241 0.199 136 0.257 6,906 0.063 

mitrovica 470 0.134 241 0.166 136 0.059 6,906 0.096 

peja 470 0.109 241 0.154 136 0.066 6,906 0.136 

prizreni 470 0.162 241 0.104 136 0.125 6,906 0.163 

ferizaj 470 0.113 241 0.149 136 0.132 6,906 0.123 

prishtina 470 0.132 241 0.083 136 0.309 6,906 0.298 
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variable equals 1 if the individual was a participant and 0 if he/she is in the control 

group. Secondly, the multivalued treatment model will be used to assess the 

effectiveness of each active programmes, OJT, IS and IET, relative to being a non-

participant. Both sets of estimations will use the following estimation techniques 

Inverse Probability Weighting (IPW), Regression Adjustment (RA), and the doubly 

robust estimator Inverse Probability Weighting - Regression Adjustment (IPWRA) 

because these methods allow for both binary and multivalued treatment models. For 

the binary treatment model Propensity Score Matching (PSM) with nearest 

neighbour will also be used (PSM uses a binary treatment model only, hence it 

cannot be used for multivalued treatment).  

The fundamental evaluation problem is the construction of appropriate 

counterfactuals because an individual cannot be in both states, with and without 

treatment. Studies using propensity score methods have usually estimated the 

Average Treatment Effects on the Treated (ATET). ATET estimates the outcome of 

the treated individuals had they not been treated by any active measures. Section 4.2 

has provided a more detailed discussion of the evaluation problem and appropriate 

counterfactuals.  

The balancing diagnostics are provided before estimation results. For models using 

PSM, the following diagnostics are presented: standardized differences in means 

after matching, kernel density plots and propensity score plots. For models using 

IPW and IPWRA only standardized differences in means after weighting are 

presented, since kernel density plots are generated only for specific covariates while 

propensity score balance box plots can be generated only for models using PSM. 

Since both IPW and IPWRA use the same treatment model to generate weights their 

diagnostics are exactly the same, only one diagnostic will be presented for both 

techniques. RA estimation cannot generate any balancing diagnostics because this 

technique does not use a treatment assignment model, thus it does not use weighting 

nor matching methods but only uses the outcome model to generate the treatment 

effects. The differences in variance ratios before and after matching/weighting for all 

models are presented in Appendices A6.3 to A6.5. According to Rubin (2008), a 

perfectly balanced covariate has a mean standardized difference of zero while the 

acceptable threshold is the standardised difference of 0.25.   
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Evidence using the outcome dependent variable Employed 

The balancing diagnostics for the outcome variable employed presented in table 6.4 

suggest that the covariates have been balanced. The weighted standardised 

differences in means are all below the threshold of 0.25. The kernel density plots, 

which graph the model-adjusted estimated probability density functions of 

covariates, and diagnostics, which use box plots to verify whether the covariates are 

approximately equal, are presented in figure 6.1. The graphs show the kernel density 

functions and the box plots for PSM model before and after matching which suggest 

that the covariates have been balanced after matching. Therefore, one can conclude 

that the estimation techniques applied to the datasets achieve well-balanced 

covariates of the treated and control for treatment models.  

 

Table 6.4 Weighted standardized differences in the means of the characteristics of 

treated and control in a binary and multivalued treatment model using PSM and 

IPWRA. 

  Binary treatment Multivalued treatment 

Outcome variable 

employed 
PSM IPWRA IPWRA 

  ATET ATET   ATET    

  
Treated vs. 

Control 

Treated vs. 

Control 

OJT vs. 

Control 

IS vs. 

Control 

IET vs. 

Control 

age -0.076 -0.081 -0.077 -0.062 -0.001 

agesq -0.078 -0.080 -0.077 -0.067 -0.004 

gender   0.047 0.039 0.039 0.051 0.128 

minority 0.099 0.016 0.018 0.014 -0.040 

socialassist      0.161 0.163 0.160 0.183 0.173 

secondaryeduc  0.072 0.067 0.058 0.071 0.116 

tertiaryeduc  -0.086 -0.086 -0.076 -0.095 -0.138 

emp2011        0.023 0.011 0.004 0.031 -0.047 

emphist -0.058 -0.031 -0.024 -0.033 0.042 

hhsize -0.057 -0.031 -0.034 -0.071 -0.050 

hhsizegen  0.027 0.022 0.022 0.021 0.042 

ferizaj   -0.042 -0.005 -0.007 -0.034 -0.024 

gjakova    0.149 0.053 0.057 0.073 0.071 

gjilani    -0.070 -0.064 -0.071 -0.037 -0.070 

mitrovica  0.065 0.043 0.038 0.048 0.013 

peja   -0.061 -0.021 -0.021 -0.001 0.003 

prizreni  0.060 0.054 0.052 0.002 0.005 
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Figure 6.1 Kernel density and box plot using PSM for outcome model employed 

 

 

The estimated average treatment effects on treated (ATET) using the binary and 

multivalued treatment model are presented in tables 6.5 to 6.8 (see Appendices tables 

6.1 to 6.4). Initially, all variables discussed as relevant in section 6.3 are included in 

the model and the same sample is used for subsequent estimations. The complexity 

of how variable emphist is constructed, using two different questions for the control 

group and four different questions for the treatment group, is likely to create a 

measurement error because it is unable to capture individuals‘ potential employment 

prior to 2011. Because of this, the second set of estimations excludes the emphist 

variable and includes only emp2011 (the results are presented in table 6.6). In order 

to observe whether the employment history variables have a predictive power for the 

treatment effects, both employment history variables are excluded from the 

estimations presented in table 6.7. Additionally, arguing that the effectiveness of the 

policies might be underestimated because the dependent variable employed captures 

only those who are employed in 2012, an additional dependent variable was 

constructed, emp1112 (the period after the treatment), which equals one if the 
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individual was employed in either 2011 or 2012 years and zero otherwise. The 

estimated results using this outcome dependent variable are presented in table 6.8.  

Taking into consideration the doubly robust property of IPWRA, only results from 

this approach will be interpreted. The coefficients of the ATET in the first and 

second specification (tables 6.5 and 6.6) where at least one of the employment 

history variables are accounted for, suggest a significant positive effect of the active 

measures in the binary treatment model. The results from the specification 1 (where 

emp2011 and emphist are included) suggest that participating in one of the active 

measures increases an individual‘s probability of being employed by 7.25 percentage 

points above the average of similar individuals had they not been participants, other 

factors remaining constant. The ATET from the multivalued treatment effect suggest 

that participating in OJT and IS increases an individual‘s probability of being 

employed by 9.91 pp and 8.79 pp respectively, above the average of similar 

individuals had they not been participants, other factors remaining constant. The 

ATET coefficient of the IET is insignificant. The results are very similar for 

specification 2 (where only emp2011 is included), but with only slightly larger 

estimated coefficients. 

When none of the employment history variables are included the estimated results 

suggest a significant negative effect of participation in each of these programmes. It 

appears that the negative treatment effects are due to omitted variable bias, since 

they disappear when employment history is controlled for. This result suggests the 

importance of controlling for employment history, which can in turn also capture 

unobserved beneficiary characteristics. The coefficient of the average treatment 

effects of IET is significant and negative only in specifications 3 (where emp2011 

and emphist are excluded) and 4 (where the dependent variable is emp1112).  

Participating in one of the active measures reduces an individuals‘ probability of 

being employed by 5.6 pp below the average of similar individuals in the control 

group, other factors remaining constant. The results from the multivalued treatment 

model suggest a significant negative treatment effect for IS and IET participants by 6 

pp and 19.8 pp, respectively, other factors remaining constant. The results for 

specification 4 (using the dependent variable emp1112) suggest a positive treatment 

effect only when using PSM. The results of the binary model from other techniques 
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are insignificant. The results from the multivalued treatment are more consistent 

across different methods; however, the OJT coefficient is significant only when 

using the IPWRA. The results from IPWRA suggest that participating in OJT 

increases the probability of being employed after treatment (in 2011 or 2012) by 4.6 

pp above the average of similar individuals who had not participated in OJT, other 

factors remaining constant. The treatment effect for IET is negative, suggesting that 

having participated in IET reduces the probability of being employed after treatment 

by 13.2 pp below the average of similar individuals in the control group, other 

factors remaining constant.  

 

Table 6.5 Specification 1- including both employment history variable emp2011 and 

emphist. Average treatment effects on treated (ATET) and Potential Outcome Means 

(PoMean) for outcome model employed. 

 
PSM IPW RA IPWRA 

 ATET ATET PoMean ATET PoMean ATET PoMean 

Treated vs. 

Control 0.073*** 0.079***   0.069***   0.073***   

  (0.025) (0.020)   (0.017)   (0.018)   

Control     0.331***   0.340***   0.337*** 

      (0.019)   (0.016)   (0.017) 

 

              

OJT vs. Control   0.102***   0.095***   0.099***   

    (0.027)   (0.024)   (0.024)   

IS vs. Control   0.094***   0.087***   0.088***   

    (0.033)   (0.030)   (0.030)   

IET vs. Control   -0.067   -0.043   -0.053   

    (0.042)   (0.039)   (0.041)   

Control     0.344***   0.351***   0.348*** 

 

    (0.024)   (0.021)   (0.022) 

 

              

Observations 7,753 7,753 7,753 7,753 7,753 7,753 7,753 
Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Table 6.6 Specification 2 – including only emp2011 variable. Average treatment 

effects on treated (ATET) and Potential Outcome Means (PoMean) for outcome 

model employed. 

 

PSM IPW RA IPWRA 

 ATET ATET PoMean ATET PoMean ATET PoMean 

Treated vs. 

Control 0.067*** 0.079***   0.075***   0.080*** 

   (0.025) (0.018)   (0.017) 

 

(0.017) 

 Control     0.330*** 

 

0.334*** 

 

0.329*** 

      (0.014)   (0.016)   (0.016) 

        

  

  

 OJT vs. Control   0.105***   0.101*** 

 

0.106*** 

     (0.024)   (0.024) 

 

(0.024) 

 IS vs. Control   0.089***   0.081*** 

 

0.083*** 

     (0.032)   (0.029) 

 

(0.029) 

 IET vs. Control   -0.062   -0.035 

 

-0.044 

     (0.041)   (0.037) 

 

(0.035) 

 Control     0.342*** 

 

0.345*** 

 

0.340*** 

      (0.022) 

 

(0.021) 

 

(0.021) 

        

  

  

 Observations 7,753 7,753 7,753 7,753 7,753 7,753 7,753 
Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

Table 6.7 Specification 3 - both employment history variables emp2011 and emphist 

are excluded.  Average treatment effects on treated (ATET) and Potential Outcome 

Means (PoMean) for outcome model employed. 

 

PSM IPW RA IPWRA 

 ATET ATET PoMean ATET PoMean ATET PoMean 

Treated vs. 

Control -0.120*** -0.079***   -0.084***   -0.057***   

  (0.027) (0.021) 

 

(0.019)   (0.020)   

Control   

 

0.489***   0.494***   0.466*** 

      (0.014)   (0.012)   (0.0139) 

    

  

        

OJT vs. Control   -0.046* 

 

-0.051**   -0.026   

    (0.026) 

 

(0.025)   (0.026)   

IS vs. Control   -0.076** 

 

-0.084**   -0.060*   

    (0.035) 

 

(0.034)   (0.035)   

IET vs. Control   -0.223*** 

 

-0.229***   -0.198***   

    (0.045) 

 

(0.043)   (0.042)   

Control   

 

0.493***   0.498***   0.472*** 

    

 

(0.015)   (0.014)   (0.015) 

 

  

  

        

Observations 7,753 7,753 7,753 7,753 7,753 7,753 7,753 
Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 
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Table 6.8 Specification 4 - both employment history variables emp2011 and emphist 

are excluded. Average treatment effects on treated (ATET) and Potential Outcome 

Means (PoMean) for outcome model emp1112. 

 
Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

A relevant point worth emphasising is that when both employment history variables 

are excluded from the model, the results indicate a significant negative treatment 

effect. This might suggest that the employment history variables, emp2011 and 

emphist are likely to capture individuals‘ unobservable characteristics which might 

affect the outcome and the treatment selection. As discussed in section 6.2, the 

individual‘s pre-treatment employment history would have been ideal to capture the 

unobservable effects and to create more comparable matches, however this variable 

was not available for the control group. Also, the questionnaire for the control group 

does not provide any information about participation of individuals in this group in 

any active measure. Even though, the participation in ALMPs in Kosovo might be 

small compared to the working age population or the labour force size, to some 

extent it still might have affected the estimated results.  

Bearing in mind that the dataset used for this empirical analysis is constructed from 

two different sources for control and treatment groups and since the variables are 

constructed from different questions, the dataset is likely to contain measurement 

errors which might impose bias on the estimates. Therefore, one should not be hasty 

 
PSM IPW RA IPWRA 

 ATET ATET PoMean ATET PoMean ATET PoMean 

Treated vs. 

Control -0.054** -0.018   -0.020   0.006   

  (0.028) (0.021)   (0.0199)   (0.021)   

Control     0.507***   0.509***   0.483*** 

      (0.014)   (0.012)   (0.014) 

                

OJT vs. Control   0.026   0.023   0.047*   

    (0.026)   (0.025)   (0.026)   

IS vs. Control   -0.031   -0.032   -0.009   

    (0.036)   (0.035)   (0.035)   

IET vs. Control   -0.154***   -0.162***   -0.132***   

    (0.049)   (0.046)   (0.045)   

Control     0.511***   0.514***   0.489*** 

      (0.016)   (0.014)   (0.016) 

                

Observations 7,753 7,753 7,753 7,753 7,753 7,753 7,753 
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to draw any definite conclusions about the effectiveness of these ALMPs with regard 

to participants‘ employment probability for the case of Kosovo.  

Evidence using the outcome dependent variable Contract 

The next set estimations will use the second outcome dependent variable, contract, 

to evaluate the effectiveness of active measures in acquiring employment in the 

formal sector. The initial model specification included all variables discussed in the 

specification for the contract model in section 6.3. However, since including all the 

variables discussed imposes an imbalance in the propensity scores between the two 

groups, the dummy variables measuring the regional differences are replaced with a 

variable measuring the regional unemployment rate. The variable emphist is dropped 

from the model because it imposes imbalance on other covariates (the estimated 

model and balancing diagnostics including variable emphist and regional dummy 

variables are presented in Appendix table 6.5.1).  

The balancing diagnostics are presented in table 6.9 and figure 6.2. The figure 6.2 

presenting the kernel density plots and box plots of PSM model before and after 

matching suggests that the covariates have been balanced after matching. However, 

as figure 6.2 shows, it is worth pointing out that the propensity scores higher than 0.6 

tend to be less balanced.   

Figure 6.2 Kernel density and box plot using PSM for the outcome model contract 
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Table 6.9 Weighted standardized differences in means of the characteristics of 

treated and control in a binary and multivalued treatment model using PSM and 

IPWRA. 

  Binary treatment Multivalued treatment 

Outcome variable 

contract  
PSM IPWRA IPWRA 

  ATET ATET   ATET    

  
Treated vs. 

Control 

Treated vs. 

Control 

OJT vs. 

Control 

IS vs. 

Control 

IET vs. 

Control 

age 0.069 -0.010 0.001 0.026 0.196 

agesq 0.062 -0.010 0.0002 0.029 0.201 

gender   0.032 -0.057 -0.054 -0.070 0.197 

minority -0.078 0.011 -0.004 -0.030 -0.173 

socialassist      0.027 0.018 0.040 0.028 -0.318 

secondaryeduc  0.046 0.003 -0.005 -0.056 -0.078 

tertiaryeduc  0.038 0.066 0.069 0.119 0.218 

emp2011        0.066 0.027 0.004 -0.052 0.214 

hhsize 0.040 -0.027 -0.027 0.007 -0.106 

hhsizegen  0.070 -0.050 -0.047 -0.035 0.088 

regunmp -0.053 0.038 0.047 0.064 -0.035 

            

 

 

Table 6.9 presents the balancing diagnostics for the outcome variable contract for 

PSM and IPWRA which suggests that the covariates are balanced between treatment 

and control group. The weighted standardised differences in means for covariates of 

the IET vs. Control are higher compared to OJT and IS vs. Control, however only 

the variable socialassist passes the threshold of 0.25 (it is highlighted in table 6.9). 

Nevertheless, since it is the only variable that is above the threshold it is not 

expected to significantly influence the outcome results. Considering that a balance of 

the covariates between the groups is a prerequisite for high-quality matching 

(weighting), only specifications with the balanced covariates will be discussed and 

interpreted. 

The results from ATET for the outcome variable contract are presented in table 6.10 

(see Appendices 6.5 and 6.6). The results are consistent in terms of the sign of the 

coefficients when using different estimation techniques. However, when using only 

the treatment model (PSM and IPW), the ATET seems to be underestimated while 

when using only the outcome model (RA), the ATET seem to be overestimated. The 

IPWRA estimated treatment effects using the binary treatment model suggest that an 

employed participant from one of the active programmes has a 9.2 pp lower 
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probability of having a contract compared to the average of similar individuals who 

had not participated in any of the active programmes, other factors remaining 

constant. The IPWRA results using the multivalued treatment model indicate that the 

treatment effects is significant and negative only for the OJT participation. The result 

suggests that a participant in OJT, if employed, is less likely to have an employment 

contract by 12.5 pp below the average of similar individuals in the control group, 

other factors remaining constant. Though insignificant, the treatment effects for IET 

and IS are also negative.  

Table 6.10 Specification 1 – using emp2011. Average treatment effects on treated 

(ATET) and Potential Outcome Means (PoMean) for outcome model contract. 

  PSM IPW RA IPWRA 

  ATET ATET PoMean ATET PoMean ATET PoMean 

Binary treatment model                

Treated vs. Control -0.081** -0.053*   -0.104***   -0.092***   

  (0.034) (0.029)   (0.026)   (0.026)   

Control 

 

  0.780***   0.830*** 

 

0.818*** 

      (0.021)   (0.013)   (0.014) 

Multivalued treatment 

model            
 

  

OJT vs. Control   -0.089**   -0.134***   -0.125***   

    (0.036)   (0.033)   (0.033)   

IS vs. Control   0.037   -0.025   -0.009   

    (0.042)   (0.045)   (0.043)   

IET vs. Control   -0.044   -0.114   -0.059   

    (0.128)   (0.084)   (0.056)   

Control     0.787***   0.832*** 

 

0.823*** 

      (0.023)   (0.015) 

 

(0.016) 

            
 

  

Observations   4,023 4,023 4,023 4,023 4,023 4,023 

In the second specification, where the emp2011 is excluded from the model, the 

estimated results shown in table 6.11 are very similar to those of the previous one. 

An exception is that when using the RA method the treatment effect for IET 

becomes significant thus for an employed individual, participating in IET reduces an 

individuals‘ probability of having a contract by 11.6 pp below the average of similar 

individuals in the control group. The treatment effects from IPWRA in the second 

specification are slightly higher compared to the first one, however the difference is 

negligible. Considering that the sample for the outcome variable contract is 

restricted to employed individuals only, controlling for employment history seems to 

have no significant impact on the probability post-treatment of an employed 

individual having a contract. 
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Table 6.11 Specification 2 – excluding emp2011. Average treatment effects on 

treated (ATET) and Potential Outcome Means (PoMean) for the outcome model 

contract. 

  PSM IPW RA IPWRA 

  ATET ATET PoMean ATET PoMean ATET PoMean 

Binary treatment model            

 

  

Treated vs. Control -0.089*** -0.079***   -0.116***   -0.095***   

  (0.033) (0.0271)   (0.024)   (0.025)   

Control     0.806***   0.842*** 
 

0.821*** 

      (0.0167)   (0.011)   (0.0133) 

Multivalued treatment 

model            
 

  

OJT vs. Control   -0.121***   -0.154***   -0.134***   

    (0.033)   (0.031)   (0.032)   

IS vs. Control   0.001   -0.046   -0.022   

    (0.041)   (0.045)   (0.043)   

IET vs. Control   -0.042   -0.128*   -0.111   

    (0.086)   (0.0719)   (0.069)   

Control     0.819***   0.852*** 

 

0.832*** 

      (0.0179)   (0.013) 
 

(0.015) 

            

 

  

Observations 4,034 4,034 4,034 4,034 4,034 4,034 4,034 

 

6.5 Conclusions  

This chapter has focused on analysing the effectiveness of three different ALMPs 

implemented in Kosovo during the period 2008 to 2010: OJT, IET and IS. The 

effectiveness of these ALMPs has been analysed using several evaluation techniques 

to estimate the treatment effects in binary and multivalued treatment models. 

Following a discussion about selection bias in chapter 4 and the pre-determined 

selection criteria to participate in the above-mentioned active measures, the 

treatment model was specified to adjust for potential selection bias.   

After achieving a balance of the propensity scores between the treatment and control 

groups, when using the same specification and assuming that all relevant variables 

are included in the model all estimation techniques arrive at a broadly similar 

conclusion. Because it is uncertain which of the models is correctly specified, from a 

practical standpoint, a doubly robust estimator was utilised because it increases the 

likelihood of estimating accurate treatment effects. Hence, only the results from 

IPWRA are discussed.  
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Depending on the model specification, the empirical findings from the analysis 

presented in this chapter suggest mixed results for the effectiveness of the active 

measures. The results suggest that participating in OJT and IS are associated with an 

increase in the probability of being employed compared to not participating in any 

active measure.  The treatment effect of IET is negative when employment history is 

not controlled for, but becomes insignificant when accounting for employment 

history variables, suggesting that this result could be driven by omitted variable bias. 

The change in sign of the treatment effects after including the employment history 

variable indicate the importance of this variable which is in line with the findings of 

other evaluation studies reviewed in chapter 4. In addition to the findings from the 

employment probability model, the empirical findings from the binary treatment 

model suggest that participating in active measures is associated with employment in 

the informal sector. Furthermore, the evidence from the multivalued treatment model 

indicates that this effect derives predominantly from participating in the OJT. This 

empirical evidence might suggest that when labour market is characterised by low 

employment opportunities in the formal sector, ALMPs increase the probability of 

individuals post-treatment being engaged in the informal labour market.  

However, the assumption of selection of unobservables (CIA) might have not been 

satisfied in this analysis since crucial factors influencing the selection into treatment, 

such as a pre-treatment employment history, could not be accounted for. The 

limitations of this empirical analysis also include the measurement errors caused by 

the different data sources used for treatment and control group. In the absence of a 

control group derived from the same source as that for treatment, this empirical 

analysis was compelled to construct a control group from an alternative source, the 

LFS. This is considered the most profound limitation of this empirical analysis since 

the questions in the two surveys are phrased differently thus creating measurement 

errors. Another relevant limitation of this analysis is the unavailability of 

information on whether individuals in the control group have participated in any 

ALMP at some point before year 2012, creating a specific bias in the estimates. 

Given the limitations presented, the estimated treatment effects could not be used as 

a convincing basis for drawing firm conclusions about the effectiveness of these 

ALMPs.  
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7.1 Introduction  

The aim of this thesis was to empirically investigate the effectiveness of ALMPs in 

reducing unemployment in European transition economies (ETEs), in the context of 

labour markets with large informal sectors. Given that increasing unemployment 

became a persistent feature in most of the transition economies during the transition 

period, one of the objectives of the first chapter of this thesis was to discuss the rise 

and consequences of unemployment. Considering these high rates of unemployment, 

the first chapter also emphasised the potential importance of labour market policies, 

in particular ALMPs, in reducing unemployment. Following the discussion of the 

context analysis in chapter 1, this thesis had six inter related objectives:  

1. To provide a comprehensive and critical review of the theoretical framework 

of unemployment and the multiple effects of ALMPs in reducing it; 

2. To provide a critical review of the empirical studies analysing the 

effectiveness of ALMPs in European Transition and Non-Transition 

economies;  

3. To empirically analyse the effectiveness of ALMP expenditure as share of 

GDP in reducing unemployment at the economy-wide level in European 

transition and non-transition economies; 

4. To critically review different evaluation methodologies and empirical studies 

analysing the ALMP effectiveness at the individual level in addressing the 

issues of the missing counterfactual and selection bias; 

5. To empirically evaluate the overall and relative effectiveness of three active 

measures implemented in Kosovo: On-the-Job Training, Institution and 

Enterprise Training and Internship Scheme on finding employment, 

searching for jobs and, conditional on being employed, having an 

employment contract; 

6. To synthesise policy recommendations for improving the effectiveness of 

these policies as a tool to reduce unemployment among vulnerable groups 

such as youths and the low-skilled unemployed. 

The second chapter established the theoretical framework to analyse the 

effectiveness of ALMPs. Since the theoretical framework developed for the Western 

economies is not fully appropriate in context of transition economies, the second 
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chapter further established the theoretical relationship between the effectiveness of 

ALMPs and the size of the informal sector based on a review of the Layard, Nickell 

and Jackman (1991) and Snower (1994) models. Having found no consensus after a 

review of the empirical studies for transition economies the initial research question 

was formulated: whether ALMPs in European transition and non-transition 

economies are effective in reducing unemployment at the economy-wide level. This 

research question was addressed in chapter 3 using two methodologies: a matching 

function using a static panel model to assess the matching efficiency between the 

stock of unemployed and vacancies and a dynamic panel model to investigate the 

effect of ALMPs on reducing the unemployment rate. Because of data limitations, 

the analysis was extended to include European non-transition economies in order to 

achieve more reliable results.   

Following a critical analysis of the effectiveness of ALMPs at the national level, the 

next research question was to investigate the relative effectiveness of three specific 

active labour market policies in Kosovo in increasing an individual’s employment 

probability, the probability of unemployed of increasing active job search and the 

probability those in employment of having a contract. In chapter 4 the evaluation 

and selection problems which can arise when evaluating the effectiveness of ALMPs 

at the individual level were discussed and the most appropriate methodologies to 

address these issues were considered. The empirical studies of the effectiveness of 

ALMPs at the individual level for transition economies, reviewed in chapter 4, had 

reached no definite conclusion. Hence, an empirical investigation was conducted in 

chapter 5, focused on addressing the second research question using a cross-section 

dataset for Kosovo employing two different methodologies: Multinomial Probit and 

to address the selection bias, Inverse Probability Weighting – Regression Adjustment 

(IPWRA). After assessing the relative performance of active policies, the final 

research question was to empirically investigate the overall effectiveness of the 

three active policies analysed in chapter 5 in increasing employment probability 

and the probability of having an employment contract. This investigation was 

conducted in chapter 6 using the same dataset as in the previous chapter and also 

using an additional dataset to construct the control group to assess whether the 

ALMP participants achieved a better performance in the labour market compared to 

that of non-participants.  
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This chapter will discuss the main findings of this research and synthesise the 

contribution to knowledge resulting from the empirical analysis. It will further 

examine the policy implications of the main findings and provide a discussion of the 

main limitations which have constrained the research analysis and how these may be 

addressed in future research work. This chapter is organised as follows. Section 7.2 

presents the main empirical findings of the thesis with regard to the research 

questions presented above while section 7.3 provides a discussion on the main 

contribution to knowledge. Section 7.4 develops the policy implications resulting 

from the main findings of this research project. Section 7.5 discusses the limitations 

that have been encountered while conducting the empirical analysis and provides 

recommendations for further research in the future. 

7.2 Main Empirical Findings  

The discussion of the context of this research programme in the introductory chapter 

examined the state of the labour markets in European transition and non-transition 

economies, with a particular focus on Kosovo. The aim of this chapter was to 

analyse the differences in the labour market indicators of European transition 

economies compared to non-transition economies. The first chapter and section 2.3 

established that the dramatic initial output collapse and the shift from the rigid labour 

markets of the central planning to market planning system were the main causes of 

the high rates of unemployment in early transition. The analysis of chapter 1 

revealed that there is a substantial difference in the ALMP expenditure as a 

percentage of GDP between the transition and non-transition countries. Regardless 

of their generally high rates of unemployment, the spending on ALMP in European 

transition economies is comparable only to the lowest spenders in European non-

transition economies. Balkan countries allocate an even lower amount of expenditure 

on ALMPs despite increases in recent years. After the global financial crisis, 

expenditure on ALMPs increased in EU countries but remained, on average, constant 

after the 2012 for both sets of countries.  

Following this discussion, chapter 2 addressed the first objective of this research 

project by critically analysing the theoretical framework through which the ALMP 

effectiveness could be evaluated. This chapter initially evaluated the NAIRU 

framework developed by Layard, Nickell and Jackman (1991) which has been used 
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as a basis for analysing the effectiveness of the ALMPs in Western countries. 

However, given the specific nature of labour markets in transition economies this 

theoretical framework was not considered to be completely appropriate for this 

investigation. The labour market in transition economies was argued to be 

characterised by multiple equilibria. In its simplest form, based on a model by 

Snower (1994), the equilibrium initially predominant in transition economies was 

argued to be a ‗low-skill bad-job equilibrium‘ with low productivity workers, 

insufficient human capital and low wages because of scarce vacancies for skilled 

jobs. One of the initial findings of this research was that in many ETEs the bad-job 

equilibrium has been associated with a large informal labour market. This chapter 

also provided a concise and critical assessment of the mechanisms through which 

ALMPs could incentivise informal employers to switch to the formal sector. It is 

argued that the effect of ALMPs on the firm is similar to reduction in their labour 

costs. As examined in chapter 2, in a demand-constrained labour market (as that in 

many transition economies), a reduction in labour costs can increase the 

employment. The second objective of the thesis is also addressed in this chapter by 

critically reviewing the empirical studies that investigated the ALMP effectiveness at 

the country level. This topic is still not extensively investigated for ETEs mainly 

because of data unavailability hence only a handful of studies were reviewed. The 

findings for transition economies are inconclusive and no clear implications could be 

drawn. In contrast, the review of the empirical studies in Western European 

economies point to a generally positive effect of ALMPs on increasing employment 

and reducing unemployment. 

Section 2.2.3, discussed in more details the theoretical explanations for the main 

effects of the ALMPs in the labour market where six possible effects were identified. 

The main function of ALMPs is raising the efficiency of the matching between the 

unemployed who are searching for jobs and employers who are searching for 

workers. These policies tend to increase the efficiency of matching through 

enhancing the human capital of participants, re-locating jobs or workers, increasing 

the search intensity of the job-seeker, reducing the hiring costs and reducing 

employers‘ uncertainty about the employability of applicants hence allowing the 

firms to create more vacancies and fill them more quickly.  
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To answer the research question: Are ALMPs in European economies (transition and 

non-transition) effective in reducing unemployment at the economy-wide level?, 

chapter 3 addresses the third objective using two empirical analyses: the first one is 

the matching function using Fixed Effect estimator while the second is the dynamic 

panel analysis using difference General Methods of Moments. In order to investigate 

whether ALMPs in European economies have any influence on improving the 

matching process between the number of unemployed in the labour market and the 

number of unfilled vacancies, the first model in utilised outflows from 

unemployment to employment as the dependent variable. The estimation approach 

used for this empirical analysis was the Fixed Effects Driscoll Kraay (FEDK) 

standard errors, which is robust to cross-sectional dependency, heteroscedasticity 

and autocorrelation. Because of the inability of FEDK to estimate the time-invariant 

factors, an additional estimator, Fixed Effects Vector Decomposition (FEVD), was 

employed. This estimator allowed assessing whether the transition economies 

showed a different pattern of matching efficiency and also whether the ALMPs have 

the positive effect in reducing unemployment in transition compared non-transition 

economies. Following the theoretical expectations and the review of the empirical 

studies for transition economies expressed in chapter 2, this empirical analysis also 

analysed whether the labour markets in transition economies exhibit multiple 

equilibria.  

The empirical evidence obtained from this investigation suggests that ALMPs in the 

selected countries of analysis have a statistically significant and positive effect on 

increasing matching efficiency between the unemployment stock and unfilled 

vacancies. However, this effect is quite small when translated into economic terms 

since only a relatively small number of unemployed were found to flow from 

unemployment into employment. In accordance with the evidence from other 

empirical studies (Munich and Svejnar, 2008; Camarero et al., 2008), this model also 

found evidence to suggest that the labour markets in transition economies might 

exhibit multiple equilibria. However, in contrast to the expectations, from the results 

provided in this empirical investigation there seem to be no relationship between the 

size of informality and matching efficiency. As argued in chapter 3, one possible 

explanation that this relationship could not be confirmed from the analysis at the 

national level is that the sample includes both transition and non-transition 
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economies. The results from FEVD, however, do not suggest any significant effect 

of ALMPs in transition economies. 

Given that current aggregate unemployment is partly determined by its values in 

previous time periods and also considering the potentially endogenous nature of the 

variable total expenditure of ALMPs as share of GDP, chapter 3 implemented a 

second empirical investigation of the effectiveness of these policies employing a 

dynamic panel analysis using difference GMM. This analysis assessed the 

effectiveness of the total expenditure on ALMPs as a share of GDP in reducing the 

unemployment rate. Additionally, using a larger dataset (i.e. including both 

European transition and non-transition economies) it became possible to assess the 

effectiveness of the five different ALMPs: training, employment incentives, 

supported employment and rehabilitation, direct job creation and start-up incentives. 

The results from this model could not confirm that the increased total expenditure of 

ALMPs as share of GDP had an impact on reducing the unemployment rate. The 

results also indicated that there were no significant differences in the effectiveness of 

the active measures analysed.  Section 3.4.3 provides one possible explanation for 

the overall insignificance. As the review of empirical studies in chapter 2 revealed, 

the effectiveness of individual ALMPs is diverse and the same ALMPs might have 

not be effective in different countries, in different time periods and for different 

groups of unemployed. This diversity in the effectiveness of individual ALMPs 

might be a result of different targeting, different design specifics and different levels 

of economic development of countries where these policies are being implemented. 

Additionally, some of the ALMPs might also induce negative effects such as a 

deadweight effect (the beneficiaries of active measures were going to be employed 

even in absence of such measures) and substitution effect (the beneficiaries get 

employed at the expense of other potential workers). Based on the discussion in 

section 2.2, it was concluded that in order for the labour market policies and 

regulations to be effective in reducing the unemployment rate then unemployment 

should be predominantly structural or frictional in nature. In contrast, when the 

behaviour of unemployment is better explained by the hysteresis hypothesis then 

active labour market policies may have little or no effect and the policy focus should 

be primarily on increasing aggregate demand. Following this argument, one 

explanation for the findings of the empirical investigation in chapter 3 is that the 
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aggregate demand for labour in many ETEs was low.  However, referring to the 

literature review provided in section 2.3, the evidence from the empirical studies 

suggests mixed results about the dynamics of unemployment in transition 

economies; whether it is more likely to show hysteresis or a structuralist pattern. 

Thus, the argument that a lack of aggregate demand leads to the insignificant effect 

of ALMPs should be taken with caution. Additionally, one potential explanation for 

the insignificant effect of active policies analysed was argued to be the composition 

of the countries included in the sample where both transition (at different stages of 

transition) and Western European countries were analysed. Even though potentially 

important control variables are accounted for in the model, such as the level of 

economic growth, labour market institutions and policies, the level of education and 

the size of informality, there might be other factor missing in the specification which 

might have given rise to omitted variable bias.  

By critically reviewing different evaluation methodologies and empirical studies 

which analyse ALMP effectiveness at the individual level and identifying the key 

assumptions within the framework, chapter 4 addresses objective 4 of this thesis. 

The main focus of this chapter is to analyse the evaluation problem and to identify a 

suitable evaluation technique for the construction of the counterfactual and 

accounting for selection bias. Chapter 4 concluded that the most appropriate 

evaluation technique in context of the analysis in this research project is the Inverse 

Probability Weighting Regression Adjustment (IPWRA). This estimator uses both 

treatment and outcome models which helps to address the selection bias and it allows 

evaluating different ALMPs in the same setting. The critical review of the empirical 

studies analysing the ALMP effectiveness at the individual level for transition 

economies suggests that training might be an effective measure in the short-term, 

however, no conclusion can be made for the long-term.   

Chapters 5 and 6 address objective 5 of this thesis. To provide an insight on the 

effectiveness of ALMPs at the individual participant level, a cross-sectional dataset 

for Kosovo was used to assess the relative effectiveness of the active policies in 

increasing the probability of an individual to: be employed; be employed in the 

formal sector; or, if unemployed, undertake active job search. There were three 

active measures implemented in Kosovo during 2008 to 2010 which were the focus 
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of chapter 5‘s investigation: on-the-job training (OJT), an internship scheme (IS) and 

institution and enterprise training (IET). In order to test the hypothesis that 

participation in an ALMP increases the probability of being employed in the formal 

sector as opposed to the informal one, the first methodology used in this chapter is 

the multinomial probit with a three category dependent variable which equalled zero 

if the individual is unemployed at the time of the survey, one if the individual is 

employed with an employment contract and two if the individual is employed 

without an employment contract.  

The empirical evidence on the relative effectiveness of the three active measures 

suggests that participating in OJT and IS reduced the probability of being 

unemployment relative to participating in IET. Participating in OJT seems to have 

had a positive impact on increasing employed individuals‘ probability of engaging in 

the informal sector compared to participating in IET. The evidence from this 

empirical analysis also suggests that participating in an active measure for a longer 

period of time tends to increase participants‘ probability of being employed 

informally, i.e. being employed without a contract. As argued in section 5.2, 

participants in the investigated active measures were, typically, disadvantaged long-

term unemployed and getting employed in the informal sector provides a necessary 

income for them. In a labour market with few employment opportunities in the 

formal sector, participants consider the alternative of employment in the informal 

sector, rather than remaining unemployed. The findings suggest that programmes 

implemented in more recent years are less effective in increasing a participant‘s 

probability of being in employment compared to the same programmes implemented 

earlier. One possible explanation for this result is that the quality of these 

programmes, actual and/or perceived, might have declined during the observed 

period or the specific labour market conditions might have influenced their 

effectiveness over time. Another finding of this empirical analysis is that having 

acquired a certificate increases an individual‘s probability of gaining employment in 

the formal market and reduces the probability of engaging in the informal labour 

market compared to an individual who did not acquire a certificate of completion. 

This finding might suggest that having a certificate signals to potential employers 

that the individual has a certain level of ability and as a consequence will be less 

likely to be employed in low quality jobs or informal market. In contrast, the variable 
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used a proxy for quality of implementation of the ALMPs (whether the participants 

have an employment/training individual plan) is statistically insignificant. This 

might suggest that this part of the process of implementation might have not been of 

high enough quality to assist beneficiaries in acquiring skills and getting employed.  

As explained in section 5.2, participation in these active measures was supposed to 

be pre-determined based on a set of selection criteria, making the estimation of the 

study subject to a potential selection bias. Hence, in attempting to adjust for selection 

bias, the second empirical analysis in chapter 5 employed a doubly robust evaluation 

technique, IPWRA, which uses both treatment selection and outcome models. This 

approach gives unbiased estimates if at least one of the models is specified correctly. 

As discussed in section 4.4, an additional novelty of this methodology compared to 

previous evaluation methodologies is that it allows an analysis of the effects of 

treatment in the context of multiple programmes. The analysis utilised three different 

outcome models where three dependent variables were used; the first one equalled 

one if the participant was employed at the time of the survey, zero otherwise, the 

second equalled one if the unemployed participant actively searched for jobs, zero 

otherwise and the third equalled one if the participant, conditional on being 

employed, had an employment contract, zero otherwise. The empirical evidence 

from IPWRA is consistent with the estimations from the multinomial probit, 

suggesting that IET participants had a lower probability of being employed 

compared to both OJT and IS. Nevertheless, employed OJT participants were more 

likely to be without an employment contract compared to participants in the other 

two active measures.  

With regard to the relative effectiveness of these three active measures analysed, the 

evidence from all the estimations suggest that on-the-job training is the most 

effective in increasing the probability of being employed in both formal and informal 

sectors. It was argued that one possible explanation is the design of this programme: 

employers seem to prefer programmes that are designed to take place within firms 

during the whole period of training (Kavanagh, 2012). Another explanation could be 

that the quality and market-relevance of the training received by the employees is 

higher compared to the other two programmes. In contrast, institution and enterprise 

training was designed to divide the time allocated between the training at the 

vocational training centres to improve participants‘ soft and other employability 
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skills and training at the companies to enhance job-specific skills. Another reason for 

the apparent ineffectiveness of IET might be related to the stigmatisation of the 

participants because this measure targets the most disadvantaged unemployed (those 

who did not have a chance to attend or complete vocational education and had no 

previous work experience). Additionally, these active measures, in general had 

irregularities in targeting participants. In order to accept more women and minorities 

the selection criteria were not strictly met, hence accepting older participants and 

those with unsuitable levels of education. Moreover, since there is no data that can 

provide an insight on the content and quality of the programmes, a definite judgment 

of the effectiveness of these policies cannot be made.  

Chapter 6 also addresses objective 5 of this thesis by analysing the overall 

effectiveness of the above-mentioned ALMPs. The difference between relative and 

overall effectiveness of ALMPs is that the latter analyses the effects of participation 

in one of the policies in comparison to non-participation. In order to construct a 

control group of non-beneficiaries, this chapter utilised an additional dataset, the 

Kosovo Labour Force Survey data collected in the same year as the data for the 

beneficiaries. When constructing control groups from a source other than that used 

for the treatment group, it is likely that the dataset contains measurement errors due 

to differences in the two questionnaires. In order to minimise the measurement 

differences between the treatment and control datasets, variables with measurement 

differences were used in separate specifications and the results from these 

specifications were interpreted with caution. The empirical evidence suggests a 

significant positive treatment effect in increasing employment probability after 

treatment, however only when controlling for the individuals‘ employment history, 

which is in line with some evidence found in other studies (Kluve et al., 2008). 

Consistent with the empirical evidence from chapter 5, the most effective active 

measure in terms of employment probability was OJT followed by IS. When 

analysing the effectiveness of the active measures in increasing the probability of 

being employed in the formal sector, the empirical evidence from the binary 

treatment model suggests that, in general, participation in one of these three active 

measures reduces the probability of an employed individual having an employment 

contract compared to that for a non-participant. However, the findings from the 

multivalued treatment model suggest that out of these three active measures only the 
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treatment effect for OJT is significant. This result also shows that the multivalued 

treatment model presents a clearer picture of the effectiveness of measures compared 

to the binary treatment model. The evidence provided in chapter 6 suggests that, in 

the context of a labour market with low formal employment opportunities, such as in 

Kosovo, participating in an active measure might increase a participant‘s probability 

of being in employment but participants may be employed in the informal sector. 

The empirical analyses suggest that particularly OJT participants in Kosovo were 

likely to be employed informally. The findings from chapter 6 indicate that an 

employed OJT participant has a lower probability of having an employment contract 

by 12.5 pp compared to the average of similar individuals in the control group. 

Differences in outcomes for participants of different measures may be related to the 

economic sectors in which they are implemented and also the occupation of the 

participant.  

In conclusion, when analysing the relative effectiveness of the ALMPs, the evidence 

from the multinomial probit model are broadly consistent with the evidence from 

IPWRA where OJT is found to be the most effective in increasing an individual‘s 

probability of being employed followed by the IS programme. The evidence from 

the overall effectiveness of ALMPs also suggest that the OJT and IS measures are 

effective in increasing the probability of participants being employed compared to 

non-participants. The results, though, depend on the model specification used. When 

variables measuring the individual‘s employment history are not included in the 

model (even though in this analysis these variables tend to have measurement 

differences between treated and controls), the evidence indicates negative treatment 

effects for IET on the probability of being employed. This evidence suggests the 

importance of the unobserved characteristics captured by these variables in 

determining the individual‘s probability of gaining employment. When the 

probability of having an employment contract for those employed in the sample was 

analysed the results suggest that the employed OJT are more likely not to have an 

employment contract compared to the non-participants and also compared to IET. 

This result is consistent in all specifications and also in line with the findings in 

chapter 5.  
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7.3 Contribution to Knowledge  

This thesis has made four main contributions to knowledge with regard to the evaluation of 

the effectiveness of ALMPs in increasing employment.  

Firstly, this is one of very few studies that have incorporated into the evaluation of 

the effectiveness of ALMPs employment in the informal sector. The theoretical 

framework for assessing the effectiveness of ALMPs developed for Western 

economies, presented in chapter 2, was argued not to be entirely appropriate for the 

analysis in a transition economy context. Considering that the labour markets in 

many transition economies are better characterised by a low-skill, bad-job 

equilibrium, an augmented theoretical framework was required. The discussion in 

chapter 2 provides theoretical justifications that in transition economies this 

equilibrium is associated with a large informal sector. Given that the ALMPs, in 

general, target low-skilled, long-term and disadvantaged unemployed and because 

the informal sector tends to employ more of these categories of labour, it was argued 

that in this context, ALMPs such as wage and direct subsidies for low skilled 

workers could provide incentives to firms to switch to formal employment. 

Employers would benefit from such policies because they would lower firms‘ labour 

costs and therefore they would improve the employment prospects of participants in 

the formal sector. Consequently, employers would be induced to comply with 

employment regulations such as providing the participants with a written 

employment contract. This research fills the gap in the theoretical and empirical 

literature by addressing how the ALMPs perform in context of countries with large 

informal sectors. This relationship has not been assessed theoretically and to the best 

of author‘s knowledge there is only one study analysing it empirically. In contrast to 

the theoretical expectations discussed here, investigations at the individual level in 

chapter 6 find that the participants in ALMPs in a labour market characterised with 

large informal sector, if employed post-participation, are more likely to be so in the 

informal sector.  

Secondly, this research makes a contribution to knowledge by using a more 

sophisticated estimation strategy, which allows for analysing the effect of 

participating in an ALMP in a multivalued treatment selection framework. To the 

best of our knowledge, this is the first research study to use this empirical approach 
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in the ALMP microeconometric evaluation literature. Previous microeconometric 

evaluation methods were mostly concerned with the treatment effects of being or not 

being a participant in one of the active measures. As argued in chapter 4, ALMPs are 

heterogeneous in terms of content, quality, design, targeting of participants, duration 

etc. Thus, it is crucial to analyse these policies in a framework with a dynamic 

treatment selection, where the choice is not just participating vs. non-participating 

but a distinction is also made between which programme the unemployed 

participated in. This research fills the gap in the microeconometric evaluation of 

ALMPs by addressing the heterogeneity of the active labour market policies and the 

findings of chapters 5 and 6 confirm that this approach can lead to valuable insights.  

Specifically, the results presented in chapter 6, suggest that a treatment effect based 

on multivalued pairwise comparison can give a clearer causal explanation of the 

effects of different active measures that could be used to rank them. The estimated 

results from the multivalued treatment models provide more detailed information 

with regard to which of the active measures are more effective in comparison to non-

participation. On the other hand, the results from the binary model, which puts all 

three active measures into one category and treats them as being the same, are unable 

to reveal which of the three measures is more effective. Moreover, the evidence in 

chapter 6 suggests that the treatment effects of the three active measures, obtained 

from the multivalued treatment model might cancel each other out. Thus, the overall 

treatment effect from the binary model of participation vs. non-participation cannot 

always present the ‗true‘ situation of the effectiveness of individual ALMPs.   

Thirdly, this is the first critical evaluation study of the effectiveness of ALMPs to be 

conducted for Kosovo. As chapters 2 and 4 revealed, the effectiveness of ALMPs has 

generally been under-researched in transition economies, mainly due to the low 

quality and general unavailability of data. Given that the unemployment rate in 

Kosovo is the highest in region and in Europe, it is crucial to assess the relative 

effectiveness of active measures in attempt to increase the employment prospects of 

the unemployed. Moreover, Kosovo constitutes a country which has undergone 

conflict more than a decade ago which has distorted the labour market. This makes 

this analysis distinct from other similar studies in the transition context. ALMPs in 

Kosovo have been implemented only from 2005, and the findings of the study 

provide insights as to how to design more effective active measures. As discussed in 
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chapter 5, there are two other studies assessing the effect of these ALMPs in Kosovo, 

however, neither of them used an advanced evaluation methodology such as the one 

used in this thesis; notably, they simply compare mean outcome variables of 

participants and non-participants, not controlling for participant characteristics and 

employment history and they do not account for the potential selection bias. Both 

studies reviewed in section 5.2.1 assess the effectiveness of the programmes only 

based on the percentage of the participants employed at the time of the survey. 

According to Kavanagh (2012), who uses the same dataset as this thesis, the most 

effective programme is the IS since 59% of previous participants were employed at 

the time of the survey, followed by IET with 42% and then OJT with 35%. Given 

that this study does not control for participant characteristics or use a modern 

evaluation methodology or address selection bias, the results provided by this study 

are unreliable. In contrast, as discussed in the previous section, when using an 

evaluation methodology which controls for relevant participant characteristics 

attempts to address selection bias, the findings from this thesis indicate that OJT is 

the most effective in increasing the individual‘s employment probability, followed 

by IS, while IET is usually found to be ineffective.  

Fourthly, this research contributes to the empirical literature in assessing the 

effectiveness of ALMPs at the country level by employing a diversified empirical 

strategy. The review of theoretical framework emphasised the possible multiple 

effects of active measures in the labour market, hence the analysis at the country 

level presented in this research makes use of different approaches and different 

estimation techniques which allows more comprehensive inferences to be drawn. In 

this analysis, the choice of the estimation approaches was made based on the 

theoretical framework but also on the availability of data. As pointed out in chapter 

2, the main effect of ALMPs is the effect on the matching process, thus the first 

approach used allows assessing the matching efficiency of these policies. Given the 

potential endogeneity of the ALMPs, the second approach uses a dynamic panel 

model to assess the impact of these policies in reducing unemployment rate. It is 

worth emphasising that there are very few studies analysing the effectiveness of 

ALMPs using different approaches such as presented in this thesis. 
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7.4 Policy Implications  

The empirical evidence obtained in this investigation and theoretical arguments 

developed in this thesis have potential useful policy implications for the design and 

implementation of ALMPs in European economies. The findings are specifically 

relevant to the economies aiming to increase the effectiveness of labour market 

policies in reducing unemployment.  

 As discussed in section 7.2, the findings in chapter 3 suggest that ALMPs are 

effective in increasing matching between unemployed and vacancies, but their 

effectiveness in economic terms is limited since only a very small number of 

unemployed participants transition to employment. The findings from chapter 3 also 

suggest that the labour markets in transition economies might exhibit multiple 

equilibria where the low-skilled are trapped in a bad-job equilibrium. Given that in 

transition economies the ALMPs are provided only on a small scale, they are 

insufficient to shift the labour market from a bad to a good-job equilibrium. In 

addition, as argued in chapter 2, when the demand for labour is low, as in many 

transition economies one of the main objectives of ALMPs should be to reduce 

employers‘ labour costs. As a consequence firms would be more likely to open more 

vacancies thus increasing demand for labour. Considering these arguments and 

noting that it is difficult to escape the bad-job equilibrium, following Snower‘s 

(1994) argument, only a ‗big push‘ in the amount of expenditure/investment on 

ALMPs is likely to be effective in addressing unemployment in transition 

economies.   

ALMPs in most European Transition economies are currently fairly small-scale 

policies, hence in order to maximise their effects then the targeting of the 

participants should be clearly defined and then carefully implemented. The ALMPs 

analysed in chapters 5 and 6 targeted the disadvantaged groups in the labour market 

such as the long-term unemployed (with at least 6 months unemployment spell), 

women, younger unemployed, minority groups etc. The descriptive statistics in 

chapter 5 suggest that more than half of participants reported that they had been 

unemployed for longer than 2 years before treatment, while the findings from the 

multinomial probit suggest that this group were less likely to be employed than those 

with shorter unemployment spells. This finding might indicate that those with longer 
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unemployment spells might need more intensive and specific training. A potential 

policy implication in this case would be to group participants based on the 

unemployment spells and design the training based on their level of skills. 

Additionally, according to the findings in chapter 5, those belonging to a minority 

group and those who have two or more family members unemployed are also more 

likely to be unemployed post-treatment given that they lack the social network, 

connections and information about vacancies. As expected, young participants are 

also found less likely to be employed. Given that they are joining the labour market 

probably for the first time, they might benefit more from training focused on soft 

skills and counselling about job search activity. The target group of ALMPs in 

Kosovo are all disadvantaged groups; however they all differ from one another in a 

sense that they all require specific treatment. In order to improve their prospects in 

the labour market, policy should tailor ALMPs based on the specific needs of the 

targeted subgroups of the unemployed.   

As chapter 1 emphasised, there has been an increase in the number of beneficiaries 

of ALMPs in recent years in Kosovo, however, there are still many challenges to 

overcome. According to MLSW (2017), there are limited interactions between the 

unemployed, the employment services and the active measures because a large 

number of the unemployed are not registered and a large part of working age 

population are inactive. Most of the unemployed in Kosovo are unaware of the 

services and opportunities provided by employment offices, hence there is an issue 

in attracting the right target group. A more general policy implication with regard to 

targeting would be to pro-actively promote the target groups in order to increase 

awareness of the advantages of employing more marginalised groups who might be 

threatened by social exclusion, such as women, the long-term unemployed and 

youths.  

 This thesis also found evidence to suggest that the active measures designed to 

divide the training between activities at the regional VTCs and firms may be 

ineffective. The training activities at the VTCs were intended to enhance a 

participant‘s employability skills, team-working skills, work readiness skills, 

information and communication technology and other non-vocational skills. 

However, the absence of information about the quality and content of the training 

within VTCs did not allow us to fully assess whether the skills and productivity were 
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improved by each element of the training provided. In addition, there is a huge 

constraint in the small number of employment services officers where the ratio of 

officers to job-seekers is about 1:1,000 (MLSW, 2017). This reflects budget 

constraints since the ALMPs are mostly supported by international donors. These 

constraints may help to explain the finding in chapter 5, that whether or not 

participants held an individual employment/training plan had no impact on the 

probability of being employed. Given that the training at the VTC and counselling of 

the participants by the employment counsellors at the Employment Offices, are a 

crucial design element of ALMPs, a policy recommendation in this case would be to 

improve the level and quality of the employment services and VTCs allocate more 

time to participants and dedicate more effort to formulating employment/training 

plans. In addition, the employment/training plans should be upgraded to include not 

only a pre- but also post-training skill assessment of all the participants through a 

system of profiling each participants‘ strengths and identifying their employment 

opportunities in the labour market.  

According to the MLSW (2017), there is lack of effective monitoring and evaluation 

mechanisms to ensure that the full cycle of active measure is completed and that 

these policies provided by VTCs are of the quality required by the labour market. 

The findings from this thesis suggest that a considerable number of participants did 

not have a employment/training plan or the certificate of completion of the active 

measures and they stayed a longer or a shorter period in the training than anticipated. 

These findings question the effectiveness of the current active measures in Kosovo. 

Hence, the policy recommendation in this case would be to improve the existing 

system of monitoring and evaluating the implementation and effectiveness of these 

measures in promoting employment.  

A possible drawback in the implementation process of ALMPs, is the lack of 

assessment of the needs of the labour market. Because of the unavailability of data 

about the labour demand, there is a challenge in providing well-designed training 

and other active measures in those professions required by the labour market. This is 

particularly challenging since there is insufficient cooperation between VTC, 

enterprises and the social partners (MLSW, 2017). In this case, the policy agenda 

should focus on increasing this cooperation at the regional level in order to design 

and adapt training and other active measures to region-specific opportunities rather 
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than having a ‗one size fits all‘ approach. This cooperation, however, should be 

coordinated centrally in order to avoid too large divergences between different 

regions.  

As emphasised in chapter 4, an experimental design approach provides the most 

reliable evaluation of the active measures. In Kosovo, there is lack of systematic 

evaluation of ALMPs which would shed light on the impact of these policies in 

improving employment prospects of the various groups of unemployed. The policy 

recommendation in this case is that in order to conduct an experimental design 

evaluation, measures to ensure the collection of data about the beneficiaries and the 

control group should be incorporated into the design and implementation stages of 

any ALMP.  

7.5 Limitations and Future Work  

There are certain limitations in the research undertaken which could not be addressed 

in this thesis due to data unavailability.  

A general limitation of the empirical analysis conducted in this thesis is 

straightforward. Given the problems experienced with the data in the empirical 

investigations, when designing ALMPs it is crucial to simultaneously design 

appropriate evaluation strategies and the data collection methods. With regard to the 

data at the national level, as discussed in chapter 3, the matching efficiency would 

have been captured better if more frequent data about ALMPs were available, such 

as monthly or quarterly data as pointed out in section 7.2. Currently only annual data 

is available for analysis. Additionally, the data necessary for this approach was 

restricted in terms of the time span (the data is available only for period 2010-2015) 

and country coverage (11 transition economies and 3 Western economies). Using the 

available data with the approach discussed in section 3.3.3, restricted the sample to 

only 49 observations. Due to the small sample for the matching function, it was also 

not possible to estimate the effectiveness of different ALMPs. Given that the current 

unemployment rate is partly determined by the previous unemployment rates, then 

ideally a dynamic panel analysis is required. However, due to a small sample size, 

dynamic panel estimators could not be used. . The second empirical approach to 

analysing the effectiveness of ALMPs did utilise a dynamic panel model, however it 
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was not possible to divide the samples and estimate the effectiveness of ALMPs for 

the two sets of countries (transition and non-transition European economies).  

The collection of the individual level data for the control group should be conducted 

at the same time as for those of the treatment group. This enables obtaining the 

necessary and relevant information for both groups, hence allowing for a more 

comprehensive comparison between participants and non-participants. Most 

importantly, this would avoid the potential measurement error issues such as those 

experienced in the empirical investigation presented in chapter 6. The main 

limitation of the individual level analysis is that it lacked an appropriate control 

group. Obtaining the data on the control group from the same source would have 

increased the number of factors to match the treatment and controls individuals 

hence improving the reliability of the estimated treatment effects. As argued in 

chapters 4 and 6, an evaluation analysis should ideally utilise a dataset with as much 

pre-treatment information as possible about the employment of both treated and 

control individuals. This information may have helped capture unobserved 

characteristics such as individuals‘ motivation, willingness to remain attached to the 

labour market, search intensity, interpersonal skills and employers‘ preference 

towards certain workers. The quality of variables such as employment history and 

the missing information about the incidence of nepotism in the selection process and 

on the probability of finding employment might have also influenced accuracy of the 

estimated results. A variable measuring the individuals‘ pre-treatment employment 

history was constructed from different questions asked of the treatment and control 

groups, hence imposing measurement errors in the analysis of chapter 6. 

Additionally, the inability to account for ALMP participation of the individuals in 

the control group due to the limitation of the data, increased the possibility of bias in 

the estimated results.  

The evaluation of the treatment effects of the policies would have been more 

thorough if investigated both through cross-sectional analysis and over time. Apart 

from the data being collected at single point in time, the first approach used for 

investigation at the individual level was a multinomial probit model which did not 

address the selection bias issue. Additionally, after attempting to address the 

selection bias issue when using the IPWRA estimator, the sample for certain 
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outcome models was reduced which created an imbalance between different 

treatment groups. This might have distorted the estimated results for this outcome 

model when analysing the relative effectiveness of the individual programmes. Also, 

the treatment group dataset provided no information about the quality or the content 

of the training and internships and the unavailability of such data restricted the 

interpretation of the estimated results. Another limitation of the data is that the 

participants were not surveyed at a fixed time after completing their treatment.  

It is important to note that whilst ALMPs might increase both future employment 

prospects and lifetime earnings, their provision is costly. Hence, to be able to fully 

assess whether active measures have been worthwhile from the social perspective 

additional expenditure and earnings data should be collected and made available to 

researchers. There is currently no systematic data available about the costs of and 

monetary benefits to the participants, employers, government and society as a whole 

in Kosovo.  
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Appendix 2 – Chapter 2  

Appendix A2.1 Snower’s (1994) model of multiple equilibria in 

the labour market  

Based on the theoretical model of Snower (1994), multiple equilibria can result in a 

‗low-skill, bad-job equilibrium‘ and a ‗high-skill, good-job equilibrium‘. Snower 

argues that labour market can fall into a ‗low-skill, bad-job trap‘ which entails a 

preponderance of jobs that are associated with low wages, low productivity and little 

opportunity to acquire training or enhance human capital. In this context, firms do 

not provide a lot of skilled vacancies because there is not enough skilled labour and 

these vacancies would be difficult to fill. Snower refers to this as the ‗vacancy 

supply externality‘. Similarly, workers are not incentivised to acquire skills since 

there are few skilled vacancies and as such the skills would be likely to remain 

under-compensated. This is regarded as the ‗training supply externality‘. If firms 

provide skilled vacancies it raises the workers‘ returns to education and training, 

however firms do not pay for the workers‘ education. By the same argument, 

workers who acquire training and education increase firms‘ returns to opening 

vacancies for skilled jobs. Snower argues these two externalities reinforce one 

another and can induce an insufficient level of training.  

Snower assumes that there is fixed number of workers who either are ‗unskilled‘ and 

have a marginal product of     and can work only at the ‗bad jobs‘ or are ‗skilled‘ 

who have a marginal product of    which is higher than   . All workers live for two 

periods; during the first period every worker makes the decision to acquire the 

necessary education or training and to become skilled. Those who decide not to 

acquire education start working in the first period while those that start the education 

or training are able to provide work only in the second period. The barriers to entry 

which gives workers and employers a market power in the wage setting process 

make the market for ‗good jobs‘ imperfectly competitive, while the market for ‗bad 

jobs‘ remains perfectly competitive. In the market of unskilled workers, on account 

to perfect competition, the real wage is equal to the marginal product of the unskilled 

workers:  
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Assuming that this wage is above the reservation wage of the unskilled workers, 

there is no unemployment. The real wage of the skilled workers    is determined by 

a Nash bargain between the employer and the high skilled workers. The skilled 

worker receives the wage    while the employer receives the return of      . In 

case of disagreement, the high skilled worker will receive    while the vacancy of 

the employer will remain unfilled. The bargaining problem is to maximise the Nash 

product (      
            

    with respect to   , where the μ is the bargaining 

power of the skilled worker relative to employer. The wage that solves this problem 

is: 

                                                                                                                     

With regard to the education/training decision, workers are assumed to be 

heterogenous in terms of their ability to acquire education. The marginal skilled 

worker‘s cost of education increases with the aggregate number of the educated 

workers,      
 , where the   and ϵ are positive constants. After the worker acquires 

education, his/her probability of having a high skilled job is ρ and having a wage 

    while the probability of having a low skilled job is (1- ρ) and having a bad job 

wage   . Thus the marginal skilled worker‘s net return from acquiring education is 

                        
 . The marginal worker in the equilibrium is 

indifferent whether to acquire education or remaining unskilled is        

                 
      where    is the income of unskilled worker during 

the two periods. This equation is equivalent to  

                        
                                                                                       

The matching process is given by the following expression:  

                                                                                                                               

Where    is the number of aggregate matches,    is the number of skilled job 

seekers,    is the aggregate number of skilled vacancies and the constant   < 1 

because workers have imperfect information about the availability of skilled 

vacancies. Consequently, the probability of finding a good job is:  
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       [

  
  

  ]                                                                                                      

Substituting the wage equation in 2.15 and 2.16 along with equation 2.18 into the 

marginal condition 2.15, will give the training function:  

             
  
  

           
                                                                 

                      
                                                                           

This training function is shown by the TF curve in Figure 2.5.  

The model assumes that firms face free entry in the sector so the aggregate number 

of skilled vacancies may be determined by a zero-profit constraint. Each firm has a 

fixed cost of    while beyond that, firms are assumed to be heterogenous in terms of 

the costs of supplying vacancies. So the marginal firm‘s total cost of supplying 

vacancies rises with the aggregate number of vacancies supplied. The vacancy 

induced part of the total costs is      
  where    and 𝛿 are positive constants and 

𝛿>1; thus the average cost of marginal firm is               
   . 

Because each firm has the same average return from creating a skilled vacancy, 

         , where   is the firm‘s probability of finding a skilled worker, so the 

zero profit condition of supplying vacancies is: 

           
  

  
        

                                                                                           

The probability that a firm will find a skilled worker is:  

   
  

  
       [

  

  
   ]                                                                                                    

By substituting 2.22 into 2.21, the skilled vacancy function is obtained:  
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This is depicted by the vacancy function VF in Figure 2.5. Equation 2.24 represents 

the horizontal vacancy function lying beneath the     line in Figure 2.5, while the 

equation 2.23 represents the vacancy function lying above the    line which is 

concave.   

Equilibria lie at the intersections of the training function and the vacancy function. 

Rising marginal cost of training makes the lower portion of the training function 

convex (equation 2.19), while the rising marginal costs of vacancies makes the 

vacancy function concave (equation 2.23). Thus there exist at least two equilibria. 

The low skilled equilibrium lies at the upward sloping portion of TF curve and 

horizontal VF function at point   . The good job equilibrium is either at the 

intersection of the upward sloping portion of the VF curve and vertical portion of TF 

curve at point   
  (the intersection of VF1 and TF in Figure 2.5), or at the 

intersection of the upper horizontal portion of the VF curve and the upward sloping 

portion of the TF curve at point   
  (the intersection of VF2 and TF in Figure 2.5).  

Figure 2.5 Multiple equilibria – the low-skill, bad-job trap and the high-skill, good 

job equilibrium 

 

Source: Snower (1994) 

At the bad-job equilibrium, few workers acquire education since firms supply few 

skilled vacancies and similarly firms supply less skilled vacancies because there are 
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not enough skilled workers who can fill these vacancies. Thus, skilled workers 

employment is   
  and because labour force is constant at L, the unskilled 

employment is   
      

 . Firms offer plenty of skilled vacancies at the good-job 

equilibrium since many workers acquire education.  

Snower‘s model can be used to explain the different incidence of skilled employment 

opportunities in different countries and the emergence of multiple equilibria. 

Technological progress increased the demand for skilled workers in Western 

economies while increased international trade increased the demand for unskilled 

workers in Central and Eastern Europe. In this context, due to low demand for 

skilled labour in transition economies there is little incentive for labour to acquire 

skills through education and training because they will likely be under-compensated. 

In the same vein, because there are only a small proportion of skilled workers in 

transition economies, firms do not have sufficient incentives to open vacancies for 

high-skilled labour. As discussed in section 2.3, in transition countries highly-skilled 

labour is largely missing and these economies are not considered knowledge-based 

economies.  

Appendix A2.2 Youth Unemployment  

One of the aims of this thesis was to evaluate the effectiveness of ALMPs that are 

targeted specifically at youth unemployment. As Chapter 1 documented, youth 

unemployment rates are considerably high, reaching double-digit figures in most of 

the European transition economies. This section examines the causes of these high 

youth unemployment rates in European transition economies. 

A common feature for every country with available statistics is that the youth 

unemployment rate is higher than the adult unemployment rate (O‘Higgins, 2001). 

The gap between the youth and adult unemployment rates is typically wider in 

developing and transition countries compared to industrialised countries. In addition, 

it is observed that an increase in the adult unemployment rate is usually associated 

with a proportionate increase (Gaude, 1997) or more than proportionate increase in 

youth unemployment (O‘Higgins, 2001). Thus, one of the objectives of this section 

is to discuss the causes of the disproportionate increase in youth unemployment rate 

compared to adult unemployment rate.  
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Economic growth is a precondition for improved employment opportunities for 

labour market entrants, though in recent years it was observed that many 

industrialised and developing economies have experienced jobless growth 

(O‘Higgins, 2015). Despite relatively high economic growth in European transition 

economies in the last decade, youth unemployment remains high and it poses a 

continuing challenge to policymakers (Kovtun et al., 2014). The low youth 

employment rates in most ETEs may cause the human capital of the unemployed 

young people to rapidly depreciate, hence making it more difficult for them to find 

‗good‘ jobs in the future. Further, it will increase the dependence of young people on 

the social security system which in turn will diminish the countries‘ growth 

potential. As observed in section 2.2.2, this may lead to a ‗hysteresis‘ effect on 

overall unemployment and consequently the natural rate of unemployment will tend 

to increase.  

The following sub-sections will identify what are the causes of youth unemployment 

in European transition economies with particular reference to youth unemployment 

in Kosovo. Section 2.2.1 analyses how aggregate demand impacts disproportionately 

on the youth unemployment rate and particularly analysing the peculiarities during 

the transitional restructuring. Section 2.2.2 will further discuss the causes of the 

extended school-to-work transition, particularly focusing on the relevance of 

education and the evidence of skill mismatch in transition economies.  

2.2.1 Youth Labour Force Size and the Fluctuation in Aggregate Demand  

Previous research suggests that there are a number of factors that contribute to 

persistently high youth unemployment levels, where some are specifically related to 

young people while others reflect the overall situation in the ETEs. One of the 

arguments underlying the cause of the youth unemployment is the demographic 

composition, particularly the size of youth cohort in the labour market (O‘Higgins, 

2001; Zimmermann et al., 2013). A high growth of the young population means that 

the job creation should also increase in order to absorb the new entrants in the labour 

market so that youth unemployment does not rise. According to some studies, youth 

population growth can explain to some extent the high youth unemployment in 

Romania, Moldova, Kosovo and FYR Macedonia (Kolev and Saget, 2005, 
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Mojsoska-Blazevski, 2016). However, in the long run employment tends to grow at 

the same rate as the labour supply (Mojsoska-Blazevski, 2016).   

Zimmermann et al. (2013) argues that even though the size of the labour force is an 

important determinant of the level of youth unemployment, labour demand and 

overall employment opportunities are a more important factor. Youth unemployment 

is affected by economic growth in a similar way as that of adults, but it is much more 

sensitive to fluctuations in the business cycle (O‘Higgins, 2001). Young workers are 

less likely to be employed because they have less experience. Also, the argument 

behind the disproportionate impact on youth unemployment is that young workers 

tend to quit jobs more than adults for several reasons. Firstly, young workers have 

fewer job-specific skills and therefore are less likely to suffer a wage loss when 

moving between jobs. Secondly, young workers are more likely to quit trying to find 

a better match with their skills and aspirations. Thirdly, the opportunity cost of 

young people not being employed is lower than that of adults since they are less 

skilled, tend to have lower wages and are less likely to ‗need‘ a job to support their 

families (O‘Higgins, 2001). A contributing factor to this issue is that young people 

are more likely to be employed in temporary jobs or disproportionately working in 

the more cyclical-sensitive industries than adults (O‘Higgins, 2015).   

Since young people are disproportionately low-skilled and generally have acquired 

less training investment by firms, it is less costly to dismiss them rather than older 

employees. Furthermore, the employment protection legislation usually does not 

cover young people since such legislation usually requires a qualifying period or a 

certain level of experience which increases with tenure (O‘Higgins, 2001; Kovtun et 

al., 2014). Moreover, during recession periods firms will primarily freeze the 

recruitments of new employees and afterwards they start layoffs typically on a ‗last-

in/first-out‘ (LIFO) basis. In cases of hiring freezes and layoffs, young people are 

more likely to be hit harder.  

