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Abstract

A major challenge in flood mapping using multi-criteria decision analysis

(MCDA) is the selection of the flood risk factors and the estimation of their rel-

ative importance. A novel MCDA method through the integration of two state-

of-the-art MCDA methods based on catastrophe and entropy theory is

proposed for mapping flood risk in the Peninsular Malaysia, an area very sus-

ceptible to flooding events, is presented. A literature review was undertaken

which identified the various socioeconomic, physical and environmental fac-

tors which can influence flood vulnerability and risk. A set of variables was

selected using an importance index which was developed based on a question-

naire survey. Population density, percentage of vulnerable people, household

income, local economy, percentage of foreign nationals, elevation and forest

cover were all deemed highly relevant in mapping flood risk and determining

the zones of maximum vulnerability. Spatial integration of factors using the

proposed MCDA revealed that coastal regions are highly vulnerable to floods

when compared to inland locations. Flood risk maps indicate that the north-

eastern coastal region of Malaysia is at greatest risk of flooding. The prediction

capability of the integrated method was found to be 0.93, which suggests good

accuracy of the proposed method in flood risk mapping.

KEYWORD S
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1 | INTRODUCTION

Extreme rainfall-driven events such as flood or droughts
have increased in severity and frequency in many regions
as a result (Nashwan, Ismail, & Ahmed, 2019a; Sediqi
et al., 2019). In many parts of the world, floods have had
devastating impacts in terms of loss of life and property
(Dewan, 2013a; Nashwan, Shahid, & Wang, 2019b; Pour,

Bin Harun, & Shahid, 2014; Yaseen et al., 2019). To ame-
liorate the risks associated with flooding events on the
development of a region, it is important to define the spa-
tial distribution of at-risk locations, particularly in the
context of ongoing climate change (Pour, Wahab, Shahid,
Asaduzzaman, & Dewan, 2020; Santos & Reis, 2018).

Tropical regions tend to be more susceptible to
changes in climate (Noor, Ismail, Shahid, Nashwan, &
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Ullah, 2019; Rahman et al., 2019; Shahid et al., 2017),
and thus, more susceptible to climate variability
(Mishra & Liu, 2014). Recent studies have reported the
adverse consequences on the societies and economies of
tropical regions arising from the increasing frequency
and severity of weather extremes (Noor et al., 2019; Noor,
Ismail, Chung, Shahid, & Sung, 2018; Sa'adi, shahid,
Ismail, Chung, & Wang, 2017; Shahid et al., 2016; Wong,
Yusop, & Ismail, 2018). Malaysia, located in the tropics,
is one country which has experienced climate and hydro-
logical extremes in recent years (Khan et al., 2019; May-
owa et al., 2015; Sa'adi et al., 2017). The impacts of
extreme rainfall and monsoonal rain-driven floods are
increasingly evident in this region (Nashwan, Ismail, &
Ahmed, 2018a). The flood in December 2014, affected
thousands of people (Shahid et al., 2017) and resulted in
huge economic loss to the country. As a result of these
type of events, the development of flood management
processes has been proposed to mitigate the negative
impacts on people and the economy (Salarpour, Yusop,
Yusof, Shahid, & Jajarmizadeh, 2013).

Extreme rainfall is generally considered to be the
major driver of flooding in Malaysia. Various physical
and socioeconomic factors, however, can also amplify the
impact of these flood events. Alias et al. (2019) identified
forest cover, elevation, and population density as having
a great influence on the spatial variability of flood
impacts. In assessing the flood risk of a region, it is
important that physical and social factors be considered
(Rahman et al., 2019).

