
Sampling-Based Reactive Motion Planning with

Temporal Logic Constraints and Imperfect State

Information

Felipe J. Montana1(�), Jun Liu2, and Tony J. Dodd1

1 Department of Automatic Control and Systems Engineering, University of Sheffield,

Sheffield, UK

{fjmontanagonzalez1,t.j.dodd}@sheffield.ac.uk
2 Department of Applied Mathematics, University of Waterloo, Waterloo, Canada

j.liu@uwaterloo.ca

Abstract. This paper presents a method that allows mobile systems with uncer-

tainty in motion and sensing to react to unknown environments while high-level

specifications are satisfied. Although previous works have addressed the prob-

lem of synthesising controllers under uncertainty constraints and temporal logic

specifications, reaction to dynamic environments has not been considered under

this scenario. The method uses feedback-based information roadmaps (FIRMs)

to break the curse of history associated with partially observable systems. A tran-

sition system is incrementally constructed based on the idea of FIRMs by adding

nodes on the belief space. Then, a policy is found in the product Markov decision

process created between the transition system and a Rabin automaton represent-

ing a linear temporal logic formula. The proposed solution allows the system to

react to previously unknown elements in the environment. To achieve fast reac-

tion time, a FIRM considering the probability of violating the specification in

each transition is used to drive the system towards local targets or to avoid obsta-

cles. The method is demonstrated with an illustrative example.

1 Introduction

Efficient motion planning with imperfect state information is a desirable ability of sys-

tems operating in uncertain and dynamic environments. In these cases the system can-

not decide the best actions based on a single deterministic state. Instead, a probability

distribution over all possible states, called belief, is considered. This problem can be

mathematically modelled as a partially observable Markov decision process (POMDP).

Although several methods have adapted discrete POMDPs to motion planning, they

have, in general, poor scalability with the number of states. This is caused by two main

sources of complexity: (i) the so-called curse of dimensionality, for a system with n

states, the belief space is an (n− 1)-dimensional continuous space; and (ii) the curse

of history [16], the number of distinct action-observation histories grows exponentially

Felipe J. Montana is supported by the Mexican National Council of Science and Technology

(CONACyT). Jun Liu is supported in part by the Natural Sciences and Engineering Research

Council (NSERC) of Canada and the Canada Research Chairs (CRC) program.

with the planning horizon. To alleviate this problem, sampling-based methods have

been proposed, e.g., [1, 5, 17]. In these works, the objective is usually to optimally drive

the system from an initial to a final state. Nevertheless, more complex objectives are re-

quired in some applications. This necessity has motivated the use of formal methods to

automatically synthesise controllers for mobile systems such that high-level specifica-

tions are satisfied. Due to well-developed techniques in model checking using temporal

logic, these specifications are commonly defined by linear temporal logic (LTL) formu-

lae for robotic applications.

Using model checking techniques, several methods have been developed to solve

the problem of control synthesis for stochastic systems with perfect state information,

e.g., [9, 15]. However, only few solutions have been presented for stochastic systems

with partially observable states. Wongpiromsarn et al. [21] propose a method to com-

pute policies that maximise the probability of satisfying an LTL specification for par-

tially known environments. They assume that the environment can be in one of several

modes, which are modelled as Markov chains. Although the system does not know

exactly which is the current mode of the environment at each time, all the possible

environment models are known by the system. This is a limitation since in many appli-

cations these models are not available. The policies are computed using a parallel com-

position between an MDP modelling the system and the set of Markov chains. Vasile et

al. [20] propose a specification language, called Gaussian Distribution Temporal Logic

(GDTL), that permits including noise mitigation in the specification. The work uses the

idea of information feedback roadmaps to break the curse of history.

In contrast to the solution proposed in this paper, the approaches above do not con-

sider dynamic environments. To deal with changing environments, reactive controllers

have been proposed. Fu et al. [8] solve a two-player partially observable game with an

adversarial environment, where the actions of the environment cannot be seen by the

system. Although the system has incomplete information about the environment, the

solution is computed based on a strategy using complete information. To reach states

where a control is defined, the system uses a series of sensing actions to reduce the un-

certainty until such states are reached. Chatterjee et al. [6] present finite-state controllers

as a solution to POMDPs with parity objectives. To reduce the complexity, a series of

heuristics are designed to find the solution. A practical case based on the results in [6] is

presented in [18]. In this work a quadrotor performs a surveillance task while avoiding

a ground vehicle. The motion of the quadrotor is considered deterministic as opposed

to the stochastic motion considered in this paper.

To the best knowledge of the authors, we address for the first time the problem of

computing optimal policies for mobile systems with uncertainty in motion and state

information which follow temporal logic specifications and operate in dynamic envi-

ronments. Rather than reacting to an adversarial environment as presented above, in the

proposed method, the system reacts to static local targets and obstacles found during

the execution of a plan such that the probability of satisfying an LTL specifications is

maximised. Our method is based on the work in [20]. However, our solution permits

the reaction of the system to local targets and obstacles unknown during the offline

computation of the policy. To break the curse of history, we use feedback-based infor-

mation roadmaps (FIRMs) to create a transition system by sampling the state space of

the system. Based on results in probabilistic model checking, we find an optimal so-

lution to the problem by constructing a product MDP with the transition system and a

Rabin automaton representing the LTL specification. In order to permit a fast reaction

to the environment, a FIRM with edge’s cost equal to the probability of violating the

LTL specification is computed offline. This computation is possible due to the property

that the cost of the edges of the FIRM are independent of each other. This FIRM is

then used to drive the system from its current state to a sensed local target or to avoid

obstacles while the probability of violating the specification is minimised. Hence, the

main contribution of this paper is a sampling-based framework that permits systems

with imperfect state information and motion uncertainty to react to detected obstacles

and local targets in real-time while a LTL specification is satisfied.

