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Abstract— Water, a valuable resource, is usually distributed
through urban environments by buried pipes. These pipes are
difficult to access for inspection, maintenance and repair. This
makes in-pipe robots an appealing technology for inspecting
water pipes and localising damage prior to repair from above
ground. Accurate localisation of damage is of critical impor-
tance because of the costs associated with excavating roads,
disrupting traffic and disrupting the water supply. The problem
is that pipes tend to be relatively featureless making robot
localisation a challenging problem. In this paper we propose a
novel simultaneous localisation and mapping (SLAM) algorithm
for metal water pipes. The approach we take is to excite pipe
vibration with a hydrophone (sound induced vibration), which
leads to a map of pipe vibration amplitude over space. We
then develop a SLAM algorithm that makes use of this new
type of map, where the estimation method is based on the Rao-
Blackwellised particle filter (RBPF), termed PipeSLAM. The
approach is also suited to SLAM in plastic water pipes using
a similar type of map derived from ultrasonic sensing. We
successfully demonstrate the feasibility of the approach using
a combination of experimental and simulation data.

I. INTRODUCTION

The maintenance of water infrastructure assets is of critical

importance because water is such a highly valued resource.

Water distribution pipes are usually buried and so are difficult

to access. Therefore, robots have great potential for water

pipe inspection. However, whilst a number of robot designs

have been proposed for water pipes, along with sensors

for inspection [1]–[3], the simultaneous localisation and

mapping (SLAM) problem [4], for water pipes, has been

much less widely studied. SLAM in water pipes is essential

because damage must be accurately located to effectively

target repair from above ground, minimising costs and dis-

ruption to both water supply and street users. Potentially,

new ‘keyhole’ excavation techniques could be used for repair,

greatly reducing disruption at street level and speeding repair,

if the localisation of damage was sufficiently accurate. The

main barrier to developing accurate SLAM techniques for

water pipes is that the in-pipe environment is relatively
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featureless. Therefore, the aim of this paper is to develop

SLAM for feature sparse water pipes, increasing the features

available for navigation.

Mapping and localisation has been developed for water

pipes using SLAM techniques with cameras and inertial

measurement units (IMUs) [5], [6]. A limitation of these

methods is that there are few visual features available in

the pipe. To alleviate this problem in plastic pipes, we have

previously proposed the use of ultrasonics for measuring

the soil profile through the pipe wall, which gives more

features for navigation [7]. In effect, the depth observations

from ultrasonic sensing form a continuous spatial map of the

ground depth outside the pipe wall, which can be used with

a terrain-based technique for localisation [8]. In that work,

we assumed the map of terrain depth was known, in order to

demonstrate the feasibility of localisation only, and in related

work we also construct the map non-simultaneously [9]. This

leaves a key gap for real-world problems: updating the map

and simultaneously performing the localisation. In this paper

we address the full SLAM problem for the first time in this

type of scenario, and demonstrate the approach on metal

water pipes.

To construct the map, a hydrophone is used to excite and

measure metal pipe vibration, which is transformed to a one-

dimensional function over space of pipe vibration amplitude.

This provides a map analogous to those used in terrain-

based localisation in aerospace [8] and SLAM in underwater

robotics [10]. A terrain-type SLAM algorithm for water

pipes, termed PipeSLAM, is developed here based on the

Rao-Blackwellised particle filter (RBPF) [11]. Specifically,

the map is regarded as a continuous function over space that

is represented using a weighted basis function decomposi-

tion. We use a state-space model to represent robot pose and

map parameter evolution. The corresponding state vector is

well suited to estimation via the RBPF, because the map

function is linear-in-the-parameters, and so can be estimated

via the Kalman filter, and particles can be used to represent

robot pose, solving the localisation problem.

The approach to mapping is demonstrated experimentally

on a section of metal pipe, using a lab based setup. The

PipeSLAM algorithm is evaluated using the experimental

data as a ground truth map, with robot movement simulated

over this map for offline analysis. The results of the PipeS-

LAM algorithm are benchmarked against a dead reckoning

solution, and demonstrate that the RBPF algorithm can be

used to more successfully solve the mapping and localisation

problem using the terrain-type map.