Numerous studies on flood vulnerability and risk
mapping have been conducted in recent years (Chen
et al., 2014; Dano et al., 2019; Dewan & Yamaguchi,
2008; Elsheikh, Ouerghi, & Elhag, 2015; Feloni,
Mousadis, & Baltas, 2019; Jato-Espino, Lobo, & Ascorbe-
Salcedo, 2019; Matori, Lawal, Yusof, Hashim, &
Balogun, 2014; Nigussie & Altunkaynak, 2019; Pradhan &
Youssef, 2011). In general, different factors can be consid-
ered in a multi-criteria decision analysis (MCDA) system.
The major challenges in developing flood risk maps using
MCDA are involved in the selection of indicators and the
weighting of the factors according to their importance in
defining flood risk. A large number of physical, environ-
mental and socio-economic factors are typically responsi-
ble for shaping the vulnerability of an area (Cutter
et al., 2008; Dewan, 2013a; Dewan, 2013b; Rahman
et al., 2019). Many criteria for the selection of indicators
have been proposed in the literature, including their
availability, measurability, practicality, relevance, and
degree of responsiveness and sensitivity (Alamgir
et al., 2019; Nashwan, Shahid, Chung, Ahmed, &
Song, 2018b; Yli-Viikari et al., 2007). The selection
criteria for indicators should be based on the specific

study area characteristics and the research questions to
be solved.

Various knowledge-based and data-driven MCDA
methods have been proposed for the mapping of risk
associated with natural hazards such as flooding
(Dewan, 2013a; Dewan, 2013b). In a knowledge-driven
method, the perceived influence of factors on flood sus-
ceptibility is based on the opinion of the decision-makers.
Therefore the outcomes of a knowledge-based MCDA are
always prone to be biased due to personal preferences
(Nashwan et al., 2018b, Ahmed et al., 2015). This limits
their applicability in many cases, particularly in regards
to risk mitigation decision-making. The data-driven
method attempts to overcome this drawback by assigning
weightings to the different factors based on the properties
of data itself (Ahmed, Shahid, & Nawaz, 2018; Alamgir
et al., 2019). For this reason, the data-driven MCDA
approach is often preferred for flood risk mapping.

Catastrophe and entropy theories are two such
MCDA methods which have been found to be highly
effective in the modelling and mapping of different natu-
ral hazards (Agarwal et al., 2016; Ahmed et al., 2015; He-
Hua, Jian-Jun, Xiao-Yan, & Ye, 2018; Nashwan &
Shahid, 2019b; Singh, Jha, & Chowdary, 2018; Zhou, Ma,
Chen, Wu, & Luo, 2018). Catastrophe theory was devel-
oped to characterise discontinuous dynamic systems
where changes are abrupt. It is a subjective method that
estimates factors' importance based on internal structure
of different factors, and thus assists in avoiding human
bias in the decision-making process. Entropy is a mea-
sure of uncertainty of a random variable. It can be used
to evaluate how the controlling factors influence the out-
come; e.g., how different socio-economic factors govern
flood susceptibility. Therefore, it can also be used in a
similar manner to catastrophe theory in assigning
weights without the input of expert opinion. Both
methods, however, have inherent advantages and disad-
vantages when determining the indicators. The weight
assigned to an indicator by catastrophe theory is often
influenced by the number of groups into which the indi-
cator has been classified (Cui & Singh, 2015). Therefore,
indicator weights are partly influenced by human judge-
ment (Al-Abadi, Shahid, & Al-Ali, 2016). This shortcom-
ing can be avoided using an entropy-based weighting
method (Castillo, Castelli, & Entekhabi, 2015; Tang &
Wang, 2013). Integration of these two theories can pro-
vide some robustness to the weighting approach when
assessing the risks associated with flood events.

A data-driven MCDA approach, integrating both
catastrophe and entropy theories, is proposed in this
study in order to provide an unbiased evaluation of the
spatial pattern of flood risk in Peninsular Malaysia. The
study has considered flood risk as a system - consisting of
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different subsystems which can be evaluated using indi-
cators. Entropy theory was used to assign the ranks of the
indicators of the sub-systems while the catastrophe the-
ory was used to assign weights to the different subsys-
tems. The methodology proposed in this study can be
employed for systematic evaluation of flood vulnerability
factors, and to evaluate natural hazard risk in other
regions.