The rest of the paper is organised as follows. Section 2 presents definitions of for-

malisms used in the rest of the paper and the problem formulation. Section 3 explains

in detail the proposed method. Finally, a numerical example and conclusions are shown

in Sect. 4 and Sect. 5, respectively.

2 Preliminaries and Problem Definition

2.1 System Model

This paper focuses on dynamic systems with motion and sensing uncertainty that evolve

according to the following system model:

xk+1 = f (xk,uk,wk) , (1)

where x ∈ X ⊆ R
dx is the system state, u ∈U ⊆ R

du is the control input and wk is the

process noise at time k. We consider wk as a zero-mean Gaussian noise with covari-

ance Qk. In partially observable systems, the system state is observed according to an

observation model:

zk = h(xk,vk) , (2)

where zk ∈ Z ⊂ R
dz denotes the observation and vk is a zero-mean Gaussian noise with

covariance Rk at time k.

2.2 Belief Space

Since the state of the system is only partially known due to sensing uncertainty, the

information available at each time k is a distribution over the set of possible states [16]:

bk = Pr(xk|zk,uk−1,zk−1, . . . ,u1,z1,u0,b0) . (3)

This distribution, called belief, compresses the history of observations z0:k and control

actions u0:k−1 taken from time 0 to time k and k− 1, respectively. The updated belief

for an applied control uk and received observation zk+1 is given by:

bk+1 =
Pr(zk+1|xk+1)

Pr(zk+1|bk,uk)

∫

X
bkPr(xk+1|xk,uk)dxk , (4)

In a Gaussian belief space B, the belief is characterised by the mean x̂ and covari-

ance P, i.e., bk = (x̂k,Pk) ∈ X ×S
dx×dx
+ , where S

dx×dx
+ represents the set of all possible

positive semi-definite matrices with dx×dx entries.

2.3 Linear Temporal Logic

We use LTL to express system properties or desired behaviours. These properties are

represented by a set Π of atomic propositions that indicate whether a property is true

or false. A labelling function L : x→ 2Π maps the system state x to the set Π . Let

xxx = x0x1 . . . be a sequence of states describing the behaviour of the system (1). A word

ω = L(x0)L(x1) . . . expresses this behaviour in terms of the atomic propositions.

Syntax: The syntax of LTL over Π is defined as follows:

ϕ := π | ¬ϕ | ϕ1∨ϕ2 | ϕ1∧ϕ2 | ©ϕ | ϕ1U ϕ2 ,

where π ∈ Π is an atomic proposition; and ¬, ∨, ∧,© and U represent the operators

negation, disjunction, conjunction, next and until, respectively. The temporal operators

eventually and always are defined as ♦π = TrueU π and �π = ¬♦¬π , respectively.

Semantics: The semantic of LTL formulae are defined with respect to infinite words

over Π . Given an LTL specification ϕ , a sequence xxx, and the satisfaction relation |=, we

define the semantics inductively as follows: (i) xi |= π iff π ∈ L(xi); (ii) xi |= ϕ1∧ϕ2 iff

xi |= ϕ1 and xi |= ϕ2; (iii) xi |= ϕ1∨ϕ2 iff xi |= ϕ1 or xi |= ϕ2; (iv) xi |=©ϕ iff xi+1 |= ϕ;

and (v) xi |= ϕ1U ϕ2 iff ∃ j ≥ i : x j |= ϕ2 and xk |= ϕ1, ∀ i≤ k < j.

2.4 Deterministic Rabin Automaton

An LTL specification can be represented by a deterministic Rabin automaton (DRA),

which accepts only words ω that satisfy the specification. A DRA R is a tuple R =
(Σ ,Q,q0,δR ,F), where: Σ = 2Π is a finite alphabet, Q is a finite set of states, q0 ∈Q is

an initial state, δR : Q×Σ →Q is a transition function and F = {(L1,K1), . . . ,(Lr,Kr)}
is a set of pairs where Li,Ki ⊆ Q for all i ∈ {1, . . . ,r}.

A run on R, produced by a word ω over the alphabet Σ , is a sequence ρ = q0q1 . . .
such that for every i≥ 0, there exists πi ∈ Σ and δR(qi,πi) = qi+1. A run ρ is accepting

if for a pair (Li,Ki) ∈ F , the set Li is intersected finitely many times while the set Ki is

intersected infinitely many times. Figure 1 shows an example of a Rabin automaton.

q0 q1q2

¬π1∧¬π2

π1∧¬π2

π1∧π2 ¬π1∧π2

⊤ ⊤

Fig. 1. Rabin automaton of LTL formula ϕ =¬π2U π1, where π1,π2 ∈ Σ are atomic propositions

and U is the operator until. The formula indicates that the atomic proposition π2 has to be avoided

until π1 is satisfied. The set F is formed by the pair L = {q1} and K = {q2}. The arrow points to

the initial state and ⊤ is unconditionally true.

