
1 

   

 

Older adults sacrifice response speed to preserve multisensory integration performance 1 

Samuel A. Jones1,2, Ulrik Beierholm3, David Meijer1, and Uta Noppeney1 2 

 3 

1Computational Cognitive Neuroimaging Laboratory, Computational Neuroscience and 4 

Cognitive Robotics Centre, University of Birmingham, Birmingham, UK 5 

 6 

2The Staffordshire Centre for Psychological Research, Staffordshire University, UK 7 

 8 

3Department of Psychology, University of Durham, UK 9 

 10 

 11 

 12 

 13 

 14 

Corresponding author: Samuel A. Jones, Computational Cognitive Neuroimaging Laboratory, 15 

Computational Neuroscience and Cognitive Robotics Centre, University of Birmingham, B15 16 

2TT Birmingham, UK, samjones.saj@gmail.com 17 

 18 

Acknowledgements: This research was funded by the European Research Council (ERC-2012-19 

StG_20111109 multsens) and the MRC-ARUK Centre for Musculoskeletal Ageing Research 20 

(CMAR) 21 

 22 

Declarations of interest: none   23 



2 

   

 

Abstract 24 

Ageing has been shown to impact multisensory perception, but the underlying 25 

computational mechanisms are unclear. For effective interactions with the environment, 26 

observers should integrate signals that share a common source, weighted by their reliabilities, 27 

and segregate those from separate sources. Observers are thought to accumulate evidence about 28 

the world’s causal structure over time until a decisional threshold is reached.  29 

Combining psychophysics and Bayesian modelling, we investigated how ageing affects 30 

audiovisual perception of spatial signals. Older and younger adults were comparable in their 31 

final localisation and common-source judgement responses under both speeded and unspeeded 32 

conditions, but were disproportionately slower for audiovisually incongruent trials.  33 

Bayesian modelling showed that ageing did not affect the ability to arbitrate between 34 

integration and segregation under either unspeeded or speeded conditions. However, modelling 35 

the within-trial dynamics of evidence accumulation under speeded conditions revealed that older 36 

observers accumulate noisier auditory representations for longer, set higher decisional 37 

thresholds, and have impaired motor speed. Older observers preserve audiovisual localisation 38 

performance, despite noisier sensory representations, by sacrificing response speed.  39 
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1. Introduction 40 

Throughout life we are continually exposed to a barrage of sensory signals. Our ability 41 

to effectively navigate through and respond to the world requires us to merge information from 42 

multiple sensory modalities into a coherent percept. We may, for example, more easily locate a 43 

predator in thick foliage by combining the sight of its movement with the sound of footsteps.  44 

Accumulating evidence suggests that ageing affects how observers integrate sensory 45 

signals into perceptual decisions. In speeded target detection paradigms older adults show 46 

greater multisensory response facilitation (i.e. redundant target effect; Laurienti et al., 2006; 47 

Mahoney et al., 2011). Further, older participants have been shown to integrate multisensory 48 

stimuli differently in illusionary settings such as the sound-induced flash illusion (DeLoss et al., 49 

2013; McGovern et al., 2014; Setti et al., 2011) and the McGurk-MacDonald effect (Sekiyama 50 

et al., 2014; Setti et al., 2013). Yet, the computational mechanisms underlying these age 51 

differences in multisensory integration remain unclear.  52 

Two key mechanisms need to be distinguished: First, ageing is known to reduce the 53 

reliability of auditory and visual representations (Dobreva et al., 2011; Lindenberger & Baltes, 54 

1994; Otte et al., 2013; Salthouse et al., 1996). Differences in the reliability of sensory 55 

representations may in turn alter the weights that are assigned to the sensory signals during the 56 

integration process, thereby changing the final percept. Further, less reliable sensory 57 

representations will also reduce observers’ ability to determine whether sensory signals come 58 

from a common source and thereby influence how they arbitrate between sensory integration 59 

and segregation. In short, age-related increases in noise in the unisensory representations may 60 

alter the perceptual outcome of multisensory integration, even if the integration processes are 61 

intact. 62 

Second, ageing may genuinely impact how observers arbitrate between sensory 63 

integration and segregation depending on temporal, spatial or higher-order statistical 64 

correspondence cues or how they weight sensory signals in the integration process. As a 65 

consequence, even if unisensory processing were preserved, we would observe differences in 66 

multisensory perception. 67 

In short, both changes in unisensory representations and multisensory integration can 68 
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alter perceptual outcomes in a similar fashion. We thus need to apply models that allow us to 69 

dissociate between those two mechanisms. 70 

In the laboratory, the computational principles of multisensory integration have been 71 

studied extensively in spatial ventriloquist paradigms where observers need to report their 72 

perceived sound (or visual) location when presented with synchronous, yet spatially disparate, 73 

auditory and visual signals. For small spatial disparities, observers’ perceived sound location is 74 

shifted (or biased) towards the location of the visual signal and vice versa depending on the 75 

relative auditory and visual reliabilities—a phenomenon known as the spatial ventriloquist 76 

effect. Yet, for large audiovisual spatial disparities where it is unlikely that signals come from a 77 

common source, audiovisual interactions and crossmodal biases are attenuated. Recent 78 

psychophysics and neuroimaging studies have shown that younger observers arbitrate between 79 

sensory integration and segregation in a way that is consistent with the predictions of 80 

hierarchical Bayesian Causal Inference (BCI; Aller & Noppeney, 2019; Koerding et al., 2007; 81 

Rohe, Ehlis, & Noppeney, 2019; Rohe & Noppeney, 2015a, 2015b; Shams & Beierholm, 2010; 82 

Wozny et al., 2010). Bayesian Causal Inference enables arbitration between sensory integration 83 

and segregation by explicitly modelling the two causal structures (i.e. common or independent 84 

causes) that could have generated the sensory signals. If signals are caused by the same source 85 

they are integrated, weighted in proportion to their relative sensory reliabilities; if they are 86 

caused by different sources they are treated separately. To account for observers’ uncertainty 87 

about the world’s causal structure, a final estimate (e.g. an object’s location) is obtained by 88 

averaging the estimates under the assumptions of common and independent sources weighted by 89 

their respective posterior probabilities, a decision strategy referred to as model averaging (for 90 

other decision functions see Wozny et al., 2010). Spatial ventriloquism, together with Bayesian 91 

Causal Inference, may thus allow us to tease apart whether ageing affects only sensory 92 

reliabilities (i.e. sensory variance) or also observers’ multisensory binding (as quantified by the 93 

model’s causal prior), and to test whether older adults still respond in a way that is consistent 94 

with the predictions of BCI. 95 

However, current models of Bayesian Causal Inference do not account for temporal 96 

constraints imposed by our natural world and the dynamics of observers’ perceptual inference; 97 
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BCI enables predictions only for an observer’s response choices (e.g. spatial localisation) but 98 

not for his or her response times. In our natural environment we often need to trade off accuracy 99 

for speed: a faster, less accurate estimate of the location of a predator may prove far more useful 100 

than a highly accurate but slow one. Indeed, recent studies have shown that putatively 101 

suboptimal multisensory behaviour can be considered optimal when the dynamics of perceptual 102 

decision making, based on both response choices and times, are taken into account 103 

(Drugowitsch et al., 2014). Considering response choices and times together is particularly 104 

relevant for understanding the impact of ageing on multisensory integration, as older adults have 105 

previously been shown to favour accuracy over speed to a greater degree than younger observers 106 

(Smith & Brewer, 1995; Starns and Ratcliff, 2010).  107 

Combining psychophysics and computational modelling, the current study was thus 108 

designed to investigate how ageing impacts the computational parameters governing 109 

multisensory decision making in both unspeeded and speeded contexts (Koerding et al., 2007; 110 

