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Abstract: Realistic humanoid robots (RHRs) with embodied artificial intelligence (EAI) have 

numerous applications in society as the human face is the most natural interface for communication 

and the human body the most effective form for traversing the manmade areas of the planet. Thus, 

developing RHRs with high degrees of human-likeness provides a life-like vessel for humans to 

physically and naturally interact with technology in a manner insurmountable to any other form of 

non-biological human emulation. This study outlines a human–robot interaction (HRI) experiment 

employing two automated RHRs with a contrasting appearance and personality. The selective 

sample group employed in this study is composed of 20 individuals, categorised by age and gender 

for a diverse statistical analysis. Galvanic skin response, facial expression analysis, and AI analytics 

permitted cross-analysis of biometric and AI data with participant testimonies to reify the results. 

This study concludes that younger test subjects preferred HRI with a younger-looking RHR and the 

more senior age group with an older looking RHR. Moreover, the female test group preferred HRI 

with an RHR with a younger appearance and male subjects with an older looking RHR. This 

research is useful for modelling the appearance and personality of RHRs with EAI for specific jobs 

such as care for the elderly and social companions for the young, isolated, and vulnerable. 

Keywords: embodied artificial intelligence; realistic humanoid robots; human–robot interaction; 

human–computer interaction 

 

1. Introduction 

Numerous scholars suggest that emotionally responsive artificial intelligence (EmoAI) in 

human–robot interaction (HRI) reduces negative perceptual feedback as people feel an affinity 

towards realistic humanoid robots (RHRs) that can simulate empathy [1–8]. The EmoAI approach is 

founded on behaviours in human sociology as communication, personality, and comprehension help 

promote understanding and empathy during human–human interaction [9–12]. Thus, people 

empathise more with RHRs than non-anthropomorphic robots as humans feel an innate association 

with machines that look human, owing to the psychological drive to socialise and form relationships 

with other humans [13]. 

In support, RHR Sophia’s ability to discuss its visual and functional limitations with humans 

helps people empathise with the RHR’s preternatural qualities [14,15]. This design consideration is 

significant to the progression of RHRs as research in robotic AI has predominantly focused on 

simulating human cognition and continually neglects the significance of EmoAI in promoting natural 

HRI, which heightens the potentiality of adverse feedback owing to emotionless robotic AI [16]. 

Masahiro Mori’s [17] uncanny valley (UV) hypothesis accounts for the negative psychological 
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stimulus propagated by RHRs upon observation, as the more human-like the RHRs appear, the 

higher the potential for humans to feel repulsed by their appearance. 

Quality aesthetics is a foundation for reducing the UV in RHR design [18,19]. However, although 

the aesthetics approach is a viable first stage for increasing the authenticity of a RHR’s appearance, it 

neglects the importance of naturalistic functionality and movement. Per the UV, poor functionality 

supersedes good aesthetical design in the same way that quality aesthetics become secondary to 

inadequate functionality [20,21]. This condition is significant as RHRs are developed in different 

configurations. For example, waist up models such as the Robot ‘C’ series by Promo-bot Russia, 

launched in 2020, are designed as front desk assistants and do not require lower body functions. 

However, human likeness also applies to other facets of RHR design such as movement. For instance, 

although Atlas of Boston dynamics bears little aesthetical human resemble, the robot has highly 

humanlike dexterity and movement. Thus, the term ‘realistic’ is applicable to different factions of 

RHR engineering outside of appearance, that is, realistic movement, speech, and AI. 

Therefore, the consideration of both appearance and functionality is crucial in developing 

greater human-like RHRs and reducing the UV [22]. However, cultural background influences the 

UV as observed in many studies conducted by Eastern scholars, which often rate lower levels of the 

UV than in Western cultures [23–28]. Furthermore, many scholars argue that children are less 

susceptible to the UV as they are naturally more curious and accepting of RHRs than adults owing 

to a lack of media influence and risk perception [29–33]. Thus, exposing children to RHRs at a young 

age is a methodology for ethically reducing the UV as it builds a foundation of understanding before 

media influence [34,35]. 

Following these findings, developing emotionally responsive RHRs with higher degrees of 

visual and functional human-likeness has the potentiality to increase affinity and reduce the UV, 

which may prove essential in enculturating RHRs into society and developing RHRs with higher 

degrees of human likeness. Nevertheless, little practical research evaluating user preference and the 

influence of personality and appearance in automated RHRs with embodied artificial intelligence 

(EAI) exists in HRI. Therefore, this study explores a significant gap in current HRI, EAI, and RHR 

research and critically investigates this area by outlining the processes utilised in developing EAI 

personalities for RHRs, substantiated by the results of an HRI experiment measuring the influence of 

appearance and personality type in HRI. 

2. Embodied Artificial Intelligence and Emotional Artificial Intelligence 

Until recently, the primary focus of AI research was on creating algorithms that can compute 

data that humans are incapable of calculating [36]. However, a shift in AI research and development 

towards emotionally responsive systems with human-like personalities has become a critical factor 

in developing AI systems that interact naturally with humans [37–39]. Thus, EmoAI applications are 

better suited for situations that involve human communication and sensitivity compared with 

traditional forms of robotic AI [40–42]. For example, EmoAI systems such as ‘Cogito’ monitor 

emotional cues in the user’s speech during telephone conversations to respond to users naturally and 

make human–computer interaction (HCI) more engaging [43]. Comparatively, an EmoAI system 

named ‘Surrportiv’ implements natural language processing (NLP) to converse with users. It adjusts 

the tonality and empathy of the speech synthesis output to help tackle situations such as user stress 

and anxiety [44]. 

A similar EmoAI support system named ‘Butterfly’ utilised in business environments monitors 

staff stress levels, collaboration, creativity, and confliction between co-workers. The system offers 

help and guidance to negotiate stressful work situations by sending employees text messages [45]. 

However, restricting the interactive capabilities of an EAI in HCI to a single stimulus such as speech 

or text neglects many fundamental communicative processes observed in natural human–human 

interaction such as facial expressions (FEs), attention, gesturing, and eye contact [46]. Thus, 

embodying modes of EmoAI in RHRs has the potential to enhance HRI and promote greater 

naturalistic modes of communication by emulating human emotions. 
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In support, the humanoid robot ‘Pepper’ recognises and responds to six basic human emotions; 

joy, sadness, anger, surprise, disgust and fear, using an emotion detection camera system integrated 

into its AI [47]. The worldwide success of the Pepper robot relies on the system’s ability to 

communicate and respond to humans with empathy, making the robot feel more approachable and 

friendly during HRI [48–50]. However, Pepper’s appearance is distinctly unnaturalistic, with a plastic 

shell for skin and immobile eyes and mouth aperture, which reduces the robot’s ability to display 

human-like emotions, natural skin aesthetics, and FEs [51–54]. Thus, replicating the naturalistic 

aesthetics and sensory capabilities of the human skin is essential in HRI. This is outlined in a study 

testing an artificial skin for tactile interfacing in HRI, which emulates surface changes to touch and 

temperature to propagate synthetic goosebumps and hair raising [55]. 

Comparatively, a synthetic skin [56] developed for mobile phones can systematically respond to 

physical manipulation such as pinching and pulling to determine the emotional state of the user. 

Unlike the previous example, this prototype has a compatible mobile application that reports on user 

stress [56]. However, the goal of the robotic skin is for use in HRI to explore the intersection between 

man and machine with future adaptations to include skin conductance, embedded hair, and 

temperature recognition features. 

Although these prototypes do not currently function with AI, the possibility of configuring the 

artificial skins with EAI to elicit responses such as changes in speech tonality, pupil dilation, 

behaviour, temperature, and perspiration is of significant value to RHR design. This approach is 

essential as it combines a wide range of physical and psychological human responses into one system, 

proximal to the nervous system. This is highlighted in a report on an RHR named ‘H1’ with tactile 

skin sensors for enhancing HRI by responding to touch with EmoAI responses [57]. Moreover, 

developing an EAI personality depends highly on the functionality, sensory abilities, intellectual 

capacity, and application of the system [58,59]. For instance, chatbot personalities for emergency and 

rescue situations should be empathetic, but also intellectually efficient in providing quick, logical, 

and concise instructions to the user [60]. 

In regard, Gardner’s theory of multiple intelligences suggests that humans have different kinds 

of intelligence [61]. These include visual–spatial intelligence: people who are good at visualising tasks 

and spatial judgement. Linguistic-verbal intelligence: people with active reading and writing skills. 

Logical–mathematical intelligence: individuals who excel at reasoning, recognising patterns, and 

analysing formulas. Bodily-kinaesthetic intelligence: people with advanced hand-eye coordination 

and dexterity. Musical intelligence: individuals who think in patterns, rhythms, and sounds. 

Interpersonal intelligence: people who are good at understanding, relating, and interacting with 

other people. Intrapersonal intelligence: individuals who can control their emotional states. Finally, 

naturalistic intelligence: people who are in tune with nature. 

However, current modes of robotic AI primarily focus on logical, linguistical, and kinaesthetic 

intelligence and neglect the implications of interpersonal, musical, naturalistic, and intrapersonal 

intelligence [62]. This consideration is significant as interpersonal and intrapersonal intelligence are 

vital in human–human communication as these drives consider how people communicate, control 

emotions, understand, and empathise with others [63], as shown in Figure 1. The application of 

Gardener’s multiple-intelligence approach in machine learning (ML), deep learning (DL), statistics, 

database design, and EAI systems is vital in creating multi-tasking robots with human-like 

capabilities [64–67]. 

Thus, intelligence and personality are intrinsically interlinked, and personality type is a highly 

influential factor in intellectual capacity [68]. Gardner’s multiple intelligence approach in EAI has a 

significant impact on the intellectual authenticity of RHRs as human beings have a high level of 

intuition when examining and testing the abilities of AI systems [69]. Furthermore, EmoAI developed 

for RHRs is crucial in the effective and naturalistic integration of RHRs into human society [63,70]. 

This proposition is essential for RHR development as market predictions indicate a substantial rise 

in the manufacturing, sales, and development of RHRs with EAI over the next five years [71]. 
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Figure 1. Gardner’s eight intelligence types’ combinations and application in embodied artificial 

intelligence (EAI). 

2.1. Practical Applications of Humanoid Robots with EAI 

Emulating the human body and mind is the most challenging and rewarding endeavour in 

science, engineering, and technology, as the human being is the highest functioning organism in the 

known universe [72]. Although the future applications of RHRs with EAI are highly theoretical, 

emotionally intelligent robots with human-like personalities are gradually emerging in fields such as 

the following: Vyommitra, 2020: IND [73], space exploration personal assistant; Nadine, 2015: SING 

[74], social robotics platform; Erica, 2018: JAP [75], HRI research platform, and robotic actress; Robot 

C, 2020: RUS [76], helpdesk assistant; HAL, 2018: USA [77], for use in pediatric training; Jiang Lilai, 

2019: China [78] and Alex, 2019: RUS [79] and Junko Chihira, 2016: JAP [80] are 24 h robotic news 

reporters; Sophia, 2016: USA [81], social researcher and conference speaker; AI-DA, 2019: UK [82], a 

robotic artist; BINA 48, 2016: USA [83], a robotic lecturer; Telinoid, 2006: JAP [84], a healthcare 

assistant for the elderly; CB2, 2006: JAP [85], a robotic child to train young parents for adulthood; 

Diego San, 2010: USA [86], an RHR to study cognitive development in children; Atlas, 2013: USA [87], 

search and rescue robot; Affecto, 2010: JAP [88], a child robot to study human sociology; Robocop, 

2017: DXB [89], security guard; and Furhat, 2018: SWD [90], personal assistant. However, unlike 

traditional models of design and programming in robotics, the end goal of RHRs with EAI is to 

perform multiple tasks in different environments and use common tools, in order to emulate the 

natural cognitive, emotional, communicative, and physical capabilities of humans [91]. 