2.5 Problem Formulation

Consider as an example a robot moving objects in a dynamically changing warehouse

with two areas of interest, denoted by the atomic propositions π1 and π2, respectively.

Using LTL, relevant behaviours can be specified. For example, the reachability formula

♦π1 ∧♦π2 can be used to indicate that the robot needs to eventually move an object

to the areas π1 and π2. Safety formulae, e.g. �¬π2, indicates that certain properties

remain invariant throughout the execution. In this work, we find a sequence of control

inputs that maximises the probability of satisfying an LTL formula ϕ . Moreover, since

the environment is dynamic, new local targets, e.g. objects in the warehouse, or obsta-

cles can appear during the operation of the robot. Therefore, in addition to following

the behaviour defined by ϕ , we allow the system to react to sensed local targets and

obstacles in the environment while the probability of violating ϕ is minimised.

The labelling function L is used to identify the satisfaction of atomic propositions

at each time k. That is, L(xk) = πi if the system is in the region defined by πi at time

k. By labelling the system state at each time k, a word ω expressing the behaviour of

the system in terms of the atomic propositions Π is obtained. Based on the definition of

a Rabin automaton, a run xxx = x0x1 . . . of the system satisfies the specification ϕ if the

word ω = L(x0)L(x1) . . . is accepted by the Rabin automaton representing ϕ . Since the

state is unknown in partially observable systems, instead of considering the state of the

system to verify the satisfaction of the specification, we consider all the possible words

generated during the transition between beliefs as presented in the next section. Now,

we formally define the problem as follows.

Problem definition: Given a dynamic system with motion and sensing uncertainty

of the form (1) and (2); and an LTL formula ϕ , compute a policy µ : B→U such that

the probability of satisfying ϕ is maximised.

3 Solution

In this section, an overview of the proposed method is firstly presented followed by a

detailed presentation. The main idea is to create a graph that represents the motion of

the system in the environment. In this graph, vertices represent belief nodes and edges

represent controllers that drive the system from one belief node to another, Figure 2. The

graph is initialised with a single vertex, the initial belief of the system. Then, the graph

is incrementally expanded by adding a new vertex that represents a new belief created

by randomly sampling the state space of the system. After each expansion, it is verified

whether there is a path such that the LTL specification is satisfied. If such a path does not

exist, a new belief is added to the graph and the process is repeated until a path is found.

Section 3.1 presents the computation of belief nodes and controllers. The expansion of

the graph and the search of a path that satisfies the specification are explained in Sects.

3.2, 3.3 and 3.4. Because a dynamically changing environment is considered, the system

must be able to react to local targets and obstacles. To allow fast reaction time to sensed

objects, we precompute another graph, called FIRM, assigning to each edge, as the cost,

the probability of violating the LTL specification in the transition. This FIRM is used

to guide the system to the local targets or to avoid obstacles while the probability of

violating the LTL specification is minimised, see Sects. 3.5 and 3.6.

3.1 Feedback-Based Information Roadmap

The main difficulty of solving POMDPs is the so-called curse of dimensionality. To al-

leviate this problem, we use feedback-based information roadmaps (FIRMs) [1]. FIRMs

generalise probabilistic roadmaps (PRMs) [12] to account for motion and sensing un-

certainty. In most of the works considering PRM-based methods and imperfect state

information, each edge of the graph depends on the path traveled by the system, i.e., ac-

tions and observations taken from the initial belief, and therefore recalculation is neces-

sary when the initial belief changes. In contrast, in a FIRM, each edge is independent of

the others as a consequence of feedback controllers used to guarantee the convergency

of the belief to predefined belief nodes. We exploit this property to perform most of the

computation offline.

Without loss of generality, we use SLQG-FIRMs [1], where stationary linear quadra-

tic Gaussian (SLQG) controllers are used as belief stabilisers. Any other type of con-

troller can be used provided that the reachability of a belief is guaranteed. To construct

a FIRM, a PRM is first constructed by sampling the state space of the system. Let

G = (V,E) represent the PRM, where V is the set of vertices (sampled states) ν ∈ X and

E is the set of edges connecting the elements of V . Each node ν of the PRM is used to

create a FIRM node as follows. First the system model (1) and observation model (2)

are linearised with respect to a node ν resulting in the linear models:

xk+1 = Aν xk +Bν uk +wk , (5)

zk+1 = Hν xk + vk , (6)

where Aν ∈ R
dx×dx , Bν ∈ R

dx×du and Hν ∈ R
dz×dx are obtained through Jacobian lin-

earisation.

