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Abstract. Robotic systems for water pipe inspection do not generally
include navigation components for mapping the pipe network and locating
damage. Such navigation systems would be highly advantageous for
water companies because it would allow them to more effectively target
maintenance and reduce costs. In water pipes, a major challenge for robot
navigation is feature sparsity. In order to address this problem, a novel
approach for robot navigation in water pipes is developed here, which
uses a new type of landmark feature - voids outside the pipe wall, sensed
by ultrasonic scanning. The method was successfully demonstrated in
a laboratory environment and showed for the first time the potential of
using voids for robot navigation in water pipes.
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1 Introduction

Water, a highly precious resource, is distributed to buildings by networks of
pipes. As pipe materials age they are prone to damage, which can cause wastage
of water and bacterial infiltration. Water distribution systems therefore require
inspection, maintenance and repair [1]. However, water pipes are usually buried
and so are difficult to access. Robotic systems have great potential for inspecting
these inaccessible pipelines [2]. Whilst there are many techniques for robot pipe
inspection itself [3], an as yet unsolved problem is accurately locating damage in
pipes once found, to effectively target repair. This problem can be addressed by
robot navigation algorithms, specialised to water pipes, which is the focus of this
paper.

There are a number of challenges for robot navigation in water pipes. Firstly
and most importantly the water pipe is a feature sparse environment. Most
current robot navigation systems deal with indoor and outdoor environments,
which contain numerous landmark features. However, pipe walls lack features that
can be used as landmarks. Secondly, in pipes standard range and bearing sensors
can only detect features that are nearby due to the close and enclosing proximity
of the surrounding pipe wall. Thirdly, unlike indoor or outdoor navigation, the
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in-pipe robot has a very restricted route (moving either forward or backward),
which limits the perspective of the robot on landmark features. Therefore, robot
navigation in water distribution pipes is a difficult problem.

Robot navigation is often performed using simultaneous localisation and
mapping (SLAM), which is where the location of the robot and the map features
are represented in the state vector of a state-space model [4]. State estimation
techniques are then used to construct the map and localise the robot, using
e.g. the extended Kalman filter [5] or the Rao-Blackwellised particle filter [6].
Although these techniques are well-developed, they have rarely been applied
in the water pipe environment. Mapping and localisation has been attempted
in water pipes based on cameras and inertial measurement units (IMUs) [7, 8].
However, the use of cameras is limited by the lack of visual features, and IMUs are
subject to drift, meaning that the navigation problem has yet to be adequately
solved.

For in-pipe navigation, the feature sparsity problem motivates the development
of sensing techniques that can transform the water pipe into a feature-rich
environment. The aim of this paper is to improve water pipe navigation by
exploiting a novel type of feature - voids that occur outside the pipe wall.
Ultrasonic signals can penetrate the wall of plastic pipes to detect the depth
between the outside soil and the pipe (and plastic pipes are now typically used by
water utilities, especially in the UK). Significant gaps between the pipe wall and
soil - voids - can be used as landmark features for navigation. Ultimately, these
features can be used to build maps, localise the robot and fuse with standard
sensing based on cameras and IMUs.

In this contribution we develop a novel framework for mapping and localisation
in water pipes using voids as features, detected by ultrasonic scanning through
the pipe wall, and demonstrate the approach experimentally in a laboratory
environment. The experimental results show that ultrasonic sensing can be used
to successfully build a map based on soil depth outside the pipe wall, and the
navigation algorithm can be used to localise using voids as features.

2 Methods

This section describes the navigation algorithm using voids as features, as well
as the experimental setup and data used to evaluate the algorithm performance.

2.1 Robot navigation algorithm

Problem statement The problem that we address here is: (i) to construct
a map g(xk) for the water pipe environment, that can be used to transform
from robot pose xk ∈ R

nx at time-step k to sensor measurements yk ∈ R
ny ,

where g : xk → ỹk, where typically the robot pose xk = [x y θ]
T
, i.e. xk contains

the spatial location in x-y co-ordinates and heading θ, and ỹk is the noise-free
sensor output; and (ii) localise the robot by obtaining the estimate of the pose
distribution p(xk|yk).
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Robot dynamics and measurement model We assume that the dynamics
of the water pipe robot can be represented by a state-space model, with state
dynamics

p(xk|xk−1,uk−1) ⇔ xk = Axk−1 +Buk−1 +wk (1)

where uk ∈ R
nu is the input, assumed to arise from an actuator such as a motor,

A is the state transition matrix, B is the input matrix and wk ∼ N(0, Q) is the
state noise. For this investigation we set the state dimension to nx = 1 to only
represent the location of the ultrasonic probe in 1-dimension (moving forwards
and backwards along a line), with no heading information. The dynamics are

described by A = 1, B = [−1 1], and uk−1 = [mk−1 mk]
T
, where mk is a motor

encoder value - effectively the dynamic model predicts ultrasonic probe location
using distance travelled obtained from a motor encoder.