Rohe & Noppeney, 2015a, 2015b; Wozny et al., 2010).  111 

First, in an unspeeded spatial ventriloquist paradigm younger and older observers located 112 

the source of a sound (which implicitly relies on causal inference; see above) or judged whether 113 

the auditory and visual signal originated from the same source (which explicitly requires the 114 

observer to infer the causal structure underlying the audiovisual signals). We assessed how 115 

ageing affects observers’ auditory and visual reliabilities (i.e. sensory noise), spatial prior (i.e. 116 

spatial expectations), and causal prior (i.e. multisensory binding tendency), as key parameters of 117 

the Bayesian Causal Inference model.   118 

Second, in a speeded spatial ventriloquist paradigm observers were presented with 119 

spatially congruent or incongruent audiovisual signals and rapidly discriminated whether the 120 

auditory (or visual) stimulus was presented in their left or right hemifield. We used a modified 121 

version of the Bayesian compatibility bias model (Noppeney, Ostwald, & Werner, 2010; Yu et 122 

al., 2009) to characterise how observers accumulate evidence concurrently about signal location 123 

and audiovisual spatial congruency (i.e. causal structure), and to make predictions jointly for 124 

response choices and times. The age groups were compared in terms of auditory and visual 125 

reliabilities, prior binding tendency, and final response threshold.  126 
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If older observers differ from younger observers only in sensory reliabilities in 127 

unspeeded and speeded contexts, age-related changes in perceptual outcomes are a consequence 128 

of their noiser sensory representations. However, if older observers’ behaviour is inconsistent 129 

with principles of Bayesian Causal Inference or explained by increases or decreases in their 130 

multisensory binding tendencies (as quantified by the causal prior), then ageing genuinely 131 

impacts multisensory interactions.  132 

2. Methods 133 

2.1. Participants 134 

Twenty-three younger adults (eleven male, mean age = 19.5, SD = 1.6, range = 18 – 26 135 

years) and twenty-three older adults (seven male, mean age = 72, SD = 5.2, range = 63 – 80 136 

years) were included in the study. One older adult was excluded before testing was completed as 137 

she was unable to perform unisensory auditory localisation (approximately the same response 138 

was given to all auditory stimuli, regardless of source location). The younger adults were 139 

undergraduate psychology students at the University of Birmingham, and were compensated in 140 

cash or course credits for their time. Older adults were recruited to the study from a database of 141 

local participants maintained by the University of Birmingham’s School of Psychology, and 142 

were compensated in cash. These community-living older adults had a diverse range of 143 

backgrounds; 39% reported education at degree level or above. All participants reported normal 144 

hearing and normal or corrected-to-normal vision, and were screened for basic auditory and 145 

visual localisation ability using a forced left/right discrimination task (see Supplementary S1). 146 

Participants gave informed consent prior to the commencement of testing. The research was 147 

approved by the University of Birmingham Ethical Review Committee. 148 

2.2. Experimental Setup 149 

Participants were seated at a chin rest 130 cm from a sound-transparent projector screen. 150 

Behind the screen, at the vertical centre, a shelf held an array of nine studio monitors (Fostex 151 

PM04n) spaced horizontally by 7° of visual angle, including a speaker in the middle of the 152 

screen. Auditory stimuli were presented via these speakers at approximately 75 dB SPL. The 153 

locations of the speakers were not known to participants. Images were displayed using a BENQ 154 
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MP782ST multimedia projector at a total resolution of 1280 x 800. All stimuli were presented 155 

using The Psychophysics Toolbox 3 (Kleiner, Brainard, & Pelli, 2007) in MATLAB R2010b 156 

running on a Windows 7 PC.  157 

Responses were made using a two-button response pad or optical mouse, and in all cases 158 

this was effectively self-speeded; the next trial would not begin until a valid response was made. 159 

However, for the speeded ventriloquist task it was emphasised to participants that they should 160 

respond as quickly as possible while maintaining accuracy. See Figure 1A for an outline of the 161 

setup. 162 

2.3. Stimuli 163 

Visual stimuli consisted of a 50 ms flash of 15 white (88 cd/m²) dots, each 0.44° of 164 

visual angle in diameter, against a dark grey (4 cd/m²) background. Dot locations were sampled 165 

uniquely for each trial from a bivariate Gaussian distribution, with a constant vertical standard 166 

deviation of 5.4°. The horizontal standard deviation of this dot cloud was varied to manipulate 167 

the reliability of spatial information, with a wider cloud (expressed in degrees of visual angle) 168 

resulting in less reliable stimuli (Rohe & Noppeney, 2015). We define the specific horizontal 169 

standard deviations used for each paradigm below.  170 

The auditory stimulus was a burst of white noise (duration: 50 ms) played from one 171 

speaker in the array in synchrony with the visual stimulus. Sounds were generated individually 172 

for each trial and ramped on/off over 5ms. Across all tasks participants fixated a central cross 173 

(0.22° radius) that was constantly presented throughout the entire experiment. 174 

2.4. Unspeeded audiovisual spatial ventriloquist paradigm 175 

2.4.1. Design and procedure 176 

In a spatial ventriloquist paradigm observers were presented with synchronous auditory 177 

and visual stimuli at variable audiovisual spatial disparities and performed implicit or explicit 178 

causal inference tasks in separate blocks. First, in an auditory selective attention task, observers 179 

reported their perceived sound location. As highlighted in the introduction, spatial localisation 180 

implicitly relies on solving the causal inference problem. Second, they explicitly inferred and 181 

reported the causal structure (i.e. common vs. independent sources) that could have generated 182 
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the audiovisual signals in common source judgements. 183 

Irrespective of task context, on each trial auditory and visual stimuli were independently 184 

sampled from five possible locations (-14°, -7°, 0, 7, or 14°), and could therefore be spatially 185 

congruent or incongruent with varying degrees of disparity (0°, 7°, 14° , 21°, or 28°). Visual 186 

stimuli had three levels of reliability (horizontal SD of 2°, 6° or 16°) (n.b. a fourth level of visual 187 

reliability was excluded from the analysis because the dots were erroneously sampled). The 188 

paradigm thus conformed to a 5 (A locations) x 5 (V locations) x 3 (V reliabilities) factorial 189 

design. 190 

In the sound localisation task participants reported the perceived sound location as 191 

accurately as possible, after a 500 ms post-stimulus delay, by moving a mouse-controlled cursor 192 

(white, subtending 9° in height and 0.5° wide) whose movement was constrained to the 193 

horizontal plane. The next trial was started one second after observers had indicated their 194 

perceived auditory location by clicking the mouse button. Trials were presented randomly in 195 

200-trial blocks. In total, participants completed 600 trials (8 [repetitions] x 5 [A locations] x 5 196 

[V locations] x 3 [V reliabilities)]) of this task. 197 

In the common-source judgement task participants reported whether they perceived the 198 

auditory and visual signals to have originated from the same location. 500ms after the 199 

presentation of the flash and beep, the words “same” and “different” appeared respectively 200 

above and below the fixation cross. Participants indicated with a button press whether the sound 201 

and flash were generated by a common source. Participants again completed 600 trials (8 202 

[repetitions] x 5 [A locations] x 5 [V locations] x 3 [V reliabilities)]) of this task, delivered in 203 

three blocks of 200 trials. 204 

Unisensory auditory or visual localisation blocks were also included to improve 205 

estimation of sensory reliabilities. In unisensory auditory blocks, observers were presented with 206 

sounds randomly at one of the five locations and indicated their perceived sound location with 207 

the mouse cursor, as above. 80 trials of this task (16 per location) were completed in one block. 208 

In unisensory visual blocks, stimuli from the three reliability levels indicated above (horizontal 209 

SD of 2°, 6° or 16°) were presented randomly in one of the five locations and participants 210 

instructed to locate the centre of the dot cloud with the mouse cursor. 120 trials of this task (8 211 
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per location, per reliability level) were completed in one block. 212 

2.4.2. Bayesian Causal Inference model 213 

We use Bayesian Causal Inference (BCI; Aller & Noppeney, 2019; Koerding et al., 214 

2007; Rohe, Ehlis, & Noppeney, 2019; Rohe & Noppeney, 2015a, 2015b; Shams & Beierholm, 215 

2010; Wozny et al., 2010) to investigate how younger and older observers arbitrate between 216 

sensory integration and segregation. In the following we briefly describe the BCI model; for 217 

further details see Koerding et al. (2007). 218 

The BCI generative model assumes that common (C = 1) or independent (C = 2) sources 219 

are determined by sampling from a binomial distribution with the causal prior P(C = 1) = 220 

pcommon. For a common source, the “true” location SAV is drawn from the spatial prior distribution 221 

N(μP, σP). For two independent causes, the “true” auditory (SA) and visual (SV) locations are 222 

drawn independently from this spatial prior distribution. For the spatial prior distribution, we 223 

assumed a central bias (i.e. μP = 0). We introduced sensory noise by drawing xA and xV 224 

independently from normal distributions centered on the true auditory (respectively visual) 225 

locations with parameters σA (respectively σV for each visual reliability level).  226 