2 | METHODS AND MATERIALS

2.1 | Geography and climate of
peninsular Malaysia

Peninsular Malaysia (latitude 1.20� - 6.40�N; longitude
99.35� - 104.20�E) encompasses a land area of
130,598 km2 (Figure 1). The topography consists of an
irregular, inland mountainous region surrounded by
shorelines, notably around the Peninsula. It is situated
within a tropical climatic zone with year-round high tem-
perature and humidity. The daily average temperature in
the Peninsula varies between 21 and 32� C. Rainfall of

the region is controlled by the interaction between two
monsoonal systems and the heterogeneous land and sea
surfaces. Most rainfall occurs during the two monsoonal
seasons, the northeast monsoon between November and
February, and the southwest monsoon between May and
August (Muhammad et al., 2019). The northeast mon-
soon is the more intense of the two systems. Extreme
rainfall events can often occur in consecutive days, lead-
ing to severe flooding, particularly in the west of Peninsu-
lar Malaysia (Nashwan, Ismail, & Ahmed, 2019a).

2.2 | Geospatial data

Secondary data was obtained and used in this study. Dis-
trict level socio-economic data of Peninsular Malaysia
was collected from the Statistical Yearbooks of Malaysia
(DOSM, 2018). The flood hazard map prepared by the
Department of Irrigation and Drainage (DID) in 2016
using long-term historical inundation data, was collected
and digitised. Maps of various physical factors related to
flood vulnerability (such as forest cover) were generated
from existing land use maps of 2018. An elevation map

FIGURE 1 The geographical

location and topography of

peninsular Malaysia
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was produced from an Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER) digital ele-
vation model (DEM) (https://earthexplorer.usgs.gov/).

3 | METHODOLOGY

3.1 | Importance index for identification
of flood vulnerability factors

Flood vulnerability factors were first identified through a
literature survey. The identified factors were carefully
checked, and those found relevant to the study area were
selected. A questionnaire survey was conducted among
the various stakeholders in order to rank the factors
according to their importance in defining flood vulnerabil-
ity in Peninsular Malaysia. A non-random judgmental pro-
cedure was followed to select the samples from academics,
disaster management experts, local councillors and people
involved in emergency management (e.g., relief and rescue
operations). The judgmental sampling was conducted as
only a limited number of people possess knowledge on dif-
ferent factors, affecting flood vulnerability. A total of
50 samples was selected. Attention was given to maintain
homogeneity in different groups. The age of the respon-
dent was between 36 and 54 years with a median age of
44 years. A structured questionnaire was distributed to
selected samples. All of them voluntarily participated in
the survey and returned their responses within a week.
Respondents were asked to rank the factors on a scale of
1 to 3. A wider scale (e.g., 1 to 5) does not significantly
change the ranking of factor, but does have the potential
to confuse the respondents, so a scale of 1 to 3 was used.
The responses were used to rank the factors using the
Importance Index (Lim & Alum, 1995) as defined below:

Importance Index =
3n1 + 2n2 + 1n3
3 n1 +n2 +n3ð Þ ð1Þ

where n1, n2 and n3 are the total responses of 1, 2 and
3 provided by the respondents during the questionnaire
survey. The values of the importance index range from
0 to 1, where 1 indicates highly important, and 0 indicates
no importance.

The factors are usually ranked according to the
importance index, and the top-ranked factors are consid-
ered to be the most useful factors to include in the devel-
opment of flood vulnerability maps. Usually, the first few
top-ranked factors are selected, but the determination of
these tends to be subjective, and can be biased to a
modeller's preference. This potential lack of objectivity
can be overcome through the use of a data classification
method known as Jenks optimization (Jenks, 1967). This

method uses an importance index to classify derived
values according to their variance. The classification is
derived in such a way that variance in the importance
index within a class is minimised, but among the classes
is maximised. Factors that were ranked top by the Jenks
optimization tool were considered for inclusion in the
flood vulnerability mapping work.