O‘Higgins (2001) argues that in Central and Eastern Europe, as a consequence of the 

transition from central to market economy, youth unemployment has increased at a 

higher rate compared to industrialised countries. The outflow from the 

unemployment has been much lower compared to the flow of new entrants into the 

unemployment pool. The structural adjustments in the 1990s had a huge impact in 
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the downsizing of employment in the public sector while the new job-openings have 

been insufficient to compensate the loss of jobs during the transition period. The 

extent of restructuring in transition economies has caused the large-scale job 

reallocation which affected youth unemployment. Countries that have had a slow 

restructuring may have temporarily preserved the jobs of senior workers at the 

expense of the young workers (Kolev and Saget, 2005; O‘Higgins, 2015). This made 

it harder for young people to find employment, causing the disproportionate high 

youth unemployment rate. The development of the private sector was expected to 

reduce youth unemployment; however, no clear relation is evident between the job-

creation in the private sector and youth unemployment. Kolev and Saget (2005) 

suggest that this is because the private sector is mostly comprised of former public 

enterprises which have been restructured to private enterprises as opposed to newly 

established private enterprises. It is the growth of service sectors, such as retail trade, 

hotels and restaurants and information technology that has created opportunities for 

young people. 

The macroeconomic and fiscal policies that were introduced in Kosovo, such as the 

promotion of private sector development through offering low tax rates, 

liberalisation of trade, reduction of public employment and public subsidies and 

transfers, have not been fully successful in opening new job opportunities and 

reducing unemployment. Insufficient foreign and domestic investment and 

decreasing external income transfers together with rapid de-industrialisation have 

dampened aggregate demand and slowed down economic growth. Additionally, the 

predominance of micro-enterprises with low productivity and competitiveness seem 

to have been one of the main causes of the large trade deficits which in turn affect 

employment. 

As recorded above, transition economies with high unemployment and poverty have 

developed large scale informal employment. For instance, in Kosovo young people 

mostly transit from school and unemployment to low paid jobs in the informal 

economy (Corbanese and Rosas, 2007). The causes of young people engaging in 

informal employment vary across countries but the main reason is that they cannot 

find jobs in the formal sector (Corbanese and Rosas, 2007; Shehu and Nilsson, 2014; 

Mojsoska-Blazevski, 2016).  
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As discussed in section 2.3, labour protection legislation is very limited in Kosovo 

and inadequately enforced. Corbanese and Rosas (2007) attribute the predominance 

of informal employment of youths in Kosovo to the low enforcement of employment 

regulation. Despite the lowest mandatory social security contributions in the South-

East Europe (5% of the gross wage paid by each: employer and employee), the 

survey of Corbanese and Rosas found that 73% of enterprises in Kosovo responded 

that they preferred informal employment because of the avoidance of the cost of 

paying social security contributions for their workers. It is the limited capacity of 

public administration to ensure the enforcement of labour legislation that leads to 

high informal employment among young people. In other European transition 

economies, young people are typically not eligible to claim unemployment benefits 

because they lack employment experience, this provides another incentive for the 

young unemployed to take informal jobs (Marjanovic, 2016, Djuric, 2016).  

2.2.2 School to work transition and the contribution of education  

The school to work transition is characterised by different status episodes that can 

consist of: vocational education, higher education, military service, temporary jobs 

etc. with the final objective of becoming fully integrated into the formal labour 

market. These status episodes can be viewed as optimal job-search episodes where 

young people move in and out of the labour market before they get settled in a 

particular job that offers them a career or before they go back to full-time education. 

Some of the young workers enter the labour market through temporary jobs and 

afterwards move to more stable jobs while other young workers move to 

unemployment and inactivity. The most common risk faced by young workers is the 

mismatch of the level of education acquired and the level of skills required in the 

labour market. As the first chapter emphasised, the unemployment rate for more 

educated and skilled young people is lower than that of low-skilled youths. General 

education and training thus are one of the major factors determining the shape of 

school to work transition (Dietrich, 2012).   

European transition economies show different patterns of school to work transition 

which in addition are heavily influenced by the educational policies and the 

education system. Zimmermann et al. (2013) suggests that when the formal 

education cannot translate into jobs the educational mismatch can cause youth 
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unemployment and underemployment. General education (non-vocational primary 

and secondary school) aims to improve the cognitive skills required for successful 

integration into the formal labour market and it is usually observed that those who 

have completed high-quality general education have higher earnings compared to 

those who attended education of a lower quality. However, as opposed to individuals 

with vocational education, those who complete general secondary education have a 

higher risk of being weakly attached to the labour market because they are not 

specialised in a specific occupation (Zimmermann et al., 2013) and do not gain 

practical experience. Well-designed and targeted vocational education, on the other 

hand, can increase employment opportunities for youths. It aims to promote the 

direct entry of youths into the labour market and its success depends on the 

alignment of the skills acquired in school to skills required in the labour market.  

Skill mismatches are an important factor contributing to youth unemployment and 

inactivity in European transition economies. According to the School to Work 

transition reports conducted by International Labour Organisation, the mismatch 

between the skills and labour demand is quite large in European transition economies 

(Corbanese and Rosas, 2007; Matsumoto and Elder, 2010; Shehu and Nielson, 2014; 

Djuric, 2016; Mojsoska-Blazevski, 2016; Marjanovic, 2016). This skill mismatch 

may prolong the school-to-work transition. In Serbia and FYR Macedonia, the over-

education is more common than under-education (Marjanovic, 2016; Mojsoska-

Blazevski, 2016). Since newly created jobs were mostly in lower skilled occupations, 

this made the overqualified young individuals to take the available jobs in the labour 

market. Consequently, they earn less than what they could have otherwise and their 

potential is not fully utilised. 

The skill mismatch is a particularly important determinant of the slow school-to-

work transition in Kosovo. The skill mismatch seems to have been a consequence of 

the education system from the 1990‘s. In Kosovo during this decade the access to 

education was limited and education was mostly informally obtained while 

vocational education was acquired mostly on the job (Corbanese and Rosas, 2007). 

In spite of significant improvement since after the conflict in Kosovo, the 

educational system still suffers from high drop-out rates and is poorly financed 

which triggers low educational outcomes. These gaps are predominantly evident for 
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vocational education and trainings. According to Corbanese and Rosas (2007), 

vocational education in Kosovo does not attract students despite the fact that 

enterprises seem to require workers with vocational skills. Another important reason 

for young people in Kosovo not having completed the transition to work (e.g. are 

inactive) is that they do not believe that they can find employment. For young 

women in Kosovo not having completed the transition to work, a reason might be 

their household-related responsibilities and childcare. A possible explanation for this 

is that social services and childcare facilities are largely unavailable in Kosovo. The 

low inactivity of young women in Kosovo is also related to gender stereotypical 

factors which are engraved even in younger generation that some occupations are not 

unsuitable for women (Corbanese and Rosas, 2007).   

As Chapter 1 identified, the percentage of NEETs (not in education, employment or 

training) can be as high as 35 percent of youths in Kosovo, 31 percent in FYR 

Macedonia and 28 percent in Montenegro (Mojsoska-Blazevski, 2016; Djuric, 2016).  

NEETs neither contribute to the economic production nor are they investing in their 

human capital through education and training. The concept of idleness or 

disconnected youth, closely related to the NEET, is related to the idea that young 

people do not have a strong network to support them in the labour market. 

Arulampalam (2001) also considers that there is a strong relationship between the 

initial experience of unemployment amongst young people and their future labour 

market success. The mechanisms behind this relationship can be explained through 

three different processes: deteriorating working skills and loss of experience; 

negative signalling effects to labour market and potential future earnings; and loss of 

social networks. 

Studies provide evidence that the longer the unemployment spells in early working 

life, the larger the skill deterioration and the ‗scarring‘ effect will prevail in the 

future labour market status and at the level of earnings (Ball and Mankiw, 2002; 

Luijkx and Wolbers, 2009; Dietrich, 2012). The shock that leads to unemployment 

leaves a permanent scar through diminishing human capital and signalling of low 

productivity to the labour market. This makes the unemployed less attractive to 

employers and by attaching the social stigma of long-term unemployment leading to 

a higher natural rate of unemployment. Studies found evidence that the early youth 

unemployment has high negative effect on employment prospects while the effect on 
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earnings is slightly lower (Arulampalam, 2001; Gartell, 2009). When evaluating the 

scaring effects one should take into consideration the labour market condition at that 

period. Experiencing unemployment when overall unemployment is low, signals low 

productivity and loss of future earnings compared to being unemployed in periods 

when the aggregate unemployment is high.  

The social capital and social network consist of both formal and informal job-related 

networks which can impact or facilitate reemployment success (McKee-Ryanet al., 

2005). Fugate et al. (2004) argue that social capital and ‗knowing-whom‘ 

competencies increases the employability perspective of the young unemployed and 

young people entering the labour market for the first time do not always have the 

right social network to get a job and the longer the young individual is unemployed it 

is more likely that social capital will be less utilised and developed.                                                                     

Experiencing unemployment as a youth and social exclusion from the labour market 

may also influence mental health of the young unemployed, as various studies show 

(Fernandes and Gabe, 2009; Bell and Blanchflower, 2009). Unemployment spells 

when young can create permanent scars many years later through affecting 

happiness, job satisfaction and wellbeing (Bell and Blanchflower, 2009). Alvaro and 

Garrido (2003) show that the main cause of diminishing well-being of young 

unemployed are financial issues and lack of social inclusion.  

In conclusion, youth unemployment rates in transition economies remain very high 

despite the relatively high economic growth in recent years. Youth unemployment 

rates were disproportionally impacted by the transition process compared to adult 

unemployment rates, mainly because during the restructuring process enterprises 

preserved the employment of existing workers at the expense of new ones, while the 

private sector was unable to create jobs at the rate required to match the inflow of 

entrants to the labour market. Additionally, the low enforcement of labour protection 

legislation and inadequate labour market policies have contributed to the emergence 

of significant informal employment. The transition of youths from school to formal 

work is fraught with difficulties, whilst the low quality of education  in ETEs and 

large mismatch of skills have extended this transition.  
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Appendix 3 – Chapter 3  

Table A3.1.1 Correlation Matrix  
 

             | lnUEflow AL~plag1 ln~Tlag1 lnVaca~1 lnEUflow lnIUflow   lnLFor ShLongUn ShYoun~n ShWome~n PLMPE~g1 Inform~1 GDPgro~h LabFre~1 

-------------+------------------------------------------------------------------------------------------------------------------------------ 

    lnUEflow |   1.0000 

 ALMPExplag1 |   0.5578   1.0000 

lnUnemplST~1 |   0.6620  -0.0327   1.0000 

lnVacancie~1 |   0.7412   0.5262   0.2685   1.0000 

    lnEUflow |   0.9731   0.5489   0.6032   0.7317   1.0000 

    lnIUflow |   0.9044   0.4883   0.4424   0.7333   0.9082   1.0000 

      lnLFor |   0.8914   0.2887   0.6974   0.8160   0.8637   0.8612   1.0000 

    ShLongUn |  -0.4215  -0.6585   0.2847  -0.6392  -0.4326  -0.5502  -0.3451   1.0000 

   ShYoungUn |   0.4855   0.6752  -0.0971   0.7084   0.4632   0.5936   0.4624  -0.8000   1.0000 

   ShWomenUn |   0.1894   0.2511  -0.0789   0.1182   0.2215   0.0836  -0.0190  -0.0584  -0.0752   1.0000 

 PLMPExplag1 |   0.3551   0.5176  -0.0139   0.3279   0.4263   0.3733   0.1886  -0.1629   0.2404   0.3060   1.0000 

Informalit~1 |  -0.4673  -0.6293   0.0649  -0.6920  -0.4492  -0.4454  -0.4126   0.4953  -0.5986  -0.5166  -0.4857   1.0000 

   GDPgrowth |  -0.2329  -0.1000  -0.0330  -0.3603  -0.3184  -0.2640  -0.2809   0.1344  -0.1485  -0.2556  -0.1979   0.2597   1.0000 

LabFreeInd~1 |   0.2900  -0.2478   0.5815   0.1270   0.2529   0.1524   0.3751   0.2688  -0.3702   0.0084  -0.2578   0.1091   0.0091   1.0000 

EcoFreeInd~1 |   0.1215   0.4106  -0.1820   0.3788   0.0777   0.0537   0.0390  -0.4151   0.3359   0.2354   0.3193  -0.5060   0.2569   0.0175 

 EduTertiary |  -0.2340   0.3976  -0.6349  -0.0165  -0.2109  -0.2014  -0.4254  -0.4649   0.2274   0.0156   0.1862  -0.0767   0.2767  -0.4317 

EduSecondary |  -0.0982  -0.4907   0.4662  -0.3514  -0.1507  -0.2910  -0.0207   0.6526  -0.5679   0.2063  -0.4664   0.2068  -0.0436   0.4865 

  PopDensity |   0.5054   0.2531   0.2712   0.4855   0.5741   0.5031   0.4871  -0.0486   0.1222   0.3642   0.7950  -0.5142  -0.2946   0.1065 

 

             | EcoFre~1 EduTer~y EduSec~y PopDen~y 

-------------+------------------------------------ 

EcoFreeInd~1 |   1.0000 

 EduTertiary |   0.5224   1.0000 

EduSecondary |  -0.3821  -0.7356   1.0000 

  PopDensity |   0.2886  -0.1212  -0.2356   1.0000 
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Table A3.1.2 Variance Inflation Factor  
 
 All Variables  
 
 
    Variable |       VIF       1/VIF   
-------------+---------------------- 
      lnLFor |    117.79    0.008490 
EduSecondary |     51.71    0.019337 
lnVacancie~1 |     43.20    0.023146 
    lnEUflow |     42.26    0.023665 
    lnIUflow |     41.86    0.023892 
lnUnemplST~1 |     39.51    0.025307 
  PopDensity |     25.33    0.039472 
 EduTertiary |     21.57    0.046367 
    ShLongUn |     18.86    0.053015 
Informalit~1 |     16.11    0.062064 
   ShYoungUn |     13.71    0.072933 
 PLMPExplag1 |     10.09    0.099082 
 ALMPExplag1 |      9.25    0.108091 
EcoFreeInd~1 |      8.28    0.120725 
   ShWomenUn |      7.40    0.135165 
LabFreeInd~1 |      4.83    0.206904 
   GDPgrowth |      2.64    0.378943 
-------------+---------------------- 
    Mean VIF |     27.91 
 
 
 
Without Shares  
 
 
    Variable |       VIF       1/VIF   
-------------+---------------------- 
      lnLFor |     63.12    0.015843 
    lnEUflow |     31.99    0.031261 
lnVacancie~1 |     29.61    0.033776 
    lnIUflow |     29.22    0.034221 
EduSecondary |     22.15    0.045140 
lnUnemplST~1 |     18.02    0.055492 
  PopDensity |     13.01    0.076883 
Informalit~1 |     12.85    0.077819 
 EduTertiary |     12.34    0.081053 
 ALMPExplag1 |      8.32    0.120192 
 PLMPExplag1 |      8.29    0.120686 
EcoFreeInd~1 |      4.28    0.233718 
LabFreeInd~1 |      2.66    0.376102 
   GDPgrowth |      2.54    0.394042 
-------------+---------------------- 
    Mean VIF |     18.46 
 
Without EduSecondary  
 
    Variable |       VIF       1/VIF   
-------------+---------------------- 
      lnLFor |     62.83    0.015916 
lnVacancie~1 |     23.43    0.042673 
    lnEUflow |     21.59    0.046312 
    lnIUflow |     21.43    0.046670 
lnUnemplST~1 |     16.44    0.060833 
  PopDensity |      9.53    0.104898 
 PLMPExplag1 |      8.17    0.122350 
 ALMPExplag1 |      6.45    0.155083 
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 EduTertiary |      5.94    0.168420 
Informalit~1 |      5.51    0.181638 
EcoFreeInd~1 |      3.98    0.251149 
   GDPgrowth |      2.37    0.422810 
LabFreeInd~1 |      2.23    0.449058 
-------------+---------------------- 
    Mean VIF |     14.61 
 
 
Without EcoFreeIndlag1 
 
    Variable |       VIF       1/VIF   
-------------+---------------------- 
      lnLFor |     56.66    0.017649 
    lnIUflow |     20.37    0.049101 
    lnEUflow |     19.80    0.050512 
lnVacancie~1 |     19.53    0.051207 
lnUnemplST~1 |     14.52    0.068868 
  PopDensity |      8.94    0.111806 
 PLMPExplag1 |      8.09    0.123612 
 ALMPExplag1 |      6.44    0.155202 
 EduTertiary |      5.08    0.196992 
Informalit~1 |      5.00    0.200001 
   GDPgrowth |      2.10    0.476909 
LabFreeInd~1 |      2.04    0.489056 
-------------+---------------------- 
    Mean VIF |     14.05 

 

Table A3.2.1 Model 1- Random effects estimated results 
 

xtreg lnUEflow ALMPExplag1 lnUnemplSTlag1 lnVacancieslag1 lnEUflow lnIUflow lnLFor 

ShLongUn ShYoungUn ShWomenUn PLMPExplag1 Informalityl1 GDPgrowth LabFreeIndlag1 

EduTertiary PopDensity PopDen2 Y11 Y12 Y13 Y14 Y15, re 

note: Y11 omitted because of collinearity 

note: Y15 omitted because of collinearity 

 

Random-effects GLS regression                   Number of obs     =         49 

Group variable: CountryID                       Number of groups  =         14 

 

R-sq:                                           Obs per group: 

     within  = 0.6205                                         min =          1 

     between = 0.9976                                         avg =        3.5 

     overall = 0.9891                                         max =          4 

 

                                                Wald chi2(19)     =    2623.44 

corr(u_i, X)   = 0 (assumed)                    Prob > chi2       =     0.0000 

 

--------------------------------------------------------------------------------- 

       lnUEflow |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

----------------+---------------------------------------------------------------- 

    ALMPExplag1 |   .2103095   .1628138     1.29   0.196    -.1087997    .5294187 

 lnUnemplSTlag1 |   .3639824   .0901802     4.04   0.000     .1872324    .5407323 

lnVacancieslag1 |   .0662571   .0730406     0.91   0.364       -.0769    .2094141 

       lnEUflow |   .3318623   .1077998     3.08   0.002     .1205786    .5431461 

       lnIUflow |   .3332963   .1058643     3.15   0.002     .1258059    .5407866 

         lnLFor |  -.1438179   .2124609    -0.68   0.498    -.5602336    .2725977 

       ShLongUn |   -.002468   .0034364    -0.72   0.473    -.0092032    .0042672 

      ShYoungUn |  -.0030278   .0098497    -0.31   0.759    -.0223328    .0162772 
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      ShWomenUn |   .0062877   .0118253     0.53   0.595    -.0168895    .0294649 

    PLMPExplag1 |  -.0638675   .1466339    -0.44   0.663    -.3512647    .2235297 

  Informalityl1 |  -.0121141   .0065005    -1.86   0.062    -.0248548    .0006265 

      GDPgrowth |   -.003859   .0127516    -0.30   0.762    -.0288517    .0211337 

 LabFreeIndlag1 |  -.0005993   .0029596    -0.20   0.840    -.0063999    .0052014 

    EduTertiary |    .011437   .0080847     1.41   0.157    -.0044087    .0272827 

     PopDensity |   .0004987   .0027374     0.18   0.855    -.0048664    .0058639 

        PopDen2 |  -1.45e-06   4.60e-06    -0.32   0.752    -.0000105    7.56e-06 

            Y11 |          0  (omitted) 

            Y12 |   .0123046   .0578129     0.21   0.831    -.1010066    .1256158 

            Y13 |  -.0003466   .0489755    -0.01   0.994    -.0963368    .0956436 

            Y14 |  -.0251891   .0455727    -0.55   0.580    -.1145098    .0641317 

            Y15 |          0  (omitted) 

          _cons |   .5270129   1.493766     0.35   0.724    -2.400715    3.454741 

----------------+---------------------------------------------------------------- 

        sigma_u |          0 

        sigma_e |  .07176607 

            rho |          0   (fraction of variance due to u_i) 

--------------------------------------------------------------------------------- 

 

Table A3.2.2 Model 1- Fixed effects estimated results 
 

. xtreg lnUEflow ALMPExplag1 lnUnemplSTlag1 lnVacancieslag1 lnEUflow lnIUflow 

lnLFor ShLongUn ShYoungUn ShWomenUn PLMPExplag1 Informalityl1 GDPgrowth 

LabFreeIndlag1 EduTertiary PopDensity PopDen2 Y11 Y12 Y13 Y14 Y15, fe 

note: Y11 omitted because of collinearity 

note: Y15 omitted because of collinearity 

 

Fixed-effects (within) regression               Number of obs     =         49 

Group variable: CountryID                       Number of groups  =         14 

 

R-sq:                                           Obs per group: 

     within  = 0.8535                                         min =          1 

     between = 0.5840                                         avg =        3.5 

     overall = 0.5876                                         max =          4 

 

                                                F(19,16)          =       4.90 

corr(u_i, Xb)  = -0.9936                        Prob > F          =     0.0012 

 

--------------------------------------------------------------------------------- 

       lnUEflow |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

----------------+---------------------------------------------------------------- 

    ALMPExplag1 |   .3688273   .2250573     1.64   0.121    -.1082728    .8459275 

 lnUnemplSTlag1 |   .2268562   .2461955     0.92   0.371    -.2950549    .7487672 

lnVacancieslag1 |  -.1122832   .1952238    -0.58   0.573    -.5261393    .3015729 

       lnEUflow |   .0969108   .1218783     0.80   0.438    -.1614596    .3552813 

       lnIUflow |   .4306739   .1351354     3.19   0.006     .1441996    .7171481 

         lnLFor |   1.442781   2.521462     0.57   0.575    -3.902479    6.788042 

       ShLongUn |   .0151545   .0077504     1.96   0.068    -.0012755    .0315845 

      ShYoungUn |   .0087283   .0140387     0.62   0.543    -.0210325    .0384891 

      ShWomenUn |   .0046092    .014068     0.33   0.747    -.0252137    .0344321 

    PLMPExplag1 |   .0673884   .2638013     0.26   0.802    -.4918453    .6266221 

  Informalityl1 |  -.1676947   .2030228    -0.83   0.421    -.5980838    .2626945 

      GDPgrowth |  -.0164374   .0170993    -0.96   0.351    -.0526864    .0198116 
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 LabFreeIndlag1 |   .0129254   .0048447     2.67   0.017     .0026552    .0231957 

    EduTertiary |   .0134148   .0287974     0.47   0.648    -.0476328    .0744625 

     PopDensity |   .0333606   .0651036     0.51   0.615    -.1046529    .1713741 

        PopDen2 |  -.0000235   .0000711    -0.33   0.745    -.0001742    .0001272 

            Y11 |          0  (omitted) 

            Y12 |   .2114057   .2666313     0.79   0.439    -.3538273    .7766388 

            Y13 |   .1427422   .2090091     0.68   0.504    -.3003373    .5858217 

            Y14 |   .0671069    .122732     0.55   0.592    -.1930732     .327287 

            Y15 |          0  (omitted) 

          _cons |  -19.69832   35.06323    -0.56   0.582    -94.02904    54.63241 

----------------+---------------------------------------------------------------- 

        sigma_u |  4.0123355 

        sigma_e |  .07176607 

            rho |  .99968018   (fraction of variance due to u_i) 

--------------------------------------------------------------------------------- 

F test that all u_i=0: F(13, 16) = 2.84                      Prob > F = 0.0255 

 

Table A3.2.3 Model 1- Fixed versus Random effects 
 

. hausman fixed random, sigmamore 

 

Note: the rank of the differenced variance matrix (13) does not equal the number 

of coefficients being tested (19); be sure this is what you 

        expect, or there may be problems computing the test.  Examine the output 

of your estimators for anything unexpected and possibly 

        consider scaling your variables so that the coefficients are on a similar 

scale. 

 

                 ---- Coefficients ---- 

             |      (b)          (B)            (b-B)     sqrt(diag(V_b-V_B)) 

             |     fixed        random       Difference          S.E. 

-------------+---------------------------------------------------------------- 

 ALMPExplag1 |    .3688273     .2103095        .1585179        .2565864 

lnUnemplST~1 |    .2268562     .3639824       -.1371262        .3199591 

lnVacancie~1 |   -.1122832     .0662571       -.1785403        .2532791 

    lnEUflow |    .0969108     .3318623       -.2349515        .1243428 

    lnIUflow |    .4306739     .3332963        .0973776        .1486159 

      lnLFor |    1.442781    -.1438179        1.586599        3.397962 

    ShLongUn |    .0151545     -.002468        .0176226        .0098846 

   ShYoungUn |    .0087283    -.0030278        .0117561        .0161958 

   ShWomenUn |    .0046092     .0062877       -.0016785        .0148656 

 PLMPExplag1 |    .0673884    -.0638675        .1312559        .3246149 

Informalit~1 |   -.1676947    -.0121141       -.1555805         .274054 

   GDPgrowth |   -.0164374     -.003859       -.0125785        .0192476 

LabFreeInd~1 |    .0129254    -.0005993        .0135247        .0058337 

 EduTertiary |    .0134148      .011437        .0019778        .0380338 

  PopDensity |    .0333606     .0004987        .0328619        .0878634 

     PopDen2 |   -.0000235    -1.45e-06       -.0000221        .0000959 

         Y12 |    .2114057     .0123046        .1991011         .355346 

         Y13 |    .1427422    -.0003466        .1430888        .2779319 

         Y14 |    .0671069    -.0251891         .092296        .1593291 

------------------------------------------------------------------------------ 

                           b = consistent under Ho and Ha; obtained from xtreg 

            B = inconsistent under Ha, efficient under Ho; obtained from xtreg 
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    Test:  Ho:  difference in coefficients not systematic 

 

                 chi2(13) = (b-B)'[(V_b-V_B)^(-1)](b-B) 

                          =       20.22 

                Prob>chi2 =      0.0898 

                (V_b-V_B is not positive definite) 

 

Table A3.2.4 Model 1- Diagnostic tests 
 

. xttest3 

 

Modified Wald test for groupwise heteroskedasticity 

in fixed effect regression model 

 

H0: sigma(i)^2 = sigma^2 for all i 

 

chi2 (14)  =     139.46 

Prob>chi2 =      0.0000 

 

 

. xtserial lnUEflow ALMPExplag1 lnUnemplSTlag1 lnVacancieslag1 lnEUflow lnIUflow 

lnLFor ShLongUn ShYoungUn ShWomenUn PLMPExplag1 Informalityl1 GDPgrowth 

LabFreeIndlag1 EduTertiary PopDensity PopDen2 Y11 Y12 Y13 Y14 Y15 

 

Wooldridge test for autocorrelation in panel data 

H0: no first order autocorrelation 

    F(  1,      10) =      1.392 

           Prob > F =      0.2653 

 

 

. pantest2 lnUEflow ALMPExplag1 lnUnemplSTlag1 lnVacancieslag1 lnEUflow lnIUflow 

lnLFor ShLongUn ShYoungUn ShWomenUn PLMPExplag1 Informalityl1 GDPgrowth 

LabFreeIndlag1 EduTertiary PopDensity PopDen2 Y11 Y12 Y13 Y14 Y15 

 

 

Test for serial correlation in residuals 

Null hypothesis is either that rho=0 if residuals are AR(1) 

or that lamda=0 if residuals are MA(1) 

Following tests only approximate for unbalanced panels 

LM= .26778097 

which is asy. distributed as chisq(1) under null, so: 

Probability of value greater than LM is .60482422 

LM5= .51747557 

which is asy. distributed as N(0,1) under null, so: 

Probability of value greater than abs(LM5) is .30241211 

 

 

Test for significance of fixed effects 

F= 2.8362991 

Probability>F= .02553437 

 

 

Test for normality of residuals 



325 
 

 

                    Skewness/Kurtosis tests for Normality 

                                                          ------ joint ------ 

    Variable |        Obs  Pr(Skewness)  Pr(Kurtosis) adj chi2(2)   Prob>chi2 

-------------+--------------------------------------------------------------- 

    __00000B |         49     0.2923        0.9317        1.16         0.5585 

 

Table A3.3.1 Model 2 - Random effects estimated results 
 

. xtreg lnUEflow ALMPExplag1 lnUnemplSTlag1 lnVacancieslag1 lnEUflow lnIUflow 

lnLFor PLMPExplag1 Informalityl1 GDPgrowth LabFreeIndlag1 EduTertiary PopDensity 

PopDen2 Y11 Y12 Y13 Y14 Y15, re 

note: Y11 omitted because of collinearity 

note: Y15 omitted because of collinearity 

 

Random-effects GLS regression                   Number of obs     =         49 

Group variable: CountryID                       Number of groups  =         14 

 

R-sq:                                           Obs per group: 

     within  = 0.6312                                         min =          1 

     between = 0.9971                                         avg =        3.5 

     overall = 0.9887                                         max =          4 

 

                                                Wald chi2(16)     =    2803.39 

corr(u_i, X)   = 0 (assumed)                    Prob > chi2       =     0.0000 

 

--------------------------------------------------------------------------------- 

       lnUEflow |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

----------------+---------------------------------------------------------------- 

    ALMPExplag1 |   .2090653   .1473779     1.42   0.156      -.07979    .4979206 

 lnUnemplSTlag1 |   .3574434   .0668219     5.35   0.000     .2264749    .4884119 

lnVacancieslag1 |   .0790493   .0595936     1.33   0.185    -.0377519    .1958506 

       lnEUflow |   .3632491   .0992787     3.66   0.000     .1686664    .5578318 

       lnIUflow |   .3667876   .0847777     4.33   0.000     .2006265    .5329488 

         lnLFor |  -.2094547   .1292363    -1.62   0.105    -.4627532    .0438437 

    PLMPExplag1 |  -.1249271   .1156449    -1.08   0.280    -.3515869    .1017327 

  Informalityl1 |  -.0134375   .0046894    -2.87   0.004    -.0226284   -.0042465 

      GDPgrowth |  -.0053599   .0121389    -0.44   0.659    -.0291517    .0184318 

 LabFreeIndlag1 |  -.0001254   .0016943    -0.07   0.941    -.0034461    .0031953 

    EduTertiary |   .0154241   .0058656     2.63   0.009     .0039277    .0269206 

     PopDensity |   .0016755   .0012723     1.32   0.188    -.0008181    .0041691 

        PopDen2 |  -3.46e-06   2.16e-06    -1.60   0.110    -7.70e-06    7.83e-07 

            Y11 |          0  (omitted) 

            Y12 |     .02382   .0513156     0.46   0.643    -.0767567    .1243966 

            Y13 |  -.0084442    .042042    -0.20   0.841    -.0908451    .0739566 

            Y14 |  -.0306881    .041683    -0.74   0.462    -.1123853    .0510091 

            Y15 |          0  (omitted) 

          _cons |   .7382203   .6429947     1.15   0.251     -.522026    1.998467 

----------------+---------------------------------------------------------------- 

        sigma_u |          0 

        sigma_e |  .07381611 

            rho |          0   (fraction of variance due to u_i) 

--------------------------------------------------------------------------------- 
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Table A3.3.2 Model 2- Fixed effects estimated results  
 

. xtreg lnUEflow ALMPExplag1 lnUnemplSTlag1 lnVacancieslag1 lnEUflow lnIUflow 

lnLFor PLMPExplag1 Informalityl1 GDPgrowth LabFreeIndlag1 EduTertiary PopDensity 

PopDen2 Y11 Y12 Y13 Y14 Y15, fe 

note: Y11 omitted because of collinearity 

note: Y15 omitted because of collinearity 

 

Fixed-effects (within) regression               Number of obs     =         49 

Group variable: CountryID                       Number of groups  =         14 

 

R-sq:                                           Obs per group: 

     within  = 0.8159                                         min =          1 

     between = 0.3374                                         avg =        3.5 

     overall = 0.3443                                         max =          4 

 

                                                F(16,19)          =       5.26 

corr(u_i, Xb)  = -0.9938                        Prob > F          =     0.0004 

 

--------------------------------------------------------------------------------- 

       lnUEflow |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

----------------+---------------------------------------------------------------- 

    ALMPExplag1 |   .2690424    .217477     1.24   0.231    -.1861421     .724227 

 lnUnemplSTlag1 |   .4761076   .1919659     2.48   0.023     .0743184    .8778967 

lnVacancieslag1 |   -.159109   .1904059    -0.84   0.414     -.557633    .2394151 

       lnEUflow |    .055846   .1134434     0.49   0.628    -.1815938    .2932857 

       lnIUflow |   .4352632    .136523     3.19   0.005     .1495172    .7210091 

         lnLFor |  -.2635231   2.425759    -0.11   0.915    -5.340695    4.813649 

    PLMPExplag1 |  -.0401567   .2615544    -0.15   0.880    -.5875963    .5072829 

  Informalityl1 |  -.1038271   .1932142    -0.54   0.597     -.508229    .3005748 

      GDPgrowth |  -.0123861   .0171245    -0.72   0.478    -.0482281    .0234559 

 LabFreeIndlag1 |    .012366   .0048525     2.55   0.020     .0022097    .0225223 

    EduTertiary |   .0175104   .0282197     0.62   0.542    -.0415542    .0765749 

     PopDensity |   .0788168   .0615362     1.28   0.216    -.0499798    .2076135 

        PopDen2 |  -.0000757   .0000664    -1.14   0.269    -.0002146    .0000633 

            Y11 |          0  (omitted) 

            Y12 |   .1239867   .2518366     0.49   0.628    -.4031134    .6510869 

            Y13 |   .1184844   .2047234     0.58   0.570    -.3100066    .5469753 

            Y14 |   .0543626     .12139     0.45   0.659    -.1997096    .3084348 

            Y15 |          0  (omitted) 

          _cons |  -.1809657   34.31742    -0.01   0.996    -72.00816    71.64623 

----------------+---------------------------------------------------------------- 

        sigma_u |   5.041739 

        sigma_e |  .07381611 

            rho |  .99978569   (fraction of variance due to u_i) 

--------------------------------------------------------------------------------- 

F test that all u_i=0: F(13, 19) = 2.51                      Prob > F = 0.0337 
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Table A3.3.3 Model 2 - Fixed effects versus Random effects 

 
. hausman fixed random, sigmamore 

 

Note: the rank of the differenced variance matrix (13) does not equal the number 

of coefficients being tested (16); be sure this is what you 

        expect, or there may be problems computing the test.  Examine the output 

of your estimators for anything unexpected and possibly 

        consider scaling your variables so that the coefficients are on a similar 

scale. 

 

                 ---- Coefficients ---- 

             |      (b)          (B)            (b-B)     sqrt(diag(V_b-V_B)) 

             |     fixed        random       Difference          S.E. 

-------------+---------------------------------------------------------------- 

 ALMPExplag1 |    .2690424     .2090653        .0599771        .2335095 

lnUnemplST~1 |    .4761076     .3574434        .1186642        .2343985 

lnVacancie~1 |    -.159109     .0790493       -.2381583        .2342964 

    lnEUflow |     .055846     .3632491       -.3074031        .1043584 

    lnIUflow |    .4352632     .3667876        .0684755        .1511958 

      lnLFor |   -.2635231    -.2094547       -.0540683         3.07725 

 PLMPExplag1 |   -.0401567    -.1249271        .0847704         .311307 

Informalit~1 |   -.1038271    -.0134375       -.0903897        .2452773 

   GDPgrowth |   -.0123861    -.0053599       -.0070262        .0180388 

LabFreeInd~1 |     .012366    -.0001254        .0124914        .0059236 

 EduTertiary |    .0175104     .0154241        .0020862        .0353469 

  PopDensity |    .0788168     .0016755        .0771413        .0781215 

     PopDen2 |   -.0000757    -3.46e-06       -.0000722        .0000843 

         Y12 |    .1239867       .02382        .1001667          .31561 

         Y13 |    .1184844    -.0084442        .1269286        .2565128 

         Y14 |    .0543626    -.0306881        .0850507        .1483843 

------------------------------------------------------------------------------ 

                           b = consistent under Ho and Ha; obtained from xtreg 

            B = inconsistent under Ha, efficient under Ho; obtained from xtreg 

 

    Test:  Ho:  difference in coefficients not systematic 

 

                 chi2(13) = (b-B)'[(V_b-V_B)^(-1)](b-B) 

                          =       20.21 

                Prob>chi2 =      0.0900 

                (V_b-V_B is not positive definite) 

Table A3.3.4 Model 2- Diagnostic tests 
 

. xttest3 

 

Modified Wald test for groupwise heteroskedasticity 

in fixed effect regression model 

 

H0: sigma(i)^2 = sigma^2 for all i 

 

chi2 (14)  =    2.0e+26 

Prob>chi2 =      0.0000   -  presence of heteroscedasticity  
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. xtserial lnUEflow ALMPExplag1 lnUnemplSTlag1 lnVacancieslag1 lnEUflow lnIUflow 

lnLFor PLMPExplag1 Informalityl1 GDPgrowth LabFreeIndlag1 Ed 

> uTertiary PopDensity PopDen2 Y11 Y12 Y13 Y14 Y15 

 

Wooldridge test for autocorrelation in panel data 

H0: no first order autocorrelation 

    F(  1,      10) =      0.615 

           Prob > F =      0.4509    - no serial correlation  

 

 

 

. pantest2 lnUEflow ALMPExplag1 lnUnemplSTlag1 lnVacancieslag1 lnEUflow lnIUflow 

lnLFor PLMPExplag1 Informalityl1 GDPgrowth LabFreeIndlag1 Ed 

> uTertiary PopDensity PopDen2 Y11 Y12 Y13 Y14 Y15 

 

 

Test for serial correlation in residuals 

Null hypothesis is either that rho=0 if residuals are AR(1) 

or that lamda=0 if residuals are MA(1) 

Following tests only approximate for unbalanced panels 

LM= .14305331 

which is asy. distributed as chisq(1) under null, so: 

Probability of value greater than LM is .70526428 

LM5= .37822389 

which is asy. distributed as N(0,1) under null, so: 

Probability of value greater than abs(LM5) is .35263214 

 

 

Test for significance of fixed effects 

F= 2.5067412 

Probability>F= .03365295 

 

 

Test for normality of residuals 

 

                    Skewness/Kurtosis tests for Normality 

                                                          ------ joint ------ 

    Variable |        Obs  Pr(Skewness)  Pr(Kurtosis) adj chi2(2)   Prob>chi2 

-------------+--------------------------------------------------------------- 

    __00000B |         49     0.3764        0.7780        0.89         0.6393   - 

there is normality in the residuals  

 

Table A3.4.1 Model 1 - Fixed effects Driscoll Kraay standard 

errors 
. xtscc lnUEflow ALMPExplag1 lnUnemplSTlag1 lnVacancieslag1 lnEUflow lnIUflow 

lnLFor ShLongUn ShYoungUn ShWomenUn PLMPExplag1 Informalityl1 GDPgrowth 

LabFreeIndlag1 EduTertiary PopDensity PopDen2 Y11 Y12 Y13 Y14 Y15, fe 

 

Regression with Driscoll-Kraay standard errors   Number of obs     =        49 

Method: Fixed-effects regression                 Number of groups  =        14 

Group variable (i): CountryID                    F( 21,     3)     =      3.31 

maximum lag: 1                                   Prob > F          =    0.1767 

                                                 within R-squared  =    0.8535 
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--------------------------------------------------------------------------------- 

                |             Drisc/Kraay 

       lnUEflow |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

----------------+---------------------------------------------------------------- 

    ALMPExplag1 |   .3688273   .1176355     3.14   0.052    -.0055414    .7431961 

 lnUnemplSTlag1 |   .2268562   .1354863     1.67   0.193    -.2043218    .6580341 

lnVacancieslag1 |  -.1122832   .1432888    -0.78   0.490    -.5682921    .3437257 

       lnEUflow |   .0969108   .1009649     0.96   0.408    -.2244045    .4182262 

       lnIUflow |   .4306739   .1890671     2.28   0.107    -.1710221     1.03237 

         lnLFor |   1.442781   1.026804     1.41   0.255    -1.824968     4.71053 

       ShLongUn |   .0151545   .0077352     1.96   0.145    -.0094623    .0397714 

      ShYoungUn |   .0087283   .0073409     1.19   0.320    -.0146339    .0320904 

      ShWomenUn |   .0046092   .0008516     5.41   0.012     .0018991    .0073193 

    PLMPExplag1 |   .0673884   .1566408     0.43   0.696    -.4311124    .5658893 

  Informalityl1 |  -.1676947   .1454643    -1.15   0.333     -.630627    .2952376 

      GDPgrowth |  -.0164374   .0119613    -1.37   0.263    -.0545035    .0216286 

 LabFreeIndlag1 |   .0129254   .0026244     4.93   0.016     .0045734    .0212774 

    EduTertiary |   .0134148   .0128297     1.05   0.373    -.0274151    .0542448 

     PopDensity |   .0333606   .0361021     0.92   0.424    -.0815324    .1482536 

        PopDen2 |  -.0000235   .0000385    -0.61   0.584    -.0001461     .000099 

            Y11 |          0  (omitted) 

            Y12 |  -19.48691   17.04874    -1.14   0.336    -73.74362     34.7698 

            Y13 |  -19.55557   17.03529    -1.15   0.334    -73.76946    34.65831 

            Y14 |  -19.63121   16.98838    -1.16   0.332    -73.69582     34.4334 

            Y15 |  -19.69832   16.92031    -1.16   0.329    -73.54629    34.14966 

          _cons |          0  (omitted) 

--------------------------------------------------------------------------------- 

Table A3.4.2 Model 2 - Fixed effects Driscoll Kraay standard 

errors 
 

. xtscc lnUEflow ALMPExplag1 lnUnemplSTlag1 lnVacancieslag1 lnEUflow lnIUflow 

lnLFor PLMPExplag1 Informalityl1 GDPgrowth LabFreeIndlag1 EduTertiary PopDensity 

PopDen2 Y11 Y12 Y13 Y14 Y15, fe 

 

Regression with Driscoll-Kraay standard errors   Number of obs     =        49 

Method: Fixed-effects regression                 Number of groups  =        14 

Group variable (i): CountryID                    F( 18,     3)     =      1.33 

maximum lag: 1                                   Prob > F          =    0.4644 

                                                 within R-squared  =    0.8159 

 

--------------------------------------------------------------------------------- 

                |             Drisc/Kraay 

       lnUEflow |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

----------------+---------------------------------------------------------------- 

    ALMPExplag1 |   .2690424   .0867664     3.10   0.053    -.0070869    .5451717 

 lnUnemplSTlag1 |   .4761076   .0784168     6.07   0.009     .2265503    .7256648 

lnVacancieslag1 |   -.159109   .1562102    -1.02   0.383    -.6562396    .3380217 

       lnEUflow |    .055846   .1081853     0.52   0.641    -.2884479    .4001399 

       lnIUflow |   .4352632   .1391011     3.13   0.052    -.0074187    .8779451 

         lnLFor |  -.2635231   .9905391    -0.27   0.807    -3.415861    2.888814 

    PLMPExplag1 |  -.0401567   .1484008    -0.27   0.804    -.5124342    .4321208 

  Informalityl1 |  -.1038271   .1343679    -0.77   0.496    -.5314456    .3237914 

      GDPgrowth |  -.0123861   .0090679    -1.37   0.265    -.0412443     .016472 
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 LabFreeIndlag1 |    .012366   .0026824     4.61   0.019     .0038292    .0209027 

    EduTertiary |   .0175104   .0073643     2.38   0.098    -.0059262     .040947 

     PopDensity |   .0788168   .0193167     4.08   0.027     .0173424    .1402913 

        PopDen2 |  -.0000757   .0000108    -6.99   0.006    -.0001101   -.0000412 

            Y11 |          0  (omitted) 

            Y12 |  -.0569791   15.46727    -0.00   0.997    -49.28075    49.16679 

            Y13 |  -.0624814     15.471    -0.00   0.997    -49.29811    49.17314 

            Y14 |  -.1266032   15.47161    -0.01   0.994    -49.36416    49.11095 

            Y15 |  -.1809658    15.4614    -0.01   0.991    -49.38603     49.0241 

          _cons |          0  (omitted) 

--------------------------------------------------------------------------------- 

Table A3.4.3 Model 3 - Fixed effects Vector Decomposition 

 

. xtfevd lnUEflow ALMPExplag1 lnUnemplSTlag1 lnVacancieslag1 lnEUflow lnIUflow 

lnLFor ShYoungUn ShLongUn ShWomenUn PLMPExplag1 Informalityl1 GDPgrowth 

LabFreeIndlag1 EduTertiary PopDensity PopDen2 Transition TransAlmp Y11 Y12 Y13 Y14 

Y15 , invariant (ALMPExplag1 lnUnemplSTlag1 lnVacancieslag1 lnEUflow lnIUflow 

lnLFor ShYoungUn ShLongUn  Informalityl1 LabFreeIndlag1 EduTertiary PopDensity 

Transition TransAlmp Y11 Y12 Y13 Y14 Y15 ) 

note: Y11 dropped because of collinearity 

note: Y12 dropped because of collinearity 

 

panel fixed effects regression with vector decomposition 

 

degrees of freedom fevd    =       14           number of obs       =       49 

mean squared error         = .0012914           F( 23, 14)          = 69.61665 

root mean squared error    = .0359362           Prob > F            = 9.57e-11 

Residual Sum of Squares    = .0632792           R-squared           = .9974593 

Total Sum of Squares       = 24.90641           adj. R-squared      = .9912891 

Estimation Sum of Squares  = 24.84313 

 

--------------------------------------------------------------------------------- 

                |                fevd 

       lnUEflow |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

----------------+---------------------------------------------------------------- 

      ShWomenUn |  -.0058359   .0116968    -0.50   0.626    -.0309231    .0192513 

    PLMPExplag1 |   .1403465   .2084367     0.67   0.512    -.3067057    .5873987 

      GDPgrowth |  -.0175212   .0140616    -1.25   0.233    -.0476804    .0126379 

        PopDen2 |  -8.37e-06   .0000178    -0.47   0.645    -.0000465    .0000298 

    ALMPExplag1 |  -.0158621    .257772    -0.06   0.952    -.5687281     .537004 

 lnUnemplSTlag1 |   .4191055   .1659405     2.53   0.024     .0631986    .7750124 

lnVacancieslag1 |   .0098564   .1213886     0.08   0.936    -.2504962     .270209 

       lnEUflow |   .2988957    .177792     1.68   0.115    -.0824303    .6802218 

       lnIUflow |   .3525121   .1474683     2.39   0.031     .0362242    .6688001 

         lnLFor |   -.232976   .3304523    -0.71   0.492    -.9417256    .4757736 

      ShYoungUn |   .0163243    .017277     0.94   0.361    -.0207312    .0533797 

       ShLongUn |  -.0051206   .0055562    -0.92   0.372    -.0170374    .0067963 

  Informalityl1 |  -.0150511   .0187811    -0.80   0.436    -.0553326    .0252303 

 LabFreeIndlag1 |   .0051965   .0066247     0.78   0.446    -.0090122    .0194051 

    EduTertiary |   .0231657   .0133591     1.73   0.105    -.0054868    .0518182 

     PopDensity |   .0041234   .0102543     0.40   0.694    -.0178698    .0261167 

     Transition |   .0253691   .8496806     0.03   0.977    -1.797015    1.847753 

      TransAlmp |   .2156918     .27136     0.79   0.440    -.3663175    .7977011 

            Y13 |  -.0317285   .0464383    -0.68   0.506    -.1313287    .0678717 
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            Y14 |  -.0340524   .0509123    -0.67   0.514    -.1432484    .0751435 

            Y15 |    .021637   .0590033     0.37   0.719    -.1049126    .1481865 

            eta |   .9999999          .        .       .            .           . 

          _cons |   1.229792   2.636751     0.47   0.648    -4.425476     6.88506 

--------------------------------------------------------------------------------- 

Table A3.4.4 Model 4 – Fixed effects Vector Decomposition 

 

. xtfevd lnUEflow ALMPExplag1 lnUnemplSTlag1 lnVacancieslag1 lnEUflow lnIUflow 

lnLFor PLMPExplag1 Informalityl1 GDPgrowth LabFreeIndlag1 EduTertiary PopDensity 

PopDen2 Transition TransAlmp Y11 Y12 Y13 Y14 Y15 , invariant (ALMPExplag1 

lnUnemplSTlag1 lnVacancieslag1 lnEUflow lnIUflow lnLFor Informalityl1 

LabFreeIndlag1 EduTertiary PopDensity Transition TransAlmp Y11 Y12 Y13 Y14 Y15 ) 

note: Y11 dropped because of collinearity 

note: Y12 dropped because of collinearity 

 

panel fixed effects regression with vector decomposition 

 

degrees of freedom fevd    =       17           number of obs       =       49 

mean squared error         = .0018075           F( 20, 17)          = 22.45638 

root mean squared error    = .0425151           Prob > F            = 1.88e-08 

Residual Sum of Squares    = .0885691           R-squared           = .9964439 

Total Sum of Squares       = 24.90641           adj. R-squared      = .9899593 

Estimation Sum of Squares  = 24.81784 

 

--------------------------------------------------------------------------------- 

                |                fevd 

       lnUEflow |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

----------------+---------------------------------------------------------------- 

    PLMPExplag1 |   .0350401   .5739618     0.06   0.952    -1.175913    1.245994 

      GDPgrowth |  -.0108214   .0259919    -0.42   0.682    -.0656594    .0440166 

        PopDen2 |  -.0000545   .0000332    -1.64   0.119    -.0001245    .0000155 

    ALMPExplag1 |   -.438968   .3977543    -1.10   0.285    -1.278156    .4002202 

 lnUnemplSTlag1 |    .741545   .3209103     2.31   0.034     .0644834    1.418607 

lnVacancieslag1 |  -.1352387   .2291942    -0.59   0.563    -.6187962    .3483187 

       lnEUflow |  -.0837976   .3860516    -0.22   0.831    -.8982952       .7307 

       lnIUflow |   .7539002   .3600563     2.09   0.052    -.0057521    1.513553 

         lnLFor |  -.6835512   .6375332    -1.07   0.299    -2.028629    .6615262 

  Informalityl1 |   .0231103   .0362731     0.64   0.533    -.0534192    .0996399 

 LabFreeIndlag1 |   .0120507   .0087954     1.37   0.188     -.006506    .0306075 

    EduTertiary |   .0613646   .0232273     2.64   0.017     .0123593    .1103699 

     PopDensity |   .0284794   .0192276     1.48   0.157    -.0120873    .0690461 

     Transition |   -2.35014    1.93987    -1.21   0.242    -6.442908    1.742627 

      TransAlmp |  -.5686798   .4616829    -1.23   0.235    -1.542746    .4053859 

            Y13 |   .0076052   .0695641     0.11   0.914    -.1391621    .1543726 

            Y14 |  -.0414401   .0850589    -0.49   0.632    -.2208986    .1380184 

            Y15 |  -.1038633   .1160867    -0.89   0.383    -.3487847    .1410581 

            eta |   .9999999          .        .       .            .           . 

          _cons |    3.47707   4.922688     0.71   0.490    -6.908894    13.86303 

--------------------------------------------------------------------------------- 
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Table A3.4.5 Models 1 and 2 Fixed Effects Driscoll Kraay 

including variable ALMPExp2lag1 
 

. xtscc lnUEflow ALMPExplag1 ALMPExp2lag1 lnUnemplSTlag1 lnVacancieslag1 lnEUflow 

lnIUflow lnLFor ShLongUn ShYoungUn ShWomenUn PLMPExplag1 Informalityl1 GDPgrowth 

LabFreeIndlag1 EduTertiary PopDensity PopDen2 Y11 Y12 Y13 Y14 Y15, fe 

 

Regression with Driscoll-Kraay standard errors   Number of obs     =        49 

Method: Fixed-effects regression                 Number of groups  =        14 

Group variable (i): CountryID                    F( 22,     3)     =      3.94 

maximum lag: 1                                   Prob > F          =    0.1420 

                                                 within R-squared  =    0.8585 

 

--------------------------------------------------------------------------------- 

                |             Drisc/Kraay 

       lnUEflow |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

----------------+---------------------------------------------------------------- 

    ALMPExplag1 |   .7873498   .3370624     2.34   0.102    -.2853333    1.860033 

   ALMPExp2lag1 |  -.4487401   .4584658    -0.98   0.400    -1.907783    1.010303 

 lnUnemplSTlag1 |   .2384307   .1863354     1.28   0.291    -.3545718    .8314332 

lnVacancieslag1 |   .0134431   .2487156     0.05   0.960    -.7780809    .8049672 

       lnEUflow |   .0953937    .102901     0.93   0.422    -.2320833    .4228707 

       lnIUflow |   .4695351   .1593043     2.95   0.060    -.0374424    .9765126 

         lnLFor |   1.973188   1.059726     1.86   0.160    -1.399333    5.345709 

       ShLongUn |   .0151473   .0079844     1.90   0.154    -.0102626    .0405572 

      ShYoungUn |   .0122288   .0095327     1.28   0.290    -.0181085     .042566 

      ShWomenUn |   .0032965   .0015315     2.15   0.120    -.0015773    .0081703 

    PLMPExplag1 |   .0656843   .1094917     0.60   0.591    -.2827671    .4141357 

  Informalityl1 |    -.11949   .1260839    -0.95   0.413    -.5207452    .2817653 

      GDPgrowth |  -.0179593   .0124625    -1.44   0.245    -.0576204    .0217019 

 LabFreeIndlag1 |   .0122958   .0027511     4.47   0.021     .0035406     .021051 

    EduTertiary |   .0193682   .0116445     1.66   0.195    -.0176899    .0564263 

     PopDensity |   .0510252   .0496425     1.03   0.380    -.1069595    .2090099 

        PopDen2 |  -.0000449   .0000522    -0.86   0.453    -.0002111    .0001213 

            Y11 |          0  (omitted) 

            Y12 |  -31.71955   20.36695    -1.56   0.217    -96.53628    33.09717 

            Y13 |  -31.79522    20.3563    -1.56   0.216    -96.57807    32.98762 

            Y14 |   -31.8416    20.3106    -1.57   0.215    -96.47899     32.7958 

            Y15 |  -31.88043   20.25141    -1.57   0.214    -96.32945     32.5686 

          _cons |          0  (omitted) 

--------------------------------------------------------------------------------- 

 

 

. xtscc lnUEflow ALMPExplag1 ALMPExp2lag1 lnUnemplSTlag1 lnVacancieslag1 lnEUflow 

lnIUflow lnLFor PLMPExplag1 Informalityl1 GDPgrowth LabFreeIndlag1 EduTertiary 

PopDensity PopDen2 Y11 Y12 Y13 Y14 Y15, fe 

 

Regression with Driscoll-Kraay standard errors   Number of obs     =        49 

Method: Fixed-effects regression                 Number of groups  =        14 

Group variable (i): CountryID                    F( 19,     3)     =      2.61 

maximum lag: 1                                   Prob > F          =    0.2338 



333 
 

                                                 within R-squared  =    0.8194 

 

--------------------------------------------------------------------------------- 

                |             Drisc/Kraay 

       lnUEflow |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

----------------+---------------------------------------------------------------- 

    ALMPExplag1 |   .6077271   .3899977     1.56   0.217    -.6334197    1.848874 

   ALMPExp2lag1 |  -.3537821   .4206666    -0.84   0.462    -1.692531    .9849667 

 lnUnemplSTlag1 |   .4692318   .0901878     5.20   0.014     .1822139    .7562497 

lnVacancieslag1 |   -.058317   .2611418    -0.22   0.838    -.8893867    .7727527 

       lnEUflow |   .0562167   .1079838     0.52   0.639     -.287436    .3998695 

       lnIUflow |   .4680013   .1033823     4.53   0.020     .1389926      .79701 

         lnLFor |   .1189252   .8712911     0.14   0.900    -2.653912    2.891762 

    PLMPExplag1 |  -.0333812   .1280158    -0.26   0.811    -.4407847    .3740223 

  Informalityl1 |    -.05488   .0877199    -0.63   0.576    -.3340439    .2242839 

      GDPgrowth |  -.0129878    .011126    -1.17   0.327    -.0483957      .02242 

 LabFreeIndlag1 |   .0119602    .002625     4.56   0.020     .0036063    .0203141 

    EduTertiary |   .0208572   .0047789     4.36   0.022     .0056487    .0360656 

     PopDensity |   .0906636   .0365489     2.48   0.089    -.0256512    .2069784 

        PopDen2 |  -.0000913   .0000313    -2.92   0.062    -.0001909    8.28e-06 

            Y11 |          0  (omitted) 

            Y12 |   -9.05307   16.37816    -0.55   0.619    -61.17567    43.06953 

            Y13 |  -9.056876   16.40471    -0.55   0.619      -61.264    43.15025 

            Y14 |  -9.096417   16.42043    -0.55   0.618    -61.35354    43.16071 

            Y15 |  -9.126938   16.43499    -0.56   0.617    -61.43041    43.17654 

          _cons |          0  (omitted) 

--------------------------------------------------------------------------------- 

 

Table A3.4.6  Models 3 and 4 Fixed Effects Vector 

Decomposition including variable ALMPExp2lag1 
 

. xtfevd lnUEflow ALMPExplag1 ALMPExp2lag1 lnUnemplSTlag1 lnVacancieslag1 lnEUflow 

lnIUflow lnLFor ShYoungUn ShLongUn ShWomenUn PLMPExplag1 Informalityl1 GDPgrowth 

LabFreeIndlag1 EduTertiary PopDensity PopDen2 Transition TransAlmp Y11 Y12 Y13 Y14 

Y15 , invariant (ALMPExplag1 ALMPExp2lag1 lnUnemplSTlag1 lnVacancieslag1 lnEUflow 

lnIUflow lnLFor ShYoungUn ShLongUn  Informalityl1 LabFreeIndlag1 EduTertiary 

PopDensity Transition TransAlmp Y11 Y12 Y13 Y14 Y15 ) 

note: Y11 dropped because of collinearity 

note: Y12 dropped because of collinearity 

 

panel fixed effects regression with vector decomposition 

 

degrees of freedom fevd    =       13           number of obs       =       49 

mean squared error         = .0010851           F( 24, 13)          = 38.26931 

root mean squared error    = .0329414           Prob > F            = 1.68e-08 

Residual Sum of Squares    = .0531717           R-squared           = .9978651 

Total Sum of Squares       = 24.90641           adj. R-squared      = .9921174 

Estimation Sum of Squares  = 24.85324 

 

--------------------------------------------------------------------------------- 

                |                fevd 

       lnUEflow |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

----------------+---------------------------------------------------------------- 

      ShWomenUn |  -.0108913   .0131917    -0.83   0.424    -.0393903    .0176077 
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    PLMPExplag1 |   .1540743   .3486001     0.44   0.666    -.5990305    .9071791 

      GDPgrowth |  -.0207964   .0197345    -1.05   0.311    -.0634302    .0218375 

        PopDen2 |  -.0000472   .0000404    -1.17   0.264    -.0001346    .0000402 

    ALMPExplag1 |   1.790506   .9396866     1.91   0.079    -.2395636    3.820575 

   ALMPExp2lag1 |  -2.127342   1.241152    -1.71   0.110    -4.808688     .554005 

 lnUnemplSTlag1 |   .9426165   .4341394     2.17   0.049     .0047153    1.880518 

lnVacancieslag1 |   -.037702   .1758484    -0.21   0.834    -.4175994    .3421954 

       lnEUflow |  -.0928856   .3347186    -0.28   0.786    -.8160011    .6302298 

       lnIUflow |   .6879981   .3395405     2.03   0.064    -.0455345    1.421531 

         lnLFor |  -1.084635   .8691929    -1.25   0.234    -2.962412     .793142 

      ShYoungUn |   .0571737   .0396419     1.44   0.173    -.0284675     .142815 

       ShLongUn |  -.0173056   .0113277    -1.53   0.151    -.0417775    .0071664 

  Informalityl1 |   .0189463   .0410171     0.46   0.652    -.0696658    .1075584 

 LabFreeIndlag1 |   .0201829   .0149671     1.35   0.201    -.0121515    .0525172 

    EduTertiary |   .0500081   .0250329     2.00   0.067    -.0040722    .1040884 

     PopDensity |   .0256487   .0231261     1.11   0.287    -.0243123    .0756097 

     Transition |  -.9791195   1.581596    -0.62   0.547     -4.39595    2.437711 

      TransAlmp |  -.7150214   .6183255    -1.16   0.268    -2.050833    .6207896 

            Y13 |   .0200127   .0644501     0.31   0.761    -.1192234    .1592487 

            Y14 |    .085404   .0995331     0.86   0.406    -.1296242    .3004322 

            Y15 |   .1089978   .1024187     1.06   0.307    -.1122643    .3302599 

            eta |   .9999999          .        .       .            .           . 

          _cons |   5.340617   5.482036     0.97   0.348    -6.502601    17.18384 

--------------------------------------------------------------------------------- 

 

 

. xtfevd lnUEflow ALMPExplag1 ALMPExp2lag1 lnUnemplSTlag1 lnVacancieslag1 lnEUflow 

lnIUflow lnLFor PLMPExplag1 Informalityl1 GDPgrowth LabFr 

> eeIndlag1 EduTertiary PopDensity PopDen2 Transition TransAlmp Y11 Y12 Y13 Y14 

Y15 , invariant (ALMPExplag1 ALMPExp2lag1 lnUnemplSTlag1 lnV 

> acancieslag1 lnEUflow lnIUflow lnLFor  Informalityl1 LabFreeIndlag1 EduTertiary 

PopDensity Transition TransAlmp Y11 Y12 Y13 Y14 Y15) 

note: Y11 dropped because of collinearity 

note: Y12 dropped because of collinearity 

 

panel fixed effects regression with vector decomposition 

 

degrees of freedom fevd    =       16           number of obs       =       49 

mean squared error         = .0017237           F( 21, 16)          = 19.53196 

root mean squared error    = .0415175           Prob > F            = 1.10e-07 

Residual Sum of Squares    = .0844616           R-squared           = .9966088 

Total Sum of Squares       = 24.90641           adj. R-squared      = .9898265 

Estimation Sum of Squares  = 24.82195 

 

--------------------------------------------------------------------------------- 

                |                fevd 

       lnUEflow |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

----------------+---------------------------------------------------------------- 

    PLMPExplag1 |   .0509783   .7971499     0.06   0.950    -1.638904    1.740861 

      GDPgrowth |  -.0115687   .0298803    -0.39   0.704     -.074912    .0517746 

        PopDen2 |  -.0000756   .0000489    -1.55   0.142    -.0001792    .0000281 

    ALMPExplag1 |   1.347909    .902694     1.49   0.155    -.5657164    3.261535 

   ALMPExp2lag1 |  -1.772241   1.074527    -1.65   0.119    -4.050137    .5056553 

 lnUnemplSTlag1 |    1.01864   .5241696     1.94   0.070    -.0925502     2.12983 

lnVacancieslag1 |  -.0726656   .2938228    -0.25   0.808    -.6955422     .550211 

       lnEUflow |  -.2974786   .5234511    -0.57   0.578    -1.407145    .8121881 

       lnIUflow |    1.04201   .5664403     1.84   0.084    -.1587902    2.242809 
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         lnLFor |  -1.146352   1.055432    -1.09   0.294    -3.383768    1.091063 

  Informalityl1 |   .0412155   .0531294     0.78   0.449    -.0714138    .1538448 

 LabFreeIndlag1 |   .0160274   .0120378     1.33   0.202    -.0094915    .0415463 

    EduTertiary |   .0777053    .030306     2.56   0.021     .0134595    .1419511 

     PopDensity |   .0392475   .0280018     1.40   0.180    -.0201137    .0986087 

     Transition |  -2.911803   2.682918    -1.09   0.294    -8.599335    2.775729 

      TransAlmp |  -1.811259   .8934914    -2.03   0.060    -3.705376    .0828586 

            Y13 |   .0566402   .0849011     0.67   0.514    -.1233421    .2366225 

            Y14 |   .0363491   .1080994     0.34   0.741    -.1928114    .2655095 

            Y15 |  -.1149681   .1441653    -0.80   0.437    -.4205849    .1906488 

            eta |          1          .        .       .            .           . 