Thus, the generative model included the following free parameters: the causal prior 227 

pcommon, the spatial prior standard deviation σP, the auditory standard deviation σA, and visual 228 

standard deviations corresponding to the three visual reliability levels σV1, σV2, and σV3.  229 

During perceptual inference the observer is assumed to invert this generative model. The 230 

probability of the underlying causal structure can be inferred by combining the causal prior with 231 

the sensory evidence according to Bayes’ rule: 232 

(1)     𝑝(𝐶 = 1|𝑥𝐴, 𝑥𝑉) =
𝑝(𝑥𝐴, 𝑥𝑉|𝐶 = 1)𝑝𝑐𝑜𝑚𝑚𝑜𝑛

𝑝(𝑥𝐴, 𝑥𝑉)
 233 

We assumed that subjects report ‘common source’ (i.e. explicit causal inference) when 234 

the posterior probability of a common source is greater than the threshold of 0.5:  235 

(2)     �̂� = {
1 𝑖𝑓 𝑝(𝐶 = 1|𝑥𝐴, 𝑥𝑉) > 0.5

2 𝑖𝑓 𝑝(𝐶 = 1|𝑥𝐴, 𝑥𝑉) ≤ 0.5
 236 

In the case of a common source (C = 1; Figure 1B left), the maximum a posteriori 237 

probability estimate of the auditory location is a reliability-weighted average of the auditory and 238 

visual estimates and the prior.  239 
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(3)     �̂�𝐴,𝐶=1 =

𝑥𝐴

𝜎𝐴
2 +

𝑥𝑉

𝜎𝑉
2 +

𝜇𝑃

𝜎𝑃
2

1
𝜎𝐴

2 +
1

𝜎𝑉
2 +

1
𝜎𝑃

2

 240 

In the case of a separate-source inference (C = 2; Figure 1B right), the estimate of the 241 

auditory signal location is independent from the visual spatial signal. 242 

(4)     �̂�𝐴,𝐶=2 =

𝑥𝐴

𝜎𝐴
2 +

𝜇𝑃

𝜎𝑃
2

1
𝜎𝐴

2 +
1

𝜎𝑃
2

 243 

Given the decisional strategy of model averaging (for other decisional strategies see 244 

Wozny et al., 2010) the observer will compute a final auditory localisation estimate by 245 

averaging the spatial estimates under common and independent source assumptions, weighted in 246 

proportion to their posterior probabilities (i.e. implicit causal inference).  247 

(5)     �̂�𝐴 = 𝑝(𝐶 = 1|𝑥𝐴, 𝑥𝑉)�̂�𝐴𝑉,𝐶=1 + (1 − 𝑝(𝐶 = 1|𝑥𝐴, 𝑥𝑉))�̂�𝐴,𝐶=2 248 

The predicted distributions of the auditory spatial estimates, 𝑝(�̂�𝐴|𝑆𝐴, 𝑆𝑉), and the 249 

common source estimates, 𝑝(�̂�|𝑆𝐴, 𝑆𝑉), were obtained by marginalising over the internal 250 

variables xA and xV. For the unisensory auditory and visual localisation tasks, we used the 251 

predicted distributions 𝑝(�̂�𝐴,𝐶=2|𝑆𝐴) for auditory blocks and 𝑝(�̂�𝑉,𝐶=2|𝑆𝑉) respectively. 252 

These distributions were generated by simulating xA and xV 10000 times for each of the 253 

conditions and inferring �̂�𝐴, �̂�𝐴,𝐶=2, �̂�𝑉,𝐶=2, and �̂� from the equations above. Based on these 254 

predicted distributions (given an additional noise kernel with a fixed σmotor = 1), we computed 255 

the log-likelihood of participants’ auditory localisation and common-source judgement 256 

responses.  257 

We fitted the Bayesian Causal Inference model jointly to observers’ localisation 258 

responses in the audiovisual and the unisensory visual and auditory stimulation conditions. We 259 

modelled the sensory noise and spatial prior parameters separately for unisensory and bisensory 260 

trials, as this was found to fit the data best overall (see Supplementary S5 for a formal 261 

comparison with models that did not separate parameters based on unisensory or audiovisual 262 

context). Therefore, a total of eleven free parameters was fitted for each participant: the causal 263 

prior pcommon, the spatial prior standard deviations σP uni and σP bi, the auditory standard deviations 264 

σA uni and σA bi, and visual standard deviations corresponding to the three visual reliability levels 265 
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σV1 uni, σV2 uni, σV3 uni, σV1 bi, σV2 bi, σV3 bi (indices uni and bi correspond to unisensory and bisensory 266 

trials respectively). Assuming independence of conditions and responses, we summed the log-267 

likelihoods across conditions and across localisation and common-source judgement responses 268 

to obtain a single log-likelihood for each subject. To obtain maximum likelihood estimates for 269 

each subject’s model parameters we used a Bayesian adaptive search algorithm (BADS; Acerbi 270 

& Ma, 2017) with the parameters for initialisation determined by a prior grid search. 271 

The parameters (causal prior, spatial prior[s], and sensory variances) obtained from the 272 

winning model were compared between age groups using separate non-parametric Mann-273 

Whitney U tests. We also calculated Bayes factors using the Bayesian Mann-Whitney test as 274 

implemented in JASP (JASP Team, 2018; van Doorn et al., 2018) using the default Cauchy 275 

prior (scale = 0.707).  276 

2.5. Speeded ventriloquist paradigm 277 

2.5.1. Design and procedure 278 

To assess participants’ audiovisual integration of spatial cues under speeded conditions, 279 

taking into account both final responses and reaction times, we used a simpler 2 (auditory 280 

location: left vs. right) x 2 (visual location: left vs. right) x 2 (relevant and reported sensory 281 

modality: auditory vs. visual) ventriloquist paradigm. On each trial, a visual stimulus with 282 

horizontal SD = 5.4° was displayed simultaneously with a burst of white noise. The centre of the 283 

visual cloud and the white noise were presented at 14° either left or right of a central fixation 284 

cross. These audiovisual stimuli were spatially congruent on half of the trials, and incongruent 285 

on the other half. In an auditory or visual selective attention paradigm, participants indicated 286 

either the location of the sound (respond-auditory task) or the cloud (respond-visual task) as 287 

quickly and accurately as possible via a two-choice key press, while ignoring the other modality. 288 

The task was self-speeded in this way (i.e. no response deadline) as any imposed incentives or 289 

timing criteria may have affected the groups differently; we rely on the compatibility bias model 290 

(Yu et al., 2009; described below) to separate age differences in motor speed and 291 

speed/accuracy trade-off from potential differences in sensory reliability/evidence accumulation. 292 

The tasks were performed in two blocks of 160 trials. The order of these tasks was 293 

counterbalanced between participants. In total the experiment included 320 trials: 40 294 
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(repetitions) x 2 (visual location) x 2 (auditory location) x 2 (reported sensory modality). 295 

2.5.2. Compatibility bias model 296 

To assess age differences in responses to multisensory stimuli under temporal 297 

constraints, we analysed the respond-auditory data by adapting the “compatibility bias” model 298 

to an audiovisual context (Noppeney, Ostwald, & Werner, 2010; Yu et al., 2009). This models 299 

the within-trial dynamics of audiovisual evidence accumulation, leading to predictions for both 300 

response choice and response times.  301 

See Yu et al. (2009) for full details about the compatibility bias model. Briefly, this 302 

generative model assumes that congruent (C = 1) or incongruent (C = 2) sources are determined 303 

by sampling from a binomial distribution with the compatibility or congruency prior P(C = 1) = 304 

pcongruency. The visual SV and auditory SA sources can either be left (–1) or right (+1). For a 305 

congruent trial, the auditory and visual locations are identical, i.e. SA = SV (SA and SV are either 306 

both left or both right). For an incongruent trial, the auditory and visual locations are in opposite 307 

hemifields, i.e. SA = –SV (two possibilities: SA = –1 and SV = 1, or SA = 1 and SV = –1). Hence we 308 

obtain a total of four possible stimulus combinations. We then sample noisy sensory inputs 309 

successively for each time point within a trial by drawing xt = [xA(t) xV(t)] independently from 310 

normal distributions centred on SA (or SV) with parameters σA (or σV respectively). This thereby 311 

models that the brain receives progressively more information about the location of the auditory 312 

and visual sources and thus, indirectly, about whether or not they are congruent (n.b. though in 313 

our experiment auditory and visual inputs are brief, we model evidence accumulation via 314 

feedback loops as a series of sensory inputs). Based on a stream of audiovisual inputs Xt = [x1, 315 

x2, x3 … xt] the observer is then assumed to compute the posterior probability over congruency C 316 

and auditory (or visual) source location iteratively according to Bayes’ rule (initialised with the 317 

prior P(C) = β): 318 

(6)     𝑃(𝑆𝐴, 𝐶|𝑿𝑡) =
𝑝(𝒙𝑡|𝑆𝐴, 𝐶)𝑃(𝑆𝐴, 𝐶|𝑿𝑡−1)