For example, industrial robots have the potential to generate feelings of anxiety in the workplace 

as they cannot provide the emotional support or understanding of human co-workers [92–94]. 

Therefore, a shift towards emotional industrial robots such as ‘Sawyer’ and ‘Baxter’ that emulate 

human FEs are reducing the anxiety between workers and machines in factory environments [95]. 

These ethical factors are crucial in the sociological integration of humans and RHRs as, according to 

various studies [96,97], assimilation is a critical aspect in human–robot integration because, the fewer 

the distinctions between humans and machines, the higher the potential for acceptance [98,99]. 

2.2. AI and Natural Language Processing System Design 

The RHRs developed in this study are named Baudi and Euclid, and discussed in press releases 

[100–102]. The RHRs implement Amazon Lex Deep Learning (DL) AI and Amazon Polly speech 

synthesis (SS) software to converse with people naturally. The personalities and interests of the RHRs 

reflect their age (appearance and SS) to measure how participants respond to different personality types 

during HRI. Thus, Baudi’s interests are music, food, and travel, and Euclid’s interests are in art, poetry, 
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and literature. The DL algorithm in amazon Lex permits operators to access Amazon’s large cloud-

based databank of information relating to these topics and add additional information to the data sets, 

depicted in Figure 2. The conversational AI systems function using a series of intents, which are actions 

the user wants to perform; sample utterances, which are examples of things people may say to convey 

the intent; slots and containers, which are data banks of information relating to specific words; and 

topics and fulfilments, providing an appropriate answer/s using the information provided by the user. 

 

Figure 2. Euclid and Baudi interests and hobbies cloud data. DL, deep learning; AI, artificial 

intelligence. Elastic Container Service (ECS), Network Address Translation (NAT). 

Moreover, Amazon Lex is a commercial product designed for business, and the UI is mostly 

inaccessible compared with other open-source AI applications. This configuration makes developing 

conversational AI for general-purpose communication problematic as the slots defined by the 

program are mainly for specific types of business such as restaurants, music shops, and book shops. 

Therefore, mapping together these functions to create a personality depends on selecting and 

adapting slots and instances, linking them together, and building an EAI personality type and 
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interests around those features. Furthermore, Amazon Lex limits the maximum amount of intents to 

one hundred questions per chatbot. This limitation is also problematic as it reduces the scope of 

potential questioning and has a high potential to produce incorrect or repetitive responses. However, 

this issue is negotiable by increasing the number of slots, sample utterances, and fulfilments per 

inquiry. 

Thus, configuring a separate chatbot for different elements of the robot’s personality, emotions, 

and interests provides a broader range of interaction during HRI. This approach is crucial in 

designing an EAI personality as Amazon Lex is restrictive owing to its closed-software status and UI 

design. However, the quality and accuracy of the DL AI system are highly effective for developing 

conversational AI for HRI. Furthermore, the Amazon Lex AI system integrates automatic speech 

recognition (ASR), natural language understanding (NLU), dialogue manager (DM), natural 

language generation (NLG), and SS into a unified system. These components are of significantly 

greater quality than many open-source third-party applications and function seamlessly on a cloud-

based system, which reduces system delay and system load. 

Finally, Amazon Lex is compatible with Amazon Rekognition, ML robotic vision software to 

enhance the sensory capabilities of the EAI system for RHR design. However, Amazon Rekognition 

is expensive and difficult to calibrate and is outside of the scope of resources for this study, but may 

provide a useful enhancement for future studies. Therefore, although Amazon Lex has accessibility 

issues, the system speed, extensive databases, intuitive DL, cloud-based operating system, highly 

human-like SS models, and optional machine vision libraries supersede similar conversational AI 

frameworks such as Googles Dialogflow and IBM Watson. 

3. Human–Robot Interaction Experiment 

The objective of the HRI experiment is to measure how participants perceive the authenticity, 

appearance, likeability, and personality of the RHRs. This research is significant to the field of HRI 

as there is a lack of up-to-date practical study into user preference implementing automated RHRs. 

The experiment starts with the participant seated in front of a raised table between two RHRs shown 

in Figure 3 and two computer screens. 

 

Figure 3. Realistic humanoid robots (RHRs) with EAI ‘Euclid’ and ‘Baudi’ implemented in the 

human–robot interaction (HRI) experiment. 
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A galvanic skin response (GSR) electrode is attached to the middle and index finger of the right 

hand of test subjects to measure skin conductance. The Affdexme facial expression analysis (FEA) 

system in the eye of Baudi and a webcam in situ to Euclid can detect and track the test subject’s FEs 

and rate of attention. A second camera system positioned to record the test procedure from a wide-

angle is set to monitor the test environment for post-experiment analysis. 

The RHRs activate, and the heads and eyes automatically turn towards the participants using 

the face tracking system developed in Arduino, Microsoft Kinect, and Microsoft Studio. The Pololu 

microcontrollers activate, and the RHRs start to blink, raise eyebrows, and make subtle cheek 

movements. The participants press the start button on the handheld controllers and say ‘Hello’ to 

initiate the AI system. The first stage of the practical HRI experiment divides into four 5-min 

procedures founded on the evaluation time of the 1950 Turing test, shown in Table 1. 

Table 1. First stage evaluation protocol. AI, artificial intelligence. 

Experiment Section 1 Section 2 Section 3 Section 4 

Robot Euclid Euclid Baudi Baudi 

Task 

Timed 5-min spoken 

conversation with the 

robot (appearances and 

hobbies) 

The participant plays an 

animal guessing game 

(time capped at 5 min) 

Timed 5-min spoken 

conversation with the 

robot (appearances and 

hobbies) 

The participant plays an 

animal guessing game 

(time capped at 5 min) 

Evaluation 

The correct, incorrect, 

and repeat AI responses 

are recorded using in Lex 

The correct, incorrect, 

and repeat AI responses 

are recorded using Lex 

The correct, incorrect, 

and repeat AI responses 

are recorded in Lex  

The correct, incorrect, and 

repeat AI responses are 

recorded using Lex 

The aim of sections 1 and 3 of the first stage of the HRI experiment is to assess how the 

performance of the EAI systems and how participants physiologically and psychologically respond 

to the RHRs using the biometric sensors. The participants speak to the robots using their voice, and 

when finished, they press a button on a hand-operated controller to notify the AI system that the 

conversation has finished and there is a short pause to allow the AI program time to respond. 

The manual handheld control system provided greater cohesive data input than implementing 

time/speech-controlled ASR as stammering, pauses, mumbling, and incomplete sentences had a 

notable impact on generating incorrect and please repeat responses. This approach is vital in this 

study as gaining utilisable and concise data are key for assessing and enhancing the EAI personalities. 

Sections 2 and 4 are the gamification elements of the HRI experiment and require the participants 

to engage with the robots on a much more interactive level. The game implemented in this study is 

called the animal guessing game and participants are requested to ask the RHRs a series of questions 

pertaining to the identity of the animal the RHRs are ‘thinking’ of; for example, if Euclid is thinking 

of a giraffe, the participants may ask the robot questions such as, ‘does it have four legs’, ‘does it live 

in the sea’, or ‘can it fly’, and the robot responds accordingly with yes or no answers until the 

participant can correctly identify the animal. Throughout the first stages of the experiment, the 

correct, incorrect responses, and ‘please repeat’ AI responses are recorded in Amazon Lex statistics; 

these data are then used to improve the robots’ AI after each interaction. 

The second stage of the experiment is a computerised questionnaire in which participants 

discuss the HRI experience and personal preference and evaluate the appearance, movement, AI, and 

speech of the robots. During the questionnaire stage, the robots continue to track the head movements 

of the participant, perform FEs using the Pololu, and speak to participants if requested to aid in 

answering the questionnaire. This novel interactive evaluation approach permits test subjects to 

engage with the RHRs while filling in the survey, compared with detaching the participant survey 

evaluation from the HRI test. Numerous studies across HRI implement mixed methodological 

approaches to help discern trends in large data sets and support and question participant taxonomies 

[3,103–105]. 

In accordance, this study employs a mixed methodology approach to data analysis, using both 

quantitative and qualitative methods. This study implements a GSR system and two camera-based 

FEA applications to measure the participant’s emotional responsivity on a fluctuating scale during 

the HRI examination, which exports into graphs and data fields (.CSV, .TXT, and .PDF). These data 
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are quantitative and reinforced using qualitative inquiries of the HRI survey to verify outcomes. The 

results of quantitative dichotomous questions are statistically analysed by employing Cronbach’s 

Alpha to examine internal consistency, where lower than 0.60 is unacceptable, between 0.60 and 0.70 

is undesirable, between 0.70 and 0.80 is respectable, and >0.90 is excellent [106]. Standard deviation 

and the margin of error are also factored: 0.0 exact comparison, <1.20 acceptable, and >2.0 

unacceptable [107], shown in Supplementary Materials Tables S1–S5. 

3.1. Population Sample, Recruitment, and Participant Restrictions 

The population sample size for the primary survey is 20 test subjects; based on the 20 human 

interrogators implemented in Ishiguro’s total Turing test (TTT) [108] for androids, Harnad’s TTT 

[109], Harnad & Scherzera’s robot Turing test (RTT) [110], and Schweizer’s truly total Turing test 

(TTTT) [111] for RHRs. The population sample sizes of THT and HTT are incompatible with this 

study as these approaches do not evaluate appearance, movement, speech, or AI. Similarly, the 

sample size of the most compatible and recent research [2] proved unsuitable for this study as the 

experiment neglects AI, robotic vision, tracking, speech synthesis, and biometric data gathering. 

Although the population sample for this study is relatively small, the 50-question questionnaire and 

biometric devices collect large sums of data to yield confirmable results. Gay’s [112] estimative 

sampling formula indicates the number of invitations required to recruit 20 participants, depicted in 

Equation (1): 

20 rr ÷ 10% er = 200 a (1) 

Equation (1): Gay’s estimative sampling method: rr—response range (replies needed), er—

percentile of estimated responses, a—audience (amount of invitations). 

Participants were required to have 20/20 vision or corrected vision to evaluate the authenticity 

of the RHRs and be aged over 18 years to satisfy the terms of the ethics agreement. Recruitment was 

open to all individuals of different backgrounds, gender, cultures, abilities, and nationalities. 