          _cons |   4.172804    6.86928     0.61   0.552    -10.38942    18.73503 

--------------------------------------------------------------------------------- 

Table A3.5 Returns to Scale 
 

Model 1  
 

. xtscc lnUEflow ALMPExplag1 lnUnemplSTlag1 lnVacancieslag1 lnEUflow lnIUflow 

lnLFor ShLongUn ShYoungUn ShWomenUn PLMPExplag1 Informalityl1 GDPgrowth 

LabFreeIndlag1 EduTertiary PopDensity PopDen2 Y11 Y12 Y13 Y14 Y15, fe 

 

 

. lincom lnUnemplSTlag1+ lnVacancieslag1+ lnEUflow+ lnIUflow 

 

 ( 1)  lnUnemplSTlag1 + lnVacancieslag1 + lnEUflow + lnIUflow = 0 

 

------------------------------------------------------------------------------ 

    lnUEflow |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         (1) |   .6421577   .1653083     3.88   0.030     .1160728    1.168242 

------------------------------------------------------------------------------ 

 

Model 2  
 

. xtscc lnUEflow ALMPExplag1 lnUnemplSTlag1 lnVacancieslag1 lnEUflow lnIUflow 

lnLFor PLMPExplag1 Informalityl1 GDPgrowth LabFreeIndlag1 EduTertiary PopDensity 

PopDen2 Y11 Y12 Y13 Y14 Y15, fe 

 

 

. lincom lnUnemplSTlag1+ lnVacancieslag1+ lnEUflow+ lnIUflow 

 

 ( 1)  lnUnemplSTlag1 + lnVacancieslag1 + lnEUflow + lnIUflow = 0 

 

------------------------------------------------------------------------------ 

    lnUEflow |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         (1) |   .8081077   .1892566     4.27   0.024     .2058087    1.410407 

------------------------------------------------------------------------------ 

 

 

Model 3  
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. xtfevd lnUEflow ALMPExplag1 lnUnemplSTlag1 lnVacancieslag1 lnEUflow lnIUflow 

lnLFor ShYoungUn ShLongUn ShWomenUn PLMPExplag1 Informality 

> l1 GDPgrowth LabFreeIndlag1 EduTertiary PopDensity PopDen2 Transition TransAlmp 

Y11 Y12 Y13 Y14 Y15 , invariant (ALMPExplag1 lnUnemplSTlag 

> 1 lnVacancieslag1 lnEUflow lnIUflow lnLFor ShYoungUn ShLongUn  Informalityl1 

LabFreeIndlag1 EduTertiary PopDensity Transition TransAlmp Y1 

> 1 Y12 Y13 Y14 Y15 ) 

 

 

 

. lincom lnUnemplSTlag1+ lnVacancieslag1+ lnEUflow+ lnIUflow 

 

 ( 1)  lnUnemplSTlag1 + lnVacancieslag1 + lnEUflow + lnIUflow = 0 

 

------------------------------------------------------------------------------ 

    lnUEflow |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         (1) |    1.08037   .2345406     4.61   0.000     .5773303    1.583409 

------------------------------------------------------------------------------ 

 

 

Model 4 
 

. xtfevd lnUEflow ALMPExplag1 lnUnemplSTlag1 lnVacancieslag1 lnEUflow lnIUflow 

lnLFor PLMPExplag1 Informalityl1 GDPgrowth LabFreeIndlag1 Edu 

> Tertiary PopDensity PopDen2 Transition TransAlmp Y11 Y12 Y13 Y14 Y15 , invariant 

(ALMPExplag1 lnUnemplSTlag1 lnVacancieslag1 lnEUflow lnIU 

> flow lnLFor Informalityl1 LabFreeIndlag1 EduTertiary PopDensity Transition 

TransAlmp Y11 Y12 Y13 Y14 Y15) 

 

 

. lincom lnUnemplSTlag1+ lnVacancieslag1+ lnEUflow+ lnIUflow 

 

 ( 1)  lnUnemplSTlag1 + lnVacancieslag1 + lnEUflow + lnIUflow = 0 

 

------------------------------------------------------------------------------ 

    lnUEflow |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         (1) |   1.276409   .4374473     2.92   0.010     .3534757    2.199342 

------------------------------------------------------------------------------ 

 

 

Model 5  
 

. . xtscc lnUEflow ALMPExplag1 lnUnemplSTlag1 lnVacancieslag1 lnEUflow lnIUflow 

lnLFor ShLongUn ShYoungUn ShWomenUn PLMPExplag1 Informalityl 

> 1 GDPgrowth LabFreeIndlag1 EduTertiary PopDensity PopDen2 Y11 Y12 Y13 Y14 Y15 if 

Transition==1, fe 

 

Regression with Driscoll-Kraay standard errors   Number of obs     =        37 

Method: Fixed-effects regression                 Number of groups  =        11 

Group variable (i): CountryID                    F( 21,     3)     =     59.51 

maximum lag: 1                                   Prob > F          =    0.0031 

                                                 within R-squared  =    0.9254 

 

--------------------------------------------------------------------------------- 
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                |             Drisc/Kraay 

       lnUEflow |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

----------------+---------------------------------------------------------------- 

    ALMPExplag1 |   .4413269   .1936163     2.28   0.107    -.1748465      1.0575 

 lnUnemplSTlag1 |   .6316515   .2171559     2.91   0.062    -.0594354    1.322738 

lnVacancieslag1 |  -.0457022   .0839903    -0.54   0.624    -.3129967    .2215924 

       lnEUflow |   .2216063   .1051707     2.11   0.126    -.1130937    .5563064 

       lnIUflow |   .5030952   .2157519     2.33   0.102    -.1835237    1.189714 

         lnLFor |   1.156418   2.108172     0.55   0.622    -5.552726    7.865561 

       ShLongUn |   .0202351   .0053119     3.81   0.032     .0033303    .0371399 

      ShYoungUn |  -.0200766   .0212113    -0.95   0.414    -.0875803    .0474271 

      ShWomenUn |  -.0110116   .0041788    -2.64   0.078    -.0243103     .002287 

    PLMPExplag1 |  -.2921545    .250742    -1.17   0.328    -1.090128    .5058186 

  Informalityl1 |   -.214972   .1116682    -1.93   0.150    -.5703501     .140406 

      GDPgrowth |  -.0578897   .0195133    -2.97   0.059    -.1199896    .0042102 

 LabFreeIndlag1 |   .0187806   .0033658     5.58   0.011     .0080692    .0294919 

    EduTertiary |   .0375509   .0254929     1.47   0.237    -.0435788    .1186806 

     PopDensity |  -.1337318   .0933328    -1.43   0.247    -.4307584    .1632947 

        PopDen2 |    .001215   .0004007     3.03   0.056    -.0000601    .0024902 

            Y11 |          0  (omitted) 

            Y12 |          0  (omitted) 

            Y13 |  -.2366143   .0568152    -4.16   0.025    -.4174256   -.0558031 

            Y14 |  -.3754613   .0958131    -3.92   0.030    -.6803812   -.0705413 

            Y15 |  -.4766822   .1275645    -3.74   0.033    -.8826495   -.0707149 

          _cons |  -16.40543   28.79176    -0.57   0.609    -108.0336    75.22279 

--------------------------------------------------------------------------------- 

 

 

. lincom lnUnemplSTlag1+ lnVacancieslag1+ lnEUflow+ lnIUflow 

 

 ( 1)  lnUnemplSTlag1 + lnVacancieslag1 + lnEUflow + lnIUflow = 0 

 

------------------------------------------------------------------------------ 

    lnUEflow |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         (1) |   1.310651    .161662     8.11   0.004     .7961702    1.825132 

------------------------------------------------------------------------------ 

  

 

Model 6  
 

 

. . xtscc lnUEflow ALMPExplag1 lnUnemplSTlag1 lnVacancieslag1 lnEUflow lnIUflow 

lnLFor PLMPExplag1 Informalityl1 GDPgrowth LabFreeIndlag1 Ed 

> uTertiary PopDensity PopDen2 Y11 Y12 Y13 Y14 Y15 if Transition==1, fe 

 

Regression with Driscoll-Kraay standard errors   Number of obs     =        37 

Method: Fixed-effects regression                 Number of groups  =        11 

Group variable (i): CountryID                    F( 18,     3)     =      6.53 

maximum lag: 1                                   Prob > F          =    0.0737 

                                                 within R-squared  =    0.8681 

 

--------------------------------------------------------------------------------- 

                |             Drisc/Kraay 

       lnUEflow |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

----------------+---------------------------------------------------------------- 

    ALMPExplag1 |   .4089648   .1481309     2.76   0.070     -.062454    .8803836 
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 lnUnemplSTlag1 |   .7502171   .2230092     3.36   0.044     .0405024    1.459932 

lnVacancieslag1 |  -.1898325    .155245    -1.22   0.309    -.6838913    .3042263 

       lnEUflow |   .0612245   .1426543     0.43   0.697    -.3927653    .5152143 

       lnIUflow |   .5197556   .2080855     2.50   0.088    -.1424655    1.181977 

         lnLFor |  -.0883273     2.3955    -0.04   0.973    -7.711877    7.535222 

    PLMPExplag1 |  -.2753001   .2961312    -0.93   0.421    -1.217722    .6671215 

  Informalityl1 |  -.1025874   .2097123    -0.49   0.658    -.7699857    .5648108 

      GDPgrowth |  -.0330377   .0227174    -1.45   0.242    -.1053345    .0392591 

 LabFreeIndlag1 |   .0140652   .0037735     3.73   0.034     .0020562    .0260742 

    EduTertiary |   .0229731   .0073098     3.14   0.052    -.0002899    .0462361 

     PopDensity |  -.1748834   .1880417    -0.93   0.421    -.7733159    .4235492 

        PopDen2 |   .0017678   .0011113     1.59   0.210    -.0017689    .0053046 

            Y11 |          0  (omitted) 

            Y12 |          0  (omitted) 

            Y13 |  -.0835755   .0728666    -1.15   0.335    -.3154697    .1483186 

            Y14 |  -.1475639   .1397648    -1.06   0.369     -.592358    .2972302 

            Y15 |  -.1934651   .2285959    -0.85   0.460    -.9209592     .534029 

          _cons |   .1085458   33.86719     0.00   0.998     -107.672     107.889 

--------------------------------------------------------------------------------- 

 

 

. lincom lnUnemplSTlag1+ lnVacancieslag1+ lnEUflow+ lnIUflow 

 

 ( 1)  lnUnemplSTlag1 + lnVacancieslag1 + lnEUflow + lnIUflow = 0 

 

------------------------------------------------------------------------------ 

    lnUEflow |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         (1) |   1.141365   .2996006     3.81   0.032     .1879018    2.094827 

------------------------------------------------------------------------------ 
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Table A3.6 Correlation Matrix 

 

. corr UnemPActPop ALMPExp_01 TrainSh EmpIncSh SupportSh DirectJobSh PLMPExp_01 Informality GDPgrowth LabFreeIndex EduTertiary 

PopDensity 

(obs=245) 

 

             | UnemPA~p ALMPE~01  TrainSh EmpIncSh Suppor~h Direct~h PLMPE~01 Inform~y GDPgro~h LabFre~x 

-------------+------------------------------------------------------------------------------------------ 

 UnemPActPop |   1.0000 

  ALMPExp_01 |  -0.0785   1.0000 

     TrainSh |  -0.0278   0.1433   1.0000 

    EmpIncSh |  -0.0820  -0.2723  -0.4638   1.0000 

   SupportSh |  -0.1881   0.3607  -0.3214  -0.1882   1.0000 

 DirectJobSh |   0.1519  -0.1663  -0.3246  -0.2443  -0.3720   1.0000 

  PLMPExp_01 |   0.2432   0.6942   0.2855  -0.1971   0.1353  -0.2407   1.0000 

 Informality |   0.2855  -0.5581  -0.1752   0.1941  -0.3381   0.2988  -0.5061   1.0000 

   GDPgrowth |  -0.2017  -0.1459  -0.1259   0.0427  -0.0073   0.0865  -0.3134   0.1207   1.0000 

LabFreeIndex |  -0.1567   0.1721  -0.2259  -0.1067   0.2731   0.1793  -0.0166  -0.0530   0.0467   1.0000 

 EduTertiary |   0.0409   0.2838   0.1172   0.0103   0.0473  -0.1063   0.3594  -0.1895  -0.1070  -0.0138 

  PopDensity |  -0.2462   0.1985  -0.2311   0.0886   0.5014  -0.2623   0.3074  -0.4321  -0.0702   0.0655 

 

             | EduTer~y PopDen~y 

-------------+------------------ 

 EduTertiary |   1.0000 

  PopDensity |   0.0733   1.0000 
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Table A3.6.1 VIF diagnostics  
 

. reg UnemPActPop ALMPExp_01 TrainSh EmpIncSh SupportSh DirectJobSh PLMPExp_01 

Informality GDPgrowth LabFreeIndex EduTertiary PopDensity 

 

      Source |       SS           df       MS      Number of obs   =       245 

-------------+----------------------------------   F(11, 233)      =     22.32 

       Model |  1968.44168        11  178.949243   Prob > F        =    0.0000 

    Residual |  1868.29009       233  8.01841239   R-squared       =    0.5131 

-------------+----------------------------------   Adj R-squared   =    0.4901 

       Total |  3836.73176       244  15.7243105   Root MSE        =    2.8317 

 

------------------------------------------------------------------------------ 

 UnemPActPop |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

  ALMPExp_01 |  -4.593658    1.09539    -4.19   0.000    -6.751793   -2.435523 

     TrainSh |  -.1601032   .0251768    -6.36   0.000    -.2097064      -.1105 

    EmpIncSh |  -.1451453   .0260649    -5.57   0.000    -.1964983   -.0937923 

   SupportSh |  -.1077022    .029418    -3.66   0.000    -.1656615   -.0497429 

 DirectJobSh |  -.1089322   .0270249    -4.03   0.000    -.1621767   -.0556878 

  PLMPExp_01 |   4.242314   .4482715     9.46   0.000      3.35913    5.125497 

 Informality |   .1785261   .0341833     5.22   0.000     .1111783    .2458739 

   GDPgrowth |  -.1114642   .0483535    -2.31   0.022      -.20673   -.0161983 

LabFreeIndex |  -.0250062   .0138429    -1.81   0.072    -.0522794     .002267 

 EduTertiary |   .0091814   .0248632     0.37   0.712    -.0398041    .0581668 

  PopDensity |  -.0114019   .0023862    -4.78   0.000    -.0161031   -.0067006 

       _cons |   19.21647   2.457935     7.82   0.000     14.37385    24.05909 

------------------------------------------------------------------------------ 

 

. vif 

 

    Variable |       VIF       1/VIF   

-------------+---------------------- 

     TrainSh |      9.94    0.100554 

   SupportSh |      9.42    0.106180 

 DirectJobSh |      8.47    0.118106 

    EmpIncSh |      7.97    0.125412 

  PLMPExp_01 |      2.98    0.335200 

  ALMPExp_01 |      2.94    0.340154 

  PopDensity |      1.94    0.516439 

 Informality |      1.87    0.534752 

LabFreeIndex |      1.25    0.797896 

 EduTertiary |      1.22    0.820811 

   GDPgrowth |      1.13    0.884683 

-------------+---------------------- 

    Mean VIF |      4.47 
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Table A3.7.1 Dynamic Panel Difference GMM estimation, 2004-

2016 (dep. variable UnemRate)  
 

xtabond2 UnemPActPop l.UnemPActPop ALMPExp_01 ALMPEx2 PLMPExp_01 Informality GDPgrowth 

LabFreeIndex EduTertiary PopDensity Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14 Y15 Y16 , gmm 

(l.UnemPActPop, lag(3 4) coll) gmm(ALMPExp_01, lag(2 4) coll) gmm(ALMPEx2, lag(2 4) 

coll) gmm(PLMPExp_01, coll lag (3 4)) iv (Informalityl1 GDPgrowth  LabFreeIndlag1 

EduTertiary PopDensity Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14 Y15 Y16) nolevel orthog 

small two robust 

Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, 

perm. 

Warning: Two-step estimated covariance matrix of moments is singular. 

  Using a generalized inverse to calculate optimal weighting matrix for two-step 

estimation. 

  Difference-in-Sargan/Hansen statistics may be negative. 

 

Dynamic panel-data estimation, two-step difference GMM 

------------------------------------------------------------------------------ 

Group variable: CountryID                       Number of obs      =       211 

Time variable : Year                            Number of groups   =        28 

Number of instruments = 23                      Obs per group: min =         2 

F(21, 28)     =    300.67                                      avg =      7.54 

Prob > F      =     0.000                                      max =         8 

------------------------------------------------------------------------------ 

             |              Corrected 

 UnemPActPop |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

 UnemPActPop | 

         L1. |   .8029835   .0897542     8.95   0.000     .6191303    .9868368 

             | 

  ALMPExp_01 |  -1.766425   4.304943    -0.41   0.685     -10.5847    7.051851 

     ALMPEx2 |   .6537321   1.843726     0.35   0.726     -3.12297    4.430434 

  PLMPExp_01 |   1.506833     1.0193     1.48   0.150    -.5811085    3.594774 

 Informality |  -.2839615   .7307676    -0.39   0.701    -1.780871    1.212948 

   GDPgrowth |  -.3197609   .0537135    -5.95   0.000     -.429788   -.2097338 

LabFreeIndex |  -.0544686   .0260127    -2.09   0.045    -.1077532    -.001184 

 EduTertiary |  -.0695874   .0640921    -1.09   0.287    -.2008742    .0616994 

  PopDensity |   .0306049   .0297469     1.03   0.312    -.0303289    .0915388 

          Y5 |          0  (omitted) 

          Y6 |          0  (omitted) 

          Y7 |          0  (omitted) 

          Y8 |  -.3625466   .5431668    -0.67   0.510    -1.475173    .7500801 

          Y9 |  -1.198688   .8866481    -1.35   0.187    -3.014905    .6175279 

         Y10 |   -1.01152   .6609107    -1.53   0.137    -2.365334    .3422942 

         Y11 |   .3692955   1.088361     0.34   0.737     -1.86011    2.598701 

         Y12 |  -.6940559   1.205192    -0.58   0.569    -3.162779    1.774667 

         Y13 |  -.7969428   1.376565    -0.58   0.567    -3.616709    2.022823 

         Y14 |  -.7710867   1.754208    -0.44   0.664    -4.364418    2.822245 

         Y15 |  -.8559475   1.777762    -0.48   0.634    -4.497529    2.785634 

         Y16 |          0  (omitted) 

------------------------------------------------------------------------------ 

Instruments for orthogonal deviations equation 
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  Standard 

    FOD.(Informalityl1 GDPgrowth LabFreeIndlag1 EduTertiary PopDensity Y5 Y6 

    Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14 Y15 Y16) 

  GMM-type (missing=0, separate instruments for each period unless collapsed) 

    L(3/4).PLMPExp_01 collapsed 

    L(2/4).ALMPEx2 collapsed 

    L(2/4).ALMPExp_01 collapsed 

    L(3/4).L.UnemPActPop collapsed 

------------------------------------------------------------------------------ 

Arellano-Bond test for AR(1) in first differences: z =  -2.67  Pr > z =  0.008 

Arellano-Bond test for AR(2) in first differences: z =  -1.40  Pr > z =  0.163 

------------------------------------------------------------------------------ 

Sargan test of overid. restrictions: chi2(2)    =   1.81  Prob > chi2 =  0.404 

  (Not robust, but not weakened by many instruments.) 

Hansen test of overid. restrictions: chi2(2)    =   2.34  Prob > chi2 =  0.310 

  (Robust, but weakened by many instruments.) 

 

Difference-in-Hansen tests of exogeneity of instrument subsets: 

  gmm(L.UnemPActPop, collapse lag(3 4)) 

    Hansen test excluding group:     chi2(0)    =   1.06  Prob > chi2 =      . 

    Difference (null H = exogenous): chi2(2)    =   1.28  Prob > chi2 =  0.527 

  gmm(PLMPExp_01, collapse lag(3 4)) 

    Hansen test excluding group:     chi2(0)    =   1.82  Prob > chi2 =      . 

    Difference (null H = exogenous): chi2(2)    =   0.52  Prob > chi2 =  0.770 

 

 

Table A3.7.2 Dynamic Panel Difference GMM estimation, 2004-

2016 (dep. variable UnemRate) including variables TrainSh, 

EmpIncSh, SupportSh, DirectJobSh and StartupSh 

 

. xtabond2 UnemPActPop l.UnemPActPop ALMPExp_01 ALMPEx2 TrainSh EmpIncSh SupportSh 

DirectJobSh PLMPExp_01 Informality GDPgrowth LabFreeIndex EduTertiary PopDensity Y5 Y6 

Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14 Y15 Y16 , gmm (l.UnemPActPop, lag(2 2) coll) 

gmm(ALMPExp_01, lag(1 4) coll) gmm(ALMPEx2, lag(1 4) coll) gmm(PLMPExp_01, coll lag (2 

2)) iv (TrainSh EmpIncSh SupportSh DirectJobSh Informalityl1 GDPgrowth  LabFreeIndlag1 

EduTertiary PopDensity Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14 Y15 Y16) nolevel orthog 

small two robust 

Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, 

perm. 

Warning: Two-step estimated covariance matrix of moments is singular. 

  Using a generalized inverse to calculate optimal weighting matrix for two-step 

estimat 

> ion. 

  Difference-in-Sargan/Hansen statistics may be negative. 

 

Dynamic panel-data estimation, two-step difference GMM 

------------------------------------------------------------------------------ 

Group variable: CountryID                       Number of obs      =       194 

Time variable : Year                            Number of groups   =        27 
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Number of instruments = 27                      Obs per group: min =         2 

F(25, 27)     =   1230.04                                      avg =      7.19 

Prob > F      =     0.000                                      max =         8 

------------------------------------------------------------------------------ 

             |              Corrected 

 UnemPActPop |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

 UnemPActPop | 

         L1. |   .8108625   .1251556     6.48   0.000     .5540643    1.067661 

             | 

  ALMPExp_01 |  -2.653723   5.008279    -0.53   0.601    -12.92986    7.622417 

     ALMPEx2 |   1.866048   1.944381     0.96   0.346    -2.123493    5.855588 

     TrainSh |  -.0062418   .0294469    -0.21   0.834    -.0666618    .0541782 

    EmpIncSh |   .0005877   .0285775     0.02   0.984    -.0580485    .0592239 

   SupportSh |   .0227252   .0252127     0.90   0.375    -.0290069    .0744573 

 DirectJobSh |   .0030111   .0377527     0.08   0.937     -.074451    .0804732 

  PLMPExp_01 |   1.219703    1.10226     1.11   0.278    -1.041948    3.481354 

 Informality |  -.0840336   .6553656    -0.13   0.899    -1.428733    1.260666 

   GDPgrowth |  -.3404664   .0448648    -7.59   0.000    -.4325215   -.2484114 

LabFreeIndex |  -.0243384   .0219517    -1.11   0.277    -.0693796    .0207027 

 EduTertiary |  -.0090602    .057657    -0.16   0.876    -.1273625    .1092421 

  PopDensity |   .0428234   .0324361     1.32   0.198      -.02373    .1093769 

          Y5 |          0  (omitted) 

          Y6 |          0  (omitted) 

          Y7 |   .2404947   .4075819     0.59   0.560    -.5957942    1.076784 

          Y8 |          0  (omitted) 

          Y9 |  -.7772027   .4228337    -1.84   0.077    -1.644786    .0903804 

         Y10 |  -.6702403   .4682324    -1.43   0.164    -1.630974    .2904933 

         Y11 |   .9418979    .636306     1.48   0.150    -.3636942     2.24749 

         Y12 |  -.3329215   .8490945    -0.39   0.698     -2.07512    1.409277 

         Y13 |  -.5248557   .9922158    -0.53   0.601    -2.560714    1.511003 

         Y14 |  -.5370858   1.386175    -0.39   0.701    -3.381282    2.307111 

         Y15 |    -.74371    1.40572    -0.53   0.601     -3.62801    2.140589 

         Y16 |          0  (omitted) 

------------------------------------------------------------------------------ 

Instruments for orthogonal deviations equation 

  Standard 

    FOD.(TrainSh EmpIncSh SupportSh DirectJobSh Informalityl1 GDPgrowth 

    LabFreeIndlag1 EduTertiary PopDensity Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14 

    Y15 Y16) 

  GMM-type (missing=0, separate instruments for each period unless collapsed) 

    L2.PLMPExp_01 collapsed 

    L(1/4).ALMPEx2 collapsed 

    L(1/4).ALMPExp_01 collapsed 

    L2.L.UnemPActPop collapsed 

------------------------------------------------------------------------------ 

Arellano-Bond test for AR(1) in first differences: z =  -2.42  Pr > z =  0.016 

Arellano-Bond test for AR(2) in first differences: z =  -1.33  Pr > z =  0.182 

------------------------------------------------------------------------------ 

Sargan test of overid. restrictions: chi2(2)    =   1.18  Prob > chi2 =  0.553 

  (Not robust, but not weakened by many instruments.) 

Hansen test of overid. restrictions: chi2(2)    =   1.98  Prob > chi2 =  0.371 

  (Robust, but weakened by many instruments.) 
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Difference-in-Hansen tests of exogeneity of instrument subsets: 

  gmm(L.UnemPActPop, collapse lag(2 2)) 

    Hansen test excluding group:     chi2(1)    =   1.83  Prob > chi2 =  0.176 

    Difference (null H = exogenous): chi2(1)    =   0.15  Prob > chi2 =  0.700 

  gmm(PLMPExp_01, collapse lag(2 2)) 

    Hansen test excluding group:     chi2(1)    =   1.93  Prob > chi2 =  0.165 

    Difference (null H = exogenous): chi2(1)    =   0.05  Prob > chi2 =  0.823 

Table A3.8.1 Instrumental Variable Approach for the Matching 

Function specification; Instrument: ALMPExplag1 
 
. xtivreg2 lnUEflow  lnUnemploymentSTlag1 lnVacancieslag1 lnEUflow lnIUflow lnLFor 
ShLongUn ShYoungUn ShWomenUn PLMPExplag1 Informalityl1 GDPgrowth EcoFreeIndex 
EduTertiary Y11 Y12 Y13 Y14 Y15  (ALMPExp ALMPExp2= ALMPExplag1 ALMPExp2lag1), fe 
endog (ALMPExp) 
Warning - singleton groups detected.  1 observation(s) not used. 
Warning - collinearities detected 
Vars dropped:       Y11 Y15 
 
FIXED EFFECTS ESTIMATION 
------------------------ 
Number of groups =        13                    Obs per group: min =         2 
                                                               avg =       3.7 
                                                               max =         4 
Warning - collinearities detected 
Vars dropped:  Y11 Y15 
IV (2SLS) estimation 
-------------------- 
 
Estimates efficient for homoskedasticity only 
Statistics consistent for homoskedasticity only 
                                                      Number of obs =       48 
                                                      F( 18,    17) =     0.43 
                                                      Prob > F      =   0.9595 
Total (centered) SS     =  .5623271776                Centered R2   =  -0.8691 
Total (uncentered) SS   =  .5623271776                Uncentered R2 =  -0.8691 
Residual SS             =  1.051048527                Root MSE      =    .1733 
 
-------------------------------------------------------------------------------------- 
            lnUEflow |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
---------------------+---------------------------------------------------------------- 
             ALMPExp |   36.62942   72.82149     0.50   0.615    -106.0981    179.3569 
            ALMPExp2 |  -3320.165   6842.135    -0.49   0.627     -16730.5    10090.17 
lnUnemploymentSTlag1 |  -1.430722   2.454789    -0.58   0.560     -6.24202    3.380576 
     lnVacancieslag1 |  -.1072928   .4610507    -0.23   0.816    -1.010936    .7963499 
            lnEUflow |   .4057029   .5990795     0.68   0.498    -.7684714    1.579877 
            lnIUflow |  -.6549891    1.50119    -0.44   0.663    -3.597267    2.287289 
              lnLFor |    8.62242   10.28435     0.84   0.402    -11.53453    28.77937 
            ShLongUn |   .0194153   .0223759     0.87   0.386    -.0244406    .0632713 
           ShYoungUn |  -.0921094   .1561642    -0.59   0.555    -.3981857    .2139669 
           ShWomenUn |   .0158908   .0369706     0.43   0.667    -.0565703    .0883518 
         PLMPExplag1 |   1.931171   3.148014     0.61   0.540    -4.238824    8.101165 
       Informalityl1 |   -1.14282   1.954934    -0.58   0.559     -4.97442     2.68878 
           GDPgrowth |   .0753888   .1683375     0.45   0.654    -.2545467    .4053243 
        EcoFreeIndex |  -.0869994   .0717081    -1.21   0.225    -.2275448    .0535459 



345 
 

         EduTertiary |  -.1144043   .1691777    -0.68   0.499    -.4459865    .2171779 
                 Y11 |          0  (omitted) 
                 Y12 |   1.318679   2.456291     0.54   0.591    -3.495564    6.132922 
                 Y13 |   1.179178   2.336734     0.50   0.614    -3.400737    5.759092 
                 Y14 |   .5659593   1.168634     0.48   0.628    -1.724521     2.85644 
                 Y15 |          0  (omitted) 
-------------------------------------------------------------------------------------- 
Underidentification test (Anderson canon. corr. LM statistic):           0.500 
                                                   Chi-sq(1) P-val =    0.4797 
------------------------------------------------------------------------------ 
Weak identification test (Cragg-Donald Wald F statistic):                0.123 
Stock-Yogo weak ID test critical values: 10% maximal IV size              7.03 
                                         15% maximal IV size              4.58 
                                         20% maximal IV size              3.95 
                                         25% maximal IV size              3.63 
Source: Stock-Yogo (2005).  Reproduced by permission. 
------------------------------------------------------------------------------ 
Sargan statistic (overidentification test of all instruments):           0.000 
                                                 (equation exactly identified) 
-endog- option: 
Endogeneity test of endogenous regressors:                               5.436 
                                                   Chi-sq(1) P-val =    0.0197 
Regressors tested:    ALMPExp 
------------------------------------------------------------------------------ 
Instrumented:         ALMPExp ALMPExp2 
Included instruments: lnUnemploymentSTlag1 lnVacancieslag1 lnEUflow lnIUflow 
                      lnLFor ShLongUn ShYoungUn ShWomenUn PLMPExplag1 
                      Informalityl1 GDPgrowth EcoFreeIndex EduTertiary Y12 Y13 
                      Y14 
Excluded instruments: ALMPExplag1 ALMPExp2lag1 
Dropped collinear:    Y11 Y15 
------------------------------------------------------------------------------ 

Table A3.8.2 Instrumental Variable Approach for the Matching 

Function specification; Instrument: CompGov 
. xtivreg2 lnUEflow  lnUnemploymentSTlag1 lnVacancieslag1 lnEUflow lnIUflow lnLFor 

ShLongUn ShYoungUn ShWomenUn PLMPExplag1 Informalityl1 GDPgrowth EcoFreeIndex 

EduTertiary Y11 Y12 Y13 Y14 Y15  (ALMPExp = CompGov), fe endog (ALMPExp) 

Warning - singleton groups detected.  1 observation(s) not used. 

Warning - collinearities detected 

Vars dropped:       Y11 Y15 

 

FIXED EFFECTS ESTIMATION 

------------------------ 

Number of groups =        13                    Obs per group: min =         2 

                                                               avg =       3.5 

                                                               max =         4 

Warning - collinearities detected 

Vars dropped:  Y11 Y15 

IV (2SLS) estimation 

-------------------- 

Estimates efficient for homoskedasticity only 

Statistics consistent for homoskedasticity only 

                                                      Number of obs =       46 

                                                      F( 17,    16) =     3.67 
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                                                      Prob > F      =   0.0063 

Total (centered) SS     =  .4604319025                Centered R2   =   0.7765 

Total (uncentered) SS   =  .4604319025                Uncentered R2 =   0.7765 

Residual SS             =  .1029111646                Root MSE      =   .05584 

-------------------------------------------------------------------------------------- 

            lnUEflow |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

---------------------+---------------------------------------------------------------- 

             ALMPExp |    .991117   .8501442     1.17   0.244     -.675135    2.657369 

lnUnemploymentSTlag1 |  -.3590063   .3386942    -1.06   0.289    -1.022835    .3048222 

     lnVacancieslag1 |  -.2441166   .1568904    -1.56   0.120    -.5516161    .0633829 

            lnEUflow |   .1834128   .1022803     1.79   0.073    -.0170529    .3838786 

            lnIUflow |   .0173152   .2206178     0.08   0.937    -.4150877    .4497181 

              lnLFor |   .7252567   2.595003     0.28   0.780    -4.360855    5.811368 

            ShLongUn |   .0087909   .0058639     1.50   0.134    -.0027022     .020284 

           ShYoungUn |  -.0152553   .0246109    -0.62   0.535    -.0634919    .0329812 

           ShWomenUn |   .0104089   .0131803     0.79   0.430    -.0154241    .0362418 

         PLMPExplag1 |   .6516695   .3576061     1.82   0.068    -.0492256    1.352565 

       Informalityl1 |  -.2330759   .1833585    -1.27   0.204    -.5924519    .1263001 

           GDPgrowth |   .0257738   .0173248     1.49   0.137    -.0081822    .0597299 

        EcoFreeIndex |  -.0183485   .0338955    -0.54   0.588    -.0847825    .0480854 

         EduTertiary |   .0132404   .0382611     0.35   0.729    -.0617499    .0882306 

                 Y11 |          0  (omitted) 

                 Y12 |   .3228151   .2315507     1.39   0.163    -.1310158    .7766461 

                 Y13 |   .3386977   .1958829     1.73   0.084    -.0452257    .7226212 

                 Y14 |   .1605702   .1060527     1.51   0.130    -.0472893    .3684298 

                 Y15 |          0  (omitted) 

-------------------------------------------------------------------------------------- 

Underidentification test (Anderson canon. corr. LM statistic):           2.606 

                                                   Chi-sq(1) P-val =    0.1065 

------------------------------------------------------------------------------ 

Weak identification test (Cragg-Donald Wald F statistic):                1.372 

Stock-Yogo weak ID test critical values: 10% maximal IV size             16.38 

                                         15% maximal IV size              8.96 

                                         20% maximal IV size              6.66 

                                         25% maximal IV size              5.53 

Source: Stock-Yogo (2005).  Reproduced by permission. 

------------------------------------------------------------------------------ 

Sargan statistic (overidentification test of all instruments):           0.000 

                                                 (equation exactly identified) 

-endog- option: 

Endogeneity test of endogenous regressors:                               1.822 

                                                   Chi-sq(1) P-val =    0.1770 

Regressors tested:    ALMPExp 

------------------------------------------------------------------------------ 

Instrumented:         ALMPExp 

Included instruments: lnUnemploymentSTlag1 lnVacancieslag1 lnEUflow lnIUflow 

                      lnLFor ShLongUn ShYoungUn ShWomenUn PLMPExplag1 

                      Informalityl1 GDPgrowth EcoFreeIndex EduTertiary Y12 Y13 

                      Y14 

Excluded instruments: CompGov 

Dropped collinear:    Y11 Y15 
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Appendix 4.1 – Chapter 4 - Matching methods 

There are different matching estimators using a weighting scheme which determines the 

weights when comparing the two groups (Dehejia and Wahba, 2002). The closer the 

matched control to the treated individual in terms of propensity score value, the higher 

the quality of the matching. However, choosing parameters that maximise the quality 

may induce lower variability, as the number of matched individuals from the control 

group will be reduced. Therefore, matching methods are subject to a trade-off between 

bias and variance which is crucial when using small samples (Caliendo and Kopeinig, 

2008). In addition, issues with low common support tend to distort the performance of 

the algorithms and hence should be accounted for (Busso et al., 2014).   

There is a large group of methods used for balancing of covariates or propensity scores 

(Heckman et al. 1999; Dehejia and Wahba, 2002). Figure 4.1 offers an overview of the 

methods used. The most commonly applied matching algorithms and trade-offs faced 

when using different algorithms are presented and explained below.  

Figure 4.1 Different Matching Algorithms 

 

Source: Caliendo and Kopeinig, 2008 

The Nearest Neighbour matching algorithm is commonly used in the evaluations of 

the effectiveness of ALMPs (Bonin and Rinne, 2014). The criteria to form match sets of 
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propensity scores based on this algorithm is to assign the closest propensity score of the 

un-treated subject to that of a treated one. There are two primary methods to form the 

matches with this algorithm: the nearest neighbour matching without replacement and 

the nearest neighbour matching with replacement (Rosenbaum and Rubin, 1985). 

Nearest neighbour without replacement – also called ‗greedy matching‘ - assigns a 

weight to the nearest control observations and zero to all the others. This method does 

not impose any common support condition because it dedicates one control observation 

    to match at most one treated observation    . In the case where multiple 

untreated have equally close proximity to the treated propensity scores, the propensity 

score is selected randomly. An important note to this method is that there is no 

restriction on the approximate distance between the propensity scores (Austin, 2011). 

Thus, there is a risk that in the case when there are a limited number of control units, the 

matched control and treated units will not be similar in terms of propensity scores and 

there will not be quality matched pairs. Nearest neighbour matching with replacement is 

used in particular to minimize the distance between the matched control and treatment 

units, since it allows the comparison unit to be matched more than once. This is likely to 

be beneficial since it reduces bias by ensuring that each treated observation is matched 

to the closest available control, however, it may reduce efficiency since the total sample 

of matched controls contains a smaller number of controls than the full sample (Deheija 

and Wahba, 2002; Caliendo and Kopeinig, 2008). Ming and Rosenbaum (2000) found 

evidence of reduction in bias when varying number of control subjects was used in 

matching. Another method that can be used to match treated and untreated individuals is 

‗oversampling‘ matching. When using ‗oversampling‘ matching, one should decide on a 

random number of partners to be matched based on distance or weights, where one 

treated can be matched with more than one control. At the same time,  it may also assign 

different weights when matching the propensity scores. The difference of this method to 

matching with replacement is that the former dedicates a number of neighbours to be 

matched while in the later replacement may or may not happen depending on the 

number of the control propensity scores within the allowed distance or weights. 

Caliendo and Kopeinig (2008) suggest ‗oversampling‘ with more than one nearest 

neighbour using distance-based weights rather than uniform weights to aggregate the 
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observations mitigates the trade-off between bias and variance (Schmidl, 2014). 

However, since oversampling matching selects ad-hoc a number of neighbours and as 

such is not protected from outlier values, this method is outperformed by most other 

methods. 

If the propensity scores are far from each other, nearest neighbour matching is not an 

appropriate choice since it will not form quality matches. This issue could be overcome 

by imposing a maximum distance to allow creating matching pairs. Caliper and Radius 

matching uses all the control units within a radius (caliper) for a maximum threshold 

allowed and rules out matches beyond that particular threshold (Austin, 2011). When 

using Caliper matching, for a given treated subject, one can identify a set of untreated 

subjects whose propensity score lie within the caliper; the closest propensity score from 

this restricted set will be chosen for matching with treated. If within the caliper there is 

no untreated subject, the treated propensity score will not be matched and consequently 

will be excluded from the matched sample (Austin, 2011). The advantage of this type of 

matching is that it allows good matching within the caliper when good control units are 

available and vice versa (Dehejia and Wahba, 2002). According to Dehejia and Wahba, 

Radius matching may be a more appropriate choice than Caliper.  This method allows 

forming more than one matching pair within the specified caliper if there are available 

quality matches. When using caliper matching there is no consensus agreed among 

researchers as to what constitutes an optimal distance. A wide range of caliper widths 

have been used in the ALMP evaluations. After examining the reduction in bias, 

Cochran and Rubin (1973) suggest that choosing a caliper of 0.2 of the standard 

deviation of the logarithm of the propensity score, will remove 98% of the bias. 

The idea behind Stratification/Interval Matching is to separate the common support 

into different strata (intervals) and treatment effects are calculated through simple 

averaging within each strata (Caliendo and Kopeinig, 2008; Todd, 2006). This variant of 

matching is also referred in the literature as blocking and sub-classification (Rosenbaum 

and Rubin, 1983). To implement this method one should make a choice of the number 

of intervals and how wide they should be (Caliendo and Kopeinig, 2008; Todd, 2010). 

Partitioning propensity scores into five intervals will often remove 95% of the bias 
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(Imbens, 2004). Caliendo and Kopeinig (2008) suggest that propensity scores need to be 

balanced within the intervals meaning that mean values of the propensity scores of both 

groups are not statistically different from each other. If they are not balanced then the 

interval is too large and need to be partitioned again.  

The matching methods discussed above use one or more untreated subjects to construct 

the counterfactuals for a treated subject. In contrast, the Kernel and Local-Linear 

methods compare each treated unit to a weighted average of the outcomes of all control 

units. Control units with closer propensity scores to the treated unit being matched are 

given a higher weight. Since this method uses more information to create matching, it 

increases the efficiency, while the drawback of this method is that it includes 

information from poor matches. Kernel matching can use different weighting schemes: 

weighted average (kernel matching) or weighted regression on an intercept and a linear 

term of the propensity score (local linear matching). Gausian and Epanechnikov are 

kernel methods mostly used. Epanechnikov, similar to caliper method, drops matches 

that are out of pre-assigned distance. This method is more likely to be performed when 

there is a risk in using distant matches. However, Gaussian is recommended since it uses 

more information therefore produces higher efficiency. In comparison to nearest 

neighbour method, kernel produces much less bias, since kernel weights reduce the 

variability of the estimator (Blundell and Costa-Dias, 2009). A disadvantage of the 

kernel method is that it produces bias at the ends of the distribution of propensity scores; 

in this case the Local Linear matching method would be more suitable. Local linear 

matching is different from kernel matching since it includes a linear term which is 

helpful when the observations in the control group are asymmetrically distributed 

around the participants‘ observations. This asymmetry is more likely to be present at the 

boundary points.  

When implementing a social experiment to assess the effectiveness of ALMPs, the 

propensity scores are known and can be directly used as weights to obtain balance 

between two groups. This is known as Weighting on Propensity Score and is mostly 

used in experimental settings (Imbens, 2004).  
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The propensity score can be used to construct matched pairs by also applying 

Mahalanobis metric matching (Stuart, 2010). Mahalanobis metric matching can also 

impose a specified caliper to form matching pairs. This method defines distance 

between the treated and untreated observations within a caliper and uses the estimated 

propensity scores and also the set of ‗key variables‘ to create matching pairs (Stuart, 

2010). The set of key variables used may be the pre-treatment measures which affect the 

outcome. This form of matching has been regarded as being very efficient in balancing 

the covariates between the two groups and is superior to the Nearest Neighbour 

matching (Feng et al., 2006; Stuart, 2010). This method works quite well when fewer 

than 8 covariates are used for matching but it does not perform well when there is no 

normal distribution among the covariates (Rubin, 1974). 

When selecting among the matching algorithms one should consider the trade-off 

between bias and efficiency. In general, if there is sufficient data on control and treated 

units and there is considerable overlapping between the control and treated groups all 

these matching methods will yield similar results. In contrast, if there are only a handful 

of comparison units that can be good matches to the treated units choosing only the 

nearest match in terms of propensity scores will minimize the bias but it will ignore a 

great deal of information providing less efficient results. When assessing cross-

programme effectiveness the number of potential matches is typically low and as 

consequence only a small share of the treatment group might be in the common support 

(Stephan and Pahnke, 2008). In such cases when using nearest neighbour matching 

without replacement the evaluator is likely to end up with only a few observations. 

Matching methods are not mutually exclusive; these methods may be combined in order 

to produce more quality matches (such as combining Nearest Neighbour with Caliper 

method or with Stratification). The existing literature is inconclusive regarding the most 

preferred matching method, however Kernel and Mahalanobis matching methods seem 

to be more appropriate in case of small samples since these methods utilise more 

information provided in the sample.   
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Appendix 5 – Chapter 5  

Table A5.1 Hausman test 
. *Multinomial Logit – omitting category 2   
 
. . mlogit LABSTATE OJT IS Amduration AM2009 AM2010 Cert Emplan Age Agesq Male Disability 
Minority Socialassist Twounempl Remittance Primaryeduc Secondaryeduc  Undur6 Undur12 Undur24 FER 
GJAK GJIL MIT PEJ PRZ 
 
Iteration 0:   log likelihood =  -664.9741   
Iteration 1:   log likelihood = -548.43968   
Iteration 2:   log likelihood =  -537.0644   
Iteration 3:   log likelihood = -536.72965   
Iteration 4:   log likelihood = -536.72674   
Iteration 5:   log likelihood = -536.72673   
 
Multinomial logistic regression                   Number of obs   =        751 
                                                  LR chi2(52)     =     256.49 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -536.72673                       Pseudo R2       =     0.1929 
 
------------------------------------------------------------------------------- 
     LABSTATE |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
--------------+---------------------------------------------------------------- 
0             |  (base outcome) 
--------------+---------------------------------------------------------------- 
1             | 
          OJT |   .4597266   .2917661     1.58   0.115    -.1121243    1.031578 
           IS |   .5103823   .3244463     1.57   0.116    -.1255208    1.146285 
   Amduration |  -.0157657   .0857393    -0.18   0.854    -.1838117    .1522802 
       AM2009 |  -.1949788   .2744215    -0.71   0.477    -.7328351    .3428774 
       AM2010 |   -.798991   .2663633    -3.00   0.003    -1.321053   -.2769286 
         Cert |   .5498937   .2305077     2.39   0.017      .098107     1.00168 
       Emplan |   .1473124   .2264484     0.65   0.515    -.2965184    .5911432 
          Age |   .2222954   .1660162     1.34   0.181    -.1030903    .5476811 
        Agesq |  -.0027416   .0027363    -1.00   0.316    -.0081047    .0026216 
         Male |   .3659762   .1978192     1.85   0.064    -.0217422    .7536946 
   Disability |  -1.655212   1.072373    -1.54   0.123    -3.757024    .4466009 
     Minority |   -.984669   .4876099    -2.02   0.043    -1.940367   -.0289712 
 Socialassist |  -.8496233   .4073139    -2.09   0.037    -1.647944   -.0513028 
    Twounempl |  -.5390388   .2219733    -2.43   0.015    -.9740986   -.1039791 
   Remittance |  -.3516946   .3625584    -0.97   0.332    -1.062296    .3589069 
  Primaryeduc |  -.8467976   .3175506    -2.67   0.008    -1.469185   -.2244098 
Secondaryeduc |  -.9813312   .2373486    -4.13   0.000    -1.446526   -.5161365 
       Undur6 |   1.349181   .3500525     3.85   0.000     .6630904    2.035271 
      Undur12 |    .154713   .2794858     0.55   0.580     -.393069    .7024951 
      Undur24 |   .5172292   .3306467     1.56   0.118    -.1308265    1.165285 
          FER |  -.4050338   .3644336    -1.11   0.266     -1.11931    .3092429 
         GJAK |  -.7839924   .3797028    -2.06   0.039    -1.528196   -.0397886 
         GJIL |  -.4159494   .3232929    -1.29   0.198    -1.049592    .2176932 
          MIT |  -2.342225   .4656797    -5.03   0.000     -3.25494   -1.429509 
          PEJ |  -.4183847   .3846836    -1.09   0.277    -1.172351    .3355813 
          PRZ |  -1.106432   .3789633    -2.92   0.004    -1.849186   -.3636774 
        _cons |  -3.967431   2.591582    -1.53   0.126    -9.046839    1.111976 
--------------+---------------------------------------------------------------- 
2             | 
          OJT |   1.094729   .4269262     2.56   0.010     .2579689    1.931489 
           IS |   .6127019   .4870321     1.26   0.208    -.3418635    1.567267 
   Amduration |   .3606224   .1306877     2.76   0.006     .1044792    .6167655 
       AM2009 |  -.4541542   .4223747    -1.08   0.282    -1.281993     .373685 
       AM2010 |  -.5149485   .3829009    -1.34   0.179     -1.26542    .2355233 
         Cert |  -.7380894   .3129407    -2.36   0.018    -1.351442   -.1247369 
       Emplan |   .1968594   .3419847     0.58   0.565    -.4734183     .867137 
          Age |   .5827392   .2770131     2.10   0.035     .0398035    1.125675 
        Agesq |  -.0092678    .004771    -1.94   0.052    -.0186188    .0000833 
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         Male |   1.484491   .3247421     4.57   0.000     .8480082    2.120974 
   Disability |  -1.035347   1.171001    -0.88   0.377    -3.330466    1.259772 
     Minority |  -1.815683    .680237    -2.67   0.008    -3.148923   -.4824432 
 Socialassist |  -.2684868   .5620885    -0.48   0.633     -1.37016    .8331864 
    Twounempl |   .0634986    .323416     0.20   0.844    -.5703851    .6973823 
   Remittance |   .1541961   .4972226     0.31   0.756    -.8203422    1.128734 
  Primaryeduc |   1.369059   .4970307     2.75   0.006     .3948968    2.343221 
Secondaryeduc |   1.781445    .416228     4.28   0.000     .9656527    2.597236 
       Undur6 |   1.556241   .4434997     3.51   0.000     .6869977    2.425485 
      Undur12 |     .00767   .3978933     0.02   0.985    -.7721866    .7875266 
      Undur24 |   .8443963   .4618276     1.83   0.067    -.0607692    1.749562 
          FER |  -1.318202   .5346858    -2.47   0.014    -2.366167   -.2702375 
         GJAK |  -1.306474   .5584836    -2.34   0.019    -2.401082   -.2118661 
         GJIL |  -1.115373     .44656    -2.50   0.013    -1.990614   -.2401313 
          MIT |  -1.369892   .4806071    -2.85   0.004    -2.311865   -.4279195 
          PEJ |  -2.172006   .8320165    -2.61   0.009    -3.802728   -.5412833 
          PRZ |  -1.313306   .5031249    -2.61   0.009    -2.299413   -.3271996 
        _cons |  -13.32806   4.182931    -3.19   0.001    -21.52646   -5.129668 
------------------------------------------------------------------------------- 
 
. . estimates store allcats 
 
. . hausman . allcats, alleqs constant 
the two models need to be different 
r(198); 
 
. . mlogit LABSTATE OJT IS Amduration AM2009 AM2010 Cert Emplan Age Agesq Male Disability 
Minority Socialassist Twounempl Remittance Pri 
> maryeduc Secondaryeduc  Undur6 Undur12 Undur24 FER GJAK GJIL MIT PEJ PRZ if LABSTATE!= 2 
 
Iteration 0:   log likelihood = -414.52635   
Iteration 1:   log likelihood = -338.34147   
Iteration 2:   log likelihood = -334.54489   
Iteration 3:   log likelihood =  -334.5016   
Iteration 4:   log likelihood = -334.50134   
Iteration 5:   log likelihood = -334.50134   
 
Multinomial logistic regression                   Number of obs   =        673 
                                                  LR chi2(26)     =     160.05 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -334.50134                       Pseudo R2       =     0.1931 
 
------------------------------------------------------------------------------- 
     LABSTATE |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
--------------+---------------------------------------------------------------- 
0             |  (base outcome) 
--------------+---------------------------------------------------------------- 
1             | 
          OJT |   .4633314   .2965452     1.56   0.118    -.1178864    1.044549 
           IS |   .5249883   .3303649     1.59   0.112    -.1225149    1.172492 
   Amduration |   .0052355   .0866417     0.06   0.952     -.164579    .1750501 
       AM2009 |  -.2820691   .2796365    -1.01   0.313    -.8301466    .2660083 
       AM2010 |  -.9072117   .2721565    -3.33   0.001    -1.440629   -.3737948 
         Cert |   .5838014   .2349768     2.48   0.013     .1232553    1.044347 
       Emplan |    .124732   .2283894     0.55   0.585    -.3229031     .572367 
          Age |   .2050731   .1619691     1.27   0.205    -.1123805    .5225266 
        Agesq |  -.0024886   .0026613    -0.94   0.350    -.0077046    .0027274 
         Male |   .3134485   .2007348     1.56   0.118    -.0799844    .7068815 
   Disability |  -1.612346   1.078726    -1.49   0.135     -3.72661    .5019185 
     Minority |  -.9469323   .4892818    -1.94   0.053    -1.905907    .0120425 
 Socialassist |   -.898881   .4156091    -2.16   0.031     -1.71346   -.0843021 
    Twounempl |  -.6054384    .224338    -2.70   0.007    -1.045133   -.1657441 
   Remittance |  -.4004109   .3676038    -1.09   0.276    -1.120901    .3200793 
  Primaryeduc |  -.8586244   .3197078    -2.69   0.007     -1.48524   -.2320087 
Secondaryeduc |  -.9550832   .2385986    -4.00   0.000    -1.422728   -.4874385 
       Undur6 |    1.58059   .3678728     4.30   0.000     .8595724    2.301607 
      Undur12 |    .158366   .2853416     0.56   0.579    -.4008932    .7176252 
      Undur24 |    .548747   .3366296     1.63   0.103    -.1110348    1.208529 
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          FER |  -.4355245   .3732842    -1.17   0.243    -1.167148     .296099 
         GJAK |  -.7534865   .3874847    -1.94   0.052    -1.512943    .0059696 
         GJIL |  -.4272716   .3303703    -1.29   0.196    -1.074785    .2202422 
          MIT |   -2.37131    .477567    -4.97   0.000    -3.307324   -1.435296 
          PEJ |  -.4358382   .3913001    -1.11   0.265    -1.202772    .3310959 
          PRZ |  -1.176137   .3919322    -3.00   0.003     -1.94431    -.407964 
        _cons |  -3.669244   2.539658    -1.44   0.149    -8.646883    1.308394 
------------------------------------------------------------------------------- 
 
. . hausman . allcats, alleqs constant 
 
Note: the rank of the differenced variance matrix (26) does not equal the number of coefficients 
being tested (27); be sure this is what 
        you expect, or there may be problems computing the test.  Examine the output of your 
estimators for anything unexpected and 
        possibly consider scaling your variables so that the coefficients are on a similar 
scale. 
 
                 ---- Coefficients ---- 
             |      (b)          (B)            (b-B)     sqrt(diag(V_b-V_B)) 
             |       .         allcats       Difference          S.E. 
-------------+---------------------------------------------------------------- 
         OJT |    .4633314     .4597266        .0036048        .0530246 
          IS |    .5249883     .5103823         .014606        .0622536 
  Amduration |    .0052355    -.0157657        .0210013        .0124719 
      AM2009 |   -.2820691    -.1949788       -.0870903        .0537531 
      AM2010 |   -.9072117     -.798991       -.1082206        .0558548 
        Cert |    .5838014     .5498937        .0339076        .0456106 
      Emplan |     .124732     .1473124       -.0225804        .0297126 
         Age |    .2050731     .2222954       -.0172223               . 
       Agesq |   -.0024886    -.0027416         .000253               . 
        Male |    .3134485     .3659762       -.0525277        .0340886 
  Disability |   -1.612346    -1.655212        .0428659        .1169019 
    Minority |   -.9469323     -.984669        .0377367        .0404147 
Socialassist |    -.898881    -.8496233       -.0492577        .0826217 
   Twounempl |   -.6054384    -.5390388       -.0663996        .0324864 
  Remittance |   -.4004109    -.3516946       -.0487163        .0606952 
 Primaryeduc |   -.8586244    -.8467976       -.0118268        .0370762 
Secondarye~c |   -.9550832    -.9813312         .026248        .0243918 
      Undur6 |     1.58059     1.349181        .2314092        .1131091 
     Undur12 |     .158366      .154713         .003653        .0575111 
     Undur24 |     .548747     .5172292        .0315178         .063184 
         FER |   -.4355245    -.4050338       -.0304907        .0808038 
        GJAK |   -.7534865    -.7839924        .0305059        .0772672 
        GJIL |   -.4272716    -.4159494       -.0113222        .0680161 
         MIT |    -2.37131    -2.342225        -.029085        .1058897 
         PEJ |   -.4358382    -.4183847       -.0174535         .071654 
         PRZ |   -1.176137    -1.106432       -.0697053        .0999886 
       _cons |   -3.669244    -3.967431        .2981869               . 
------------------------------------------------------------------------------ 
                          b = consistent under Ho and Ha; obtained from mlogit 
           B = inconsistent under Ha, efficient under Ho; obtained from mlogit 
 
    Test:  Ho:  difference in coefficients not systematic 
 
                 chi2(26) = (b-B)'[(V_b-V_B)^(-1)](b-B) 
                          =        3.26 
                Prob>chi2 =      1.0000 
                (V_b-V_B is not positive definite) 
 
 
. *Multinomial Logit – omitting category 1  
 
. . mlogit LABSTATE OJT IS Amduration AM2009 AM2010 Cert Emplan Age Agesq Male Disability 
Minority Socialassist Twounempl Remittance Pri 
> maryeduc Secondaryeduc  Undur6 Undur12 Undur24 FER GJAK GJIL MIT PEJ PRZ, baseoutcome (1) 
 
Iteration 0:   log likelihood =  -664.9741   
Iteration 1:   log likelihood = -548.43968   
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Iteration 2:   log likelihood =  -537.0644   
Iteration 3:   log likelihood = -536.72965   
Iteration 4:   log likelihood = -536.72674   
Iteration 5:   log likelihood = -536.72673   
 
Multinomial logistic regression                   Number of obs   =        751 
                                                  LR chi2(52)     =     256.49 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -536.72673                       Pseudo R2       =     0.1929 
 
------------------------------------------------------------------------------- 
     LABSTATE |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
--------------+---------------------------------------------------------------- 
0             | 
          OJT |  -.4597266   .2917661    -1.58   0.115    -1.031578    .1121243 
           IS |  -.5103823   .3244463    -1.57   0.116    -1.146285    .1255208 
   Amduration |   .0157657   .0857393     0.18   0.854    -.1522802    .1838117 
       AM2009 |   .1949788   .2744215     0.71   0.477    -.3428774    .7328351 
       AM2010 |    .798991   .2663633     3.00   0.003     .2769286    1.321053 
         Cert |  -.5498937   .2305077    -2.39   0.017     -1.00168    -.098107 
       Emplan |  -.1473124   .2264484    -0.65   0.515    -.5911432    .2965184 
          Age |  -.2222954   .1660162    -1.34   0.181    -.5476811    .1030903 
        Agesq |   .0027416   .0027363     1.00   0.316    -.0026216    .0081047 
         Male |  -.3659762   .1978192    -1.85   0.064    -.7536946    .0217422 
   Disability |   1.655212   1.072373     1.54   0.123    -.4466009    3.757024 
     Minority |    .984669   .4876099     2.02   0.043     .0289712    1.940367 
 Socialassist |   .8496233   .4073139     2.09   0.037     .0513028    1.647944 
    Twounempl |   .5390388   .2219733     2.43   0.015     .1039791    .9740986 
   Remittance |   .3516946   .3625584     0.97   0.332    -.3589069    1.062296 
  Primaryeduc |   .8467976   .3175506     2.67   0.008     .2244098    1.469185 
Secondaryeduc |   .9813312   .2373486     4.13   0.000     .5161365    1.446526 
       Undur6 |  -1.349181   .3500525    -3.85   0.000    -2.035271   -.6630904 
      Undur12 |   -.154713   .2794858    -0.55   0.580    -.7024951     .393069 
      Undur24 |  -.5172292   .3306467    -1.56   0.118    -1.165285    .1308265 
          FER |   .4050338   .3644336     1.11   0.266    -.3092429     1.11931 
         GJAK |   .7839924   .3797028     2.06   0.039     .0397886    1.528196 
         GJIL |   .4159494   .3232929     1.29   0.198    -.2176932    1.049592 
          MIT |   2.342225   .4656797     5.03   0.000     1.429509     3.25494 
          PEJ |   .4183847   .3846836     1.09   0.277    -.3355813    1.172351 
          PRZ |   1.106432   .3789633     2.92   0.004     .3636774    1.849186 
        _cons |   3.967431   2.591582     1.53   0.126    -1.111976    9.046839 
--------------+---------------------------------------------------------------- 
1             |  (base outcome) 
--------------+---------------------------------------------------------------- 
2             | 
          OJT |   .6350022   .4737188     1.34   0.180    -.2934697    1.563474 
           IS |   .1023196   .5373253     0.19   0.849    -.9508186    1.155458 
   Amduration |   .3763881   .1422335     2.65   0.008     .0976156    .6551606 
       AM2009 |  -.2591754   .4471344    -0.58   0.562    -1.135543    .6171919 
       AM2010 |   .2840425   .4115321     0.69   0.490    -.5225457    1.090631 
         Cert |  -1.287983   .3504318    -3.68   0.000    -1.974817   -.6011495 
       Emplan |    .049547   .3733776     0.13   0.894    -.6822597    .7813536 
          Age |   .3604439   .3031939     1.19   0.235    -.2338053     .954693 
        Agesq |  -.0065262    .005187    -1.26   0.208    -.0166926    .0036402 
         Male |   1.118515   .3516377     3.18   0.001     .4293177    1.807712 
   Disability |   .6198646   1.534446     0.40   0.686    -2.387594    3.627323 
     Minority |  -.8310143   .7896506    -1.05   0.293    -2.378701    .7166725 
 Socialassist |   .5811364   .6298056     0.92   0.356    -.6532599    1.815533 
    Twounempl |   .6025374   .3517561     1.71   0.087    -.0868918    1.291967 
   Remittance |   .5058907   .5526644     0.92   0.360    -.5773116    1.589093 
  Primaryeduc |   2.215857   .5389817     4.11   0.000     1.159472    3.272241 
Secondaryeduc |   2.762776   .4408597     6.27   0.000     1.898707    3.626845 
       Undur6 |   .2070604   .4709984     0.44   0.660    -.7160796      1.1302 
      Undur12 |   -.147043   .4417662    -0.33   0.739    -1.012889    .7188029 
      Undur24 |   .3271671   .5066823     0.65   0.518    -.6659119    1.320246 
          FER |  -.9131686   .5838935    -1.56   0.118    -2.057579    .2312417 
         GJAK |  -.5224815   .5932143    -0.88   0.378     -1.68516    .6401972 
         GJIL |  -.6994234   .4863514    -1.44   0.150    -1.652655    .2538077 
          MIT |   .9723326   .5965839     1.63   0.103    -.1969504    2.141616 
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          PEJ |  -1.753621   .8552865    -2.05   0.040    -3.429952   -.0772902 
          PRZ |  -.2068746   .5484497    -0.38   0.706    -1.281816    .8680671 
        _cons |   -9.36063   4.602088    -2.03   0.042    -18.38056   -.3407034 
------------------------------------------------------------------------------- 
 
. . estimates store allcats 
 
. . hausman . allcats, alleqs constant 
the two models need to be different 
r(198); 
 
. . mlogit LABSTATE OJT IS Amduration AM2009 AM2010 Cert Emplan Age Agesq Male Disability 
Minority Socialassist Twounempl Remittance Pri 
> maryeduc Secondaryeduc  Undur6 Undur12 Undur24 FER GJAK GJIL MIT PEJ PRZ if  LABSTATE != 1 
 
Iteration 0:   log likelihood = -223.76921   
Iteration 1:   log likelihood = -183.59836   
Iteration 2:   log likelihood = -175.51166   
Iteration 3:   log likelihood = -175.21807   
Iteration 4:   log likelihood = -175.21531   
Iteration 5:   log likelihood = -175.21531   
 
Multinomial logistic regression                   Number of obs   =        545 
                                                  LR chi2(26)     =      97.11 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -175.21531                       Pseudo R2       =     0.2170 
 
------------------------------------------------------------------------------- 
     LABSTATE |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
--------------+---------------------------------------------------------------- 
0             |  (base outcome) 
--------------+---------------------------------------------------------------- 
2             | 
          OJT |   1.076963   .4425022     2.43   0.015     .2096751    1.944252 
           IS |   .6694552   .5034822     1.33   0.184    -.3173519    1.656262 
   Amduration |   .3335893   .1397581     2.39   0.017     .0596684    .6075102 
       AM2009 |  -.4188908   .4399431    -0.95   0.341    -1.281163    .4433818 
       AM2010 |  -.4637839    .402037    -1.15   0.249    -1.251762    .3241941 
         Cert |  -.8007494   .3226123    -2.48   0.013    -1.433058    -.168441 
       Emplan |   .3778588   .3615245     1.05   0.296    -.3307161    1.086434 
          Age |   .5331342   .2741219     1.94   0.052    -.0041348    1.070403 
        Agesq |  -.0083947   .0046633    -1.80   0.072    -.0175346    .0007453 
         Male |   1.548984   .3291945     4.71   0.000     .9037741    2.194193 
   Disability |  -1.044292   1.170088    -0.89   0.372    -3.337623    1.249038 
     Minority |  -1.751292   .6888179    -2.54   0.011     -3.10135   -.4012341 
 Socialassist |  -.3053427   .5708567    -0.53   0.593    -1.424201    .8135158 
    Twounempl |   .0695731   .3417902     0.20   0.839    -.6003233    .7394696 
   Remittance |   .1092955   .5150997     0.21   0.832    -.9002813    1.118872 
  Primaryeduc |   1.400195   .5264263     2.66   0.008     .3684186    2.431972 
Secondaryeduc |     1.7761   .4347528     4.09   0.000     .9240006      2.6282 
       Undur6 |   1.543768   .4577152     3.37   0.001     .6466623    2.440873 
      Undur12 |  -.1805326   .4018381    -0.45   0.653    -.9681208    .6070556 
      Undur24 |   .7411883    .476862     1.55   0.120    -.1934439    1.675821 
          FER |  -1.310509     .55292    -2.37   0.018    -2.394213   -.2268062 
         GJAK |  -1.141076   .5754469    -1.98   0.047    -2.268931   -.0132207 
         GJIL |   -1.14778   .4668586    -2.46   0.014    -2.062806   -.2327536 
          MIT |  -1.354635   .4882264    -2.77   0.006    -2.311541   -.3977289 
          PEJ |  -1.944116   .8670739    -2.24   0.025     -3.64355   -.2446828 
          PRZ |  -1.172205   .5171251    -2.27   0.023    -2.185752   -.1586588 
        _cons |  -12.71889     4.2037    -3.03   0.002    -20.95799   -4.479784 
------------------------------------------------------------------------------- 
 
. . hausman . allcats, alleqs constant 
 
Note: the rank of the differenced variance matrix (26) does not equal the number of coefficients 
being tested (27); be sure this is what 
        you expect, or there may be problems computing the test.  Examine the output of your 
estimators for anything unexpected and 
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        possibly consider scaling your variables so that the coefficients are on a similar 
scale. 

 
                 ---- Coefficients ---- 
             |      (b)          (B)            (b-B)     sqrt(diag(V_b-V_B)) 
             |       .         allcats       Difference          S.E. 
-------------+---------------------------------------------------------------- 
         OJT |    1.076963     .6350022        .4419612               . 
          IS |    .6694552     .1023196        .5671357               . 
  Amduration |    .3335893     .3763881       -.0427988               . 
      AM2009 |   -.4188908    -.2591754       -.1597154               . 
      AM2010 |   -.4637839     .2840425       -.7478264               . 
        Cert |   -.8007494    -1.287983        .4872337               . 
      Emplan |    .3778588      .049547        .3283119               . 
         Age |    .5331342     .3604439        .1726903               . 
       Agesq |   -.0083947    -.0065262       -.0018685               . 
        Male |    1.548984     1.118515        .4304687               . 
  Disability |   -1.044292     .6198646       -1.664157               . 
    Minority |   -1.751292    -.8310143        -.920278               . 
Socialassist |   -.3053427     .5811364       -.8864792               . 
   Twounempl |    .0695731     .6025374       -.5329643               . 
  Remittance |    .1092955     .5058907       -.3965952               . 
 Primaryeduc |    1.400195     2.215857       -.8156615               . 
Secondarye~c |      1.7761     2.762776       -.9866754               . 
      Undur6 |    1.543768     .2070604        1.336707               . 
     Undur12 |   -.1805326     -.147043       -.0334896               . 
     Undur24 |    .7411883     .3271671        .4140213               . 
         FER |   -1.310509    -.9131686       -.3973409               . 
        GJAK |   -1.141076    -.5224815       -.6185944               . 
        GJIL |    -1.14778    -.6994234       -.4483562               . 
         MIT |   -1.354635     .9723326       -2.326968               . 
         PEJ |   -1.944116    -1.753621       -.1904955        .1424858 
         PRZ |   -1.172205    -.2068746       -.9653306               . 
       _cons |   -12.71889     -9.36063       -3.358255               . 
------------------------------------------------------------------------------ 
                          b = consistent under Ho and Ha; obtained from mlogit 
           B = inconsistent under Ha, efficient under Ho; obtained from mlogit 
 
    Test:  Ho:  difference in coefficients not systematic 
 
                 chi2(26) = (b-B)'[(V_b-V_B)^(-1)](b-B) 
                          =      210.06 
                Prob>chi2 =      0.0000 
                (V_b-V_B is not positive definite) 
 
 
 

Table A5.2 Multinomial probit model and marginal effects of the 

final model using dependent variable LABSTATE 
 
. . mprobit LABSTATE OJT IS Amduration AM2008 AM2009 Cert Emplan Age Agesq Male Disability 
Minority Socialassist Twounempl Remittance Primaryeduc Secondaryeduc Undur6 Undur12 Undur24 FER 
GJAK GJIL MIT PEJ PRZ 
 
Iteration 0:   log likelihood =   -539.105   
Iteration 1:   log likelihood = -537.12037   
Iteration 2:   log likelihood =  -537.0904   
Iteration 3:   log likelihood = -537.09039   
 
Multinomial probit regression                     Number of obs   =        751 
                                                  Wald chi2(52)   =     199.55 
Log likelihood = -537.09039                       Prob > chi2     =     0.0000 
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------------------------------------------------------------------------------- 
     LABSTATE |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
--------------+---------------------------------------------------------------- 
0             |  (base outcome) 
--------------+---------------------------------------------------------------- 
1             | 
          OJT |   .3917622   .2289026     1.71   0.087    -.0568786    .8404031 
           IS |   .4314454   .2565022     1.68   0.093    -.0712896    .9341805 
   Amduration |  -.0124474    .069435    -0.18   0.858    -.1485375    .1236426 
       AM2008 |   .6600419   .2131802     3.10   0.002     .2422164    1.077867 
       AM2009 |   .4675774   .1854235     2.52   0.012      .104154    .8310009 
         Cert |   .4040996   .1815747     2.23   0.026     .0482197    .7599795 
       Emplan |   .1274878   .1813859     0.70   0.482    -.2280219    .4829976 
          Age |   .1790627   .1349573     1.33   0.185    -.0854488    .4435742 
        Agesq |  -.0022631   .0022426    -1.01   0.313    -.0066585    .0021323 
         Male |   .3230189   .1586846     2.04   0.042     .0120028     .634035 
   Disability |  -1.291635   .7512435    -1.72   0.086    -2.764045    .1807747 
     Minority |  -.8267022   .3653888    -2.26   0.024    -1.542851   -.1105534 
 Socialassist |  -.7721515   .3222473    -2.40   0.017    -1.403745   -.1405585 
    Twounempl |  -.4591886   .1767584    -2.60   0.009    -.8056287   -.1127486 
   Remittance |  -.3074324    .292005    -1.05   0.292    -.8797518    .2648869 
  Primaryeduc |  -.6990088   .2527711    -2.77   0.006    -1.194431   -.2035866 
Secondaryeduc |   -.738497   .1903087    -3.88   0.000    -1.111495   -.3654989 
       Undur6 |   1.126386   .2785105     4.04   0.000     .5805155    1.672257 
      Undur12 |   .1098213    .226483     0.48   0.628    -.3340772    .5537197 
      Undur24 |   .4295659   .2675983     1.61   0.108    -.0949171     .954049 
          FER |  -.3732822   .2917459    -1.28   0.201    -.9450937    .1985292 
         GJAK |  -.6890372   .3077592    -2.24   0.025    -1.292234   -.0858402 
         GJIL |  -.3700658   .2572416    -1.44   0.150    -.8742501    .1341185 
          MIT |  -1.869331   .3462665    -5.40   0.000    -2.548001   -1.190661 
          PEJ |  -.3674074   .3133319    -1.17   0.241    -.9815266    .2467119 
          PRZ |  -.9669882   .3032506    -3.19   0.001    -1.561348   -.3726279 
        _cons |  -3.768876   2.063958    -1.83   0.068    -7.814159    .2764075 
--------------+---------------------------------------------------------------- 
2             | 
          OJT |   .7628254   .2940522     2.59   0.009     .1864937    1.339157 
           IS |    .393991   .3379471     1.17   0.244    -.2683732    1.056355 
   Amduration |   .2493871    .094475     2.64   0.008     .0642196    .4345547 
       AM2008 |   .4168909   .2778403     1.50   0.133     -.127666    .9614478 
       AM2009 |   .1063493   .2388008     0.45   0.656    -.3616918    .5743904 
         Cert |  -.4473866   .2213226    -2.02   0.043    -.8811708   -.0136023 
       Emplan |    .199591   .2430901     0.82   0.412    -.2768568    .6760388 
          Age |     .44342   .1962733     2.26   0.024     .0587313    .8281087 
        Agesq |  -.0069977   .0033605    -2.08   0.037    -.0135841   -.0004113 
         Male |   1.024555   .2181042     4.70   0.000     .5970781    1.452031 
   Disability |  -.8918562   .8712783    -1.02   0.306     -2.59953    .8158178 
     Minority |  -1.311852   .4630656    -2.83   0.005    -2.219444   -.4042604 
 Socialassist |  -.2101106   .3907467    -0.54   0.591      -.97596    .5557388 
    Twounempl |   .0007493   .2322625     0.00   0.997    -.4544767    .4559754 
   Remittance |   .1009049   .3524518     0.29   0.775     -.589888    .7916977 
  Primaryeduc |   .8146505   .3421494     2.38   0.017     .1440499    1.485251 
Secondaryeduc |   1.105831   .2796901     3.95   0.000      .557648    1.654013 
       Undur6 |   1.238188   .3177207     3.90   0.000     .6154667    1.860909 
      Undur12 |  -.0119304   .2861954    -0.04   0.967    -.5728632    .5490023 
      Undur24 |   .5867474   .3358453     1.75   0.081    -.0714972    1.244992 
          FER |  -.9169577   .3771587    -2.43   0.015    -1.656175   -.1777402 
         GJAK |  -.8569173   .3981051    -2.15   0.031    -1.637189   -.0766457 
         GJIL |  -.7457064   .3195222    -2.33   0.020    -1.371958   -.1194545 
          MIT |  -1.066837   .3567498    -2.99   0.003    -1.766053   -.3676198 
          PEJ |   -1.39678   .5241895    -2.66   0.008    -2.424173   -.3693875 
          PRZ |  -.9335005   .3651058    -2.56   0.011    -1.649095   -.2179062 
        _cons |  -10.29498   2.947795    -3.49   0.000    -16.07256   -4.517413 
------------------------------------------------------------------------------- 
 
. . margins, dydx(*) predict(pr outcome(0)) 
 
Average marginal effects                          Number of obs   =        751 
Model VCE    : OIM 
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Expression   : Pr(LABSTATE==0), predict(pr outcome(0)) 
dy/dx w.r.t. : OJT IS Amduration AM2008 AM2009 Cert Emplan Age Agesq Male Disability Minority 
Socialassist Twounempl Remittance 
               Primaryeduc Secondaryeduc Undur6 Undur12 Undur24 FER GJAK GJIL MIT PEJ PRZ 
 
------------------------------------------------------------------------------- 
              |            Delta-method 
              |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval] 
--------------+---------------------------------------------------------------- 
          OJT |  -.1209935    .047696    -2.54   0.011    -.2144759    -.027511 
           IS |  -.0999437   .0541527    -1.85   0.065     -.206081    .0061937 
   Amduration |  -.0165842   .0149075    -1.11   0.266    -.0458023    .0126338 
       AM2008 |  -.1390221   .0449949    -3.09   0.002    -.2272105   -.0508338 
       AM2009 |  -.0843751   .0388958    -2.17   0.030    -.1606095   -.0081408 
         Cert |  -.0326569   .0378044    -0.86   0.388    -.1067522    .0414383 
       Emplan |  -.0357418   .0387676    -0.92   0.357    -.1117249    .0402413 
          Age |  -.0623768   .0288951    -2.16   0.031    -.1190101   -.0057435 
        Agesq |   .0008924   .0004848     1.84   0.066    -.0000579    .0018427 
         Male |  -.1292964   .0330837    -3.91   0.000    -.1941393   -.0644535 
   Disability |   .2777296   .1468617     1.89   0.059     -.010114    .5655732 
     Minority |   .2330832   .0744048     3.13   0.002     .0872525    .3789139 
 Socialassist |   .1419107    .066246     2.14   0.032      .012071    .2717505 
    Twounempl |   .0750079   .0375356     2.00   0.046     .0014395    .1485763 
   Remittance |   .0427227   .0608123     0.70   0.482    -.0764672    .1619126 
  Primaryeduc |   .0534463   .0536921     1.00   0.320    -.0517883     .158681 
Secondaryeduc |   .0381623   .0410567     0.93   0.353    -.0423074    .1186319 
       Undur6 |   -.276573   .0564184    -4.90   0.000    -.3871511   -.1659949 
      Undur12 |  -.0170618   .0473619    -0.36   0.719    -.1098894    .0757657 
      Undur24 |  -.1140274   .0562307    -2.03   0.043    -.2242375   -.0038173 
          FER |   .1294799   .0616056     2.10   0.036     .0087352    .2502246 
         GJAK |    .176614   .0653298     2.70   0.007       .04857    .3046579 
         GJIL |   .1161686   .0542014     2.14   0.032     .0099358    .2224014 
          MIT |   .3852297    .065498     5.88   0.000      .256856    .5136035 
          PEJ |   .1643426   .0716926     2.29   0.022     .0238278    .3048575 
          PRZ |   .2277684   .0624652     3.65   0.000     .1053389     .350198 
------------------------------------------------------------------------------- 
 
. margins, dydx(*) predict(pr outcome(1)) 
 
Average marginal effects                          Number of obs   =        751 
Model VCE    : OIM 
 
Expression   : Pr(LABSTATE==1), predict(pr outcome(1)) 
dy/dx w.r.t. : OJT IS Amduration AM2008 AM2009 Cert Emplan Age Agesq Male Disability Minority 
Socialassist Twounempl Remittance 
               Primaryeduc Secondaryeduc Undur6 Undur12 Undur24 FER GJAK GJIL MIT PEJ PRZ 
 