∑ 𝑝(𝒙𝑡|𝑆𝐴
′ , 𝐶′)𝑃(𝑆𝐴

′ , 𝐶′|𝑿𝑡−1)𝐶′𝑆𝐴
′

 319 

A left/right decision is then made when the evolving trajectory of the marginal 320 

(7)     𝑃(𝑆𝐴 = 1|𝑿𝑡) = 𝑃(𝑆𝐴 = 1, 𝐶 = 1|𝑿𝑡) + 𝑃(𝑆𝐴 = 1, 𝐶 = 2|𝑿𝑡) 321 

reaches a threshold q.  322 
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Thus, incongruent visual information should be most influential on perceived auditory 323 

location at the onset of the trial, when the initial compatibility prior dominates, but this 324 

influence decreases as information about the location of each stimulus is accumulated. The 325 

process is terminated when sufficient evidence is accumulated about the location of the auditory 326 

stimulus for a decisional threshold to be reached, after which a left/right spatial response is 327 

made. To accommodate that older adults have slower motor speed than younger adults (as 328 

confirmed by a separate finger tapping task reported in Supplementary S2), we included an 329 

additional non-decision-time parameter tnd to account for motor delays.  330 

The model therefore has five free parameters in total: the compatibility prior (i.e. prior 331 

probability of audiovisual signals coming from a common cause) β; the standard deviations of 332 

the auditory and visual signals, σA and σV respectively; the response threshold q; and a non-333 

decision-time parameter tnd that allows for a variable motor delay between the threshold being 334 

reached and a response being given.  335 

As in the Bayesian Causal Inference model we obtained the predicted distributions of the 336 

auditory spatial estimates, 𝑃(�̂�𝐴|𝑆𝐴, 𝑆𝑉), and response times, 𝑃(𝑅�̂�𝐴|𝑆𝐴, 𝑆𝑉), by marginalising 337 

over the internal variables xA and xV. These distributions were generated by simulating xA and xV 338 

for 300 time steps (of 10 ms length) 10000 times for each of the conditions. For each simulated 339 

trial with a series of 300 xA and xV, we then computed the response time and choice when 340 

𝑃(𝑆𝐴 = −1|𝑿𝑡) first crossed the decisional threshold q using Equations 5 and 6 above. Based 341 

on these predicted response choice and response time distributions, we computed the log-342 

likelihood of participants’ auditory (or visual) localisation responses and the response times 343 

(after adding the non-decision time tnd). Assuming independence of conditions as well as 344 

independence of the log-likelihoods for response times and choices, we summed the log-345 

likelihoods across conditions and across response times and choices for a particular subject. To 346 

obtain maximum likelihood estimates for the model parameters for each subject (β, σA, σV, q, tnd) 347 

we used a Bayesian Adaptive Search optimisation algorithm (BADS; Acerbi & Ma, 2017) with 348 

parameters initialised based on a grid search.  349 

To investigate whether any of the parameters of these two Bayesian models were 350 

significantly different between older and younger adults the fitted parameters were entered into 351 
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separate non-parametric Mann-Whitney U tests. We also calculated Bayes factors using the 352 

Bayesian Mann-Whitney test as implemented in JASP (JASP Team, 2018; van Doorn et al., 353 

2018) using the default Cauchy prior (scale = 0.707). 354 

 355 

 356 

  357 
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 358 

Figure 1. Experimental setup and generative models. (A) Participants were presented with 359 

visual stimuli on a sound-transparent projector screen. Sounds were produced by individual 360 

speakers concealed behind this screen, which were separated by 7° of visual angle. Responses 361 

were given via a mouse or a two-button response pad. (B) Bayesian Causal Inference (BCI) 362 

model, based on Koerding et al. (2007). Auditory (xA) and visual (xV) signals may be generated 363 

by one common (C = 1) audiovisual source (SAV), or by separate (C = 2) auditory (SA) and visual 364 

(SV) sources. (C) Compatibility bias model, adapted from Yu et al. (2009). Left: Auditory (SA) 365 

and visual (SV) sources can either be congruent (C = 1, i.e. in same hemifield) or incongruent (C 366 

= 2, i.e. in opposite hemifields). Right: Across time, the auditory source generates a series of 367 

auditory inputs, and the visual source (not shown) a series of visual inputs, in an independent 368 

and identical fashion.  369 
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3. Results 370 

3.1. Unisensory screening tests and the Montreal Cognitive Assessment 371 

Prior to the main unspeeded and speeded ventriloquist experiments, all observers were 372 

screened for basic auditory and visual localisation ability with a binary left/right forced-choice 373 

spatial classification task. Individuals were characterised in terms of the slope and threshold of 374 

psychometric functions fitted to these responses. Older and younger adults were closely 375 

matched: no significant age differences in threshold or bias were observed for auditory or visual 376 

spatial processing, suggesting that sensory spatial reliability was approximately similar between 377 

age groups. No participants were excluded as a result of poor performance on this task. See 378 

Supplementary S1 for full details. 379 

Older participants were also screened using the Montreal Cognitive Assessment with a 380 

cut-off score of 23 (Coen et al., 2011; Roalf et al., 2013; Luis et al., 2009); none of our older 381 

participants scored below 25.  382 

3.2. Unspeeded ventriloquist paradigm: Localisation and common source judgement 383 

3.2.1. Descriptive and GLM-based analysis 384 

An unspeeded spatial ventriloquist paradigm was used to compare younger and older 385 

adults’ responses to audiovisual spatial stimuli in the absence of temporal constraints. Figure 2 386 

shows participants’ auditory localisation (presented in terms of the magnitude of ventriloquist 387 

effect, VE = [Aresp – Aloc] / [Vloc – Aloc]) and common-source judgement responses (characterised 388 

as the probability of responding “same-source”) as a function of visual reliability level and 389 

audiovisual disparity. As predicted by Bayesian Causal Inference, the ventriloquist effect was 390 

strongest when visual reliability was high and the audiovisual disparity small. The age groups 391 

performed remarkably similarly on both measures, with standard GLM analyses revealing no 392 

significant effects of age on final response choices. However, older observers were significantly 393 

slower than younger adults when localising sounds in the spatial ventriloquist paradigm. 394 

Further, we observed significant age effects on the common-source judgement reaction times 395 

(Figure 2D), including significant interactions between age, visual reliability, and audiovisual 396 

disparity. See Supplementary S3 for full GLM analyses of these results.  397 
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3.2.2. Bayesian modelling 398 

Table 1 summarises the fitted parameters (within-group mean and SD) of the Bayesian 399 

Causal Inference model for younger and older participants. Table 1 also reports the results of the 400 

nonparametric tests comparing the parameters between the older and younger groups together 401 

with the Bayes factors associated with each statistical comparison. We observed small but 402 

significant group differences in auditory and visual variance parameters that were estimated 403 

based on unisensory localisation tasks alone, suggesting that older adults were slightly less 404 

precise when locating both auditory and particularly unreliable visual stimuli. These group 405 

differences were not significant when the sensory variance parameters were estimated based on 406 

responses to audiovisual stimuli, probably because these parameters were less precisely 407 

estimated in this case: in the audiovisual context the visual variance parameter is only estimated 408 

indirectly from auditory responses, and the auditory variance is always estimated in the presence 409 

of interfering visual signals (and so may be influenced by factors other than peripheral sensory 410 

noise).  411 

Crucially, however, no significant group differences were observed for the Pcommon or σP 412 

parameters. This suggests that the two age groups had similar central spatial priors and causal 413 

priors, suggesting that older and younger adults showed similar tendencies to bind audiovisual 414 

signals (in an unspeeded context) consistent with Bayesian Causal Inference.  415 