However, the ability to speak fluent English is a condition of this examination for the NLP to function 

accurately. Per the limitations of the Turing test, a selective recruitment and screening procedure 

ensured participants had sufficient background knowledge of the field of robotics and AI for effective 

analysis in mixed method data research [113]. Applications from students and professionals within 

robotics and AI and engineering were given preference over applicants in lesser-related areas. A short 

discussion over e-mail regarding the participants’ background, interests, and prior experience of 

robotics and AI was conducted before acceptance. 

3.2. Participants Profiles 

Per the ethical requirements for approval, all test subjects were over 18 years of age. The total 

number of experiments conducted was 21; this is owing to one participant not completing the HRI 

test because of a strong regional accent, which was unreadable by the NLP system. The subject was 

made aware of this issue and continued using type-written responses. However, this approach did 

not generate speech synthesis responses from the RHRs, which is vital for the HRI experiment, as 

Baudi’s speech synthesis accent is slow and low in tone and Euclid’s intonation is higher with a faster 

speech rate. Thus, as the test subject was unable to evaluate the RHRs’ speech synthesis during HRI, 

the results were withdrawn from the dataset. 

The number of completed experiments is 20, equivalent to the sample of the TTT and TTTT; this 

includes GSR, FEA, and a complete HRI questionnaire. Table 2 indicates the background of each test 

subject, gender, age, and previous experience of those taking part in HRI research. As there are no 

similar HRI studies that implement two automated RHRs with conversational AI, all data are 

extracted, grouped, and analysed to a high degree for future research. 
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Table 2. Human–robot interaction (HRI) experiment test subject profiles. 

Subject 

Number 

Undergrad (UG) 

Post-Grad (PG) 

Professional (PRO) 

Age, Ethnicity, and 

Gender 
Background 

Previous HRI 

Experience 

1 PG 22, Male, British Computational AI No 

2 UG 28, Male, British Robotics and AI No 

3 UG 22, Female, British Computing and Design No 

4 UG 20, Male, British Robotics and AI No 

5 PRO 31, Male British Robotics and AI Yes 

6 PRO 45, Male, British 
Engineering and Computer 

Aided Design 
No 

7 UG 29, Female, British Multimedia No 

8 PG 25, Female, British Game Design & Programming No 

9 UG 18, Female, British Film and Media No 

10 UG 20, Male, Asian Robotics and AI No 

11 UG 21, Male, Asian Robotics and AI No 

12 PRO 56, Male, British Engineering No 

13 PG 24, Female, British Games Programming No 

14 PRO 32, Female, British Film and Media No 

15 PG 25, Female British Game Design & Programming No 

16 PRO 55, Male, British Electronic Engineer No 

17 PRO 43, Female, British Human Factors & Ergonomics No 

18 PRO 38, Male, British Electronics No 

19 PRO 32, Female, British Cognitive Science No 

20 UG 25, Male, British Engineering No 

The gender ratio for this study is 11 (55%) males and 9 (45%) females; as there is one more male 

test subject than female, participant responses and results that are examined by gender group require 

significant differences in outcomes to be considered viable. The age ranges group into two equitable 

series of 18–27 (10: 50%) and 28–56 (10: 50%) to provide a comparative analysis between a higher and 

lower age group. However, as there is a greater diverse age range in the 28–56-year-old group, only 

outcomes with significant differences in results are considered viable. The analysis of the population 

sample indicated a high percentage of test subjects of Western ethnicities with English as a native 

language 18 (90%) compared with other ethnic backgrounds with English as a second language (10%). 

Therefore, ethnic and cultural diversity is an issue in this data set. However, the study was open to 

people of all cultures and backgrounds, and no preference was given to individuals from specific 

cultures or ethnicities. Ninety-five percent of participants indicated no previous experience in taking 

part in HRI experiments. 

This result is not surprising per the accessibility to RHRs and the narrow recruitment factors of 

HRI studies. However, one participant (5%) indicated previous experience in HRI within higher 

education. All participants underwent a background check, as outlined in the Turing test recruitment 

procedure. During recruitment, potential participants were asked to disclose their current/previous 

level of study and background/current experience to establish their expertise in robotics, AI, and 

relevant fields for eligibility in the HRI experiment. 

Thus, 6/20 (30%)—1:PRO (professional), 1:PG (post-grad), 4:UG (undergrad)—participants had 

previous or current experience in the field of robotics and AI; this percentage is high owing to the 

related nature of the study and the targeted online recruitment of AI and robotics students and staff 

members from the university. Further, 5/20 (30%)—2:UG, 3:PG:—subjects had experience in areas 

relating to computing and AI; this includes computer programming, application design, and AI 

games programming. Further, 5/20 (25%)—4:PRO, 1:UG—participants had experience in engineering 

and electronics with knowledge of robotic system design. Morover, 2/20 (10%)—1:PRO, 1:UG—

individuals work or study in film and media, with experience in animation and programming. 

Two out of twenty (10%)—2:PRO—subjects are professionals in areas relating to human 

psychology and physiology, to which both participants indicated an interest and personal study of 
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AI. A further 8/20 (40%) of participants are current university students studying undergraduate 

degrees, 4/20 (20%) of subjects are undertaking postgraduate degrees at either Master’s or Ph.D. 

Lastly, 8/20 (40%) of candidates are professionals within their field with significant personal and 

industrial experience in AI, robotics, and related areas, as shown in Table 2. 

Questionnaire categories: The RHR and EAI user preference and design questionnaire consist of 

10 open-ended questions followed by 15 quantitative questions measured on five-point Likert scales 

covering the following: likeability, human-likeness, and competence, shown in Table 3, based on 

previous studies [105,114,115]. The qualitative and quantitative HRI questionnaire results are 

comparatively analysed against the GSR, FEA, and AI analytic data for a comprehensive cross-

analysis of all data fields. 

Table 3. Quantitative HRI survey questions based on previous HRI research [116]. 

Question 11 Like 1 2 3 4 5 Dislike 

Question 12 Incompetent 1 2 3 4 5 Competent 

Question 13 Human-like 1 2 3 4 5 Machine-Like 

Question 14 Friendly 1 2 3 4 5 Unfriendly 

Question 15 Fake 1 2 3 4 5 Natural 

Question 16 Responsible 1 2 3 4 5 Irresponsible 

Question 17 Unkind 1 2 3 4 5 Kind 

Question 18 Aware 1 2 3 4 5 Unaware 

Question 19 Moving Naturally 1 2 3 4 5 Moving Rigidly 

Question 20 Pleasant 1 2 3 4 5 Unpleasant 

Question 21 Unintelligent 1 2 3 4 5 Intelligent 

Question 22 Unconscious 1 2 3 4 5 Conscious 

Question 23 Awful 1 2 3 4 5 Nice 

Question 24 Sensible 1 2 3 4 5 Foolish 

Question 25 Artificial 1 2 3 4 5 Lifelike 

4. HRI Questionnaire 

Question 1. Which robot do you think looks most human-like, Baudi or Euclid? 

A total of 18/20 (90%) cited Euclid as the more human-like RHR. Of this dataset, 14/18 mentioned 

that Euclid’s skin appeared more human-like, 3/18 conferred Euclid’s mouth as the most human-like, 

and 1/18 cited Euclid’s eyes as more aesthetically realistic than Baudi’s. Moreover, 1/20 (5%) of results 

explained that Baudi’s hair implants made the RHR look human-like. One out of twenty (5%) of test 

subjects cited Baudi’s skin tone as more human-like than Euclid’s. A key theme in the results of Q1 

is the aesthetical quality of the silicone skins, which many test subjects testified as having a significant 

impact on the RHRs’ visual authenticity. Both silicone skins were commissioned from the same artist 

to minimise visible irregularities between the RHRs and aesthetical and material quality. Euclid’s 

skin wrinkles were a recurring theme in participant responses. 

RHRs are typically young in appearance and designed without skin imperfections or blemishes 

[33,100], which is not an accurate representation of the natural tonal variance and ageing of human 

skin. This aesthetical consideration is significant to RHR design as, although Baudi’s skin is not 

flawless, the RHR has no skin wrinkles and fewer skin imperfections. Therefore, as Euclid is much 

older in appearance with a greater range of facial defects, the RHRs’ appearance further blurs the line 

between human beings and RHRs. More male (M) subjects cited Euclid as humanlike than females 

(F): F8, M10 and Baudi: F1, M1. There was little difference between the higher and lower age groups, 

H = ages (18–27) and L = ages (27–56), Euclid: L9, H9 and Baudi: L1, H1. 

Question 2. Which robotic voice did you prefer/understand better, Baudi or Euclid? 

In total, 13/20 (65%) of test subjects preferred the voice of Baudi. Of that dataset, 8/13 explained 

that Baudi’s speech was slower and easier to understand than Euclid’s and 5/13 stipulated that 
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Baudi’s accent was easier to understand than Euclid’s. Moreover, 7/20 (35%) cited Euclid’s speech 

synthesis as the most understandable. Of those results, 3/7 cited the pitch and tone of Euclid’s voice 

as the most human-sounding. A key theme in the HRI results considered the American accents of the 

robots, as the speech synthesis program implemented in this study only outputs American accents. 

This configuration appeared to impact natural speech understanding of non-American listeners. A 

recurring theme in the test results was the preference of the American accent as 2/20 stated the 

American accents were off-putting, and 4/20 suggested that they liked the American accents. 

However, 4/20 of test subjects explained that the American accents were difficult to understand at 

times. A higher number of male test subjects preferred the speech synthesis of Baudi owing to the 

speech rate, depth, and tone: M9, F4 compared with Euclid M2, F5. Age-related statistics indicated that 

the lower age group preferred the speech synthesis accent of Baudi: L9, H4 compared with Euclid: L1, 

H6. 

Question 3. Did you feel empathy/emotion towards Euclid or Baudi? 

Here, 8/20 (40%) explained that they did not feel empathy or emotions towards the RHRs 

because the appearance, movement, and AI did not feel entirely human. However, out of that dataset, 

3/6 advocated that, although they did not feel any emotion, they felt relaxed, happy, and calm during 

HRI with the RHRs, counter to the UV. Moreover, 5/20 (25%) cited that they felt no emotion or 

empathy because the robots were just heads without a body, which made them feel inhuman. 

This outcome is justifiable with the current configurations of the RHRs as time limitations 

prohibited the design, development, and production of a robotic body and implementing a still 

manakin type body was difficult owing to spatial constraints. Further, 5/20 (25%) of test subjects 

suggested that they felt empathy towards Baudi owing to his unnatural appearance, which resembled 

human disability. A further 2/5 explained that Baudi’s eyes played a role in instigating an emotional 

response. Moreover, 2/20 (10%) felt that Euclid’s realistic appearance made them feel awkward and 

intimidated, which coincides with the UV. However, this sample is not sufficient in size to support 

the existence of the uncanny valley. 

A higher number of female subjects felt an emotional response towards the RHRs compared 

with male subjects—F6, M1—and a greater number of males indicated no emotional responsivity—

F3, M10. Out of that dataset, F5 cited an emotional response when interacting with Baudi and F1, M1 

cited an emotional response during HRI with Euclid. Similarly, there was a notable difference in the 

age-related statistical analysis. L8, H5 cited no emotional response and L2, H5 suggested an 

emotional interaction. Out of that dataset, L2, H3 mentioned feeling an emotional response when 

interacting with Baudi and L0, H2 with Euclid. 