------------------------------------------------------------------------------- 
              |            Delta-method 
              |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval] 
--------------+---------------------------------------------------------------- 
          OJT |   .0502385   .0438837     1.14   0.252    -.0357719    .1362488 
           IS |   .0719219   .0493342     1.46   0.145    -.0247714    .1686152 
   Amduration |  -.0117748   .0132898    -0.89   0.376    -.0378223    .0142727 
       AM2008 |   .1169424   .0400223     2.92   0.003     .0385002    .1953846 
       AM2009 |   .0898725    .035366     2.54   0.011     .0205564    .1591886 
         Cert |   .0977328   .0343696     2.84   0.004     .0303696     .165096 
       Emplan |   .0181584    .034936     0.52   0.603     -.050315    .0866317 
          Age |   .0194377   .0261911     0.74   0.458    -.0318959    .0707712 
        Agesq |  -.0001938   .0004368    -0.44   0.657    -.0010499    .0006622 
         Male |   .0267077    .030117     0.89   0.375    -.0323205    .0857359 
   Disability |  -.2260158   .1485043    -1.52   0.128    -.5170789    .0650472 
     Minority |  -.1170944   .0705121    -1.66   0.097    -.2552957    .0211068 
 Socialassist |  -.1471314   .0614546    -2.39   0.017    -.2675802   -.0266827 
    Twounempl |  -.0921731   .0333756    -2.76   0.006     -.157588   -.0267581 
   Remittance |  -.0654459   .0560129    -1.17   0.243    -.1752291    .0443373 
  Primaryeduc |   -.170574   .0473014    -3.61   0.000    -.2632829    -.077865 
Secondaryeduc |  -.1893296   .0343317    -5.51   0.000    -.2566186   -.1220407 
       Undur6 |   .1799721   .0508242     3.54   0.000     .0803585    .2795858 
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      Undur12 |   .0224816   .0438406     0.51   0.608    -.0634444    .1084076 
      Undur24 |   .0643744   .0510487     1.26   0.207    -.0356793    .1644281 
          FER |  -.0407965   .0556763    -0.73   0.464    -.1499201    .0683271 
         GJAK |  -.1063924   .0580531    -1.83   0.067    -.2201743    .0073895 
         GJIL |  -.0465214   .0488351    -0.95   0.341    -.1422365    .0491937 
          MIT |  -.3354327   .0638271    -5.26   0.000    -.4605315   -.2103338 
          PEJ |  -.0217687   .0602588    -0.36   0.718    -.1398739    .0963364 
          PRZ |  -.1593199   .0566606    -2.81   0.005    -.2703726   -.0482671 
------------------------------------------------------------------------------- 
 
. . margins, dydx(*) predict(pr outcome(2)) 
 
Average marginal effects                          Number of obs   =        751 
Model VCE    : OIM 
 
Expression   : Pr(LABSTATE==2), predict(pr outcome(2)) 
dy/dx w.r.t. : OJT IS Amduration AM2008 AM2009 Cert Emplan Age Agesq Male Disability Minority 
Socialassist Twounempl Remittance 
               Primaryeduc Secondaryeduc Undur6 Undur12 Undur24 FER GJAK GJIL MIT PEJ PRZ 
 
------------------------------------------------------------------------------- 
              |            Delta-method 
              |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval] 
--------------+---------------------------------------------------------------- 
          OJT |    .070755   .0315136     2.25   0.025     .0089896    .1325204 
           IS |   .0280217    .036328     0.77   0.440    -.0431799    .0992234 
   Amduration |    .028359   .0100862     2.81   0.005     .0085904    .0481276 
       AM2008 |   .0220797   .0293189     0.75   0.451    -.0353842    .0795436 
       AM2009 |  -.0054974   .0255026    -0.22   0.829    -.0554816    .0444869 
         Cert |  -.0650759   .0234657    -2.77   0.006    -.1110679   -.0190839 
       Emplan |   .0175834   .0260968     0.67   0.500    -.0335653    .0687322 
          Age |   .0429391   .0212665     2.02   0.043     .0012576    .0846206 
        Agesq |  -.0006986    .000365    -1.91   0.056     -.001414    .0000169 
         Male |   .1025887    .023258     4.41   0.000     .0570038    .1481736 
   Disability |  -.0517138   .0967032    -0.53   0.593    -.2412486     .137821 
     Minority |  -.1159888   .0499839    -2.32   0.020    -.2139555    -.018022 
 Socialassist |   .0052207   .0417256     0.13   0.900      -.07656    .0870013 
    Twounempl |   .0171652   .0246564     0.70   0.486    -.0311605    .0654908 
   Remittance |   .0227232   .0376575     0.60   0.546    -.0510842    .0965306 
  Primaryeduc |   .1171276    .036235     3.23   0.001     .0461083     .188147 
Secondaryeduc |   .1511674   .0291913     5.18   0.000     .0939534    .2083813 
       Undur6 |   .0966009   .0320659     3.01   0.003     .0337529    .1594488 
      Undur12 |  -.0054198   .0308658    -0.18   0.861    -.0659156    .0550761 
      Undur24 |    .049653   .0357437     1.39   0.165    -.0204035    .1197095 
          FER |  -.0886834   .0401473    -2.21   0.027    -.1673706   -.0099961 
         GJAK |  -.0702216   .0419906    -1.67   0.094    -.1525217    .0120785 
         GJIL |  -.0696472   .0337756    -2.06   0.039    -.1358462   -.0034482 
          MIT |  -.0497971   .0365503    -1.36   0.173    -.1214344    .0218403 
          PEJ |  -.1425739   .0565762    -2.52   0.012    -.2534612   -.0316866 
          PRZ |  -.0684486   .0381302    -1.80   0.073    -.1431824    .0062852 
------------------------------------------------------------------------------- 

 

Table A5.3 Estimated results from Inverse probability weighting – 

Regression Adjustment - EMP Outcome Model 
  

**EMP Outcome Model  
* including all variables  
 
. . teffects ipwra (EMP Amduration AM2008 AM2009 Cert Emplan Age Agesq Male Disability Minority 
Socialassist Twounempl Remittance Primaryeduc Secondaryeduc Undur6 Undur12 Undur24 FER GJAK GJIL 
MIT PEJ PRZ, logit) (AMTYPE Amduration AM2008 AM2009 Cert Emplan Age Agesq Male Disability 
Minority Socialassist Twounempl Remittance Primaryeduc Secondaryeduc Jobsearchbt Undur6 Undur12 
Undur24 FER GJAK GJIL MIT PEJ PRZ Vtcmncp), atet aequ 
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Iteration 0:   EE criterion =   .0028074   
Iteration 1:   EE criterion =  .00084465   
Iteration 2:   EE criterion =  .00032005   
Iteration 3:   EE criterion =  .00004341   
Iteration 4:   EE criterion =  4.304e-06   
Iteration 5:   EE criterion =  3.276e-07   
Iteration 6:   EE criterion =  1.832e-08   
Iteration 7:   EE criterion =  1.932e-09   
 
Treatment-effects estimation                    Number of obs      =       775 
Estimator      : IPW regression adjustment 
Outcome model  : logit 
Treatment model: (multinomial) logit 
------------------------------------------------------------------------------- 
              |               Robust 
          EMP |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
--------------+---------------------------------------------------------------- 
ATET          | 
       AMTYPE | 
    (2 vs 1)  |  -.0439966   .0411158    -1.07   0.285    -.1245821    .0365889 
    (3 vs 1)  |  -.2306781   .0472774    -4.88   0.000    -.3233401   -.1380162 
--------------+---------------------------------------------------------------- 
POmean        | 
       AMTYPE | 
           1  |   .4207408   .0305375    13.78   0.000     .3608884    .4805932 
--------------+---------------------------------------------------------------- 
OME1          | 
   Amduration |  -.0627644   .1303158    -0.48   0.630    -.3181786    .1926498 
       AM2008 |   .5885721    .438524     1.34   0.180    -.2709191    1.448063 
       AM2009 |   .3764315   .3755101     1.00   0.316    -.3595549    1.112418 
         Cert |   -.108387   .3388105    -0.32   0.749    -.7724433    .5556693 
       Emplan |  -.0460054   .3620198    -0.13   0.899    -.7555512    .6635403 
          Age |   .5386367   .2722076     1.98   0.048     .0051196    1.072154 
        Agesq |  -.0083705   .0045713    -1.83   0.067    -.0173301     .000589 
         Male |   1.160854   .2903829     4.00   0.000     .5917135    1.729994 
   Disability |  -2.515615     1.1588    -2.17   0.030    -4.786822   -.2444086 
     Minority |   -2.76118   .7085929    -3.90   0.000    -4.149996   -1.372363 
 Socialassist |   .3444823   .5696708     0.60   0.545     -.772052    1.461016 
    Twounempl |   -.271202   .3384137    -0.80   0.423    -.9344806    .3920767 
   Remittance |  -.3015599   .5125612    -0.59   0.556    -1.306161    .7030416 
  Primaryeduc |  -.9373679   .4560413    -2.06   0.040    -1.831192   -.0435434 
Secondaryeduc |  -.3071879   .3476105    -0.88   0.377     -.988492    .3741162 
       Undur6 |   1.554599   .5943598     2.62   0.009     .3896753    2.719523 
      Undur12 |  -.5105077   .4606861    -1.11   0.268    -1.413436    .3924205 
      Undur24 |   .4740173   .5287411     0.90   0.370    -.5622963    1.510331 
          FER |  -.3391754   .5876229    -0.58   0.564    -1.490895    .8125443 
         GJAK |  -.1144167     .63751    -0.18   0.858    -1.363913     1.13508 
         GJIL |  -.2202198   .5427857    -0.41   0.685     -1.28406    .8436207 
          MIT |  -2.111176   .7391942    -2.86   0.004     -3.55997   -.6623822 
          PEJ |   .9000074   .6956095     1.29   0.196    -.4633622    2.263377 
          PRZ |   .4902991   .6264216     0.78   0.434    -.7374646    1.718063 
        _cons |  -8.341024   4.000653    -2.08   0.037    -16.18216   -.4998876 
--------------+---------------------------------------------------------------- 
OME2          | 
   Amduration |  -.0528849   .1626507    -0.33   0.745    -.3716744    .2659046 
       AM2008 |   .9601598   .4628436     2.07   0.038      .053003    1.867317 
       AM2009 |   .8849673   .4409396     2.01   0.045     .0207417    1.749193 
         Cert |   .6859635   .3750789     1.83   0.067    -.0491775    1.421105 
       Emplan |  -.0964195   .3765648    -0.26   0.798    -.8344729    .6416339 
          Age |   .3300517   .4286507     0.77   0.441    -.5100883    1.170192 
        Agesq |  -.0052958   .0073758    -0.72   0.473    -.0197521    .0091604 
         Male |   .8151041   .3640748     2.24   0.025     .1015307    1.528678 
   Disability |  -8.219612   .9235115    -8.90   0.000    -10.02966   -6.409563 
     Minority |  -1.210774   .8045656    -1.50   0.132    -2.787693    .3661458 
 Socialassist |  -.5206427   .6292882    -0.83   0.408    -1.754025    .7127395 
    Twounempl |  -.2773804   .4233309    -0.66   0.512    -1.107094     .552333 
   Remittance |  -.2559838   .6344453    -0.40   0.687    -1.499474    .9875062 
  Primaryeduc |   .4713746   .5492713     0.86   0.391    -.6051775    1.547927 
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Secondaryeduc |  -.6405328   .3792625    -1.69   0.091    -1.383874    .1028081 
       Undur6 |   2.138261   .6996729     3.06   0.002     .7669272    3.509595 
      Undur12 |   .4738089   .4918827     0.96   0.335    -.4902635    1.437881 
      Undur24 |   .9988515   .8858621     1.13   0.260    -.7374064    2.735109 
          FER |  -1.110155    .635524    -1.75   0.081    -2.355759    .1354489 
         GJAK |  -2.365871   .7502384    -3.15   0.002    -3.836311   -.8954304 
         GJIL |  -1.156276   .6167073    -1.87   0.061       -2.365    .0524484 
          MIT |  -2.413818   .6655569    -3.63   0.000    -3.718286   -1.109351 
          PEJ |  -1.901809   .8040223    -2.37   0.018    -3.477664   -.3259546 
          PRZ |  -1.549686   .7409136    -2.09   0.036     -3.00185   -.0975217 
        _cons |  -4.855077   5.951074    -0.82   0.415    -16.51897    6.808813 
--------------+---------------------------------------------------------------- 
OME3          | 
   Amduration |   .5901876   .3973585     1.49   0.137    -.1886207    1.368996 
       AM2008 |   .5749502   .8729531     0.66   0.510    -1.136006    2.285907 
       AM2009 |   -1.90357    .889983    -2.14   0.032    -3.647905   -.1592353 
         Cert |   .3093716   .7776974     0.40   0.691    -1.214887     1.83363 
       Emplan |   .7193027    .769889     0.93   0.350     -.789652    2.228257 
          Age |  -.5588032    .502037    -1.11   0.266    -1.542778    .4251712 
        Agesq |   .0099583   .0075848     1.31   0.189    -.0049077    .0248242 
         Male |   1.130225   .6832662     1.65   0.098    -.2089524    2.469402 
   Disability |   6.942585   2.835869     2.45   0.014     1.384385    12.50079 
     Minority |    2.02076   1.828067     1.11   0.269    -1.562186    5.603707 
 Socialassist |  -8.274242   2.516683    -3.29   0.001    -13.20685   -3.341633 
    Twounempl |  -3.340542   .8764125    -3.81   0.000    -5.058279   -1.622805 
   Remittance |  -1.170883   1.041103    -1.12   0.261    -3.211409    .8696421 
  Primaryeduc |  -4.003694   2.009059    -1.99   0.046    -7.941377   -.0660114 
Secondaryeduc |   2.135157   .9667549     2.21   0.027     .2403519    4.029961 
       Undur6 |   3.132367   1.831742     1.71   0.087    -.4577812    6.722514 
      Undur12 |   2.496569   1.263554     1.98   0.048     .0200484     4.97309 
      Undur24 |   6.385734   2.338571     2.73   0.006     1.802219    10.96925 
          FER |   .4291426   1.595427     0.27   0.788    -2.697837    3.556122 
         GJAK |  -4.655251   1.853636    -2.51   0.012    -8.288312   -1.022191 
         GJIL |  -.3609159   .9061367    -0.40   0.690    -2.136911    1.415079 
          MIT |  -16.34204   3.567898    -4.58   0.000      -23.335   -9.349093 
          PEJ |  -6.566865   2.281503    -2.88   0.004    -11.03853   -2.095202 
          PRZ |  -2.476982   1.424689    -1.74   0.082    -5.269321    .3153575 
        _cons |   4.050914   7.508062     0.54   0.590    -10.66462    18.76644 
--------------+---------------------------------------------------------------- 
TME2          | 
   Amduration |   .2329991   .0838307     2.78   0.005     .0686938    .3973043 
       AM2008 |   1.234078   .2462185     5.01   0.000     .7514989    1.716658 
       AM2009 |   .1470328   .2220062     0.66   0.508    -.2880914     .582157 
         Cert |   .0172119   .2252752     0.08   0.939    -.4243194    .4587432 
       Emplan |   .2091462   .2196086     0.95   0.341    -.2212787    .6395712 
          Age |   .1598413   .1340997     1.19   0.233    -.1029892    .4226719 
        Agesq |  -.0030997   .0021689    -1.43   0.153    -.0073507    .0011513 
         Male |  -.0440999   .1899546    -0.23   0.816    -.4164041    .3282043 
   Disability |  -.3981354   .6460456    -0.62   0.538    -1.664361    .8680907 
     Minority |  -.0685822   .3791509    -0.18   0.856    -.8117043    .6745398 
 Socialassist |   .6226882   .3631565     1.71   0.086    -.0890855    1.334462 
    Twounempl |   .4005677   .2140876     1.87   0.061    -.0190363    .8201716 
   Remittance |   .2351421   .3290873     0.71   0.475    -.4098572    .8801413 
  Primaryeduc |  -.1364308   .3109532    -0.44   0.661    -.7458878    .4730262 
Secondaryeduc |   .1207818   .2360897     0.51   0.609    -.3419456    .5835092 
  Jobsearchbt |   .4425851   .2522755     1.75   0.079    -.0518658     .937036 
       Undur6 |  -1.274316   .3646765    -3.49   0.000    -1.989069   -.5595632 
      Undur12 |  -.5470632   .2724658    -2.01   0.045    -1.081086   -.0130402 
      Undur24 |  -.8556659   .3146513    -2.72   0.007    -1.472371   -.2389607 
          FER |   1.068962   .3774749     2.83   0.005     .3291246    1.808799 
         GJAK |   1.051089   .3935209     2.67   0.008     .2798026    1.822376 
         GJIL |   .6588806   .3462634     1.90   0.057    -.0197832    1.337544 
          MIT |   1.110043   .3813545     2.91   0.004     .3626017    1.857484 
          PEJ |   1.046338   .3992684     2.62   0.009     .2637862     1.82889 
          PRZ |   .5137491   .4041379     1.27   0.204    -.2783467    1.305845 
      Vtcmncp |   -.781792   .1891974    -4.13   0.000    -1.152612   -.4109718 
        _cons |  -4.833665   2.122526    -2.28   0.023     -8.99374   -.6735905 
--------------+---------------------------------------------------------------- 
TME3          | 
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   Amduration |   .0699453   .1026532     0.68   0.496    -.1312512    .2711419 
       AM2008 |   .3738966   .3009637     1.24   0.214    -.2159814    .9637746 
       AM2009 |  -.7006541   .2928764    -2.39   0.017    -1.274681   -.1266269 
         Cert |  -.3147974   .2505141    -1.26   0.209     -.805796    .1762011 
       Emplan |   .7616696   .2905456     2.62   0.009     .1922107    1.331128 
          Age |   .1582482   .1943625     0.81   0.416    -.2226953    .5391917 
        Agesq |  -.0023262   .0032816    -0.71   0.478    -.0087581    .0041056 
         Male |  -.1965395    .224941    -0.87   0.382    -.6374157    .2443368 
   Disability |   .2362288   .7070531     0.33   0.738     -1.14957    1.622027 
     Minority |  -.0211426   .4437801    -0.05   0.962    -.8909357    .8486504 
 Socialassist |  -.1434028   .4926486    -0.29   0.771    -1.108976    .8221706 
    Twounempl |   .7158547   .2658317     2.69   0.007     .1948341    1.236875 
   Remittance |   .1740182   .4339583     0.40   0.688    -.6765244    1.024561 
  Primaryeduc |   .3734437   .3727712     1.00   0.316    -.3571744    1.104062 
Secondaryeduc |   .5329797   .2998281     1.78   0.075    -.0546725    1.120632 
  Jobsearchbt |   .8118546   .3396121     2.39   0.017     .1462271    1.477482 
       Undur6 |  -.0187538   .4246984    -0.04   0.965    -.8511474    .8136397 
      Undur12 |   .3849114   .3013072     1.28   0.201    -.2056397    .9754626 
      Undur24 |   .3669331   .3769147     0.97   0.330    -.3718062    1.105672 
          FER |  -.5393957   .3657813    -1.47   0.140    -1.256314    .1775224 
         GJAK |  -1.576471    .574202    -2.75   0.006    -2.701887   -.4510561 
         GJIL |  -.5222018   .3428936    -1.52   0.128    -1.194261    .1498572 
          MIT |  -1.590113   .5036984    -3.16   0.002    -2.577344   -.6028823 
          PEJ |  -.7224363   .4894672    -1.48   0.140    -1.681774    .2369018 
          PRZ |  -.2941617   .3988018    -0.74   0.461    -1.075799    .4874756 
      Vtcmncp |   .1647272   .2480323     0.66   0.507    -.3214072    .6508616 
        _cons |  -5.180945   2.945028    -1.76   0.079    -10.95309    .5912033 
------------------------------------------------------------------------------- 
 
 
 

*Final Model for EMP; OJT defined as the control group  
 
. teffects ipwra (EMP Age Agesq Male Minority Disability Socialassist Twounempl Remittance 

Secondaryeduc Tertiaryeduc Amduration AM2009 AM2010 Cert Emplan Undur6 Undur12 Undur24  Regunmp, 

logit) (AMTYPE Age Male Minority Disability Socialassist Twounempl Remittance Secondaryeduc 

Tertiaryeduc  AM2008 AM2009 Emplan Jobsearchbt Undur6 Undur12 Undur24 FER GJAK GJIL MIT PEJ PRZ 

Vtcmncp), atet aequ 

 

Iteration 0:   EE criterion =  .00013777   

Iteration 1:   EE criterion =  5.368e-06   

Iteration 2:   EE criterion =  4.777e-07   

Iteration 3:   EE criterion =  1.633e-08   

Iteration 4:   EE criterion =  1.310e-09   

 

Treatment-effects estimation                    Number of obs     =        775 

Estimator      : IPW regression adjustment 

Outcome model  : logit 

Treatment model: (multinomial) logit 

------------------------------------------------------------------------------- 

              |               Robust 

          EMP |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

--------------+---------------------------------------------------------------- 

ATET          | 

       AMTYPE | 

    (2 vs 1)  |  -.0548059   .0432557    -1.27   0.205    -.1395855    .0299737 

    (3 vs 1)  |  -.1874647   .0514709    -3.64   0.000    -.2883458   -.0865835 

--------------+---------------------------------------------------------------- 

POmean        | 

       AMTYPE | 

           1  |   .4315867   .0332301    12.99   0.000     .3664569    .4967165 

--------------+---------------------------------------------------------------- 

OME1          | 

          Age |    .564068   .2197993     2.57   0.010     .1332692    .9948668 
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        Agesq |   -.008986   .0034663    -2.59   0.010    -.0157799   -.0021921 

         Male |   1.077326   .3052461     3.53   0.000      .479055    1.675598 

     Minority |  -2.131653   .6789061    -3.14   0.002    -3.462285   -.8010217 

   Disability |  -1.759941   1.026867    -1.71   0.087    -3.772563    .2526803 

 Socialassist |  -.4438142   .5832432    -0.76   0.447     -1.58695    .6993215 

    Twounempl |  -.2522157   .3207956    -0.79   0.432    -.8809636    .3765322 

   Remittance |  -.1205627   .4233139    -0.28   0.776    -.9502426    .7091173 

Secondaryeduc |   .5924487   .4915488     1.21   0.228    -.3709693    1.555867 

 Tertiaryeduc |   1.147507   .5019215     2.29   0.022      .163759    2.131255 

   Amduration |   .0008367   .1337267     0.01   0.995    -.2612629    .2629362 

       AM2009 |  -.3331047   .4215384    -0.79   0.429    -1.159305    .4930955 

       AM2010 |  -.5841415   .4209084    -1.39   0.165    -1.409107    .2408239 

         Cert |   -.278692   .3239883    -0.86   0.390    -.9136973    .3563134 

       Emplan |  -.2239667   .3016824    -0.74   0.458    -.8152533    .3673199 

       Undur6 |   .9511897   .4445372     2.14   0.032     .0799127    1.822467 

      Undur12 |  -.5641854   .4364019    -1.29   0.196    -1.419517    .2911467 

      Undur24 |   .4275026   .3972222     1.08   0.282    -.3510386    1.206044 

      Regunmp |   .0193867   .0142039     1.36   0.172    -.0084525    .0472259 

        _cons |  -9.735501   3.580699    -2.72   0.007    -16.75354    -2.71746 

--------------+---------------------------------------------------------------- 

OME2          | 

          Age |   .3290636   .4356758     0.76   0.450    -.5248454    1.182973 

        Agesq |  -.0054928   .0075501    -0.73   0.467    -.0202908    .0093052 

         Male |   .7691322   .3391117     2.27   0.023     .1044854    1.433779 

     Minority |  -.9707207   .7340795    -1.32   0.186     -2.40949    .4680486 

   Disability |  -6.461809   .9453664    -6.84   0.000    -8.314693   -4.608925 

 Socialassist |  -.3667602   .5957894    -0.62   0.538    -1.534486    .8009656 

    Twounempl |  -.3107361   .3846959    -0.81   0.419    -1.064726     .443254 

   Remittance |   -.434276   .5704788    -0.76   0.447    -1.552394     .683842 

Secondaryeduc |  -1.169853   .4802645    -2.44   0.015    -2.111154   -.2285517 

 Tertiaryeduc |  -.5243086   .4952637    -1.06   0.290    -1.495008    .4463905 

   Amduration |  -.0431157   .1491718    -0.29   0.773     -.335487    .2492556 

       AM2009 |  -.0183602   .3964591    -0.05   0.963    -.7954058    .7586854 

       AM2010 |  -.9108668   .4256333    -2.14   0.032    -1.745093   -.0766409 

         Cert |   .3899731    .373649     1.04   0.297    -.3423654    1.122312 

       Emplan |  -.0710129    .361261    -0.20   0.844    -.7790715    .6370456 

       Undur6 |   1.548749   .6600847     2.35   0.019     .2550068    2.842491 

      Undur12 |   .4375261   .4840877     0.90   0.366    -.5112684    1.386321 

      Undur24 |   .3784083   .7547346     0.50   0.616    -1.100844    1.857661 

      Regunmp |   -.025802    .017712    -1.46   0.145     -.060517    .0089129 

        _cons |  -3.780572   6.112092    -0.62   0.536    -15.76005    8.198908 

--------------+---------------------------------------------------------------- 

OME3          | 

          Age |  -.4753036   .5929791    -0.80   0.423    -1.637521    .6869142 

        Agesq |   .0080286   .0092375     0.87   0.385    -.0100766    .0261338 

         Male |   .8265213   .5732131     1.44   0.149    -.2969558    1.949998 

     Minority |    1.39971   1.839669     0.76   0.447    -2.205975    5.005394 

   Disability |   5.858273   2.261611     2.59   0.010     1.425598    10.29095 

 Socialassist |  -7.628091   2.096519    -3.64   0.000    -11.73719   -3.518989 

    Twounempl |  -3.128161   .7312034    -4.28   0.000    -4.561294   -1.695029 

   Remittance |  -2.850865   1.431468    -1.99   0.046    -5.656491   -.0452389 

Secondaryeduc |   5.124749   1.620706     3.16   0.002     1.948223    8.301276 

 Tertiaryeduc |   4.752533   1.642633     2.89   0.004     1.533032    7.972034 

   Amduration |  -.0737341   .2859281    -0.26   0.797    -.6341429    .4866747 

       AM2009 |  -2.241873   .9776115    -2.29   0.022    -4.157956   -.3257894 

       AM2010 |  -1.046779   .9059241    -1.16   0.248    -2.822358    .7287996 

         Cert |  -.8625012   .7444766    -1.16   0.247    -2.321648    .5966461 

       Emplan |   1.379132   .6936569     1.99   0.047      .019589    2.738674 

       Undur6 |   1.738822   .8813282     1.97   0.049     .0114503    3.466193 

      Undur12 |   2.007601    .815216     2.46   0.014     .4098071    3.605395 
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      Undur24 |   2.161926    1.23921     1.74   0.081    -.2668821    4.590733 

      Regunmp |  -.1055114   .0412353    -2.56   0.011    -.1863311   -.0246917 

        _cons |   5.449672   9.669776     0.56   0.573    -13.50274    24.40208 

--------------+---------------------------------------------------------------- 

TME2          | 

          Age |  -.0230224   .0211147    -1.09   0.276    -.0644065    .0183617 

         Male |  -.0461145   .1867698    -0.25   0.805    -.4121766    .3199477 

     Minority |   .0272558   .3661039     0.07   0.941    -.6902948    .7448063 

   Disability |   -.428773   .6256488    -0.69   0.493    -1.655022     .797476 

 Socialassist |   .5597349   .3544127     1.58   0.114    -.1349013    1.254371 

    Twounempl |   .3931691   .2118415     1.86   0.063    -.0220327    .8083709 

   Remittance |   .2418132   .3253031     0.74   0.457    -.3957692    .8793956 

Secondaryeduc |   .2617961   .2758849     0.95   0.343    -.2789283    .8025206 

 Tertiaryeduc |   .4270143   .2938807     1.45   0.146    -.1489814     1.00301 

       AM2008 |   1.110861   .2385366     4.66   0.000     .6433375    1.578384 

       AM2009 |    .032839    .215568     0.15   0.879    -.3896665    .4553446 

       Emplan |    .273116   .2148994     1.27   0.204     -.148079    .6943111 

  Jobsearchbt |   .4865343   .2493387     1.95   0.051    -.0021607    .9752293 

       Undur6 |  -1.229632   .3484286    -3.53   0.000     -1.91254   -.5467245 

      Undur12 |  -.5288263   .2760252    -1.92   0.055    -1.069826    .0121731 

      Undur24 |  -.9240161   .3143914    -2.94   0.003    -1.540212   -.3078202 

          FER |   .9365803   .3632649     2.58   0.010     .2245943    1.648566 

         GJAK |   1.063305   .3793692     2.80   0.005     .3197549    1.806855 

         GJIL |   .6252092   .3420067     1.83   0.068    -.0451115     1.29553 

          MIT |   1.049897   .3716283     2.83   0.005     .3215184    1.778275 

          PEJ |   1.096769   .3985844     2.75   0.006     .3155582     1.87798 

          PRZ |   .5635947   .4008738     1.41   0.160    -.2221034    1.349293 

      Vtcmncp |  -.7920202    .185652    -4.27   0.000    -1.155891   -.4281488 

        _cons |   -1.53445   .7677026    -2.00   0.046     -3.03912   -.0297811 

--------------+---------------------------------------------------------------- 

TME3          | 

          Age |   .0095294   .0240766     0.40   0.692    -.0376599    .0567188 

         Male |  -.1728018   .2247162    -0.77   0.442    -.6132373    .2676338 

     Minority |    .073275   .4223298     0.17   0.862    -.7544762    .9010261 

   Disability |    .117096   .7091327     0.17   0.869    -1.272779    1.506971 

 Socialassist |  -.1774981    .491178    -0.36   0.718    -1.140189    .7851931 

    Twounempl |   .7069163   .2685615     2.63   0.008     .1805455    1.233287 

   Remittance |   .1390156   .4267626     0.33   0.745    -.6974236    .9754549 

Secondaryeduc |   .1273452   .3300205     0.39   0.700    -.5194832    .7741735 

 Tertiaryeduc |  -.3026011    .336995    -0.90   0.369    -.9630991     .357897 

       AM2008 |   .3318749   .2876811     1.15   0.249    -.2319697    .8957195 

       AM2009 |  -.7350617   .2848813    -2.58   0.010    -1.293419   -.1767046 

       Emplan |   .7865257   .2914136     2.70   0.007     .2153655    1.357686 

  Jobsearchbt |   .8000072   .3485275     2.30   0.022     .1169059    1.483109 

       Undur6 |   .0009203   .4247558     0.00   0.998    -.8315858    .8334265 

      Undur12 |   .3828117   .3023662     1.27   0.205    -.2098152    .9754386 

      Undur24 |   .3530662   .3738044     0.94   0.345    -.3795768    1.085709 

          FER |  -.5227817   .3621072    -1.44   0.149    -1.232499    .1869355 

         GJAK |  -1.695781   .5737932    -2.96   0.003    -2.820394   -.5711666 

         GJIL |  -.5104089   .3389441    -1.51   0.132    -1.174727    .1539094 

          MIT |  -1.689925   .5029444    -3.36   0.001    -2.675678   -.7041722 

          PEJ |  -.7374181   .4909741    -1.50   0.133     -1.69971    .2248734 

          PRZ |    -.31525   .3929581    -0.80   0.422    -1.085434    .4549338 

      Vtcmncp |   .1120576   .2431995     0.46   0.645    -.3646046    .5887199 

        _cons |  -2.431239   .8687185    -2.80   0.005    -4.133896   -.7285821 

------------------------------------------------------------------------------- 

 

. tebalance sum 

 

  Covariate balance summary 



366 
 

                                                 Observations       

                               Treatment           Raw     Weighted 

                          ----------------------------------------- 

                            1bn.AMTYPE =           434        266.8 

                            2.AMTYPE   =           215        260.1 

                            3.AMTYPE   =           126        248.0 

                            Total      =           775        775.0 

                          ----------------------------------------- 

 

  ----------------------------------------------------------------- 

                  |Standardized differences          Variance ratio 

                  |        Raw    Weighted           Raw   Weighted 

  ----------------+------------------------------------------------ 

  2.AMTYPE        | 

              Age |  -.0678291   -.0018754      .5369847   .7090128 

             Male |  -.0132747    .0471284      1.004152   .9966165 

         Minority |   .0458827    .0136406      1.159304   1.042683 

       Disability |  -.0459175    .0263776      .7408577   1.220008 

     Socialassist |   .1072386   -.0373641        1.3155   .9218237 

        Twounempl |   .1581292   -.0316135      1.054328   .9960882 

       Remittance |   .0267562    .0027943      1.080152   1.007737 

    Secondaryeduc |   .0124827     .074304      1.006664   1.030859 

     Tertiaryeduc |    .026563   -.0285668      1.011413   .9920741 

           AM2008 |   .4176771    -.101535      1.737583   .9358358 

           AM2009 |  -.1748149   -.0001514      .8442664    .999914 

           Emplan |   .1672003   -.0670688      .8822599   1.072764 

      Jobsearchbt |   .1248105    .0480782        .82352   .9215799 

           Undur6 |  -.1918028    .0203489      .5470082   1.084407 

          Undur12 |  -.1510318    .0265457      .7264488    1.06986 

          Undur24 |   -.150218    .0830826      .6250328    1.40823 

              FER |   .0967362    .0293226      1.224914   1.058445 

             GJAK |  -.0026116    .0914655      .9972103   1.219827 

             GJIL |   .0048082   -.0458883      1.009151   .9408615 

              MIT |   .1844576   -.0184909      1.439318   .9711882 

              PEJ |   .0259385    .0134178      1.072776   1.035376 

              PRZ |  -.1775181   -.0363147      .6685847   .9094665 

          Vtcmncp |  -.3764772    -.041915      1.056687   .9920788 

  ----------------+------------------------------------------------ 

  3.AMTYPE        | 

              Age |   .0024615    -.014137      .6569841   .5916758 

             Male |  -.1212737    .2389363      1.008882   .9384594 

         Minority |   .0299832    .0966511      1.107869   1.311958 

       Disability |   .0383374    .0867318      1.251365   1.805588 

     Socialassist |   -.106935    .1485006       .714682   1.309968 

        Twounempl |    .400877    .0624914      1.037655   1.002314 

       Remittance |  -.0675719   -.0308559      .8155747   .9168337 

    Secondaryeduc |   .0804742    .2297438      1.028082    1.05904 

     Tertiaryeduc |   -.108869   -.2023614      .9544092   .9109877 

           AM2008 |   .1543468   -.0266902      1.310053   .9851328 

           AM2009 |  -.3846312   -.2308287      .6168735   .6979702 

           Emplan |   .4312289    .1184841      .6277311   .8578052 

      Jobsearchbt |    .365399    .1723042      .4722596   .7162723 

           Undur6 |  -.1288816   -.0108593      .6907432    .956348 

          Undur12 |   .0082529   -.0786436        1.0208   .7999073 

          Undur24 |   .0314918     .179775      1.090249   1.950019 

              FER |   .0540492   -.1419401      1.130358   .7206681 

             GJAK |  -.3820654     .038094      .3009627   1.091374 

             GJIL |   .0623979    .1986769      1.092133   1.221178 

              MIT |  -.2623877   -.1867469      .4324768     .70229 

              PEJ |  -.1302014    .1379881      .6699214   1.371341 
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              PRZ |   -.016284   -.0371711      .9746405   .9075171 

          Vtcmncp |  -.0482927   -.1599332      1.028956   .9515728 

  ----------------------------------------------------------------- 

 

 

 

 

*Final Model for EMP; IS defined as the control group  
 

 

.  . teffects ipwra (EMP Age Agesq Male Minority Disability Socialassist Twounempl Remittance 

Secondaryeduc Tertiaryeduc Amduration AM2009 AM2010 Cert Emplan Undur6 Undur12 Undur24  Regunmp, 

logit) (AMTYPE Age Male Minority Disability Socialassist Twounempl Remittance Secondaryeduc 

Tertiaryeduc  AM2008 AM2009 Emplan Jobsearchbt Undur6 Undur12 Undur24 FER GJAK GJIL MIT PEJ PRZ 

Vtcmncp), control(2) atet aequ 

 

Iteration 0:   EE criterion =  .00048362   

Iteration 1:   EE criterion =   .0000189   

Iteration 2:   EE criterion =  2.219e-06   

Iteration 3:   EE criterion =  1.265e-07   

Iteration 4:   EE criterion =  1.139e-08   

Iteration 5:   EE criterion =  7.640e-10   

 

Treatment-effects estimation                    Number of obs     =        775 

Estimator      : IPW regression adjustment 

Outcome model  : logit 

Treatment model: (multinomial) logit 

------------------------------------------------------------------------------- 

              |               Robust 

          EMP |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

--------------+---------------------------------------------------------------- 

ATET          | 

       AMTYPE | 

    (1 vs 2)  |   .0132943   .0493514     0.27   0.788    -.0834326    .1100213 

    (3 vs 2)  |  -.1615823   .0557652    -2.90   0.004    -.2708801   -.0522845 

--------------+---------------------------------------------------------------- 

POmean        | 

       AMTYPE | 

           2  |   .4221895   .0450768     9.37   0.000     .3338406    .5105385 

--------------+---------------------------------------------------------------- 

OME1          | 

          Age |   .3555378   .1599303     2.22   0.026     .0420802    .6689954 

        Agesq |  -.0047716   .0025722    -1.86   0.064     -.009813    .0002698 

         Male |   .6272575   .2151691     2.92   0.004     .2055339    1.048981 

     Minority |  -1.062448   .4922263    -2.16   0.031    -2.027193   -.0977018 

   Disability |  -.7002416   .7995441    -0.88   0.381    -2.267319    .8668361 

 Socialassist |  -.9621916   .4325418    -2.22   0.026    -1.809958   -.1144252 

    Twounempl |  -.3550106    .250606    -1.42   0.157    -.8461894    .1361681 

   Remittance |  -.5315613   .3776834    -1.41   0.159    -1.271807    .2086845 

Secondaryeduc |    .408088    .339943     1.20   0.230     -.258188    1.074364 

 Tertiaryeduc |   .9511209   .3610006     2.63   0.008     .2435726    1.658669 

   Amduration |   .0677976   .0920094     0.74   0.461    -.1125375    .2481327 

       AM2009 |  -.3039122    .329441    -0.92   0.356    -.9496046    .3417802 

       AM2010 |  -.5634386   .3193848    -1.76   0.078    -1.189421    .0625441 

         Cert |  -.2398386   .2622122    -0.91   0.360    -.7537651     .274088 

       Emplan |   .2390566   .2359918     1.01   0.311    -.2234789    .7015921 

       Undur6 |   .8193721   .3540247     2.31   0.021     .1254965    1.513248 

      Undur12 |   -.446396   .3288358    -1.36   0.175    -1.090902    .1981103 
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      Undur24 |   .0048597   .3442055     0.01   0.989    -.6697706      .67949 

      Regunmp |   .0218089   .0111575     1.95   0.051    -.0000594    .0436772 

        _cons |  -7.357804   2.542043    -2.89   0.004    -12.34012   -2.375492 

--------------+---------------------------------------------------------------- 

OME2          | 

          Age |   .7615354   .5099778     1.49   0.135    -.2380027    1.761073 

        Agesq |   -.012766   .0090131    -1.42   0.157    -.0304312    .0048993 

         Male |   1.195647   .3915337     3.05   0.002     .4282555    1.963039 

     Minority |  -.3391327   1.140973    -0.30   0.766    -2.575399    1.897134 

   Disability |  -8.153542   1.426372    -5.72   0.000    -10.94918   -5.357904 

 Socialassist |  -1.020312   .7201723    -1.42   0.157    -2.431823    .3912001 

    Twounempl |  -.2178595   .4368585    -0.50   0.618    -1.074086    .6383674 

   Remittance |   -.741187   .6449859    -1.15   0.250    -2.005336    .5229622 

Secondaryeduc |  -1.452402    .538278    -2.70   0.007    -2.507408   -.3973969 

 Tertiaryeduc |  -.7624754   .5641786    -1.35   0.177    -1.868245    .3432943 

   Amduration |  -.2353584    .165339    -1.42   0.155    -.5594168       .0887 

       AM2009 |   -.204226   .4171904    -0.49   0.624    -1.021904    .6134522 

       AM2010 |  -.7458789   .4596267    -1.62   0.105    -1.646731    .1549729 

         Cert |   .6266007   .4030011     1.55   0.120    -.1632669    1.416468 

       Emplan |   .1962163   .4219629     0.47   0.642    -.6308157    1.023248 

       Undur6 |   .8622146   .5673309     1.52   0.129    -.2497336    1.974163 

      Undur12 |   .3543984   .6307943     0.56   0.574    -.8819357    1.590733 

      Undur24 |   .7979761   .9120326     0.87   0.382     -.989575    2.585527 

      Regunmp |  -.0245198    .019497    -1.26   0.209    -.0627332    .0136936 

        _cons |  -9.521713   7.069237    -1.35   0.178    -23.37716    4.333738 

--------------+---------------------------------------------------------------- 

OME3          | 

          Age |  -.2186589   .4498074    -0.49   0.627    -1.100265    .6629474 

        Agesq |    .003462   .0066684     0.52   0.604    -.0096079    .0165318 

         Male |   .8357335   .5236569     1.60   0.110    -.1906152    1.862082 

     Minority |  -1.243846   1.726844    -0.72   0.471    -4.628398    2.140707 

   Disability |   2.494899   1.027847     2.43   0.015     .4803557    4.509443 

 Socialassist |  -3.900294   1.487789    -2.62   0.009    -6.816306   -.9842812 

    Twounempl |   -2.28188    .558867    -4.08   0.000    -3.377239   -1.186521 

   Remittance |  -2.468048   1.132103    -2.18   0.029     -4.68693   -.2491661 

Secondaryeduc |   2.067616   1.046027     1.98   0.048     .0174413    4.117791 

 Tertiaryeduc |   2.663065   .9968961     2.67   0.008     .7091844    4.616945 

   Amduration |  -.2908568     .24037    -1.21   0.226    -.7619732    .1802597 

       AM2009 |  -1.434142   .8174757    -1.75   0.079    -3.036365    .1680809 

       AM2010 |  -.2140462   .7878155    -0.27   0.786    -1.758136    1.330044 

         Cert |  -.0363909   .5660568    -0.06   0.949    -1.145842     1.07306 

       Emplan |   .9753456   .5803867     1.68   0.093    -.1621913    2.112883 

       Undur6 |   .7258337   .8339626     0.87   0.384     -.908703     2.36037 

      Undur12 |   1.722254   .6675755     2.58   0.010       .41383    3.030678 

      Undur24 |   2.228145   .8650997     2.58   0.010     .5325807    3.923709 

      Regunmp |  -.1207516   .0359788    -3.36   0.001    -.1912688   -.0502345 

        _cons |   4.703475   7.113951     0.66   0.509    -9.239613    18.64656 

--------------+---------------------------------------------------------------- 

TME1          | 

          Age |   .0230224   .0211147     1.09   0.276    -.0183617    .0644065 

         Male |   .0461145   .1867698     0.25   0.805    -.3199477    .4121766 

     Minority |  -.0272558   .3661039    -0.07   0.941    -.7448063    .6902948 

   Disability |    .428773   .6256488     0.69   0.493     -.797476    1.655022 

 Socialassist |  -.5597349   .3544127    -1.58   0.114    -1.254371    .1349013 

    Twounempl |  -.3931691   .2118415    -1.86   0.063    -.8083709    .0220327 

   Remittance |  -.2418132   .3253031    -0.74   0.457    -.8793956    .3957692 

Secondaryeduc |  -.2617961   .2758849    -0.95   0.343    -.8025206    .2789283 

 Tertiaryeduc |  -.4270143   .2938807    -1.45   0.146     -1.00301    .1489814 

       AM2008 |  -1.110861   .2385366    -4.66   0.000    -1.578384   -.6433375 

       AM2009 |   -.032839    .215568    -0.15   0.879    -.4553446    .3896665 
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       Emplan |   -.273116   .2148994    -1.27   0.204    -.6943111     .148079 

  Jobsearchbt |  -.4865343   .2493387    -1.95   0.051    -.9752293    .0021607 

       Undur6 |   1.229632   .3484286     3.53   0.000     .5467245     1.91254 

      Undur12 |   .5288263   .2760252     1.92   0.055    -.0121731    1.069826 

      Undur24 |   .9240161   .3143914     2.94   0.003     .3078202    1.540212 

          FER |  -.9365803   .3632649    -2.58   0.010    -1.648566   -.2245943 

         GJAK |  -1.063305   .3793692    -2.80   0.005    -1.806855   -.3197549 

         GJIL |  -.6252092   .3420067    -1.83   0.068     -1.29553    .0451115 

          MIT |  -1.049897   .3716283    -2.83   0.005    -1.778275   -.3215184 

          PEJ |  -1.096769   .3985844    -2.75   0.006     -1.87798   -.3155582 

          PRZ |  -.5635947   .4008738    -1.41   0.160    -1.349293    .2221034 

      Vtcmncp |   .7920202    .185652     4.27   0.000     .4281488    1.155891 

        _cons |    1.53445   .7677026     2.00   0.046     .0297811     3.03912 

--------------+---------------------------------------------------------------- 

TME3          | 

          Age |   .0325518   .0280539     1.16   0.246    -.0224327    .0875364 

         Male |  -.1266873   .2503674    -0.51   0.613    -.6173984    .3640239 

     Minority |   .0460192   .4873019     0.09   0.925    -.9090749    1.001113 

   Disability |    .545869    .835418     0.65   0.513     -1.09152    2.183258 

 Socialassist |   -.737233   .5527755    -1.33   0.182    -1.820653    .3461872 

    Twounempl |   .3137472   .2951957     1.06   0.288    -.2648257    .8923202 

   Remittance |  -.1027976   .4828955    -0.21   0.831    -1.049255    .8436602 

Secondaryeduc |  -.1344509   .3767758    -0.36   0.721     -.872918    .6040161 

 Tertiaryeduc |  -.7296153   .3913419    -1.86   0.062    -1.496631    .0374008 

       AM2008 |  -.7789858   .2998533    -2.60   0.009    -1.366688   -.1912841 

       AM2009 |  -.7679007   .3201505    -2.40   0.016    -1.395384   -.1404173 

       Emplan |   .5134096   .3270476     1.57   0.116    -.1275919    1.154411 

  Jobsearchbt |   .3134729    .391893     0.80   0.424    -.4546233    1.081569 

       Undur6 |   1.230552    .504891     2.44   0.015     .2409843    2.220121 

      Undur12 |   .9116381    .368618     2.47   0.013       .18916    1.634116 

      Undur24 |   1.277082   .4312697     2.96   0.003     .4318091    2.122355 

          FER |  -1.459362   .4286079    -3.40   0.001    -2.299418    -.619306 

         GJAK |  -2.759085   .6454695    -4.27   0.000    -4.024183   -1.493988 

         GJIL |  -1.135618   .3996894    -2.84   0.004    -1.918995   -.3522413 

          MIT |  -2.739822   .5609588    -4.88   0.000    -3.839281   -1.640363 

          PEJ |  -1.834187   .5650037    -3.25   0.001    -2.941574   -.7268004 

          PRZ |  -.8788447   .4791612    -1.83   0.067    -1.817983     .060294 

      Vtcmncp |   .9040778   .2660051     3.40   0.001     .3827174    1.425438 

        _cons |  -.8967887   1.020752    -0.88   0.380    -2.897426    1.103849 

------------------------------------------------------------------------------- 

 

. tebalance sum 

 

  Covariate balance summary 

                                                 Observations       

                               Treatment           Raw     Weighted 

                          ----------------------------------------- 

                            1bn.AMTYPE =           434        275.4 

                            2.AMTYPE   =           215        261.1 

                            3.AMTYPE   =           126        238.5 

                            Total      =           775        775.0 

                          ----------------------------------------- 

 

  ----------------------------------------------------------------- 

                  |Standardized differences          Variance ratio 

                  |        Raw    Weighted           Raw   Weighted 

  ----------------+------------------------------------------------ 

  1.AMTYPE        | 

              Age |   .0678291       .0602       1.86225   1.972814 

             Male |   .0132747    .0213407      .9958648   .9971013 
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         Minority |  -.0458827    .0125859      .8625864   1.043287 

       Disability |   .0459175    .0229909      1.349787    1.15563 

     Socialassist |  -.1072386    -.032924      .7601673   .9138627 

        Twounempl |  -.1581292   -.0648614      .9484715   .9731745 

       Remittance |  -.0267562   -.0247555       .925796   .9328523 

    Secondaryeduc |  -.0124827    .0487914      .9933797   1.019859 

     Tertiaryeduc |   -.026563   -.0226891      .9887159   .9920579 

           AM2008 |  -.4176771   -.0601096       .575512   .8931296 

           AM2009 |   .1748149    -.082829       1.18446   .9452037 

           Emplan |  -.1672003   -.0682123      1.133453   1.045229 

      Jobsearchbt |  -.1248105    .0984191        1.2143   .8850456 

           Undur6 |   .1918028    .0501703      1.828126   1.142705 

          Undur12 |   .1510318    .0542696      1.376559   1.109925 

          Undur24 |    .150218    .1550883      1.599916   1.633426 

              FER |  -.0967362    .0543424       .816384   1.139787 

             GJAK |   .0026116    .1312138      1.002798    1.34387 

             GJIL |  -.0048082   -.1472809      .9909323    .837401 

              MIT |  -.1844576   -.0426374      .6947735   .9084236 

              PEJ |  -.0259385    .0194836      .9321606   1.054722 

              PRZ |   .1775181   -.0109066      1.495697   .9795942 

          Vtcmncp |   .3764772    .0531773      .9463541   .9752052 

  ----------------+------------------------------------------------ 

  3.AMTYPE        | 

              Age |   .0798579    .1174111      1.223469   1.531705 

             Male |  -.1079032    .0738068       1.00471   .9871909 

         Minority |  -.0158672    .1235349      .9556325   1.451093 

       Disability |   .0836776    .0690918      1.689075   1.500922 

     Socialassist |  -.2128018    .0337177      .5432779   1.090079 

        Twounempl |   .2389379    .0331421      .9841861   1.010847 

       Remittance |  -.0941555   -.0512798      .7550558   .8628922 

    Secondaryeduc |    .067946    .1495471      1.021276   1.046757 

     Tertiaryeduc |  -.1354217   -.1531382      .9436395   .9296092 

           AM2008 |  -.2614834    .0788847      .7539509   1.137736 

           AM2009 |  -.2082087   -.2109584      .7306621   .8405048 

           Emplan |   .2610492    .1011247      .7115037   .9183888 

      Jobsearchbt |   .2414269    .3092292      .5734647   .6154978 

           Undur6 |    .063799    .0326308      1.262766   1.092897 

          Undur12 |   .1590057    .0046304      1.405192   1.009778 

          Undur24 |   .1809766     .203182      1.744307   1.848489 

              FER |  -.0426173    .0097031      .9228061    1.02515 

             GJAK |  -.3792364   -.0181466      .3018047   .9540108 

             GJIL |   .0575603    .0209381       1.08223   1.021163 

              MIT |  -.4401124   -.1468737      .3004735   .6912175 

              PEJ |  -.1557422   -.0848431      .6244744   .7702631 

              PRZ |    .161032    .0353862      1.457767   1.065677 

          Vtcmncp |   .3262228   -.0574194      .9737566   1.020832 

  ----------------------------------------------------------------- 

Table A5.4 Estimated results from Inverse probability weighting – 

Regression Adjustment - ACTSRCAT Outcome Model 
  

**ACTSRCAT Outcome Model  
* including all variables  
 

 

. teffects ipwra (ACTSRCAT Age Agesq Male Minority Disability Secondaryeduc Tertiaryeduc 

Socialassist Amduration AM2008 AM2009 Emplan Undur6 Undur12 Undur24 Regunemp, logit) (AMTYPE Age 
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Male Minority Disability Socialassist Twounempl Remittance Secondaryeduc Tertiaryeduc AM2008 

AM2009 Emplan Jobsearchbt Undur6 Undur12 Undur24 FER GJAK GJIL MIT PEJ PRZ Vtcmncp), control(1) 

atet aequ 

 

Iteration 0:   EE criterion =  .01638724   

Iteration 1:   EE criterion =  .01006662   

Iteration 2:   EE criterion =  .00847948   

Iteration 3:   EE criterion =  .00062315   

Iteration 4:   EE criterion =  .00003246   

Iteration 5:   EE criterion =  1.686e-06   

Iteration 6:   EE criterion =  1.300e-07   

Iteration 7:   EE criterion =  3.741e-09   

Iteration 8:   EE criterion =  9.645e-10   

 

Treatment-effects estimation                    Number of obs     =        385 

Estimator      : IPW regression adjustment 

Outcome model  : logit 

Treatment model: (multinomial) logit 

------------------------------------------------------------------------------- 

              |               Robust 

     ACTSRCAT |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

--------------+---------------------------------------------------------------- 

ATET          | 

       AMTYPE | 

    (2 vs 1)  |   .1921274   .0642331     2.99   0.003     .0662329     .318022 

    (3 vs 1)  |   .1054037   .0689658     1.53   0.126    -.0297668    .2405741 

--------------+---------------------------------------------------------------- 

POmean        | 

       AMTYPE | 

           1  |   .6474952   .0541566    11.96   0.000     .5413502    .7536402 

--------------+---------------------------------------------------------------- 

OME1          | 

          Age |   .7855234   .3305322     2.38   0.017     .1376921    1.433355 

        Agesq |  -.0131236   .0053049    -2.47   0.013    -.0235211   -.0027262 

         Male |   .9209845   .4581127     2.01   0.044        .0231    1.818869 

     Minority |   1.178178   1.126998     1.05   0.296    -1.030698    3.387053 

   Disability |   1.958913   1.358724     1.44   0.149    -.7041378    4.621963 

Secondaryeduc |  -.3781189   .7702736    -0.49   0.624    -1.887827     1.13159 

 Tertiaryeduc |   .6546435   .8086952     0.81   0.418    -.9303699    2.239657 

 Socialassist |  -.1283874   .9438567    -0.14   0.892    -1.978313    1.721538 

   Amduration |   .1745178    .247074     0.71   0.480    -.3097383    .6587739 

       AM2008 |   .5782775   .7065633     0.82   0.413    -.8065611    1.963116 

       AM2009 |   .4253178    .509013     0.84   0.403    -.5723294    1.422965 

       Emplan |   .3363128   .6293192     0.53   0.593    -.8971301    1.569756 

       Undur6 |   .1944928   .8136496     0.24   0.811    -1.400231    1.789217 

      Undur12 |   .9896838   .7311165     1.35   0.176    -.4432782    2.422646 

      Undur24 |   .6338765   .9148453     0.69   0.488    -1.159187     2.42694 

     Regunemp |   .0346191    .030677     1.13   0.259    -.0255066    .0947449 

        _cons |  -13.64592   5.354346    -2.55   0.011    -24.14025   -3.151598 

--------------+---------------------------------------------------------------- 

OME2          | 

          Age |   -1.26435   .8890177    -1.42   0.155    -3.006792     .478093 

        Agesq |    .018973   .0142685     1.33   0.184    -.0089928    .0469388 

         Male |   -.348881   .7102232    -0.49   0.623    -1.740893    1.043131 

     Minority |   .0989111   1.165032     0.08   0.932    -2.184509    2.382331 

   Disability |  -2.907915   1.289745    -2.25   0.024    -5.435768   -.3800618 

Secondaryeduc |   .2816064   .9344415     0.30   0.763    -1.549865    2.113078 

 Tertiaryeduc |   1.101218    1.27291     0.87   0.387     -1.39364    3.596076 

 Socialassist |   .3290989   .8126935     0.40   0.686    -1.263751    1.921949 

   Amduration |    .990741   .3812899     2.60   0.009     .2434266    1.738055 
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       AM2008 |   -.609777   .9201519    -0.66   0.508    -2.413242    1.193688 

       AM2009 |  -1.042218   .9379028    -1.11   0.266    -2.880474    .7960374 

       Emplan |  -1.988228   .8890076    -2.24   0.025    -3.730651   -.2458048 

       Undur6 |  -4.996561   1.422994    -3.51   0.000    -7.785578   -2.207544 

      Undur12 |  -1.976822   1.254593    -1.58   0.115     -4.43578    .4821365 

      Undur24 |   -2.16246   1.197947    -1.81   0.071    -4.510393    .1854734 

     Regunemp |  -.0283003   .0470194    -0.60   0.547    -.1204566    .0638559 

        _cons |   21.76476   12.78821     1.70   0.089    -3.299671    46.82919 

--------------+---------------------------------------------------------------- 

OME3          | 

          Age |   .6639564   1.250694     0.53   0.596     -1.78736    3.115272 

        Agesq |   -.013077   .0181811    -0.72   0.472    -.0487113    .0225574 

         Male |   4.649181   1.594984     2.91   0.004      1.52307    7.775291 

     Minority |   15.48883   3.550417     4.36   0.000     8.530138    22.44752 

   Disability |   -6.84905   1.993739    -3.44   0.001    -10.75671   -2.941393 

Secondaryeduc |   1.228815   1.286932     0.95   0.340    -1.293525    3.751156 

 Tertiaryeduc |   4.209563   2.888558     1.46   0.145    -1.451908    9.871033 

 Socialassist |  -6.913187   2.858857    -2.42   0.016    -12.51644    -1.30993 

   Amduration |  -.9779994   .8239995    -1.19   0.235    -2.593009    .6370099 

       AM2008 |  -1.517675   1.648279    -0.92   0.357    -4.748242    1.712892 

       AM2009 |   3.081588   1.790679     1.72   0.085     -.428078    6.591254 

       Emplan |  -1.465409   1.705103    -0.86   0.390     -4.80735    1.876531 

       Undur6 |  -4.689655   1.513316    -3.10   0.002    -7.655699   -1.723611 

      Undur12 |  -3.201606   1.299426    -2.46   0.014    -5.748434   -.6547785 

      Undur24 |  -6.210585   1.942114    -3.20   0.001    -10.01706   -2.404112 

     Regunemp |   .2244805   .0981028     2.29   0.022     .0322026    .4167584 

        _cons |   -9.28485   21.76238    -0.43   0.670    -51.93833    33.36863 

--------------+---------------------------------------------------------------- 

TME2          | 

          Age |  -.0107182   .0301458    -0.36   0.722    -.0698028    .0483665 

         Male |  -.0145628   .2928872    -0.05   0.960    -.5886112    .5594856 

     Minority |   .5183788   .4725444     1.10   0.273    -.4077912    1.444549 

   Disability |    -.24759   .7675267    -0.32   0.747    -1.751915    1.256735 

 Socialassist |   .6917754   .5241023     1.32   0.187    -.3354461    1.718997 

    Twounempl |   .4810493   .3228976     1.49   0.136    -.1518184    1.113917 

   Remittance |   .5892035   .4846377     1.22   0.224     -.360669    1.539076 

Secondaryeduc |   .7108797   .3644914     1.95   0.051    -.0035105     1.42527 

 Tertiaryeduc |   .5889222   .4149555     1.42   0.156    -.2243757     1.40222 

       AM2008 |   1.198901   .3747809     3.20   0.001     .4643434    1.933458 

       AM2009 |  -.2354281   .3479118    -0.68   0.499    -.9173226    .4464664 

       Emplan |   .4894523   .3400249     1.44   0.150    -.1769844    1.155889 

  Jobsearchbt |   .9085695   .3747099     2.42   0.015     .1741516    1.642987 

       Undur6 |  -1.203228   .6725296    -1.79   0.074    -2.521361    .1149062 

      Undur12 |  -.7441301    .422225    -1.76   0.078    -1.571676    .0834157 

      Undur24 |  -1.227016   .4865824    -2.52   0.012      -2.1807   -.2733315 

          FER |   1.351682   .5873415     2.30   0.021     .2005142    2.502851 

         GJAK |   1.490546   .6188091     2.41   0.016      .277703     2.70339 

         GJIL |   .0833482   .6307585     0.13   0.895    -1.152916    1.319612 

          MIT |   .8992903   .5857786     1.54   0.125    -.2488146    2.047395 

          PEJ |   2.379415   .7201428     3.30   0.001     .9679614    3.790869 

          PRZ |   .5260253   .6516298     0.81   0.420    -.7511456    1.803196 

      Vtcmncp |   -1.22444   .2836089    -4.32   0.000    -1.780303   -.6685763 

        _cons |  -2.502794   1.177249    -2.13   0.034    -4.810159   -.1954287 

--------------+---------------------------------------------------------------- 

TME3          | 

          Age |   .0055744   .0327451     0.17   0.865    -.0586049    .0697537 

         Male |   .3828976   .3331292     1.15   0.250    -.2700237    1.035819 

     Minority |  -.0209445   .5453514    -0.04   0.969    -1.089814    1.047925 

   Disability |  -.6334026   .9198573    -0.69   0.491     -2.43629    1.169485 

 Socialassist |    .362595   .6041698     0.60   0.548    -.8215561    1.546746 
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    Twounempl |   1.395816   .4146874     3.37   0.001     .5830436    2.208588 

   Remittance |   .3777435   .6364503     0.59   0.553    -.8696762    1.625163 

Secondaryeduc |   .1742506    .433992     0.40   0.688    -.6763581    1.024859 

 Tertiaryeduc |  -.1356057   .4379488    -0.31   0.757    -.9939696    .7227581 

       AM2008 |   .5498323   .4880917     1.13   0.260    -.4068099    1.506475 

       AM2009 |   -.421889   .3781891    -1.12   0.265    -1.163126    .3193479 

       Emplan |   1.395946   .4112312     3.39   0.001     .5899479    2.201944 

  Jobsearchbt |   .8051559   .4278951     1.88   0.060     -.033503    1.643815 

       Undur6 |  -.0305311   .6315204    -0.05   0.961    -1.268288    1.207226 

      Undur12 |  -.4555178   .4327111    -1.05   0.292    -1.303616    .3925805 

      Undur24 |  -.5648889   .5551786    -1.02   0.309    -1.653019    .5232411 

          FER |   -.380537   .5503666    -0.69   0.489    -1.459236    .6981616 

         GJAK |  -1.356918   .6936049    -1.96   0.050    -2.716359    .0025224 

         GJIL |  -.9156303   .5531677    -1.66   0.098    -1.999819    .1685584 

          MIT |  -2.150158    .647901    -3.32   0.001     -3.42002    -.880295 

          PEJ |   .8573721   .7078696     1.21   0.226    -.5300269    2.244771 

          PRZ |   .2243124   .6074618     0.37   0.712    -.9662909    1.414916 

      Vtcmncp |  -.0192191   .3203944    -0.06   0.952    -.6471806    .6087423 

        _cons |  -2.938529   1.270639    -2.31   0.021    -5.428934   -.4481228 

------------------------------------------------------------------------------- 

 

. tebalance sum 

 

  Covariate balance summary 

                                                 Observations       

                               Treatment           Raw     Weighted 

                          ----------------------------------------- 

                            1bn.AMTYPE =           198        127.6 

                            2.AMTYPE   =           106        135.2 

                            3.AMTYPE   =            81        122.3 

                            Total      =           385        385.0 

                          ----------------------------------------- 

 

  ----------------------------------------------------------------- 

                  |Standardized differences          Variance ratio 

                  |        Raw    Weighted           Raw   Weighted 

  ----------------+------------------------------------------------ 

  2.AMTYPE        | 

              Age |   .0469178   -.1176441      .6697239   .4930499 

             Male |   .0228163    .0666434      1.006693    1.00914 

         Minority |    .130576    .0284658       1.39318   1.065543 

       Disability |  -.0400379    .0192032      .8099595   1.119374 

     Socialassist |   .1173884   -.1151869      1.254727   .8416362 

        Twounempl |   .1586626    .0441835      1.055684   1.008288 

       Remittance |   .0734337    .0220473      1.220114    1.05637 

    Secondaryeduc |   .1169856    .0733064      1.004898   .9966409 

     Tertiaryeduc |  -.0120731   -.0169054      .9935561   .9845396 

           AM2008 |   .4462825   -.1384233      2.024386    .900612 

           AM2009 |  -.2650759   -.1286476      .7418974   .8425819 

           Emplan |   .2459716   -.1422474      .8399412    1.18709 

      Jobsearchbt |   .2145967     .171024      .7404639   .7752592 

           Undur6 |  -.1825743    .0183309      .4910266   1.095554 

          Undur12 |  -.2528701   -.0101925      .6357149   .9765382 

          Undur24 |  -.1586015    .1033995      .6272406   1.513257 

              FER |   .2020129    .1698698       1.49761   1.382373 

             GJAK |   .0496555     .062013       1.10144   1.123216 

             GJIL |  -.2071617   -.0277422      .7217675   .9481301 

              MIT |   .1468002   -.2045398      1.211077   .8445723 

              PEJ |   .1918449     .187964      1.977895    1.93371 

              PRZ |  -.2406805     .018363      .5451572   1.061895 
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          Vtcmncp |  -.5956623   -.0501914      .9392673   .9665852 

  ----------------+------------------------------------------------ 

  3.AMTYPE        | 

              Age |   .0610288   -.1824096      .5611763   .2705367 

             Male |  -.0504876    .1871295      .9986175    1.00447 

         Minority |  -.0157253    .0395087       .962368    1.09212 

       Disability |  -.0622575    .0405248       .711348   1.260678 

     Socialassist |  -.1586101   -.0429769      .6753459   .9426918 

        Twounempl |   .4780627   -.0294926       1.00627   .9923483 

       Remittance |  -.0609651    .2677074       .836034   1.700987 

    Secondaryeduc |  -.0011195    .1472895      1.007248   .9836359 

     Tertiaryeduc |   .0230942   -.1275994      1.027585   .8767174 

           AM2008 |   .1280804    -.224049      1.322035   .8261523 

           AM2009 |   -.330247   -.2959073      .6696204   .6227825 

           Emplan |   .4933111     .064386      .6060147   .9075907 

      Jobsearchbt |   .4226874    .3922785      .4689016   .4719845 

           Undur6 |  -.0250875     .062998      .9302026   1.346306 

          Undur12 |  -.1115962   -.0377317      .8471476   .9153915 

          Undur24 |  -.1275203    .2756192      .6995739   2.532545 

              FER |   .0589499   -.0194497      1.151546   .9566218 

             GJAK |  -.3435652   -.0827095      .3678549   .8354458 

             GJIL |  -.0240006    .2737024      .9762657    1.47047 

              MIT |   -.376092   -.3607303      .4285997   .6929506 

              PEJ |   .1648216      .35033      1.833082   2.875119 

              PRZ |   .0896691    .0754917      1.182391   1.264106 

          Vtcmncp |  -.1227302   -.0575387      1.051715   .9621428 

  ----------------------------------------------------------------- 

 

 

*ACTSRCAT 

 

 

. . teffects ipwra (ACTSRCAT Age Agesq Male Minority Disability Secondaryeduc Tertiaryeduc 

Socialassist Amduration AM2008 AM2009 Emplan Undur6 Undur12 Undur24 Regunemp, logit) (AMTYPE Age 

Male Minority Disability Socialassist Twounempl Remittance Secondaryeduc Tertiaryeduc AM2008 

AM2009 Emplan Jobsearchbt Undur6 Undur12 Undur24 FER GJAK GJIL MIT PEJ PRZ Vtcmncp), control(2) 

atet aequ 

 

Iteration 0:   EE criterion =  .01592071   

Iteration 1:   EE criterion =  .01166808   

Iteration 2:   EE criterion =  .00093145   

Iteration 3:   EE criterion =   .0001571   

Iteration 4:   EE criterion =  9.368e-06   

Iteration 5:   EE criterion =  7.510e-06   

Iteration 6:   EE criterion =  2.879e-06   

Iteration 7:   EE criterion =  1.587e-07   

Iteration 8:   EE criterion =  3.983e-09   

Iteration 9:   EE criterion =  2.411e-09   

 

Treatment-effects estimation                    Number of obs     =        385 

Estimator      : IPW regression adjustment 

Outcome model  : logit 

Treatment model: (multinomial) logit 

------------------------------------------------------------------------------- 

              |               Robust 

     ACTSRCAT |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

--------------+---------------------------------------------------------------- 

ATET          | 

       AMTYPE | 

    (1 vs 2)  |  -.1920193   .0415693    -4.62   0.000    -.2734936    -.110545 
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    (3 vs 2)  |  -.0886878   .0388308    -2.28   0.022    -.1647947   -.0125809 

--------------+---------------------------------------------------------------- 

POmean        | 

       AMTYPE | 

           2  |   .8637365   .0262012    32.97   0.000     .8123832    .9150898 

--------------+---------------------------------------------------------------- 

OME1          | 

          Age |   .5278033   .2427499     2.17   0.030     .0520223    1.003584 

        Agesq |  -.0094776   .0040586    -2.34   0.020    -.0174323   -.0015228 

         Male |   .2355423   .3310657     0.71   0.477    -.4133345    .8844191 

     Minority |   1.606358   .8089989     1.99   0.047     .0207498    3.191967 

   Disability |   1.510059   1.182681     1.28   0.202    -.8079539    3.828072 

Secondaryeduc |  -.3784887   .4564943    -0.83   0.407    -1.273201    .5162238 

 Tertiaryeduc |   .0547136   .5274265     0.10   0.917    -.9790233    1.088451 

 Socialassist |  -.3859264   .5939675    -0.65   0.516    -1.550081    .7782284 

   Amduration |   .2676195   .1799104     1.49   0.137    -.0849984    .6202373 

       AM2008 |   .5012953   .5872473     0.85   0.393    -.6496882    1.652279 

       AM2009 |   .1660366   .3802438     0.44   0.662    -.5792275    .9113006 

       Emplan |  -1.026109   .4005349    -2.56   0.010    -1.811143   -.2410748 

       Undur6 |  -.1188785   .5967711    -0.20   0.842    -1.288528    1.050771 

      Undur12 |   .7633018   .4251614     1.80   0.073    -.0699993    1.596603 

      Undur24 |   .9534763   .6155676     1.55   0.121    -.2530142    2.159967 

     Regunemp |  -.0151766   .0201283    -0.75   0.451    -.0546275    .0242742 

        _cons |  -6.647015   3.730022    -1.78   0.075    -13.95772    .6636939 

--------------+---------------------------------------------------------------- 

OME2          | 

          Age |  -1.702706    1.20255    -1.42   0.157     -4.05966    .6542483 

        Agesq |   .0239457   .0189859     1.26   0.207    -.0132659    .0611573 

         Male |   .2616281   1.127252     0.23   0.816    -1.947745    2.471001 

     Minority |   .5560734   1.336804     0.42   0.677    -2.064015    3.176161 

   Disability |  -6.450657   3.181505    -2.03   0.043    -12.68629   -.2150218 

Secondaryeduc |  -.4575954   1.079094    -0.42   0.672    -2.572581     1.65739 

 Tertiaryeduc |  -.0416049   1.848478    -0.02   0.982    -3.664555    3.581345 

 Socialassist |  -.5028637   .9755297    -0.52   0.606    -2.414867    1.409139 

   Amduration |   1.039097   .5992965     1.73   0.083     -.135503    2.213696 

       AM2008 |  -.2919937   1.836497    -0.16   0.874    -3.891462    3.307474 

       AM2009 |  -1.299163   .9690926    -1.34   0.180    -3.198549    .6002239 

       Emplan |  -2.900869   1.030958    -2.81   0.005     -4.92151   -.8802284 

       Undur6 |  -4.684602   1.547021    -3.03   0.002    -7.716707   -1.652496 

      Undur12 |  -.0854218   1.014419    -0.08   0.933    -2.073647    1.902803 

      Undur24 |  -1.278675   1.358028    -0.94   0.346     -3.94036    1.383011 

     Regunemp |  -.1399308   .0716475    -1.95   0.051    -.2803574    .0004957 

        _cons |   34.86274   18.03677     1.93   0.053    -.4886715    70.21416 

--------------+---------------------------------------------------------------- 

OME3          | 

          Age |  -.9192463   1.382563    -0.66   0.506     -3.62902    1.790527 

        Agesq |   .0090623   .0189473     0.48   0.632    -.0280738    .0461984 

         Male |   6.747202   2.432296     2.77   0.006     1.979988    11.51442 

     Minority |   25.01594   7.829698     3.20   0.001     9.670016    40.36187 

   Disability |  -6.284884   2.104192    -2.99   0.003    -10.40902   -2.160744 

Secondaryeduc |   3.426887   1.953232     1.75   0.079    -.4013775    7.255151 

 Tertiaryeduc |   10.50046   6.058336     1.73   0.083    -1.373658    22.37458 

 Socialassist |  -17.17769   6.184165    -2.78   0.005    -29.29843   -5.056948 

   Amduration |  -2.962514   1.642176    -1.80   0.071     -6.18112    .2560918 

       AM2008 |  -1.354023   1.339307    -1.01   0.312    -3.979016    1.270971 

       AM2009 |   6.973179   3.339297     2.09   0.037     .4282767    13.51808 

       Emplan |   2.308827   2.702151     0.85   0.393    -2.987291    7.604945 

       Undur6 |  -6.769747   1.777209    -3.81   0.000    -10.25301   -3.286481 

      Undur12 |  -1.536215   1.280427    -1.20   0.230    -4.045806    .9733759 

      Undur24 |  -5.365509    1.51606    -3.54   0.000    -8.336932   -2.394086 
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     Regunemp |   .2624056   .0846091     3.10   0.002     .0965747    .4282365 