3.2 | Integration of catastrophe and
entropy theories

Using catastrophe theory, flood vulnerability is consid-
ered to comprise of several subsystems, each of which
can be evaluated based on one or more criteria or indica-
tors. The values of all indicators are first normalised
between 0 and 1, with 1 indicating high vulnerability to
flooding (e.g., high population density indicates high vul-
nerability to flood). Equation (2) is used for low vulnera-
bility (e.g., more forest cover indicates less vulnerability
to flooding) and Equation (3) is employed for high vul-
nerability. The normalisation formulae (Wang, Liu,
Zhang, & Chen, 2011) are given by:

Y =

1

a2−Xð Þ= a2−a1ð Þ
0

0≤X ≤ a1

a1 <X < a2

X ≥ a2

8>><
>>:

ð2Þ

Y =

1

X−a1ð Þ= a2−a1ð Þ
0

X ≥ a1

a1 <X < a2

0≤X ≤ a1

8>><
>>:

ð3Þ

where X is the indicator, a1 and a2 are minimum and
maximum values of the indicator. The catastrophe fuzzy
membership functions are then used to assign ranking to
each indicator. This helps in removing incompatibility
issues between the initial indicator values (Ahmed
et al., 2015; Wang et al., 2011). There are seven catastro-
phe models that can be used for the estimation of catas-
trophe fuzzy membership functions depending on the
number of indicators of a subsystem. The catastrophe
models and the formula used for estimation of member-
ship function or rating of each indicator are shown in
Table 1 in which a represents state variable and u, v, w, x
are control variables. The state variable is related to con-
trol variables based on different catastrophe models. ai
represents catastrophe fuzzy membership function of the
control variable, i, where i can be u, v, w or x depending
on the model. Details of the models and estimation of
catastrophe fuzzy membership functions can be found in
Wang et al. (2012).
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The entropy method is used to estimate the weight of
each subsystem. If the number of a subsystem is m, and
the number of indicators of a subsystem is n, the matrix
of Eigenvalue, Y can be estimated using the normalised
values of the indicators as (Chen & Li, 2010):

Y =

y11 y21 � y1n
y21 y22 � y2n
� � � �

ym1 ym2 � ymn

2
6664

3
7775 ð4Þ

The matrix is used to calculate the ratio index as:

Pij =
yij

Pm
i−1

yij

ð5Þ

The ratio index is then used to estimate the entropy
(Amiri et al. 2014) as follows:

ej = −
1

lnm

Xm
i=1

PijlnPij ð6Þ

The weight of each subsystem is finally calculated
using Equation (7) as shown below:

wj =
1−ej

Pn
j=1

1−ej
� � ð7Þ

3.3 | Computation of flood vulnerability
and risk

Socio-economic and physical factors were subsequently
integrated to estimate flood vulnerability index (FVI)
(Balica, Douben, & Wright, 2009) using the following
equation:

FVI = F1wF1r + F2wF2r +…+FNwFNrð Þ=N , ð8Þ

where F represents flood vulnerability factor, N is the
number of factors, w indicates the weights of the factors
and r is the rank of different values.