Question 4. How did you feel when Baudi made eye contact with you? 

Here, 8/20 (40%) of test subjects stated that they felt nothing resembling an emotional response 

when Baudi made eye contact with them. Of this dataset, 5/8 indicated that they did not feel the same 

way as when making eye contact with other humans. A further 3/8 suggested that the eye contact 

interaction was not consistent to make it feel like the RHR was looking at them naturally. 

Moreover, 12/20 (60%) stated that they felt an emotional response when making eye contact with 

Baudi, and 7/12 suggested that it felt as if the robot was looking back at them. Of these results, 3/12 

cited Baudi’s eye aesthetics as making the eyes appear creepy. Another 2/12 explained that the pupil 

dilation function made the eyes look humanlike. Gender statistical analysis indicated a higher 

percentage of female participants felt an emotional response to Baudi’s eyes than male test subjects—

F7, M1 compared with no emotional response F2, M10. However, the results of the age-related 

statistical analysis indicated little correlation between an emotional response L3, H5 and no emotion 

L7, H5. 

Question 5. How did you feel when Euclid made eye contact with you? 

Here, 13/20 (65%) suggested that they did not feel anything when Euclid made eye contact with 

them. A further 8/13 argued that making eye contact with Euclid was like looking into the glass eyes 

of a doll or the eyes of a painting. Moreover, 3/20 suggested that Euclid’s eyes were not real enough 



Informatics 2020, 7, 28 12 of 37 

 

to instigate an emotional reaction. Another 2/13 gave no reasoning other than to state that they did 

not feel anything relating to an emotional response. A further 7/20 (35%) suggested an emotional 

response to making eye contact with Euclid. Another 4/7 cited that they felt like the robot was looking 

back at them, or another human was looking at them through a camera. Another 2/7 advocated that 

Euclid had dead eyes which made them feel unnerved. Finally, 1/7 explained that Euclid maintained 

constant eye contact with them, which made them feel unsettled. Gender statistical analysis 

suggested no correlation between male and female test subjects—no emotional response: F5, M8 and 

emotional response: F4. M3. Similarly, the results of the age-related statistical analysis indicated no 

discernable relationships between emotional responsivity L6, H7 and no emotion L4, H3. 

Question 6. Which robot head do you think moved most naturally, Euclid or Baudi? 

Here, 16/20 (80%) of candidates cited Euclid’s head as moving the most naturally. Of this dataset, 

9/16 explained that they felt a greater natural interaction when communicating with Euclid compared 

to Baudi. A further 4/16 stipulated that Euclid exhibited a more extensive range of FEs. 

Moreover, 2/16 mentioned Euclid’s mouth as a decisive factor in the RHRs naturalistic 

movement, and 1/16 of outcomes suggested that Euclid’s head moved more naturally. Another 4/20 

(20%) explained that they felt Baudi exhibited a more extensive range of natural movement. A further 

3/4 of test subjects advocated that Baudi exhibited a broader range of FEs. Finally, 1/4 suggested that 

Baudi made consistent eye contact with them. 

These outcomes suggest that Euclid functioned with a higher range of movement than Baudi. 

However, both robots are of the same build and implement the same tracking and face detection 

applications and operate using a single Kinect system paired between the two robots to minimise 

interference. Therefore, there should be few distinctions between the functionality of the RHRs apart 

from the eye and mouth components. Thus, it is probable that the appearance and skin movement of 

the RHRs influenced how test subjects perceived the movement of the RHRs, as both robots instigate 

eyebrow raises and cheek raises at random intervals using the Pololu microcontroller. Thus, it is 

probable that, during individual sessions, one robot expressed a more extensive range of these 

functions owing to the randomisation of the FEs. This configuration may account for the differences 

in emotive HRI as the RHRs function differently with a wide range of variables during each session. 

These outcomes support the findings of the literature review that suggest poor aesthetical quality 

supersedes quality functionality, and vice versa [20,21]. Gender analysis indicated that more male 

test subjects cited Euclid’s movement (M10, F6) as more naturalistic than Baudi (F3, M1). However, 

age-related statistics inferred little discernible difference between the naturalistic movement of Euclid 

(L8, H8) and Baudi (L2, H2). 

Question 7. Which robotic head expressed the greatest range of facial expressions? 

Here, 11/20 (55%) advocated that Euclid performed the broadest range of FEs. Another 4/11 

suggested that Euclid’s eyebrow raises and cheek lifts were prominent, 2/11 explained that Euclid 

appeared to respond to questions with FEs, 2/11 argued that Euclid’s skin wrinkles and skin 

stretching made FEs appear more realistic, and 3/11 stipulated that Euclid portrayed a wider range 

of emotive FEs than Baudi. A further 8/20 (40%) suggested that Baudi displayed the broadest range 

of FEs. Another 5/8 argued that Baudi appeared to synchronise FEs with AI responses more 

coherently. Another 3/8 claimed that Baudi performed the widest range of FEs. Finally, 1/20 (5%) of 

test subjects advocated that they could not distinguish which RHR displayed the broader range of 

FEs. 

These outcomes suggest that natural skin aesthetics play a significant role in displaying FEs in 

RHRs. This approach is vital in developing greater human-like RHRs as typical methods in RHR 

design neglect skin blemishes and wrinkles, as these features do not fit in with the paradigm of 

cutting-edge technologies. Gender statistical analysis suggested that a greater number of male 

participants thought Euclid expressed the broadest range of FEs (F2, M9) and F6, M2 stated Baudi 

displayed the most FEs. F1 unclassified. Age-related analysis indicated that more subjects in the 

higher age group thought Euclid displayed the most FEs—EL: 3, EH: 8 and BL: 6, BH: 2. L1 

unclassified. 
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These results correspond with existing literature in FE recognition in human psychology. For 

example, a comprehensive study measuring facial FE recognition [117] discovered that older adults 

focus on the mouth area for gauging emotive FEs and younger individuals concentrate on the eyes. 

This consideration is significant as the robotic mouths are greater articulated and expressive than the 

robotic eyes, per the results of the literature review (practical versus virtual HRI for evaluating the 

UV). Thus, ‘own age advantage’ may account for test subjects in the higher age group recognising 

more FEs during HRI, as their attention is on the mouths of the RHRs rather than the eyes. 

Question 8. Which AI did you prefer communicating with during the conversation? 

Here, 13/20 (65%) preferred to interact with Euclid’s AI. Of this dataset, 4/13 indicated that they 

felt Euclid had more relatable interests and hobbies than Baudi. Another 7/13 cited that they felt 

Euclid gave more accurate and fully formed responses than Baudi’s and 2/13 advocated that Euclid’s 

personality was more engaging than Baudi’s. A further 7/20 (35%) preferred Baudi’s AI system, 3/7 

of that dataset cited that Baudi gave more accurate and full responses, and 2/7 stated that they had 

more in common with the interests of Baudi. Moreover, 2/7 explained that they felt Baudi was the 

more engaging RHR. During HRI, many individuals attempted to deceive the RHRs into giving 

incorrect responses by asking questions outside the scope of the AI system. For example, one 

participant asked Baudi, “How many hairs do you have on your head?”, which produced an incorrect 

response of “My eyebrows are made of human hair”. Male test subjects: M8, F5 preferred to converse 

with Euclid, while M3, F4 preferred Baudi, and the higher age group favoured Euclid’s AI and the 

lower age group preferred Baudi’s AI: EL: 4, EH: 9 and BL: 6, BH:1. 

Question 9. Which AI system did you prefer during the guessing game? 

Here, 11/20 (55%) preferred Baudi’s conversational AI during the guessing game session. 

Another 8/11 cited Baudi as the more competent RHR. A further 2/8 of candidates advocated that 

Baudi had a broader knowledge base, and 1/8 stated that Baudi was more engaging. Moreover, 9/20 

(45%) cited that they preferred to interact with Euclid during the guessing game session. Finally, 5/9 

argued that Euclid produced more correct answers, 3/9 stated that Euclid had a wider knowledge 

base, and 1/9 explained that Euclid was more naturalistic during HRI. 

As with the previous test, several subjects asked unusual or irrelevant questions to deceive the 

AI system. Male subjects preferred to interact with Baudi (M8, F3) and females with Euclid (M3, F6). 

However, there was little notable difference in the age-related factors—Baudi: L5, H6 and Euclid: L5, 

H4. 

Question 10. Did you prefer communicating with an older or younger-looking robot? 

Here, 12/20 (60%) preferred to communicate with Euclid. Of this dataset, 5/12 explained that 

they felt more comfortable interacting with an older looking robot because they felt trust towards an 

RHR with an aged appearance. Moreover, 2/13 suggested they prefer to interact with an older looking 

RHR as it was less intimidating than a younger model. A further 3/13 suggested that Euclid reminded 

them of older relatives, which made HRI less intimidating. Another 2/13 stated that as they felt Euclid 

looked more humanlike than Baudi, Euclid’s highly realistic appearance made the communication 

more naturalistic. Another 8/20 (40%) advocated that they prefer to communicate with Baudi, and 5/8 

explained that Baudi appeared less threatening because his appearance was softer. 

Moreover, 2/8 indicated that they felt Baudi was more engaging than Euclid and 1/8 suggested 

that, as they interact more with younger people daily, they felt a greater connection with a young-

looking RHR. These results indicate that participant outcomes were closely divided between 

communication with a younger-looking robot and an older looking RHR. This finding is intriguing 

as it correlates with the age-related statistics, which infers that the higher age group favoured 

interaction with Euclid (H8, L4) and the lower age group preferred HRI with Baudi (H2, L6). This 

outcome is vital to this study as the results suggest that younger test subjects felt a greater connection 

with a younger-looking RHR, and the older age group felt a greater connection with an older looking 

RHR. Moreover, although Baudi is designed to look younger than Euclid, neither RHR is assigned a 

specific age, meaning participants were left to decide how old the robots appeared to them. 
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Interestingly, several subjects interpreted the appearance of the RHRs as threatening or intimidating, 

depending on how old they looked. This result may relate to how young people perceive older adults 

and older people see younger individuals in society. Gender factors did not influence decision making; 

F5, M7 preferred to interact with a robot with an elderly appearance and F4, M4 preferred HRI with a 

younger-looking robot. 

4.1. Comparative Analysis of Qualitative and Quantitative Results (All Test Subjects) 

Series 1A. Likeability: (Q11, Q14, Q17, Q20, and Q23). On average, Baudi rated 4/5 more likeable 

than Euclid 1/5. Internal consistency was high in this subset, 0.8 α, indicating high levels of 

consistency in participant responses. These results confirm the outcomes of Q3, Q6, and Q7 in which 

candidates cited a more significant emotional response to Baudi during HRI. However, these results 

contrast with the results of Q10, where test subjects preferred to interact with an older looking RHR 

(Euclid) over a younger-looking RHR (Baudi). These outcomes collectively conclude that participants 

found Baudi more likeable than Euclid. 

