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Abstract— Water is a highly valuable resource so asset man-
agement of associated infrastructure is of critical importance.
Water distribution pipe networks are usually buried, and so
are difficult to access. Robots are therefore appealing for
performing inspection and detecting damage to target repairs.
However, robot mapping and localisation of buried water pipes
has not been widely investigated to date, and is challenging
because pipes tend to be relatively featureless. In this paper
we propose a mapping and localisation algorithm for metal
water pipes with two key novelties: the development of a new
type of map based on hydrophone induced vibration signals
of metal pipes, and a mapping algorithm based on spatial
warping and averaging of dead reckoning signals used to
calibrate the map (using dynamic time warping). Localisation is
performed using both terrain-based extended Kalman filtering
and also particle filtering. We successfully demonstrate and
evaluate the approach on a combination of experimental and
simulation data, showing improved localisation compared to
dead reckoning.

I. INTRODUCTION

Water is one of our most valuable natural resources, and so

management of associated infrastructure assets is of critical

importance. Water is usually distributed by underground pipe

networks, which are difficult for humans to access. So there

is a significant amount of interest in developing technologies

that can inspect, maintain and repair buried water pipes [1],

[2]. Robots would appear to have great potential for inspect-

ing these difficult-to-access pipe networks [3], [4]. However,

whilst there has been much research devoted to designing

robots and sensors for damage detection in water pipes

[3], mapping and localisation has received less attention.

Accurate mapping and localisation is of key importance for

precisely locating areas of poor condition and damage, and

therefore targeting maintenance action from above ground, to

minimise costs and disruption to the pipe network and water

supply. This mapping and localisation problem is addressed

here in the context of metal water pipes, focusing on ways

of transforming the apparently featureless environment of the

water pipe, into a more feature-rich environment.
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In previous work we have highlighted a number of partic-

ular challenges for robot mapping and localisation in water

pipes [5]. The first is that the water pipe is a relatively feature

sparse environment compared to typical robot mapping and

localisation scenarios. The second challenge is that typical

robotics sensors used for range and bearing can only de-

tect nearby features, especially in pipes of small diameter

(∼3 inches), which are commonly used for distribution to

buildings off the larger trunk mains. The third challenge is

that the robot has restricted movement, either forwards or

backwards along the pipe, and cannot survey the environment

from different perspectives to reduce uncertainty in both the

map and the robot location. Therefore, robot mapping and

localisation in water pipes presents a variety of unique and

challenging problems.

Simultaneous localisation and mapping (SLAM) tech-

niques [6] have been applied to robots in water pipes,

using cameras and inertial measurement units (IMUs) [7],

[8]. However, the use of cameras is limited by the lack

of visual features, and IMUs are subject to drift, meaning

that there is still much scope for improvement. In previous

work, we have proposed and demonstrated the idea of using

ultrasonic transceivers to sense soil depth through plastic

pipe walls, and used this map in a type of terrain-based

localisation scheme [5]. In that work we did not solve

the problem of constructing a calibrated spatial map from

dead reckoning sensors under drift conditions, nor develop a

similar technique suited to metal pipes. We address both of

those issues here.

One of the key novel ideas in this work is to create a new

type of map based on signals from hydrophone excitation

of the metal pipe. This leads to a map of pipe vibration

amplitude over space. The problem is that the only way

of calibrating the spatial component of the map is by a

dead reckoning sensor such as a motor encoder. We assume

that the robot will make multiple passes up and down the

pipe between two known locations. This means that the map

calibration can be improved by spatial averaging. However,

taking a direct average of the data would be likely to lead to

smoothing of the peaks and troughs in the map, degrading

features required for localisation. Instead, the second key

novel idea we propose is to use a signal alignment technique

to warp the maps in the spatial direction before averaging.

This improves the spatial calibration without overly smooth-

ing the map features. The signal alignment and averaging

algorithm is based on dynamic time warping (DTW) and is

known as DTW barycentre averaging (DBA) [9].



The paper is structured as follows. In section II we

define the mapping and localisation problem, present the

mapping solutions based on DBA and the two alternatives to

localisation, one based on the extended Kalman filter (EKF)

used in terrain-based localisation [10], and one based on

the particle filter (PF) [11]. The experimental details for

the hydrophone induced vibration of the metal pipe is also

presented in this section. In section III we present the results

on evaluation of the mapping and localisation methods using

a combination of experimental and simulation data. Finally,

in section IV we conclude the paper.