3.4 | Assessment of model performance

The performance of the proposed method was evaluated
using the receiver operating characteristic (ROC) curve.
The ROC considers only two classes (A and B) to validate
the model. Two values can have a maximum of four pos-
sible outcomes. If a method can identify a flood zone cor-
rectly, it is considered as true positive (TP) otherwise
false positive (FP). Similarly, if the method fails to locate
a flood zone correctly, it is considered as a true negative
(TN) otherwise false negative (FN). In the ROC curve
(Huang & Ling, 2005), TP is drawn against FP and then
the area under the curve (AUC) is estimated to define
model accuracy as:

Accuracy =

P
TP+

P
TN

Total Population
: ð9Þ

The AUC in ROC curve is widely used in evaluating
the performance of a classification model. It provides a
measure of model capability for identifying different clas-
ses. The AUC in ROC provides different measures of
model performance such as its sensitivity (TP/TP + FN),
specificity (TN/TN + FP) and false alarm ratio (FP/TN
+ FP). The AUC-ROC is considered to be a composite
metric for the reliability estimation of different properties
of the classification model performance (Huang &
Ling, 2005).

4 | RESULTS AND DISCUSSION

4.1 | Identification of flood vulnerability
factors

A large number of factors related to flood vulnerability in
Peninsular Malaysia have been documented in various
studies (Alias et al., 2019; Dano et al., 2019; Elsheikh
et al., 2015). A total of 19 factors were identified from the
literature review based on availability, measurability and
sensitivity. These factors are given in Table 2. A question-
naire survey was conducted among the stakeholders
(50 individuals in total) to rank these 19 variables based
on their importance and relevance to local conditions.
The responses were then used to estimate their impor-
tance, and an index was developed. The estimated

TABLE 1 The catastrophe models and the formula used for the

estimation of fuzzy membership functions

Catastrophe
model

Control
variable Normalisation formula

Cusp 2 au = u0.5 and av = v0.33

Swallowtail 3 au = u0.5, av = v0.33 and aw = w0.25

Butterfly 4 au = u0.5, av = v0.33, aw = w0.25

and ax = x0.20

Wigwam 5 au = u0.5, av = v0.33, aw = w0.25,
ax = x0.20 and ay = y0.17
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importance and the rank of each factor, based on the
importance index, are given in Table 2.

The ranking of different factors was classified using
the Jenks optimization method (Table 3). The first col-
umn of Table 3 shows the class and the second column
exhibits factors belonging to that class. The seven top fac-
tors identified are: (1) population density (2) percentage
of vulnerable people; (3) elevation; (4) Gini coefficient;
(5) percentage of foreign nationals; (6) household
income; and (7) forest cover. These factors were consid-
ered important, in the Malaysian context, for delineating
flood risk and carried forward for further study.

4.2 | Assessment of flood vulnerability

4.2.1 | Spatial distribution of flood
vulnerability

Flood vulnerability factor data identified for Peninsular
Malaysia was used to prepare flood maps. The spatial dis-
tribution of the factors identified as of most importance in
assessing flood vulnerability in Peninsular Malaysia is
presented in Figure 2. The values of population density,

percentage of vulnerable people to the total population,
Gini coefficient, household income and percentage of for-
eign population to the total population were divided into
five classes using the natural break algorithms. Most of the
lands of Peninsular Malaysia are situated at an elevation
of 200 m so elevation data below 200 m is classified into
four equal classes when preparing the elevation map.

Figure 2 shows the high variability in population den-
sity which characterises Peninsular Malaysia. Higher