Series 2A. Human-likeness: (Q13, Q15, Q18, Q21, and Q25). Test subjects rated Euclid 4/5 more 

human-like than Baudi 1/5. Coefficient factors were high in the subset, 0.9 α, suggesting a high level 

of accuracy in participant outcomes. However, 1/5 (Q15) of test subject outcomes were of an 

equivalent rating on the five-point Likert scale (3). These results validate the findings of Q1 of the 

HRI questionnaire, where test subjects cited Euclid as appearing, functioning, and moving more 

humanlike than Baudi. Therefore, these outcomes collectively conclude that test subjects found 

Euclid more humanlike than Baudi. 

Series 3A. Competency: (Q12, Q16, Q19, Q22, and Q24). Test subjects rated Euclid 3/5 as more 

competent than Baudi 2/5. However, out of these results, 2/3 (Q19 & Q24) rated equivalent (3) on the 

five-point Likert scale. Internal consistency was acceptable, 0.7 α, suggesting some variance in the 

outcomes of participants’ responses. These results collate with the findings of Q6–Q8, which cite 

Euclid as moving and responding to participants more competently than Baudi. However, these 

results contrast with the outcomes of Q2 and Q13, which suggested Baudi’s AI functioned with a 

higher degree of competency during the guessing game session and clarity in speech synthesis during 

verbal HRI. These results collectively confirm that participants rated Euclid as the more competent 

RHR during HRI. 

4.2. Comparative Analysis of (Q1–14) and (Q21–35) Results (Male & Female) 

Series 1B. Likeability: (Q11, Q14, Q17, Q20, and Q23). Male subjects liked Euclid 3/5 more than 

female subjects 2/5, and 3/5 (Q14 and Q20) equivalent ratings of (3). Female subjects rated Baudi as 

more likeable 3/5 than male subjects 1/5; coefficient factors were high in this subset, 0.8 α, suggesting 

high consistency in the results of Series 1B. These results correspond with the results of Q3 as more 

female test subjects cited feeling an emotional response to Baudi: F5/M0, and Q4–Q5 were female 

participants stated feeling emotional during eye contact interfacing with Baudi: F7, M1. These results 

collectively conclude that male subjects preferred Euclid and female test subjects favoured Baudi. 

Series 2B. Humanlikeness: (Q13, Q15, Q18, Q21, and Q25). Group analysis of Series 2 indicates 

that both gender groups rated Euclid as more humanlike (4/5) and females liked Baudi more than 

male subjects M0/5, F1/5. Internal consistency was high, 0.9 α, in the collective results of Series 2. 

These outcomes support and validate the findings of Q1, where both gender groups rated Euclid as 

more humanlike: Euclid: F8, M10 and Baudi: F1, M1. In Q5, both gender groups preferred Euclid’s 

eye aesthetics: Euclid: F6, M9 and Baudi: F2, M2. In Q6, both gender groups cited Euclid’s eyes as 

moving the more human-like: Euclid: F5, M7. 

Series 3B. Competency: (Q12, Q16, Q19, Q22, and Q24). Male test subjects rated Euclid as more 

competent: (E: M2/5, F1/5) and (B: M1/5, F1/5); 2/5 of ratings were equivalent [3], Q16 and Q24. 

Internal consistency was acceptable, 0.7 α, suggesting some level of variance in participant results. 

These results correlate Q7 in which male test subjects cited Euclid as displaying a broader range of 

FEs than Baudi: E: F2, M9 and B: F6, M2. Q8 as male test subjects achieved higher accuracy in Euclid’s 

5-min topical conversation AI test, ME: 146 (51%), FE: 136 (49%) and MB: 88 (56%), FB: 65 (44%). In 
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Q9, male participants achieved higher accuracy scores in the 5-min guessing game AI test. However, 

these results contrast with the results of Q2, where more males cited Baudi’s speech synthesis as more 

understandable than Euclid, (B: M9, F4 and E: M2, F5). These outcomes are difficult to collectively 

verify owing to the level of variance in results of the gender statistical analysis. 

4.3. Comparative Analysis of (Q1–14) and (Q21–35) Results (Age Groups) 

Series 1C. Likeability: (Q11, Q14, Q17, Q20, and Q23). The higher age group (18–27) liked Euclid: 

EL: 1/5, EH: 3/5 and 1/5 (Q20) rating of (3) and the lower age group BL3/5, EH1/5, and 1/5 (Q23) rating 

of (3). Coefficients were 0.8 α, indicating a high level of consistency in participant outcomes. 

These findings correlate with the results of Q3: emotions during HRI (E: L2, H3 and B: L0, H2). 

Q6–Q7 eye contact interaction, Euclid: L6, H7 and Baudi L3, H5. In Q14, the lower age group 

preferred HRI with Baudi and the higher age group with Euclid: E: H8, L4 and B: H2, L6. Therefore, 

these results collectively substantiate and validate the findings that the younger age group preferred 

HRI with Baudi, and the more mature age group preferred HRI with Euclid. 

Series 2C. Humanlikeness: (Q13, Q15, Q18, Q21, and Q25). Euclid rated L4/5 and H 3/5 and Baudi 

L0/5 H1/5. Coefficient factors were high in the dataset, 0.9 α, suggesting a high level of consistency 

in participant responses. These results correspond with the outcomes of Q1, where both age groups 

cited Euclid as the more humanlike RHR: E: L9, H9 and B: L1, H1. In Q4, both age groups suggested 

Euclid’s eye movement as the more aesthetically realistic: E: H8, L6 and B: H2, L2, L1 unclassified. 

However, these results conflict with the results of Q5 as the higher age group preferred the eye 

movement of Euclid, E: H8, L4 and B: H2, L6. These results collectively conclude that both age groups 

rated Euclid as the most human-like RHR. 

Series 3C. Competency: (Q12, Q16, Q19, Q22, and Q24). The lower age group rated Euclid as 

more competent 3/5 than the higher age group 2/5, and (3) in Q13, Q16, and Q24 and Baudi rated 2/5 

in the higher age group and 1/5 in the lower age group. Internal consistency was acceptable, 0.7 α, 

suggesting some variance in participant outcomes. These results correlate with Q6 and Q7, where 

both age groups rated Euclid as moving more naturally in head movement: E: L7, H8 and B: L3, H1 

and mouth movement L10, H1. However, these results conflict with Q2 speech synthesis, B: L8, H4 

and E: L2, H6. Q11 FEs, EL: 3, EH:7 and BL: 6, BH: 3. Q12 AI topical conversation session EL: 129 

(46%), EH: 154 (54%) and BL: 95 (39%), BH: 145 (61%) and Q13 5-min AI guessing game: EH: 369 

(54%), EL: 316 (46%). The quantitative questionnaire results of Series 3C conflict with the findings of 

the qualitative results (Q1–10), making the outcomes of this dataset difficult to cross-analyse and 

substantiate. 

4.4. Analysis of FEA and GSR Biometric Data Feeds 

The following section examines the FEA and GSR biometric data feed extracted from test 

subjects during the HRI experiment. The FEA reads the following FEs from 0–100%. 

1. Rest, 0–100%: this configuration is the default position of the FEA system. 

2. Frown, 0–100%: the frown function measures negative Fes, which examine the position of the 

lips, cheeks, and eyebrows. 

3. Smile, 0–100%: similar to the frown function, the FEA system measures the correlation and 

position of the lips, cheeks, and eyebrows to determine if and to what extent the test subject 

expresses a positive facial expression. 

4. Disengage, 0–100%: this mode engages when the system is unable to track the user. 

5. Attention, 0–100%: the FEA system measures the frequency of the test subjects eye positions with 

the camera position to monitor attention rates. 

The GSR data combined with the FEA data provide an overview of the type and level of stress 

experienced by the test subjects at any given state. This combinatory approach permits the 

verification of positive and negative emotional states in the GSR and FEA data to eliminate 

interference from other facial movements such as speech, gesturing, and facial tics that may register 

as a positive or negative facial expression in the FEA application. This method acts as a low pass 



Informatics 2020, 7, 28 16 of 37 

 

filtration system and permits greater accurate measurements of frequency, duration, and range of 

emotive FEs for comparative analysis between the AI results and the findings of the HRI 

questionnaire. 

4.4.1. All Test Subjects: 5-Min Conversation. FEA and GSR Data Analysis 

The results of the FEA biometric data analysis indicated that test subjects spent more time in the 

rested state when interacting with Euclid (Avg 18%). Compared with Baudi (Avg 15%), suggesting 

participants spent more time in the neutral facial position when interacting with Euclid. Negative 

FEA data was higher in Euclid’s results (Avg intensity (INTST), 8%, Fq: 228, Avg: 11) compared with 

Baudi (Avg INTST, 7%, Fq: 213, Av: 11), suggesting subjects experienced greater negative stimulus 

during HRI with Euclid. Positive FEA results cite a greater positive FE HRI with Baudi (Avg INTST, 

10%, Fq: 200, Avg: 10) compared with Euclid (Avg INTST, 9%, Fq: 201, Avg: 10). The attention level 

was marginally higher in Baudi’s FEA results, Avg: 73% compared with Euclid, Avg: 72%, as shown 

in Figure 4. However, subjects exhibited more disengaging behaviour with Baudi than Euclid (B: 53. 

Avg 3, E: 41. Avg 2). The FEA results validate the results of the Series 1A (likeability), Series 2A 

(Human-likeness), and Series 2A (competency). These outcomes collectively suggest greater 

humanlike RHRs emit higher levels of the UV. 

Interestingly, although the FEA results were marginal, the range of internal consistency was low 

across the data set (0.04 α/0.5 α), suggesting very high levels of variance. Therefore, per the results of 

the FE data analysis, although test subjects expressed a wide range of FEs during the 5-min AI 

conversation experiment, these did not significantly change in frequency or intensity between the 

RHRs. However, the GSR data analysis indicated higher levels of stress during HRI with Euclid: total 

Avg, 17.8 μS. (Neg stimuli: Avg 5.6 μS/Pos stimuli: Avg 4.2 μS) compared with Baudi: Total Avg, 12.3 

μS. (Neg stimuli: Avg 2.1 μS/Pos stimuli: Avg 4.2 μS), suggesting test subjects experienced a greater 

negative HRI experience with Euclid as cited in the results of Series 1A. 

 

Figure 4. Five-min topical AI conversation experiment: all test subjects. Biometric data—Left: Euclid 

facial expression analysis (FEA) results, Right: Baudi FEA results, Middle: Euclid and Baudi galvanic 

skin response (GSR). 

4.4.2. Euclid: Females and Males, 5-Min Conversation. Biometric Data Analysis 

The FEA results indicate that male test subjects spent more time in the rested FE state when 

interfacing with Euclid (M: 20%, F: 16%). Negative FEA data were higher in male subjects, M: (Avg 

INTST, 9%, Fq: 118, Avg: 11), F: (Avg INTST, 7%, Fq:110, Avg: 12). Comparatively, male subjects 

displayed greater positive FE than female participants, M: (Avg INTST, 11%, Fq: 125, Avg: 11), F: 

(Avg INTST, 7%, Fq: 76, Avg: 8). These results suggest that male participants expressed the greatest 

range and intensity of negative and positive FE. The average attention level was similar in the results 

of male and female test subjects, M: Avg 73% and F: Avg 72%. However, male subjects exhibited more 

disengaging behaviour than female subjects, (M: 26. Avg 2, F: 19. Avg 2), suggesting greater accuracy 

in the results of female subjects, as shown in Figure 5. 