A SLQG controller is designed to maintain the system state x as close as possible

to ν while a Kalman filter is used to estimate the belief. Under the assumption that

the pairs (A,B) and (A,H) are controllable and observable, respectively, the SLQG

controller stabilises the system to an expected belief bν = (ν ,Pν), where the covariance

Pν can be determined offline for each node ν [1]. Hence, a belief node is defined as

b = {b : ‖b− bν‖b < ε}, where ‖ · ‖b is a suitable norm in B and ε determines the

size of the belief node. Each node is associated with its SLQG controller, denoted by

µb, as belief stabiliser. The edges in E of the PRM are used to design time-varying

LQG controllers that drive the system to the proximity of the FIRM nodes where the

stabilisers can maintain the system within the nodes. Therefore, an edge between two

FIRM nodes b and b
′ is formed by the combination of the time-varying LQG and the

stabiliser controller and is denoted by µb,b′ . A FIRM can be presented as a graph G =
(B,E), where B is the set of FIRM nodes and E is the set of controllers used as edges,

Fig. 2.

In the next subsection, we use the procedure for creating FIRM nodes and con-

trollers to incrementally construct a transition system on which a path satisfying the

LTL specification is sought.

3.2 Incremental Transition System

Recall that using feedback controllers that guarantee the convergency of the belief to

predefined belief nodes, the curse of dimensionality can be broken. Hence, we use the

x1

x2

Fig. 2. FIRM created using a PRM on an environment in which the vertices represent the position

(x1,x2) of the system. The grey rectangles and red stars are areas of interest and landmarks

respectively. The landmarks are used by the system to localise itself. Hence, the uncertainty on

the system state increases with the distance to the landmarks. The centre bν = (ν ,Pν) of the

FIRM nodes is represented with a white disk and the 3σ ellipse (region where the true value lies

with a probability of .988) of the associated covariances. The blue area around ν denotes the part

of the node corresponding to the mean x̂, i.e., {x̂ : ‖x̂− v‖< ε}, where ε is a constant.

idea of FIRMs to create a transition system with the same property. In this subsection,

an incremental construction of such a transition system is presented. A transition system

is a tuple T = (BT ,b0,δT), where BT is a finite set of nodes bT , b0 ∈BT is an

initial node and δT ⊆ bT ×b
′
T

is a transition relation.

Because the complexity of the problem depends on the number of nodes in the

transition, the transition system is incrementally expanded by adding new nodes until

the specification is satisfied. The transition system is constructed based on the idea of

Rapidly-exploring Random Graphs (RRGs) [11] to allow satisfying words of infinite

length and is constructed as follows, see Alg. 1. Initially, the transition system T in-

cludes only the initial node b0 which contains the initial belief of the system. To add

a new node, a state νsample ∈ X is sampled from the state space. This state is used to

compute the FIRM node b
new
T

including a belief stabiliser as presented in Sect. 3.1.

Then, the closest node b
near
T

in BT is sought. This process is repeated considering, in

each iteration, the nearest nodes in BT in the half-space containing νsample but not the

previously considered nearest nodes bnear
T

. Once no more nodes are available, the new

node b
new
T

is added to T with the transitions (bnew
T

,bnear,i
T

) and (bnear,i
T

,bnew
T

), where i is

the index of the nearest nodes found in the process described above. For each transition

(bT ,b′
T
) ∈ δT , the edge controller µbT ,b′

T
is computed. This process continues until

a path that satisfies the LTL specification is found, see Sect. 3.4.

In order to reduce the number of nodes in T and at the same time cover most of the

workspace, a coarse partition is computed over the workspace. A segment of partition

Algorithm 1 Transition System Expansion

1: BT ← b0

2: while ϕ not satisfied do

3: X ← X , i← 1

4: Get a new sample state νsample ∈ X

5: Create node b
new
T

with centre bν = (νsample,Pν)
6: while BT ∩X 6= /0 do

7: Find closest node b
near,i
T

∈B to b
new
T

such that b
near,i
T
∩X

8: i← i+1

9: X ←X \H, where H is the half-space containing b
near,i
T

but not bnew
T

10: BT ←BT ∪b
new
T

11: δT ← δT ∪µ
bnew

T
,bnear, j

T

∪µ
b

near, j
T

,bnew
T

∀ j ∈ {1, . . . , i}

is randomly selected based on the number of samples associated with this segment.

Then, a state is sampled uniformly such that Γ (νsample) is constrained by the selected

segment, where Γ : X → R
dΓ is the projection of the system state to the workspace.

Based on results from probabilistic verification [3], the product MDP of the transi-

tion system T and the Rabin automaton representing the LTL specification is computed

and used to find a path such that the LTL specification is satisfied. The computation of

this product MDP is presented in the next subsection.

3.3 Product MDP

A product MDP P = T ×R is a tuple P = (S,s0,A,P,FP), where: S = BT ×Q is

a finite set of states, s0 = (b0,q0) is an initial state, A is a finite set of actions, P(·|·, ·) :

S× S× A → [0,1] is the probability of transitioning to the state s′ from the state s

under action a ∈ A and FP = {(LP
1 ,KP

1), . . . ,(LP
r ,KP

r)}, where LP
i = BT ×Li and

KP
i = BT ×Ki for all i ∈ {1, . . . ,r}.