II. METHODS

In this section we develop the SLAM problem, estimation

algorithm and describe the experimental details of mapping

the metal pipe using hydrophone induced vibration.

A. Problem Statement

In this work we focus on the problem of robot navigation

in relatively small pipes, with diameter of about 3 inches (a

current prototype robot design is shown in Fig. 1). These

small pipes are commonly used for water distribution in

urban environments. The small diameter means that move-

ment within the pipe is restricted, consisting of back and

forth movement only. For entry into these small pipes, fire

hydrants can potentially be used, which in the UK, Europe

and the USA are spaced approximately every 100 metres [12,

Chapter 14, Table 14.2].

We model the dynamics of the pipe robot using a state-

space model, with state dynamics

p(xk|xk−1,uk−1) ⇔ xk = g (xk−1,uk−1) +ωωωk (1)

where k is the sample index, xk ∈ R
nx is the robot pose

(including location), g(.) is the state transition function,

uk ∈ R
nu is the input, ωωωk ∼ N(0,Σw) is the state noise.

In this paper we simplify the state vector xk to contain just

the spatial location of the robot, x, along the pipe, and the

input uk is obtained from a processed motor encoder reading

defining a dead reckoning estimate of distance travelled,

hence g (xk−1,uk−1) = Axxk−1+Bxuk−1, where Ax = 1,

Bx = 1. The measurement model is

p(yk|xk) ⇔ yk = h (xk) + νννk (2)

where the observation yk ∈ R
nx is obtained from the

hydrophone signal, where vibration amplitude is averaged

over some frequency range, and the measurement function

h(.) is a one-dimensional map, which transforms from the

spatial location of the robot xk to mean pipe vibration

amplitude; also νννk ∼ N(0,Σv) is the measurement noise.

To represent the unknown map, h(x), where x is a spatial

location, we use a basis function decomposition,

h(x) =

M
∑

j=1

θjφj(x) (3)

where M is the number of basis functions, θj ∈ R is the

corresponding weight of the jth basis function, and φj(x) is a

basis function. Note that this representation of h(x) is linear-

in-the-parameters θj . Here we use radial basis functions for

φ(x), specifically the squared exponential function,

φj(x) = exp

(

−
(x− cj)

2

2σ2

)

(4)

where cj is the centre of the basis function (a spatial location

along the pipe) and σ is the width of a basis function, which

we assume for simplicity here are the same across all basis

functions. We also assume that the centres can be evenly

spaced based on some prior knowledge of the likely spatial

frequency of variation in pipe vibration amplitude, although

 

(a) 

 

(b) 

Fig. 1. Prototype of a water pipe inspection robot developed for this
project. The robot is designed to operate in pipes with an approximate 3
inch diameter. The robot has a tether for power and communications, as well
as to simplify recovery in the event of a robot failure (required by the water
utilities). In order to move around bends the robot is comprised of small,
separate modules that are linked by flexible steel springs. The core module
units, of dimension 70 mm in length by 29 mm in diameter, are designed
to contain sensors and processing units. The core units have flexible arms,
which improve stability by bracing against the pipe wall. (a) Robot in 3
inch clear plastic pipe. (b) Zoomed view of one robot module.

it would be possible to use an adaptive technique to place

basis functions [13]. Hence, in this case, the parameter vector

θθθ is the only unknown describing the map, where

θθθ = (θ1, θ2, . . . , θM )
T

(5)

We define the probabilistic SLAM problem here in the

usual way, as computing the joint distribution of robot

location and map over all samples times [4],

p(xk, θθθ|Yk,Uk,x0) (6)

where Yk = {y1, . . . ,yk} is the set of observations, Uk =
{u1, . . . ,uk} is the set of all inputs and x0 is the initial

location of the robot.