Coefficient factors ranged between (0.03 α/0.7 α), indicating a high level of variance in the test 

results. However, as in the previous set of results, male test subjects expressed similar FE intensities 
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to females, yet FE frequencies were significantly higher in male subjects (M: 429, F: 243), indicating 

that males engaged with greater emotional FE and HRI with Euclid. Conversely, the GSR biometric 

data analysis showed that female test subjects exhibited higher levels of stress during HRI with Euclid 

compared with male participants, F: Total Avg, 19.3 μS. (Neg stimuli: Avg 4.9 μS/Pos stimuli: Avg 

4.4 μS) and M: Total Avg, 16.6 μS. (Neg stimuli: Avg 3.2 μS/Pos stimuli: Avg 2.8 μS). The GSR results 

contradict the FE results; therefore, it is likely that, although female test subjects displayed less FE 

than males, female subjects responded with higher electrodermal activity ‘stress’. The FEA test results 

support the outcomes of Series 1B (likeability) and Series 3B (competency), and per the UV, the GSR 

results support the findings of Series 2B (human-likeness) as both gender groups rated Euclid as 

humanlike at a rate of (4/5). 

 

Figure 5. Euclid: 5-Min topical AI conversation, male/female subjects. Biometric data—Left: male FEA 

results, Right: female FEA results, Middle: male and female GSR. 

4.4.3. All Test Subjects, 5-Min Guessing Game, Biometric Data Analysis 

The FEA results suggest that candidates spent more time in a neutral FE state when interacting 

with Baudi during the 5-min guessing game session (B: 13%, E: 14%). Negative FEA indicates that 

test subjects experienced higher levels of negative FE intensity when interacting with Euclid. 

However, negative FE frequencies were more elevated in Baudi’s results, Euclid: (Avg INTST, 10%, 

Fq: 322, Avg: 16) and Baudi: (Avg INTST, 9%, Fq: 325, Avg: 16), suggesting that, although participants 

expressed a higher rate of negative FE during HRI with Baudi, negative FE intensity was greater 

during HRI with Euclid. Positive FEA results indicate higher levels of positive FE during HRI with 

Baudi, E: (Avg INTST, 7%, Fq:205, Avg:10), B: (Avg INTST, 8%, Fq: 197, Avg: 10), suggesting test 

subjects experienced greater positive FE during HRI with Baudi. The average level of attention was 

higher during HRI with Baudi, E Avg 71% and B: Avg 74%. However, disengaging behaviour in test 

subjects was significantly higher in Baudi’s results, but similar on average (E: 20. Avg 2, B: 49. Avg 

2), suggesting specific individuals exhibited high levels of disengaging behavior, which was not 

representative of the whole dataset. 

These results correlate with Series 1A (likeability), where subjects cited Baudi positive emotional 

responses. Internal consistency was low across the dataset ranging between (−0.06 α/0.4 α), indicating 

a high level of variance in FEA data. On average, GSR results suggest higher levels of positive 

electrodermal activity during HRI with Baudi and greater negative GSR during HRI with Euclid, which 

supports the FEA results and the results of Series 2A (human-likeness) and Series 3A (competency) per 

the UV. Euclid: Total Avg, 10.10 μS. (Neg stimuli: Avg 4.3 μS/Pos stimuli: Avg 2.8 μS) and Baudi: Total 

Avg, 12.10 μS. (Neg stimuli: Avg 3.1 μS/Pos stimuli: Avg 5.2 μS), depicted in Figure 6. 
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Figure 6. Five-min AI guessing game experiment: all test subjects. Biometric data comparison—Left: 

Euclid FEA results, Right: Baudi FEA results, Middle: GSR results. 

4.4.4. Baudi: Females and Males, 5-Min Conversation. FEA/GSR Data Analysis 

The FEA results cite that female subjects spent more time in the rested FE state during HRI with 

Baudi (F: 16%, M: 15%). Negative FEA was higher in male subjects, M: (Avg INTST, 7%, Fq: 125, Avg: 

11), F: (Avg INTST, 6%, Fq:88, Avg:10), suggesting that, although FE intensity was similar in both 

gender groups, the frequency of negative FE was significantly higher in male subjects. 

Comparatively, positive FEA was higher in male participants, M: (Avg INTST, 11%, Fq: 114, Avg:10), 

F: (Avg INTST, 8%, Fq: 86, Avg: 10), indicating similar levels of intensity in both gender groups. 

However, positive and negative FE frequencies were considerably higher in male test subjects 

compared with female participants. The FEA results suggest that male subjects experienced higher 

levels of emotive FE during HRI with Baudi than female subjects. The average attention level was 

higher in the male test group, M: Avg 74% and F: Avg 72% and similar in disengaging behaviour, 

(M:29. Avg 3, F:23. Avg 3), suggesting marginally higher accuracy in the results of female 

participants. Internal consistency was low in the dataset ranging from (0.02 α/0.7 α), indicating high 

variability in the FEA test results. 

The FEA results correspond with the Series 1B (likeability) and Series 3B (competency), as male 

subjects rated the RHRs higher than females. However, the FEA data conflict with the outcomes of 

Series 2B (human-likeness), which cited both gender groups as experiencing similar emotions during 

HRI. GSR data analysis reinforces the results of the FEA data and questionnaire results, as male 

subjects discharged higher levels of electrodermal activity than female participants, M: Total Avg, 

15.3 μS. (Neg stimuli: Avg 3.6 μS/Pos stimuli: Avg 4.2 μS) and F: Total Avg, 8.8 μS. (Neg stimuli: Avg 

2.1 μS/Pos stimuli: Avg 3.5 μS), suggesting that male subjects experienced significantly higher levels 

of positive and negative emotional stimulus during HRI, depicted in Figure 7. 

 

Figure 7. Baudi: 5-min topical AI conversation, male/female subjects. Biometric bata—Left: male FEA 

results, Right: female FEA results, Middle: male and female GSR results. 
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4.4.5. Euclid: Age Groups, 5-Min Conversation. FEA/GSR Data Analysis 

The FEA results indicate that the lower age group spent significantly more time in a neutral FE 

state, L: 21%, H: 15%, during HRI with Euclid. Negative FEA was higher in the lower age group for 

FE intensity and frequency, L: (Avg INTST, 9%, Fq:118, Avg: 12), H: (Avg INTST, 8%, Fq: 110, Avg: 

11). Positive FEA results indicate that both age groups experienced similar positive FE intensities and 

total frequencies. However, the average positive FE frequency was greater in the higher age group. 

L: (Avg INTST, 9%, Fq: 94, Avg: 9), H: (Avg INTST, 9%, Fq: 107, Avg: 11). 

The average level of attention was higher in the lower age group, L: Avg 73% and H: Avg 71% 

and the lower age group exhibited higher levels of disengaging behaviour (L: 19. Avg 2, H: 22. Avg 

2), suggesting similar levels of accuracy in both gender groups. Coefficients were incredibly low 

across the dataset, ranging between (−0.05 α/0.6 α), indicating a high level of variance in FEA test 

results. These outcomes support the findings of Series 1C (likeability), where the higher age group 

rated a greater positive HRI experience with Euclid. Furthermore, the FEA outcomes verify the 

results of Series 2C (human-likeness), where the lower age group rated Euclid as more human-like, 

and Series 3C (Competency), where both age groups cited similar positive and negative emotions 

during HRI. 

The results of the GSR data analysis indicated greater levels of electrodermal activity positive 

and negative stimuli in the higher age group, L: Total Avg, 22.5 μS. (Neg stimuli: Avg 4.4 μS/Pos 

stimuli: Avg 5.1 μS) and H: Total Avg, 13.2 μS. (Neg stimuli: Avg 6.2 μS/Pos stimuli: Avg 3.4 μS). The 

GSR outcomes add validity to the findings of the FEA data analysis as they suggest that the lower 

age group exhibited greater negative emotions during HRI with Euclid compared with the senior 

group, as shown in Figure 8. 

 

Figure 8. Euclid: 5-min topical AI conversation age groups. Biometric data—Left: (27–56) FEA results, 

Right: (18–27) FEA results, Middle: (18–27)/(27–56) GSR. 

4.4.6. Baudi: Age Groups, 5-Min Conversation. FEA/GSR Analysis 

The FEA results indicate that the lower age group spent more time in a rested FE state (L: 17%, 

H: 14%). Negative FEA intensity was proximal in both age groups; however, negative FEA frequency 

was marginally greater in the higher age group, L: (Avg INTST, 7%, Fq: 101, Avg: 10), H: (Avg INTST, 

7%, Fq: 112, Avg: 11). These results suggest that the higher age group experienced similar negative 

emotions during HRI with Baudi. Conversely, positive FEA was significantly greater in the higher 

age group, H: (Avg INTST, 9%, Fq: 103, Avg: 10), L: (Avg INTST, 8%, Fq: 97, Avg: 10), indicating that 

the higher age group expressed greater positive emotional HRI with Baudi. 

The average attention level was higher in the lower age group, L Avg 73% and H: Avg 71%, and 

the higher age group exhibited significantly greater disengaging behaviours (H: 33. Avg 3, L: 19. Avg 

2). These results suggest greater concentration during HRI and higher accuracy in the results of the 

lower age group. Coefficient factors were relatively low in the dataset, ranging between (0.2 α/0.6 α), 

suggesting a high level of variability in the FEA test results. GSR data analysis indicates that, on 

average, the lower age group exhibited greater electrodermal activity than the higher age group, L: 

Total Avg, 16.8 μS. (Neg stimuli: Avg 2.4 μS/Pos stimuli: Avg 4.1 μS) and H: Total Avg, 7.9 μS. (Neg 
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stimuli: Avg 3.1 μS/Pos stimuli: Avg 2.5 μS). However, both age groups discharged similar levels of 

negative electrodermal activity, and the higher age group exhibited greater positive GSR readings, 

which support the outcomes of the FEA data analysis, as shown in Figure 9. These results collectively 

support the findings of Series 2C (human-likeness) and Series 3C (competency), as test subjects cited 

similar ratings and positive and negative emotions during HRI with the RHRs. However, more 

significantly, these results support the outcome of Series 1C (likeability), which suggests that the 

lower age group preferred HRI with a younger-looking RHR. 

 

Figure 9. Baudi: 5-Min topical AI conversation age groups. Biometric data—Left: (18–27) FEA results, 

Right: (27–56) FEA results, Middle: (18–27, 27–56) GSR. 

4.5. FEA/GSR Biometric Data Analysis: 5-Min Guessing Game HRI 

4.5.1. Euclid: Females and Males 5-Min Guessing Game, FEA/GSR Analysis 

The FEA results indicate that male subjects spent more time in a neutral FE position (M: 14%, F: 

13%). Negative FE results were higher in male test subjects, M: (Avg INTST, 11%, Fq: 179, Avg: 16), 

F: (Avg INTST, 9%, Fq: 143, Avg: 16). Positive FEA was also higher in male candidates (Avg INTST, 

8%, Fq: 118, Avg: 11) compared with female participants (Avg INTST, 7%, Fq: 87, Avg: 10), suggesting 

male test subjects exhibited greater emotive FE during the 5-min guessing game HRI session. The 

FEA data support the findings of Series 1B (likeability) and 3B (competency), where male subjects 

cited comparable results. Coefficient factors were low across the dataset, ranging between (0.01 α/0.5 

α), indicating a high level of variance in FEA results. 