To verify that these results were not confounded by possible age differences in motor 416 

noise (i.e. noisier mouse localisation responses), we also fitted a version of the model that 417 

allowed the parameter σmotor to vary freely (σmotor was fixed at 1° for all participants in the main 418 

analysis). The pattern of results remained similar, though the group difference in σA uni became 419 

marginally non-significant (p = .052). Further, there were no significant group differences in the 420 

σmotor parameter (p > .05, BF01 = 3.15). See Supplementary S6 for details. 421 

In summary, age did not influence observer’s implicit (auditory localisation) or explicit 422 

(common-source judgement) causal inference in terms of response choices. Our Bayesian 423 

modelling analysis revealed that older adults had slightly noisier auditory and visual 424 

representations when estimated separately for the unisensory conditions. Importantly, though, 425 

the comparable causal prior (and central prior), and similar mean response choices, indicate that 426 
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older observers combined audiovisual spatial signals according to the same computational 427 

principles as younger adults.  428 

Yet, ageing was associated with complex changes in reaction times to multisensory 429 

stimuli. The profile of these age differences suggests that older adults took more time to respond 430 

when the causal structure of the stimuli was more ambiguous and the task therefore more 431 

challenging, such as when the visual stimulus was less reliable and/or the audiovisual disparity 432 

of intermediate size. These response time findings were followed up in a speeded ventriloquist 433 

task, where observers were explicitly instructed to respond as quickly as possible while 434 

maintaining accuracy.  435 

 436 

 437 

  438 
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  Younger  Older  Mann-Whitney U  Bayes factors 

  Mean SD  Mean SD  W p η²  BF10 BF01 

Unisensory             

 σP uni 37.20 35.69  24.79 28.63  299 .305 .02  0.46 2.16 

 σA uni 5.27 1.96  6.79 2.76  155 .026 .11  2.19 0.46 

 σV1 uni  1.76 1.22  2.10 1.06  174 .075 .07  1.10 0.91 

 σV2 uni 2.32 0.76  2.89 1.52  198 .218 .04  0.54 1.84 

 σV3 uni 4.22 1.00  5.38 1.67  132 .005 .17  4.95 0.20 

Bisensory             

 Pcommon 0.42 0.13  0.43 0.13  245 .866 < .01  0.30 3.28 

 σP bi 38.71 25.88  32.20 27.37  303 .264 .03  0.40 2.49 

 σA bi 8.59 4.40  9.37 5.78  234 .677 < .01  0.35 2.84 

 σV1 bi 3.19 4.08  3.08 3.13  241 .796 < .01  0.30 3.31 

 σV2 bi 5.12 4.32  6.07 5.47  204 .274 .03  0.44 2.25 

 σV3 bi 12.79 9.72  20.61 26.13  209 .327 .02  0.48 2.09 

Table 1. Bayesian Causal Inference parameters (across-participants mean, SD) for younger (n = 439 

23) and older (n = 22) participants. Mann-Whitney U tests with Bayes factors comparing the 440 

BCI parameters between older and younger adults. The Bayesian Causal Inference model was 441 

fitted jointly to unisensory and audiovisual conditions allowing for separate parameters for the 442 

standard deviation of the spatial prior (σP,uni , σP,bi) and sensory noise (σA,uni , σA,bi, σV1,uni , σV1,bi, … 443 

σV3,uni , σV3,bi). BF10 quantifies degree of support for the alternative hypothesis that the groups 444 

differ, relative to the null hypothesis; BF01 shows degree of support for the null hypothesis that 445 

there is no difference between groups, relative to the alternative hypothesis. 446 

 447 

 448 

  449 
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 450 

Figure 2. Behavioural responses, reaction times and BCI model predictions for younger and 451 

older adults. (A) Relative ventriloquist effect (VE = [Aresp – Aloc] / [Vloc – Aloc]) for auditory 452 

localisation, shown as a function of audiovisual disparity (x-axis, pooled over direction) and 453 

visual reliability (colour coded). Behavioural data (mean across subjects, solid lines) and the 454 

predictions of the Bayesian Causal Inference model (dashed lines) are shown. (B) Reaction 455 

times in auditory localisation task. (C) Proportion reported “same source” in common-source 456 

judgement task, as a function of audiovisual disparity and visual reliability. The panels show the 457 

Gaussians fitted to the behavioural response (mean across subjects, solid lines) and the 458 

predictions of the Bayesian Causal Inference model (dashed lines). (D) Reaction times (pooled 459 

over response; mean across subjects) in common-source judgement task. Error bars show ±1 460 

SEM.  461 
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3.3. Speeded ventriloquist paradigm 462 

3.3.1. Descriptive and GLM-based analysis 463 

A simplified, speeded ventriloquist paradigm was used to assess younger and older 464 

adults’ responses to audiovisual spatial stimuli under speed instructions. Figure 3 summarises 465 

response accuracy (panel B) and speed (panel C) for younger and older adults; trials are pooled 466 

over left and right to characterise them in terms of spatial (in)congruence. Standard GLM 467 

analysis of these results shows that older adults were significantly more accurate than younger 468 

adults in the respond-visual task. Older adults were also significantly slower overall and, 469 

importantly, age interacted with congruence in the respond-auditory tasks (see Section 3.2). 470 

Mirroring the profile of the unspeeded common-source judgement responses, older adults again 471 

took disproportionately longer to respond under the most challenging conditions where they 472 

located the auditory signal in the presence of an incongruent visual distractor. See 473 

Supplementary S4 for full GLM analysis. 474 

3.3.2. Compatibility bias model 475 

The compatibility bias model was fitted to participants’ auditory spatial responses and 476 

reaction times. This allowed us to characterise how younger and older observers accumulate 477 

audiovisual evidence about spatial location and audiovisual congruency until a decisional 478 

threshold is reached and a response given. Fitted parameters were compared using separate 479 

Mann-Whitney U tests and the Bayesian version of the Mann-Whitney test (JASP Team, 2018; 480 

van Doorn et al., 2018). See Table 2 for a summary of results.  481 

Corroborating the findings of the BCI model, the age groups did not differ in their prior 482 

tendency to integrate multisensory stimuli, quantified in this case by the compatibility prior β. 483 

However, similar to the results from unspeeded localisation, the auditory signal (σauditory) was 484 

significantly noisier in older than younger adults, leading to a slower accumulation of evidence 485 

and thus (in combination with the motor slowing and higher decision threshold, see below) 486 

slower response times. This indicates that it takes older participants longer than their younger 487 

counterparts to reach any given level of evidence about the location of an auditory stimulus. The 488 

groups did not differ in the variance of the visual input σvisual. However, the remaining two 489 

parameters were also significantly different between the groups. First the non-decision time tnd, 490 
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which captures the time between a decision is made and the response given, was significantly 491 

higher for the older age group. This is unsurprising; our older adults’ impaired motor speed is 492 

confirmed by a separate finger-tapping task reported in Supplementary S2. Second, older adults 493 

also set their decision threshold q significantly higher, requiring more evidence before deciding 494 

on a response. See Figure 3A for an illustration of the model. Taken as a whole, our Bayesian 495 

modelling analysis confirms that older adults show a similar multisensory binding tendency and 496 

combine signals to the same computational principles as younger adults. However, older adults 497 

have noisier unisensory auditory spatial representations. As a result of i. those noisier auditory 498 

spatial representations, ii. a different speed-accuracy trade off (i.e. decision threshold q) and iii. 499 

slower motor speed (i.e. non-decision time tnd) they have slower response times. 500 