TABLE 2 Flood vulnerability factors identified using the importance index

No. Factor

Response

Total Importance index Rank1 2 3

1 Population density 50 0 0 50 1.0000 1

2 Percentage of vulnerable people 45 4 1 50 0.9600 2

3 Land elevation 44 4 2 50 0.9467 3

4 Gini coefficient (inequity in wealth) 43 6 1 50 0.9467 4

5 Percentage of foreign population 42 7 1 50 0.9400 5

6 House-hold income 40 10 0 50 0.9333 6

7 Forest cover 42 5 3 50 0.9267 7

8 Education 39 10 1 50 0.9200 8

9 Accessibility of facilities 38 11 1 50 0.9133 10

10 Male to female ratio 36 13 1 50 0.9000 13

11 Local knowledge on flood zones 33 16 1 50 0.8800 15

12 Crop cultivated area 33 11 6 50 0.8467 18

13 Urbanisation ratio (urban to non-urban
area in a district)

34 9 7 50 0.8467 19

14 Diversity in income 37 3 10 50 0.8467 20

15 Percentage people involve in trading 35 6 9 50 0.8400 21

16 Evacuation training 31 9 10 50 0.8067 25

17 Poverty rate 23 21 6 50 0.7800 29

18 Communication facilities 30 6 14 50 0.7733 31

19 Safety index 17 9 24 50 0.6200 36

TABLE 3 Clustering of flood vulnerability factors according to

the importance index

Class Factors

1 (1) population density (2) percentage of vulnerable
people; (3) elevation; (4) Gini coefficient; (5)
percentage of foreign nationals; (6) household
income; (7) forest cover

2 (8) education; (9) accessibility to facilities (10) male to
female ratio; (11) local knowledge regarding floods;
(12) crop cultivated area; (13) urbanisation ratio

3 (14) diversity in income; (15) percentage of trading
people; (16) evacuation training; (17) poverty rate;
(18) communication facilities; (19) safety index
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population densities were observed in Klang and Johor
Bahru where the major urban centres are located, while
districts in the central part of the area (covered mainly by
mountains and forest) have a low population density. The

percentage of vulnerable population, relative to the total
population, was higher in the northern districts, and lower
in the districts where the major urban centres are located.
Household income is higher in the districts with large

FIGURE 2 Spatial distribution of: (a) population density; (b) vulnerable population; (c) household income; (d) foreign national; (e) Gini

coefficient; (f) elevation; and (g) forest land

ZIARH ET AL. 7 of 13
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cities and lower in the central regions. A higher percent-
age of foreign nationals to the total population was
observed in the districts surrounding major cities. Most of
the existing industries are located in districts where large
numbers of foreign workers are also located. The districts
with a high Gini coefficient were found to be irregularly

distributed over Peninsular Malaysia. Along the coast,
land is generally below 50 m, gradually increasing to
200 m and above in the central part of the country. About
65% land of Peninsular Malaysia is covered by forest. In
this study, general forest is classified as sparse, moderately
dense to dense, with mangrove forest separately classified.

TABLE 4 Ratings of different classes of flood vulnerability subsystems using the catastrophe theory (initial and normalised values of

different classes of the indicators are also shown)

Subsystem Indicator range Initial value Normalised value Rating

Population density (person/sq.km) 5.3–231.0 118.2 0.00 0.00

231.1–682.4 456.8 0.11 0.49

682.5–1,404.3 1,043.4 0.31 0.75

1,404.4–2,310.7 1857.6 0.58 0.90

2,310.8–3,890.0 3,100.4 1.00 1.00

Vulnerable population (% of total population) 26.1–29.7 27.90 0.00 0.00

29.8–33.5 31.65 0.31 0.68

33.6–35.9 34.75 0.57 0.87

36.0–38.0 37.00 0.76 0.95

38.1–41.8 39.95 1.00 1.00

Household income (RM/month) 3,525–4,271 3,898.0 0.00 0.00

4,273–4,638 4,455.5 0.12 0.49

4,639–5,152 4,895.5 0.21 0.67

5,153–6,621 5,887.0 0.41 0.84

6,622–10,838 8,730.0 1.00 1.00

Foreign nationals (% of total population) 0.77–2.33 1.55 0.00 0.00

2.34–3.79 3.07 0.14 0.53

3.80–5.49 4.65 0.29 0.73

5.50–7.86 6.68 0.48 0.86

7.87–16.55 12.21 1.00 1.00

Gini coefficient 0.23–0.29 0.260 0.00 0.00

0.30–0.33 0.315 0.33 0.70

0.34–0.36 0.350 0.55 0.86

0.37–0.39 0.380 0.73 0.94

0.40–0.45 0.425 1.00 1.00

Elevation (m) 0–10 5.0 0.00 0.00

11–50 25.5 0.08 0.44

51–100 75.5 0.29 0.73

101–200 150.5 0.59 0.90

201–300 250.5 1.00 1.00

Forest cover Mangrove forest 0.00 0.00 0.00

Dense forest 1.00 0.25 0.63

Moderate forest 2.00 0.50 0.84

Sparse forest 3.00 0.75 0.94

No forest 4.00 1.00 1.00
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4.2.2 | Spatial distribution of composite
flood vulnerability