However, male subjects exhibited significantly more disengaging behaviour than female 

subjects (M: 32. Avg 3, F: 15. Avg 2), suggesting greater accuracy and attention in the results of female 

subjects. The results of the average attention rate support these outcomes as female participants rated 

higher levels of concentration than males, M: Avg 71% and F: Avg 72%. GSR data analysis indicated 

that female test subjects demonstrated higher levels of positive and negative electrodermal activity 

than male candidates, Males: Total Avg, 9 μS. (Neg stimuli: Avg 3.6 μS/Pos stimuli: Avg 1.5 μS) and 

Females: Total Avg, 14 μS. (Neg stimuli: Avg 3.1 μS/Pos stimuli: Avg 2.4 μS), as shown in Figure 10. 

The FEA and GSR results add validity to the results of the 5-min topical conversation session with 

Euclid, where male subjects expressed greater emotive FE, and female participants expressed greater 

emotional GSR during HRI. These results support the findings of Series 2B (human-likeness), where 

both gender groups rated comparable feelings and emotions during HRI. 
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Figure 10. Euclid: 5-min AI guessing game test: male/female subjects. Biometric data—Left: male FEA 

results, Right: female FEA results, Middle: male and female GSR. 

4.5.2. Baudi: Females and Males, 5-Min Guessing Game, FEA/GSR Analysis 

The FEA results indicate that female test subjects registered greater neutral FE states during HRI 

with Baudi, (M: 12%, F: 13%). The negative FEA outcomes suggested male subjects exhibited greater 

intensity and frequency of negative FE, M: (Avg INTST, 10%, Fq: 187, Avg: 17). F: (Avg INTST, 8%, 

Fq: 138, Avg: 15), and both gender groups expressed similar positive FE intensity M: (Avg INTST, 

8%, Fq: 109, Avg: 10), F: (Avg INTST, 8%, Fq: 88, Avg: 10). However, positive FE frequencies were 

higher in the results of male test subjects. The FEA results support the outcomes of Series 1B 

(likeability) and Series 2B (human-likeness), where male subjects rated Baudi as the less humanlike 

and competent RHR compared with female candidates—M0/5, F1/5. 

Attention levels were higher in female test subjects, M: Avg 72% and F: Avg 76%, and male 

subjects exhibited greater disengaging behaviours (M: 29. Avg 3, F: 20. Avg 2), suggesting greater 

immersion and accuracy in the results of female subjects. Internal consistency was low across the 

dataset, ranging between (0.01 α/0.4 α), indicating high levels of variance in the FEA data. GSR results 

suggest that female test subjects exhibited higher levels of electrodermal activity than male 

candidates, M: Total Avg, 8 μS. (Neg stimuli: Avg 2.2 μS/Pos stimuli: Avg 1.9 μS) and F: Total Avg, 

16 μS. (Neg stimuli: Avg 4.2 μS/Pos stimuli: Avg 3.9 μS), as highlighted in Figure 11. Interestingly, 

these results correlate with Baudi’s FEA and GSR results during the 5-min topical conversation 

session. Therefore, it is highly likely that the male test subjects expressed greater positive and 

negative emotive FE, and female participants dispersed higher levels of positive and negative 

electrodermal activity during HRI with Baudi. These outcomes are significant as results cite notable 

differences between the gender groups in FEA and GSR data, which adds greater validity to the 

results of Series 3B (competency). 

 

Figure 11. Baudi: 5-min AI guessing game test: male/female test subjects. Biometric data—Left: male 

FEA results, Right: female FEA results, Middle: male and female GSR. 

4.5.3. Euclid: Age Groups: 5-Min Guessing Game, FEA/GSR Analysis 
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The FEA results suggest that the lower age group spent more time in a rested FE state (L: 14%, 

H: 13%). Negative FEA was higher in the lower age group in intensity and frequency, L: (Avg INTST, 

11%, Fq: 177, Avg: 18), H: (Avg INTST, 8%, Fq: 145, Avg: 15). Conversely, positive FEA intensity and 

frequency were greater in the higher age group, L: (Avg INTST, 7%, Fq: 101, Avg: 10), H: (Avg INTST, 

8%, Fq: 104, Avg: 10). The negative and positive FEA outcomes parallel with Euclid’s previous FEA 

results in the 5-min topical conversation session. The FEA results correspond with the findings of 

Series 1C (likeability), where the higher age group cited having a positive HRI, and Series 2C (human-

likeness) and Series 3C (competency), where the higher age group rated Euclid as more humanlike 

(per the UV). 

Internal consistency was low, ranging between (0.01 α/0.5 α), indicating high variability in the 

FEA data. The average attention rate was greater in the higher age group, L: Avg 69% and H: Avg 

73%. However, the higher age group exhibited more disengaging behaviours (L: 29. Avg 3, H: 20. 

Avg 2). These results suggest higher attention levels in the lower age group and greater distraction 

in the higher age group. The FEA results contrast with the 5-min topical conversation session AI data. 

A probable cause for this shift is the parameters of the gamification session, which requires 

concentration and strategy, compared with the 5-min topical conversation session, which is relaxed 

and unstructured. GSR readings indicate that the lower age group exerted higher levels of positive 

electrodermal activity than the higher age group, and negative GSR was higher in the lower age 

group, H: Total Avg, 15 μS. (Neg stimuli: Avg 3.6 μS/Pos stimuli: Avg 2.3 μS), and L: Total Avg, 8 

μS. (Neg stimuli: Avg 2.9 μS/Pos stimuli: Avg 3.9 μS). The GSR results correlate and support the 

results of the FEA data, as shown in Figure 12. 

 

Figure 12. Euclid: 5-min AI guessing game, age groups (18–27)/(27–56). Biometric data—Left: (18–27) 

FEA results, Right: (27–56) FEA results, Middle: (18–27)/(27–56) GSR. 

4.5.4. Baudi: Age Groups: 5-Min Guessing Game, FEA/GSR Analysis 

The FEA results indicate higher levels of resting FE behaviour in the lower age group (L: 12%, 

H: 13%). Negative FEA intensity was greater in the higher age group, and negative FEA frequency 

was higher in the lower age group, L: (Avg INTST, 9%, Fq: 164, Avg: 16), H: (Avg INTST, 10%, Fq: 

161, Avg: 16). Conversely, positive FEA results indicate that the higher age group expressed greater 

intensive and frequent FE, L: (Avg INTST, 8%, Fq: 95, Avg: 10), H: (Avg INTST, 9%, Fq: 102, Avg: 10), 

as illustrated in Figure 13. Coefficient factors were low, ranging between (0.01 α/06. α), indicating 

high levels of variance in the FEA data. Attention levels were greater in the higher age group, L: Avg 

73% and H: Avg 75%, and disengaging behaviour was lower in the higher age group (L: 26. Avg 3, 

H: 23. Avg 2). The FEA results conflict with the previous FEA results registered during the 5-min 

topical conversation session, as observed in Euclid’s results. The GSR results indicate that the lower 

age group exerted significantly higher levels of positive and negative electrodermal activity, H: Total 

Avg, 18 μS. (Neg stimuli: Avg 4.1 μS/Pos stimuli: Avg 3.3 μS) and L: Total Avg, 6 μS. (Neg stimuli: 

Avg 1.9 μS/Pos stimuli: Avg 1.1 μS). These outcomes support the findings of Series 1C (likeability) 

and Series 2C (human-likeness), and conflict with the results of Series 3C (competency), as the lower 

age group rated Baudi as the more competent RHR. 
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Figure 13. Baudi: 5-min AI guessing game, age groups (18–27)/(27–56). Biometric data—Left: (18–27) 

FEA results, Right: (27–56) FEA results, Middle: (18–27)/(27–56) GSR. 

However, the lower age group exhibited higher GSR and FEA readings in the gamification 

session than the topical conversation component. These results suggest the lower age group 

experienced a greater immersive and visceral HRI during the guessing game session compared with 

the more mature age group, which exerted higher biometric feedback during the verbal 

communication component. These outcomes are explored and comparatively analysed against the 

Amazon Web Services (AWS) AI data in the following section. 

4.6. Topical Conversational and Guessing Game AI Data Analysis 

The following section examines the results of the 5-min topical conversation and the guessing 

game AI sessions recorded in AWS during HRI. The results are categorised and cross-analysed with 

the HRI questionnaire results and FEA and GSR data to validate findings. 

4.6.1. Euclid and Baudi: All Test Subjects, Topical Conversational AI Data 

Euclid delivered 283/545 (52%) of questions correctly, Figure 14, and Baudi achieved a lower 

rating of 241/497 (48%), Figure 15. Euclid produced incorrect responses at a rate of 158/545 (28%) and 

Baudi 153/497 (31%), and Euclid executed the ‘please repeat’ command of 144/545 (20%) compared 

with Baudi of 105/497 (21%). These results do not tally with the findings of Q8, as subjects cited Euclid 

as providing more correct responses, E: 7/13, B: 3/7. However, the AI test results support the outcomes 

of Series 3A, as subjects rated Euclid as the more competent RHR (incorrect and repeat responses), 

and the FEA and GSR, as subjects rated higher levels of positive biofeedback during HRI with Baudi. 

 

Figure 14. Euclid: 5-min topical conversation, AI data (all test subjects). 
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Figure 15. Baudi: 5-min topical conversation, AI data (all test subjects). 

4.6.2. Euclid and Baudi: Males and Females, Topical Conversation AI Data 

Male test subjects achieved a greater number of correct AI responses than females during HRI 

with Euclid, EM: 146 (47%) and EF: 136 (55%), depicted in Figure 16, and similarly with Baudi, BM: 

133 (45%) and BF: 108 (54%), Figure 17. The AI test results support the outcomes of Q9 as more male 

test subjects—M8, F5—preferred to converse with Euclid, and similarly in the results of Baudi (M3, 

F4), as Euclid achieved greater accuracy (E: 283, B: 241). However, males scored a higher rate of 

incorrect responses than females—EM: 96 (31%), EF: 62 (25%) and BM: 88 (30%), BF: 65 (32%)—and 

in instigating the ‘please repeat’ response, EM: 66 (22%), EF: 48 (20%) and BM: 72 (25%), BF: 33 (16%), 

which suggests male test subjects asked a higher number of questions outside the scope of the AI 

system. These results support the findings of Series 3B (competency), as male candidates rated Euclid 

as the more competent RHR, and correlate with the gender-based FEA and GSR biometric data results 

during the topical conversation session. 

 

Figure 16. Euclid: 5-min topical conversation, AI data (males and females). 
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Figure 17. Baudi: 5-min topical conversation, AI data (males and females). 