 501 

 Younger  Older  Mann-Whitney U  Bayes factors 

 Mean SD  Mean SD  W p η²  BF10 BF01 

σA 1.53 0.54  2.93 4.01  164 .044 .09  3.11 0.32 

σV 1.85 3.50  0.87 0.97  283 .507 .01  0.44 2.27 

β 0.75 0.12  0.78 0.13  192 .169 .04  0.56 1.79 

q 0.93 0.05  0.95 0.07  141 .010 .14  2.68 0.37 

tnd 0.22 0.05  0.33 0.07  54 < .001 .45  5101.52 < 0.01 

Table 2. Compatibility bias parameters (across-participants mean, SD) for younger (n = 23) and 502 

older (n = 22) participants. Mann-Whitney U tests with Bayes factors comparing the 503 

compatibility bias parameters between older and younger adults: standard deviation of the 504 

auditory signal σA, standard deviation of the visual signal σV, compatibility prior β, response 505 

threshold q, and non-decision-time tnd. BF10 quantifies degree of support for the alternative 506 

hypothesis that the groups differ, relative to the null hypothesis; BF01 shows degree of support 507 

for the null hypothesis that there is no difference between groups, relative to the alternative 508 

hypothesis. 509 

  510 
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 511 

 512 

Figure 3. Speeded left/right ventriloquist paradigm and compatibility bias model. (A) 513 

Accumulation of evidence traces for the compatibility bias model: for ‘respond auditory’ trials 514 

the observer is thought to accumulate audiovisual evidence about whether the auditory source is 515 

left = -1 or right = 1 within a trial until a decisional threshold is reached and a response elicited. 516 

Solid lines show the posterior probability 𝑃(𝑆𝐴 = 1|𝑿𝑡) as a function of within-trial time with 517 

auditory and visual inputs arriving every 10 ms. Each trace represents the mean across ten 518 

(incongruent, auditory right) simulated trials for a representative participant in each group, using 519 

these participant’s maximum likelihood parameters. Dashed lines indicate the participants’ fitted 520 

decisional thresholds. Older observers accumulate noisier evidence until a higher decisional 521 

threshold is reached. (B and C) Response accuracy and reaction times (across-participants mean 522 

± 1 SEM) for respond-auditory and respond-visual tasks, separated by spatial congruence (i.e. 523 

pooled over left and right). 524 

 525 

526 
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4. Discussion 527 

This study investigated the effects of ageing on audiovisual integration for spatial 528 

localisation under both speeded and unspeeded conditions. Our results demonstrate that ageing 529 

does not fundamentally impact how observers integrate auditory and visual spatial signals into 530 

representations of space: older adults showed the same audiovisual binding tendency as the 531 

younger age group, and their behaviour conformed similarly to the predictions of the Bayesian 532 

models. However, older adults showed noisier sensory, in particular auditory, representations. 533 

Moreover, they used a higher decisional threshold, trading off speed for accuracy. This suggests 534 

that older observers preserve audiovisual localisation performance, despite noisier sensory 535 

representations, by sacrificing response speed.  536 

These results may initially seem surprising in light of accumulating research showing 537 

that ageing alters multisensory integration. For example, older adults have been shown to be 538 

more susceptible to the sound-induced flash illusion (DeLoss et al., 2013; McGovern et al., 539 

2014; Setti et al., 2011) and to respond differently to McGurk-MacDonald stimuli (Sekiyama et 540 

al., 2014; Setti et al., 2013). It is possible, however, for such effects to occur in the absence of 541 

age differences in the actual computational processes underlying multisensory perception. Any 542 

change that leads to an increase in sensory variances may make the arbitration between common 543 

and separate sources more challenging, and/or change the relative weighting of the sensory 544 

modalities in the final percept. Potentially, susceptibility to the sound-induced flash illusion is 545 

changed with age because it relies on precise representations of stimulus timing that have been 546 

shown to be impaired by ageing (Chan et al., 2014; Mazelová et al., 2003). Ng and Recanzone 547 

(2017) provide a possible mechanism for this decline: a study of neural responses to simple 548 

stimuli in macaque primary auditory cortex found that aged monkeys showed firing patterns that 549 

were noisier (i.e. less temporally precise) and less selective than those seen in younger animals. 550 

Age-related differences in perception of McGurk-MacDonald stimuli may also be due in part to 551 

impaired temporal perception, as the fine temporal structure of speech signals is an important 552 

cue for comprehension (especially in the context of competing noise; Moore, 2008). In this case 553 

the effect is likely to be further compounded by reductions in speech comprehension, resulting 554 

from presbycusis that particularly affects higher sound frequencies (Pichora-Fuller & Souza, 555 
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2003). These mechanisms are notably unisensory, and do not imply any change in the 556 

computational process of multisensory integration itself. 557 

The argument that older adults’ changed multisensory perception results primarily from 558 

differences in unisensory variances, and not from alterations in the computational mechanisms 559 

per se, can also explain why we did not find significant age differences in the final responses to 560 

our multisensory tasks: our unisensory results, and those of others (Dobreva et al., 2011; Otte et 561 

al., 2013), demonstrate only limited age differences in localisation ability. Based on screening 562 

tests involving binary left/right judgements, younger and older adults were similar in their 563 

ability to locate unisensory auditory and visual stimuli. The sensory variance parameters of a 564 

Bayesian Causal Inference model fitted to multisensory localisation and common-source 565 

judgement responses also did not differ between age groups. However, the same parameters 566 

fitted using the more sensitive unisensory free-localisation responses did reveal small but 567 

significant age differences in sensory variances, suggesting that older adults were less reliable in 568 

their localisation of both auditory and (low-reliability) visual stimuli.  569 

Existing literature is similarly ambiguous about age-related declines in (especially) 570 

auditory localisation. Dobreva et al. (2011) report limited but significant age differences in 571 

observers’ ability to freely localise transient broadband stimuli along the azimuth, while Otte et 572 

al. (2013) found no such effects. It therefore seems that the effects of normal, healthy ageing on 573 

auditory localisation ability may be subtle and difficult to detect.  574 

In terms of visual localisation, we note that our older adults are likely to have had 575 

impaired accommodation responses compared to the younger age group (Glasser & Campbell, 576 

1997). Depending on the corrective lenses worn (participants were instructed to wear their 577 

normal spectacles for testing), this may have led to the older group expending more effort to 578 

keep the visual stimuli in focus and/or the stimuli appearing less focused. The small but 579 

significant age differences we observed in unisensory visual localisation may be, in part, a 580 

reflection of this reduced accommodation ability.  581 

In light of these limited age differences in audiovisual localisation performance, it would 582 

be interesting for future research to apply computational modelling to multisensory contexts 583 

where strong age differences have been shown previously. The sound-induced flash illusion is a 584 
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strong candidate for this, as older adults are known to be significantly more susceptible (DeLoss 585 

et al., 2013; McGovern et al., 2014; Setti et al., 2011) and young observers’ perception of the 586 

illusion has previously been successfully modelled using a BCI framework (Shams et al., 2005). 587 

Fitting the BCI model to younger and older observers’ responses would allow us to distinguish 588 

whether age differences in perception of the sound-induced flash illusion result from changes in 589 

unisensory variances (i.e. noise) or in observers’ multisensory binding itself.  590 

Our discussion of age differences in multisensory integration has thus far addressed only 591 

final response choices, ignoring reaction times, but our natural environment does not afford us 592 

infinite time to react to multisensory stimuli. When we define and evaluate multisensory 593 

integration performance, it is therefore also important to consider the time taken to respond. In 594 

fact, GLM-based analyses of common-source judgement reaction times suggested that older 595 

adults took disproportionately longer to respond to audiovisual signals at intermediate levels of 596 

spatial disparity, where the underlying causal structure (i.e. common vs. independent sources) 597 

was less certain. Such findings imply the presence of differences in the groups’ evidence 598 

accumulation and decision-making process, and/or in their speed/accuracy criteria, even in an 599 

unspeeded context.  600 

We thus applied a simplified, speeded ventriloquist paradigm to directly address the 601 

question of age differences in response times to multisensory spatial stimuli. GLM analyses 602 

again showed that older adults were disproportionately slower in the most challenging 603 

condition, in this case locating a sound in the presence of an incongruent visual distractor. To 604 

characterise the computational processes underlying these differences, it is necessary to move 605 

beyond the static BCI model to a dynamical approach that can make predictions jointly about 606 

observers’ spatial choices and response times. We thus applied the compatibility bias model 607 

(Noppeney, Ostwald, & Werner, 2010; Yu et al., 2009) to participants’ auditory judgement 608 

responses in this paradigm.   609 

This model assumes that the observer accumulates auditory and visual evidence about 610 

the location of the reported stimulus, and about the causal structure of the signals, until a 611 

decisional threshold is reached and a response given. It thereby provides an important 612 

perspective on the dynamics of decision making within a trial. Again in this case, the 613 
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fundamental computations were not affected by healthy ageing. Likewise, older adults’ prior 614 

binding tendency was not significantly different from the younger group. However, the 615 

compatibility bias model also revealed that older adults responded more slowly than younger 616 

adults for three reasons. First, older adults have impaired motor speed, as indexed by the non-617 

decision time variable (and confirmed by a supplementary finger-tapping task; see 618 