The state-space measurement model is

p(yk|xk) ⇔ yk = g (xk) + vk (2)

where vk ∼ N(0, R) is the measurement noise. In this case, we use only a single
ultrasonic probe, hence ny = 1, although the framework as presented above
readily permits the extension to multiple sensors. The nonlinear function g(.)
in this case is the mapping from probe location, xk, to soil depth yk, which by
definition is the map of soil depth over space (see Results, Fig. 2(a)).

Estimation of robot location In order to estimate the location of the probe, i.e.
the distribution p(xk|yk), we used a sequential Monte Carlo algorithm, specifically
the bootstrap version of the particle filter, based on sequential importance
resampling [9]. Firstly, the particle filter samples are initialised from the prior,
which is the starting location of the robot,

x
(i)
0 ∼ p(x0), i = 1, . . . , ns (3)

where ns is the number of samples, and the weights associated with these particles

are initialised to w
(i)
0 = 1

ns

, for i = 1, . . . , ns. The particle filter algorithm then
iterates through the following steps at each sample-time k:

1. The location is predicted by samples drawn from the state equation, Eq. 1,

x
(i)
k ∼ p(xk|x(i)

k−1,uk−1), i = 1, . . . , ns (4)

where we make the standard assumption that the state equation can be used
as the importance distribution of the particle filter [9].

2. The weights are updated as

w
(i)
k ∝ p(yk|x(i)

k ), i = 1, . . . , ns (5)

where from the assumption of Gaussian noise vk on the sensor output,

w
(i)
k = exp

(

−1

2

(

yk − ŷ
(i)
k

)T

R−1
(

yk − ŷ
(i)
k

)

)

, i = 1, . . . , ns (6)
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where the map g(.) is used to predict the soil depth from the sensor location,

ŷ
(i)
k = g

(

x
(i)
k

)

. The weights are then normalised to sum to unity.

3. The final step is a check for particle degeneracy by counting the effective
number of particles - if less than some threshold γ resampling is performed
using the stratified resampling algorithm [9].

To implement the localisation algorithm the following parameters were used:
ns = 300,

√
Q = 7,

√
R = 120, and γ = 0.6ns.

In the absence of any detected void, i.e. when the observed soil depth is below
some small threshold ρ (here ρ = 100), the samples are predicted at each time
step k with no correction. This results in an increasing spread of samples until a
void feature is encountered, which then corrects the location estimate.

2.2 Experimental setup

In the laboratory setup an ultrasonic transducer was moved through a water bath
over plastic pipe material to emulate the water pipe environment. The base of
the water bath was covered in soil, with the plastic pipe material resting on top
(Fig. 1). At certain locations in the soil, voids were inserted to create landmark
features for evaluating the navigation algorithm.

The ultrasonic transducer had a central excitation frequency of 10 MHz
and focal distance of 75 mm, mounted to the gantry of a stepper motor driven
scanning table. The transducer was pulsed at a rate of 160 pulse/s using PC
mounted pulser-receiver and digitisation cards. The location of the transducer
was recorded for each pulse. The reflected ultrasound was windowed such that
the reflections extending from the upper pipe surface to approximately 80 mm
past the lower surface of the pipe could be observed and digitised at a rate of
100 MSamples/s.

3 Results

To evaluate the use of voids as features for navigation, an ultrasonic probe was
used to scan soil beyond plastic pipe material, in a setup that was designed to
emulate the water pipe environment (Fig. 1). When the sensor was moved from
left-to-right, the soil depth was measured and the void map was created (Fig.
2(a)). After the sensor reached the right end point, the map construction was
finished, including voids, and was then used for localisation when moving from
right-to-left.

To evaluate results, the motor location from the x-y table was used as the
ground truth because it is highly accurate. To illustrate the effectiveness of
localisation using voids a degraded version of the motor signal was used in the
state equation to predict location, where the motor position was corrupted by
white noise and a sinusoidal term.

The key result on the localisation is that when there is no void, the samples
increasingly spread, but once a void is present, the location estimate is corrected,
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(a) (b)
Fig. 1: Experimental setup in the laboratory environment. (a) Ultrasonic sensing
probe, mounted on an x-y motorised arm in a water bath. At the base of the
water bath is a layer of soil, over which is a plastic board of similar width and
material to water pipe. (b) Diagram of the lab setup shown in panel (a).
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Fig. 2: Mapping and localisation experimental results. (a) Map of the soil depth
outside the pipe wall, which corresponds to the observation function g(.). The
location estimate in blue corresponds to the sample with the maximum weight.
(b) Mapping and localisation results where the map is constructed on the forward
pass and localisation is performed on the backward pass. The location estimate
in blue corresponds to the sample with the maximum weight. (c) Map of soil
depth as shown in panel (a) but orientated to correspond to panel (b).
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e.g. see time step k = 1650 in Fig. 2(b). Beyond time step k = 1700, when the
void is passed, the samples diverge again. At k = 2100, the probe reaches another
void, and all sample estimates once more converge on the true location. Crucially,
this demonstrates the effectiveness of using voids as features for robot navigation.

4 Summary

The aim of this paper was to develop the use of a new type of feature, voids, for
use in water pipe robot navigation. The navigation framework was successfully
demonstrated in a laboratory experimental setup. In the future, this approach
could be combined with multiple sensors, in order to transform water pipes from
a feature sparse to a feature rich environment.
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