A run on P is defined as a sequence ρP = s0s1 . . . , where P(si+1|si,a) > 0 for all

i≥ 0. The set of actions A corresponds to the computed controllers associated with each

transition in T . Therefore, the set of actions available at state s = (bT ,q), denoted as

A(s), are the controllers computed for the transitions (bT ,b′
T
) ∈ δT . The probability

P(s′|s,µbT ,b′
T
), where s = (bT ,q) and s′ = (b′

T
,q′), is the probability of ending on the

DRA state q′ starting from q when the transition (bT ,b′
T
) ∈ δT is performed using the

control µb,b′ ∈ A(s).
Let bbb = b0b1 . . .bn be the sequence of beliefs followed after applying µbT ,b′

T
, such

that b0 ∈ bT and bn ∈ b
′
T

. To find the DRA state q′ reached in R after the transition

(bT ,b′
T
)∈ δT , the word ω produced by bbb is used as an input word in the DRA R, start-

ing from the state q ∈ Q. The last state of the run ρ on R, produced by ω , is used as a

state q′ for the transition s= (bT ,q) to s′ = (b′
T
,q′). As an example, consider the initial

state q0 of the Rabin automaton in Fig. 1 and assume that during the transition (bT ,b′
T
)

in T the words ω1 = {¬π1¬π2}{¬π1¬π2}{π1} and ω2 = {¬π1¬π2}{¬π1¬π2}{π2}
are generated with probability 0.90 and 0.10, respectively. Therefore, the probability of

transitioning from state (bT ,q0) to (b′
T
,q2) is 0.90 and to (b′

T
,q1) is 0.10.

Recall that a specification is satisfied by the system if the word ω produces a run on

R such that it visits finitely often times the set Li and infinitely many times the set Ki,

for i ∈ {1, . . . ,r}. Because during the transition s to s′ in P , more than one DRA state

can be reached, in order to find a run on P satisfying a specification, each transition

in P is associated with a probability of visiting a state in a pair (Li,Ki) ∈ F . These

probabilities are denoted as P
Li

s,s′ and P
Ki

s,s′ , respectively.

Computing probabilities of transitioning from s to s′ ∈ S is computationally expen-

sive [1]. In this work, we approximate them using particle-based methods. The prob-

ability P((b′
T
,q′)|(bT ,q),µbT ,b′

T
) is computed based on the number of particles that

produced a word ω , during the transition bT to b
′
T

under µbT ,b′
T

and starting from q,

finishing in q′. A similar procedure is used to calculate the probability of intersecting

the pairs (Li,Ki) ∈ F during the transition from s to s′.

The product MDP P is updated with each new node b
new
T

added to T . After each

update, it is checked whether the LTL specification can be satisfied. In the next subsec-

tion, the computation of a policy µP : S→ A in P that satisfies the LTL specification is

presented. Using µP , a policy µ : B→U that solves the formulated problem is finally

obtained.

3.4 Optimal Policy Computation

This subsection presents the calculation of the policy that maximises the probability of

satisfying a LTL specification ϕ . A run ρP = s0s1 . . . on P is accepting if there exists

a pair (LP
i ,KP

i) ∈ FP such that LP
i and KP

i are visited finitely and infinitely many

times, respectively. Thus, we define an accepting end component (AEC) as follows. An

AEC of P for a pair (LP
i ,KP

i) ∈ FP is a subgraph of P where each state is reachable

from every other state, P
Li

s,s′ = 0 for all transitions and there exists a transition with

P
Ki

s,s′ > 0. After each increment of the transition system T , the existence of an AEC is

checked. Once an AEC is found, an optimal policy is computed.

It has been shown in probabilistic model checking that maximising the probability

of reaching an AEC is equivalent to maximising the probability of satisfying ϕ [3]. A

policy µP(s) on P , where s = (bT ,q), induces a policy µ(bT) on T by defining

µ(bT) = µP(s). Hence, computing a policy on P that maximises the probability of

reaching an AEC is equivalent to finding a policy on T that maximises the probability

of satisfying the LTL specification. We use value iteration to compute the optimal policy

by maximising the value function:

V (s) = max
a∈A(s)

∑
s′∈S

P(s′|s,a)V (s′) , (7)

µP(s) = argmax
a∈A(s)

∑
s′∈S

P(s′|s,a)V (s′) , (8)

for all s /∈ AEC and V (s) = 1 for all s ∈ AEC.

Since the product MDP is updated with each addition of nodes to T , the end com-

ponents of P must be maintained after each update. The complexity of maintaining

the end components on P is O(|F ||S|
3
2) [20], where the number of states in S is

|BT | × |Q|. On the other hand, the running time of each iteration to find the optimal

policy is O(|S||A|2) [14].

3.5 Local Targets

Approximating the probability of each transition on P using particle-based methods

is in general a slow process [1, 20]. The construction and computation of a policy for

T is computed offline and hence this slow task can be tolerated. Nevertheless, for fast

reactions to targets or obstacles sensed in real-time, this long time is restrictive. To solve

this problem, an offline computation of a FIRM is performed. In addition to permitting

reactions in a short period of time, PRM-like structures such as FIRM can present better

performance than methods using RRG techniques on difficult scenarios [10].

To maximise the coverage of the workspace and to obtain a dynamic FIRM (see

Sect. 3.6), an offline partition of the environment is first created. In our method we used

a grid-based partition. Then, the process of selecting and sampling in cells is performed

similar to the process presented in Sect. 3.2. After a minimum number of samples on

each cell are obtained, a FIRM G = (B,E) is created as presented in Sect. 3.1.