II. METHODS

A. Problem statement

In defining the concept of operations for the pipe inspec-

tion robot considered in this work (see Fig. 1 for a prototype),

we make a number of assumptions. The first regards the robot

deployment. In consultation with project partners from the

water utilities industry, e.g. Yorkshire Water, we require the

robot to enter the water pipe network through existing access

points to minimise costs. We assume that fire hydrants could

be used, which in the UK, Europe and the USA are separated

by approximately 100 metres [12, Chapter 14, Table 14.2].

This leads to the second assumption, that the robot will

travel between two points with known location, i.e. two

fire hydrants. The third assumption is that robot travel time

between two hydrants, in terms of relative time cost to e.g.

robot deployment, is relatively trivial, hence it is worth the

robot making multiple passes up and down the pipe in order

to maximise the mapping and localisation accuracy.

Due to the fact that navigation through the pipe in itself is

relatively trivial, i.e. forwards or backwards, the need for a

SLAM solution is limited, hence, the sequential approach

to mapping and localisation taken here. In addition, we

only consider the problem of localising with respect to

one dimension, i.e. distance travelled through the pipe: this

technique is not suited to correcting heading, which we leave

to future work.

We define the mapping and localisation problem as fol-

lows: 1. to estimate a map h(xk) from hydrophone-induced

pipe vibration signals, that transforms robot pose xk ∈ R
nx

at time-step k to sensor measurements yk ∈ R
ny , where

h : xk → ỹk, and robot pose for example is xk = [x y θ ]T ,

i.e. location in x-y co-ordinates and heading θ , where ỹk

is the noise-free sensor output; and 2. localise the robot by

obtaining the estimate of the pose distribution p(xk|yk).
We assume that the dynamics of the pipe robot can be

represented by a state-space model, with state dynamics

p(xk|xk−1,uk−1)⇔ xk = g(xk−1,uk−1)+wk (1)

where g(.) is the state transition function, uk ∈ R
nu is the

input, wk ∼ N(0,Σw) is the state noise. The measurement

model is

p(yk|xk)⇔ yk = h(xk)+vk (2)

h(.) is the measurement function, and vk ∼ N(0,Σv) is the

measurement noise.

In this paper we simplify the state vector xk to contain just

the location of the robot along the pipe, xk = xk and nx =
1. The observation yk is the processed hydrophone signal,

which is the average of the vibration amplitude over some

frequency range, |ā|k, hence, yk = |ā|k, and ny = 1. The state

dynamics are assumed to be obtainable from a processed

motor encoder reading, which defines distance travelled, mk,

hence g(xk−1,uk−1) = Axk−1 +Buk−1, where A = 1, B = 1,

and uk−1 =mk. Although defining this one dimensional state-

space model is relatively trivial, it has the advantage that

it provides ready extensibility to more state dimensions for

representing the pose in two or three dimensions, and also

can incorporate more sensors, e.g. camera and IMU data.

B. Map construction using signal alignment algorithm DBA

We demonstrate in this work that the robot can obtain

a map of pipe vibration amplitude over space by travel-

ing through the pipe and exciting pipe vibration using a

hydrophone. Corresponding locations of the robot can be

calibrated using dead reckoning, e.g. from a motor encoder.

However, any drift in the dead reckoning estimate will result

in an incorrectly spatially calibrated map. A solution to this

problem is for the robot to make multiple passes back and

forth through the pipe in order to generate a set S of nm

independent sequences of map data, in order to average out

drift errors, where

S = {s1, . . . ,snm} (3)

where each data sequence is comprised of pipe amplitude re-

sponse signals over space, s j = (|ā| j,1, . . . , |ā| j,ns), where ns is

the number of spatial samples, and for each amplitude datum

there is a corresponding dead reckoning estimate of spatial

location, x(d), hence we have the data pairs (x
(d)
j,k , |ā| j,k), for

each map j = 1, . . . ,nm and for each observation within the

map k = 1, . . . ,ns.

The sequences in the set S can be combined to reduce the

effect of drift, however, a direct averaging of these sequences

would be likely to smooth out the map due to sequence

misalignment, degrading features required for localisation.