4.6.3. Euclid and Baudi: Age Groups Topical Conversational AI Data 

The higher age group achieved a greater number of correct responses during HRI with Euclid, 

EL: 129 (47%), EH: 154 (55%); similar results during HRI with Baudi, BL: 95 (39%), BH: 145 (61%); in 

incorrect answers, EL: 87 (55%), EH: 71 (45%) and BL: 74 (41%), BH: 79 (30%); and in instigating the 

‘please repeat’ response, EL: 59 (21%), EH: 55 (20%) and BL: 61 (27%), BH: 44 (16%), suggesting a 

greater competency in the higher age group, which corresponds with the outcomes of Q8: EL: 4, EH: 

9 and BL: 6, BH: 1, shown in Figures 18 and 19. However, the AWS AI findings contradict the results 

of Series 3C (competency), as the lower age group rated Euclid as the most competent RHR and the 

lower age group cited Baudi as the more competent RHR. Nevertheless, these outcomes support the 

findings of the biometric data analysis as the higher age group exhibited greater FEA, GSR, and 

attention during the topical conversation session. 

 

Figure 18. Euclid: 5-min topical conversation, AI data (age groups). 
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Figure 19. Baudi: 5-min topical conversation, AI data (age groups). 

4.6.4. Euclid and Baudi: All Test Subjects, Guessing Game AI Data 

The objective of the AI guessing game was to engage subjects with a greater challenging mode 

of HRI to examine how the DL AI functioned at a faster rate of processing. The AI results indicate 

that Baudi achieved a marginally higher accuracy rating than Euclid: B: 705/1235, (57%) and E: 

685/1223, (56%). However, Baudi generated a higher sum of incorrect answers than Euclid, B: 

257/1235, (21%) and E: 245/1223, (20%), and ‘please repeat’ replies, E: 292 (24%) and B: 273 (22%), as 

shown in Figures 20 and 21. These results support the findings of Series 3A (competency), as test 

subjects rated the RHRs as competent, E: 3/5 and B: 2/5 with (2/5 equivalent ratings of 3). Significantly, 

the results of Q9 (guessing game) conflict with the findings of Series 3A, yet validate the AWS AI 

data. Thus, Euclid rated as more competent in movement and Baudi in AI interaction during the 

guessing game session. Furthermore, the biometric data analysis validates the AI results as Baudi 

rated higher in positive FEA/GSR than Euclid during this session. 

 

Figure 20. Euclid: 5-min guessing game results, AI data (all participants). 
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Figure 21. Baudi: 5-min guessing game results, AI data (all participants). 

4.6.5. Euclid and Baudi: Male and Female Subjects Guessing Game AI Data 

The AWS AI results indicate a higher number of male subjects achieved correct responses than 

females: EM: 394 (57%), EF: 291 (55%) and BM: 415 (59%) BF: 290 (54%). However, male candidates 

incurred a higher sum of incorrect responses than females: EM: 128 (18%), EF: 117 (22%) and BM: 140 

(20%), BF: 117 (22%), and similar in the ‘please repeat’ response, EM: 168 (25%), EF: 124 (23%) and 

BM: 147 (21%), BF: 126 (24%), shown in Figures 22 and 23. These figures are significant as female test 

subjects asked fewer questions than males FE: 532 (Avg 27), ME: 691 (Avg 35) and FB: 533 (Avg 27), 

MB: 702 (Av 35). These AI test scores support the outcomes of Q9, as M8, F3 preferred to interact with 

Baudi and M3, F6 with Euclid, and validate the outcomes of Series 3B, as male subjects rated Euclid 

as the more competent RHR. Furthermore, the results of Series 3B (competency) cited high variability 

in participant responses that parallel with the frequencies of incorrect and ‘please repeat’ responses 

indicated in AWS AI analytics. 

 

Figure 22. Euclid: 5-min guessing game, AI data (males and females). 
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Figure 23. Baudi: 5-min guessing game, AI data (males and females). 

4.6.6. Euclid and Baudi: Age Groups Guessing Game AI Data 

The higher age group achieved greater accurate responses during the guessing game session: 

correct responses: EL: 316 (54%), HE: 369 (61%), BL: 338 (57%), BH: 367 (57%); incorrect responses: 

EL: 119 (20%), EH: 126 (18%), BL: 126 (21%), BH: 131 (21%); and inciting the ‘please repeat’ response: 

EL: 151 (26%), EH: 141 (21%), BL: 132 (22%), BH: 141 (22%), shown in Figures 24 and 25. However, 

there was little statistical difference in the age-related results of Q9—Baudi: L5, H6 and Euclid: L5, 

H4. These results conflict with the outcomes of Series 3C (competency) owing to the high variance in 

participant outcomes. However, the biometric data analysis indicated higher levels of positive 

feedback in the lower age group than in the more senior age group, which collates with the AI 

response data. Significantly, the level of attention was greater in the higher age group during the 

guessing game session, which validates the AWS AI data. Nevertheless, these outcomes are 

problematic to substantiate owing to the high level of variance between the results of the HRI 

questionnaire, FEA, GSR, and AWS AI data. 

 

Figure 24. Euclid: 5-min guessing game, AI data (age groups). 
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Figure 25. Baudi: 5-min guessing game, AI data (age groups). 

5. Conclusions 

The results of this study show that the younger age group preferred HRI with a younger looking 

RHR and the more senior age group preferred HRI with an older looking RHR, reinforced by the 

FEA/GSR data. These results provide a strong foundation for the appropriation of age in RHR design 

in fields such as older looking RHRs in care for the elderly and younger looking RHRs as social 

companions for the young, vulnerable, and isolated. Furthermore, test subjects stated that they felt 

greater trust towards an older looking RHR compared with a more youthful RHR, as it reminded 

them of the trust and care of older relatives. Similarly, the gender-based analysis indicated that male 

test subjects preferred HRI with Euclid (older in appearance) and females with Baudi (younger in 

appearance). Although there is little scientific evidence to substantiate the reasoning behind this 

outcome, it is an interesting finding that requires further study. 

Upon review of the AWS AI data, male subjects asked more questions outside the scope of the 

AI system compared with female test subjects. This anomaly was observed during HRI and identified 

in the outcomes of the questionnaire when test subjects purposefully attempted to deceive the AI 

system into giving incorrect responses. Thus, more male subjects prompted the RHRs into giving 

incorrect responses compared with female participants. This outcome coincides with the FEA data 

analysis as male subjects expressed significantly greater disengaging behaviours and reduced 

attention levels than female participants. Thus, it is plausible that, as the RHRs are modelled on the 

male form, male participants felt a need to test the capacity and abilities of the system more than 

female subjects. This hypothesis may account for the irregularities between the HRI questionnaire 

and biometric data results as, in the survey, many male subjects cited feeling no emotions during 

HRI. However, these outcomes contradicted the FEA data that firmly showed male subjects exerted 

significantly higher levels of positive and negative FE biometric feedback than females. 

Finally, another possible method of evaluating RHRs is to compare two identical systems side 

by side. This method would reduce influential factors such as different ages and gender and narrow 

the scope of evaluation to specific variables such as static and dilating pupils. However, creating 

identical RHRs is incredibly difficult owing to the variability in materiality, aesthetics, and 

application of hand-made silicone skin onto the underlying exoskeleton. This visual irregularity is 

observable in the RHR ‘Sophia’, as new generations of the RHR look distinctly different from the first 

owing to the application and reapplication of the silicone skin. 

Nevertheless, as in this study, comparing RHRs with different appearances, genders, and 

personalities permits the investigation of gender and age in terms of user preference, which yielded 

highly interesting and intriguing results for modelling user preference in EAI and appearance in 

future RHR design. 
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5.1. Employing FEA and GSR to Support Questionnaire Results 

The combinatory approach to biometric data gathering, camera feed analysis, and AI analytics 

provided critical insights into the behaviours and emotions of test subjects not cited in the HRI 

questionnaire. For example, male participants expressed significantly greater positive and negative 

emotive FE than females during HRI. Yet, the majority of male subjects cited feeling no emotions in the 

HRI questionnaire. Similarly, the lower age group expressed greater levels of negative FEA and GSR 

during the 5-min topical conversation and guessing game AI sessions, which correlates with the results 

of the AI test data, as the lower age group achieved a lower number of correct answers and a higher 

number of incorrect and ‘please repeat’ responses during HRI. However, these results conflict with the 

questionnaire outcomes as there were little discernable differences in participant results, as male 

subjects stated feeling little to no emotions during HRI. Furthermore, the implementation of the GSR 

and FEA systems did not restrict the participant’s freedom of movement and accessibility to the RHRs. 

This outcome is significant for future HRI studies as these non-invasive methods of biometric 

data gathering permitted test subjects to interact and communicate with the RHRs naturally without 

any obstruction or interference from the biometric sensors. Employing a mixed-method biometric 

data gathering approach permitted a more precise analysis of the data feeds, as high and low levels 

of FEA were confirmable by the GSR data, and a drop/loss of GSR signal was verifiable with the FEA 

data and camera feed. This method provided consistent and valid biometric data for analysis, as 

anomalies in the data feed could be attributed to either incredibly higher or low levels of emotional 

stimulus or as a result of issues with the connectivity of the biometric systems. Finally, an issue with 

the GSR and FEA mixed-method approach was the delay in the data processing as the GSR lagged 

the FEA, which resulted in a time offset of approximately ±5 s between the feeds. However, this issue 

was negatable by examining the Hz frequencies of the devices to determine the processing rate and 

electrode sensitivity of the systems to help synchronise the data fields. Moreover, the Esense GSR 

application provides the precise offset of the stimulus to the biometric readings, in seconds and 

milliseconds, which also helped precisely align the two datasets for comparative analysis. 

5.2. Ethical and Broader Issues in RHR Design and Application in Society 

The outcomes of this study provided critical data regarding how the test subjects perceive the 

future of RHRs in society. One key area that test subjects highlighted as a suitable application for 

RHRs with EAI was the care and support industry, as the RHRs provided useful and entertaining 

content in a manner proximal to human–human communication. In support, 45% of participants 

stated that, as the RHRs cannot make personal judgements or become offended, HRI was more 

relaxed, honest, and free-flowing than human–human communication. This outcome correlates with 

previous studies [118–120] and the results of the HRI age-related statistical analysis, which suggested 

younger test subjects preferred HRI with a younger-looking RHR and the more mature age group 

with an older looking RHR. This study covered two key areas of RHR and EAI ethics relating to robot 

rights and the fallibility of human perception in RHR design. Firstly, 75% of candidates stated that 

RHRs should be treated as machines, regardless of human-likeness and intelligence. However, this 

approach is susceptible to a fundamental flaw in human perception, because, if an RHR can 

authentically emulate a human in a manner proximal to the human condition in real-world 

conditions, then there is no definitive way of determining if the RHR is human or robot without an 

internal examination. 

Finally, 45% of participants stated that EmoAI would be useful in human society. Interestingly, 

more male subjects cited applications of emotional AI, which correlates with the outcomes of the FEA 

data, as male subjects exhibited more emotional stress than females. Thus, it is likely that male subjects 

felt that they could express emotions freely during HRI compared with recounting them in the HRI 

questionnaire. Similarly, more subjects in the higher age group cited the use of EmoAI in society. These 

results interlink with the biometric, AWS AI data analytics, and HRI questionnaire results, as the higher 

age group exhibited greater levels of positive and negative emotional stimulus during HRI. 
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