        _cons |   18.63529   24.66947     0.76   0.450    -29.71599    66.98657 

--------------+---------------------------------------------------------------- 

TME1          | 

          Age |   .0107182   .0301458     0.36   0.722    -.0483665    .0698028 

         Male |   .0145628   .2928872     0.05   0.960    -.5594856    .5886112 

     Minority |  -.5183788   .4725444    -1.10   0.273    -1.444549    .4077912 

   Disability |     .24759   .7675267     0.32   0.747    -1.256735    1.751915 

 Socialassist |  -.6917754   .5241023    -1.32   0.187    -1.718997    .3354461 

    Twounempl |  -.4810493   .3228976    -1.49   0.136    -1.113917    .1518184 

   Remittance |  -.5892035   .4846377    -1.22   0.224    -1.539076     .360669 

Secondaryeduc |  -.7108797   .3644914    -1.95   0.051     -1.42527    .0035105 

 Tertiaryeduc |  -.5889222   .4149555    -1.42   0.156     -1.40222    .2243757 

       AM2008 |  -1.198901   .3747809    -3.20   0.001    -1.933458   -.4643434 

       AM2009 |   .2354281   .3479118     0.68   0.499    -.4464664    .9173226 

       Emplan |  -.4894523   .3400249    -1.44   0.150    -1.155889    .1769844 

  Jobsearchbt |  -.9085695   .3747099    -2.42   0.015    -1.642987   -.1741516 

       Undur6 |   1.203228   .6725296     1.79   0.074    -.1149062    2.521361 

      Undur12 |   .7441301    .422225     1.76   0.078    -.0834157    1.571676 

      Undur24 |   1.227016   .4865824     2.52   0.012     .2733315      2.1807 

          FER |  -1.351682   .5873415    -2.30   0.021    -2.502851   -.2005142 

         GJAK |  -1.490546   .6188091    -2.41   0.016     -2.70339    -.277703 

         GJIL |  -.0833482   .6307585    -0.13   0.895    -1.319612    1.152916 

          MIT |  -.8992903   .5857786    -1.54   0.125    -2.047395    .2488146 

          PEJ |  -2.379415   .7201428    -3.30   0.001    -3.790869   -.9679614 

          PRZ |  -.5260253   .6516298    -0.81   0.420    -1.803196    .7511456 

      Vtcmncp |    1.22444   .2836089     4.32   0.000     .6685763    1.780303 

        _cons |   2.502794   1.177249     2.13   0.034     .1954287    4.810159 

--------------+---------------------------------------------------------------- 

TME3          | 

          Age |   .0162926   .0337335     0.48   0.629    -.0498239     .082409 

         Male |   .3974604   .3645366     1.09   0.276    -.3170182    1.111939 

     Minority |  -.5393232   .5906892    -0.91   0.361    -1.697053    .6184063 

   Disability |  -.3858126   1.025519    -0.38   0.707    -2.395792    1.624167 

 Socialassist |  -.3291805   .7089888    -0.46   0.642    -1.718773    1.060412 

    Twounempl |   .9147666   .4367696     2.09   0.036     .0587139    1.770819 

   Remittance |    -.21146   .7135111    -0.30   0.767    -1.609916    1.186996 

Secondaryeduc |   -.536629   .5047437    -1.06   0.288    -1.525908    .4526504 

 Tertiaryeduc |   -.724528    .530147    -1.37   0.172    -1.763597    .3145411 

       AM2008 |  -.6490683   .4572438    -1.42   0.156     -1.54525    .2471132 

       AM2009 |  -.1864609   .4249025    -0.44   0.661    -1.019255    .6463327 

       Emplan |   .9064938   .4528083     2.00   0.045     .0190059    1.793982 

  Jobsearchbt |  -.1034135    .492785    -0.21   0.834    -1.069254    .8624274 

       Undur6 |   1.172696   .7958985     1.47   0.141    -.3872359    2.732629 

      Undur12 |   .2886123   .5063369     0.57   0.569    -.7037898    1.281014 

      Undur24 |   .6621266   .6453526     1.03   0.305    -.6027413    1.926995 

          FER |  -1.732219   .6391062    -2.71   0.007    -2.984845   -.4795944 

         GJAK |  -2.847465    .765895    -3.72   0.000    -4.348591   -1.346338 

         GJIL |  -.9989786   .6655394    -1.50   0.133    -2.303412    .3054547 

          MIT |  -3.049448   .7306176    -4.17   0.000    -4.481432   -1.617464 

          PEJ |  -1.522043   .8180163    -1.86   0.063    -3.125326    .0812393 

          PRZ |  -.3017129   .7408984    -0.41   0.684    -1.753847    1.150421 

      Vtcmncp |    1.20522   .3576987     3.37   0.001      .504144    1.906297 

        _cons |  -.4357348   1.456346    -0.30   0.765    -3.290121    2.418651 

------------------------------------------------------------------------------- 

 

. tebalance sum 

 

  Covariate balance summary 

                                                 Observations       
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                               Treatment           Raw     Weighted 

                          ----------------------------------------- 

                            1bn.AMTYPE =           198        124.4 

                            2.AMTYPE   =           106        144.3 

                            3.AMTYPE   =            81        116.3 

                            Total      =           385        385.0 

                          ----------------------------------------- 

 

  ----------------------------------------------------------------- 

                  |Standardized differences          Variance ratio 

                  |        Raw    Weighted           Raw   Weighted 

  ----------------+------------------------------------------------ 

  1.AMTYPE        | 

              Age |  -.0469178    .0537635      1.493153   2.890789 

             Male |  -.0228163    .3116836      .9933519   1.148539 

         Minority |   -.130576    .0996957      .7177825   1.377608 

       Disability |   .0400379    .0330115       1.23463   1.193099 

     Socialassist |  -.1173884   -.3086257      .7969861   .6155944 

        Twounempl |  -.1586626    .1758147      .9472535   1.126547 

       Remittance |  -.0734337    .0633585      .8195957   1.215718 

    Secondaryeduc |  -.1169856   -.1314029      .9951257   1.002496 

     Tertiaryeduc |   .0120731   -.0468204      1.006486   .9629164 

           AM2008 |  -.4462825     .036214      .4939769   1.095858 

           AM2009 |   .2650759   -.4535307      1.347895   .8649161 

           Emplan |  -.2459716    .1151906       1.19056   .9629924 

      Jobsearchbt |  -.2145967    .3496678      1.350505     .78525 

           Undur6 |   .1825743   -.0179602      2.036549   .9481264 

          Undur12 |   .2528701   -.1441152      1.573032   .8451491 

          Undur24 |   .1586015    .2235563      1.594285   2.067697 

              FER |  -.2020129    .2470047      .6677305   2.226414 

             GJAK |  -.0496555     .221716      .9079023   1.735648 

             GJIL |   .2071617   -.5190951      1.385488   .7162455 

              MIT |  -.1468002   -.1184387      .8257112   .8568192 

              PEJ |  -.1918449    .0514234      .5055881   1.275628 

              PRZ |   .2406805    .2663825      1.834333   2.015142 

          Vtcmncp |   .5956623   -.1516683       1.06466   1.103908 

  ----------------+------------------------------------------------ 

  3.AMTYPE        | 

              Age |   .0140858    .1455162      .8379218    1.22289 

             Male |  -.0732274    .2065342      .9919786   1.122496 

         Minority |  -.1459679    .2283169      .6907709   1.909743 

       Disability |  -.0223603    .0274183      .8782512   1.160196 

     Socialassist |  -.2746511   -.3120877      .5382414   .6113503 

        Twounempl |   .3131423    .0541008      .9531932   1.046551 

       Remittance |  -.1339151     .213049      .6852098   1.761333 

    Secondaryeduc |  -.1178929    .0022497      1.002338   1.001353 

     Tertiaryeduc |   .0351215   -.2022647      1.034249   .8144936 

           AM2008 |  -.3175752    .2175756      .6530546   1.581343 

           AM2009 |  -.0647055    -.392656      .9025781    .903673 

           Emplan |   .2424322    .1927289      .7214966   .9242017 

      Jobsearchbt |   .2083997      .64816      .6332538   .5030829 

           Undur6 |   .1577672   -.0738311      1.894404   .7891293 

          Undur12 |   .1410316     -.24876       1.33259   .7201211 

          Undur24 |    .031316    .2266712       1.11532   2.085542 

              FER |   -.143024    .1592348      .7689223   1.756056 

             GJAK |  -.3908774   -.0825605      .3339763   .7561397 

             GJIL |   .1827122   -.1405034      1.352604   .9670858 

              MIT |  -.5215216   -.2598305      .3538996   .6715809 

              PEJ |  -.0274744   -.0463111      .9267843   .7786548 

              PRZ |   .3284055    .1797991      2.168899   1.671262 
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          Vtcmncp |   .4632873   -.1564898      1.119718   1.107055 

  ----------------------------------------------------------------- 

 

Table A5.5 Estimated results from Inverse probability weighting – 

Regression Adjustment - CONTRACT Outcome Model 
 

**CONTRACT Outcome Model  
*Final IPWRA model for CONTRACT; OJT is defined as the control group  

 
. . teffects ipwra (CONTRACT Age Agesq Male Minority Secondaryeduc Tertiaryeduc Amduration 
AM2008 AM2009 Cert Regunemp, logit) (AMTYPE Age Male Minority Twounempl Remittance Socialassist 
Secondaryeduc Tertiaryedu AM2008 AM2009 Emplan Jobsearchbt Undur6 Undur12 Undur24 FER GJAK GJIL 
MIT PEJ PRZ Vtcmncp), control(1) atet aequ 
 
Iteration 0:   EE criterion =   .0015559   
Iteration 1:   EE criterion =  .00013411   
Iteration 2:   EE criterion =  .00001898   
Iteration 3:   EE criterion =  1.140e-06   
Iteration 4:   EE criterion =  1.222e-07  (not concave) 
Iteration 5:   EE criterion =  1.039e-07   
 
Treatment-effects estimation                    Number of obs     =        284 
Estimator      : IPW regression adjustment 
Outcome model  : logit 
Treatment model: (multinomial) logit 
------------------------------------------------------------------------------- 
              |               Robust 
     CONTRACT |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
--------------+---------------------------------------------------------------- 
ATET          | 
       AMTYPE | 
    (2 vs 1)  |   .0594402   .0603879     0.98   0.325    -.0589178    .1777983 
    (3 vs 1)  |   .1893358   .0706651     2.68   0.007     .0508347     .327837 
--------------+---------------------------------------------------------------- 
POmean        | 
       AMTYPE | 
           1  |   .7168694   .0513943    13.95   0.000     .6161384    .8176004 
--------------+---------------------------------------------------------------- 
OME1          | 
          Age |  -1.570828   1.195468    -1.31   0.189    -3.913903    .7722462 
        Agesq |   .0291066   .0215583     1.35   0.177    -.0131469    .0713601 
         Male |  -2.246234   .8922786    -2.52   0.012    -3.995067   -.4973997 
     Minority |  -.2418361   1.292622    -0.19   0.852    -2.775329    2.291657 
Secondaryeduc |  -1.328795   .8430968    -1.58   0.115    -2.981234    .3236446 
 Tertiaryeduc |   2.063662   .7855583     2.63   0.009     .5239959    3.603328 
   Amduration |  -.3312716    .278012    -1.19   0.233     -.876165    .2136218 
       AM2008 |   1.376503   .8159476     1.69   0.092    -.2227244    2.975731 
       AM2009 |   .1662639   .5757278     0.29   0.773     -.962142     1.29467 
         Cert |   1.524838   .6779907     2.25   0.025     .1960009    2.853675 
     Regunemp |   .0387214   .0285997     1.35   0.176     -.017333    .0947758 
        _cons |   21.74803   16.82114     1.29   0.196    -11.22079    54.71685 
--------------+---------------------------------------------------------------- 
OME2          | 
          Age |  -.2658279   1.089792    -0.24   0.807    -2.401781    1.870125 
        Agesq |   .0008018   .0198097     0.04   0.968    -.0380245     .039628 
         Male |  -1.276675   .9490504    -1.35   0.179     -3.13678    .5834293 
     Minority |  -.0970382   1.366984    -0.07   0.943    -2.776278    2.582202 
Secondaryeduc |  -1.884402   .9329271    -2.02   0.043    -3.712906   -.0558988 
 Tertiaryeduc |    1.29451   1.130685     1.14   0.252    -.9215908    3.510611 
   Amduration |  -.3054533   .3348809    -0.91   0.362    -.9618077    .3509012 
       AM2008 |   .3508733   .8814225     0.40   0.691    -1.376683     2.07843 
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       AM2009 |   1.743472   .9377163     1.86   0.063    -.0944181    3.581362 
         Cert |  -.4357196   .8257698    -0.53   0.598    -2.054199     1.18276 
     Regunemp |  -.0526567   .0361213    -1.46   0.145    -.1234533    .0181398 
        _cons |    11.8787   15.01367     0.79   0.429    -17.54756    41.30495 
--------------+---------------------------------------------------------------- 
OME3          | 
          Age |   .4321133   1.877156     0.23   0.818    -3.247045    4.111272 
        Agesq |   -.012179   .0310651    -0.39   0.695    -.0730654    .0487074 
         Male |   1.261803   1.818907     0.69   0.488    -2.303188    4.826795 
     Minority |   .6319239   2.992577     0.21   0.833    -5.233419    6.497266 
Secondaryeduc |   -1.25577   2.622665    -0.48   0.632    -6.396099    3.884559 
 Tertiaryeduc |   2.917971   2.352839     1.24   0.215    -1.693509    7.529452 
   Amduration |  -.5168567   .7711814    -0.67   0.503    -2.028345    .9946311 
       AM2008 |   6.806376   1.997931     3.41   0.001     2.890504    10.72225 
       AM2009 |   6.871649   1.503253     4.57   0.000     3.925328    9.817969 
         Cert |   1.348271   1.598652     0.84   0.399    -1.785029    4.481572 
     Regunemp |  -.0432261   .1461427    -0.30   0.767    -.3296604    .2432083 
        _cons |  -.4308561    26.6373    -0.02   0.987    -52.63901     51.7773 
--------------+---------------------------------------------------------------- 
TME2          | 
          Age |  -.0321092   .0417511    -0.77   0.442    -.1139398    .0497215 
         Male |  -.0555829    .345719    -0.16   0.872    -.7331797    .6220139 
     Minority |  -.2253931   .7113321    -0.32   0.751    -1.619578    1.168792 
    Twounempl |   .3327355   .3640496     0.91   0.361    -.3807886     1.04626 
   Remittance |   .3154091    .585174     0.54   0.590    -.8315108    1.462329 
 Socialassist |   .1349841   .6048854     0.22   0.823     -1.05057    1.320538 
Secondaryeduc |    -.76215   .5109524    -1.49   0.136    -1.763598    .2392983 
 Tertiaryeduc |  -.4896404   .5133815    -0.95   0.340     -1.49585    .5165687 
       AM2008 |   1.490915   .4018534     3.71   0.000     .7032967    2.278533 
       AM2009 |   .5394315   .3739309     1.44   0.149    -.1934596    1.272323 
       Emplan |   .2139617    .388943     0.55   0.582    -.5483525    .9762759 
  Jobsearchbt |   .3669636   .4561027     0.80   0.421    -.5269813    1.260908 
       Undur6 |  -1.178853   .4847572    -2.43   0.015     -2.12896   -.2287465 
      Undur12 |  -.3330404   .4500222    -0.74   0.459    -1.215068    .5489868 
      Undur24 |  -.9803232   .5865138    -1.67   0.095    -2.129869    .1692226 
          FER |   .9047341    .587994     1.54   0.124     -.247713    2.057181 
         GJAK |   .5578453   .6605465     0.84   0.398    -.7368022    1.852493 
         GJIL |   .6900692   .5125764     1.35   0.178    -.3145622    1.694701 
          MIT |   1.286926   .6385944     2.02   0.044      .035304    2.538548 
          PEJ |   .1052606   .6556827     0.16   0.872    -1.179854    1.390375 
          PRZ |  -.1027597   .6497056    -0.16   0.874    -1.376159     1.17064 
      Vtcmncp |  -.7542088   .3478689    -2.17   0.030    -1.436019   -.0723983 
        _cons |  -.3773053   1.339358    -0.28   0.778      -3.0024    2.247789 
--------------+---------------------------------------------------------------- 
TME3          | 
          Age |   .0190426   .0600367     0.32   0.751    -.0986271    .1367123 
         Male |  -.6835441   .4488813    -1.52   0.128    -1.563335    .1962471 
     Minority |   .0452239   1.077308     0.04   0.967    -2.066261    2.156709 
    Twounempl |  -.1540059   .4753825    -0.32   0.746    -1.085738    .7777266 
   Remittance |   .9346604   .8024783     1.16   0.244    -.6381682    2.507489 
 Socialassist |  -12.42394   .6835657   -18.18   0.000     -13.7637   -11.08417 
Secondaryeduc |   .2733795   .7331014     0.37   0.709    -1.163473    1.710232 
 Tertiaryeduc |  -.4544521   .8008147    -0.57   0.570     -2.02402    1.115116 
       AM2008 |   .2484433   .5110058     0.49   0.627    -.7531097    1.249996 
       AM2009 |  -1.136448    .618007    -1.84   0.066     -2.34772     .074823 
       Emplan |   .9537092   .6181927     1.54   0.123    -.2579263    2.165345 
  Jobsearchbt |   1.696085    .933726     1.82   0.069    -.1339838    3.526155 
       Undur6 |  -.3548364   .7780781    -0.46   0.648    -1.879841    1.170169 
      Undur12 |   .6772807   .5729837     1.18   0.237    -.4457467    1.800308 
      Undur24 |   1.238775   .6874923     1.80   0.072    -.1086847    2.586236 
          FER |    .155961    .609641     0.26   0.798    -1.038913    1.350835 
         GJAK |  -2.582432   1.159891    -2.23   0.026    -4.855776   -.3090877 
         GJIL |  -.0767641   .6261877    -0.12   0.902    -1.304069    1.150541 
          MIT |  -11.99773   .7019423   -17.09   0.000    -13.37352   -10.62195 
          PEJ |  -2.406719   1.274765    -1.89   0.059    -4.905211    .0917737 
          PRZ |  -1.235042    .753814    -1.64   0.101    -2.712491    .2424058 
      Vtcmncp |    .406721   .5838408     0.70   0.486    -.7375859    1.551028 
        _cons |  -3.463821   1.944484    -1.78   0.075    -7.274939    .3472978 
------------------------------------------------------------------------------- 



380 
 

 
. tebalance sum 
 
  Covariate balance summary 
                                                 Observations       
                               Treatment           Raw     Weighted 
                          ----------------------------------------- 
                            1bn.AMTYPE =           171        120.4 
                            2.AMTYPE   =            76        114.5 
                            3.AMTYPE   =            37         49.1 
                            Total      =           284        284.0 
                          ----------------------------------------- 
 
  ----------------------------------------------------------------- 
                  |Standardized differences          Variance ratio 
                  |        Raw    Weighted           Raw   Weighted 
  ----------------+------------------------------------------------ 
  2.AMTYPE        | 
              Age |  -.0594412     .070625      .7816163   .9266607 
             Male |   .0360304    -.039862      .9890909   1.024291 
         Minority |   .0559252    .1127639      1.345663   1.913613 
        Twounempl |   .2359867   -.1249337      1.107521   .9963255 
       Remittance |   .0152592    .0026797      1.052692   1.008075 
     Socialassist |   .1030645    .0286481      1.399602   1.087794 
    Secondaryeduc |  -.0582697    .0079244       .969076   1.006315 
     Tertiaryeduc |  -.0757699    -.030478      1.013264   1.001367 
           AM2008 |   .4950311   -.0704007      1.599483   .9792844 
           AM2009 |  -.1147192    .0076706      .9265127   1.007144 
           Emplan |   .1067222   -.0571073      .9244431   1.059437 
      Jobsearchbt |   .0314618   -.0379047      .9511413   1.077511 
           Undur6 |  -.2021795    .0339182      .6558865   1.095538 
          Undur12 |  -.0365508    .1134711      .9378858   1.296097 
          Undur24 |  -.1594276    .0790126      .6269044   1.360027 
              FER |   .1198741    .0009534      1.357258   1.002521 
             GJAK |  -.1515404    .0560614      .7567446   1.139317 
             GJIL |   .2130829   -.0757362      1.379446   .9232308 
              MIT |   .2636853    .1488059      2.071875   1.424037 
              PEJ |  -.1668189   -.0320652      .6748767   .9162914 
              PRZ |   -.214791    -.104038      .6152098   .7673325 
          Vtcmncp |  -.3324751    .0341398      1.086712   1.005236 
  ----------------+------------------------------------------------ 
  3.AMTYPE        | 
              Age |  -.0495102    .0189432      .6867129   .6148146 
             Male |  -.2563443    .1161219      1.077045   .9257834 
         Minority |  -.0132737    .0356315      .9465972   1.274061 
        Twounempl |   .2875319   -.2817954      1.129528   .9591612 
       Remittance |  -.0236874   -.1544714      .9513167   .5950157 
     Socialassist |  -.3697241   -.4263498             0          0 
    Secondaryeduc |   .1540443    .1531235      1.092842   1.106302 
     Tertiaryeduc |  -.1562826   -.1507679      1.020951   .9985018 
           AM2008 |   .1356457   -.3659149       1.23645   .8073939 
           AM2009 |  -.5289898   -.0254639      .5204012   .9889955 
           Emplan |   .5736149    .1573697        .43955    .825431 
      Jobsearchbt |   .4908913     .422618      .1907906   .2212138 
           Undur6 |  -.2831584     .002422      .5262603   1.019133 
          Undur12 |   .0819851    .0836183      1.178783   1.232708 
          Undur24 |   .2842129     .615492      1.753201   4.329271 
              FER |   .2045328   -.1030863      1.636824    .786326 
             GJAK |  -.5336367   -.0252988      .1766357   .9496481 
             GJIL |   .1966349     .130581      1.373559   1.125183 
              MIT |  -.3697241   -.4595307             0          0 
              PEJ |  -.4314507   -.1634096      .2152536   .5988853 
              PRZ |  -.2525193    .0169182      .5559643   1.051621 
          Vtcmncp |   .1380455    .1895535      .9236101   1.009127 
  ----------------------------------------------------------------- 
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*Final IPWRA model for CONTRACT; IS is defined as the control group  

 
 . teffects ipwra (CONTRACT Age Agesq Male Minority Secondaryeduc Tertiaryeduc Amduration AM2008 
AM2009 Cert Regunemp, logit) (AMTYPE Age Male Minority Twounempl Remittance Socialassist 
Secondaryeduc Tertiaryedu AM2008 AM2009 Emplan Jobsearchbt Undur6 Undur12 Undur24 FER GJAK GJIL 
MIT PEJ PRZ Vtcmncp), control(2) atet aequ 
 
Iteration 0:   EE criterion =  .00586947   
Iteration 1:   EE criterion =  .00058801   
Iteration 2:   EE criterion =  9.171e-06   
Iteration 3:   EE criterion =  2.949e-06   
Iteration 4:   EE criterion =  6.657e-07  (not concave) 
Iteration 5:   EE criterion =  6.640e-07   
 
Treatment-effects estimation                    Number of obs     =        284 
Estimator      : IPW regression adjustment 
Outcome model  : logit 
Treatment model: (multinomial) logit 
------------------------------------------------------------------------------- 
              |               Robust 
     CONTRACT |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
--------------+---------------------------------------------------------------- 
ATET          | 
       AMTYPE | 
    (1 vs 2)  |  -.1035414   .0521981    -1.98   0.047    -.2058477   -.0012351 
    (3 vs 2)  |   .0727087   .0616882     1.18   0.239     -.048198    .1936153 
--------------+---------------------------------------------------------------- 
POmean        | 
       AMTYPE | 
           2  |   .7994478   .0426138    18.76   0.000     .7159263    .8829693 
--------------+---------------------------------------------------------------- 
OME1          | 
          Age |  -1.248272   .9997846    -1.25   0.212    -3.207814    .7112699 
        Agesq |   .0229369   .0183953     1.25   0.212    -.0131173    .0589911 
         Male |  -1.327431   .5262206    -2.52   0.012    -2.358804   -.2960574 
     Minority |   1.250961   1.300732     0.96   0.336    -1.298426    3.800349 
Secondaryeduc |  -.3041944   .6170931    -0.49   0.622    -1.513675    .9052858 
 Tertiaryeduc |   2.420622   .7478692     3.24   0.001     .9548248    3.886418 
   Amduration |  -.2839854   .1898289    -1.50   0.135    -.6560431    .0880724 
       AM2008 |  -.1717216   .6047537    -0.28   0.776    -1.357017    1.013574 
       AM2009 |  -.3598976   .4598987    -0.78   0.434    -1.261282    .5414873 
         Cert |   1.377256   .4834783     2.85   0.004     .4296564    2.324857 
     Regunemp |    .059871   .0219963     2.72   0.006      .016759     .102983 
        _cons |   16.08565   13.49414     1.19   0.233    -10.36237    42.53367 
--------------+---------------------------------------------------------------- 
OME2          | 
          Age |   .1068924   1.039525     0.10   0.918    -1.930539    2.144324 
        Agesq |  -.0046417   .0186729    -0.25   0.804    -.0412399    .0319565 
         Male |    -1.2793   1.013344    -1.26   0.207    -3.265417    .7068181 
     Minority |   .0138729   2.309163     0.01   0.995    -4.512003    4.539749 
Secondaryeduc |  -3.385988   1.087702    -3.11   0.002    -5.517843   -1.254132 
 Tertiaryeduc |   .1527821    1.22911     0.12   0.901    -2.256229    2.561793 
   Amduration |  -.3476181   .3840903    -0.91   0.365    -1.100421    .4051851 
       AM2008 |    .477221   1.331504     0.36   0.720    -2.132478     3.08692 
       AM2009 |   2.368121   1.041274     2.27   0.023     .3272616     4.40898 
         Cert |  -.3440903    .802113    -0.43   0.668    -1.916203    1.228022 
     Regunemp |  -.0603549   .0352103    -1.71   0.087    -.1293659     .008656 
        _cons |   7.520743   14.83491     0.51   0.612    -21.55515    36.59664 
--------------+---------------------------------------------------------------- 
OME3          | 
          Age |   .2124117   1.708186     0.12   0.901    -3.135571    3.560394 
        Agesq |  -.0081298   .0276568    -0.29   0.769    -.0623362    .0460766 
         Male |  -.2812231   1.569249    -0.18   0.858    -3.356895    2.794449 
     Minority |  -.3809191   3.131774    -0.12   0.903    -6.519083    5.757245 
Secondaryeduc |   1.162634   2.340185     0.50   0.619    -3.424045    5.749313 
 Tertiaryeduc |   3.682896   1.910331     1.93   0.054    -.0612844    7.427077 
   Amduration |  -.9890902   .6484963    -1.53   0.127     -2.26012    .2819392 
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       AM2008 |   6.007305   2.046504     2.94   0.003      1.99623    10.01838 
       AM2009 |   6.126339   1.403316     4.37   0.000      3.37589    8.876789 
         Cert |   1.291372   1.770329     0.73   0.466    -2.178409    4.761154 
     Regunemp |   .0963573   .1224774     0.79   0.431    -.1436939    .3364086 
        _cons |   .0175405   24.44519     0.00   0.999    -47.89415    47.92923 
--------------+---------------------------------------------------------------- 
TME1          | 
          Age |   .0321092   .0417511     0.77   0.442    -.0497215    .1139398 
         Male |   .0555829    .345719     0.16   0.872    -.6220139    .7331797 
     Minority |   .2253931   .7113313     0.32   0.751    -1.168791    1.619577 
    Twounempl |  -.3327359   .3640496    -0.91   0.361     -1.04626    .3807882 
   Remittance |  -.3154093   .5851742    -0.54   0.590     -1.46233    .8315111 
 Socialassist |  -.1349841   .6048851    -0.22   0.823    -1.320537    1.050569 
Secondaryeduc |   .7621496   .5109523     1.49   0.136    -.2392985    1.763598 
 Tertiaryeduc |   .4896407   .5133814     0.95   0.340    -.5165684     1.49585 
       AM2008 |  -1.490915   .4018534    -3.71   0.000    -2.278533   -.7032967 
       AM2009 |  -.5394314   .3739309    -1.44   0.149    -1.272323    .1934597 
       Emplan |  -.2139618    .388943    -0.55   0.582     -.976276    .5483524 
  Jobsearchbt |  -.3669635   .4561028    -0.80   0.421    -1.260909    .5269815 
       Undur6 |   1.178853   .4847569     2.43   0.015     .2287465    2.128959 
      Undur12 |   .3330405   .4500221     0.74   0.459    -.5489866    1.215068 
      Undur24 |   .9803252   .5865146     1.67   0.095    -.1692223    2.129873 
          FER |  -.9047361   .5879935    -1.54   0.124    -2.057182      .24771 
         GJAK |  -.5578452   .6605465    -0.84   0.398    -1.852493    .7368021 
         GJIL |  -.6900689   .5125764    -1.35   0.178      -1.6947    .3145623 
          MIT |  -1.286926   .6385946    -2.02   0.044    -2.538548   -.0353035 
          PEJ |  -.1052594   .6556831    -0.16   0.872    -1.390375    1.179856 
          PRZ |   .1027597   .6497055     0.16   0.874     -1.17064    1.376159 
      Vtcmncp |   .7542088   .3478689     2.17   0.030     .0723983    1.436019 
        _cons |   .3773053   1.339358     0.28   0.778    -2.247789      3.0024 
--------------+---------------------------------------------------------------- 
TME3          | 
          Age |   .0511517   .0678593     0.75   0.451    -.0818501    .1841536 
         Male |  -.6279613   .5006648    -1.25   0.210    -1.609246    .3533236 
     Minority |   .2706169   1.151258     0.24   0.814    -1.985808    2.527042 
    Twounempl |  -.4867426   .5214663    -0.93   0.351    -1.508798    .5353125 
   Remittance |    .619251   .8905398     0.70   0.487    -1.126175    2.364677 
 Socialassist |   -15.3879   .6950939   -22.14   0.000    -16.75026   -14.02554 
Secondaryeduc |   1.035528   .7944133     1.30   0.192    -.5214931     2.59255 
 Tertiaryeduc |   .0351891   .8603897     0.04   0.967    -1.651144    1.721522 
       AM2008 |  -1.242472     .56669    -2.19   0.028    -2.353164   -.1317796 
       AM2009 |   -1.67588   .6760086    -2.48   0.013    -3.000832   -.3509274 
       Emplan |   .7397474   .6622417     1.12   0.264    -.5582224    2.037717 
  Jobsearchbt |   1.329122   .9804046     1.36   0.175    -.5924358     3.25068 
       Undur6 |   .8240139   .8448844     0.98   0.329    -.8319292    2.479957 
      Undur12 |   1.010321    .664597     1.52   0.128    -.2922648    2.312907 
      Undur24 |   2.219102   .7590951     2.92   0.003     .7313033    3.706901 
          FER |  -.7487797   .7237458    -1.03   0.301    -2.167295    .6697359 
         GJAK |  -3.140277   1.285695    -2.44   0.015    -5.660193     -.62036 
         GJIL |  -.7668321   .6650865    -1.15   0.249    -2.070378    .5367134 
          MIT |  -12.92957   .8044269   -16.07   0.000    -14.50622   -11.35293 
          PEJ |  -2.511956   1.319023    -1.90   0.057    -5.097194    .0732819 
          PRZ |  -1.132283   .8778469    -1.29   0.197    -2.852831    .5882655 
      Vtcmncp |    1.16093   .5977694     1.94   0.052    -.0106767    2.332536 
        _cons |  -3.086515   2.163127    -1.43   0.154    -7.326167    1.153136 
------------------------------------------------------------------------------- 
 
. tebalance sum 
 
  Covariate balance summary 
                                                 Observations       
                               Treatment           Raw     Weighted 
                          ----------------------------------------- 
                            1bn.AMTYPE =           171        106.4 
                            2.AMTYPE   =            76         98.1 
                            3.AMTYPE   =            37         79.5 
                            Total      =           284        284.0 
                          ----------------------------------------- 
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  ----------------------------------------------------------------- 
                  |Standardized differences          Variance ratio 
                  |        Raw    Weighted           Raw   Weighted 
  ----------------+------------------------------------------------ 
  1.AMTYPE        | 
              Age |   .0594412    .0340956        1.2794   1.277449 
             Male |  -.0360304   -.0995189      1.011029   1.058372 
         Minority |  -.0559252    .1048286      .7431283   2.061955 
        Twounempl |  -.2359867   -.0991135      .9029173   .9465268 
       Remittance |  -.0152592   -.0041699      .9499452   .9871157 
     Socialassist |  -.1030645     .002227      .7144887   1.007187 
    Secondaryeduc |   .0582697    .0092989      1.031911   1.004889 
     Tertiaryeduc |   .0757699     .023615        .98691   .9961463 
           AM2008 |  -.4950311   -.0576343      .6252021   .9154157 
           AM2009 |   .1147192   -.0985306      1.079316   .9516876 
           Emplan |  -.1067222   -.0247015      1.081732   1.016888 
      Jobsearchbt |  -.0314618    .0549605      1.051368   .9113584 
           Undur6 |   .2021795    .0194067      1.524654   1.033696 
          Undur12 |   .0365508    .0611573      1.066228   1.129668 
          Undur24 |   .1594276    .0758768      1.595139   1.226066 
              FER |  -.1198741     .029855      .7367796   1.089455 
             GJAK |   .1515404    .0999352       1.32145   1.194703 
             GJIL |  -.2130829   -.0351566      .7249289   .9391437 
              MIT |  -.2636853    .0330902      .4826546   1.129897 
              PEJ |   .1668189    .0450042      1.481752   1.098568 
              PRZ |    .214791   -.0839615      1.625462   .8678166 
          Vtcmncp |   .3324751     .250539       .920207   .9244295 
  ----------------+------------------------------------------------ 
  3.AMTYPE        | 
              Age |   .0124118   -.1545446      .8785806   .7581899 
             Male |  -.2923724   -.1056007      1.088924    1.06483 
         Minority |  -.0688049   -.0878776      .7034432    .386044 
        Twounempl |    .051484   -.3560358       1.01987   .7437724 
       Remittance |  -.0388174   -.2170771      .9036987   .4333304 
     Socialassist |  -.4474694   -.3672328             0          0 
    Secondaryeduc |   .2121379    .0314612      1.127716    1.02112 
     Tertiaryeduc |  -.0803936    .0679031      1.007587   .9906179 
           AM2008 |  -.3534865   -.2273836      .7730311   .6618851 
           AM2009 |  -.4098836   -.2697245      .5616773   .8338597 
           Emplan |   .4625227   -.2048462      .4754755   1.113508 
      Jobsearchbt |   .4601577    .5609997      .2005912      .1463 
           Undur6 |  -.0824566     .203515      .8023649   1.347573 
          Undur12 |   .1181524    .1763607      1.256851   1.375989 
          Undur24 |   .4374878    .4020809      2.796599   2.232682 
              FER |   .0855782   -.1569431      1.205979   .5664245 
             GJAK |  -.3912531   -.2717778      .2334152   .4835543 
             GJIL |  -.0155176    .0235399      .9957326   1.042411 
              MIT |  -.5779343   -.3440102             0          0 
              PEJ |  -.2752961   -.0622915      .3189525   .8658297 
              PRZ |  -.0388174    .4194878      .9036987   1.503117 
          Vtcmncp |   .4737685    -.056139      .8499124   1.002388 
  ----------------------------------------------------------------- 
 

    

Appendix 6 – Chapter 6  

Table 6.1 Outcome variable: employed – Model 1 

Table A6.1.1 PSM  
. teffects psmatch (employed) (bintreatment age agesq male minority socialassist 
secondaryeduc tertiaryeduc  emp2011 emphist hhsize hhsizegen ferizaj gjakova gjilani 
mitrovica peja prizren ), atet vce(robust) 
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Treatment-effects estimation                   Number of obs      =      7,753 
Estimator      : propensity-score matching     Matches: requested =          1 
Outcome model  : matching                                     min =          1 
Treatment model: logit                                        max =          9 
------------------------------------------------------------------------------ 
             |              AI Robust 
    employed |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
ATET         | 
bintreatment | 
   (1 vs 0)  |   .0730028   .0253384     2.88   0.004     .0233404    .1226652 
------------------------------------------------------------------------------ 
 
 
*** Balancing diagnostics  
 
. tebalance sum 
note: refitting the model using the generate() option 
 
  Covariate balance summary 
                                                   Raw      Matched 
                          ----------------------------------------- 
                          Number of obs =        7,753        1,694 
                          Treated obs   =          847          847 
                          Control obs   =        6,906          847 
                          ----------------------------------------- 
 
  ----------------------------------------------------------------- 
                  |Standardized differences          Variance ratio 
                  |        Raw     Matched           Raw    Matched 
  ----------------+------------------------------------------------ 
              age |  -.6060234    -.076445      .3243216   .9326923 
            agesq |  -.6665971   -.0780366      .2800718   .9368594 
             male |  -.4618398    .0472512      1.323737   .9960958 
         minority |   .0377737     .099327       1.14086   1.450887 
     socialassist |   .3709548    .1608743       7.49496   1.734988 
    secondaryeduc |  -.4394493      .07248      1.036461   1.031882 
     tertiaryeduc |   .5968176    -.085886      1.880529   .9758825 
          emp2011 |  -.5101395    .0226697      .9074829   1.017066 
          emphist |  -.0797406   -.0575831      1.032292   1.021107 
           hhsize |   -.453916   -.0571991      .3536742   .9977826 
        hhsizegen |  -.5622479    .0271119      .5529141   1.068583 
          ferizaj |   .0111471   -.0416516      1.026757    .913981 
          gjakova |   .0257213    .1493787       1.06098   1.471432 
          gjilani |   .4442438   -.0704341      2.838404   .9122407 
        mitrovica |   .1091392    .0652934      1.308213   1.165055 
             peja |  -.0639643   -.0607731      .8656221    .870611 
         prizreni |  -.0658709    .0598134      .8802186   1.141693 
  ----------------------------------------------------------------- 
 

Table A6.1.2 IPW  
 
*** Binary treatment model  
 
. teffects ipw (employed) (bintreatment age agesq male minority socialassist 
secondaryeduc tertiaryeduc  emp2011 emphist hhsize hhsizegen ferizaj gjakova gjilani 
mitrovica peja prizren ), atet vce(robust) aequ 
 
Iteration 0:   EE criterion =  1.527e-16   



385 
 

Iteration 1:   EE criterion =  3.351e-30   
 
Treatment-effects estimation                    Number of obs     =      7,753 
Estimator      : inverse-probability weights 
Outcome model  : weighted mean 
Treatment model: logit 
-------------------------------------------------------------------------------- 
               |               Robust 
      employed |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
---------------+---------------------------------------------------------------- 
ATET           | 
  bintreatment | 
     (1 vs 0)  |   .0786837   .0206062     3.82   0.000     .0382962    .1190711 
---------------+---------------------------------------------------------------- 
POmean         | 
  bintreatment | 
            0  |   .3309976   .0196182    16.87   0.000     .2925465    .3694486 
---------------+---------------------------------------------------------------- 
TME1           | 
           age |   1.451319    .152215     9.53   0.000     1.152983    1.749655 
         agesq |  -.0282003   .0028461    -9.91   0.000    -.0337786   -.0226221 
          male |  -.9374553   .2214396    -4.23   0.000    -1.371469   -.5034416 
      minority |  -.0999522   .1994632    -0.50   0.616    -.4908928    .2909885 
  socialassist |   2.932207   .2344679    12.51   0.000     2.472658    3.391755 
 secondaryeduc |  -.3021237   .1255887    -2.41   0.016    -.5482729   -.0559744 
  tertiaryeduc |   .8970667   .1349911     6.65   0.000     .6324891    1.161644 
       emp2011 |  -2.518161   .1463909   -17.20   0.000    -2.805082   -2.231241 
       emphist |   2.190087   .1425687    15.36   0.000     1.910658    2.469517 
        hhsize |  -.1693141    .024119    -7.02   0.000    -.2165865   -.1220417 
     hhsizegen |   .0336501   .0320513     1.05   0.294    -.0291693    .0964696 
       ferizaj |   .9545303   .1645074     5.80   0.000     .6321016    1.276959 
       gjakova |   .9650004   .1586301     6.08   0.000      .654091     1.27591 
       gjilani |   1.903647   .1596132    11.93   0.000     1.590811    2.216483 
     mitrovica |   1.237659   .1651726     7.49   0.000     .9139271    1.561392 
          peja |   .5909044   .1643426     3.60   0.000     .2687989    .9130099 
      prizreni |   .8850921   .1538299     5.75   0.000      .583591    1.186593 
         _cons |  -19.57279   2.002432    -9.77   0.000    -23.49748   -15.64809 
-------------------------------------------------------------------------------- 
 
 
*** Multinomial probit treatment model  
 
 
. teffects ipw (employed) (multitreatment age agesq male minority socialassist 
secondaryeduc tertiaryeduc  emp2011 employment0811 hhsize hhsizegen ferizaj gjakova 
gjilani mitrovica peja prizren ), atet vce(robust) aequ 
 
Iteration 0:   EE criterion =  3.811e-17   
Iteration 1:   EE criterion =  3.182e-26   
 
Treatment-effects estimation                    Number of obs     =      7,753 
Estimator      : inverse-probability weights 
Outcome model  : weighted mean 
Treatment model: (multinomial) logit 
-------------------------------------------------------------------------------- 
               |               Robust 
      employed |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
---------------+---------------------------------------------------------------- 
ATET           | 
multitreatment | 
     (1 vs 0)  |   .1024067     .02652     3.86   0.000     .0504284    .1543849 
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     (2 vs 0)  |   .0937236     .03319     2.82   0.005     .0286723    .1587749 
     (3 vs 0)  |  -.0666286    .042343    -1.57   0.116    -.1496192    .0163621 
---------------+---------------------------------------------------------------- 
POmean         | 
multitreatment | 
            0  |   .3444019   .0241336    14.27   0.000     .2971009    .3917028 
---------------+---------------------------------------------------------------- 
TME1           | 
           age |   1.413724   .1781519     7.94   0.000     1.064552    1.762895 
         agesq |  -.0276842    .003336    -8.30   0.000    -.0342226   -.0211457 
          male |   -.717694   .2689107    -2.67   0.008    -1.244749   -.1906388 
      minority |  -.1919382   .2398957    -0.80   0.424    -.6621252    .2782488 
  socialassist |   2.882324   .2669839    10.80   0.000     2.359045    3.405602 
 secondaryeduc |  -.3460953   .1535257    -2.25   0.024    -.6470002   -.0451904 
  tertiaryeduc |   .9204818   .1595055     5.77   0.000     .6078568    1.233107 
       emp2011 |  -2.447462   .1698918   -14.41   0.000    -2.780443    -2.11448 
       emphist |   2.151887   .1626965    13.23   0.000     1.833008    2.470766 
        hhsize |  -.1398375   .0290449    -4.81   0.000    -.1967645   -.0829104 
     hhsizegen |    .001012    .038801     0.03   0.979    -.0750366    .0770607 
       ferizaj |   .9347286   .2068503     4.52   0.000     .5293095    1.340148 
       gjakova |   1.153686    .195793     5.89   0.000     .7699389    1.537433 
       gjilani |   1.999726   .1949397    10.26   0.000     1.617651    2.381801 
     mitrovica |   1.353333    .203549     6.65   0.000     .9543842    1.752282 
          peja |   .6318902   .2083549     3.03   0.002     .2235222    1.040258 
      prizreni |   1.126131   .1917063     5.87   0.000     .7503936    1.501869 
         _cons |  -19.81157   2.347503    -8.44   0.000    -24.41259   -15.21055 
---------------+---------------------------------------------------------------- 
TME2           | 
           age |   1.346897   .2628578     5.12   0.000      .831705    1.862089 
         agesq |  -.0259819   .0049166    -5.28   0.000    -.0356183   -.0163455 
          male |  -.7979321   .3745817    -2.13   0.033    -1.532099   -.0637655 
      minority |   .0446592   .3027216     0.15   0.883    -.5486643    .6379826 
  socialassist |   3.195568   .3042002    10.50   0.000     2.599346    3.791789 
 secondaryeduc |  -.0119571   .2216409    -0.05   0.957    -.4463652     .422451 
  tertiaryeduc |   1.202353   .2365829     5.08   0.000     .7386587    1.666047 
       emp2011 |  -2.432426    .226858   -10.72   0.000    -2.877059   -1.987792 
       emphist |   1.909995   .2100973     9.09   0.000     1.498212    2.321778 
        hhsize |  -.1776654   .0366943    -4.84   0.000     -.249585   -.1057459 
     hhsizegen |   .0266939    .056103     0.48   0.634    -.0832659    .1366538 
       ferizaj |   1.682184   .3010803     5.59   0.000     1.092078    2.272291 
       gjakova |   1.638374   .3010562     5.44   0.000     1.048315    2.228434 
       gjilani |   2.377816   .2959141     8.04   0.000     1.797835    2.957797 
     mitrovica |   1.999283   .2964681     6.74   0.000     1.418217     2.58035 
          peja |   1.407159   .2923936     4.81   0.000     .8340779     1.98024 
      prizreni |   1.208193    .317206     3.81   0.000      .586481    1.829906 
         _cons |  -20.36672   3.454223    -5.90   0.000    -27.13687   -13.59656 
---------------+---------------------------------------------------------------- 
TME3           | 
           age |   1.845249   .3940853     4.68   0.000     1.072856    2.617642 
         agesq |  -.0354639   .0073317    -4.84   0.000    -.0498338    -.021094 
          male |  -2.077053   .4621661    -4.49   0.000    -2.982882   -1.171224 
      minority |  -.0372633   .3519049    -0.11   0.916    -.7269842    .6524576 
  socialassist |   2.460318   .4081779     6.03   0.000     1.660304    3.260332 
 secondaryeduc |  -.6603757   .2685839    -2.46   0.014     -1.18679   -.1339609 
  tertiaryeduc |   .2656454   .2724921     0.97   0.330    -.2684293    .7997201 
       emp2011 |  -2.816691   .2412737   -11.67   0.000    -3.289579   -2.343803 
emphist |   2.751174   .2544869    10.81   0.000     2.252389    3.249959 
        hhsize |  -.2744273   .0558694    -4.91   0.000    -.3839293   -.1649252 
     hhsizegen |   .1802097    .069577     2.59   0.010     .0438413    .3165781 
       ferizaj |   .2731118   .3064866     0.89   0.373     -.327591    .8738146 
       gjakova |  -.6912424   .4154098    -1.66   0.096    -1.505431    .1229458 
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       gjilani |   1.306612   .2641516     4.95   0.000     .7888841    1.824339 
     mitrovica |  -.2686435   .4071526    -0.66   0.509    -1.066648     .529361 
          peja |  -.6522711   .4023617    -1.62   0.105    -1.440885    .1363434 
      prizreni |  -.0450278   .3066457    -0.15   0.883    -.6460424    .5559868 
         _cons |  -24.98753   5.233495    -4.77   0.000    -35.24499   -14.73007 
-------------------------------------------------------------------------------- 
 
*** Balancing diagnostics  
 
. tebalance sum 
 
  Covariate balance summary 
                                                 Observations       
                               Treatment           Raw     Weighted 
                          ----------------------------------------- 
                          0bn.multitr~t =        6,906      1,937.6 
                          1.multitrea~t =          470      1,962.2 
                          2.multitrea~t =          241      1,951.5 
                          3.multitrea~t =          136      1,901.7 
                          Total         =        7,753      7,753.0 
                          ----------------------------------------- 
 
  ----------------------------------------------------------------- 
                  |Standardized differences          Variance ratio 
                  |        Raw    Weighted           Raw   Weighted 
  ----------------+------------------------------------------------ 
  1.multitreatm~t | 
              age |  -.6269269   -.0768009      .3221864   .9668094 
            agesq |  -.6869872   -.0765679      .2738164    .982205 
             male |  -.4450008    .0386108      1.321906   .9952384 
         minority |   .0052393    .0184935      1.021027   1.069807 
     socialassist |   .3428648    .1603264      6.827683   1.808988 
    secondaryeduc |  -.4696964    .0583174       1.02591   1.028303 
     tertiaryeduc |   .6244724   -.0756302      1.899256   .9818704 
          emp2011 |  -.4831847    .0041387      .9244103   1.002763 
          emphist |  -.0721193   -.0236421      1.030833   1.008142 
           hhsize |  -.4328879   -.0341622      .3461522   .8928136 
        hhsizegen |  -.5568747    .0215153      .5330855    .969723 
          ferizaj |  -.0306483   -.0071066      .9316378   .9828628 
          gjakova |   .0687207    .0569443       1.16296   1.129645 
          gjilani |   .4292703   -.0708377      2.780606   .9090178 
        mitrovica |   .1178972    .0379924      1.334737   1.088544 
             peja |  -.0830119   -.0207665      .8265375   .9500848 
         prizreni |  -.0032518    .0522388      .9960333   1.106533 
  ----------------+------------------------------------------------ 
  2.multitreatm~t | 
              age |  -.5756687   -.0624487      .3526933   .9005252 
            agesq |  -.6322685    -.066895      .3161966   .9323647 
             male |  -.4294723    .0508539      1.321162   .9931169 
         minority |    .078628    .0138854       1.30295   1.052258 
     socialassist |   .4499272    .1834829      9.517168   1.939953 
    secondaryeduc |  -.4066554    .0711956      1.050123   1.033665 
     tertiaryeduc |   .6102409   -.0949887      1.895007   .9754653 
          emp2011 |   -.573383    .0311655      .8684703   1.020092 
          emphist |   -.218392   -.0325065      1.059018   1.010917 
           hhsize |  -.4703471    -.071082      .3897204   1.011424 
        hhsizegen |  -.5477794    .0211668      .5800314   1.048448 
          ferizaj |   .0779458   -.0344939      1.185588   .9173304 
          gjakova |   .0702349    .0726757      1.168982    1.16558 
          gjilani |   .4113551   -.0365455      2.713313   .9537108 
        mitrovica |   .2067901    .0480908      1.594995   1.112192 
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             peja |   .0507065    -.000676      1.112635   .9983651 
         prizreni |  -.1745717    .0021834      .6845422   1.004453 
  ----------------+------------------------------------------------ 
  3.multitreatm~t | 
              age |  -.5874766   -.0012217      .2839457   .9544984 
            agesq |  -.6574538   -.0041206      .2399639   1.031749 
             male |  -.5770215    .1282286      1.335005   .9729907 
         minority |   .0709291   -.0401744       1.27692   .8542379 
     socialassist |   .3115719     .173463       6.14469   1.882948 
    secondaryeduc |  -.3928189    .1159143      1.057358   1.049694 
     tertiaryeduc |   .4754033   -.1376762      1.788427   .9588983 
          emp2011 |  -.4921984    -.047144      .9235891   .9663668 
          emphist |   .1462006    .0421045      .9189746   .9828377 
           hhsize |  -.4971539   -.0499302      .3182613   .8294375 
        hhsizegen |   -.605161    .0967708      .5796272    .981256 
          ferizaj |   .0290471   -.0238964      1.074949    .942605 
          gjakova |  -.2503322    .0713566      .4612281   1.162584 
          gjilani |   .5480294   -.0699444      3.261717   .9102099 
        mitrovica |  -.1407073      .01267      .6399687   1.029453 
             peja |  -.2319707    .0030906      .5307899   1.007473 
         prizreni |  -.1079457    .0048408      .8079007    1.00989 
  ----------------------------------------------------------------- 
 

 

Table A6.1.3 RA  
*** Binary treatment model  
 
. teffects ra (employed age agesq male minority socialassist secondaryeduc 
tertiaryeduc emp2011 emphist hhsize hhsizegen ferizaj gjakova gjilani mitrovica peja 
prizreni, logit) (bintreatment), atet vce(robust)aequ  
 
Iteration 0:   EE criterion =  1.286e-23   
Iteration 1:   EE criterion =  1.666e-33   
 
Treatment-effects estimation                    Number of obs     =      7,753 
Estimator      : regression adjustment 
Outcome model  : logit 
Treatment model: none 
------------------------------------------------------------------------------- 
              |               Robust 
     employed |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
--------------+---------------------------------------------------------------- 
ATET          | 
 bintreatment | 
    (1 vs 0)  |    .069562   .0170429     4.08   0.000     .0361586    .1029655 
--------------+---------------------------------------------------------------- 
POmean        | 
 bintreatment | 
           0  |   .3401192   .0162374    20.95   0.000     .3082946    .3719438 
--------------+---------------------------------------------------------------- 
OME0          | 
          age |   .1808925   .1380061     1.31   0.190    -.0895945    .4513794 
        agesq |  -.0018676   .0023268    -0.80   0.422    -.0064281    .0026929 
         male |   .4311122    .327872     1.31   0.189    -.2115051    1.073729 
     minority |   .0855887   .3472056     0.25   0.805    -.5949217    .7660992 
 socialassist |   1.182815   .5900737     2.00   0.045     .0262914    2.339338 
secondaryeduc |   .5530994   .1964932     2.81   0.005     .1679798    .9382189 
 tertiaryeduc |    .994315   .2897802     3.43   0.001     .4263562    1.562274 
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      emp2011 |   6.753188   .3304302    20.44   0.000     6.105557     7.40082 
      emphist |   .9124589   .3502011     2.61   0.009     .2260774     1.59884 
       hhsize |   .0549228   .0278171     1.97   0.048     .0004023    .1094433 
    hhsizegen |  -.0610614   .0342143    -1.78   0.074    -.1281201    .0059973 
      ferizaj |   -.808614    .295916    -2.73   0.006    -1.388599   -.2286292 
      gjakova |  -.5492257   .2154132    -2.55   0.011    -.9714278   -.1270235 
      gjilani |  -.3347647   .3226504    -1.04   0.299    -.9671478    .2976185 
    mitrovica |   .0805916   .2882117     0.28   0.780     -.484293    .6454763 
         peja |  -.9308065   .2856165    -3.26   0.001    -1.490604   -.3710085 
     prizreni |  -.3631649   .2625625    -1.38   0.167     -.877778    .1514482 
        _cons |  -8.326984   1.991491    -4.18   0.000    -12.23023   -4.423734 
--------------+---------------------------------------------------------------- 
OME1          | 
          age |   .4888125   .2598077     1.88   0.060    -.0204011    .9980262 
        agesq |  -.0080254   .0047377    -1.69   0.090    -.0173111    .0012602 
         male |   -.218195   .4571157    -0.48   0.633    -1.114125    .6777353 
     minority |  -.5892953   .3331128    -1.77   0.077    -1.242184    .0635938 
 socialassist |  -.5339743   .3671626    -1.45   0.146      -1.2536    .1856511 
secondaryeduc |  -.1018293   .2585159    -0.39   0.694    -.6085113    .4048526 
 tertiaryeduc |   .6767813   .2629518     2.57   0.010     .1614052    1.192157 
      emp2011 |   2.140557   .2229235     9.60   0.000     1.703635    2.577479 
      emphist |   .7164347   .2483117     2.89   0.004     .2297527    1.203117 
       hhsize |  -.0863489   .0585863    -1.47   0.141     -.201176    .0284782 
    hhsizegen |    .114222   .0708649     1.61   0.107    -.0246706    .2531145 
      ferizaj |  -.6452049   .3473382    -1.86   0.063    -1.325975    .0355654 
      gjakova |  -.3286613   .2936638    -1.12   0.263    -.9042318    .2469092 
      gjilani |  -.2569687    .270016    -0.95   0.341    -.7861903    .2722528 
    mitrovica |  -.9280101   .3656768    -2.54   0.011    -1.644723   -.2112967 
         peja |   .8872465   .3282573     2.70   0.007      .243874    1.530619 
     prizreni |   -.473688   .3364302    -1.41   0.159    -1.133079    .1857032 
        _cons |  -8.443024   3.542638    -2.38   0.017    -15.38647   -1.499582 
 
 
 
*** Multinomial probit treatment model  
 
. teffects ra (employed age agesq male minority socialassist secondaryeduc 
tertiaryeduc emp2011 emphist hhsize hhsiz 
> egen ferizaj gjakova gjilani mitrovica peja prizreni, logit) (multitreatment), atet 
vce(robust) aequ 
 
Iteration 0:   EE criterion =  1.253e-22   
Iteration 1:   EE criterion =  6.712e-34   
 
Treatment-effects estimation                    Number of obs     =      7,753 
Estimator      : regression adjustment 
Outcome model  : logit 
Treatment model: none 
-------------------------------------------------------------------------------- 
               |               Robust 
      employed |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
---------------+---------------------------------------------------------------- 
ATET           | 
multitreatment | 
     (1 vs 0)  |   .0953583   .0240248     3.97   0.000     .0482706     .142446 
     (2 vs 0)  |   .0869834   .0302539     2.88   0.004     .0276869    .1462798 
     (3 vs 0)  |  -.0430681   .0393597    -1.09   0.274    -.1202116    .0340754 
---------------+---------------------------------------------------------------- 
POmean         | 
multitreatment | 
            0  |   .3514502   .0213164    16.49   0.000     .3096708    .3932297 
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---------------+---------------------------------------------------------------- 
OME0           | 
           age |   .1808925   .1380061     1.31   0.190    -.0895945    .4513794 
         agesq |  -.0018676   .0023268    -0.80   0.422    -.0064281    .0026929 
          male |   .4311122    .327872     1.31   0.189    -.2115051    1.073729 
      minority |   .0855887   .3472056     0.25   0.805    -.5949217    .7660992 
  socialassist |   1.182815   .5900737     2.00   0.045     .0262914    2.339338 
 secondaryeduc |   .5530994   .1964932     2.81   0.005     .1679798    .9382189 
  tertiaryeduc |    .994315   .2897802     3.43   0.001     .4263562    1.562274 
       emp2011 |   6.753188   .3304302    20.44   0.000     6.105557     7.40082 
       emphist |   .9124589   .3502011     2.61   0.009     .2260774     1.59884 
        hhsize |   .0549228   .0278171     1.97   0.048     .0004023    .1094433 
     hhsizegen |  -.0610614   .0342143    -1.78   0.074    -.1281201    .0059973 
       ferizaj |   -.808614    .295916    -2.73   0.006    -1.388599   -.2286292 
       gjakova |  -.5492257   .2154132    -2.55   0.011    -.9714278   -.1270235 
       gjilani |  -.3347647   .3226504    -1.04   0.299    -.9671478    .2976185 
     mitrovica |   .0805916   .2882117     0.28   0.780     -.484293    .6454763 
          peja |  -.9308065   .2856165    -3.26   0.001    -1.490604   -.3710085 
      prizreni |  -.3631649   .2625625    -1.38   0.167     -.877778    .1514482 
         _cons |  -8.326984   1.991491    -4.18   0.000    -12.23023   -4.423734 
---------------+---------------------------------------------------------------- 
OME1           | 
           age |   .8781218   .3576114     2.46   0.014     .1772162    1.579027 
         agesq |  -.0148516   .0065542    -2.27   0.023    -.0276976   -.0020056 
          male |  -.7646896   .6402417    -1.19   0.232     -2.01954     .490161 
      minority |  -.5772255   .4981694    -1.16   0.247     -1.55362    .3991685 
  socialassist |  -.6689897   .5311511    -1.26   0.208    -1.710027    .3720472 
 secondaryeduc |   .0939106   .3546871     0.26   0.791    -.6012634    .7890845 
  tertiaryeduc |   .8924367   .3606946     2.47   0.013     .1854883    1.599385 
       emp2011 |   1.867267   .2972801     6.28   0.000     1.284609    2.449925 
       emphist |   .6932728   .3336896     2.08   0.038     .0392533    1.347292 
        hhsize |  -.0873919   .0774409    -1.13   0.259    -.2391732    .0643895 
     hhsizegen |   .1837764   .0988439     1.86   0.063    -.0099541    .3775069 
       ferizaj |   -.870921   .4984884    -1.75   0.081     -1.84794    .1060982 
       gjakova |  -.2300903   .3889685    -0.59   0.554    -.9924545    .5322738 
       gjilani |  -.4720055   .3950961    -1.19   0.232     -1.24638    .3023687 
     mitrovica |  -.9234312   .4893246    -1.89   0.059     -1.88249    .0356273 
          peja |   1.246366   .4892611     2.55   0.011      .287432      2.2053 
      prizreni |  -.5611171   .4199471    -1.34   0.181    -1.384198    .2619641 
         _cons |  -13.68027   4.878485    -2.80   0.005    -23.24192   -4.118611 
---------------+---------------------------------------------------------------- 
OME2           | 
           age |   .2174579    .427506     0.51   0.611    -.6204384    1.055354 
         agesq |  -.0044487   .0073458    -0.61   0.545    -.0188461    .0099488 
          male |   .4865273   .8504345     0.57   0.567    -1.180294    2.153348 
      minority |   -.983394   .7627025    -1.29   0.197    -2.478263    .5114754 
  socialassist |  -.4155856   .5695115    -0.73   0.466    -1.531808    .7006364 
 secondaryeduc |  -1.308013   .5301429    -2.47   0.014    -2.347074   -.2689517 
  tertiaryeduc |  -.2254472   .4920602    -0.46   0.647    -1.189867     .738973 
       emp2011 |   2.000179   .4502903     4.44   0.000     1.117626    2.882731 
       emphist |   1.605919   .5258016     3.05   0.002     .5753672    2.636472 
        hhsize |   -.096349   .1089791    -0.88   0.377    -.3099441    .1172461 
     hhsizegen |   .0956543    .126824     0.75   0.451    -.1529161    .3442247 
       ferizaj |  -1.228609   .8022271    -1.53   0.126    -2.800946    .3437268 
       gjakova |  -1.676685   .7325251    -2.29   0.022    -3.112407   -.2409617 
       gjilani |  -1.129984   .6617085    -1.71   0.088    -2.426909    .1669405 
     mitrovica |  -1.769147   .7465952    -2.37   0.018    -3.232447   -.3058474 
          peja |  -.2260909   .6836617    -0.33   0.741    -1.566043    1.113861 
      prizreni |  -1.172745   .8476881    -1.38   0.167    -2.834183    .4886937 
         _cons |  -2.780253   6.173858    -0.45   0.652    -14.88079    9.320286 
---------------+---------------------------------------------------------------- 
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OME3           | 
           age |    -.41594   1.002928    -0.41   0.678    -2.381643    1.549763 
         agesq |   .0094703   .0188905     0.50   0.616    -.0275545     .046495 
          male |   -1.69968   1.881086    -0.90   0.366    -5.386541    1.987181 
      minority |  -1.724112   1.659226    -1.04   0.299    -4.976136    1.527912 
  socialassist |  -1.148109   4.292848    -0.27   0.789    -9.561937    7.265719 
 secondaryeduc |   1.258236   .7785581     1.62   0.106      -.26771    2.784181 
  tertiaryeduc |   1.209672   .8380442     1.44   0.149    -.4328642    2.852209 
       emp2011 |   4.459772   1.196606     3.73   0.000     2.114468    6.805076 
       emphist |   .3789327    .853587     0.44   0.657    -1.294067    2.051932 
        hhsize |  -.3260869    .197547    -1.65   0.099     -.713272    .0610981 
     hhsizegen |   .1646882   .3036852     0.54   0.588    -.4305238    .7599002 
       ferizaj |  -.4170348   .7885456    -0.53   0.597    -1.962556    1.128486 
       gjakova |   1.072785   1.132719     0.95   0.344    -1.147303    3.292873 
       gjilani |   .7914437   .8721782     0.91   0.364    -.9179942    2.500882 
     mitrovica |  -2.863647    1.05063    -2.73   0.006    -4.922843   -.8044508 
          peja |   -1.54128   1.252629    -1.23   0.219    -3.996389     .913828 
      prizreni |   .5834345   1.667557     0.35   0.726    -2.684916    3.851785 
         _cons |   2.417672   13.06953     0.18   0.853    -23.19814    28.03348 
-------------------------------------------------------------------------------- 
 

 

Table A6.1.4 IPWRA  
*** Binary treatment model  
 
. teffects ipwra (employed age agesq male minority socialassist secondaryeduc 
tertiaryeduc emp2011 emphist  hhsize hhsizegen ferizaj gjakova gjilani mitrovica peja 
prizreni, logit) (bintreatment age agesq male minority socialassist secondaryeduc 
tertiaryeduc  emp2011 emphist hhsize hhsizegen ferizaj gjakova gjilani mitrovica peja 
prizren ), atet vce(robust) aequ 
 
Iteration 0:   EE criterion =  1.527e-16   
Iteration 1:   EE criterion =  2.390e-30   
 
Treatment-effects estimation                    Number of obs     =      7,753 
Estimator      : IPW regression adjustment 
Outcome model  : logit 
Treatment model: logit 
-------------------------------------------------------------------------------- 
               |               Robust 
      employed |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
---------------+---------------------------------------------------------------- 
ATET           | 
  bintreatment | 
     (1 vs 0)  |   .0724515   .0177001     4.09   0.000       .03776    .1071431 
---------------+---------------------------------------------------------------- 
POmean         | 
  bintreatment | 
            0  |   .3372297   .0167379    20.15   0.000     .3044241    .3700353 
---------------+---------------------------------------------------------------- 
OME0           | 
           age |  -.7118113   .4517788    -1.58   0.115    -1.597281    .1736588 
         agesq |   .0130895   .0084505     1.55   0.121    -.0034731    .0296522 
          male |   .6283904   .6700931     0.94   0.348     -.684968    1.941749 
      minority |    .141273     .56156     0.25   0.801    -.9593644     1.24191 
  socialassist |   .9968692    .807604     1.23   0.217    -.5860055    2.579744 
 secondaryeduc |  -.0889005     .73791    -0.12   0.904    -1.535178    1.357377 
  tertiaryeduc |  -.0284332   .9497138    -0.03   0.976    -1.889838    1.832972 
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       emp2011 |    6.83069   .4426385    15.43   0.000     5.963134    7.698245 
       emphist |   1.589349   .6860297     2.32   0.021     .2447557    2.933943 
        hhsize |   .1676132   .0749671     2.24   0.025     .0206803     .314546 
     hhsizegen |  -.0873391   .0878019    -0.99   0.320    -.2594276    .0847494 
       ferizaj |   .5130356   1.072509     0.48   0.632    -1.589044    2.615115 
       gjakova |   -.333446    .468361    -0.71   0.477    -1.251417    .5845247 
       gjilani |  -.0707092   .4651375    -0.15   0.879    -.9823619    .8409435 
     mitrovica |   .8006694   .5094594     1.57   0.116    -.1978526    1.799191 
          peja |   .9435543   1.043219     0.90   0.366    -1.101118    2.988226 
      prizreni |  -.3613945   .4945576    -0.73   0.465     -1.33071    .6079205 
         _cons |   3.422022   5.345466     0.64   0.522      -7.0549    13.89894 
---------------+---------------------------------------------------------------- 
OME1           | 
           age |   .4888125   .2598077     1.88   0.060    -.0204011    .9980262 
         agesq |  -.0080254   .0047377    -1.69   0.090    -.0173111    .0012602 
          male |   -.218195   .4571157    -0.48   0.633    -1.114125    .6777353 
      minority |  -.5892953   .3331128    -1.77   0.077    -1.242184    .0635938 
  socialassist |  -.5339743   .3671626    -1.45   0.146      -1.2536    .1856511 
 secondaryeduc |  -.1018293   .2585159    -0.39   0.694    -.6085113    .4048526 
  tertiaryeduc |   .6767813   .2629518     2.57   0.010     .1614052    1.192157 
       emp2011 |   2.140557   .2229235     9.60   0.000     1.703635    2.577479 
       emphist |   .7164347   .2483117     2.89   0.004     .2297527    1.203117 
        hhsize |  -.0863489   .0585863    -1.47   0.141     -.201176    .0284782 
     hhsizegen |    .114222   .0708649     1.61   0.107    -.0246706    .2531145 
       ferizaj |  -.6452049   .3473382    -1.86   0.063    -1.325975    .0355654 
       gjakova |  -.3286613   .2936638    -1.12   0.263    -.9042318    .2469092 
       gjilani |  -.2569687    .270016    -0.95   0.341    -.7861903    .2722528 
     mitrovica |  -.9280101   .3656768    -2.54   0.011    -1.644723   -.2112967 
          peja |   .8872465   .3282573     2.70   0.007      .243874    1.530619 
      prizreni |   -.473688   .3364302    -1.41   0.159    -1.133079    .1857032 
         _cons |  -8.443024   3.542638    -2.38   0.017    -15.38647   -1.499582 
---------------+---------------------------------------------------------------- 
TME1           | 
           age |   1.451319    .152215     9.53   0.000     1.152983    1.749655 
         agesq |  -.0282003   .0028461    -9.91   0.000    -.0337786   -.0226221 
          male |  -.9374553   .2214396    -4.23   0.000    -1.371469   -.5034416 
      minority |  -.0999522   .1994632    -0.50   0.616    -.4908928    .2909885 
  socialassist |   2.932207   .2344679    12.51   0.000     2.472658    3.391755 
 secondaryeduc |  -.3021237   .1255887    -2.41   0.016    -.5482729   -.0559744 
  tertiaryeduc |   .8970667   .1349911     6.65   0.000     .6324891    1.161644 
       emp2011 |  -2.518161   .1463909   -17.20   0.000    -2.805082   -2.231241 
       emphist |   2.190087   .1425687    15.36   0.000     1.910658    2.469517 
        hhsize |  -.1693141    .024119    -7.02   0.000    -.2165865   -.1220417 
     hhsizegen |   .0336501   .0320513     1.05   0.294    -.0291693    .0964696 
       ferizaj |   .9545303   .1645074     5.80   0.000     .6321016    1.276959 
       gjakova |   .9650004   .1586301     6.08   0.000      .654091     1.27591 
       gjilani |   1.903647   .1596132    11.93   0.000     1.590811    2.216483 
     mitrovica |   1.237659   .1651726     7.49   0.000     .9139271    1.561392 
          peja |   .5909044   .1643426     3.60   0.000     .2687989    .9130099 
      prizreni |   .8850921   .1538299     5.75   0.000      .583591    1.186593 
         _cons |  -19.57279   2.002432    -9.77   0.000    -23.49748   -15.64809 
-------------------------------------------------------------------------------- 
 