Instead, we propose that sequences can be combined into

a map using a signal alignment technique that warps the

sequences in the spatial dimension before averaging. In this

work we use a signal alignment technique based on dynamic

time warping (DTW), known as DTW barycentre averaging

(DBA).

The DTW algorithm calculates an alignment cost matrix

M, between two sequences sk and sl (see Algorithm 1 in Fig.

3). The optimal alignment between the sequences follows

a ‘valley’ in the cost matrix. The approach of DBA is to

use DTW to compare a mean sequence estimate, s̄, to each

sequence in S and iteratively reduce the total DTW cost,

s̄∗ = argmin
s̄

nm

∑
i=1

D2 (s̄,si) (4)

where the quantity D(s̄,si) is the cumulative alignment cost

calculated by DTW, where D(s̄,si) = MN1,N2
is obtained



Fig. 1. Design of a water pipe inspection robot for small diameter water pipes. The prototype shown here is designed to operate in 3 inch pipe and is
tethered to simplify recovery in the event of a robot failure (a requirement of water utilities). The use of a tether can also be exploited to supply power
and off-board processing. The robot is composed of modules that are flexibly linked by a steel spring. Each module is composed of a 70mm long by 29
mm diameter core unit, which contains sensors and processing units. The flexible arms extend the diameter of each module to the range 65-80mm, bracing
against the inner pipe wall for stability. (a) Robot with 3 modules. (b) Robot in 3 inch clear plastic pipe. (c) Zoomed view of one robot module.

Fig. 2. Experimental setup. (a): The hydrophone pulser and receiver unit, H8103, travels up and down a one metre steel pipe that is immersed in water.
Experimental recording was conducted on a 40 cm mid-section of pipe. (b): Time-domain signals observed by the hydrophone over 40 cm of pipe. Signal
were observed at 0.5 cm intervals but for clarity the graph only shows signals at 5 cm spacing. (c): Space-frequency representation of hydrophone signal
amplitude obtained from an FFT of the time-domain signals. The red lines indicate the region over which the average amplitude is taken to form the one
dimensional map. (d): The hydrophone map of amplitude over space.

from the final element computed for the cost matrix M in

Algorithm 1 (Fig. 3).

The algorithm DBA can be used to obtain a solution to

the optimisation problem posed in (4), i.e. the optimal signal

average, s̄∗. The algorithm is iterative and has guaranteed

convergence [13]. At each iteration k:

1) Use DTW (Algorithm 1) to iteratively compute the

optimal alignment between each data sequence and

the current estimate of the signal average s̄k, i.e.

DTW(s̄k,s j), for j = 1, . . . ,nm.

2) Use the updated alignment from step 1 to update the

signal average to s̄k+1 and set s̄∗ = s̄k+1. Increment k

and go to step 1.

The initial mean s̄0 is defined by using one of the data

sequences in S chosen at random. The algorithm is repeated

until convergence, which can be monitored by evaluating the

cumulative alignment cost in (4).

Finally, the optimal sequence of data samples s̄∗ forms the

continuous map function h(.) from linear interpolation of the

data pairs (x∗1,s
∗
1),(x

∗
2,s

∗
2), . . . ,(x

∗
ns
,s∗ns

), where for a location

xk on the interval
(

x j,x j+1

)

, at sample-time k, we define

h(xk) = s∗j +(s∗j+1 − s∗j)
xk − x∗j

x∗j+1 − x∗j
. (5)

Here we use linear interpolation to define the map h(xk) but

an alternative such as splines could equally be used.



Algorithm 1: DTW

1: procedure DTW(sk,sl)

2: M1,1 = 0

3: M2:Nk,1 = ∞

4: M1,2:Nl
= ∞

5: for i = 2 to Nk do

6: for j = 2 to Nl do

7: c = d (sk(i),sl( j))
8: Mi, j = c+min

(

Mi−1, j,Mi, j−1,Mi−1, j−1

)

9: end for

10: end for

11: end procedure

Fig. 3. Algorithm 1: The dynamic time warping (DTW) algorithm, which
takes as input two sequences of data, sk ∈R

Nk and sl ∈R
Nl , and returns the

matrix of similairty measure between the two sequences M ∈ R
Nk×Nl .