B. Estimation via a Rao-Blackwellised Particle Filter

To solve the problem of estimating the joint distribution of

robot location and map parameters, p(xk, θθθ|Yk,Uk,x0), we

initially define an augmented state-space model, with linear

state dynamics

[

xk+1

θθθk+1

]

=

[

Ax 0
0 IM

] [

xk

θθθk

]

+

[

Bx

0

]

uk +

[

1 0
0 IM

] [

ωωωk

ηηηk

]

(7)

where IM is the identity matrix of dimension M and ηηηk ∼
N(0,Ση) is a noise term accounting for uncertainty in the

map parameter evolution. The measurement model is

yk = Φ(xk)θθθk + νννk (8)

where

Φ(xk) =
(

φ1(xk), . . . , φM (xk)
)

(9)

The problem of estimating the augmented state vector is

nonlinear, and so, for example an extended Kalman filter

might be used to obtain the solution [4]. Alternatively, a

particle filter might be used, which avoids the linearisation

of the measurement function [14]. However, in this case,

naive application of a standard particle filter would be com-

putationally infeasible because the number of basis functions

used to describe the map, and hence the state dimension,

could be very large depending on the length of pipe explored.

A further alternative is the Rao-Blackwellised particle

filter (RBPF) [11], which in this case can be used to exploit

the linear-in-the-parameters nature of the basis function

decomposition of the map: a Kalman filter can be used

to update the parameters θθθk, effectively reducing the state-

dimension for the particle representation, keeping the com-

putational complexity manageable. A particle filter can still

be used to represent the robot location, which in this case is a

one-dimensional problem, well suited to particle filtering. A

similar formulation has been used in the popular FastSLAM

algorithm [15].

The principle of Rao-Blackwellisation is to partition the

joint distribution p(xk, θθθ|Yk,Uk,x0) using the product rule,

where

p(xk, θθθk|Yk,Uk,x0) = p(θθθk|xk,Yk)p(xk|Yk,Uk,x0) (10)

The key point to note is that the function p(θθθk|xk,Yk) can

be represented analytically, as a conditional Gaussian, so that

only the function p(xk|Yk,Uk,x0) requires sampling [14].

This is why the map parameters θθθk can be updated in a

linear estimation step, i.e. by the Kalman filter.

A further significant point to note when using the RBPF

algorithm in SLAM is that due to representing the robot

pose via a set of particles, x
(i)
k ∼ p(xk|Yk,Uk,x0), for

i = 1, . . . , ns, where ns is the number of particles, each

individual particle has its own associated map. This means

for every single particle representing robot pose x
(i)
k , there

is a distinct associated set of map parameters θθθ
(i)
k , and a

separate Kalman filter must be computed to update each map.

C. PipeSLAM Algorithm

In this section the PipeSLAM algorithm is described for

estimating the joint distribution p(xk, θθθk|Yk,Uk,x0) using

the RBPF.

1) Initialise particles: Draw initial samples based on

x
(i)
0 ∼ p(x0|Y0), and initialise the parameter settings for the

Kalman filter for all particle samples, such that θθθ
(i)
0 = θ̂θθ0, for

i = 1, . . . , ns, where ns is the number of particle samples.

2) Particle filter time update: The particle state xk is

updated at each time point according to linear state transition

model (11),

x
(i)
k|k−1 = Axx

(i)
k−1 +Bxuk +ωωωk, for i = 1, . . . , ns (11)

3) Kalman filter time update: The basis function weights

for each map associated with the ith particle, θθθ
(i)
k , for i =

1, . . . , ns, are updated at time step k. Due to the assumption

that the map is time-invariant, the weights θθθ
(i)
k are also

assumed to be unchanging over time, so the prediction step

for θθθ
(i)
k is a constant for the mean, and an inflation of the

uncertainty in the covariance,

θθθ
(i)
k|k−1 = θθθ

(i)
k−1 (12)

P
(i)
k|k−1 = P

(i)
k−1 +Ση (13)

4) Kalman filter measurement update: The basis function

weights for each map, θθθ
(i)
k , for i = 1, . . . , ns, are corrected

using the standard Kalman filter update step,

R
(i)
k = Φ

(

x
(i)
k|k−1

)

P
(i)
k|k−1Φ

T
(

x
(i)
k|k−1

)

+Σν (14)

K
(i)
k = P

(i)
k|k−1Φ

T
(

x
(i)
k|k−1

)

R
(i)
k

−1
(15)

θθθ
(i)
k = θθθ

(i)
k|k−1 +K

(i)
k

(

yk − Φ
(

x
(i)
k|k−1

)

θθθ
(i)
k

)

(16)