 
*** Multinomial probit treatment model 
 
. teffects ipwra (employed age agesq male minority socialassist secondaryeduc 
tertiaryeduc emp2011 emphist  hhsize hhsizegen ferizaj gjakova gjilani mitrovica peja 
prizreni, logit) (multitreatment age agesq  male minority socialassist secondaryeduc 
tertiaryeduc  emp2011 emphist hhsize hhsizegen ferizaj gjakova gjilani mitrovica peja 
prizren ), atet vce(robust)  aequations 



393 
 

 
Iteration 0:   EE criterion =  3.811e-17   
Iteration 1:   EE criterion =  1.731e-26   
 
Treatment-effects estimation                    Number of obs     =      7,753 
Estimator      : IPW regression adjustment 
Outcome model  : logit 
Treatment model: (multinomial) logit 
-------------------------------------------------------------------------------- 
               |               Robust 
      employed |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
---------------+---------------------------------------------------------------- 
ATET           | 
multitreatment | 
     (1 vs 0)  |   .0991218   .0244461     4.05   0.000     .0512083    .1470353 
     (2 vs 0)  |   .0879362   .0305271     2.88   0.004     .0281042    .1477681 
     (3 vs 0)  |   -.053061   .0409642    -1.30   0.195    -.1333494    .0272274 
---------------+---------------------------------------------------------------- 
POmean         | 
multitreatment | 
            0  |   .3476867   .0215506    16.13   0.000     .3054483    .3899251 
---------------+---------------------------------------------------------------- 
OME0           | 
           age |  -.6677465   .4478029    -1.49   0.136    -1.545424    .2099309 
         agesq |   .0124019   .0083481     1.49   0.137    -.0039602    .0287639 
          male |   .4794327   .6788999     0.71   0.480    -.8511866    1.810052 
      minority |   .1307871   .5747539     0.23   0.820    -.9957098    1.257284 
  socialassist |   1.023982   .7943787     1.29   0.197    -.5329718    2.580936 
 secondaryeduc |   .0726845   .6986675     0.10   0.917    -1.296679    1.442048 
  tertiaryeduc |    .125271   .9093575     0.14   0.890    -1.657037    1.907579 
       emp2011 |   6.804093   .4501296    15.12   0.000     5.921855    7.686331 
       emphist |    1.65305   .6776125     2.44   0.015     .3249537    2.981146 
        hhsize |   .1455636   .0756676     1.92   0.054    -.0027423    .2938694 
     hhsizegen |  -.0671963   .0902719    -0.74   0.457    -.2441261    .1097334 
       ferizaj |   .5367144   1.138176     0.47   0.637    -1.694069    2.767498 
       gjakova |  -.2804227    .460167    -0.61   0.542    -1.182333    .6214879 
       gjilani |  -.1633164   .4570627    -0.36   0.721    -1.059143    .7325099 
     mitrovica |   .8001392    .510842     1.57   0.117    -.2010928    1.801371 
          peja |   1.021226   1.011514     1.01   0.313    -.9613059    3.003757 
      prizreni |  -.3738089   .5051459    -0.74   0.459    -1.363877    .6162589 
         _cons |   2.733365   5.340782     0.51   0.609    -7.734375     13.2011 
---------------+---------------------------------------------------------------- 
OME1           | 
           age |   .8781218   .3576114     2.46   0.014     .1772162    1.579027 
         agesq |  -.0148516   .0065542    -2.27   0.023    -.0276976   -.0020056 
          male |  -.7646896   .6402417    -1.19   0.232     -2.01954     .490161 
      minority |  -.5772255   .4981694    -1.16   0.247     -1.55362    .3991685 
  socialassist |  -.6689897   .5311511    -1.26   0.208    -1.710027    .3720472 
 secondaryeduc |   .0939106   .3546871     0.26   0.791    -.6012634    .7890845 
  tertiaryeduc |   .8924367   .3606946     2.47   0.013     .1854883    1.599385 
       emp2011 |   1.867267   .2972801     6.28   0.000     1.284609    2.449925 
       emphist |   .6932728   .3336896     2.08   0.038     .0392533    1.347292 
        hhsize |  -.0873919   .0774409    -1.13   0.259    -.2391732    .0643895 
     hhsizegen |   .1837764   .0988439     1.86   0.063    -.0099541    .3775069 
       ferizaj |   -.870921   .4984884    -1.75   0.081     -1.84794    .1060982 
       gjakova |  -.2300903   .3889685    -0.59   0.554    -.9924545    .5322738 
       gjilani |  -.4720055   .3950961    -1.19   0.232     -1.24638    .3023687 
     mitrovica |  -.9234312   .4893246    -1.89   0.059     -1.88249    .0356273 
          peja |   1.246366   .4892611     2.55   0.011      .287432      2.2053 
      prizreni |  -.5611171   .4199471    -1.34   0.181    -1.384198    .2619641 
         _cons |  -13.68027   4.878485    -2.80   0.005    -23.24192   -4.118611 
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---------------+---------------------------------------------------------------- 
OME2           | 
           age |    .136024   .4809697     0.28   0.777    -.8066594    1.078707 
         agesq |  -.0027331   .0085085    -0.32   0.748    -.0194096    .0139433 
          male |   .7981886   .8943002     0.89   0.372    -.9546075    2.550985 
      minority |   -.974543   .8667033    -1.12   0.261     -2.67325    .7241643 
  socialassist |  -.4927547   .5228051    -0.94   0.346    -1.517434    .5319244 
 secondaryeduc |  -1.501587    .557957    -2.69   0.007    -2.595162   -.4080114 
  tertiaryeduc |  -.3254069   .5345709    -0.61   0.543    -1.373146    .7223328 
       emp2011 |   1.968352   .4713379     4.18   0.000     1.044546    2.892157 
       emphist |   1.588437   .5209449     3.05   0.002      .567404    2.609471 
        hhsize |  -.0870363   .1094399    -0.80   0.426    -.3015345    .1274619 
     hhsizegen |   .0764527    .128024     0.60   0.550    -.1744697    .3273751 
       ferizaj |  -1.078196   .7796379    -1.38   0.167    -2.606259    .4498659 
       gjakova |  -1.598505   .7513452    -2.13   0.033    -3.071114   -.1258952 
       gjilani |  -.9448311   .6686614    -1.41   0.158    -2.255383     .365721 
     mitrovica |  -1.660417   .7641433    -2.17   0.030     -3.15811   -.1627235 
          peja |  -.1053805   .6918786    -0.15   0.879    -1.461438    1.250677 
      prizreni |  -1.175091    .830445    -1.42   0.157    -2.802734     .452551 
         _cons |  -1.976327   6.689965    -0.30   0.768    -15.08842    11.13576 
---------------+---------------------------------------------------------------- 
OME3           | 
           age |  -.1638573   .9690795    -0.17   0.866    -2.063218    1.735504 
         agesq |    .006548   .0180793     0.36   0.717    -.0288869    .0419828 
          male |  -1.365352   2.186413    -0.62   0.532    -5.650641    2.919938 
      minority |  -2.448472   1.288977    -1.90   0.057    -4.974821    .0778771 
  socialassist |  -3.010292   4.312833    -0.70   0.485    -11.46329    5.442706 
 secondaryeduc |   1.675777   .8040307     2.08   0.037     .0999058    3.251648 
  tertiaryeduc |   1.332617   .8585433     1.55   0.121    -.3500971    3.015331 
       emp2011 |   3.970016   1.210366     3.28   0.001     1.597744    6.342289 
       emphist |   1.156213   .7996599     1.45   0.148    -.4110919    2.723517 
        hhsize |  -.4893157   .2561319    -1.91   0.056    -.9913249    .0126935 
     hhsizegen |   .0879398   .3519665     0.25   0.803    -.6019018    .7777814 
       ferizaj |  -.2868893   .9552357    -0.30   0.764    -2.159117    1.585338 
       gjakova |   1.115135   1.109826     1.00   0.315    -1.060084    3.290354 
       gjilani |   1.001144   .8825521     1.13   0.257    -.7286266    2.730914 
     mitrovica |  -3.356343   1.073165    -3.13   0.002    -5.459708   -1.252977 
          peja |  -1.058001   1.095014    -0.97   0.334    -3.204189    1.088186 
      prizreni |   .0768549   1.877923     0.04   0.967    -3.603806    3.757516 
         _cons |   -1.70247   12.64516    -0.13   0.893    -26.48653    23.08159 
---------------+---------------------------------------------------------------- 
TME1           | 
           age |   1.413724   .1781519     7.94   0.000     1.064552    1.762895 
         agesq |  -.0276842    .003336    -8.30   0.000    -.0342226   -.0211457 
          male |   -.717694   .2689107    -2.67   0.008    -1.244749   -.1906388 
      minority |  -.1919382   .2398957    -0.80   0.424    -.6621252    .2782488 
  socialassist |   2.882324   .2669839    10.80   0.000     2.359045    3.405602 
 secondaryeduc |  -.3460953   .1535257    -2.25   0.024    -.6470002   -.0451904 
  tertiaryeduc |   .9204818   .1595055     5.77   0.000     .6078568    1.233107 
       emp2011 |  -2.447462   .1698918   -14.41   0.000    -2.780443    -2.11448 
       emphist |   2.151887   .1626965    13.23   0.000     1.833008    2.470766 
        hhsize |  -.1398375   .0290449    -4.81   0.000    -.1967645   -.0829104 
     hhsizegen |    .001012    .038801     0.03   0.979    -.0750366    .0770607 
       ferizaj |   .9347286   .2068503     4.52   0.000     .5293095    1.340148 
       gjakova |   1.153686    .195793     5.89   0.000     .7699389    1.537433 
       gjilani |   1.999726   .1949397    10.26   0.000     1.617651    2.381801 
     mitrovica |   1.353333    .203549     6.65   0.000     .9543842    1.752282 
          peja |   .6318902   .2083549     3.03   0.002     .2235222    1.040258 
      prizreni |   1.126131   .1917063     5.87   0.000     .7503936    1.501869 
         _cons |  -19.81157   2.347503    -8.44   0.000    -24.41259   -15.21055 
---------------+---------------------------------------------------------------- 
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TME2           | 
           age |   1.346897   .2628578     5.12   0.000      .831705    1.862089 
         agesq |  -.0259819   .0049166    -5.28   0.000    -.0356183   -.0163455 
          male |  -.7979321   .3745817    -2.13   0.033    -1.532099   -.0637655 
      minority |   .0446592   .3027216     0.15   0.883    -.5486643    .6379826 
  socialassist |   3.195568   .3042002    10.50   0.000     2.599346    3.791789 
 secondaryeduc |  -.0119571   .2216409    -0.05   0.957    -.4463652     .422451 
  tertiaryeduc |   1.202353   .2365829     5.08   0.000     .7386587    1.666047 
       emp2011 |  -2.432426    .226858   -10.72   0.000    -2.877059   -1.987792 
       emphist |   1.909995   .2100973     9.09   0.000     1.498212    2.321778 
        hhsize |  -.1776654   .0366943    -4.84   0.000     -.249585   -.1057459 
     hhsizegen |   .0266939    .056103     0.48   0.634    -.0832659    .1366538 
       ferizaj |   1.682184   .3010803     5.59   0.000     1.092078    2.272291 
       gjakova |   1.638374   .3010562     5.44   0.000     1.048315    2.228434 
       gjilani |   2.377816   .2959141     8.04   0.000     1.797835    2.957797 
     mitrovica |   1.999283   .2964681     6.74   0.000     1.418217     2.58035 
          peja |   1.407159   .2923936     4.81   0.000     .8340779     1.98024 
      prizreni |   1.208193    .317206     3.81   0.000      .586481    1.829906 
         _cons |  -20.36672   3.454223    -5.90   0.000    -27.13687   -13.59656 
---------------+---------------------------------------------------------------- 
TME3           | 
           age |   1.845249   .3940853     4.68   0.000     1.072856    2.617642 
         agesq |  -.0354639   .0073317    -4.84   0.000    -.0498338    -.021094 
          male |  -2.077053   .4621661    -4.49   0.000    -2.982882   -1.171224 
      minority |  -.0372633   .3519049    -0.11   0.916    -.7269842    .6524576 
  socialassist |   2.460318   .4081779     6.03   0.000     1.660304    3.260332 
 secondaryeduc |  -.6603757   .2685839    -2.46   0.014     -1.18679   -.1339609 
  tertiaryeduc |   .2656454   .2724921     0.97   0.330    -.2684293    .7997201 
       emp2011 |  -2.816691   .2412737   -11.67   0.000    -3.289579   -2.343803 
       emphist |   2.751174   .2544869    10.81   0.000     2.252389    3.249959 
        hhsize |  -.2744273   .0558694    -4.91   0.000    -.3839293   -.1649252 
     hhsizegen |   .1802097    .069577     2.59   0.010     .0438413    .3165781 
       ferizaj |   .2731118   .3064866     0.89   0.373     -.327591    .8738146 
       gjakova |  -.6912424   .4154098    -1.66   0.096    -1.505431    .1229458 
       gjilani |   1.306612   .2641516     4.95   0.000     .7888841    1.824339 
     mitrovica |  -.2686435   .4071526    -0.66   0.509    -1.066648     .529361 
          peja |  -.6522711   .4023617    -1.62   0.105    -1.440885    .1363434 
      prizreni |  -.0450278   .3066457    -0.15   0.883    -.6460424    .5559868 
         _cons |  -24.98753   5.233495    -4.77   0.000    -35.24499   -14.73007 
-------------------------------------------------------------------------------- 

Table 6.2 Outcome Variable: employed – Model 2, excluding 

emphist 

Table A6.2.1 PSM  
. teffects psmatch (employed) (bintreatment age agesq male minority socialassist 
secondaryeduc tertiaryeduc emp2011 hhsize hhsizegen ferizaj gjakova gjilani mitrovica 
peja prizren ) if insampm==1, atet vce(robust) 
 
Treatment-effects estimation                   Number of obs      =      7,753 
Estimator      : propensity-score matching     Matches: requested =          1 
Outcome model  : matching                                     min =          1 
Treatment model: logit                                        max =          9 
------------------------------------------------------------------------------ 
             |              AI Robust 
    employed |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
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ATET         | 
bintreatment | 
   (1 vs 0)  |   .0670012   .0246546     2.72   0.007     .0186791    .1153233 
------------------------------------------------------------------------------ 
 
 
*** Balancing diagnostics  
 
. tebalance sum 
note: refitting the model using the generate() option 
 
  Covariate balance summary 
                                                   Raw      Matched 
                          ----------------------------------------- 
                          Number of obs =        7,753        1,694 
                          Treated obs   =          847          847 
                          Control obs   =        6,906          847 
                          ----------------------------------------- 
 
  ----------------------------------------------------------------- 
                  |Standardized differences          Variance ratio 
                  |        Raw     Matched           Raw    Matched 
  ----------------+------------------------------------------------ 
              age |  -.6060234   -.0272963      .3243216   .9542477 
            agesq |  -.6665971    -.029148      .2800718   .9545983 
             male |  -.4618398    .0378049      1.323737   .9965182 
         minority |   .0377737    .1103094       1.14086   1.521516 
     socialassist |   .3709548    .1106018       7.49496    1.42536 
    secondaryeduc |  -.4394493    .0578811      1.036461   1.024474 
     tertiaryeduc |   .5968176   -.0953859      1.880529   .9741495 
          emp2011 |  -.5101395   -.0125136      .9074829   .9911969 
           hhsize |   -.453916   -.0180904      .3536742   .8421255 
        hhsizegen |  -.5622479    .0253108      .5529141   .9879471 
          ferizaj |   .0111471    .0741576      1.026757    1.19752 
          gjakova |   .0257213    .0141508       1.06098   1.032134 
          gjilani |   .4442438    -.005757      2.838404   .9919855 
        mitrovica |   .1091392   -.0576464      1.308213   .8876912 
             peja |  -.0639643   -.0880067      .8656221   .8224986 
         prizreni |  -.0658709    .0206687      .8802186   1.044971 
  ----------------------------------------------------------------- 

Table A6.2.2 IPW  
*** Binary treatment model  
 
. teffects ipw (employed) (bintreatment age agesq male minority socialassist 
secondaryeduc tertiaryeduc  emp2011 hhsize hhsizegen ferizaj gjakova gjilani mitrovica 
peja prizren ) if insampm==1, atet vce(robust) aequ 
 
Iteration 0:   EE criterion =  1.061e-23   
Iteration 1:   EE criterion =  8.893e-32   
 
Treatment-effects estimation                    Number of obs     =      7,753 
Estimator      : inverse-probability weights 
Outcome model  : weighted mean 
Treatment model: logit 
------------------------------------------------------------------------------- 
              |               Robust 
     employed |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
--------------+---------------------------------------------------------------- 
ATET          | 
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 bintreatment | 
    (1 vs 0)  |   .0793523   .0177834     4.46   0.000     .0444975    .1142071 
--------------+---------------------------------------------------------------- 
POmean        | 
 bintreatment | 
           0  |   .3303289   .0169624    19.47   0.000     .2970832    .3635746 
--------------+---------------------------------------------------------------- 
TME1          | 
          age |   1.529679   .1520654    10.06   0.000     1.231637    1.827722 
        agesq |  -.0293802   .0028491   -10.31   0.000    -.0349643   -.0237961 
         male |  -.8143384   .2115076    -3.85   0.000    -1.228886    -.399791 
     minority |   -.117641   .1887696    -0.62   0.533    -.4876227    .2523406 
 socialassist |   2.898167   .2258356    12.83   0.000     2.455537    3.340797 
secondaryeduc |  -.2218473   .1213679    -1.83   0.068    -.4597239    .0160294 
 tertiaryeduc |    .967574   .1272537     7.60   0.000     .7181613    1.216987 
      emp2011 |   -.815216   .0962615    -8.47   0.000    -1.003885   -.6265469 
       hhsize |  -.1566946    .023219    -6.75   0.000    -.2022031   -.1111862 
    hhsizegen |   .0261437   .0305012     0.86   0.391    -.0336375    .0859249 
      ferizaj |   .8376426   .1531923     5.47   0.000     .5373912    1.137894 
      gjakova |   .8286225    .153645     5.39   0.000     .5274839    1.129761 
      gjilani |   1.826747   .1465489    12.47   0.000     1.539517    2.113978 
    mitrovica |   1.021507   .1600413     6.38   0.000     .7078318    1.335182 
         peja |   .2845783   .1530052     1.86   0.063    -.0153063     .584463 
     prizreni |   .9107659   .1476721     6.17   0.000     .6213338    1.200198 
        _cons |  -20.44219   2.004136   -10.20   0.000    -24.37022   -16.51416 
------------------------------------------------------------------------------- 
 
*** Balancing diagnostics  

 

. tebalance sum  

 

  Covariate balance summary 

                                                   Raw     Weighted 

                          ----------------------------------------- 

                          Number of obs =        7,753      7,753.0 

                          Treated obs   =          847      3,937.0 

                          Control obs   =        6,906      3,816.0 

                          ----------------------------------------- 

 

  ----------------------------------------------------------------- 

                  |Standardized differences          Variance ratio 

                  |        Raw    Weighted           Raw   Weighted 

  ----------------+------------------------------------------------ 

              age |  -.6060234   -.0399176      .3243216   .9571953 

            agesq |  -.6665971     -.04135      .2800718   .9836777 

             male |  -.4618398    .0048963      1.323737   .9993789 

         minority |   .0377737    .0018411       1.14086    1.00612 

     socialassist |   .3709548    .1339313       7.49496   1.555801 

    secondaryeduc |  -.4394493    .0123786      1.036461   1.004586 

     tertiaryeduc |   .5968176   -.0299941      1.880529   .9898049 

          emp2011 |  -.5101395   -.0027371      .9074829   .9980306 

           hhsize |   -.453916   -.0149439      .3536742   .9519562 

        hhsizegen |  -.5622479   -.0079745      .5529141   .9926433 

          ferizaj |   .0111471    .0203222      1.026757   1.047771 

          gjakova |   .0257213    -.020305       1.06098   .9571171 

          gjilani |   .4442438    .0212731      2.838404    1.03105 
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        mitrovica |   .1091392   -.0231879      1.308213   .9516492 

             peja |  -.0639643   -.0058137      .8656221   .9860955 

         prizreni |  -.0658709    .0076986      .8802186   1.016287 

  ----------------------------------------------------------------- 

 
 
*** Multinomial treatment model 
 
 
. teffects ipw (employed) (multitreatment age agesq male minority socialassist 
secondaryeduc tertiaryeduc emp2011 hhsize hhsizegen ferizaj gjakova gjilani mitrovica 
peja prizren ) if insampm==1, atet vce(robust) aequ 
 
Iteration 0:   EE criterion =  1.415e-25   
Iteration 1:   EE criterion =  1.365e-30   
 
Treatment-effects estimation                    Number of obs     =      7,753 
Estimator      : inverse-probability weights 
Outcome model  : weighted mean 
Treatment model: (multinomial) logit 
-------------------------------------------------------------------------------- 
               |               Robust 
      employed |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
---------------+---------------------------------------------------------------- 
ATET           | 
multitreatment | 
     (1 vs 0)  |   .1048446   .0243483     4.31   0.000     .0571229    .1525664 
     (2 vs 0)  |   .0886774   .0314554     2.82   0.005      .027026    .1503289 
     (3 vs 0)  |  -.0619315   .0412751    -1.50   0.133    -.1428292    .0189661 
---------------+---------------------------------------------------------------- 
POmean         | 
multitreatment | 
            0  |   .3419639   .0219641    15.57   0.000     .2989149    .3850128 
---------------+---------------------------------------------------------------- 
TME1           | 
           age |   1.488677   .1806225     8.24   0.000     1.134663     1.84269 
         agesq |  -.0288241   .0033858    -8.51   0.000    -.0354602    -.022188 
          male |  -.5852999   .2593222    -2.26   0.024    -1.093562   -.0770378 
      minority |  -.2005106   .2352003    -0.85   0.394    -.6614948    .2604736 
  socialassist |   2.858397   .2596356    11.01   0.000      2.34952    3.367273 
 secondaryeduc |  -.2658465   .1522796    -1.75   0.081     -.564309    .0326161 
  tertiaryeduc |   .9955244    .155405     6.41   0.000     .6909361    1.300113 
       emp2011 |  -.7686188   .1200859    -6.40   0.000    -1.003983   -.5332547 
        hhsize |  -.1273163   .0280696    -4.54   0.000    -.1823317   -.0723008 
     hhsizegen |  -.0075608     .03714    -0.20   0.839    -.0803539    .0652323 
       ferizaj |   .8305248   .2003134     4.15   0.000     .4379177    1.223132 
       gjakova |   1.036952   .1953685     5.31   0.000     .6540371    1.419868 
       gjilani |   1.927927    .186489    10.34   0.000     1.562415    2.293438 
     mitrovica |    1.15678   .2026307     5.71   0.000      .759631    1.553929 
          peja |   .3477453   .2019948     1.72   0.085    -.0481572    .7436478 
      prizreni |   1.157398   .1882848     6.15   0.000     .7883668     1.52643 
         _cons |    -20.647   2.384039    -8.66   0.000    -25.31963   -15.97437 
---------------+---------------------------------------------------------------- 
TME2           | 
           age |   1.398609   .2665012     5.25   0.000     .8762767    1.920942 
         agesq |  -.0267274   .0049928    -5.35   0.000    -.0365131   -.0169417 
          male |  -.7163576   .3709546    -1.93   0.053    -1.443415       .0107 
      minority |   .0143413   .2935359     0.05   0.961    -.5609785    .5896612 
  socialassist |   3.159174   .2977953    10.61   0.000     2.575506    3.742842 
 secondaryeduc |   .0464099   .2216867     0.21   0.834     -.388088    .4809078 
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  tertiaryeduc |   1.264522   .2337751     5.41   0.000     .8063315    1.722713 
       emp2011 |  -.8877192   .1677239    -5.29   0.000    -1.216452   -.5589864 
        hhsize |  -.1671686   .0365646    -4.57   0.000    -.2388339   -.0955034 
     hhsizegen |   .0217715   .0555829     0.39   0.695    -.0871689    .1307119 
       ferizaj |   1.579255   .2946838     5.36   0.000     1.001686    2.156825 
       gjakova |   1.529028   .2976047     5.14   0.000     .9457336    2.112323 
       gjilani |   2.320191    .289253     8.02   0.000     1.753265    2.887116 
     mitrovica |   1.828277   .2904867     6.29   0.000     1.258933     2.39762 
          peja |   1.163869   .2864361     4.06   0.000     .6024641    1.725273 
      prizreni |   1.235643   .3145016     3.93   0.000     .6192306    1.852054 
         _cons |  -20.92444   3.506563    -5.97   0.000    -27.79718    -14.0517 
---------------+---------------------------------------------------------------- 
TME3           | 
           age |   1.979701   .4019656     4.93   0.000     1.191863    2.767539 
         agesq |  -.0374467    .007472    -5.01   0.000    -.0520915    -.022802 
          male |  -1.824051   .4473795    -4.08   0.000    -2.700898    -.947203 
      minority |  -.0890958   .3342492    -0.27   0.790    -.7442123    .5660206 
  socialassist |    2.49236    .394361     6.32   0.000     1.719427    3.265294 
 secondaryeduc |  -.4864627   .2748068    -1.77   0.077    -1.025074    .0521488 
  tertiaryeduc |    .393309    .273296     1.44   0.150    -.1423414    .9289594 
       emp2011 |  -.8624769   .2057616    -4.19   0.000    -1.265762   -.4591917 
        hhsize |  -.2534561   .0544834    -4.65   0.000    -.3602417   -.1466705 
     hhsizegen |   .1634357   .0677831     2.41   0.016     .0305832    .2962882 
       ferizaj |    .148274   .2914652     0.51   0.611    -.4229873    .7195353 
       gjakova |  -.8398084   .4075449    -2.06   0.039    -1.638582    -.041035 
       gjilani |   1.220565   .2435454     5.01   0.000     .7432244    1.697905 
     mitrovica |  -.5330993   .3927957    -1.36   0.175    -1.302965    .2367662 
          peja |  -1.063046   .3837402    -2.77   0.006    -1.815163    -.310929 
      prizreni |   .0140902   .3109107     0.05   0.964    -.5952835     .623464 
         _cons |  -26.63742   5.360814    -4.97   0.000    -37.14442   -16.13042 
-------------------------------------------------------------------------------- 
*** Balancing diagnostics  
 
. tebalance sum 
  Covariate balance summary 
                                                 Observations       
                               Treatment           Raw     Weighted 
                          ----------------------------------------- 
                          0bn.multitr~t =        6,906      1,901.9 
                          1.multitrea~t =          470      1,959.0 
                          2.multitrea~t =          241      1,951.1 
                          3.multitrea~t =          136      1,940.9 
                          Total         =        7,753      7,753.0 
                          ----------------------------------------- 
  ----------------------------------------------------------------- 
                  |Standardized differences          Variance ratio 
                  |        Raw    Weighted           Raw   Weighted 
  ----------------+------------------------------------------------ 
  1.multitreatm~t | 
              age |  -.6269269   -.0389111      .3221864   .9565371 
            agesq |  -.6869872   -.0404997      .2738164   .9746485 
             male |  -.4450008    .0051839      1.321906   .9991708 
         minority |   .0052393    .0013714      1.021027     1.0049 
     socialassist |   .3428648     .124423      6.827683   1.548222 
    secondaryeduc |  -.4696964    .0094012       1.02591   1.004009 
     tertiaryeduc |   .6244724   -.0264873      1.899256   .9922846 
          emp2011 |  -.4831847    -.004493      .9244103   .9970294 
           hhsize |  -.4328879   -.0170643      .3461522   .8874219 
        hhsizegen |  -.5568747   -.0079624      .5330855   .9636638 
          ferizaj |  -.0306483    .0180038      .9316378   1.045925 
          gjakova |   .0687207   -.0175528       1.16296   .9657325 
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          gjilani |   .4292703    .0205999      2.780606   1.031008 
        mitrovica |   .1178972   -.0261339      1.334737   .9467408 
             peja |  -.0830119   -.0036363      .8265375   .9909039 
         prizreni |  -.0032518    .0084815      .9960333   1.015833 
  ----------------+------------------------------------------------ 
  2.multitreatm~t | 
              age |  -.5756687   -.0302419      .3526933   .8810271 
            agesq |  -.6322685   -.0371779      .3161966   .9099084 
             male |  -.4294723    .0230807      1.321162   .9959539 
         minority |    .078628    .0018004       1.30295   1.006441 
     socialassist |   .4499272    .1460166      9.517168    1.65164 
    secondaryeduc |  -.4066554    .0066291      1.050123   1.002842 
     tertiaryeduc |   .6102409   -.0348289      1.895007     .98958 
          emp2011 |   -.573383    .0112631      .8684703   1.007236 
           hhsize |  -.4703471   -.0625769      .3897204   .9827943 
        hhsizegen |  -.5477794    -.008632      .5800314   1.026098 
          ferizaj |   .0779458   -.0040152      1.185588   .9897935 
          gjakova |   .0702349   -.0061039      1.168982   .9880772 
          gjilani |   .4113551    .0474671      2.713313    1.07084 
        mitrovica |   .2067901   -.0223583      1.594995   .9544265 
             peja |   .0507065    .0238161      1.112635    1.05981 
         prizreni |  -.1745717    -.035644      .6845422   .9332364 
  ----------------+------------------------------------------------ 
  3.multitreatm~t | 
              age |  -.5874766   -.0296457      .2839457   1.005488 
            agesq |  -.6574538   -.0280253      .2399639   1.067238 
             male |  -.5770215    .1272245      1.335005   .9649316 
         minority |   .0709291   -.0288807       1.27692   .8984358 
     socialassist |   .3115719    .1221867       6.14469   1.537644 
    secondaryeduc |  -.3928189    .0399179      1.057358   1.015899 
     tertiaryeduc |   .4754033    -.106945      1.788427   .9607291 
          emp2011 |  -.4921984   -.0572278      .9235891   .9597447 
           hhsize |  -.4971539   -.0202623      .3182613   .8647128 
        hhsizegen |   -.605161    .1097637      .5796272   1.020864 
          ferizaj |   .0290471    .0216465      1.074949    1.05527 
          gjakova |  -.2503322    .0075024      .4612281   1.014623 
          gjilani |   .5480294    .0069959      3.261717   1.010569 
        mitrovica |  -.1407073   -.0923244      .6399687   .8130044 
             peja |  -.2319707    .0323926      .5307899    1.08149 
         prizreni |  -.1079457     .017153      .8079007   1.032017 
  ----------------------------------------------------------------- 

Table A6.2.3 RA  
*** Binary treatment model  

 

. teffects ra (employed age agesq male minority socialassist secondaryeduc 

tertiaryeduc emp2011 hhsize hhsizegen ferizaj gjakova gjilani mitrovica peja prizreni, 

logit) (bintreatment) if insampm==1, atet vce(robust) aequ 

 

Iteration 0:   EE criterion =  7.882e-24   

Iteration 1:   EE criterion =  1.455e-33   

 

Treatment-effects estimation                    Number of obs     =      7,753 

Estimator      : regression adjustment 

Outcome model  : logit 

Treatment model: none 

------------------------------------------------------------------------------- 

              |               Robust 
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     employed |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

--------------+---------------------------------------------------------------- 

ATET          | 

 bintreatment | 

    (1 vs 0)  |   .0754428   .0165533     4.56   0.000     .0429989    .1078867 

--------------+---------------------------------------------------------------- 

POmean        | 

 bintreatment | 

           0  |   .3342384   .0157554    21.21   0.000     .3033585    .3651183 

--------------+---------------------------------------------------------------- 

OME0          | 

          age |   .1739483   .1384529     1.26   0.209    -.0974144    .4453109 

        agesq |  -.0016824   .0023459    -0.72   0.473    -.0062803    .0029154 

         male |   .4312049   .3242473     1.33   0.184    -.2043081    1.066718 

     minority |   .0725496    .341229     0.21   0.832     -.596247    .7413461 

 socialassist |   1.101173   .5870512     1.88   0.061    -.0494262    2.251772 

secondaryeduc |    .565752   .1956808     2.89   0.004     .1822246    .9492794 

 tertiaryeduc |   1.002006   .2889504     3.47   0.001     .4356737    1.568339 

      emp2011 |   7.507091   .1921049    39.08   0.000     7.130573     7.88361 

       hhsize |   .0548388   .0272224     2.01   0.044     .0014839    .1081937 

    hhsizegen |  -.0604394   .0338882    -1.78   0.075    -.1268591    .0059804 

      ferizaj |  -.8505879   .2939916    -2.89   0.004    -1.426801   -.2743749 

      gjakova |  -.5909916   .2156204    -2.74   0.006      -1.0136   -.1683834 

      gjilani |  -.3466467   .3338538    -1.04   0.299    -1.000988    .3076948 

    mitrovica |   .0003534   .2824008     0.00   0.999     -.553142    .5538488 

         peja |  -.9984065   .2782186    -3.59   0.000    -1.543705   -.4531081 

     prizreni |  -.3955839   .2642355    -1.50   0.134     -.913476    .1223081 

        _cons |  -8.104945   1.983933    -4.09   0.000    -11.99338   -4.216507 

--------------+---------------------------------------------------------------- 

OME1          | 

          age |   .5014897    .270826     1.85   0.064    -.0293195    1.032299 

        agesq |  -.0081754   .0049658    -1.65   0.100    -.0179082    .0015575 

         male |  -.1344847   .4492491    -0.30   0.765    -1.014997    .7460273 

     minority |  -.5419511   .3303748    -1.64   0.101    -1.189474    .1055715 

 socialassist |  -.4340609    .368882    -1.18   0.239    -1.157056    .2889345 

secondaryeduc |  -.0305491   .2538747    -0.12   0.904    -.5281342    .4670361 

 tertiaryeduc |   .6810658   .2561136     2.66   0.008     .1790924    1.183039 

      emp2011 |   2.520389   .1906286    13.22   0.000     2.146764    2.894014 

       hhsize |  -.0771316   .0577986    -1.33   0.182    -.1904148    .0361515 

    hhsizegen |   .1069022   .0701897     1.52   0.128    -.0306671    .2444716 

      ferizaj |  -.6781667   .3489586    -1.94   0.052    -1.362113    .0057796 

      gjakova |  -.2724553   .2991633    -0.91   0.362    -.8588047    .3138941 

      gjilani |  -.3299047   .2685538    -1.23   0.219    -.8562605    .1964511 

    mitrovica |  -.9772652   .3645494    -2.68   0.007    -1.691769   -.2627615 

         peja |   .6604484   .3134478     2.11   0.035     .0461019    1.274795 

     prizreni |  -.3979773   .3296818    -1.21   0.227    -1.044142    .2481871 

        _cons |  -8.453706   3.674403    -2.30   0.021     -15.6554   -1.252007 

------------------------------------------------------------------------------- 

 

 

*** Multinomial probit probit treatment model  
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. teffects ra (employed age agesq male minority socialassist secondaryeduc 

tertiaryeduc emp2011 hhsize hhsizegen ferizaj gjakova gjilani mitrovica peja prizreni, 

logit) (multitreatment) if insampm==1, atet vce(robust) aequ 

 

Iteration 0:   EE criterion =  1.196e-22   

Iteration 1:   EE criterion =  1.463e-33   

 

Treatment-effects estimation                    Number of obs     =      7,753 

Estimator      : regression adjustment 

Outcome model  : logit 

Treatment model: none 

-------------------------------------------------------------------------------- 

               |               Robust 

      employed |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

---------------+---------------------------------------------------------------- 

ATET           | 

multitreatment | 

     (1 vs 0)  |   .1013386   .0237429     4.27   0.000     .0548033    .1478739 

     (2 vs 0)  |   .0811349   .0297426     2.73   0.006     .0228404    .1394294 

     (3 vs 0)  |  -.0345264   .0370209    -0.93   0.351     -.107086    .0380332 

---------------+---------------------------------------------------------------- 

POmean         | 

multitreatment | 

            0  |   .3454699   .0210372    16.42   0.000     .3042378     .386702 

---------------+---------------------------------------------------------------- 

OME0           | 

           age |   .1739483   .1384529     1.26   0.209    -.0974144    .4453109 

         agesq |  -.0016824   .0023459    -0.72   0.473    -.0062803    .0029154 

          male |   .4312049   .3242473     1.33   0.184    -.2043081    1.066718 

      minority |   .0725496    .341229     0.21   0.832     -.596247    .7413461 

  socialassist |   1.101173   .5870512     1.88   0.061    -.0494262    2.251772 

 secondaryeduc |    .565752   .1956808     2.89   0.004     .1822246    .9492794 

  tertiaryeduc |   1.002006   .2889504     3.47   0.001     .4356737    1.568339 

       emp2011 |   7.507091   .1921049    39.08   0.000     7.130573     7.88361 

        hhsize |   .0548388   .0272224     2.01   0.044     .0014839    .1081937 

     hhsizegen |  -.0604394   .0338882    -1.78   0.075    -.1268591    .0059804 

       ferizaj |  -.8505879   .2939916    -2.89   0.004    -1.426801   -.2743749 

       gjakova |  -.5909916   .2156204    -2.74   0.006      -1.0136   -.1683834 

       gjilani |  -.3466467   .3338538    -1.04   0.299    -1.000988    .3076948 

     mitrovica |   .0003534   .2824008     0.00   0.999     -.553142    .5538488 

          peja |  -.9984065   .2782186    -3.59   0.000    -1.543705   -.4531081 

      prizreni |  -.3955839   .2642355    -1.50   0.134     -.913476    .1223081 

         _cons |  -8.104945   1.983933    -4.09   0.000    -11.99338   -4.216507 

---------------+---------------------------------------------------------------- 

OME1           | 

           age |   .9045607   .3653916     2.48   0.013     .1884064    1.620715 

         agesq |  -.0152479   .0067114    -2.27   0.023    -.0284021   -.0020938 

          male |  -.5726078   .6330777    -0.90   0.366    -1.813417    .6682017 

      minority |    -.50035   .5095082    -0.98   0.326    -1.498968    .4982676 

  socialassist |  -.5613401    .547356    -1.03   0.305    -1.634138    .5114579 

 secondaryeduc |    .151391   .3519244     0.43   0.667    -.5383681    .8411501 

  tertiaryeduc |   .9169005   .3540227     2.59   0.010     .2230288    1.610772 

       emp2011 |   2.222583   .2565311     8.66   0.000     1.719791    2.725375 
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        hhsize |  -.0710066    .076656    -0.93   0.354    -.2212496    .0792364 

     hhsizegen |   .1610572   .0988294     1.63   0.103     -.032645    .3547593 

       ferizaj |  -.9482069   .4926257    -1.92   0.054    -1.913736    .0173217 

       gjakova |  -.1875847   .3944766    -0.48   0.634    -.9607446    .5855752 

       gjilani |  -.6400604   .3812018    -1.68   0.093    -1.387202    .1070813 

     mitrovica |  -1.010493   .4877512    -2.07   0.038    -1.966468   -.0545181 

          peja |   .9499454   .4528238     2.10   0.036     .0624271    1.837464 

      prizreni |  -.5466719   .4146967    -1.32   0.187    -1.359463    .2661187 

         _cons |  -13.89721   4.983012    -2.79   0.005    -23.66373   -4.130684 

---------------+---------------------------------------------------------------- 

OME2           | 

           age |   .3050504   .4251022     0.72   0.473    -.5281347    1.138235 

         agesq |  -.0055252   .0074743    -0.74   0.460    -.0201746    .0091242 

          male |   .4715506   .8520853     0.55   0.580    -1.198506    2.141607 

      minority |  -.7893973   .6900379    -1.14   0.253    -2.141847     .563052 

  socialassist |  -.2693546   .5309975    -0.51   0.612    -1.310091    .7713813 

 secondaryeduc |  -.8728817   .4568688    -1.91   0.056    -1.768328    .0225647 

  tertiaryeduc |  -.1017518    .460685    -0.22   0.825    -1.004678    .8011741 

       emp2011 |   2.871955   .3951667     7.27   0.000     2.097442    3.646467 

        hhsize |   -.080814   .1143602    -0.71   0.480    -.3049559    .1433279 

     hhsizegen |   .0955063   .1337495     0.71   0.475    -.1666379    .3576505 

       ferizaj |  -1.307936   .8520808    -1.53   0.125    -2.977983    .3621121 

       gjakova |  -1.629053   .7910716    -2.06   0.039    -3.179525   -.0785814 

       gjilani |  -1.105803   .7261535    -1.52   0.128    -2.529038    .3174316 

     mitrovica |   -1.75528   .8068848    -2.18   0.030    -3.336745   -.1738143 

          peja |    -.59098   .7615134    -0.78   0.438    -2.083519    .9015589 

      prizreni |  -1.174985   .8712466    -1.35   0.177    -2.882597    .5326273 

         _cons |  -3.999873   5.960206    -0.67   0.502    -15.68166    7.681916 

---------------+---------------------------------------------------------------- 

OME3           | 

           age |  -.4811639   1.006041    -0.48   0.632    -2.452968    1.490641 

         agesq |   .0104985   .0189708     0.55   0.580    -.0266835    .0476806 

          male |  -1.729743   1.863676    -0.93   0.353    -5.382481    1.922995 

      minority |  -1.619945    1.63731    -0.99   0.322    -4.829014    1.589125 

  socialassist |  -1.223795   4.182051    -0.29   0.770    -9.420465    6.972875 

 secondaryeduc |   1.243717   .7898034     1.57   0.115     -.304269    2.791703 

  tertiaryeduc |   1.185714   .8366557     1.42   0.156    -.4541012    2.825529 

       emp2011 |   4.666074   .9318401     5.01   0.000     2.839701    6.492447 

        hhsize |  -.3329732   .1886001    -1.77   0.077    -.7026225    .0366761 

     hhsizegen |   .1765113   .2987702     0.59   0.555    -.4090675    .7620902 

       ferizaj |  -.3879032   .7821124    -0.50   0.620    -1.920815    1.145009 

       gjakova |   1.069933   1.129233     0.95   0.343    -1.143323    3.283189 

       gjilani |   .8194994   .8319558     0.99   0.325    -.8111041    2.450103 

     mitrovica |  -2.852956   1.052288    -2.71   0.007    -4.915404   -.7905091 

          peja |  -1.517402   1.247406    -1.22   0.224    -3.962272    .9274685 

      prizreni |   .7599637   1.538918     0.49   0.621     -2.25626    3.776187 

         _cons |   3.603758   13.04108     0.28   0.782    -21.95629     29.1638 

-------------------------------------------------------------------------------- 

 

Table A6.2.4 IPWRA  
*** Binary treatment model 



404 
 

 

. teffects ipwra (employed age agesq male minority socialassist secondaryeduc 

tertiaryeduc emp2011 hhsize hhsizegen ferizaj gjakova gjilani mitrovica peja prizreni, 

logit) (bintreatment age agesq male minority socialassist secondaryeduc tertiaryeduc 

emp2011 hhsize hhsizegen ferizaj gjakova gjilani mitrovica peja prizren ) if 

insampm==1, atet vce(robust) aequ 

 

Iteration 0:   EE criterion =  1.153e-23   

Iteration 1:   EE criterion =  8.681e-32   

 

Treatment-effects estimation                    Number of obs     =      7,753 

Estimator      : IPW regression adjustment 

Outcome model  : logit 

Treatment model: logit 

------------------------------------------------------------------------------- 

              |               Robust 

     employed |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

--------------+---------------------------------------------------------------- 

ATET          | 

 bintreatment | 

    (1 vs 0)  |   .0805836   .0164736     4.89   0.000     .0482959    .1128712 

--------------+---------------------------------------------------------------- 

POmean        | 

 bintreatment | 

           0  |   .3290976   .0157353    20.91   0.000     .2982571    .3599382 

--------------+---------------------------------------------------------------- 

OME0          | 

          age |  -.2262621   .4341884    -0.52   0.602    -1.077256    .6247315 

        agesq |   .0055272   .0081847     0.68   0.499    -.0105145     .021569 

         male |   .5588442   .6182347     0.90   0.366    -.6528736    1.770562 

     minority |  -.2106421   .4040391    -0.52   0.602    -1.002544    .5812599 

 socialassist |   .8294192   .9685587     0.86   0.392    -1.068921    2.727759 

secondaryeduc |   .6463209   .4631962     1.40   0.163     -.261527    1.554169 

 tertiaryeduc |   .8491812   .5496118     1.55   0.122    -.2280382      1.9264 

      emp2011 |   7.810324   .3298494    23.68   0.000     7.163831    8.456817 

       hhsize |   .0590892   .0715206     0.83   0.409    -.0810886     .199267 

    hhsizegen |  -.0153849   .0808653    -0.19   0.849     -.173878    .1431082 

      ferizaj |  -1.268089   .7435662    -1.71   0.088    -2.725452    .1892736 

      gjakova |  -1.287125   .5570029    -2.31   0.021    -2.378831   -.1954195 

      gjilani |  -.6878748   .4624748    -1.49   0.137    -1.594309    .2185591 

    mitrovica |   -.320406   .4421026    -0.72   0.469    -1.186911    .5460991 

         peja |  -.3413098   .8454592    -0.40   0.686    -1.998379     1.31576 

     prizreni |   -1.05728   .5670165    -1.86   0.062    -2.168612    .0540522 

        _cons |  -2.893375   5.214786    -0.55   0.579    -13.11417    7.327417 

--------------+---------------------------------------------------------------- 

OME1          | 

          age |   .5014897    .270826     1.85   0.064    -.0293195    1.032299 

        agesq |  -.0081754   .0049658    -1.65   0.100    -.0179082    .0015575 

         male |  -.1344847   .4492491    -0.30   0.765    -1.014997    .7460273 

     minority |  -.5419511   .3303748    -1.64   0.101    -1.189474    .1055715 

 socialassist |  -.4340609    .368882    -1.18   0.239    -1.157056    .2889345 

secondaryeduc |  -.0305491   .2538747    -0.12   0.904    -.5281342    .4670361 

 tertiaryeduc |   .6810658   .2561136     2.66   0.008     .1790924    1.183039 
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      emp2011 |   2.520389   .1906286    13.22   0.000     2.146764    2.894014 

       hhsize |  -.0771316   .0577986    -1.33   0.182    -.1904148    .0361515 

    hhsizegen |   .1069022   .0701897     1.52   0.128    -.0306671    .2444716 

      ferizaj |  -.6781667   .3489586    -1.94   0.052    -1.362113    .0057796 

      gjakova |  -.2724553   .2991633    -0.91   0.362    -.8588047    .3138941 

      gjilani |  -.3299047   .2685538    -1.23   0.219    -.8562605    .1964511 

    mitrovica |  -.9772652   .3645494    -2.68   0.007    -1.691769   -.2627615 

         peja |   .6604484   .3134478     2.11   0.035     .0461019    1.274795 

     prizreni |  -.3979773   .3296818    -1.21   0.227    -1.044142    .2481871 

        _cons |  -8.453706   3.674403    -2.30   0.021     -15.6554   -1.252007 

--------------+---------------------------------------------------------------- 

TME1          | 

          age |   1.529679   .1520654    10.06   0.000     1.231637    1.827722 

        agesq |  -.0293802   .0028491   -10.31   0.000    -.0349643   -.0237961 

         male |  -.8143384   .2115076    -3.85   0.000    -1.228886    -.399791 

     minority |   -.117641   .1887696    -0.62   0.533    -.4876227    .2523406 

 socialassist |   2.898167   .2258356    12.83   0.000     2.455537    3.340797 

secondaryeduc |  -.2218473   .1213679    -1.83   0.068    -.4597239    .0160294 

 tertiaryeduc |    .967574   .1272537     7.60   0.000     .7181613    1.216987 

      emp2011 |   -.815216   .0962615    -8.47   0.000    -1.003885   -.6265469 

       hhsize |  -.1566946    .023219    -6.75   0.000    -.2022031   -.1111862 

    hhsizegen |   .0261437   .0305012     0.86   0.391    -.0336375    .0859249 

      ferizaj |   .8376426   .1531923     5.47   0.000     .5373912    1.137894 

      gjakova |   .8286225    .153645     5.39   0.000     .5274839    1.129761 

      gjilani |   1.826747   .1465489    12.47   0.000     1.539517    2.113978 

    mitrovica |   1.021507   .1600413     6.38   0.000     .7078318    1.335182 

         peja |   .2845783   .1530052     1.86   0.063    -.0153063     .584463 

     prizreni |   .9107659   .1476721     6.17   0.000     .6213338    1.200198 

        _cons |  -20.44219   2.004136   -10.20   0.000    -24.37022   -16.51416 

------------------------------------------------------------------------------- 

 

 

*** Multinomial probit treatment model  

 

. teffects ipwra (   employed age agesq male minority socialassist secondaryeduc 

tertiaryeduc emp2011 hhsize hhsizegen ferizaj gjakova gjilani mitrovica peja prizreni, 

logit) (multitreatment age agesq male minority socialassist secondaryeduc tertiaryeduc 

emp2011 hhsize hhsizegen ferizaj gjakova gjilani mitrovica peja prizren ) if 

insampm==1, atet vce(robust) aequ 

 

Iteration 0:   EE criterion =  6.376e-24   

Iteration 1:   EE criterion =  1.872e-31   

Treatment-effects estimation                    Number of obs     =      7,753 

Estimator      : IPW regression adjustment 

Outcome model  : logit 

Treatment model: (multinomial) logit 

-------------------------------------------------------------------------------- 

               |               Robust 

      employed |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

---------------+---------------------------------------------------------------- 

ATET           | 

multitreatment | 

     (1 vs 0)  |   .1063634   .0236892     4.49   0.000     .0599334    .1527935 
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     (2 vs 0)  |   .0830785   .0292299     2.84   0.004      .025789     .140368 

     (3 vs 0)  |  -.0442443   .0345548    -1.28   0.200    -.1119704    .0234819 

---------------+---------------------------------------------------------------- 

POmean         | 

multitreatment | 

            0  |   .3404451   .0210635    16.16   0.000     .2991613    .3817288 

---------------+---------------------------------------------------------------- 

OME0           | 

           age |  -.2904645   .3972418    -0.73   0.465    -1.069044    .4881151 

         agesq |   .0068103    .007504     0.91   0.364    -.0078974     .021518 

          male |   .4819534   .6193396     0.78   0.436    -.7319299    1.695837 

      minority |  -.2310351   .4025864    -0.57   0.566     -1.02009    .5580197 

  socialassist |    .756079   .9807899     0.77   0.441    -1.166234    2.678392 

 secondaryeduc |    .740045   .4250841     1.74   0.082    -.0931045    1.573195 

  tertiaryeduc |   .9320518   .5306001     1.76   0.079    -.1079053    1.972009 

       emp2011 |   7.877888   .3341251    23.58   0.000     7.223015    8.532762 

        hhsize |   .0565099   .0659018     0.86   0.391    -.0726553    .1856751 

     hhsizegen |  -.0103306   .0776207    -0.13   0.894    -.1624645    .1418033 

       ferizaj |  -1.336282   .7586819    -1.76   0.078    -2.823271     .150707 

       gjakova |  -1.223612   .5595416    -2.19   0.029    -2.320293   -.1269307 

       gjilani |  -.7280765   .4769634    -1.53   0.127    -1.662908    .2067545 

     mitrovica |  -.3177137   .4614019    -0.69   0.491    -1.222045    .5866174 

          peja |  -.2405535   .8501725    -0.28   0.777    -1.906861    1.425754 

      prizreni |  -1.087353   .5825042    -1.87   0.062     -2.22904    .0543347 

         _cons |  -2.168215   4.761691    -0.46   0.649    -11.50096    7.164528 

---------------+---------------------------------------------------------------- 

OME1           | 

           age |   .9045607   .3653916     2.48   0.013     .1884064    1.620715 

         agesq |  -.0152479   .0067114    -2.27   0.023    -.0284021   -.0020938 

          male |  -.5726078   .6330777    -0.90   0.366    -1.813417    .6682017 

      minority |    -.50035   .5095082    -0.98   0.326    -1.498968    .4982676 

  socialassist |  -.5613401    .547356    -1.03   0.305    -1.634138    .5114579 

 secondaryeduc |    .151391   .3519244     0.43   0.667    -.5383681    .8411501 

  tertiaryeduc |   .9169005   .3540227     2.59   0.010     .2230288    1.610772 

       emp2011 |   2.222583   .2565311     8.66   0.000     1.719791    2.725375 

        hhsize |  -.0710066    .076656    -0.93   0.354    -.2212496    .0792364 

     hhsizegen |   .1610572   .0988294     1.63   0.103     -.032645    .3547593 

       ferizaj |  -.9482069   .4926257    -1.92   0.054    -1.913736    .0173217 

       gjakova |  -.1875847   .3944766    -0.48   0.634    -.9607446    .5855752 

       gjilani |  -.6400604   .3812018    -1.68   0.093    -1.387202    .1070813 

     mitrovica |  -1.010493   .4877512    -2.07   0.038    -1.966468   -.0545181 

          peja |   .9499454   .4528238     2.10   0.036     .0624271    1.837464 

      prizreni |  -.5466719   .4146967    -1.32   0.187    -1.359463    .2661187 

         _cons |  -13.89721   4.983012    -2.79   0.005    -23.66373   -4.130684 

---------------+---------------------------------------------------------------- 

OME2           | 

           age |   .2776937   .4982021     0.56   0.577    -.6987645    1.254152 

         agesq |  -.0048634   .0090429    -0.54   0.591    -.0225871    .0128604 

          male |    .826246   .8859974     0.93   0.351     -.910277    2.562769 

      minority |   -.647995   .7979432    -0.81   0.417    -2.211935     .915945 

  socialassist |   -.302681   .5308647    -0.57   0.569    -1.343157    .7377947 

 secondaryeduc |  -.9862897   .4627274    -2.13   0.033    -1.893219   -.0793607 

  tertiaryeduc |  -.2368137   .4777363    -0.50   0.620     -1.17316    .6995321 
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       emp2011 |   2.856388   .4201064     6.80   0.000     2.032995    3.679782 

        hhsize |  -.0790102   .1118083    -0.71   0.480    -.2981505    .1401301 

     hhsizegen |   .0791055   .1338036     0.59   0.554    -.1831446    .3413557 

       ferizaj |   -1.00536   .8289143    -1.21   0.225    -2.630002    .6192819 

       gjakova |  -1.397607   .7781177    -1.80   0.072    -2.922689    .1274757 

       gjilani |  -.7843113   .7119811    -1.10   0.271    -2.179769     .611146 

     mitrovica |  -1.489404   .7969223    -1.87   0.062    -3.051343    .0725352 

          peja |  -.3405993   .7440961    -0.46   0.647    -1.799001    1.117802 

      prizreni |  -.8852856   .8457887    -1.05   0.295    -2.543001    .7724298 

         _cons |  -4.060629   6.749413    -0.60   0.547    -17.28923    9.167976 

---------------+---------------------------------------------------------------- 

OME3           | 

           age |  -.6159187   .9352814    -0.66   0.510    -2.449036    1.217199 

         agesq |   .0143873   .0176043     0.82   0.414    -.0201165    .0488912 

          male |    -1.4357   2.102815    -0.68   0.495    -5.557142    2.685742 

      minority |  -1.650699   1.076011    -1.53   0.125    -3.759642    .4582449 

  socialassist |  -4.203331   4.541444    -0.93   0.355     -13.1044    4.697735 

 secondaryeduc |   1.245403   .7597816     1.64   0.101    -.2437411    2.734548 

  tertiaryeduc |   1.409617   .8831028     1.60   0.110    -.3212325    3.140467 

       emp2011 |   4.501698   1.111401     4.05   0.000     2.323393    6.680003 

        hhsize |  -.4748813   .2199765    -2.16   0.031    -.9060274   -.0437353 

     hhsizegen |    .167488   .3268997     0.51   0.608    -.4732236    .8081997 

       ferizaj |  -.1171851   .9449948    -0.12   0.901    -1.969341    1.734971 

       gjakova |    .680064   1.181365     0.58   0.565    -1.635368    2.995496 

       gjilani |   .7284944    .889441     0.82   0.413    -1.014778    2.471767 

     mitrovica |  -3.240155   1.047393    -3.09   0.002    -5.293006   -1.187303 

          peja |  -1.199277   1.039999    -1.15   0.249    -3.237637    .8390831 

      prizreni |   .5166203   1.970444     0.26   0.793    -3.345379     4.37862 

         _cons |   5.202919   11.74923     0.44   0.658    -17.82514    28.23098 

---------------+---------------------------------------------------------------- 

TME1           | 

           age |   1.488677   .1806225     8.24   0.000     1.134663     1.84269 

         agesq |  -.0288241   .0033858    -8.51   0.000    -.0354602    -.022188 

          male |  -.5852999   .2593222    -2.26   0.024    -1.093562   -.0770378 

      minority |  -.2005106   .2352003    -0.85   0.394    -.6614948    .2604736 

  socialassist |   2.858397   .2596356    11.01   0.000      2.34952    3.367273 

 secondaryeduc |  -.2658465   .1522796    -1.75   0.081     -.564309    .0326161 

  tertiaryeduc |   .9955244    .155405     6.41   0.000     .6909361    1.300113 

       emp2011 |  -.7686188   .1200859    -6.40   0.000    -1.003983   -.5332547 

        hhsize |  -.1273163   .0280696    -4.54   0.000    -.1823317   -.0723008 

     hhsizegen |  -.0075608     .03714    -0.20   0.839    -.0803539    .0652323 

       ferizaj |   .8305248   .2003134     4.15   0.000     .4379177    1.223132 

       gjakova |   1.036952   .1953685     5.31   0.000     .6540371    1.419868 

       gjilani |   1.927927    .186489    10.34   0.000     1.562415    2.293438 

     mitrovica |    1.15678   .2026307     5.71   0.000      .759631    1.553929 

          peja |   .3477453   .2019948     1.72   0.085    -.0481572    .7436478 

      prizreni |   1.157398   .1882848     6.15   0.000     .7883668     1.52643 

         _cons |    -20.647   2.384039    -8.66   0.000    -25.31963   -15.97437 

---------------+---------------------------------------------------------------- 

TME2           | 

           age |   1.398609   .2665012     5.25   0.000     .8762767    1.920942 

         agesq |  -.0267274   .0049928    -5.35   0.000    -.0365131   -.0169417 

          male |  -.7163576   .3709546    -1.93   0.053    -1.443415       .0107 
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      minority |   .0143413   .2935359     0.05   0.961    -.5609785    .5896612 

  socialassist |   3.159174   .2977953    10.61   0.000     2.575506    3.742842 

 secondaryeduc |   .0464099   .2216867     0.21   0.834     -.388088    .4809078 

  tertiaryeduc |   1.264522   .2337751     5.41   0.000     .8063315    1.722713 

       emp2011 |  -.8877192   .1677239    -5.29   0.000    -1.216452   -.5589864 

        hhsize |  -.1671686   .0365646    -4.57   0.000    -.2388339   -.0955034 

     hhsizegen |   .0217715   .0555829     0.39   0.695    -.0871689    .1307119 

       ferizaj |   1.579255   .2946838     5.36   0.000     1.001686    2.156825 

       gjakova |   1.529028   .2976047     5.14   0.000     .9457336    2.112323 

       gjilani |   2.320191    .289253     8.02   0.000     1.753265    2.887116 

     mitrovica |   1.828277   .2904867     6.29   0.000     1.258933     2.39762 

          peja |   1.163869   .2864361     4.06   0.000     .6024641    1.725273 

      prizreni |   1.235643   .3145016     3.93   0.000     .6192306    1.852054 

         _cons |  -20.92444   3.506563    -5.97   0.000    -27.79718    -14.0517 

---------------+---------------------------------------------------------------- 

TME3           | 

           age |   1.979701   .4019656     4.93   0.000     1.191863    2.767539 

         agesq |  -.0374467    .007472    -5.01   0.000    -.0520915    -.022802 

          male |  -1.824051   .4473795    -4.08   0.000    -2.700898    -.947203 

      minority |  -.0890958   .3342492    -0.27   0.790    -.7442123    .5660206 

  socialassist |    2.49236    .394361     6.32   0.000     1.719427    3.265294 

 secondaryeduc |  -.4864627   .2748068    -1.77   0.077    -1.025074    .0521488 

  tertiaryeduc |    .393309    .273296     1.44   0.150    -.1423414    .9289594 

       emp2011 |  -.8624769   .2057616    -4.19   0.000    -1.265762   -.4591917 

        hhsize |  -.2534561   .0544834    -4.65   0.000    -.3602417   -.1466705 

     hhsizegen |   .1634357   .0677831     2.41   0.016     .0305832    .2962882 

       ferizaj |    .148274   .2914652     0.51   0.611    -.4229873    .7195353 

       gjakova |  -.8398084   .4075449    -2.06   0.039    -1.638582    -.041035 

       gjilani |   1.220565   .2435454     5.01   0.000     .7432244    1.697905 

     mitrovica |  -.5330993   .3927957    -1.36   0.175    -1.302965    .2367662 

          peja |  -1.063046   .3837402    -2.77   0.006    -1.815163    -.310929 

      prizreni |   .0140902   .3109107     0.05   0.964    -.5952835     .623464 

         _cons |  -26.63742   5.360814    -4.97   0.000    -37.14442   -16.13042 

-------------------------------------------------------------------------------- 

Table 6.3 Outcome Variable: employed – Model 3, excluding 

emphist and emp2011 

Table A6.3.1 PSM  
*** Binary treatment model  
 
  
. teffects psmatch (employed) (bintreatment age agesq male minority socialassist 
secondaryeduc tertiaryeduc  hhsize hhsizegen ferizaj gjakova gjilani mitrovica peja 
prizren ) if insampm==1, atet vce(robust) 
 
Treatment-effects estimation                   Number of obs      =      7,753 
Estimator      : propensity-score matching     Matches: requested =          1 
Outcome model  : matching                                     min =          1 
Treatment model: logit                                        max =         16 
------------------------------------------------------------------------------ 
             |              AI Robust 
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    employed |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
ATET         | 
bintreatment | 
   (1 vs 0)  |  -.1201402   .0274427    -4.38   0.000    -.1739269   -.0663535 
------------------------------------------------------------------------------ 
 
.  
. tebalance sum 
note: refitting the model using the generate() option 
 
  Covariate balance summary 
                                                   Raw      Matched 
                          ----------------------------------------- 
                          Number of obs =        7,753        1,694 
                          Treated obs   =          847          847 
                          Control obs   =        6,906          847 
                          ----------------------------------------- 
 
  ----------------------------------------------------------------- 
                  |Standardized differences          Variance ratio 
                  |        Raw     Matched           Raw    Matched 
  ----------------+------------------------------------------------ 
              age |  -.6060234   -.0560202      .3243216   1.032325 
            agesq |  -.6665971   -.0516844      .2800718   1.027513 
             male |  -.4618398    .0590598      1.323737   .9958181 
         minority |   .0377737    .0625463       1.14086   1.250156 
     socialassist |   .3709548    .2393765       7.49496   2.528539 
    secondaryeduc |  -.4394493    .0192129      1.036461   1.007279 
     tertiaryeduc |   .5968176   -.1547271      1.880529   .9673542 
           hhsize |   -.453916    .0715541      .3536742   .8875756 
        hhsizegen |  -.5622479    .0385221      .5529141   .9956847 
          ferizaj |   .0111471    .0399729      1.026757   1.098258 
          gjakova |   .0257213    .0431534       1.06098   1.104466 
          gjilani |   .4442438   -.0370242      2.838404   .9511813 
        mitrovica |   .1091392    .0035033      1.308213   1.007722 
             peja |  -.0639643   -.0255434      .8656221   .9414794 
         prizreni |  -.0658709   -.0367838      .8802186   .9287426 
  ----------------------------------------------------------------- 
 

 

Table A6.3.2 IPW  
. *** Binary treatment model  
 
. teffects ipw (employed) (bintreatment age agesq male minority socialassist 
secondaryeduc tertiaryeduc  hhsize hhs 
> izegen ferizaj gjakova gjilani mitrovica peja prizren ) if insampm==1, atet 
vce(robust) aequ  
 
Iteration 0:   EE criterion =  1.009e-23   
Iteration 1:   EE criterion =  3.061e-32   
 
Treatment-effects estimation                    Number of obs     =      7,753 
Estimator      : inverse-probability weights 
Outcome model  : weighted mean 
Treatment model: logit 
------------------------------------------------------------------------------- 
              |               Robust 
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     employed |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
--------------+---------------------------------------------------------------- 
ATET          | 
 bintreatment | 
    (1 vs 0)  |  -.0791602   .0212052    -3.73   0.000    -.1207216   -.0375987 
--------------+---------------------------------------------------------------- 
POmean        | 
 bintreatment | 
           0  |   .4888414   .0142626    34.27   0.000     .4608871    .5167956 
--------------+---------------------------------------------------------------- 
TME1          | 
          age |   1.489746   .1510649     9.86   0.000     1.193664    1.785828 
        agesq |  -.0290606   .0028341   -10.25   0.000    -.0346153   -.0235059 
         male |  -.9042557    .209688    -4.31   0.000    -1.315237   -.4932748 
     minority |  -.0438336   .1833028    -0.24   0.811    -.4031005    .3154332 
 socialassist |   3.109302   .2212496    14.05   0.000      2.67566    3.542943 
secondaryeduc |  -.3147433    .118473    -2.66   0.008    -.5469462   -.0825404 
 tertiaryeduc |   .8323472   .1235364     6.74   0.000     .5902204    1.074474 
       hhsize |  -.1567485   .0230038    -6.81   0.000    -.2018351    -.111662 
    hhsizegen |   .0265874   .0301634     0.88   0.378    -.0325317    .0857065 
      ferizaj |   .8335969   .1508638     5.53   0.000     .5379093    1.129285 
      gjakova |   .9042148   .1490287     6.07   0.000      .612124    1.196306 
      gjilani |   1.832649   .1431117    12.81   0.000     1.552155    2.113142 
    mitrovica |   1.113014    .158378     7.03   0.000     .8025985    1.423429 
         peja |    .511612   .1512205     3.38   0.001     .2152254    .8079987 
     prizreni |   .8182876   .1460099     5.60   0.000     .5321135    1.104462 
        _cons |  -19.86672   1.987935    -9.99   0.000      -23.763   -15.97044 
------------------------------------------------------------------------------- 
 
*** Balancing diagnostics  
 
 
. tebalance sum 
 
  Covariate balance summary 
                                                   Raw     Weighted 
                          ----------------------------------------- 
                          Number of obs =        7,753      7,753.0 
                          Treated obs   =          847      3,946.7 
                          Control obs   =        6,906      3,806.3 
                          ----------------------------------------- 
 
  ----------------------------------------------------------------- 
                  |Standardized differences          Variance ratio 
                  |        Raw    Weighted           Raw   Weighted 
  ----------------+------------------------------------------------ 
              age |  -.6060234   -.0475656      .3243216   .9581938 
            agesq |  -.6665971   -.0487129      .2800718   .9868389 
             male |  -.4618398     .002955      1.323737   .9996149 
         minority |   .0377737     .020367       1.14086    1.07147 
     socialassist |   .3709548    .1592337       7.49496   1.722564 
    secondaryeduc |  -.4394493    .0089127      1.036461   1.003264 
     tertiaryeduc |   .5968176   -.0343847      1.880529   .9884746 
           hhsize |   -.453916   -.0079835      .3536742   .9402526 
        hhsizegen |  -.5622479   -.0072016      .5529141   .9931567 
          ferizaj |   .0111471    .0257461      1.026757   1.061253 
          gjakova |   .0257213   -.0029112       1.06098   .9936182 
          gjilani |   .4442438    .0212012      2.838404    1.03094 
        mitrovica |   .1091392   -.0225392      1.308213   .9529385 
             peja |  -.0639643   -.0171653      .8656221   .9599668 
         prizreni |  -.0658709   -.0128522      .8802186   .9739011 
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  ----------------------------------------------------------------- 
 
*** Multinomial probit treatment model  
 
 
. teffects ipw (   employed) (multitreatment age agesq male minority socialassist 
secondaryeduc tertiaryeduc  hhsize hhsizegen ferizaj gjakova gjilani mitrovica peja 
prizren ) if insampm==1, atet vce(robust) aequ  
 
Iteration 0:   EE criterion =  2.160e-25   
Iteration 1:   EE criterion =  3.282e-31   
 
Treatment-effects estimation                    Number of obs     =      7,753 
Estimator      : inverse-probability weights 
Outcome model  : weighted mean 
Treatment model: (multinomial) logit 
-------------------------------------------------------------------------------- 
               |               Robust 
      employed |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
---------------+---------------------------------------------------------------- 
ATET           | 
multitreatment | 
     (1 vs 0)  |  -.0457259   .0263508    -1.74   0.083    -.0973724    .0059207 
     (2 vs 0)  |   -.076272   .0353308    -2.16   0.031    -.1455191   -.0070249 
     (3 vs 0)  |  -.2228705   .0451723    -4.93   0.000    -.3114067   -.1343343 
---------------+---------------------------------------------------------------- 
POmean         | 
multitreatment | 
            0  |   .4925344   .0153671    32.05   0.000     .4624154    .5226533 
---------------+---------------------------------------------------------------- 
TME1           | 
           age |   1.452835   .1796828     8.09   0.000     1.100663    1.805007 
         agesq |  -.0285565   .0033743    -8.46   0.000      -.03517    -.021943 
          male |  -.6717092   .2580573    -2.60   0.009    -1.177492   -.1659261 
      minority |  -.1324891    .231146    -0.57   0.567    -.5855269    .3205486 
  socialassist |   3.067042   .2537005    12.09   0.000     2.569798    3.564286 
 secondaryeduc |  -.3466381   .1509441    -2.30   0.022    -.6424831   -.0507931 
  tertiaryeduc |   .8748281   .1537469     5.69   0.000     .5734897    1.176166 
        hhsize |  -.1274079   .0279889    -4.55   0.000    -.1822651   -.0725507 
     hhsizegen |  -.0067229   .0368747    -0.18   0.855     -.078996    .0655502 
       ferizaj |   .8270523   .1986786     4.16   0.000     .4376494    1.216455 
       gjakova |   1.108157    .191103     5.80   0.000     .7336015    1.482712 
       gjilani |   1.934041    .184201    10.50   0.000     1.573013    2.295068 
     mitrovica |   1.243574   .2015755     6.17   0.000     .8484936    1.638655 
          peja |   .5639601   .2007041     2.81   0.005     .1705872     .957333 
      prizreni |   1.069853   .1865271     5.74   0.000     .7042669     1.43544 
         _cons |  -20.13843   2.367687    -8.51   0.000    -24.77901   -15.49785 
---------------+---------------------------------------------------------------- 
TME2           | 
           age |   1.360546   .2673669     5.09   0.000     .8365163    1.884575 
         agesq |  -.0264873   .0050132    -5.28   0.000    -.0363131   -.0166615 
          male |  -.8044124    .369694    -2.18   0.030    -1.528999   -.0798254 
      minority |   .0870677   .2874638     0.30   0.762     -.476351    .6504864 
  socialassist |   3.380726   .2945283    11.48   0.000     2.803462    3.957991 
 secondaryeduc |  -.0570558   .2159371    -0.26   0.792    -.4802847    .3661731 
  tertiaryeduc |   1.108868   .2257367     4.91   0.000     .6664318    1.551303 
        hhsize |  -.1674929   .0365388    -4.58   0.000    -.2391076   -.0958782 
     hhsizegen |   .0219234   .0553486     0.40   0.692    -.0865579    .1304047 
       ferizaj |   1.565415   .2914305     5.37   0.000     .9942216    2.136608 
       gjakova |   1.608339   .2940545     5.47   0.000     1.032002    2.184675 
       gjilani |   2.324789   .2845205     8.17   0.000     1.767139    2.882439 
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     mitrovica |   1.920447   .2892411     6.64   0.000     1.353545    2.487349 
          peja |   1.408167   .2860544     4.92   0.000     .8475103    1.968823 
      prizreni |   1.137828   .3102009     3.67   0.000     .5298456    1.745811 
         _cons |  -20.35176   3.514834    -5.79   0.000     -27.2407   -13.46281 
---------------+---------------------------------------------------------------- 
TME3           | 
           age |   1.914787   .3967772     4.83   0.000     1.137118    2.692456 
         agesq |  -.0366737    .007375    -4.97   0.000    -.0511284   -.0222189 
          male |   -1.91522   .4409584    -4.34   0.000    -2.779483   -1.050958 
      minority |   .0075032   .3308248     0.02   0.982    -.6409015     .655908 
  socialassist |   2.702783   .3957607     6.83   0.000     1.927106    3.478459 
 secondaryeduc |  -.6107306   .2664775    -2.29   0.022    -1.133017   -.0884443 
  tertiaryeduc |    .240355   .2659369     0.90   0.366    -.2808719    .7615818 
        hhsize |  -.2508386   .0533032    -4.71   0.000     -.355311   -.1463662 
     hhsizegen |   .1607539    .066522     2.42   0.016     .0303731    .2911347 
       ferizaj |   .1565877   .2890636     0.54   0.588    -.4099665    .7231419 
       gjakova |  -.7563943   .4065169    -1.86   0.063    -1.553153    .0403642 
       gjilani |   1.227501   .2417102     5.08   0.000     .7537573    1.701244 
     mitrovica |  -.4284341   .3908317    -1.10   0.273     -1.19445    .3375821 
          peja |  -.8302177   .3820004    -2.17   0.030    -1.578925   -.0815106 
      prizreni |   -.086036   .3056564    -0.28   0.778    -.6851115    .5130396 
         _cons |  -25.72966   5.288687    -4.87   0.000     -36.0953   -15.36402 
-------------------------------------------------------------------------------- 
 
*** Balancing diagnostics  
 
 
. tebalance sum  
 
  Covariate balance summary 
                                                 Observations       
                               Treatment           Raw     Weighted 
                          ----------------------------------------- 
                          0bn.multitr~t =        6,906      1,896.0 
                          1.multitrea~t =          470      1,960.1 
                          2.multitrea~t =          241      1,948.6 
                          3.multitrea~t =          136      1,948.2 
                          Total         =        7,753      7,753.0 
                          ----------------------------------------- 
 
  ----------------------------------------------------------------- 
                  |Standardized differences          Variance ratio 
                  |        Raw    Weighted           Raw   Weighted 
  ----------------+------------------------------------------------ 
  1.multitreatm~t | 
              age |  -.6269269   -.0462105      .3221864   .9580967 
            agesq |  -.6869872   -.0474977      .2738164   .9782737 
             male |  -.4450008    .0028551      1.321906   .9995277 
         minority |   .0052393    .0177392      1.021027   1.066792 
     socialassist |   .3428648    .1476677      6.827683    1.70901 
    secondaryeduc |  -.4696964    .0073878       1.02591   1.003128 
     tertiaryeduc |   .6244724   -.0308911      1.899256   .9911459 
           hhsize |  -.4328879   -.0097892      .3461522   .8800767 
        hhsizegen |  -.5568747   -.0071883      .5330855    .965112 
          ferizaj |  -.0306483    .0224416      .9316378   1.057842 
          gjakova |   .0687207   -.0002716       1.16296   .9994342 
          gjilani |   .4292703    .0220984      2.780606   1.033354 
        mitrovica |   .1178972   -.0252817      1.334737   .9483873 
             peja |  -.0830119   -.0134813      .8265375   .9670548 
         prizreni |  -.0032518   -.0128668      .9960333   .9769054 
  ----------------+------------------------------------------------ 
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  2.multitreatm~t | 
              age |  -.5756687   -.0272215      .3526933    .886999 
            agesq |  -.6322685   -.0338573      .3161966   .9219734 
             male |  -.4294723    .0190387      1.321162   .9966462 
         minority |    .078628     .018009       1.30295   1.067823 
     socialassist |   .4499272    .1682574      9.517168   1.818464 
    secondaryeduc |  -.4066554    .0050543      1.050123   1.002149 
     tertiaryeduc |   .6102409   -.0286358      1.895007   .9918568 
           hhsize |  -.4703471   -.0504451      .3897204    .985924 
        hhsizegen |  -.5477794   -.0074872      .5800314   1.034602 
          ferizaj |   .0779458    .0060072      1.185588   1.015414 
          gjakova |   .0702349    .0057401      1.168982   1.011579 
          gjilani |   .4113551    .0422679      2.713313   1.063398 
        mitrovica |   .2067901   -.0181121      1.594995   .9630094 
             peja |   .0507065    .0136519      1.112635   1.033515 
         prizreni |  -.1745717   -.0439517      .6845422   .9209734 
  ----------------+------------------------------------------------ 
  3.multitreatm~t | 
              age |  -.5874766   -.0331906      .2839457   1.004342 
            agesq |  -.6574538   -.0315444      .2399639   1.066691 
             male |  -.5770215    .1266538      1.335005   .9645727 
         minority |   .0709291   -.0126459       1.27692   .9533034 
     socialassist |   .3115719    .1480874       6.14469   1.711224 
    secondaryeduc |  -.3928189    .0507329      1.057358   1.019453 
     tertiaryeduc |   .4754033   -.1121614      1.788427   .9592518 
           hhsize |  -.4971539   -.0105451      .3182613   .8636918 
        hhsizegen |   -.605161    .1136171      .5796272   1.029173 
          ferizaj |   .0290471    .0097819      1.074949   1.025132 
          gjakova |  -.2503322    .0209289      .4612281   1.042249 
          gjilani |   .5480294    .0117647      3.261717   1.017808 
        mitrovica |  -.1407073   -.0966607      .6399687   .8040265 
             peja |  -.2319707    .0250584      .5307899   1.061657 
         prizreni |  -.1079457     .014166      .8079007   1.025317 
  ----------------------------------------------------------------- 

Table 6.3.3 RA  

Table A6.3.4 IPWRA  
.  