Supplementary S2). Second, they use a higher response threshold, requiring a greater degree of 619 

certainty before a response is given. This is consistent with previous studies of age differences 620 

in speed/accuracy trade-off (Smith & Brewer, 1995; Starns and Ratcliff, 2010). Third, the 621 

compatibility bias model analysis suggests that the auditory representations are less reliable (i.e. 622 

greater auditory variance) in older participants, such that evidence accumulates more slowly (see 623 

Figure 3). In other words, the initial auditory representation may be noisier and less reliable for 624 

older adults, but older observers can achieve equal performance levels (in terms of final 625 

response choices) to younger participants by accumulating this noisy evidence for longer via 626 

internal feedback loops. 627 

It is important to note that the Bayesian causal inference model, and other approaches 628 

that consider only the observer’s final response, may be less sensitive to these age-related 629 

changes in internal sensory noise (though the unisensory localisation data do provide some 630 

evidence of small reliability differences). This illustrates how dynamical models that 631 

accommodate both reaction times and final response choices can provide critical new insights 632 

into evidence accumulation and perceptual decision making. 633 

In conclusion, our results demonstrate that multisensory causal inference is preserved in 634 

older adults. However, older observers only maintain this performance by accumulating noisier 635 

auditory information over a longer period of time. When combined with well-established 636 

changes in motor speed and speed/accuracy trade-off, this leads to significant and nonlinear age 637 

differences in reaction times to complex multisensory stimuli during spatial localisation.  638 
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Supplementary Methods and Results 743 

 S1. Unisensory L/R discrimination 744 

We administered simple left/right forced-choice tasks to compare age groups on basic 745 

unisensory spatial discrimination ability, and to ensure all participants were able to locate 746 

auditory and visual stimuli in space sufficiently well for inclusion in the study. We chose these 747 

measures as more directly relevant than, for example, pure tone hearing thresholds (older 748 

participants are likely to have some impairment at higher frequencies, but this may not result in 749 

any substantial decrease in auditory localisation ability).  750 

Participants’ spatial hearing performance (i.e. bias and reliability/variance of auditory 751 

spatial representations) was measured using a forced left/right spatial discrimination task. 752 

Individual bursts of white noise were emitted from one of seven locations (-21°, -14°, -7°, 0°, 753 

7°, 14°, or 21°) in a random order. Participants indicated as accurately as possible via key press 754 

whether the sound originated from the left or right half of the screen. This task involved one 755 

block of 210 trials (30 per location). 756 

Visual spatial perception (i.e. bias and variance/reliability of visual spatial 757 

representations) was measured using a similar left/right spatial discrimination task. Visual 758 

stimuli with horizontal SD = 2° or 25° were randomly presented centred at one of seven 759 

locations (-21°, -14°, -7°, 0°, 7°, 14°, or 21°); participants indicated whether the centre of the dot 760 

cloud originated from the left or right side of the screen. This task involved two blocks of 210 761 

trials each (total 30 trials per condition). 762 

For each participant and stimulus type, we used the Palamedes toolbox for MATLAB 763 

(Prins & Kingdom, 2009) to calculate the slope α and threshold β of cumulative Gaussians fitted 764 

to the proportion of “perceived right” responses as a function of true stimulus location. These 765 

parameters were allowed to vary freely, while the lapse parameters γ and λ were constrained to 766 

be the same and to fall between 0 and 0.05 (Wichmann & Hill, 2001).  767 

Older and younger adults were closely matched on these tasks. For auditory spatial 768 

discrimination, an independent-samples t-test revealed no significant effect of age on slope or 769 

threshold values, p > .05.  770 

For visual discrimination, a 2 (age) x 2 (reliability) mixed ANOVA of slope values 771 
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revealed a strong main effect of spatial reliability as expected, F(1,43) = 20.186, p < .001, η² = 772 

.32, but no main effect of age or age x reliability interaction. A similar mixed ANOVA of 773 

threshold values revealed no significant main effects of age or reliability, nor any interaction, p 774 

> .05.  775 

No participants were excluded based on their performance in this task. The lowest-776 

performing participant had a fitted slope (accuracy) parameter of 0.10 in the auditory task, 777 

which still represents performance well above chance for sounds presented 7° left or right of 778 

centre. Auditory threshold (i.e. left/right bias) values were all within 7° (i.e. speaker separation 779 

distance) of centre. Similarly, the poorest high reliability visual slope was 0.22, with the most 780 

extreme threshold value only 2.52° from centre.  781 

S2. Motor speed 782 

We used a finger tapping task to compare the age groups in terms of basic motor speed, 783 

and to screen participants for significant motor impairment that may affect their ability to 784 

respond to the tasks. Participants were instructed to ball their hand into a fist, extending their 785 

index finger, and to repeatedly tap a key as quickly as possible for 20 seconds. An on-screen 786 

progress bar and countdown provided feedback on performance and time remaining. The task 787 

was repeated four times (twice per hand, not including a preceding 10-second practice with each 788 

hand). 789 

We analysed the data in terms of the median time between finger taps in seconds (pooled 790 

across hands). A two-sample Welch’s t-test confirmed that younger participants (M = 0.175, SD 791 

= 0.014) were significantly faster than their older counterparts (M = 0.189, SD = 0.024), t(43) = 792 

2.459, p = .018, d = 0.73. No participants were excluded based on their performance here, as the 793 

slowest responders were within two standard deviations of their respective group means (a 794 

conservative threshold). 795 

S3. GLM analysis of unspeeded ventriloquist paradigm 796 

As well as fitting the Bayesian Causal Inference model, we also performed classical 797 

GLM-based analyses on final responses and response times in the unspeeded ventriloquist 798 

paradigm. The results are summarised in Figure 2 of the main manuscript.  799 
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For auditory localisation responses, the magnitude of the ventriloquist effect was 800 

calculated as 𝑉𝐸 =  (𝐴𝑟𝑒𝑠𝑝 − 𝐴𝑙𝑜𝑐) (𝑉𝑙𝑜𝑐 − 𝐴𝑙𝑜𝑐)⁄  and the mean for each condition was 801 

entered into a 2 (age) x 4 (disparity [pooled over direction]) x 3 (visual reliability) mixed 802 

ANOVA. This revealed significant main effects of disparity, F(3, 129) = 85.31, p < .001, η² = 803 

.67, reliability, F(2, 86) = 49.02, p < .001, η² = .53, and a disparity*reliability interaction, F(6, 804 

258) = 30.00, p < .001, η² = .41. However, no main effect of, or interaction with, age was 805 

apparent, p > .05. See Figure 2A of the main manuscript. 806 

For common-source judgement responses, we fitted three-parameter Gaussians (peak, 807 

mean, standard deviation) to the probability of perceiving a common source as a function of 808 

(signed) audiovisual disparity (𝐴𝑙𝑜𝑐 − 𝑉𝑙𝑜𝑐) and compared these parameters separately in 2 809 

(age) x 3 (visual reliability) mixed ANOVAs. The peak of the Gaussian varied with visual 810 

reliability level, F(2, 84) = 49.24, p < .001, η² = .54. The mean and width parameters were not 811 

significantly affected by visual reliability, and no main effect of (or interaction with) age was 812 

apparent for any of the parameters, p > .05. See Figure 2C of the main manuscript. 813 

Median response times to the auditory localisation task were analysed in a 2 (age) x 4 814 

(disparity [pooled over direction]) x 3 (visual reliability) mixed ANOVA. Aside from a main 815 

effect of age, F(1, 43) = 9.77, p = .003, η² = .19, response times did not differ significantly 816 

between conditions, p > .05. This is unsurprising, as mouse movements are far more variable 817 

(and take much longer) than button presses, so any small effects of condition are likely to be 818 

lost. See Figure 2B of the main manuscript. 819 

Median response times to the common-source judgement task were analysed using a 2 820 

(age) x 9 (signed disparity) x 3 (visual reliability) mixed ANOVA. A main effect of age 821 

confirmed that older adults were slower overall, F(1, 43) = 44.19, p < .001, η² = .51. 822 