P
(i)
k = P

(i)
k|k−1 −K

(i)
k R

(i)
k K

(i)
k

T
(17)

5) Evaluate and normalise importance weights: Particle

weights, α
(i)
k for i = 1, . . . , nS , need to be re-evaluated

based on the likelihood for the newly arrived observation,

and then normalised,

α̃
(i)
k = α

(i)
k−1p(yk|x

(i)
k|k−1, θθθ

(i)
k|k−1) (18)

α
(i)
k =

α̃
(i)
k

∑ns

j=1 α̃
(j)
k

(19)

6) Particle resampling: When the number of effective par-

ticles (Neff) drops to a certain threshold (Nres), the particle set

needs to be resampled to avoid excessive particle depletion

[14],

Neff =
1

∑ns

j=1

(

α
(j)
k

)2 (20)

Therefore, when Neff drops to a predefined threshold Nres,

the particle set {x
(i)
k|k−1, θθθ

(i)
k , P

(i)
k } needs to be resampled

by drawing ns times from the present particle set to a

new particle set and the probability of drawing a particle

{x
(i)
k , θθθ

(i)
k , P

(i)
k } is proportional to its associated weight α

(i)
k .

The algorithm is then repeated from step 2.



D. Experimental details

In order to demonstrate the feasibility of the mapping

and localisation technique described above, a small-scale

laboratory experiment was constructed. A steel pipe, of

dimensions 1 metre in length, by 88 millimetres in external

diameter, was inserted into a concrete mould in a water butt,

which was then filled with water (Fig. 2). The pipe material

was chosen to be steel as opposed, to e.g. cast iron, because

the acoustical properties of steel are well known. This makes

steel a more appropriate material for testing in the early

stages of developing this novel technique.

A 3D printed unit was used to house a pair of hydrophones

(Bruel&Kjaer type 8103). This unit was then immersed into

the steel pipe in an ultrasonic pulse-echo setup. The input

signal to the pulser was a waveform generator (Tektronix

AFG3022C), amplified by a Bruel&Kjaer type 2713 am-

plifier, which produced pipe vibration. The receiver unit,

the second hydrophone connected to an additional amplifier

(Bruel&Kjaer 2693), measured amplitude of the pipe vibra-

tion. Finally this output signal was logged on a PC using a

National Instruments BNC 2110 receiving unit.

The map of pipe vibration amplitude (measured in ar-

bitrary units, a. u.) was constructed over a 40 centimetre

mid section of the pipe. Data was logged at 0.5 centimetre

spacings over this mid section (see Fig. 2 for experimental

data). A fast Fourier transform (FFT) was used to transform

the data from the time- to frequency-domain to obtain the

amplitude of pipe vibration at each spatial location. The

amplitude was averaged over the range 15-25 kHz to produce

a one-dimensional map of mean pipe vibration amplitude

over space (Fig. 2(d)). This one-dimensional function in Fig.

2(d) corresponds to the map h(.) defined above in (2).

In this preliminary work the sensors were not mounted

in the robot in Fig. 1, which would have overcomplicated

the laboratory experiment. However, the robot is designed to

carry a sensor payload such as used here.

E. Algorithm evaluation

The PipeSLAM algorithm was evaluated using a combina-

tion of experimental and simulation data. We used the map

generated by the experiment described above as a ground

truth map. We then simulated a robot moving back and forth

along this map by the state-space model defined in (1) and

(2).

The PipeSLAM algorithm was used in the simulation

phase to simultaneously estimate both the map and robot

location. Table I shows the parameter settings used in the

PipeSLAM algorithm. In particular, the number of particle

samples, ns, was set to 100, which is relatively few but in

this one-dimensional problem performed well.

To make the SLAM problem more challenging and high-

light the benefit of using the map over dead reckoning, we

also added a deterministic linear and sinusoidal drift term

dk to the state equation, of the form dk = −0.15m̄k +
0.02m̄k sin(0.125m̄k), where m̄k = kmk, where mk =
0.0395 cm.