. *** Binary treatment model  

.  

. teffects ipwra (employed age agesq male minority socialassist secondaryeduc 

tertiaryeduc hhsize hhsizegen ferizaj gjakova gjilani mitrovica peja prizreni, logit) 

(bintreatment age agesq male minority  socialassist secondaryeduc tertiaryeduc  hhsize 

hhsizegen ferizaj gjakova gjilani mitrovica peja prizren ) if insampm==1, atet 

vce(robust) aequ 

 

Iteration 0:   EE criterion =  5.313e-15   

Iteration 1:   EE criterion =  2.623e-26   

 

Treatment-effects estimation                    Number of obs     =      7,753 

Estimator      : IPW regression adjustment 

Outcome model  : logit 

Treatment model: logit 

------------------------------------------------------------------------------- 

              |               Robust 

     employed |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
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--------------+---------------------------------------------------------------- 

ATET          | 

 bintreatment | 

    (1 vs 0)  |  -.0567178   .0207371    -2.74   0.006    -.0973618   -.0160737 

--------------+---------------------------------------------------------------- 

POmean        | 

 bintreatment | 

           0  |    .466399   .0139171    33.51   0.000     .4391219    .4936761 

--------------+---------------------------------------------------------------- 

OME0          | 

          age |   .1523512   .1379542     1.10   0.269    -.1180342    .4227366 

        agesq |   .0003626   .0025336     0.14   0.886    -.0046031    .0053283 

         male |   .5089198   .3131192     1.63   0.104    -.1047826    1.122622 

     minority |  -.8922428   .2565743    -3.48   0.001    -1.395119   -.3893664 

 socialassist |  -2.792914    .577729    -4.83   0.000    -3.925242   -1.660586 

secondaryeduc |   .9020205   .1343009     6.72   0.000     .6387955    1.165246 

 tertiaryeduc |   1.083888   .1528397     7.09   0.000      .784328    1.383448 

       hhsize |  -.0196155   .0394375    -0.50   0.619    -.0969116    .0576806 

    hhsizegen |   .0127255   .0430549     0.30   0.768    -.0716604    .0971115 

      ferizaj |  -.2071083   .1608543    -1.29   0.198    -.5223769    .1081603 

      gjakova |  -.5806185   .1578682    -3.68   0.000    -.8900346   -.2712025 

      gjilani |  -.0105097   .2097396    -0.05   0.960    -.4215917    .4005723 

    mitrovica |  -.5025315   .1711469    -2.94   0.003    -.8379732   -.1670898 

         peja |  -1.146402   .1801384    -6.36   0.000    -1.499466   -.7933368 

     prizreni |   .7430386   .1604076     4.63   0.000     .4286455    1.057432 

        _cons |  -5.012248   1.844008    -2.72   0.007    -8.626437   -1.398059 

--------------+---------------------------------------------------------------- 

OME1          | 

          age |   .5119307   .2112997     2.42   0.015     .0977909    .9260706 

        agesq |  -.0083758   .0038008    -2.20   0.028    -.0158252   -.0009265 

         male |  -.0227869   .4110149    -0.06   0.956    -.8283613    .7827876 

     minority |  -.8287694   .3539911    -2.34   0.019    -1.522579   -.1349596 

 socialassist |  -.4309245   .2887258    -1.49   0.136    -.9968168    .1349678 

secondaryeduc |   .1135012   .2172495     0.52   0.601       -.3123    .5393024 

 tertiaryeduc |   .6347905   .2199569     2.89   0.004     .2036829    1.065898 

       hhsize |  -.0747009   .0507704    -1.47   0.141    -.1742091    .0248073 

    hhsizegen |   .1097048   .0633041     1.73   0.083    -.0143689    .2337785 

      ferizaj |  -.5178538   .2832156    -1.83   0.067    -1.072946    .0372384 

      gjakova |  -.2611117   .2760369    -0.95   0.344    -.8021341    .2799108 

      gjilani |   -.445238   .2531556    -1.76   0.079    -.9414139    .0509378 

    mitrovica |  -1.161152   .2956017    -3.93   0.000    -1.740521   -.5817837 

         peja |  -.1824993   .2869199    -0.64   0.525    -.7448521    .3798534 

     prizreni |  -.5232536   .2703597    -1.94   0.053    -1.053149    .0066417 

        _cons |  -7.652244   2.936347    -2.61   0.009    -13.40738    -1.89711 

--------------+---------------------------------------------------------------- 

TME1          | 

          age |   1.489746   .1510649     9.86   0.000     1.193664    1.785828 

        agesq |  -.0290606   .0028341   -10.25   0.000    -.0346153   -.0235059 

         male |  -.9042557    .209688    -4.31   0.000    -1.315237   -.4932748 

     minority |  -.0438336   .1833028    -0.24   0.811    -.4031005    .3154332 

 socialassist |   3.109302   .2212496    14.05   0.000      2.67566    3.542943 

secondaryeduc |  -.3147433    .118473    -2.66   0.008    -.5469462   -.0825404 

 tertiaryeduc |   .8323472   .1235364     6.74   0.000     .5902204    1.074474 
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       hhsize |  -.1567485   .0230038    -6.81   0.000    -.2018351    -.111662 

    hhsizegen |   .0265874   .0301634     0.88   0.378    -.0325317    .0857065 

      ferizaj |   .8335969   .1508638     5.53   0.000     .5379093    1.129285 

      gjakova |   .9042148   .1490287     6.07   0.000      .612124    1.196306 

      gjilani |   1.832649   .1431117    12.81   0.000     1.552155    2.113142 

    mitrovica |   1.113014    .158378     7.03   0.000     .8025985    1.423429 

         peja |    .511612   .1512205     3.38   0.001     .2152254    .8079987 

     prizreni |   .8182876   .1460099     5.60   0.000     .5321135    1.104462 

        _cons |  -19.86672   1.987935    -9.99   0.000      -23.763   -15.97044 

------------------------------------------------------------------------------- 

 

.  

. *** Multinomial probit treatment model 

 

.  

. teffects ipwra (employed age agesq male minority socialassist secondaryeduc 

tertiaryeduc hhsize hhsizegen ferizaj gjakova gjilani mitrovica peja prizreni, logit) 

(multitreatment age agesq male minority socialassist secondaryeduc tertiaryeduc  

hhsize hhsizegen ferizaj gjakova gjilani mitrovica peja prizren ) if insampm==1, atet 

vce(robust) aequ  

 

Iteration 0:   EE criterion =  2.245e-20   

Iteration 1:   EE criterion =  1.363e-31   

 

Treatment-effects estimation                    Number of obs     =      7,753 

Estimator      : IPW regression adjustment 

Outcome model  : logit 

Treatment model: (multinomial) logit 

-------------------------------------------------------------------------------- 

               |               Robust 

      employed |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

---------------+---------------------------------------------------------------- 

ATET           | 

multitreatment | 

     (1 vs 0)  |  -.0254893   .0259382    -0.98   0.326    -.0763273    .0253486 

     (2 vs 0)  |  -.0602018   .0352423    -1.71   0.088    -.1292755    .0088719 

     (3 vs 0)  |   -.198256   .0415232    -4.77   0.000      -.27964   -.1168721 

---------------+---------------------------------------------------------------- 

POmean         | 

multitreatment | 

            0  |   .4722978   .0154288    30.61   0.000     .4420579    .5025378 

---------------+---------------------------------------------------------------- 

OME0           | 

           age |   .1400378   .1380287     1.01   0.310    -.1304935     .410569 

         agesq |   .0005487   .0025438     0.22   0.829    -.0044371    .0055345 

          male |   .5357812   .3044452     1.76   0.078    -.0609205    1.132483 

      minority |  -.8654024   .2600023    -3.33   0.001    -1.374998   -.3558072 

  socialassist |  -2.910951   .5801124    -5.02   0.000     -4.04795   -1.773951 

 secondaryeduc |   .8270565   .1362491     6.07   0.000     .5600132      1.0941 

  tertiaryeduc |   1.017111   .1564595     6.50   0.000     .7104564    1.323766 

        hhsize |  -.0170668   .0361488    -0.47   0.637    -.0879171    .0537835 

     hhsizegen |   .0057499   .0402538     0.14   0.886    -.0731462    .0846459 

       ferizaj |  -.1898509   .1604717    -1.18   0.237    -.5043697    .1246679 
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       gjakova |  -.5661943   .1590917    -3.56   0.000    -.8780082   -.2543803 

       gjilani |  -.0258231   .2111879    -0.12   0.903    -.4397437    .3880975 

     mitrovica |  -.4916423   .1706602    -2.88   0.004    -.8261301   -.1571545 

          peja |   -1.14343   .1829398    -6.25   0.000    -1.501985   -.7848741 

      prizreni |   .7478287   .1615893     4.63   0.000     .4311195    1.064538 

         _cons |  -4.768192   1.845776    -2.58   0.010    -8.385846   -1.150538 

---------------+---------------------------------------------------------------- 

OME1           | 

           age |    .771614   .3050696     2.53   0.011     .1736886    1.369539 

         agesq |  -.0129968   .0055079    -2.36   0.018     -.023792   -.0022016 

          male |  -.3697689   .5519637    -0.67   0.503    -1.451598      .71206 

      minority |  -.8981239   .5662227    -1.59   0.113      -2.0079    .2116523 

  socialassist |  -.3497898   .4116745    -0.85   0.396    -1.156657    .4570773 

 secondaryeduc |   .3289861   .3159554     1.04   0.298     -.290275    .9482473 

  tertiaryeduc |   .8978944    .312165     2.88   0.004     .2860622    1.509727 

        hhsize |  -.0543442   .0618897    -0.88   0.380    -.1756457    .0669574 

     hhsizegen |   .1502849    .085277     1.76   0.078    -.0168549    .3174248 

       ferizaj |  -.6979258   .4031789    -1.73   0.083    -1.488142    .0922904 

       gjakova |   -.109384   .3800496    -0.29   0.773    -.8542675    .6354995 

       gjilani |  -.7085552   .3732224    -1.90   0.058    -1.440058    .0229473 

     mitrovica |  -1.233911   .4173416    -2.96   0.003    -2.051885   -.4159363 

          peja |   .2738405   .4217283     0.65   0.516    -.5527318    1.100413 

      prizreni |  -.4016541   .3733499    -1.08   0.282    -1.133406    .3300983 

         _cons |  -11.36656   4.230742    -2.69   0.007    -19.65866    -3.07446 

---------------+---------------------------------------------------------------- 

OME2           | 

           age |   .1473416   .4137805     0.36   0.722    -.6636533    .9583364 

         agesq |  -.0022723   .0074223    -0.31   0.759    -.0168197    .0122751 

          male |   .4105205   .8363128     0.49   0.624    -1.228622    2.049663 

      minority |  -.5964027   .6304277    -0.95   0.344    -1.832018    .6392129 

  socialassist |  -.6062209   .5272215    -1.15   0.250    -1.639556    .4271142 

 secondaryeduc |  -.7850725   .4177642    -1.88   0.060    -1.603875    .0337302 

  tertiaryeduc |  -.2420901   .4233125    -0.57   0.567    -1.071767     .587587 

        hhsize |  -.1046332   .1173059    -0.89   0.372    -.3345485    .1252821 

     hhsizegen |   .1158886   .1312362     0.88   0.377    -.1413296    .3731068 

       ferizaj |   -1.05825   .6453475    -1.64   0.101    -2.323108    .2066079 

       gjakova |  -1.244594   .6525026    -1.91   0.056    -2.523475    .0342879 

       gjilani |  -.7773096   .6087851    -1.28   0.202    -1.970507    .4158873 

     mitrovica |  -1.636243   .6496147    -2.52   0.012    -2.909464   -.3630213 

          peja |  -1.349373   .6544219    -2.06   0.039    -2.632016   -.0667294 

      prizreni |  -1.227955   .6352079    -1.93   0.053    -2.472939    .0170299 

         _cons |  -1.113319   5.739615    -0.19   0.846    -12.36276    10.13612 

---------------+---------------------------------------------------------------- 

OME3           | 

           age |   .3302282   .5771315     0.57   0.567    -.8009288    1.461385 

         agesq |  -.0025658    .010544    -0.24   0.808    -.0232316    .0181001 

          male |   .0662248   1.498513     0.04   0.965    -2.870806    3.003256 

      minority |  -1.881336   1.351211    -1.39   0.164     -4.52966    .7669889 

  socialassist |  -2.668093   2.013468    -1.33   0.185    -6.614418    1.278231 

 secondaryeduc |   .6582037   .7685032     0.86   0.392     -.848035    2.164442 

  tertiaryeduc |   1.229319   .8633618     1.42   0.154    -.4628395    2.921477 

        hhsize |  -.3201979   .1986378    -1.61   0.107    -.7095207     .069125 

     hhsizegen |   .1016827   .2358462     0.43   0.666    -.3605674    .5639328 
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       ferizaj |   1.040806   .7905504     1.32   0.188    -.5086447    2.590256 

       gjakova |  -.4668876   1.018065    -0.46   0.647    -2.462259    1.528484 

       gjilani |   .2599474   .6247903     0.42   0.677    -.9646191    1.484514 

     mitrovica |  -1.662454   .8875603    -1.87   0.061     -3.40204     .077132 

          peja |   -1.70144    1.20846    -1.41   0.159    -4.069977    .6670974 

      prizreni |  -.8299097   .8301331    -1.00   0.317    -2.456941    .7971212 

         _cons |  -6.723661   7.853104    -0.86   0.392    -22.11546     8.66814 

---------------+---------------------------------------------------------------- 

TME1           | 

           age |   1.452835   .1796828     8.09   0.000     1.100663    1.805007 

         agesq |  -.0285565   .0033743    -8.46   0.000      -.03517    -.021943 

          male |  -.6717092   .2580573    -2.60   0.009    -1.177492   -.1659261 

      minority |  -.1324891    .231146    -0.57   0.567    -.5855269    .3205486 

  socialassist |   3.067042   .2537005    12.09   0.000     2.569798    3.564286 

 secondaryeduc |  -.3466381   .1509441    -2.30   0.022    -.6424831   -.0507931 

  tertiaryeduc |   .8748281   .1537469     5.69   0.000     .5734897    1.176166 

        hhsize |  -.1274079   .0279889    -4.55   0.000    -.1822651   -.0725507 

     hhsizegen |  -.0067229   .0368747    -0.18   0.855     -.078996    .0655502 

       ferizaj |   .8270523   .1986786     4.16   0.000     .4376494    1.216455 

       gjakova |   1.108157    .191103     5.80   0.000     .7336015    1.482712 

       gjilani |   1.934041    .184201    10.50   0.000     1.573013    2.295068 

     mitrovica |   1.243574   .2015755     6.17   0.000     .8484936    1.638655 

          peja |   .5639601   .2007041     2.81   0.005     .1705872     .957333 

      prizreni |   1.069853   .1865271     5.74   0.000     .7042669     1.43544 

         _cons |  -20.13843   2.367687    -8.51   0.000    -24.77901   -15.49785 

---------------+---------------------------------------------------------------- 

TME2           | 

           age |   1.360546   .2673669     5.09   0.000     .8365163    1.884575 

         agesq |  -.0264873   .0050132    -5.28   0.000    -.0363131   -.0166615 

          male |  -.8044124    .369694    -2.18   0.030    -1.528999   -.0798254 

      minority |   .0870677   .2874638     0.30   0.762     -.476351    .6504864 

  socialassist |   3.380726   .2945283    11.48   0.000     2.803462    3.957991 

 secondaryeduc |  -.0570558   .2159371    -0.26   0.792    -.4802847    .3661731 

  tertiaryeduc |   1.108868   .2257367     4.91   0.000     .6664318    1.551303 

        hhsize |  -.1674929   .0365388    -4.58   0.000    -.2391076   -.0958782 

     hhsizegen |   .0219234   .0553486     0.40   0.692    -.0865579    .1304047 

       ferizaj |   1.565415   .2914305     5.37   0.000     .9942216    2.136608 

       gjakova |   1.608339   .2940545     5.47   0.000     1.032002    2.184675 

       gjilani |   2.324789   .2845205     8.17   0.000     1.767139    2.882439 

     mitrovica |   1.920447   .2892411     6.64   0.000     1.353545    2.487349 

          peja |   1.408167   .2860544     4.92   0.000     .8475103    1.968823 

      prizreni |   1.137828   .3102009     3.67   0.000     .5298456    1.745811 

         _cons |  -20.35176   3.514834    -5.79   0.000     -27.2407   -13.46281 

---------------+---------------------------------------------------------------- 

TME3           | 

           age |   1.914787   .3967772     4.83   0.000     1.137118    2.692456 

         agesq |  -.0366737    .007375    -4.97   0.000    -.0511284   -.0222189 

          male |   -1.91522   .4409584    -4.34   0.000    -2.779483   -1.050958 

      minority |   .0075032   .3308248     0.02   0.982    -.6409015     .655908 

  socialassist |   2.702783   .3957607     6.83   0.000     1.927106    3.478459 

 secondaryeduc |  -.6107306   .2664775    -2.29   0.022    -1.133017   -.0884443 

  tertiaryeduc |    .240355   .2659369     0.90   0.366    -.2808719    .7615818 

        hhsize |  -.2508386   .0533032    -4.71   0.000     -.355311   -.1463662 
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     hhsizegen |   .1607539    .066522     2.42   0.016     .0303731    .2911347 

       ferizaj |   .1565877   .2890636     0.54   0.588    -.4099665    .7231419 

       gjakova |  -.7563943   .4065169    -1.86   0.063    -1.553153    .0403642 

       gjilani |   1.227501   .2417102     5.08   0.000     .7537573    1.701244 

     mitrovica |  -.4284341   .3908317    -1.10   0.273     -1.19445    .3375821 

          peja |  -.8302177   .3820004    -2.17   0.030    -1.578925   -.0815106 

      prizreni |   -.086036   .3056564    -0.28   0.778    -.6851115    .5130396 

         _cons |  -25.72966   5.288687    -4.87   0.000     -36.0953   -15.36402 

-------------------------------------------------------------------------------- 

Table 6.4 Outcome Variable: emp1112 – Model 4 

Table A6.4.1 PSM  
. teffects psmatch (empl1112) (bintreatment age agesq male minority socialassist 
secondaryeduc tertiaryeduc  hhsize hhsizegen ferizaj gjakova gjilani mitrovica peja 
prizren ) if insampm==1, atet vce(robust) 
 
Treatment-effects estimation                   Number of obs      =      7,753 
Estimator      : propensity-score matching     Matches: requested =          1 
Outcome model  : matching                                     min =          1 
Treatment model: logit                                        max =         16 
------------------------------------------------------------------------------ 
             |              AI Robust 
    empl1112 |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
ATET         | 
bintreatment | 
   (1 vs 0)  |  -.0539964   .0274526    -1.97   0.049    -.1078024   -.0001904 
------------------------------------------------------------------------------ 
 
. tebalance sum 
note: refitting the model using the generate() option 
 
  Covariate balance summary 
                                                   Raw      Matched 
                          ----------------------------------------- 
                          Number of obs =        7,753        1,694 
                          Treated obs   =          847          847 
                          Control obs   =        6,906          847 
                          ----------------------------------------- 
 
  ----------------------------------------------------------------- 
                  |Standardized differences          Variance ratio 
                  |        Raw     Matched           Raw    Matched 
  ----------------+------------------------------------------------ 
              age |  -.6060234   -.0560202      .3243216   1.032325 
            agesq |  -.6665971   -.0516844      .2800718   1.027513 
             male |  -.4618398    .0590598      1.323737   .9958181 
         minority |   .0377737    .0625463       1.14086   1.250156 
     socialassist |   .3709548    .2393765       7.49496   2.528539 
    secondaryeduc |  -.4394493    .0192129      1.036461   1.007279 
     tertiaryeduc |   .5968176   -.1547271      1.880529   .9673542 
           hhsize |   -.453916    .0715541      .3536742   .8875756 
        hhsizegen |  -.5622479    .0385221      .5529141   .9956847 
          ferizaj |   .0111471    .0399729      1.026757   1.098258 
          gjakova |   .0257213    .0431534       1.06098   1.104466 
          gjilani |   .4442438   -.0370242      2.838404   .9511813 
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        mitrovica |   .1091392    .0035033      1.308213   1.007722 
             peja |  -.0639643   -.0255434      .8656221   .9414794 
         prizreni |  -.0658709   -.0367838      .8802186   .9287426 
  ----------------------------------------------------------------- 

 

Table A6.4.2 IPW  
 

***Binary treatment model  

 

. teffects ipw (empl1112) (bintreatment age agesq male minority socialassist 

secondaryeduc tertiaryeduc  hhsize hhsizegen ferizaj gjakova gjilani mitrovica peja 

prizren ) if insampm==1, atet vce(robust) aequ 

 

Iteration 0:   EE criterion =  1.009e-23   

Iteration 1:   EE criterion =  3.230e-32   

 

Treatment-effects estimation                    Number of obs     =      7,753 

Estimator      : inverse-probability weights 

Outcome model  : weighted mean 

Treatment model: logit 

------------------------------------------------------------------------------- 

              |               Robust 

     empl1112 |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

--------------+---------------------------------------------------------------- 

ATET          | 

 bintreatment | 

    (1 vs 0)  |  -.0180082   .0212248    -0.85   0.396     -.059608    .0235916 

--------------+---------------------------------------------------------------- 

POmean        | 

 bintreatment | 

           0  |   .5067921   .0142967    35.45   0.000     .4787711    .5348132 

--------------+---------------------------------------------------------------- 

TME1          | 

          age |   1.489746   .1510649     9.86   0.000     1.193664    1.785828 

        agesq |  -.0290606   .0028341   -10.25   0.000    -.0346153   -.0235059 

         male |  -.9042557    .209688    -4.31   0.000    -1.315237   -.4932748 

     minority |  -.0438336   .1833028    -0.24   0.811    -.4031005    .3154332 

 socialassist |   3.109302   .2212496    14.05   0.000      2.67566    3.542943 

secondaryeduc |  -.3147433    .118473    -2.66   0.008    -.5469462   -.0825404 

 tertiaryeduc |   .8323472   .1235364     6.74   0.000     .5902204    1.074474 

       hhsize |  -.1567485   .0230038    -6.81   0.000    -.2018351    -.111662 

    hhsizegen |   .0265874   .0301634     0.88   0.378    -.0325317    .0857065 

      ferizaj |   .8335969   .1508638     5.53   0.000     .5379093    1.129285 

      gjakova |   .9042148   .1490287     6.07   0.000      .612124    1.196306 

      gjilani |   1.832649   .1431117    12.81   0.000     1.552155    2.113142 

    mitrovica |   1.113014    .158378     7.03   0.000     .8025985    1.423429 

         peja |    .511612   .1512205     3.38   0.001     .2152254    .8079987 

     prizreni |   .8182876   .1460099     5.60   0.000     .5321135    1.104462 

        _cons |  -19.86672   1.987935    -9.99   0.000      -23.763   -15.97044 

------------------------------------------------------------------------------- 
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*** Balancing diagnostics  

 

. tebalance sum 

 

  Covariate balance summary 

                                                   Raw     Weighted 

                          ----------------------------------------- 

                          Number of obs =        7,753      7,753.0 

                          Treated obs   =          847      3,946.7 

                          Control obs   =        6,906      3,806.3 

                          ----------------------------------------- 

 

  ----------------------------------------------------------------- 

                  |Standardized differences          Variance ratio 

                  |        Raw    Weighted           Raw   Weighted 

  ----------------+------------------------------------------------ 

              age |  -.6060234   -.0475656      .3243216   .9581938 

            agesq |  -.6665971   -.0487129      .2800718   .9868389 

             male |  -.4618398     .002955      1.323737   .9996149 

         minority |   .0377737     .020367       1.14086    1.07147 

     socialassist |   .3709548    .1592337       7.49496   1.722564 

    secondaryeduc |  -.4394493    .0089127      1.036461   1.003264 

     tertiaryeduc |   .5968176   -.0343847      1.880529   .9884746 

           hhsize |   -.453916   -.0079835      .3536742   .9402526 

        hhsizegen |  -.5622479   -.0072016      .5529141   .9931567 

          ferizaj |   .0111471    .0257461      1.026757   1.061253 

          gjakova |   .0257213   -.0029112       1.06098   .9936182 

          gjilani |   .4442438    .0212012      2.838404    1.03094 

        mitrovica |   .1091392   -.0225392      1.308213   .9529385 

             peja |  -.0639643   -.0171653      .8656221   .9599668 

         prizreni |  -.0658709   -.0128522      .8802186   .9739011 

  ----------------------------------------------------------------- 

 

 

*** Multinomial probit model  

 

. teffects ipw (empl1112) (multitreatment age agesq male minority socialassist 

secondaryeduc tertiaryeduc  hhsize hhsizegen ferizaj gjakova gjilani mitrovica peja 

prizren ) if insampm==1, atet vce(robust) aequ 

 

Iteration 0:   EE criterion =  2.160e-25   

Iteration 1:   EE criterion =  1.373e-31   

 

Treatment-effects estimation                    Number of obs     =      7,753 

Estimator      : inverse-probability weights 

Outcome model  : weighted mean 

Treatment model: (multinomial) logit 

-------------------------------------------------------------------------------- 

               |               Robust 

      empl1112 |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

---------------+---------------------------------------------------------------- 

ATET           | 

multitreatment | 
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     (1 vs 0)  |    .025506   .0262566     0.97   0.331     -.025956     .076968 

     (2 vs 0)  |  -.0311061   .0354972    -0.88   0.381    -.1006793    .0384671 

     (3 vs 0)  |  -.1539268   .0492953    -3.12   0.002    -.2505438   -.0573098 

---------------+---------------------------------------------------------------- 

POmean         | 

multitreatment | 

            0  |   .5106642   .0154777    32.99   0.000     .4803285    .5409998 

---------------+---------------------------------------------------------------- 

TME1           | 

           age |   1.452835   .1796828     8.09   0.000     1.100663    1.805007 

         agesq |  -.0285565   .0033743    -8.46   0.000      -.03517    -.021943 

          male |  -.6717092   .2580573    -2.60   0.009    -1.177492   -.1659261 

      minority |  -.1324891    .231146    -0.57   0.567    -.5855269    .3205486 

  socialassist |   3.067042   .2537005    12.09   0.000     2.569798    3.564286 

 secondaryeduc |  -.3466381   .1509441    -2.30   0.022    -.6424831   -.0507931 

  tertiaryeduc |   .8748281   .1537469     5.69   0.000     .5734897    1.176166 

        hhsize |  -.1274079   .0279889    -4.55   0.000    -.1822651   -.0725507 

     hhsizegen |  -.0067229   .0368747    -0.18   0.855     -.078996    .0655502 

       ferizaj |   .8270523   .1986786     4.16   0.000     .4376494    1.216455 

       gjakova |   1.108157    .191103     5.80   0.000     .7336015    1.482712 

       gjilani |   1.934041    .184201    10.50   0.000     1.573013    2.295068 

     mitrovica |   1.243574   .2015755     6.17   0.000     .8484936    1.638655 

          peja |   .5639601   .2007041     2.81   0.005     .1705872     .957333 

      prizreni |   1.069853   .1865271     5.74   0.000     .7042669     1.43544 

         _cons |  -20.13843   2.367687    -8.51   0.000    -24.77901   -15.49785 

---------------+---------------------------------------------------------------- 

TME2           | 

           age |   1.360546   .2673669     5.09   0.000     .8365163    1.884575 

         agesq |  -.0264873   .0050132    -5.28   0.000    -.0363131   -.0166615 

          male |  -.8044124    .369694    -2.18   0.030    -1.528999   -.0798254 

      minority |   .0870677   .2874638     0.30   0.762     -.476351    .6504864 

  socialassist |   3.380726   .2945283    11.48   0.000     2.803462    3.957991 

 secondaryeduc |  -.0570558   .2159371    -0.26   0.792    -.4802847    .3661731 

  tertiaryeduc |   1.108868   .2257367     4.91   0.000     .6664318    1.551303 

        hhsize |  -.1674929   .0365388    -4.58   0.000    -.2391076   -.0958782 

     hhsizegen |   .0219234   .0553486     0.40   0.692    -.0865579    .1304047 

       ferizaj |   1.565415   .2914305     5.37   0.000     .9942216    2.136608 

       gjakova |   1.608339   .2940545     5.47   0.000     1.032002    2.184675 

       gjilani |   2.324789   .2845205     8.17   0.000     1.767139    2.882439 

     mitrovica |   1.920447   .2892411     6.64   0.000     1.353545    2.487349 

          peja |   1.408167   .2860544     4.92   0.000     .8475103    1.968823 

      prizreni |   1.137828   .3102009     3.67   0.000     .5298456    1.745811 

         _cons |  -20.35176   3.514834    -5.79   0.000     -27.2407   -13.46281 

---------------+---------------------------------------------------------------- 

TME3           | 

           age |   1.914787   .3967772     4.83   0.000     1.137118    2.692456 

         agesq |  -.0366737    .007375    -4.97   0.000    -.0511284   -.0222189 

          male |   -1.91522   .4409584    -4.34   0.000    -2.779483   -1.050958 

      minority |   .0075032   .3308248     0.02   0.982    -.6409015     .655908 

  socialassist |   2.702783   .3957607     6.83   0.000     1.927106    3.478459 

 secondaryeduc |  -.6107306   .2664775    -2.29   0.022    -1.133017   -.0884443 

  tertiaryeduc |    .240355   .2659369     0.90   0.366    -.2808719    .7615818 

        hhsize |  -.2508386   .0533032    -4.71   0.000     -.355311   -.1463662 
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     hhsizegen |   .1607539    .066522     2.42   0.016     .0303731    .2911347 

       ferizaj |   .1565877   .2890636     0.54   0.588    -.4099665    .7231419 

       gjakova |  -.7563943   .4065169    -1.86   0.063    -1.553153    .0403642 

       gjilani |   1.227501   .2417102     5.08   0.000     .7537573    1.701244 

     mitrovica |  -.4284341   .3908317    -1.10   0.273     -1.19445    .3375821 

          peja |  -.8302177   .3820004    -2.17   0.030    -1.578925   -.0815106 

      prizreni |   -.086036   .3056564    -0.28   0.778    -.6851115    .5130396 

         _cons |  -25.72966   5.288687    -4.87   0.000     -36.0953   -15.36402 

-------------------------------------------------------------------------------- 

 

*** Balancing diagnostics  

 

 

. tebalance sum 

 

  Covariate balance summary 

                                                 Observations       

                               Treatment           Raw     Weighted 

                          ----------------------------------------- 

                          0bn.multitr~t =        6,906      1,896.0 

                          1.multitrea~t =          470      1,960.1 

                          2.multitrea~t =          241      1,948.6 

                          3.multitrea~t =          136      1,948.2 

                          Total         =        7,753      7,753.0 

                          ----------------------------------------- 

 

  ----------------------------------------------------------------- 

                  |Standardized differences          Variance ratio 

                  |        Raw    Weighted           Raw   Weighted 

  ----------------+------------------------------------------------ 

  1.multitreatm~t | 

              age |  -.6269269   -.0462105      .3221864   .9580967 

            agesq |  -.6869872   -.0474977      .2738164   .9782737 

             male |  -.4450008    .0028551      1.321906   .9995277 

         minority |   .0052393    .0177392      1.021027   1.066792 

     socialassist |   .3428648    .1476677      6.827683    1.70901 

    secondaryeduc |  -.4696964    .0073878       1.02591   1.003128 

     tertiaryeduc |   .6244724   -.0308911      1.899256   .9911459 

           hhsize |  -.4328879   -.0097892      .3461522   .8800767 

        hhsizegen |  -.5568747   -.0071883      .5330855    .965112 

          ferizaj |  -.0306483    .0224416      .9316378   1.057842 

          gjakova |   .0687207   -.0002716       1.16296   .9994342 

          gjilani |   .4292703    .0220984      2.780606   1.033354 

        mitrovica |   .1178972   -.0252817      1.334737   .9483873 

             peja |  -.0830119   -.0134813      .8265375   .9670548 

         prizreni |  -.0032518   -.0128668      .9960333   .9769054 

  ----------------+------------------------------------------------ 

  2.multitreatm~t | 

              age |  -.5756687   -.0272215      .3526933    .886999 

            agesq |  -.6322685   -.0338573      .3161966   .9219734 

             male |  -.4294723    .0190387      1.321162   .9966462 

         minority |    .078628     .018009       1.30295   1.067823 

     socialassist |   .4499272    .1682574      9.517168   1.818464 
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    secondaryeduc |  -.4066554    .0050543      1.050123   1.002149 

     tertiaryeduc |   .6102409   -.0286358      1.895007   .9918568 

           hhsize |  -.4703471   -.0504451      .3897204    .985924 

        hhsizegen |  -.5477794   -.0074872      .5800314   1.034602 

          ferizaj |   .0779458    .0060072      1.185588   1.015414 

          gjakova |   .0702349    .0057401      1.168982   1.011579 

          gjilani |   .4113551    .0422679      2.713313   1.063398 

        mitrovica |   .2067901   -.0181121      1.594995   .9630094 

             peja |   .0507065    .0136519      1.112635   1.033515 

         prizreni |  -.1745717   -.0439517      .6845422   .9209734 

  ----------------+------------------------------------------------ 

  3.multitreatm~t | 

              age |  -.5874766   -.0331906      .2839457   1.004342 

            agesq |  -.6574538   -.0315444      .2399639   1.066691 

             male |  -.5770215    .1266538      1.335005   .9645727 

         minority |   .0709291   -.0126459       1.27692   .9533034 

     socialassist |   .3115719    .1480874       6.14469   1.711224 

    secondaryeduc |  -.3928189    .0507329      1.057358   1.019453 

     tertiaryeduc |   .4754033   -.1121614      1.788427   .9592518 

           hhsize |  -.4971539   -.0105451      .3182613   .8636918 

        hhsizegen |   -.605161    .1136171      .5796272   1.029173 

          ferizaj |   .0290471    .0097819      1.074949   1.025132 

          gjakova |  -.2503322    .0209289      .4612281   1.042249 

          gjilani |   .5480294    .0117647      3.261717   1.017808 

        mitrovica |  -.1407073   -.0966607      .6399687   .8040265 

             peja |  -.2319707    .0250584      .5307899   1.061657 

         prizreni |  -.1079457     .014166      .8079007   1.025317 

  ----------------------------------------------------------------- 

 

Table A6.4.3 RA 
*** Binary treatment model  
 
. teffects ra (empl1112 age agesq male minority socialassist secondaryeduc 
tertiaryeduc hhsize hhsizegen ferizaj gjakova gjilani mitrovica peja prizreni, logit) 
(multitreatment) if insampm==1, atet vce(robust) aequ 
 
Iteration 0:   EE criterion =  7.788e-17   
Iteration 1:   EE criterion =  2.843e-27   
 
Treatment-effects estimation                    Number of obs     =      7,753 
Estimator      : regression adjustment 
Outcome model  : logit 
Treatment model: none 
-------------------------------------------------------------------------------- 
               |               Robust 
      empl1112 |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
---------------+---------------------------------------------------------------- 
ATET           | 
multitreatment | 
     (1 vs 0)  |   .0225809   .0252208     0.90   0.371    -.0268511    .0720128 
     (2 vs 0)  |  -.0314998   .0345424    -0.91   0.362    -.0992016     .036202 
     (3 vs 0)  |  -.1619296   .0456342    -3.55   0.000     -.251371   -.0724883 
---------------+---------------------------------------------------------------- 
POmean         | 
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multitreatment | 
            0  |   .5135893   .0140706    36.50   0.000     .4860115    .5411671 
---------------+---------------------------------------------------------------- 
OME0           | 
           age |   .4218355   .0492325     8.57   0.000     .3253415    .5183294 
         agesq |  -.0053135   .0008252    -6.44   0.000    -.0069308   -.0036962 
          male |   .6953048   .1367735     5.08   0.000     .4272338    .9633759 
      minority |   .0540327   .1106093     0.49   0.625    -.1627575    .2708229 
  socialassist |  -1.669971   .2750154    -6.07   0.000    -2.208992   -1.130951 
 secondaryeduc |   .5943007   .0718422     8.27   0.000     .4534925    .7351089 
  tertiaryeduc |   1.210722   .0947223    12.78   0.000      1.02507    1.396374 
        hhsize |   .0101914   .0137174     0.74   0.458    -.0166942     .037077 
     hhsizegen |  -.0013489   .0158066    -0.09   0.932    -.0323293    .0296315 
       ferizaj |  -.0133214   .0899299    -0.15   0.882    -.1895809     .162938 
       gjakova |  -.6499175   .0951831    -6.83   0.000     -.836473   -.4633621 
       gjilani |   .0107498   .1186282     0.09   0.928    -.2217572    .2432569 
     mitrovica |  -.3425645   .0927862    -3.69   0.000     -.524422    -.160707 
          peja |  -1.431714   .0917698   -15.60   0.000     -1.61158   -1.251849 
      prizreni |   .7294603   .0932899     7.82   0.000     .5466154    .9123052 
         _cons |  -8.165179   .7301844   -11.18   0.000    -9.596314   -6.734044 
---------------+---------------------------------------------------------------- 
OME1           | 
           age |   .6792348   .2967876     2.29   0.022     .0975419    1.260928 
         agesq |  -.0112742   .0053536    -2.11   0.035     -.021767   -.0007814 
          male |  -.1062614   .5455349    -0.19   0.846     -1.17549    .9629674 
      minority |  -1.305959   .5432352    -2.40   0.016     -2.37068   -.2412374 
  socialassist |   .2111297   .3870835     0.55   0.585    -.5475401    .9697994 
 secondaryeduc |   .4389903   .2970251     1.48   0.139    -.1431682    1.021149 
  tertiaryeduc |   .7105868   .3003635     2.37   0.018     .1218851    1.299288 
        hhsize |   -.061795   .0588051    -1.05   0.293    -.1770509    .0534608 
     hhsizegen |   .1136662   .0828352     1.37   0.170    -.0486879    .2760203 
       ferizaj |  -.1672238    .395912    -0.42   0.673     -.943197    .6087494 
       gjakova |   .1102961   .3884224     0.28   0.776    -.6509978      .87159 
       gjilani |  -.6744633   .3593402    -1.88   0.061    -1.378757    .0298305 
     mitrovica |  -.8125503   .3931781    -2.07   0.039    -1.583165   -.0419354 
          peja |   .2596473   .4106387     0.63   0.527    -.5451899    1.064484 
      prizreni |   .0589143   .3800356     0.16   0.877    -.6859418    .8037705 
         _cons |  -9.923026    4.09973    -2.42   0.016    -17.95835   -1.887703 
---------------+---------------------------------------------------------------- 
OME2           | 
           age |  -.1128602   .3830579    -0.29   0.768    -.8636398    .6379194 
         agesq |   .0026772   .0068576     0.39   0.696    -.0107634    .0161178 
          male |    .304864   .7275617     0.42   0.675    -1.121131    1.730859 
      minority |  -.8498043   .5712328    -1.49   0.137      -1.9694    .2697914 
  socialassist |  -.6574525   .4679755    -1.40   0.160    -1.574668    .2597626 
 secondaryeduc |  -.4811004   .4036198    -1.19   0.233    -1.272181    .3099799 
  tertiaryeduc |  -.0865895   .4132696    -0.21   0.834    -.8965832    .7234041 
        hhsize |  -.0872666   .0925523    -0.94   0.346    -.2686657    .0941326 
     hhsizegen |    .086008   .1105473     0.78   0.437    -.1306606    .3026767 
       ferizaj |  -1.121272   .6137825    -1.83   0.068    -2.324264    .0817197 
       gjakova |  -1.186881   .6329124    -1.88   0.061    -2.427367    .0536046 
       gjilani |  -1.053826   .5982276    -1.76   0.078    -2.226331    .1186782 
     mitrovica |  -1.685266   .6220251    -2.71   0.007    -2.904413   -.4661194 
          peja |  -1.693098   .6390675    -2.65   0.008    -2.945647   -.4405486 
      prizreni |  -.9423325   .6414572    -1.47   0.142    -2.199566    .3149006 
         _cons |    2.51059    5.35139     0.47   0.639    -7.977941    12.99912 
---------------+---------------------------------------------------------------- 
OME3           | 
           age |   .4641524   .5694996     0.82   0.415    -.6520463    1.580351 
         agesq |  -.0060196   .0102927    -0.58   0.559    -.0261929    .0141538 
          male |   .1276887   1.165306     0.11   0.913    -2.156269    2.411646 
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      minority |  -2.259389   1.454987    -1.55   0.120    -5.111111     .592333 
  socialassist |  -1.080894   1.157489    -0.93   0.350    -3.349531    1.187743 
 secondaryeduc |    .552582   .5857586     0.94   0.345    -.5954838    1.700648 
  tertiaryeduc |   .6563583   .6459736     1.02   0.310    -.6097267    1.922443 
        hhsize |  -.0915123   .1539948    -0.59   0.552    -.3933365     .210312 
     hhsizegen |   .1409588   .1820127     0.77   0.439    -.2157795    .4976971 
       ferizaj |   .6829105   .6542256     1.04   0.297     -.599348    1.965169 
       gjakova |  -.9671729   .9841802    -0.98   0.326    -2.896131    .9617849 
       gjilani |   .2796782   .5672048     0.49   0.622    -.8320228    1.391379 
     mitrovica |  -.2773383   .7611357    -0.36   0.716    -1.769137     1.21446 
          peja |  -1.348642   .8456574    -1.59   0.111      -3.0061    .3088161 
      prizreni |  -1.325335   .8412332    -1.58   0.115    -2.974122    .3234514 
         _cons |  -8.592283   7.897945    -1.09   0.277    -24.07197    6.887404 
-------------------------------------------------------------------------------- 
 
 
***Multinomial probit treatment model  
 
 
. teffects ra (empl1112 age agesq male minority socialassist secondaryeduc 
tertiaryeduc hhsize hhsizegen ferizaj gjako 
> va gjilani mitrovica peja prizreni, logit) (bintreatment) if insampm==1, atet 
vce(robust) aequ 
 
Iteration 0:   EE criterion =  1.040e-22   
Iteration 1:   EE criterion =  9.901e-33   
 
Treatment-effects estimation                    Number of obs     =      7,753 
Estimator      : regression adjustment 
Outcome model  : logit 
Treatment model: none 
------------------------------------------------------------------------------- 
              |               Robust 
     empl1112 |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
--------------+---------------------------------------------------------------- 
ATET          | 
 bintreatment | 
    (1 vs 0)  |  -.0203787   .0199001    -1.02   0.306    -.0593821    .0186248 
--------------+---------------------------------------------------------------- 
POmean        | 
 bintreatment | 
           0  |   .5091626   .0124222    40.99   0.000     .4848156    .5335096 
--------------+---------------------------------------------------------------- 
OME0          | 
          age |   .4218355   .0492325     8.57   0.000     .3253415    .5183294 
        agesq |  -.0053135   .0008252    -6.44   0.000    -.0069308   -.0036962 
         male |   .6953048   .1367735     5.08   0.000     .4272338    .9633759 
     minority |   .0540327   .1106093     0.49   0.625    -.1627575    .2708229 
 socialassist |  -1.669971   .2750154    -6.07   0.000    -2.208992   -1.130951 
secondaryeduc |   .5943007   .0718422     8.27   0.000     .4534925    .7351089 
 tertiaryeduc |   1.210722   .0947223    12.78   0.000      1.02507    1.396374 
       hhsize |   .0101914   .0137174     0.74   0.458    -.0166942     .037077 
    hhsizegen |  -.0013489   .0158066    -0.09   0.932    -.0323293    .0296315 
      ferizaj |  -.0133214   .0899299    -0.15   0.882    -.1895809     .162938 
      gjakova |  -.6499175   .0951831    -6.83   0.000     -.836473   -.4633621 
      gjilani |   .0107498   .1186282     0.09   0.928    -.2217572    .2432569 
    mitrovica |  -.3425645   .0927862    -3.69   0.000     -.524422    -.160707 
         peja |  -1.431714   .0917698   -15.60   0.000     -1.61158   -1.251849 
     prizreni |   .7294603   .0932899     7.82   0.000     .5466154    .9123052 
        _cons |  -8.165179   .7301844   -11.18   0.000    -9.596314   -6.734044 
--------------+---------------------------------------------------------------- 
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OME1          | 
          age |   .3305926   .2184138     1.51   0.130    -.0974905    .7586758 
        agesq |  -.0048342   .0039498    -1.22   0.221    -.0125757    .0029072 
         male |   .1709132   .3987284     0.43   0.668    -.6105802    .9524065 
     minority |  -1.170302    .343686    -3.41   0.001    -1.843914     -.49669 
 socialassist |  -.1999319   .2669771    -0.75   0.454    -.7231974    .3233337 
secondaryeduc |   .2368948   .2084322     1.14   0.256    -.1716248    .6454144 
 tertiaryeduc |   .5403934   .2165122     2.50   0.013     .1160373    .9647494 
       hhsize |  -.0685269   .0468878    -1.46   0.144    -.1604252    .0233714 
    hhsizegen |   .0855868   .0607878     1.41   0.159     -.033555    .2047286 
      ferizaj |  -.1591271   .2777483    -0.57   0.567    -.7035036    .3852495 
      gjakova |  -.1249758   .2782001    -0.45   0.653    -.6702379    .4202863 
      gjilani |  -.4762569   .2481513    -1.92   0.055    -.9626246    .0101108 
    mitrovica |  -.8189919   .2787783    -2.94   0.003    -1.365387   -.2725965 
         peja |  -.2692949   .2831428    -0.95   0.342    -.8242445    .2856547 
     prizreni |  -.1805978   .2740146    -0.66   0.510    -.7176566     .356461 
        _cons |  -5.228399    3.00209    -1.74   0.082    -11.11239    .6555888 
------------------------------------------------------------------------------- 

 

Table A6.4.4 IPWRA  
*** Binary treatment model  

 

. teffects ipwra (empl1112 age agesq male minority socialassist secondaryeduc 

tertiaryeduc hhsize hhsizegen ferizaj gjakova gjilani mitrovica peja prizreni, logit) 

(bintreatment age agesq male minority socialassist secondaryeduc tertiaryeduc  hhsize 

hhsizegen ferizaj gjakova gjilani mitrovica peja prizren ) if insampm==1, atet 

vce(robust) aequ 

 

Iteration 0:   EE criterion =  5.414e-15   

Iteration 1:   EE criterion =  2.721e-26   

 

Treatment-effects estimation                    Number of obs     =      7,753 

Estimator      : IPW regression adjustment 

Outcome model  : logit 

Treatment model: logit 

------------------------------------------------------------------------------- 

              |               Robust 

     empl1112 |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

--------------+---------------------------------------------------------------- 

ATET          | 

 bintreatment | 

    (1 vs 0)  |   .0055448   .0208449     0.27   0.790    -.0353105    .0464001 

--------------+---------------------------------------------------------------- 

POmean        | 

 bintreatment | 

           0  |   .4832391   .0140324    34.44   0.000      .455736    .5107422 

--------------+---------------------------------------------------------------- 

OME0          | 

          age |   .1813934   .1368893     1.33   0.185    -.0869047    .4496914 

        agesq |  -.0002334   .0025172    -0.09   0.926    -.0051669    .0047002 

         male |   .5118456   .3101503     1.65   0.099    -.0960378    1.119729 

     minority |  -.9294639   .2581721    -3.60   0.000    -1.435472    -.423456 

 socialassist |  -2.858017   .5812323    -4.92   0.000    -3.997212   -1.718823 

secondaryeduc |   .8383777   .1335969     6.28   0.000     .5765325    1.100223 
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 tertiaryeduc |   .9977612   .1523835     6.55   0.000      .699095    1.296428 

       hhsize |  -.0190644      .0388    -0.49   0.623     -.095111    .0569823 

    hhsizegen |   .0103909   .0424914     0.24   0.807    -.0728907    .0936724 

      ferizaj |   -.058146   .1640144    -0.35   0.723    -.3796082    .2633162 

      gjakova |  -.6045963   .1574492    -3.84   0.000    -.9131911   -.2960016 

      gjilani |  -.0017457   .2110771    -0.01   0.993    -.4154491    .4119578 

    mitrovica |  -.5568174   .1712103    -3.25   0.001    -.8923834   -.2212514 

         peja |  -1.168458   .1773605    -6.59   0.000    -1.516079   -.8208382 

     prizreni |   .8802752   .1631405     5.40   0.000     .5605258    1.200025 

        _cons |  -5.223139    1.82486    -2.86   0.004    -8.799798   -1.646479 

--------------+---------------------------------------------------------------- 

OME1          | 

          age |   .3305926   .2184138     1.51   0.130    -.0974905    .7586758 

        agesq |  -.0048342   .0039498    -1.22   0.221    -.0125757    .0029072 

         male |   .1709132   .3987284     0.43   0.668    -.6105802    .9524065 

     minority |  -1.170302    .343686    -3.41   0.001    -1.843914     -.49669 

 socialassist |  -.1999319   .2669771    -0.75   0.454    -.7231974    .3233337 

secondaryeduc |   .2368948   .2084322     1.14   0.256    -.1716248    .6454144 

 tertiaryeduc |   .5403934   .2165122     2.50   0.013     .1160373    .9647494 

       hhsize |  -.0685269   .0468878    -1.46   0.144    -.1604252    .0233714 

    hhsizegen |   .0855868   .0607878     1.41   0.159     -.033555    .2047286 

      ferizaj |  -.1591271   .2777483    -0.57   0.567    -.7035036    .3852495 

      gjakova |  -.1249758   .2782001    -0.45   0.653    -.6702379    .4202863 

      gjilani |  -.4762569   .2481513    -1.92   0.055    -.9626246    .0101108 

    mitrovica |  -.8189919   .2787783    -2.94   0.003    -1.365387   -.2725965 

         peja |  -.2692949   .2831428    -0.95   0.342    -.8242445    .2856547 

     prizreni |  -.1805978   .2740146    -0.66   0.510    -.7176566     .356461 

        _cons |  -5.228399    3.00209    -1.74   0.082    -11.11239    .6555888 

--------------+---------------------------------------------------------------- 

TME1          | 

          age |   1.489746   .1510649     9.86   0.000     1.193664    1.785828 

        agesq |  -.0290606   .0028341   -10.25   0.000    -.0346153   -.0235059 

         male |  -.9042557    .209688    -4.31   0.000    -1.315237   -.4932748 

     minority |  -.0438336   .1833028    -0.24   0.811    -.4031005    .3154332 

 socialassist |   3.109302   .2212496    14.05   0.000      2.67566    3.542943 

secondaryeduc |  -.3147433    .118473    -2.66   0.008    -.5469462   -.0825404 

 tertiaryeduc |   .8323472   .1235364     6.74   0.000     .5902204    1.074474 

       hhsize |  -.1567485   .0230038    -6.81   0.000    -.2018351    -.111662 

    hhsizegen |   .0265874   .0301634     0.88   0.378    -.0325317    .0857065 

      ferizaj |   .8335969   .1508638     5.53   0.000     .5379093    1.129285 

      gjakova |   .9042148   .1490287     6.07   0.000      .612124    1.196306 

      gjilani |   1.832649   .1431117    12.81   0.000     1.552155    2.113142 

    mitrovica |   1.113014    .158378     7.03   0.000     .8025985    1.423429 

         peja |    .511612   .1512205     3.38   0.001     .2152254    .8079987 

     prizreni |   .8182876   .1460099     5.60   0.000     .5321135    1.104462 

        _cons |  -19.86672   1.987935    -9.99   0.000      -23.763   -15.97044 

------------------------------------------------------------------------------- 

 

*** Multinomial probit model  
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. teffects ipwra (empl1112 age agesq male minority socialassist secondaryeduc 

tertiaryeduc hhsize hhsizegen ferizaj gjakova gjilani mitrovica peja prizreni, logit) 

(multitreatment age agesq male minority socialassist secondaryeduc tertiaryeduc  

hhsize hhsizegen ferizaj gjakova gjilani mitrovica peja prizren ) if insampm==1, atet 

vce(robust) aequ 

 

Iteration 0:   EE criterion =  5.169e-24   

Iteration 1:   EE criterion =  1.178e-31   

 

Treatment-effects estimation                    Number of obs     =      7,753 

Estimator      : IPW regression adjustment 

Outcome model  : logit 

Treatment model: (multinomial) logit 

-------------------------------------------------------------------------------- 

               |               Robust 

      empl1112 |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

---------------+---------------------------------------------------------------- 

ATET           | 

multitreatment | 

     (1 vs 0)  |   .0468789   .0259494     1.81   0.071     -.003981    .0977387 

     (2 vs 0)  |  -.0096058   .0353888    -0.27   0.786    -.0789666     .059755 

     (3 vs 0)  |  -.1318541   .0449612    -2.93   0.003    -.2199764   -.0437318 

---------------+---------------------------------------------------------------- 

POmean         | 

multitreatment | 

            0  |   .4892913   .0156023    31.36   0.000     .4587115    .5198712 

---------------+---------------------------------------------------------------- 

OME0           | 

           age |   .1747972   .1368043     1.28   0.201    -.0933344    .4429287 

         agesq |  -.0001479   .0025245    -0.06   0.953    -.0050959       .0048 

          male |   .5426173    .302843     1.79   0.073    -.0509441    1.136179 

      minority |  -.8978346   .2619882    -3.43   0.001    -1.411322   -.3843472 

  socialassist |  -2.981883     .58361    -5.11   0.000    -4.125738   -1.838029 

 secondaryeduc |   .7528368   .1362856     5.52   0.000     .4857219    1.019952 

  tertiaryeduc |   .9278286   .1564167     5.93   0.000     .6212576      1.2344 

        hhsize |  -.0177029   .0357547    -0.50   0.621    -.0877809    .0523751 

     hhsizegen |   .0044896   .0399185     0.11   0.910    -.0737492    .0827284 

       ferizaj |  -.0408549   .1638213    -0.25   0.803    -.3619389     .280229 

       gjakova |   -.597973   .1587051    -3.77   0.000    -.9090293   -.2869166 

       gjilani |  -.0204982   .2129989    -0.10   0.923    -.4379684     .396972 

     mitrovica |  -.5476132   .1708405    -3.21   0.001    -.8824545    -.212772 

          peja |  -1.169302   .1802516    -6.49   0.000    -1.522588   -.8160152 

      prizreni |   .8850417   .1640825     5.39   0.000     .5634459    1.206637 

         _cons |  -5.049253    1.82372    -2.77   0.006    -8.623679   -1.474827 

---------------+---------------------------------------------------------------- 

OME1           | 

           age |   .6792348   .2967876     2.29   0.022     .0975419    1.260928 

         agesq |  -.0112742   .0053536    -2.11   0.035     -.021767   -.0007814 

          male |  -.1062614   .5455349    -0.19   0.846     -1.17549    .9629674 

      minority |  -1.305959   .5432352    -2.40   0.016     -2.37068   -.2412374 

  socialassist |   .2111297   .3870835     0.55   0.585    -.5475401    .9697994 

 secondaryeduc |   .4389903   .2970251     1.48   0.139    -.1431682    1.021149 

  tertiaryeduc |   .7105868   .3003635     2.37   0.018     .1218851    1.299288 



429 
 

        hhsize |   -.061795   .0588051    -1.05   0.293    -.1770509    .0534608 

     hhsizegen |   .1136662   .0828352     1.37   0.170    -.0486879    .2760203 

       ferizaj |  -.1672238    .395912    -0.42   0.673     -.943197    .6087494 

       gjakova |   .1102961   .3884224     0.28   0.776    -.6509978      .87159 

       gjilani |  -.6744633   .3593402    -1.88   0.061    -1.378757    .0298305 

     mitrovica |  -.8125503   .3931781    -2.07   0.039    -1.583165   -.0419354 

          peja |   .2596473   .4106387     0.63   0.527    -.5451899    1.064484 

      prizreni |   .0589143   .3800356     0.16   0.877    -.6859418    .8037705 

         _cons |  -9.923026    4.09973    -2.42   0.016    -17.95835   -1.887703 

---------------+---------------------------------------------------------------- 

OME2           | 

           age |  -.2708713   .4760537    -0.57   0.569    -1.203919    .6621768 

         agesq |    .005918   .0087167     0.68   0.497    -.0111664    .0230024 

          male |   .2602801   .7468733     0.35   0.727    -1.203565    1.724125 

      minority |    -.78222   .6193928    -1.26   0.207    -1.996208    .4317676 

  socialassist |  -.8487386   .5067341    -1.67   0.094    -1.841919    .1444421 

 secondaryeduc |  -.5799618    .430704    -1.35   0.178    -1.424126    .2642026 

  tertiaryeduc |  -.2179208   .4386981    -0.50   0.619    -1.077753    .6419116 

        hhsize |  -.1094553   .0958173    -1.14   0.253    -.2972539    .0783432 

     hhsizegen |   .1062815   .1131365     0.94   0.348     -.115462     .328025 

       ferizaj |  -.9485797   .6583913    -1.44   0.150    -2.239003    .3418435 

       gjakova |  -1.100652   .6602612    -1.67   0.096     -2.39474    .1934359 

       gjilani |   -.942762   .6254498    -1.51   0.132    -2.168621    .2830971 

     mitrovica |  -1.528071   .6580075    -2.32   0.020    -2.817742      -.2384 

          peja |   -1.62864   .6724134    -2.42   0.015    -2.946546   -.3107341 

      prizreni |  -.9487918    .656736    -1.44   0.149    -2.235971    .3383871 

         _cons |   4.490317   6.479971     0.69   0.488    -8.210193    17.19083 

---------------+---------------------------------------------------------------- 

OME3           | 

           age |   .2609986   .4822458     0.54   0.588    -.6841859    1.206183 

         agesq |  -.0014034   .0085829    -0.16   0.870    -.0182256    .0154188 

          male |   .3095447   1.301042     0.24   0.812    -2.240451    2.859541 

      minority |  -2.786682   1.423009    -1.96   0.050    -5.575729     .002365 

  socialassist |  -1.271493   1.183893    -1.07   0.283    -3.591881    1.048895 

 secondaryeduc |   .7815913   .6895376     1.13   0.257    -.5698776     2.13306 

  tertiaryeduc |   1.112657   .7914902     1.41   0.160    -.4386352     2.66395 

        hhsize |  -.1692422    .147936    -1.14   0.253    -.4591915     .120707 

     hhsizegen |   .1432245   .1927477     0.74   0.457     -.234554    .5210031 

       ferizaj |    1.16948    .698987     1.67   0.094     -.200509     2.53947 

       gjakova |  -1.042794   1.000341    -1.04   0.297    -3.003426    .9178394 

       gjilani |   .0934563   .6177404     0.15   0.880    -1.117293    1.304205 

     mitrovica |  -.1266804   .7783693    -0.16   0.871    -1.652256    1.398895 

          peja |  -1.422819   .9443763    -1.51   0.132    -3.273762    .4281244 

      prizreni |  -1.025527   .9272289    -1.11   0.269    -2.842862    .7918083 

         _cons |  -6.462511   6.855552    -0.94   0.346    -19.89915    6.974123 

---------------+---------------------------------------------------------------- 

TME1           | 

           age |   1.452835   .1796828     8.09   0.000     1.100663    1.805007 

         agesq |  -.0285565   .0033743    -8.46   0.000      -.03517    -.021943 

          male |  -.6717092   .2580573    -2.60   0.009    -1.177492   -.1659261 

      minority |  -.1324891    .231146    -0.57   0.567    -.5855269    .3205486 

  socialassist |   3.067042   .2537005    12.09   0.000     2.569798    3.564286 

 secondaryeduc |  -.3466381   .1509441    -2.30   0.022    -.6424831   -.0507931 



430 
 

  tertiaryeduc |   .8748281   .1537469     5.69   0.000     .5734897    1.176166 

        hhsize |  -.1274079   .0279889    -4.55   0.000    -.1822651   -.0725507 

     hhsizegen |  -.0067229   .0368747    -0.18   0.855     -.078996    .0655502 

       ferizaj |   .8270523   .1986786     4.16   0.000     .4376494    1.216455 

       gjakova |   1.108157    .191103     5.80   0.000     .7336015    1.482712 

       gjilani |   1.934041    .184201    10.50   0.000     1.573013    2.295068 

     mitrovica |   1.243574   .2015755     6.17   0.000     .8484936    1.638655 

          peja |   .5639601   .2007041     2.81   0.005     .1705872     .957333 

      prizreni |   1.069853   .1865271     5.74   0.000     .7042669     1.43544 

         _cons |  -20.13843   2.367687    -8.51   0.000    -24.77901   -15.49785 

---------------+---------------------------------------------------------------- 

TME2           | 

           age |   1.360546   .2673669     5.09   0.000     .8365163    1.884575 

         agesq |  -.0264873   .0050132    -5.28   0.000    -.0363131   -.0166615 

          male |  -.8044124    .369694    -2.18   0.030    -1.528999   -.0798254 

      minority |   .0870677   .2874638     0.30   0.762     -.476351    .6504864 

  socialassist |   3.380726   .2945283    11.48   0.000     2.803462    3.957991 

 secondaryeduc |  -.0570558   .2159371    -0.26   0.792    -.4802847    .3661731 

  tertiaryeduc |   1.108868   .2257367     4.91   0.000     .6664318    1.551303 

        hhsize |  -.1674929   .0365388    -4.58   0.000    -.2391076   -.0958782 

     hhsizegen |   .0219234   .0553486     0.40   0.692    -.0865579    .1304047 

       ferizaj |   1.565415   .2914305     5.37   0.000     .9942216    2.136608 

       gjakova |   1.608339   .2940545     5.47   0.000     1.032002    2.184675 

       gjilani |   2.324789   .2845205     8.17   0.000     1.767139    2.882439 

     mitrovica |   1.920447   .2892411     6.64   0.000     1.353545    2.487349 

          peja |   1.408167   .2860544     4.92   0.000     .8475103    1.968823 

      prizreni |   1.137828   .3102009     3.67   0.000     .5298456    1.745811 

         _cons |  -20.35176   3.514834    -5.79   0.000     -27.2407   -13.46281 

---------------+---------------------------------------------------------------- 

TME3           | 

           age |   1.914787   .3967772     4.83   0.000     1.137118    2.692456 

         agesq |  -.0366737    .007375    -4.97   0.000    -.0511284   -.0222189 

          male |   -1.91522   .4409584    -4.34   0.000    -2.779483   -1.050958 

      minority |   .0075032   .3308248     0.02   0.982    -.6409015     .655908 

  socialassist |   2.702783   .3957607     6.83   0.000     1.927106    3.478459 

 secondaryeduc |  -.6107306   .2664775    -2.29   0.022    -1.133017   -.0884443 

  tertiaryeduc |    .240355   .2659369     0.90   0.366    -.2808719    .7615818 

        hhsize |  -.2508386   .0533032    -4.71   0.000     -.355311   -.1463662 

     hhsizegen |   .1607539    .066522     2.42   0.016     .0303731    .2911347 

       ferizaj |   .1565877   .2890636     0.54   0.588    -.4099665    .7231419 

       gjakova |  -.7563943   .4065169    -1.86   0.063    -1.553153    .0403642 

       gjilani |   1.227501   .2417102     5.08   0.000     .7537573    1.701244 

     mitrovica |  -.4284341   .3908317    -1.10   0.273     -1.19445    .3375821 

          peja |  -.8302177   .3820004    -2.17   0.030    -1.578925   -.0815106 

      prizreni |   -.086036   .3056564    -0.28   0.778    -.6851115    .5130396 

         _cons |  -25.72966   5.288687    -4.87   0.000     -36.0953   -15.36402 

-------------------------------------------------------------------------------- 
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Table 6.5 Outcome variable: contract – Model 1 

Table A6.5.1 Balancing diagnostics for full model specification  
 

. *** Multinomial probit treatment model  

 

.  