Furthermore, age interacted significantly with visual reliability, F(2, 86) = 4.92, p = .009, η² = 823 

.09, and audiovisual disparity, F(8, 344) = 3.07, p = .002, η² = .06, and the three-way interaction 824 

was also significant, F(16, 688) = 2.63, p < .001, η² = .05. Main effects of reliability, F(2, 86) = 825 

9.41, p < .001, η² = .16, and disparity, F(8, 344) = 8.05, p < .001, η² = .15, were also apparent, as 826 

was the interaction between these, F(16, 688) = 3.55, p < .001, η² = .05. See Figure 2C of the 827 

main manuscript. 828 
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S4. GLM analysis of speeded ventriloquist paradigm 829 

We performed GLM-based analyses on response times and choices to supplement the 830 

compatibility bias model in the speeded ventriloquist task. For these analyses, trials were pooled 831 

over left and right locations and hence characterised as spatially congruent or incongruent. 832 

Accuracy was quantified as the proportion of correct localisation responses per condition; reaction 833 

times were per-condition medians within each participant. We performed four separate 2 (age) x 834 

2 (congruence) mixed ANOVAs, analysing accuracy and reaction times for both the respond-835 

auditory and respond-visual tasks. These results are summarised in panels B and C of Figure 3 of 836 

the main manuscript. 837 

A mixed ANOVA of response accuracies in the respond-auditory task revealed a main 838 

effect of congruence, F(1, 43) = 26.46, p < .001, η² = .38 (congruent > incongruent), but no 839 

main effect of age or interaction, p > .05. Conversely, in the respond-visual task a main effect of 840 

age showed that older adults were significantly more accurate, F(1, 43) = 7.28, p = .010, η² = 841 

.15, possibly due to their higher response threshold (as revealed by the compatibility bias 842 

model); a main effect of congruence was also present, F(1, 43) = 5.01, p = .030, η² = .10 843 

(congruent > incongruent), but age and congruence did not significantly interact, p > .05.  844 

A mixed ANOVA of response times to the respond-auditory task showed, through a 845 

main effect of age, that older adults were significantly slower overall, F(1, 43) = 45.01, p < .001, 846 

η² = .51. A main effect of congruence was also present, F(1, 43) = 60.57, p < .001, η² = .51 847 

(congruent < incongruent). Importantly, these factors also interacted, F(1, 43) = 15.60, p < .001, 848 

η² = .13, corroborating the finding from the unspeeded paradigm that older adults were 849 

disproportionately slower when the task was more challenging (i.e. locating a sound in the 850 

presence of an incongruent visual distractor). Main effects of age, F(1, 43) = 38.52, p < .001, η² 851 

= .47, and congruence, F(1, 43) = 38.89, p < .001, η² = .48, on response times were also revealed 852 

for the respond-visual task, but these did not significantly interact, p > .05. See Figure 3B and 853 

3C for a summary. 854 

S5. BCI model selection 855 

In Section 2.4.2 of the main text we describe a Bayesian Causal Inference model with 856 

eleven free parameters, which fitted separate sensory noise and spatial prior parameters 857 
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depending on the trial type (observers were presented with auditory, visual, and audiovisual 858 

signals in separate blocks). However, it is also possible that sensory variances are shared across 859 

unisensory and audiovisual blocks, rather than independent. In such a case, the visual and 860 

auditory variances would depend only on the external sensory signals and noise imposed by 861 

peripheral sensory processing (irrespective of context and task), and the estimation of the 862 

auditory and visual variances jointly from all data would provide more precise parameter 863 

estimates. If sensory variances are not shared across unisensory and audiovisual blocks, treating 864 

them as though they are would lead to biased estimation. Likewise, the spatial priors may, or 865 

may not, depend on stimulus blocks/task context. To formally address these questions we 866 

compared the following three models, which differed in whether the sensory variances and 867 

spatial prior were allowed to vary across task context. 868 

Model A (i.e. the standard Bayesian inference model with 6 parameters) assumed that 869 

sensory variances and priors were equal for unisensory and bisensory blocks. This model thus 870 

included six parameters: pcommon, σP, σA, σV1, σV2, σV3.  871 

Model B constrained the spatial prior to be equal for unisensory and audiovisual blocks, 872 

but allowed the sensory variances to differ between unisensory and audiovisual contexts, 873 

yielding ten parameters: pcommon, σP, σA uni, σV1 uni, σV2 uni, σV3 uni, σA bi, σV1 bi, σV2 bi, σV3 bi (with the 874 

indices uni and bi referring to unisensory and bisensory blocks respectively). 875 

Model C allowed the sensory variances and spatial prior variances to differ between 876 

unisensory and audiovisual contexts. Hence, this model included 11 parameters: pcommon, σP uni, 877 

σA uni, σV1 uni, σV2 uni, σV3 uni, σP bi, σA bi, σV1 bi, σV2 bi, σV3 bi.  878 

We arbitrated between these three models using the Bayesian information criterion 879 

(BIC) as an approximation to the model evidence. We performed Bayesian model comparison 880 

(Rigoux et al., 2014) at the group (random effects) level as implemented in SPM12 (Stephan et 881 

al., 2009; Friston et al., 1994), pooled across age groups, to obtain the protected exceedance 882 

probability (the probability that a given model is more likely than any other model, beyond 883 

differences due to chance) for the candidate models. 884 

Model C, that fitted sensory variance and spatial prior parameters separately for 885 

unisensory and bisensory contexts, outperformed the others at the group level with a protected 886 
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exceedance probability of 0.58 (compared with values of 0.18 for Model A and 0.24 for Model 887 

B). This suggests that the task and stimulus context influenced the estimates of sensory 888 

variances and spatial priors to some degree. We therefore report, and compare between groups, 889 

the parameters obtained from Model C. 890 

S6. BCI analysis including motor noise 891 

To account for the possibility of age differences in ability to use a mouse, we fitted a 892 

version of our winning BCI model that included σmotor as an extra free parameter. A summary of 893 

the results is given below. It basically replicates the main findings from our main analysis and 894 

reveals no significant differences between age groups for motor noise. 895 

 896 
  Younger  Older  Mann-Whitney U  Bayes factors 

  Mean SD  Mean SD  W p η²  BF10 BF01 

Unisensory             

 σP uni 37.45 33.66  28.61 32.19  297 .327 .02  0.41 2.43 

 σA uni 4.66 1.75  6.17 2.82  167 .052 .09  1.90 0.53 

 σV1 uni 0.69 0.71  1.19 1.40  226 .551 .01  0.74 1.35 

 σV2 uni 1.21 0.97  1.71 1.62  230 .613 .01  0.56 1.79 

 σV3 uni 3.45 1.27  4.56 2.34  137 .008 .15  1.40 0.71 

Bisensory             

 Pcommon 0.42 0.16  0.45 0.12  230 .613 .01  0.36 2.78 

 σP bi 41.07 27.89  30.77 26.81  304 .254 .03  0.56 1.79 

 σA bi 8.04 4.45  8.39 4.89  233 .661 .01  0.30 3.33 

 σV1 bi 2.06 2.07  3.43 5.61  243 .831 < .01  0.48 2.08 

 σV2 bi 4.48 3.13  5.30 5.06  229 .597 .01  0.35 2.86 

 σV3 bi 13.93 18.11  18.91 24.70  223 .507 .01  0.38 2.63 

 σmotor 2.13 1.41  1.97 1.12  264 0.813 < .01  0.32 3.15 

Table S1. Bayesian Causal Inference parameters (across-participants mean, SD) for younger (n 897 

= 23) and older (n = 22) participants, including fitted motor kernel. Mann-Whitney U tests with 898 

Bayes factors comparing the BCI parameters between older and younger adults. The Bayesian 899 

Causal Inference model was fitted jointly to unisensory and audiovisual conditions allowing for 900 

separate parameters for the standard deviation of the spatial prior (σP,uni , σP,bi) and sensory noise 901 

(σA,uni , σA,bi, σV1 uni , σV1 bi …). The standard deviation of motor response σmotor was constrained to 902 

be the same for unisensory and multisensory localisation responses. BF10 quantifies degree of 903 

support for the alternative hypothesis that the groups differ, relative to the null hypothesis; BF01 904 
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shows degree of support for the null hypothesis that there is no difference between groups, 905 

relative to the alternative hypothesis. 906 

  907 
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