TABLE I

PARAMETER SETTINGS FOR ALGORITHM EVALUATION

Parameter description Parameters Values

Number of basis functions M 100

Width of basis functions σ 1.5

State transition matrix of x Ax 1

State transition matrix of θθθ - III100×100

Input matrix of x Bx 1

State noise covariance in x Σω 0.3 cm2

State noise covariance in θθθ Ση 000100×100

Measurement noise covariance Σν 0.1

Particle sample size ns 100

Efficient particles threshold Nres 50

TABLE II

ALGORITHM EVALUATION RESULTS

Estimation error description Values

PipeSLAM location estimate RMSE 0.7426 cm

Dead reckoning location RMSE 3.0952 cm

PipeSLAM location estimate error Σk|ek| 1279 cm

Dead reckoning location error Σk|ek| 5713 cm

Final map RMSE 5.00 (a. u.)

Final map normalised RMSE 0.04 (a. u.)

Final map error Σk|ek| 5093 (a. u.)

III. RESULTS AND DISCUSSION

In order to test and evaluate the PipeSLAM algorithm,

we used the experimental pipe vibration data to define the

ground truth map (Fig.2). We then simulated the robot

moving forward and backward over this data to analyse

the PipeSLAM algorithm. Drift was applied to the robot

simulation to make the SLAM problem more challenging

and the map used in the PipeSLAM algorithm was initialised

with zero weights.

The results obtained from the simulation demonstrate how

the PipeSLAM algorithm learns the map: each particle used

to represent robot location has an associated map based

on the trajectories of the particles - these separate maps

are clearly seen in Fig. 3(a)-(b). On the backward pass

along the simulated pipe the maps have converged to similar

values (Fig. 3(c)-(d)). This convergence of the maps is

due to resampling the particles, which leads to reduced

particle diversity, and hence reduced map diversity, which

is a common issue in particle filter based SLAM [15].

Regarding localisation, on the forward pass, whilst the

map is unknown there is relatively large uncertainty in the

robot location. Then on the backward pass the uncertainty

reduces (Fig.3(e)). Quantitatively, the PipeSLAM algorithm

was able to localise more accurately than dead reckon-

ing, in particular, the cumulative error using PipeSLAM

was
∑

k |ek| = 1279 cm and using dead reckoning was
∑

k |ek| = 5713 cm (see Table II), which demonstrates the

effectiveness of the PipeSLAM algorithm.
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Fig. 2. Experimental setup. (a) A one metre steel pipe was immersed in water and a hydrophone pulser and receiver unit, H8103, was moved up and
down the pipe to excite and record pipe vibration. The experimental data used here was from a 40 cm mid section of pipe. (b) Signals measured by the
hydrophone over the 40 cm mid section of pipe. Signals were observed every 0.5 cm but for clarity the graph only shows signals at 5 cm spacings. (c)
The space-frequency representation of pipe vibration amplitude. The amplitudes over frequency were obtained from an FFT of the time-domain signals.
The red lines define the frequency range used to average over to form the map. (d) The map of pipe vibration amplitude over space.

IV. CONCLUSIONS

In this paper we have addressed the SLAM problem for

feature-sparse water pipes. To overcome the problem of

feature-sparsity, we have developed a technique of exciting

and measuring pipe vibration using a pair of hydrophones to

create a map of mean vibration amplitude along the length

of the pipe. In order to use this map we have developed

a PipeSLAM algorithm based on the Rao-Blackwellised

particle filter: the key features of this algorithm are that the

map is decomposed using a radial basis function network

that is linear-in-the-parameters; these map parameters are

estimated using a Kalman filter; robot location is estimated

using particles. We have tested the feasibility of the algorithm

using a combination of experiment and simulation, where the

map of pipe vibration amplitude was generated in experiment

and then the PipeSLAM algorithm was evaluated on the

map in simulation. A benchmark against robot localisation

using just dead reckoning demonstrated the success of the

PipeSLAM method.
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Fig. 3. PipeSLAM results from simulation of robot movement along a pipe, forwards and backwards, over a ground truth map generated from experimental
hydrophone-induced pipe vibration data. (a)-(d) PipeSLAM at increasing time steps of robot movement (panels a-b: forward movement, left to right; panels
c-d: backward movement, right to left). Note that MWP refers to the maximum weighted particle. (e) PipeSLAM localisation results over time, showing
the improvement compared to the dead reckoning estimate, which exhibits significant drift.