When a local target is sensed by the system at time k, the FIRM is used to drive the

system from its current belief bk to a predefined service region of the local target while

the specification is satisfied. To use the transition system and the FIRM, three aspects

have to be considered: (i) the connection of the current belief to a node in FIRM; (ii)

the optimal path in the FIRM; and (iii) the reconnection to T after the local target has

been attended. This procedure is presented in Alg. 2.

Algorithm 2 Path to Local Target

1: G ′ = (B′,E ′), where B′ = {b | b ∈B,‖Γb(b)−Γb(bk)‖ ≤ r}, Γb : B→ Γ (x̂) and E ′ ⊂ E

2: bnear← Nearest(bk,B
′), btarget← Nearest(target,B′)

3: Apply µbnear

4: path← OptimalPath(bnear,btarget)
5: Follow path applying edge controllers in E ′

6: bclose← Nearest(bT ,B′), where bT ∈BT and V (s)> 0 such that s = (bT ,q)
7: path← OptimalPath(btarget,bclose)
8: Follow path applying edge controllers in E ′

9: Apply µbT

In the first step, when a local target is sensed by the system, a subgraph of the FIRM

is created within the sensing area with radius r, Fig. 3(a). In this subgraph, the nearest

FIRM node bnear to the current belief bk is sought. Then, the local stabiliser of bnear

is applied to drive the system to the FIRM node. Once the system is in the subgraph

of the FIRM, an optimal path to the local target is computed. This path is optimal in

terms of minimising the probability of violating the specification. To achieve this, it

is necessary to verify which transitions of the FIRM do not violate the LTL specifi-

cation. A similar problem has been solved in the literature for deterministic systems

with perfect state information [2, 19] using a monitor [4] which identifies if a specifi-

cation has been satisfied or falsified as early as possible. In this work, since the state

of the system is unknown, we use the Rabin automaton instead. Recall that in order to

satisfy a specification, for a pair (Li,Ki) ∈ F , the set Li must be visited only finitely

many times. Therefore, we calculate the probability of reaching states in Li with a self

transition, Fig. 1. Similar to the computation of P
Li

s,s′ and P
Ki

s,s′ in T , the probability of

reaching such states starting in the Rabin state q during the transition from one node

to another in the FIRM is computed during the FIRM construction. These probabili-

ties are assigned as a weight on each transition on the FIRM. Since the probability of

reaching a state Li on a transition (b,b′) depends on the DRA state q, the current DRA

state is tracked all the time during the online operation. Because all the transitions are

precomputed offline, the only computation online is a shortest path graph search on the

subgraph using the weights according to the current DRA state q. This problem can be

solved efficiently by methods such as Dijkstra’s algorithm, which has a time complexity

O(|B|2) [7].

After the computed path is followed, the last FIRM node in the path has to be

connected to the transition system T in order to continue with the specification. This

is achieved by searching the closest node bT in T such that V (s)> 0 and s = (bT ,q),
where q is the current R state after following the path in the FIRM. Once this state has

been found, the closest node bclose of the FIRM to bT is sought. Then, the path in the

FIRM is computed between the current node and bclose. After following the path, the

stabiliser of the node bT is applied to make the connection.

(a) (b)

Fig. 3. FIRM used to drive the system close to local targets or to avoid obstacles. (a) Subgraph of

the FIRM within the sensing area of the system. The offline path obtained by solving the product

MDP P is shown as a blue dotted line. The current belief and local target are represented by

a green rectangle and blue diamond, respectively. (b) Subgraph of the FIRM without transitions

affected by the obstacle. The obstacle and estimated position of it are shown with a yellow and red

rectangle, respectively. The cells (shown in blue) occupied by the obstacle determine the invalid

nodes and transitions of the FIRM.

3.6 Obstacle Avoidance

Similar to the local target case, the FIRM is used to avoid detected obstacles during

the online operation. The main difference is that the presence of obstacles invalidates

parts of the computed FIRM. Because edges of the FIRM are independent of each other,

ideas from dynamic roadmaps [10, 13] can be applied.

Recall that the environment is partitioned into cells. Each of these cells is associated

with FIRM nodes and transitions as follows. During the computation of the probabilities

from node b to b
′, see Sect. 3.5, the probability of visiting a cell ci during a transition

can be computed. Let pk
0:Tk

be the sample path of the k-th particle p from b at time zero

to b
′ at time T k. The probability of the system reaching a state such that Γ (x) is on the

cell ci during the transition from b to b
′ is approximated by:

Prb,b′(ci)≈
K

∑
k=1

wk
1ci

(pk
0:Tk

) , (9)

where wk is a weight assigned to the particle pk and 1ci
(·) is an indicator that returns

one, if a particle enters the cell ci, and zero otherwise. Based on these probabilities, a

cell is associated with the FIRM nodes b,b′ and its transition if Prb,b′(ci)> 0, Fig. 3(b).

When an obstacle is detected, the cells occupied by the obstacle are computed.