. teffects ipw (contract) (multitreatment age agesq male minority socialassist 

secondaryeduc tertiaryeduc emp2011 emphist hhsize hhsizegen ferizaj gjakova gjilani 

mitrovica peja prizren), atet vce(robust) aequ 

 

*** Balancing diagnostics  

 

. tebalance sum  

 

  Covariate balance summary 

                                                 Observations       

                               Treatment           Raw     Weighted 

                          ----------------------------------------- 

                          0bn.multitr~t =        3,030        981.3 

                          1.multitrea~t =          192        805.6 

                          2.multitrea~t =           85        817.8 

                          3.multitrea~t =           41        743.3 

                          Total         =        3,348      3,348.0 

                          ----------------------------------------- 

 

  ----------------------------------------------------------------- 

                  |Standardized differences          Variance ratio 

                  |        Raw    Weighted           Raw   Weighted 

  ----------------+------------------------------------------------ 

  1.multitreatm~t | 

              age |  -.8541074    .1985329      .3211038   1.011826 

            agesq |  -.9042022    .1939183      .2602484   1.048803 

             male |  -.3350564   -.0321589      1.300651     1.0144 

         minority |  -.1939599    .0499512      .4096266   1.385678 

     socialassist |    .318195   -.1924937      16.49953   .5499166 

    secondaryeduc |  -.5828769    .1492713      .9783695   1.127637 

     tertiaryeduc |   .6902729    .2977356      1.390499    1.02651 

          emp2011 |  -1.061003    .2780044      17.92027   .9553397 

          emphist |  -.6408278    .0459344       14.8085   .9359292 

           hhsize |  -.4313253   -.0517238       .340526   1.521414 

        hhsizegen |  -.4544393     -.05962      .5452324   1.091934 

          ferizaj |  -.1755376    .1360573      .6441975   1.623591 

          gjakova |   .2596445    .2515405      1.742028   1.694551 

          gjilani |    .242738    .1137196      1.942823   1.303381 

        mitrovica |  -.0767595    .1176713       .804163   1.533829 

             peja |   .2896076   -.4374641      2.148954   .5867448 

         prizreni |  -.0659324    .1643801      .9052136    1.39153 

  ----------------+------------------------------------------------ 

  2.multitreatm~t | 

              age |  -.8206716     .234506      .3880385   .9673091 

            agesq |  -.8688701    .2284668      .3077882   .9740608 
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             male |  -.2089692    .0464143      1.225166    .976314 

         minority |  -.0322535    .0244565       .900063   1.181404 

     socialassist |   .4291552   -.1728828      26.21908   .5925965 

    secondaryeduc |  -.5729057    .0867995      .9900074   1.079246 

     tertiaryeduc |   .5118697     .379239      1.410183   1.003156 

          emp2011 |  -.9178498    .2532006      16.74044   .9652274 

          emphist |   -.504344       .0114      11.38537    .984434 

           hhsize |  -.4823514   -.0935517      .3923256    1.81289 

        hhsizegen |  -.3935506   -.0173187      .5850512   1.200256 

          ferizaj |  -.0259818    .1704414      .9564168     1.7973 

          gjakova |   .1679657    .3082595      1.491215   1.846884 

          gjilani |   .4536141    .0773054      2.808791   1.205164 

        mitrovica |   .0920838    .0987764      1.266311    1.44252 

             peja |    .213936   -.4999056      1.848637    .518054 

         prizreni |   -.349434    .2287288       .472546    1.54132 

  ----------------+------------------------------------------------ 

  3.multitreatm~t | 

              age |  -.7769607    .5690412      .2918462    1.83106 

            agesq |  -.8300852    .5606674       .261426   2.417672 

             male |  -.5140741    .1470868       1.37947   .9117922 

         minority |  -.2031288    -.069451      .3918567    .559816 

     socialassist |  -.0813654   -.4980214             0          0 

    secondaryeduc |  -.4888091    .3427804      1.044886   1.224401 

     tertiaryeduc |   .4948223    .2058703      1.425718   1.037678 

          emp2011 |  -.4369979     .196124      8.219791   .9839879 

          emphist |  -.1018025    .4338279      2.263379   .3751892 

           hhsize |  -.6049662   -.0900813      .2959158   .9724069 

        hhsizegen |  -.6203855    .0872319      .5012403   .9334936 

          ferizaj |   .0229168    .0493114      1.074228   1.213258 

          gjakova |  -.1866564    .0880038        .54102   1.240396 

          gjilani |   .5543133    .2320697       3.21803   1.622259 

        mitrovica |  -.3161127    -.154569      .2709133   .4377105 

             peja |  -.2006215   -.5278004      .3954956   .4874217 

         prizreni |  -.3816488    .5462008       .429547   2.145062 

  ----------------------------------------------------------------- 

 

 

Table A6.5.2 PSM  
. ***Binary treatment model  
 
.  
. teffects psmatch (contract) (bintreatment age agesq male minority socialassist 
secondaryeduc tertiaryeduc emp2011 hhsize hhsizegen regunmp),  nneighbor(1) atet 
vce(robust) 
 
Treatment-effects estimation                   Number of obs      =      4,023 
Estimator      : propensity-score matching     Matches: requested =          1 
Outcome model  : matching                                     min =          1 
Treatment model: logit                                        max =          8 
------------------------------------------------------------------------------ 
             |              AI Robust 
    contract |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
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ATET         | 
bintreatment | 
   (1 vs 0)  |  -.0813941   .0337876    -2.41   0.016    -.1476166   -.0151717 
------------------------------------------------------------------------------ 
 
. *** Balancing diagnostics  
 
. tebalance sum  
note: refitting the model using the generate() option 
 
  Covariate balance summary 
                                                   Raw      Matched 
                          ----------------------------------------- 
                          Number of obs =        4,023          636 
                          Treated obs   =          318          318 
                          Control obs   =        3,705          318 
                          ----------------------------------------- 
  ----------------------------------------------------------------- 
                  |Standardized differences          Variance ratio 
                  |        Raw     Matched           Raw    Matched 
  ----------------+------------------------------------------------ 
              age |  -.6687634    .0689689      .3058151   .9148338 
            agesq |  -.7321206    .0616005      .2567381    .910696 
             male |  -.3082088    .0319953      1.268022   .9875495 
         minority |  -.1413025   -.0779213       .548575   .6988825 
     socialassist |   .3160415    .0271762      12.33553   1.110221 
    secondaryeduc |  -.5695604    .0462669      .9849315   1.030838 
     tertiaryeduc |   .6534658    .0376899      1.464296    .998576 
          emp2011 |  -.3353843    .0656348      1.442703   .9610169 
           hhsize |  -.4669681    .0400817      .3434917   1.412011 
        hhsizegen |   -.445257    .0699095      .5424293    1.19541 
          regunmp |   .2064665   -.0534836      1.718873   1.029532 
  ----------------------------------------------------------------- 
 
. 

Table A6.5.3 IPW  
. ***Binary treatment model  
 
.  
. teffects ipw (contract) (bintreatment age agesq male minority socialassist 
secondaryeduc tertiaryeduc emp2011 hhsize hhsizegen regunmp), atet vce(robust) aequ 
 
Iteration 0:   EE criterion =  1.495e-24   
Iteration 1:   EE criterion =  6.230e-32   
 
Treatment-effects estimation                    Number of obs     =      4,023 
Estimator      : inverse-probability weights 
Outcome model  : weighted mean 
Treatment model: logit 
------------------------------------------------------------------------------- 
              |               Robust 
     contract |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
--------------+---------------------------------------------------------------- 
ATET          | 
 bintreatment | 
    (1 vs 0)  |  -.0531552   .0295037    -1.80   0.072    -.1109814    .0046711 
--------------+---------------------------------------------------------------- 
POmean        | 
 bintreatment | 
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           0  |   .7795703   .0206726    37.71   0.000     .7390528    .8200877 
--------------+---------------------------------------------------------------- 
TME1          | 
          age |   1.787138   .2308881     7.74   0.000     1.334606    2.239671 
        agesq |  -.0343107   .0042514    -8.07   0.000    -.0426433   -.0259781 
         male |   -.989517   .3603567    -2.75   0.006    -1.695803   -.2832309 
     minority |   -.413426   .3689081    -1.12   0.262    -1.136473    .3096206 
 socialassist |   3.544421   .4672553     7.59   0.000     2.628618    4.460225 
secondaryeduc |  -.5413661   .2171526    -2.49   0.013    -.9669775   -.1157547 
 tertiaryeduc |   .5932904   .2221933     2.67   0.008     .1577995    1.028781 
      emp2011 |  -.5266228    .146149    -3.60   0.000    -.8130696   -.2401759 
       hhsize |  -.2203855   .0473569    -4.65   0.000    -.3132033   -.1275677 
    hhsizegen |   .1038605   .0554772     1.87   0.061    -.0048728    .2125937 
      regunmp |    .015951   .0067856     2.35   0.019     .0026514    .0292507 
        _cons |  -23.34299   3.071429    -7.60   0.000    -29.36288    -17.3231 
------------------------------------------------------------------------------- 
 
.  
.  
.  
. ***Balancing diagnostics  
 
.  
. tebalance sum  
 
  Covariate balance summary 
                                                   Raw     Weighted 
                          ----------------------------------------- 
                          Number of obs =        4,023      4,023.0 
                          Treated obs   =          318      2,031.7 
                          Control obs   =        3,705      1,991.3 
                          ----------------------------------------- 
 
  ----------------------------------------------------------------- 
                  |Standardized differences          Variance ratio 
                  |        Raw    Weighted           Raw   Weighted 
  ----------------+------------------------------------------------ 
              age |  -.6687634   -.0101709      .3058151   .9922146 
            agesq |  -.7321206   -.0104416      .2567381   1.008397 
             male |  -.3082088   -.0566228      1.268022   1.027775 
         minority |  -.1413025    .0105815       .548575   1.056288 
     socialassist |   .3160415      .01832      12.33553   1.072081 
    secondaryeduc |  -.5695604    .0033879      .9849315   1.002053 
     tertiaryeduc |   .6534658    .0655545      1.464296   .9993383 
          emp2011 |  -.3353843     .026965      1.442703   .9826809 
           hhsize |  -.4669681   -.0266543      .3434917   1.151019 
        hhsizegen |   -.445257   -.0498187      .5424293   1.051337 
          regunmp |   .2064665    .0377149      1.718873   1.232486 
  ----------------------------------------------------------------- 
 
.  
.  
.  
. *** Multinomial probit treatment model  
 
.  
. teffects ipw (contract) (multitreatment age agesq male minority socialassist 
secondaryeduc tertiaryeduc emp2011 hhsize hhsizegen regunmp), atet vce(robust) aequ 
 
Iteration 0:   EE criterion =  7.102e-13   
Iteration 1:   EE criterion =  1.004e-17   
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convergence not achieved 
    The Gauss-Newton stopping criterion has been met but missing standard errors 
indicate some of the parameters are 
    not identified. 
 
Treatment-effects estimation                    Number of obs     =      4,023 
Estimator      : inverse-probability weights 
Outcome model  : weighted mean 
Treatment model: (multinomial) logit 
-------------------------------------------------------------------------------- 
               |               Robust 
      contract |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
---------------+---------------------------------------------------------------- 
ATET           | 
multitreatment | 
     (1 vs 0)  |  -.0889677   .0358217    -2.48   0.013     -.159177   -.0187584 
     (2 vs 0)  |   .0367267   .0420389     0.87   0.382     -.045668    .1191214 
     (3 vs 0)  |  -.0442655   .1281331    -0.35   0.730    -.2954018    .2068709 
---------------+---------------------------------------------------------------- 
POmean         | 
multitreatment | 
            0  |   .7868844   .0229639    34.27   0.000      .741876    .8318927 
---------------+---------------------------------------------------------------- 
TME1           | 
           age |    1.83568   .2897825     6.33   0.000     1.267717    2.403644 
         agesq |  -.0352208   .0053346    -6.60   0.000    -.0456764   -.0247653 
          male |  -.7631337   .4220943    -1.81   0.071    -1.590423    .0641558 
      minority |  -.6129588   .5288955    -1.16   0.246    -1.649575    .4236573 
  socialassist |    3.53812   .4913523     7.20   0.000     2.575087    4.501153 
 secondaryeduc |  -.2788955   .2901324    -0.96   0.336    -.8475447    .2897536 
  tertiaryeduc |   .9085453   .2890925     3.14   0.002     .3419345    1.475156 
       emp2011 |  -.7336788   .1753622    -4.18   0.000    -1.077382   -.3899752 
        hhsize |   -.173284   .0548441    -3.16   0.002    -.2807764   -.0657916 
     hhsizegen |   .0711857   .0638124     1.12   0.265    -.0538844    .1962558 
       regunmp |   .0251459    .007902     3.18   0.001     .0096582    .0406337 
         _cons |  -25.20534   3.881139    -6.49   0.000    -32.81223   -17.59844 
---------------+---------------------------------------------------------------- 
TME2           | 
           age |   1.507212   .3312607     4.55   0.000     .8579531    2.156471 
         agesq |   -.029378   .0060251    -4.88   0.000    -.0411869    -.017569 
          male |  -.8360754   .6654798    -1.26   0.209    -2.140392    .4682411 
      minority |   .0408404   .4922064     0.08   0.934    -.9238664    1.005547 
  socialassist |   3.925611   .5632369     6.97   0.000     2.821687    5.029535 
 secondaryeduc |  -.7885371   .3534703    -2.23   0.026    -1.481326   -.0957481 
  tertiaryeduc |   .3625745   .3605925     1.01   0.315    -.3441738    1.069323 
       emp2011 |  -.4472538   .2575516    -1.74   0.082    -.9520457     .057538 
        hhsize |  -.2509303   .0838872    -2.99   0.003    -.4153462   -.0865144 
     hhsizegen |   .1175312   .1045144     1.12   0.261    -.0873132    .3223757 
       regunmp |   .0164741   .0123149     1.34   0.181    -.0076626    .0406107 
         _cons |  -20.64357    4.42078    -4.67   0.000    -29.30814     -11.979 
---------------+---------------------------------------------------------------- 
TME3           | 
           age |   2.302579   .9654508     2.38   0.017     .4103298    4.194827 
         agesq |  -.0431406   .0180003    -2.40   0.017    -.0784205   -.0078607 
          male |  -2.026273   .9184989    -2.21   0.027    -3.826498   -.2260485 
      minority |  -.7855342   1.000049    -0.79   0.432    -2.745595    1.174526 
  socialassist |  -12.59514   .5067366   -24.86   0.000    -13.58833   -11.60195 
 secondaryeduc |   -.902355   .5215018    -1.73   0.084     -1.92448    .1197698 
  tertiaryeduc |  -.0747231   .5343684    -0.14   0.889    -1.122066    .9726196 
       emp2011 |   .5515534   .5077857     1.09   0.277    -.4436883    1.546795 
        hhsize |  -.3513137   .1202542    -2.92   0.003    -.5870075   -.1156199 
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     hhsizegen |   .2030183   .1510145     1.34   0.179    -.0929646    .4990012 
       regunmp |  -.0483703    .026105    -1.85   0.064    -.0995351    .0027946 
         _cons |  -30.23574   13.01587    -2.32   0.020    -55.74638   -4.725104 
-------------------------------------------------------------------------------- 
Warning: convergence not achieved 
 
.  
.  
. *** Balancing diagnostics  
 
.  
. tebalance sum  
 
  Covariate balance summary 
                                                 Observations       
                               Treatment           Raw     Weighted 
                          ----------------------------------------- 
                          0bn.multitr~t =        3,705        998.1 
                          1.multitrea~t =          192      1,029.7 
                          2.multitrea~t =           85      1,038.9 
                          3.multitrea~t =           41        956.4 
                          Total         =        4,023      4,023.0 
                          ----------------------------------------- 
 
  ----------------------------------------------------------------- 
                  |Standardized differences          Variance ratio 
                  |        Raw    Weighted           Raw   Weighted 
  ----------------+------------------------------------------------ 
  1.multitreatm~t | 
              age |  -.6857613    .0009526       .294323   .9883095 
            agesq |  -.7495821    .0002474      .2458971    1.00425 
             male |  -.3180552   -.0536444      1.275838   1.024964 
         minority |  -.1887856   -.0043507      .4175114   .9745746 
     socialassist |   .3072133    .0402706      11.88382   1.175286 
    secondaryeduc |  -.5837315   -.0050938      .9788369   .9967731 
     tertiaryeduc |   .7274203    .0691563      1.453482   .9903449 
          emp2011 |  -.4439931    .0042727      1.534379   .9980736 
           hhsize |  -.4313584   -.0269137      .3356183    1.03329 
        hhsizegen |  -.4406238   -.0471646       .537843   .9962539 
          regunmp |   .3088582    .0468255      1.875375   1.192052 
  ----------------+------------------------------------------------ 
  2.multitreatm~t | 
              age |  -.6578699    .0261223      .3556752   1.057265 
            agesq |  -.7180838    .0291261      .2908153   1.050132 
             male |  -.1922079   -.0702873      1.201792   1.031568 
         minority |  -.0268375   -.0304171      .9173881   .8283963 
     socialassist |    .420082    .0276942      18.88434    1.11935 
    secondaryeduc |  -.5737564   -.0555737      .9904803   .9626369 
     tertiaryeduc |   .5472105    .1190416      1.474056   .9775959 
          emp2011 |  -.3125861   -.0515535      1.433359   1.020049 
           hhsize |  -.4821607    .0066335      .3866713   1.428475 
        hhsizegen |  -.3801953   -.0347226      .5771221   1.277959 
          regunmp |    .189243    .0635752      1.725023   1.151698 
  ----------------+------------------------------------------------ 
  3.multitreatm~t | 
              age |  -.6091167    .1958112      .2675056   1.377136 
            agesq |  -.6772006    .2010263      .2470098   1.732563 
             male |  -.4966504    .1967056      1.353153    .865665 
         minority |  -.1979924   -.1732274      .3993995   .1957617 
     socialassist |  -.0960031   -.3183801             0          0 
    secondaryeduc |  -.4896376   -.0778948      1.045385   .9462672 



437 
 

     tertiaryeduc |   .5298783    .2181423      1.490295   .9387354 
          emp2011 |   .1956196    .2140998      .7037994   .8663008 
           hhsize |  -.6039881   -.1060098       .291651   .6602269 
        hhsizegen |  -.6055871    .0877931       .494447   .7545209 
          regunmp |  -.3595329   -.0348564      .6350091   1.110573 
  ----------------------------------------------------------------- 
 
. 

Table A6.5.4 RA  
 
***Binary treatment model  
 
 
. teffects ra (contract age agesq male minority secondaryeduc tertiaryeduc emp2011 
hhsize hhsizegen regunmp, logit) (bintreatment), atet vce(robust) aequ 
 
Iteration 0:   EE criterion =  2.394e-23   
Iteration 1:   EE criterion =  8.661e-34   
 
Treatment-effects estimation                    Number of obs     =      4,023 
Estimator      : regression adjustment 
Outcome model  : logit 
Treatment model: none 
------------------------------------------------------------------------------- 
              |               Robust 
     contract |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
--------------+---------------------------------------------------------------- 
ATET          | 
 bintreatment | 
    (1 vs 0)  |  -.1036555   .0255562    -4.06   0.000    -.1537448   -.0535663 
--------------+---------------------------------------------------------------- 
POmean        | 
 bintreatment | 
           0  |   .8300706    .012748    65.11   0.000     .8050849    .8550563 
--------------+---------------------------------------------------------------- 
OME0          | 
          age |   -.019906   .0825943    -0.24   0.810     -.181788    .1419759 
        agesq |   .0009741   .0014081     0.69   0.489    -.0017856    .0037339 
         male |  -1.397117   .2572819    -5.43   0.000     -1.90138   -.8928536 
     minority |   .4338751   .2101851     2.06   0.039     .0219199    .8458303 
secondaryeduc |   .9506443   .1091263     8.71   0.000     .7367607    1.164528 
 tertiaryeduc |   3.008406   .2328904    12.92   0.000      2.55195    3.464863 
      emp2011 |   1.617769   .1039142    15.57   0.000     1.414101    1.821437 
       hhsize |  -.0529813   .0248429    -2.13   0.033    -.1016725     -.00429 
    hhsizegen |   .0464073    .027145     1.71   0.087    -.0067959    .0996105 
      regunmp |  -.0129036   .0048244    -2.67   0.007    -.0223592    -.003448 
        _cons |   .4794648   1.189622     0.40   0.687    -1.852151     2.81108 
--------------+---------------------------------------------------------------- 
OME1          | 
          age |  -.3100284    .478725    -0.65   0.517    -1.248312    .6282553 
        agesq |   .0049427   .0086465     0.57   0.568    -.0120042    .0218897 
         male |  -1.512794   .8843458    -1.71   0.087    -3.246079    .2204922 
     minority |   .1456986   .6401009     0.23   0.820    -1.108876    1.400273 
secondaryeduc |  -.2178101   .3739005    -0.58   0.560    -.9506417    .5150215 
 tertiaryeduc |   1.991002   .4548181     4.38   0.000     1.099575    2.882429 
      emp2011 |  -.2222226   .3391423    -0.66   0.512    -.8869293     .442484 
       hhsize |  -.1741016   .1189143    -1.46   0.143    -.4071694    .0589662 
    hhsizegen |   .1428746   .1328593     1.08   0.282    -.1175249    .4032742 
      regunmp |   .0385752   .0153333     2.52   0.012     .0085224    .0686279 
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        _cons |   5.498698   6.755251     0.81   0.416    -7.741351    18.73875 
------------------------------------------------------------------------------- 
 
.  
.  
.  
. ***Multinomial probit treatment model  
 
.  
.  
. teffects ra (contract age agesq male minority secondaryeduc tertiaryeduc emp2011 
hhsize hhsizegen regunmp, logit) (m 
> ultitreatment), atet vce(robust) aequ  
 
Iteration 0:   EE criterion =  8.985e-08   
Iteration 1:   EE criterion =  1.571e-09   
 
Treatment-effects estimation                    Number of obs     =      4,023 
Estimator      : regression adjustment 
Outcome model  : logit 
Treatment model: none 
-------------------------------------------------------------------------------- 
               |               Robust 
      contract |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
---------------+---------------------------------------------------------------- 
ATET           | 
multitreatment | 
     (1 vs 0)  |   -.134498   .0332475    -4.05   0.000    -.1996618   -.0693342 
     (2 vs 0)  |  -.0247958   .0448081    -0.55   0.580    -.1126181    .0630265 
     (3 vs 0)  |  -.1135615   .0840305    -1.35   0.177    -.2782584    .0511353 
---------------+---------------------------------------------------------------- 
POmean         | 
multitreatment | 
            0  |   .8324147   .0153225    54.33   0.000     .8023831    .8624462 
---------------+---------------------------------------------------------------- 
OME0           | 
           age |   -.019906   .0825943    -0.24   0.810     -.181788    .1419759 
         agesq |   .0009741   .0014081     0.69   0.489    -.0017856    .0037339 
          male |  -1.397117   .2572819    -5.43   0.000     -1.90138   -.8928536 
      minority |   .4338751   .2101851     2.06   0.039     .0219199    .8458303 
 secondaryeduc |   .9506443   .1091263     8.71   0.000     .7367607    1.164528 
  tertiaryeduc |   3.008406   .2328904    12.92   0.000      2.55195    3.464863 
       emp2011 |   1.617769   .1039142    15.57   0.000     1.414101    1.821437 
        hhsize |  -.0529813   .0248429    -2.13   0.033    -.1016725     -.00429 
     hhsizegen |   .0464073    .027145     1.71   0.087    -.0067959    .0996105 
       regunmp |  -.0129036   .0048244    -2.67   0.007    -.0223592    -.003448 
         _cons |   .4794648   1.189622     0.40   0.687    -1.852151     2.81108 
---------------+---------------------------------------------------------------- 
OME1           | 
           age |  -.8460147   .9887881    -0.86   0.392    -2.784004    1.091974 
         agesq |   .0160004   .0182369     0.88   0.380    -.0197432     .051744 
          male |  -1.063684   1.230949    -0.86   0.388      -3.4763    1.348933 
      minority |   .0393711   1.344069     0.03   0.977    -2.594956    2.673698 
 secondaryeduc |  -.0885031   .5206252    -0.17   0.865     -1.10891    .9319035 
  tertiaryeduc |   2.255794   .6350693     3.55   0.000     1.011081    3.500507 
       emp2011 |  -.2505181   .4336732    -0.58   0.563    -1.100502    .5994658 
        hhsize |  -.0587541   .1454687    -0.40   0.686    -.3438676    .2263593 
     hhsizegen |   .0715809   .1724455     0.42   0.678    -.2664061     .409568 
       regunmp |   .0663749   .0202058     3.28   0.001     .0267723    .1059774 
         _cons |   9.852523    13.3482     0.74   0.460    -16.30948    36.01452 
---------------+---------------------------------------------------------------- 
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OME2           | 
           age |  -.3017703    1.00923    -0.30   0.765    -2.279825    1.676284 
         agesq |   .0018968   .0185297     0.10   0.918    -.0344208    .0382144 
          male |   -.965941   1.558284    -0.62   0.535    -4.020122     2.08824 
      minority |  -.2374131   .9844084    -0.24   0.809    -2.166818    1.691992 
 secondaryeduc |  -1.163633   .7580274    -1.54   0.125    -2.649339    .3220736 
  tertiaryeduc |   1.672863   .9902008     1.69   0.091    -.2678953     3.61362 
       emp2011 |  -.5460076    .732963    -0.74   0.456    -1.982589    .8905736 
        hhsize |  -.0100316   .2159048    -0.05   0.963    -.4331972    .4131341 
     hhsizegen |  -.0230368   .2551221    -0.09   0.928    -.5230671    .4769934 
       regunmp |  -.0187081   .0307634    -0.61   0.543    -.0790032     .041587 
         _cons |   9.970235   13.84832     0.72   0.472    -17.17197    37.11244 
---------------+---------------------------------------------------------------- 
OME3           | 
           age |   .2384848   1.159651     0.21   0.837     -2.03439    2.511359 
         agesq |  -.0066156   .0191827    -0.34   0.730     -.044213    .0309819 
          male |  -2.786613   3.645735    -0.76   0.445    -9.932121    4.358896 
      minority |   1.251966   2.320986     0.54   0.590    -3.297082    5.801014 
 secondaryeduc |   .5300096   1.164119     0.46   0.649    -1.751621     2.81164 
  tertiaryeduc |   2.548267   1.367172     1.86   0.062    -.1313407    5.227875 
       emp2011 |   .1117718   1.209827     0.09   0.926    -2.259445    2.482989 
        hhsize |  -.4779169   .5049383    -0.95   0.344    -1.467578     .511744 
     hhsizegen |   .4880868   .6084775     0.80   0.422    -.7045071    1.680681 
       regunmp |  -.0261873   .0512062    -0.51   0.609    -.1265495     .074175 
         _cons |   1.586871   18.43861     0.09   0.931    -34.55214    37.72588 
-------------------------------------------------------------------------------- 

 

Table A6.5.5 IPWRA  
. *** Binary treatment model  

 

.  

. teffects ipwra (contract age agesq male minority secondaryeduc tertiaryeduc emp2011 

hhsize hhsizegen regunmp, logit)  (bintreatment age agesq male minority socialassist 

secondaryeduc tertiaryeduc emp2011 hhsize hhsizegen regunmp), atet vce(robust) aequ 

 

Iteration 0:   EE criterion =  1.945e-23   

Iteration 1:   EE criterion =  6.302e-32   

 

Treatment-effects estimation                    Number of obs     =      4,023 

Estimator      : IPW regression adjustment 

Outcome model  : logit 

Treatment model: logit 

------------------------------------------------------------------------------- 

              |               Robust 

     contract |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

--------------+---------------------------------------------------------------- 

ATET          | 

 bintreatment | 

    (1 vs 0)  |  -.0917676   .0257825    -3.56   0.000    -.1423004   -.0412347 

--------------+---------------------------------------------------------------- 

POmean        | 

 bintreatment | 

           0  |   .8181827   .0138309    59.16   0.000     .7910747    .8452906 

--------------+---------------------------------------------------------------- 

OME0          | 
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          age |  -.3948837   .1830529    -2.16   0.031    -.7536608   -.0361066 

        agesq |   .0075974    .003376     2.25   0.024     .0009805    .0142143 

         male |  -1.173328   .6182617    -1.90   0.058    -2.385098    .0384429 

     minority |   1.045111   .4014246     2.60   0.009     .2583332    1.831889 

secondaryeduc |   1.298832    .178498     7.28   0.000     .9489823    1.648682 

 tertiaryeduc |   3.475867   .3279171    10.60   0.000     2.833161    4.118573 

      emp2011 |   1.571532   .1725883     9.11   0.000     1.233266    1.909799 

       hhsize |  -.0098002    .080823    -0.12   0.903    -.1682104      .14861 

    hhsizegen |   -.000643    .083786    -0.01   0.994    -.1648606    .1635745 

      regunmp |  -.0131503   .0083096    -1.58   0.114    -.0294368    .0031362 

        _cons |   5.072553   2.421922     2.09   0.036     .3256719    9.819433 

--------------+---------------------------------------------------------------- 

OME1          | 

          age |  -.3100284    .478725    -0.65   0.517    -1.248312    .6282553 

        agesq |   .0049427   .0086465     0.57   0.568    -.0120042    .0218897 

         male |  -1.512794   .8843458    -1.71   0.087    -3.246079    .2204922 

     minority |   .1456986   .6401009     0.23   0.820    -1.108876    1.400273 

secondaryeduc |  -.2178101   .3739005    -0.58   0.560    -.9506417    .5150215 

 tertiaryeduc |   1.991002   .4548181     4.38   0.000     1.099575    2.882429 

      emp2011 |  -.2222226   .3391423    -0.66   0.512    -.8869293     .442484 

       hhsize |  -.1741016   .1189143    -1.46   0.143    -.4071694    .0589662 

    hhsizegen |   .1428746   .1328593     1.08   0.282    -.1175249    .4032742 

      regunmp |   .0385752   .0153333     2.52   0.012     .0085224    .0686279 

        _cons |   5.498698   6.755251     0.81   0.416    -7.741351    18.73875 

--------------+---------------------------------------------------------------- 

TME1          | 

          age |   1.787138   .2308881     7.74   0.000     1.334606    2.239671 

        agesq |  -.0343107   .0042514    -8.07   0.000    -.0426433   -.0259781 

         male |   -.989517   .3603567    -2.75   0.006    -1.695803   -.2832309 

     minority |   -.413426   .3689081    -1.12   0.262    -1.136473    .3096206 

 socialassist |   3.544421   .4672553     7.59   0.000     2.628618    4.460225 

secondaryeduc |  -.5413661   .2171526    -2.49   0.013    -.9669775   -.1157547 

 tertiaryeduc |   .5932904   .2221933     2.67   0.008     .1577995    1.028781 

      emp2011 |  -.5266228    .146149    -3.60   0.000    -.8130696   -.2401759 

       hhsize |  -.2203855   .0473569    -4.65   0.000    -.3132033   -.1275677 

    hhsizegen |   .1038605   .0554772     1.87   0.061    -.0048728    .2125937 

      regunmp |    .015951   .0067856     2.35   0.019     .0026514    .0292507 

        _cons |  -23.34299   3.071429    -7.60   0.000    -29.36288    -17.3231 

------------------------------------------------------------------------------- 

 

. ***Multinomial probit treatment model  

 

. teffects ipwra (contract age agesq male minority secondaryeduc tertiaryeduc emp2011 

hhsize hhsizegen regunmp, logit) (multitreatment age agesq male minority socialassist 

secondaryeduc tertiaryeduc emp2011 hhsize hhsizegen regunmp), atet vce(robust) aequ 

 

Iteration 0:   EE criterion =  1.773e-07   

Iteration 1:   EE criterion =  4.322e-09   

Iteration 2:   EE criterion =  1.790e-09  (not concave) 

Iteration 3:   EE criterion =  4.122e-10  (not concave) 

Iteration 4:   EE criterion =  3.292e-10   

convergence not achieved 
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    The Gauss-Newton stopping criterion has been met but missing standard errors 

indicate some of the parameters are 

    not identified. 

 

Treatment-effects estimation                    Number of obs     =      4,023 

Estimator      : IPW regression adjustment 

Outcome model  : logit 

Treatment model: (multinomial) logit 

-------------------------------------------------------------------------------- 

               |               Robust 

      contract |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

---------------+---------------------------------------------------------------- 

ATET           | 

multitreatment | 

     (1 vs 0)  |  -.1254563   .0329997    -3.80   0.000    -.1901344   -.0607781 

     (2 vs 0)  |  -.0097316    .042872    -0.23   0.820    -.0937592     .074296 

     (3 vs 0)  |  -.0586955   .0555669    -1.06   0.291    -.1676046    .0502136 

---------------+---------------------------------------------------------------- 

POmean         | 

multitreatment | 

            0  |   .8233547   .0164465    50.06   0.000       .79112    .8555893 

---------------+---------------------------------------------------------------- 

OME0           | 

           age |  -.3845057   .1909874    -2.01   0.044     -.758834   -.0101773 

         agesq |   .0075053   .0035191     2.13   0.033      .000608    .0144026 

          male |   -1.21692   .5895516    -2.06   0.039     -2.37242   -.0614204 

      minority |   1.130275   .4071697     2.78   0.006     .3322369    1.928313 

 secondaryeduc |   1.312264   .2025688     6.48   0.000     .9152367    1.709292 

  tertiaryeduc |   3.592639   .3526157    10.19   0.000     2.901525    4.283753 

       emp2011 |   1.514393   .1788322     8.47   0.000     1.163888    1.864898 

        hhsize |  -.0146814   .0744079    -0.20   0.844    -.1605183    .1311555 

     hhsizegen |   .0001983   .0774412     0.00   0.998    -.1515836    .1519802 

       regunmp |  -.0123379    .009066    -1.36   0.174     -.030107    .0054312 

         _cons |    4.89783    2.54936     1.92   0.055    -.0988233    9.894484 

---------------+---------------------------------------------------------------- 

OME1           | 

           age |  -.8460147   .9887859    -0.86   0.392    -2.783999     1.09197 

         agesq |   .0160004   .0182368     0.88   0.380    -.0197431    .0517439 

          male |  -1.063684   1.230948    -0.86   0.388    -3.476298     1.34893 

      minority |   .0393694   1.344071     0.03   0.977    -2.594961      2.6737 

 secondaryeduc |   -.088504   .5206255    -0.17   0.865    -1.108911    .9319032 

  tertiaryeduc |   2.255794   .6350687     3.55   0.000     1.011082    3.500506 

       emp2011 |  -.2505188   .4336729    -0.58   0.563    -1.100502    .5994644 

        hhsize |  -.0587542   .1454687    -0.40   0.686    -.3438676    .2263591 

     hhsizegen |   .0715808   .1724454     0.42   0.678     -.266406    .4095677 

       regunmp |   .0663748   .0202057     3.28   0.001     .0267723    .1059774 

         _cons |   9.852523   13.34818     0.74   0.460    -16.30943    36.01447 

---------------+---------------------------------------------------------------- 

OME2           | 

           age |    .038327   .9934928     0.04   0.969    -1.908883    1.985537 

         agesq |  -.0036796   .0182128    -0.20   0.840     -.039376    .0320168 

          male |  -.5615904   1.383975    -0.41   0.685    -3.274132    2.150951 

      minority |   .0786396   .9613683     0.08   0.935    -1.805608    1.962887 
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 secondaryeduc |  -.9512698   .8003593    -1.19   0.235    -2.519945    .6174055 

  tertiaryeduc |   1.567525   1.003617     1.56   0.118    -.3995295    3.534579 

       emp2011 |  -.7392993   .7239441    -1.02   0.307    -2.158204    .6796051 

        hhsize |   .1042546   .1858189     0.56   0.575    -.2599439     .468453 

     hhsizegen |  -.0811694   .2268486    -0.36   0.720    -.5257844    .3634456 

       regunmp |  -.0112761   .0316631    -0.36   0.722    -.0733346    .0507823 

         _cons |   3.991379    13.8049     0.29   0.772    -23.06573    31.04849 

---------------+---------------------------------------------------------------- 

OME3           | 

           age |   .9253214   1.221767     0.76   0.449    -1.469297     3.31994 

         agesq |  -.0218975   .0209477    -1.05   0.296    -.0629543    .0191593 

          male |  -5.765252   4.051101    -1.42   0.155    -13.70526    2.174761 

      minority |    2.36218   2.379711     0.99   0.321    -2.301967    7.026327 

 secondaryeduc |   .5367164   1.314153     0.41   0.683    -2.038975    3.112408 

  tertiaryeduc |   2.982151   1.586117     1.88   0.060    -.1265812    6.090884 

       emp2011 |  -1.508574    1.19464    -1.26   0.207    -3.850027    .8328781 

        hhsize |  -.9145722   .6076637    -1.51   0.132    -2.105571    .2764268 

     hhsizegen |   .9735966   .6708974     1.45   0.147    -.3413381    2.288531 

       regunmp |   .0124613   .0592105     0.21   0.833    -.1035891    .1285116 

         _cons |  -2.752929   18.38747    -0.15   0.881     -38.7917    33.28584 

---------------+---------------------------------------------------------------- 

TME1           | 

           age |    1.83568   .2897815     6.33   0.000     1.267719    2.403642 

         agesq |  -.0352208   .0053346    -6.60   0.000    -.0456764   -.0247653 

          male |  -.7631325   .4220953    -1.81   0.071    -1.590424     .064159 

      minority |  -.6129801   .5289027    -1.16   0.246     -1.64961    .4236502 

  socialassist |   3.538121    .491353     7.20   0.000     2.575087    4.501155 

 secondaryeduc |  -.2788772   .2901332    -0.96   0.336    -.8475277    .2897733 

  tertiaryeduc |   .9085496   .2890938     3.14   0.002     .3419362    1.475163 

       emp2011 |  -.7337022   .1753612    -4.18   0.000    -1.077404   -.3900005 

        hhsize |  -.1732843   .0548445    -3.16   0.002    -.2807775   -.0657912 

     hhsizegen |    .071187   .0638126     1.12   0.265    -.0538834    .1962574 

       regunmp |   .0251459    .007902     3.18   0.001     .0096581    .0406336 

         _cons |  -25.20534   3.881125    -6.49   0.000     -32.8122   -17.59847 

---------------+---------------------------------------------------------------- 

TME2           | 

           age |   1.507212   .3312599     4.55   0.000     .8579547     2.15647 

         agesq |   -.029378   .0060251    -4.88   0.000    -.0411869    -.017569 

          male |  -.8360743   .6654799    -1.26   0.209    -2.140391    .4682424 

      minority |   .0408385   .4922064     0.08   0.934    -.9238682    1.005545 

  socialassist |   3.925612   .5632367     6.97   0.000     2.821688    5.029535 

 secondaryeduc |  -.7885339   .3534696    -2.23   0.026    -1.481321   -.0957462 

  tertiaryeduc |    .362573   .3605922     1.01   0.315    -.3441747    1.069321 

       emp2011 |  -.4472578    .257551    -1.74   0.082    -.9520485    .0575329 

        hhsize |  -.2509302   .0838874    -2.99   0.003    -.4153465   -.0865139 

     hhsizegen |   .1175317   .1045143     1.12   0.261    -.0873127     .322376 

       regunmp |   .0164741   .0123148     1.34   0.181    -.0076626    .0406107 

         _cons |  -20.64357   4.420769    -4.67   0.000    -29.30812   -11.97902 

---------------+---------------------------------------------------------------- 

TME3           | 

           age |   2.302577   .9655172     2.38   0.017     .4101979    4.194956 

         agesq |  -.0431407   .0180015    -2.40   0.017     -.078423   -.0078584 

          male |  -2.026316   .9185344    -2.21   0.027     -3.82661   -.2260216 
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      minority |  -.7851754   .9998204    -0.79   0.432    -2.744787    1.174436 

  socialassist |  -1.57e+25          .        .       .            .           . 

 secondaryeduc |  -.9025561   .5215195    -1.73   0.084    -1.924716    .1196035 

  tertiaryeduc |  -.0747617   .5343678    -0.14   0.889    -1.122103      .97258 

       emp2011 |   .5517549   .5078745     1.09   0.277    -.4436607    1.547171 

        hhsize |  -.3513113   .1202511    -2.92   0.003    -.5869992   -.1156235 

     hhsizegen |   .2030071   .1510193     1.34   0.179    -.0929852    .4989995 

       regunmp |  -.0483687   .0261055    -1.85   0.064    -.0995346    .0027972 

         _cons |  -30.23575   13.01677    -2.32   0.020    -55.74815   -4.723346 

-------------------------------------------------------------------------------- 

Warning: convergence not achieved 

 

Table 6.6 Outcome variable: contract – Model 2, excluding 

emp2011 

Table A6.6.1 PSM  
*** Binary treatment model  
 
. teffects psmatch (contract) (bintreatment age agesq male minority socialassist 
secondaryeduc tertiaryeduc hhsize hhsizegen regunmp),  nneighbor(1) atet vce(robust) 
 
Treatment-effects estimation                   Number of obs      =      4,034 
Estimator      : propensity-score matching     Matches: requested =          1 
Outcome model  : matching                                     min =          1 
Treatment model: logit                                        max =         10 
------------------------------------------------------------------------------ 
             |              AI Robust 
    contract |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
ATET         | 
bintreatment | 
   (1 vs 0)  |  -.0897799   .0330325    -2.72   0.007    -.1545224   -.0250373 
------------------------------------------------------------------------------ 
 
 
*** Balancing diagnostics  
 
 
 
. tebalance sum 
note: refitting the model using the generate() option 
 
  Covariate balance summary 
                                                   Raw      Matched 
                          ----------------------------------------- 
                          Number of obs =        4,034          636 
                          Treated obs   =          318          318 
                          Control obs   =        3,716          318 
                          ----------------------------------------- 
 
  ----------------------------------------------------------------- 
                  |Standardized differences          Variance ratio 
                  |        Raw     Matched           Raw    Matched 
  ----------------+------------------------------------------------ 
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              age |  -.6683655   -.0652905      .3059298   .9740904 
            agesq |  -.7316696   -.0653543      .2568255   .9619142 
             male |  -.3074472     -.05818      1.266947   1.028703 
         minority |  -.1416016    .0974457      .5479843   1.803953 
     socialassist |   .3139258    .0558519      11.68782   1.249945 
    secondaryeduc |   -.567801    .0730582      .9840757   1.051425 
     tertiaryeduc |   .6537529   -.0314459      1.464826   1.003378 
           hhsize |  -.4663061    .0313226      .3440954   1.220738 
        hhsizegen |  -.4445942   -.0094706      .5429146   1.182609 
          regunmp |   .2053474   -.0394231      1.714623   1.138531 
  ----------------------------------------------------------------- 

 

Table A6.6.2 IPW  
 

. ***Binary treatment model  
 
. 
.  
. teffects ipw (contract) (bintreatment age agesq male minority socialassist 
secondaryeduc tertiaryeduc hhsize hhsizegen regunmp) if insampm2==1, atet vce(robust) 
 
Iteration 0:   EE criterion =  1.128e-24   
Iteration 1:   EE criterion =  1.820e-31   
 
Treatment-effects estimation                    Number of obs     =      4,034 
Estimator      : inverse-probability weights 
Outcome model  : weighted mean 
Treatment model: logit 
------------------------------------------------------------------------------- 
              |               Robust 
     contract |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
--------------+---------------------------------------------------------------- 
ATET          | 
 bintreatment | 
    (1 vs 0)  |  -.0795846   .0270803    -2.94   0.003    -.1326611   -.0265082 
--------------+---------------------------------------------------------------- 
POmean        | 
 bintreatment | 
           0  |   .8059997   .0166957    48.28   0.000     .7732767    .8387227 
------------------------------------------------------------------------------- 
 
.  
. *** Balancing diagnostics  
 
.  
. tebalance sum  
 
  Covariate balance summary 
                                                   Raw     Weighted 
                          ----------------------------------------- 
                          Number of obs =        4,034      4,034.0 
                          Treated obs   =          318      2,045.6 
                          Control obs   =        3,716      1,988.4 
                          ----------------------------------------- 
 
  ----------------------------------------------------------------- 
                  |Standardized differences          Variance ratio 
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                  |        Raw    Weighted           Raw   Weighted 
  ----------------+------------------------------------------------ 
              age |  -.6683655    -.006593      .3059298   .9905808 
            agesq |  -.7316696   -.0070228      .2568255   1.003412 
             male |  -.3074472    -.044584      1.266947    1.02122 
         minority |  -.1416016    .0055177      .5479843   1.028734 
     socialassist |   .3139258    .0825861      11.68782   1.407681 
    secondaryeduc |   -.567801   -.0039861      .9840757   .9975961 
     tertiaryeduc |   .6537529    .0413855      1.464826   .9985752 
           hhsize |  -.4663061   -.0185211      .3440954   1.125238 
        hhsizegen |  -.4445942   -.0391478      .5429146   1.044958 
          regunmp |   .2053474    .0163749      1.714623   1.201666 
  ----------------------------------------------------------------- 
 
.  
.  
.  
. ***Multivalued treatment model  
 
.  
. teffects ipw (contract) (multitreatment age agesq male minority socialassist 
secondaryeduc tertiaryeduc hhsize hhsizegen regunmp) if insampm2==1, atet vce(robust) 
 
Iteration 0:   EE criterion =  4.151e-11   
Iteration 1:   EE criterion =  2.627e-18   
convergence not achieved 
    The Gauss-Newton stopping criterion has been met but missing standard errors 
indicate some of the parameters are 
    not identified. 
 
Treatment-effects estimation                    Number of obs     =      4,034 
Estimator      : inverse-probability weights 
Outcome model  : weighted mean 
Treatment model: (multinomial) logit 
-------------------------------------------------------------------------------- 
               |               Robust 
      contract |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
---------------+---------------------------------------------------------------- 
ATET           | 
multitreatment | 
     (1 vs 0)  |  -.1212863   .0330934    -3.66   0.000    -.1861481   -.0564245 
     (2 vs 0)  |   .0008112   .0406699     0.02   0.984    -.0789002    .0805227 
     (3 vs 0)  |  -.0420783   .0860356    -0.49   0.625    -.2107049    .1265483 
---------------+---------------------------------------------------------------- 
POmean         | 
multitreatment | 
            0  |    .819203   .0178698    45.84   0.000     .7841788    .8542271 
-------------------------------------------------------------------------------- 
Warning: convergence not achieved 
 
.  
. *** Balancing diagnostics  
 
.  
. tebalance sum  
 
  Covariate balance summary 
                                                 Observations       
                               Treatment           Raw     Weighted 
                          ----------------------------------------- 
                          0bn.multitr~t =        3,716        975.3 
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                          1.multitrea~t =          192      1,011.2 
                          2.multitrea~t =           85      1,012.4 
                          3.multitrea~t =           41      1,035.0 
                          Total         =        4,034      4,034.0 
                          ----------------------------------------- 
 
  ----------------------------------------------------------------- 
                  |Standardized differences          Variance ratio 
                  |        Raw    Weighted           Raw   Weighted 
  ----------------+------------------------------------------------ 
  1.multitreatm~t | 
              age |  -.6853646    .0006308      .2944334   .9909685 
            agesq |   -.749132    .0000898      .2459809   1.003484 
             male |  -.3172932   -.0427811      1.274756   1.019348 
         minority |  -.1890778   -.0032868      .4170619   .9806851 
     socialassist |   .3050684    .1197272      11.25983   1.716186 
    secondaryeduc |  -.5819661   -.0070876      .9779864   .9955346 
     tertiaryeduc |   .7277135    .0391452      1.454008   .9933294 
           hhsize |  -.4306719   -.0174493      .3362081   1.009848 
        hhsizegen |  -.4399588   -.0369529      .5383242    .991684 
          regunmp |   .3077284    .0162281      1.870737   1.162522 
  ----------------+------------------------------------------------ 
  2.multitreatm~t | 
              age |  -.6574762   -.0077818      .3558087   1.039286 
            agesq |  -.7176357   -.0053773      .2909144   1.021221 
             male |  -.1914564   -.0696512      1.200773   1.029694 
         minority |   -.027143   -.0114377      .9164003   .9335883 
     socialassist |   .4183005    .1216673      17.89277   1.729156 
    secondaryeduc |  -.5719987   -.0421551      .9896197   .9723164 
     tertiaryeduc |   .5474891     .067965       1.47459   .9865208 
           hhsize |   -.481514    .0170899      .3873509   1.399928 
        hhsizegen |  -.3795199    -.029527      .5776384   1.277966 
          regunmp |   .1881332    .0152758      1.720757   1.100384 
  ----------------+------------------------------------------------ 
  3.multitreatm~t | 
              age |  -.6087055   -.0341952      .2676059   .7487333 
            agesq |  -.6767408   -.0478777       .247094   .8549602 
             male |  -.4958697    .1844547      1.352005   .8796062 
         minority |  -.1982826   -.1593651      .3989694   .2438254 
     socialassist |  -.0986528   -.2591778             0          0 
    secondaryeduc |  -.4879232   -.2440004      1.044477   .8029359 
     tertiaryeduc |   .5301546    .3063669      1.490834    .873212 
           hhsize |  -.6034122     -.22448      .2921636   .6309171 
        hhsizegen |  -.6049638   -.0132029      .4948894   .6579276 
          regunmp |   -.360582    .2120915      .6334388   1.274302 
  ----------------------------------------------------------------- 
 
. 

Table A6.6.3 RA  
*** Binary treatment model  

 

. teffects ra (contract age agesq male minority secondaryeduc tertiaryeduc hhsize 

hhsizegen regunmp, logit) (bintreatment) if insampm2==1, atet vce(robust) aequ 

 

Iteration 0:   EE criterion =  2.472e-20   

Iteration 1:   EE criterion =  2.141e-33   

 

Treatment-effects estimation                    Number of obs     =      4,034 
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Estimator      : regression adjustment 

Outcome model  : logit 

Treatment model: none 

------------------------------------------------------------------------------- 

              |               Robust 

     contract |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

--------------+---------------------------------------------------------------- 

ATET          | 

 bintreatment | 

    (1 vs 0)  |  -.1155597   .0244018    -4.74   0.000    -.1633863   -.0677331 

--------------+---------------------------------------------------------------- 

POmean        | 

 bintreatment | 

           0  |   .8419748   .0109942    76.58   0.000     .8204265    .8635231 

--------------+---------------------------------------------------------------- 

OME0          | 

          age |   .1509179   .0760053     1.99   0.047     .0019503    .2998854 

        agesq |  -.0014991   .0012969    -1.16   0.248    -.0040409    .0010428 

         male |  -1.119548   .2352938    -4.76   0.000    -1.580715   -.6583806 

     minority |   .4620416   .2029913     2.28   0.023     .0641861    .8598972 

secondaryeduc |   1.010762   .1056509     9.57   0.000     .8036898    1.217834 

 tertiaryeduc |   2.988407   .2196649    13.60   0.000     2.557871    3.418942 

       hhsize |  -.0469601   .0222715    -2.11   0.035    -.0906115   -.0033087 

    hhsizegen |   .0392287   .0247578     1.58   0.113    -.0092956    .0877531 

      regunmp |  -.0122432   .0046459    -2.64   0.008     -.021349   -.0031374 

        _cons |  -1.424089   1.092765    -1.30   0.193    -3.565869     .717691 

--------------+---------------------------------------------------------------- 

OME1          | 

          age |  -.3297062   .4786149    -0.69   0.491    -1.267774    .6083617 

        agesq |    .005416    .008662     0.63   0.532    -.0115613    .0223933 

         male |  -1.487412     .89927    -1.65   0.098    -3.249949    .2751249 

     minority |   .1079531   .6478203     0.17   0.868    -1.161751    1.377658 

secondaryeduc |  -.2079764   .3746633    -0.56   0.579     -.942303    .5263501 

 tertiaryeduc |   2.004656   .4553119     4.40   0.000     1.112261    2.897051 

       hhsize |  -.1737133   .1218414    -1.43   0.154    -.4125181    .0650915 

    hhsizegen |   .1389784   .1355916     1.02   0.305    -.1267763    .4047331 

      regunmp |   .0410547   .0147819     2.78   0.005     .0120828    .0700266 

        _cons |   5.438624   6.717985     0.81   0.418    -7.728385    18.60563 

------------------------------------------------------------------------------- 

 

. ***Multivalued treatment model 

 

. teffects ra (contract age agesq male minority secondaryeduc tertiaryeduc hhsize 

hhsizegen regunmp, logit) (multitreatment) if insampm2==1, atet vce(robust) aequ 

 

Iteration 0:   EE criterion =  9.201e-08   

Iteration 1:   EE criterion =  1.557e-09   

 

Treatment-effects estimation                    Number of obs     =      4,034 

Estimator      : regression adjustment 

Outcome model  : logit 

Treatment model: none 

-------------------------------------------------------------------------------- 
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               |               Robust 

      contract |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

---------------+---------------------------------------------------------------- 

ATET           | 

multitreatment | 

     (1 vs 0)  |  -.1536416   .0310279    -4.95   0.000    -.2144552    -.092828 

     (2 vs 0)  |  -.0462612   .0451839    -1.02   0.306      -.13482    .0422977 

     (3 vs 0)  |  -.1277609   .0718879    -1.78   0.076    -.2686585    .0131367 

---------------+---------------------------------------------------------------- 

POmean         | 

multitreatment | 

            0  |   .8515583   .0127352    66.87   0.000     .8265977    .8765188 

---------------+---------------------------------------------------------------- 

OME0           | 

           age |   .1509179   .0760053     1.99   0.047     .0019503    .2998854 

         agesq |  -.0014991   .0012969    -1.16   0.248    -.0040409    .0010428 

          male |  -1.119548   .2352938    -4.76   0.000    -1.580715   -.6583806 

      minority |   .4620416   .2029913     2.28   0.023     .0641861    .8598972 

 secondaryeduc |   1.010762   .1056509     9.57   0.000     .8036898    1.217834 

  tertiaryeduc |   2.988407   .2196649    13.60   0.000     2.557871    3.418942 

        hhsize |  -.0469601   .0222715    -2.11   0.035    -.0906115   -.0033087 

     hhsizegen |   .0392287   .0247578     1.58   0.113    -.0092956    .0877531 

       regunmp |  -.0122432   .0046459    -2.64   0.008     -.021349   -.0031374 

         _cons |  -1.424089   1.092765    -1.30   0.193    -3.565869     .717691 

---------------+---------------------------------------------------------------- 

OME1           | 

           age |   -.816214   .9952297    -0.82   0.412    -2.766828      1.1344 

         agesq |   .0155984   .0184517     0.85   0.398    -.0205664    .0517632 

          male |  -1.065753   1.253671    -0.85   0.395    -3.522903    1.391397 

      minority |   .0286073   1.389039     0.02   0.984    -2.693859    2.751073 

 secondaryeduc |  -.0919015   .5221325    -0.18   0.860    -1.115262    .9314594 

  tertiaryeduc |   2.252352   .6304068     3.57   0.000     1.016777    3.487926 

        hhsize |  -.0617598   .1493416    -0.41   0.679     -.354464    .2309443 

     hhsizegen |   .0710117   .1762196     0.40   0.687    -.2743724    .4163957 

       regunmp |   .0693664   .0203803     3.40   0.001     .0294217    .1093111 

         _cons |   9.117835    13.3014     0.69   0.493    -16.95242    35.18809 

---------------+---------------------------------------------------------------- 

OME2           | 

           age |  -.5053123   .9575999    -0.53   0.598    -2.382174    1.371549 

         agesq |   .0058938    .017436     0.34   0.735    -.0282802    .0400679 

          male |  -.7932958   1.560302    -0.51   0.611    -3.851431     2.26484 

      minority |   -.382802    .981652    -0.39   0.697    -2.306805    1.541201 

 secondaryeduc |  -1.132552   .7404314    -1.53   0.126    -2.583771     .318667 

  tertiaryeduc |   1.748164   .9586256     1.82   0.068    -.1307072    3.627036 

        hhsize |  -.0038068   .2140206    -0.02   0.986    -.4232794    .4156658 

     hhsizegen |  -.0434369   .2515896    -0.17   0.863    -.5365435    .4496697 

       regunmp |  -.0144334   .0282511    -0.51   0.609    -.0698045    .0409377 

         _cons |    11.8829   13.32835     0.89   0.373    -14.24018    38.00599 

---------------+---------------------------------------------------------------- 

OME3           | 

           age |    .262944   1.096424     0.24   0.810    -1.886007    2.411895 

         agesq |  -.0071313   .0177355    -0.40   0.688    -.0418922    .0276296 

          male |  -2.790956   3.628883    -0.77   0.442    -9.903435    4.321524 
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      minority |   1.253479   2.297178     0.55   0.585    -3.248907    5.755864 

 secondaryeduc |   .5137475   1.150719     0.45   0.655     -1.74162    2.769115 

  tertiaryeduc |   2.538786   1.361588     1.86   0.062    -.1298767    5.207448 

        hhsize |  -.4808211   .5027216    -0.96   0.339    -1.466137    .5044951 

     hhsizegen |   .4901745   .6083491     0.81   0.420    -.7021679    1.682517 

       regunmp |  -.0250085   .0508912    -0.49   0.623    -.1247535    .0747364 

         _cons |    1.39812   18.10044     0.08   0.938    -34.07809    36.87433 

-------------------------------------------------------------------------------- 

 

. 

Table A6.6.4 IPWRA  
*** Binary treatment model 

 

. teffects ipwra (contract age agesq male minority secondaryeduc tertiaryeduc hhsize 

hhsizegen regunmp, logit) (bintreatment age agesq male minority socialassist 

secondaryeduc tertiaryeduc emp2011 hhsize hhsizegen regunmp) if insampm2==1, atet 

vce(robust) aequ 

 

Iteration 0:   EE criterion =  4.291e-24   

Iteration 1:   EE criterion =  9.033e-32   

 

Treatment-effects estimation                    Number of obs     =      4,023 

Estimator      : IPW regression adjustment 

Outcome model  : logit 

Treatment model: logit 

------------------------------------------------------------------------------- 

              |               Robust 

     contract |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

--------------+---------------------------------------------------------------- 

ATET          | 

 bintreatment | 

    (1 vs 0)  |  -.0781049   .0256902    -3.04   0.002    -.1284567   -.0277531 

--------------+---------------------------------------------------------------- 

POmean        | 

 bintreatment | 

           0  |     .80452   .0144908    55.52   0.000     .7761186    .8329214 

--------------+---------------------------------------------------------------- 

OME0          | 

          age |  -.2213412   .1783175    -1.24   0.215     -.570837    .1281546 

        agesq |    .004747   .0032516     1.46   0.144    -.0016259    .0111199 

         male |   -1.18453   .5210096    -2.27   0.023    -2.205689   -.1633696 

     minority |   .9736999   .3917071     2.49   0.013     .2059681    1.741432 

secondaryeduc |    1.53916   .2220761     6.93   0.000     1.103899    1.974421 

 tertiaryeduc |   3.595352   .3326008    10.81   0.000     2.943467    4.247238 

       hhsize |  -.0334602   .0667151    -0.50   0.616    -.1642194     .097299 

    hhsizegen |   .0287724   .0703799     0.41   0.683    -.1091696    .1667144 

      regunmp |  -.0110411   .0079914    -1.38   0.167    -.0267039    .0046217 

        _cons |   3.180737   2.349005     1.35   0.176    -1.423228    7.784701 

--------------+---------------------------------------------------------------- 

OME1          | 

          age |  -.3297062   .4786149    -0.69   0.491    -1.267774    .6083617 
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        agesq |    .005416    .008662     0.63   0.532    -.0115613    .0223933 

         male |  -1.487412     .89927    -1.65   0.098    -3.249949    .2751249 

     minority |   .1079531   .6478203     0.17   0.868    -1.161751    1.377658 

secondaryeduc |  -.2079764   .3746633    -0.56   0.579     -.942303    .5263501 

 tertiaryeduc |   2.004656   .4553119     4.40   0.000     1.112261    2.897051 

       hhsize |  -.1737133   .1218414    -1.43   0.154    -.4125181    .0650915 

    hhsizegen |   .1389784   .1355916     1.02   0.305    -.1267763    .4047331 

      regunmp |   .0410547   .0147819     2.78   0.005     .0120828    .0700266 

        _cons |   5.438624   6.717985     0.81   0.418    -7.728385    18.60563 

--------------+---------------------------------------------------------------- 

TME1          | 

          age |   1.787138   .2308881     7.74   0.000     1.334606    2.239671 

        agesq |  -.0343107   .0042514    -8.07   0.000    -.0426433   -.0259781 

         male |   -.989517   .3603567    -2.75   0.006    -1.695803   -.2832309 

     minority |   -.413426   .3689081    -1.12   0.262    -1.136473    .3096206 

 socialassist |   3.544421   .4672553     7.59   0.000     2.628618    4.460225 

secondaryeduc |  -.5413661   .2171526    -2.49   0.013    -.9669775   -.1157547 

 tertiaryeduc |   .5932904   .2221933     2.67   0.008     .1577995    1.028781 

      emp2011 |  -.5266228    .146149    -3.60   0.000    -.8130696   -.2401759 

       hhsize |  -.2203855   .0473569    -4.65   0.000    -.3132033   -.1275677 

    hhsizegen |   .1038605   .0554772     1.87   0.061    -.0048728    .2125937 

      regunmp |    .015951   .0067856     2.35   0.019     .0026514    .0292507 

        _cons |  -23.34299   3.071429    -7.60   0.000    -29.36288    -17.3231 

------------------------------------------------------------------------------- 

 

.  

. ***Multivalued treatment model 

 

.  

. teffects ipwra (contract age agesq male minority secondaryeduc tertiaryeduc  hhsize 

hhsizegen regunmp, logit) (multitreatment age agesq male minority socialassist 

secondaryeduc tertiaryeduc hhsize hhsizegen regunmp) if insampm2==1, atet vce(robust) 

aequ 

 

Iteration 0:   EE criterion =  2.187e-07   

Iteration 1:   EE criterion =  3.446e-10   

Iteration 2:   EE criterion =  9.884e-11   

convergence not achieved 

    The Gauss-Newton stopping criterion has been met but missing standard errors 

indicate some of the parameters are 

    not identified. 

 

Treatment-effects estimation                    Number of obs     =      4,034 

Estimator      : IPW regression adjustment 

Outcome model  : logit 

Treatment model: (multinomial) logit 

-------------------------------------------------------------------------------- 

               |               Robust 

      contract |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

---------------+---------------------------------------------------------------- 

ATET           | 

multitreatment | 

     (1 vs 0)  |  -.1342829   .0316864    -4.24   0.000    -.1963871   -.0721787 
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     (2 vs 0)  |  -.0223395   .0433742    -0.52   0.607    -.1073514    .0626725 

     (3 vs 0)  |  -.1111155   .0695782    -1.60   0.110    -.2474864    .0252553 

---------------+---------------------------------------------------------------- 

POmean         | 

multitreatment | 

            0  |   .8321996   .0149664    55.60   0.000     .8028659    .8615333 

---------------+---------------------------------------------------------------- 

OME0           | 

           age |  -.2721033   .1814601    -1.50   0.134    -.6277586     .083552 

         agesq |   .0059646    .003324     1.79   0.073    -.0005503    .0124795 

          male |  -1.184218   .5403033    -2.19   0.028    -2.243193   -.1252434 

      minority |   .8540586   .4248918     2.01   0.044     .0212859    1.686831 

 secondaryeduc |   1.430745   .2309481     6.20   0.000     .9780949    1.883395 

  tertiaryeduc |   3.207037   .3268682     9.81   0.000     2.566387    3.847687 

        hhsize |  -.0171822   .0621049    -0.28   0.782    -.1389056    .1045412 

     hhsizegen |   .0145005   .0673594     0.22   0.830    -.1175215    .1465225 

       regunmp |  -.0142443    .008678    -1.64   0.101    -.0312529    .0027643 

         _cons |   4.005356   2.369792     1.69   0.091    -.6393508    8.650063 

---------------+---------------------------------------------------------------- 

OME1           | 

           age |   -.816214   .9952297    -0.82   0.412    -2.766828      1.1344 

         agesq |   .0155984   .0184517     0.85   0.398    -.0205664    .0517632 

          male |  -1.065753   1.253671    -0.85   0.395    -3.522903    1.391397 

      minority |   .0286073   1.389039     0.02   0.984    -2.693859    2.751073 

 secondaryeduc |  -.0919015   .5221325    -0.18   0.860    -1.115262    .9314594 

  tertiaryeduc |   2.252352   .6304068     3.57   0.000     1.016777    3.487926 

        hhsize |  -.0617598   .1493416    -0.41   0.679     -.354464    .2309443 

     hhsizegen |   .0710117   .1762196     0.40   0.687    -.2743724    .4163957 

       regunmp |   .0693664   .0203803     3.40   0.001     .0294217    .1093111 

         _cons |   9.117835    13.3014     0.69   0.493    -16.95242    35.18809 

---------------+---------------------------------------------------------------- 

OME2           | 

           age |  -.4008049   .9087165    -0.44   0.659    -2.181857    1.380247 

         agesq |   .0047686    .016508     0.29   0.773    -.0275865    .0371236 

          male |  -.3087912   1.322937    -0.23   0.815    -2.901699    2.284117 

      minority |  -.1051537   .9575459    -0.11   0.913    -1.981909    1.771602 

 secondaryeduc |  -.8943782   .7643829    -1.17   0.242    -2.392541    .6037847 

  tertiaryeduc |   1.607709   .9624972     1.67   0.095    -.2787508    3.494169 

        hhsize |    .099376   .1774577     0.56   0.575    -.2484348    .4471868 

     hhsizegen |  -.1037994   .2139058    -0.49   0.627    -.5230469    .3154482 

       regunmp |  -.0059434   .0273337    -0.22   0.828    -.0595164    .0476295 

         _cons |    8.79672   12.73684     0.69   0.490    -16.16704    33.76048 

---------------+---------------------------------------------------------------- 

OME3           | 

           age |   .3816243   1.083634     0.35   0.725     -1.74226    2.505509 

         agesq |  -.0087275    .018378    -0.47   0.635    -.0447478    .0272927 

          male |  -8.130264   5.777888    -1.41   0.159    -19.45472    3.194188 

      minority |   1.506297    3.44271     0.44   0.662    -5.241289    8.253884 

 secondaryeduc |   1.055591   1.445295     0.73   0.465    -1.777135    3.888318 

  tertiaryeduc |    3.01527   1.597167     1.89   0.059    -.1151199    6.145661 

        hhsize |  -1.245441   .8237584    -1.51   0.131    -2.859978    .3690959 

     hhsizegen |   1.132854   .8469339     1.34   0.181    -.5271064    2.792814 

       regunmp |   .0306643   .0547067     0.56   0.575    -.0765589    .1378875 
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         _cons |   3.152773   15.48246     0.20   0.839    -27.19229    33.49783 

---------------+---------------------------------------------------------------- 

TME1           | 

           age |   1.747354   .2817436     6.20   0.000     1.195147    2.299561 

         agesq |  -.0339454   .0052062    -6.52   0.000    -.0441494   -.0237414 

          male |  -.7344126   .4155233    -1.77   0.077    -1.548823     .079998 

      minority |  -.6291995   .5317115    -1.18   0.237    -1.671335     .412936 

  socialassist |   3.617107   .4685271     7.72   0.000     2.698811    4.535403 

 secondaryeduc |  -.3055899    .282592    -1.08   0.280    -.8594601    .2482803 

  tertiaryeduc |   .8989405   .2824734     3.18   0.001     .3453029    1.452578 

        hhsize |  -.1672484   .0526473    -3.18   0.001    -.2704353   -.0640615 

     hhsizegen |   .0632256   .0621255     1.02   0.309    -.0585382    .1849894 

       regunmp |   .0289595   .0080931     3.58   0.000     .0130973    .0448216 

         _cons |  -24.41935   3.781561    -6.46   0.000    -31.83108   -17.00763 

---------------+---------------------------------------------------------------- 

TME2           | 

           age |   1.457357   .3349016     4.35   0.000     .8009621    2.113752 

         agesq |  -.0286626   .0061042    -4.70   0.000    -.0406265   -.0166987 

          male |  -.7573875   .6619038    -1.14   0.253    -2.054695    .5399201 

      minority |  -.0020738   .5049319    -0.00   0.997    -.9917222    .9875746 

  socialassist |   3.941553   .5473745     7.20   0.000     2.868719    5.014387 

 secondaryeduc |  -.7964917   .3493081    -2.28   0.023    -1.481123   -.1118604 

  tertiaryeduc |    .363226   .3568313     1.02   0.309    -.3361506    1.062603 

        hhsize |  -.2387306   .0812043    -2.94   0.003    -.3978881   -.0795731 

     hhsizegen |   .1033364   .1029335     1.00   0.315    -.0984096    .3050824 

       regunmp |   .0182749   .0124787     1.46   0.143    -.0061829    .0427326 

         _cons |  -20.28296   4.458232    -4.55   0.000    -29.02094   -11.54499 

---------------+---------------------------------------------------------------- 

TME3           | 

           age |   2.372024   .9986721     2.38   0.018     .4146623    4.329385 

         agesq |  -.0442698   .0186045    -2.38   0.017     -.080734   -.0078056 

          male |  -2.079666   .9191793    -2.26   0.024    -3.881224   -.2781076 

      minority |  -.8449368   .9976037    -0.85   0.397    -2.800204    1.110331 

  socialassist |  -13.51197   .4909363   -27.52   0.000    -14.47419   -12.54976 

 secondaryeduc |  -.8778545   .5180509    -1.69   0.090    -1.893216    .1375066 

  tertiaryeduc |  -.0566182   .5325123    -0.11   0.915    -1.100323    .9870868 

        hhsize |  -.3615299   .1230742    -2.94   0.003    -.6027508   -.1203089 

     hhsizegen |    .213772   .1515059     1.41   0.158     -.083174    .5107181 

       regunmp |   -.051403   .0249489    -2.06   0.039    -.1003021    -.002504 

         _cons |  -30.69931   13.28566    -2.31   0.021    -56.73872   -4.659898 

-------------------------------------------------------------------------------- 

Warning: convergence not achieved 

 

 