C. Localisation by extended Kalman filtering

The approach taken to localisation using the EKF is

inspired by a terrain-based navigation algorithm developed

for aerospace applications [10]. The steps for the EKF at

sample time k consist of:

1) The prediction step for the state vector xk and state

covariance Pk,

x−k = Axk−1 +Buk−1 (6)

P−
k = APk−1AT +Q (7)

where Q = Σw is the state noise covariance.

2) The measurement update step requires the definition

of the linearised measurement model, Hk, which is

obtained from the derivative of a local quadratic fit

to the spatial map of pipe vibration amplitude, where

the local quadratic approximation of the spatial map is

h(xk) = ax2
k +bxk + c (8)

where xk is the current location of the robot and hence

the derivative is

Hk =
d

dxk

h(xk) = 2axk +b (9)

The parameters of the local quadratic function are

obtained from a least-squares fit to a data window

centred on the current estimate of the robot location

xk: the size of local quadratic fit window was set

proportional to the state covariance, Wf it = αPk [10].

3) The EKF measurement update is performed by

Kk = P−
k HT

k

(

HkP−
k HT

k +R+ ε2
k

)−1
(10)

x̂k = x−k +Kk

(

yk −h
(

x−k
))

(11)

Pk = (I −KkHk)P−
k (12)

where R = Σv is the measurement noise covariance,

and the term ε2
k , in (10), is due to the linear fit error

εk, where

εk = h(xk)−2axk −b (13)

This time-varying error term is recommended by [10]

because it inflates the measurement noise covariance

term Rk in regions of poor fit (typically due to high

nonlinearity), reducing the chance of filter divergence

and making the EKF more robust.

D. Localisation by particle filtering

As an alternative to the EKF for localisation we also inves-

tigated the use of the PF. In this case the PF is based on the

bootstrap filter with sequential importance resampling [11]

as used in our previous work on mapping and localisation in

plastic water pipes [5].

In the first step the particles are initialised,

x
(i)
0 ∼ p(x0), for i = 1, . . . ,ns (14)

where ns is the number of samples, and initial particle

weights are set to w
(i)
0 = 1

ns
, for i= 1, . . . ,ns. At each sample-

time k the PF performs the following steps:

1) The location is predicted by samples drawn from the

state equation, Eq. 1,

x
(i)
k ∼ p(xk|x(i)k−1,uk−1), for i = 1, . . . ,ns (15)

where we assume that the state equation can be used

as the importance distribution of the particle filter [11].

2) The weight update step is

w
(i)
k ∝ p(yk|x(i)k ), for i = 1, . . . ,ns (16)

where we assume Gaussian noise vk on the sensor

output,

w
(i)
k = exp

(

−1

2

(

yk − ŷ
(i)
k

)T

R−1
(

yk − ŷ
(i)
k

)

)

, (17)

for i = 1, . . . ,ns, where ŷ
(i)
k = h

(

x
(i)
k

)

. The weights are

then normalised to sum to unity.

3) To avoid degeneracy, resampling is performed if the

effective number of particles drops below a threshold,

γ = 0.6ns, using stratified resampling [11].

E. Experimental details

A steel pipe (1m length, 88 mm in external diameter)

was constrained by a concrete mould in a water butt that

was filled with water (Fig. 2). Steel was chosen instead

of cast iron because the acoustical properties of steel are

well known, making it the ideal material for testing this new

technique.

A pair of hydrophones (Bruel&Kjaer type 8103) were im-

mersed into the pipe in an ultrasonic pulse-echo setup, con-

tained in a 3D printed unit, of length 100 mm. In this setup,

an arbitrary waveform generator (Tektronix AFG3022C) was

used to excite with an electric signal one hydrophone,

the pulser, that had the function to produce the ultrasonic

vibration. This signal was amplified by Bruel&Kjaer type

2713 amplifier. The second hydrophone, the receiver, had the

function to record the amplitude of the pipe vibration, simi-

larly to a microphone when recording a sound pattern. The

receiver was connected to a second amplifier (Bruel&Kjaer

2693) and the received signal was logged in a computer using

a NI BNC 2110 receiving unit.