Then, the nodes and transitions associated with these cells are invalidated from the

FIRM. Since the current state of the system is uncertain, i.e., given by a mean and

covariance over the belief space, the exact location of the obstacle cannot be determined

by the system. To include the uncertainty on the obstacle’s location, we compute the

Minkowski sum of the detected obstacle and the contour of the 3σ ellipse of the current

Gaussian. Assume that the system is transitioning between the nodes bT and b
′
T

in T

when an obstacle is detected. A subgraph of the FIRM is created within the sensing

area as presented in Sect. 3.5. Note that this subgraph does not include any of the nodes

affected by the estimation of the obstacle’s location. In this subgraph, the closest node

b to the current belief bk is sought. The stabiliser of b is applied to drive the system to

this node. Then, a path between b and b
′, the closest node to b

′
T

, is computed using

the weights as in the local target case. If, after applying the edge controllers of the

computed path, the obstacle is still detected, a new subgraph is computed removing the

invalid nodes. This process is repeated until the obstacle is not sensed. Then, the FIRM

is connected to T as presented in Sect. 3.5. Algorithm 3 shows the procedure described

above.

4 Example

In this section a numerical example is presented to illustrate the proposed method. We

consider a robot in a workspace with 7 areas associated with the atomic propositions π1,

π2, π3 and π4, Fig. 4. The mission of the robot is to visit the areas marked by the atomic

proposition π1, π2 and π3, in any order, while the areas marked with π4 are avoided.

Formally, this specification can be written as ϕ =(¬π4U π1)∧(¬π4U π2)∧(¬π4U π3).
The example is implemented in MATLAB on a computer with a 3.1 GHz i7 processor

and 8 GB of RAM.

Algorithm 3 Obstacle avoidance

1: while obstacle detected do

2: obstacleposition← EstimatedPosition(bk,Pk,obstacle)
3: C← AffectedCells(obstacleposition)
4: G ′ = (B′,E ′), where B′ = {b | b ∈B,‖Γb(bk)−Γb(b)‖ ≤ r}, Γb : B→ Γ (x̂),
5: E ′ ⊂ E \E ′′ and (b,b′) ∈ E ′′ iff ∃ c ∈C s.t. Prb,b′(c)> 0

6: bnear← Nearest(bk,B
′), btarget← Nearest(b′

T
,B′)

7: path← OptimalPath(bnear,btarget)
8: Follow path applying edge controllers in E ′

9: bclose← Nearest(bT ,B′), where bT ∈BT and V (s)> 0 such that s = (bT ,q)
10: path← OptimalPath(btarget,bclose)
11: Follow path applying edge controllers in E ′

12: Apply µbT

The three-wheel omnidirectional mobile robot model presented in [1] is considered.

For this robot (1) becomes:

f =

− 2
3

sin(θ) − 2
3

sin(π
3
−θ) 2

3
sin(π

3
+θ)

2
3

cos(θ) − 2
3

cos(π
3
−θ) − 2

3
cos(π

3
+θ)

1
3l

1
3l

1
3l

u+w . (10)

The state x = [x1,x2,θ]
T is composed of the robot position (x1,x2) and the orien-

tation θ . The control input u = [u1,u2,u3]
T is formed of the linear velocities of each

wheel. The distance of the wheels from the centre of the robot is denoted by l. The

process noise w is a zero-mean Gaussian with covariance Q.

The robot uses landmarks, with known location on the workspace, to localise itself,

Fig. 4. Let (LMi
1,LMi

2) denote the location of the i-th landmark; and ηr, σ r
b , ηθ and σθ

b

be constants. The observation model (2) with respect to the i-th landmark is expressed

as:

zi = [‖di‖,atan2(di
2,d

i
1)−θ]T + vi , (11)

where d = [x1,x2]− [LMi
1,LMi

2] and vi is zero-mean Gaussian noise with covariance R:

Ri = diag((ηr‖d
i‖+σ r

b)
2,(ηθ‖d

i‖+σθ
b)

2) . (12)

The results presented below were obtained from 20 simulations, but for the pur-

pose of clarity, only one run is presented in Fig.4. In average (mean), the offline path

is found in 82.46 seconds and the number of states in T and P are 31.61 and 284.5,

respectively. The Rabin automaton R has 9 states and one pair (L,K) with |L|= 1 and

|K|= 1. Computing the probability in each transition requires 0.536 seconds. The PRM

used to create the FIRM has 1224 vertices, each vertex is connected to its seven near-

est vertices. The FIRM requires on average 5022.61 seconds to be constructed. Since

computing the probabilities for each edge of the FIRM is the most computationally de-

manding operation, the time to construct the FIRM could be reduced by limiting the

number of edges on each vertex. Note that all the previous computations are performed

offline. Finding a path in the FIRM, online, to reach the local target and to avoid the ob-

stacle requires 0.097 and 0.698 seconds, respectively. Based on these results, it can be

π1

π2

π3

x1

x2 π4

π4

π4

π4

Fig. 4. Environment containing seven areas identified by the atomic proposition π1, π2, π3 and

π4; a local target (blue diamond) with its service region (grey disk), an unknown obstacle (yellow

rectangle) and ten landmarks (red stars). The objective of the robot is to visit the areas marked as

π1, π2 and π3 while areas π4 have to be avoided. The grey line shows the path computed offline.