The hydrophones were submerged through depths of 0.5

cm spacing to observe the vibration signal obtained over a

40 cm mid section of the pipe (see Fig. 2 for experimental

data). The time-domain data at each spatial location was

transformed to the frequency-domain using a fast Fourier

transform (FFT). Then the amplitude at each location was

averaged across the frequency range 15-25 kHz to obtain

the map data (Fig. 2).

In this investigation the hydrophones were not mounted

on the robot shown in Fig. 1, which would have been

an unnecessary complication for this work, but the pulse-

receiver unit is suited to mounting on that robot design.

F. Algorithm evaluation

The mapping and localisation algorithms were evaluated

by combining the data from the hydrophone experiment with

a simulated robot moving up and down the map, using the

state-space model defined in (1) and (2) for the simulation.

The number of map sequences generated was nm = 20, five

passes forward along the pipe and five backwards. The input

was constant, mk = 0.1 cm or mk =−0.1 cm depending on

direction, and drift was added to the simulated robot in the

mapping stage in the form of white noise wk, i.e. state noise

covariance Σw = 0.05 cm2, also the measurement noise term

vk was set to Σv = 0.01.

For the EKF localisation the size of quadratic fit window

was set to Wf it = αPk, with α = 2.3; the noise covariances

were set to
√

Q = 0.5 cm and
√

R = 5. For the particle filter

localisation, the number of particles was set to ns = 300 and

noise covariances were set to
√

Q = 0.5 cm and
√

R = 5.

To make the localisation more challenging and highlight the

benefit of using the map over dead reckoning, we also added

a deterministic linear and sinusoidal drift term dk to the state

equation, of the form dk =−0.15m̄k +0.02m̄k sin(0.125m̄k),
where m̄k = kmk, where mk = 0.0395 cm.

III. RESULTS AND DISCUSSION

In order to evaluate the mapping and localisation algo-

rithms described above we used the experimental data to de-

fine a ground truth map. We then simulated robot movement

up and down this map, with simulated drift, to investigate

the effectiveness of the DBA algorithm for constructing the

map: we generated a total of 20 maps to align and average

using DBA (Fig. 4(a)). We then applied both the EKF and

the PF localisation algorithms to this estimated map and

found that the technique improved on using dead reckoning

alone as expected (Fig. 4(b)-(e)): the sum of absolute errors

for dead reckoning was ∑k |ek| = 5706, for the EKF was

∑k |ek| = 975, and for the PF was ∑k |ek| = 1046. Hence,

both the EKF and PF greatly outperformed the localisation

using dead reckoning alone. The EKF slightly outperformed

the PF, which along with the efficiency of the EKF approach,

makes the EKF more appealing in this application.

These results give the first evidence that mapping and

localisation using hydrophone induced vibration with map

alignment using DBA is feasible, supporting field testing of

the sensor on the robot prototype shown in Fig. 1(a). The

technique for calibrating the spatial map is also extensible

to other types of sensor that would produce similar map data,

e.g. through-pipe-wall ultrasonics, proposed in our earlier

work [5]. One appealing feature for the hydrophone method

we test here, in comparison to the through-pipe-wall ultra-

sonic method, is that it is omnidirectional in nature, which

should make it robust to any robot rotations. A limitation of

the method is that it is only useful for correcting drift along

the length of the pipe, i.e. distance travelled, not heading

estimates. This we leave to future work, but envisage fusing

the method with IMU data to solve this problem.

IV. CONCLUSIONS

In this paper we have addressed the problem of robot

mapping and localisation in metal water pipes. We have

developed a novel technique for constructing a map using

hydrophone induced pipe vibration. In order to address

the problem of spatially calibrating the map using a dead

reckoning sensor subject to drift, we proposed the use of a

signal alignment and averaging algorithm based on dynamic

time warping. The localisation was based on nonlinear state

estimation. We evaluated the approach on a combination

of experimental and simulation data, demonstrating that the

technique is effective.
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Fig. 4. Mapping and localisation results. (a) The use of DBA to construct a map estimate from observations with simulated drift. (b) and (c) Localisation
using an extended Kalman filter (EKF). (d) and (e) Localisation using a particle filter (PF). For both the EKF and PF a comparison is given to dead
reckoning, showing the clear improvement in localisation accuracy with EKF and PF.