The blue line shows a sample path of the system followed after detecting the local target and

previously unknown obstacle. The initial position is marked by a red disk.

observed that computing a path in the FIRM to reach targets or avoid obstacles would

require less time than expanding the transition system with the purpose of finding an

alternative path.

5 Conclusions

In this paper we have introduced a new method to design control policies for mobile

robots that can react to unknown environments under uncertainty in motion and sens-

ing, while maximising the probability of satisfying high-level specifications. Although

previous works have considered synthesis of controllers under uncertainty constraints

and temporal logic specifications, reaction to unknown elements of the environment

had not been considered under this scenario. An offline policy that maximises the prob-

ability of satisfying the specification is computed using an incrementally constructed

transition system and a Rabin automaton. To achieve short reaction times, we precom-

puted a feedback-based information roadmap, considering the probability of violating

the specification in each transition. Once the system finds an unknown element on the

environment, the FIRM is used to reach or avoid this element. This task requires the

connection of the current belief to the FIRM and the computation of a path that min-

imises the probability of violating the specification. Results show that using the FIRM

requires less time than trying to find a path online by extending the transition system.

References

1. Agha-Mohammadi, A.A., Chakravorty, S., Amato, N.M.: FIRM: Sampling-based feedback

motion-planning under motion uncertainty and imperfect measurements. The International

Journal of Robotics Research 33(2), 268–304 (2014)

2. Ayala, A.M., Andersson, S.B., Belta, C.: Temporal logic motion planning in unknown envi-

ronments. In: Proc. of IROS. pp. 5279–5284. IEEE (2013)

3. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press Cambridge (2008)

4. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL. In: Proc. of

FSTTCS. vol. 20, pp. 1–68. ACM (2006)

5. Bry, A., Roy, N.: Rapidly-exploring random belief trees for motion planning under uncer-

tainty. In: Proc. of ICRA. pp. 723–730. IEEE (2011)

6. Chatterjee, K., Chmelı́k, M., Gupta, R., Kanodia, A.: Qualitative analysis of POMDPs with

temporal logic specifications for robotics applications. In: Proc. of ICRA. pp. 325–330. IEEE

(2015)

7. Cormen, T.H.: Introduction to algorithms. MIT press (2009)

8. Fu, J., Topcu, U.: Integrating active sensing into reactive synthesis with temporal logic con-

straints under partial observations. In: Proc. of ACC. pp. 2408–2413. IEEE (2015)

9. Horowitz, M.B., Wolff, E.M., Murray, R.M.: A compositional approach to stochastic optimal

control with co-safe temporal logic specifications. In: Proc. of IROS. pp. 1466–1473. IEEE

(2014)

10. Kallman, M., Mataric, M.: Motion planning using dynamic roadmaps. In: Proc. of ICRA.

vol. 5, pp. 4399–4404. IEEE (2004)

11. Karaman, S., Frazzoli, E.: Sampling-based motion planning with deterministic µ-calculus

specifications. In: Proc. of CDC/CCC. pp. 2222–2229. IEEE (2009)

12. Kavraki, L.E., Svestka, P., Latombe, J.C., Overmars, M.H.: Probabilistic roadmaps for path

planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Au-

tomation 12(4), 566–580 (1996)

13. Leven, P., Hutchinson, S.: Algorithmic and Computational Robotics: New Directions, chap.

Toward real-time path planning in changing environments, pp. 363–376. A K Peters (2000)

14. Littman, M.L., Dean, T.L., Kaelbling, L.P.: On the complexity of solving Markov decision

problems. In: Proc. of UAI. pp. 394–402. Morgan Kaufmann Publishers Inc. (1995)

15. Montana, F.J., Liu, J., Dodd, T.J.: Sampling-based stochastic optimal control with metric

interval temporal logic specifications. In: Proc. of CCA. pp. 767–773. IEEE (2016)

16. Pineau, J., Gordon, G., Thrun, S., et al.: Point-based value iteration: An anytime algorithm

for POMDPs. In: Proc. of IJCAI. vol. 3, pp. 1025–1032 (2003)

17. Prentice, S., Roy, N.: The belief roadmap: Efficient planning in linear POMDPs by factoring

the covariance. In: Robotics Research, pp. 293–305. Springer (2010)

18. Svoreňová, M., Chmelı́k, M., Leahy, K., Eniser, H.F., Chatterjee, K., Černá, I., Belta, C.:

Temporal logic motion planning using POMDPs with parity objectives: case study paper. In:

Proc. of HSCC. pp. 233–238. ACM (2015)

19. Vasile, C.I., Belta, C.: Reactive sampling-based temporal logic path planning. In: Proc. of

ICRA. pp. 4310–4315. IEEE (2014)

20. Vasile, C.I., Leahy, K., Cristofalo, E., Jones, A., Schwager, M., Belta, C.: Control in belief

space with temporal logic specifications. In: Proc. of CDC. pp. 7419–7424. IEEE (2016)

21. Wongpiromsarn, T., Frazzoli, E.: Control of probabilistic systems under dynamic, partially

known environments with temporal logic specifications. In: Proc. of CDC. pp. 7644–7651.

IEEE (2012)