The ranks of different features of each flood vulnerability
subsystem were estimated using the catastrophe theory.
The results are presented in Table 4. The values of each
indicator were classified using the Junk's optimization tech-
nique. The classified values of the indicators are given in

the second column of Table 4. The mean value of each class
was used as the initial value for the estimation of rank of
each class, and the mean values were first normalised using
Equations (2) and (3). The mean and the normalised values
of the different classes of the indicators are given in the
third and fourth column of Table 4. The catastrophe func-
tions were then used for the estimation of ranks of each
class. The Wigwam model (Table 2) was used for this

TABLE 5 The weights of different flood vulnerability subsystems obtained using entropy theory

Subsystem Initial value Ratio (Pij) Entropy (ej) Weight

Population density (person/sq.km) 118.2 0.02 −0.07 0.30001

456.8 0.07 −0.19

1,043.4 0.16 −0.29

1857.6 0.28 −0.36

3,100.4 0.47 −0.35

Vulnerable population (% of total population) 27.90 0.16 −0.30 0.006495

31.65 0.18 −0.31

34.75 0.20 −0.32

37.00 0.22 −0.33

39.95 0.23 −0.34

Household income (RM/month) 3,898.0 0.14 −0.28 0.037554

4,455.5 0.16 −0.29

4,895.5 0.18 −0.31

5,887.0 0.21 −0.33

8,730.0 0.31 −0.36

Foreign nationals (% of total population) 1.55 0.06 −0.16 0.178647

3.07 0.11 −0.24

4.65 0.17 −0.30

6.68 0.24 −0.34

12.21 0.43 −0.36

Gini coefficient 0.260 0.15 −0.28 0.011540

0.315 0.18 −0.31

0.350 0.20 −0.32

0.380 0.22 −0.33

0.425 0.25 −0.34

Elevation (m) 5.0 0.01 −0.05 0.362660

25.5 0.05 −0.15

75.5 0.15 −0.28

150.5 0.30 −0.36

250.5 0.49 −0.35

Forest cover 0.00 0.07 −0.18 0.103094

1.00 0.13 −0.27

2.00 0.20 −0.32

3.00 0.27 −0.35

4.00 0.33 −0.37
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purpose as there were five classes for each indicator. As an
example, the normalised values of the population density
classes were 0.0, 0.11, 0.31, 0.58 and 1.00. Application of the
catastrophe fuzzy functions Wigwam model estimated the
ratings from the normalised values as au = u0.5 =
0.00.5 = 0.0, av = v0.33 = 0.110.33 = 0.49,
aw = w0.25 = 0.310.25 = 0.75, ax = x0.20 = 0.580.20 = 0.90 and
ay = y0.17 = 1.00.17 = 1.0. Similarly, the ratings of all other
classes of the other indicators were estimated and are pres-
ented in the last column of Table 4.

Next, the weight of each subsystem was estimated
using the entropy theory (Table 5). The initial values of
different classes of the indicators were used to estimate
the ratio of each value using Equation 5. Each value was
divided by the sum of all initial values of an indicator.
Then the entropy of each class was estimated using
Equation 6, the results of which are presented in the
fourth column of Table 5. Finally, the weight of each sub-
system was estimated using Equation 7. These results are
presented in the last column of Table 5.

The estimated weight of different subsystems, and rat-
ing of different classes of the indicator of the subsystems,
were used in Equation 8 to estimate flood vulnerability.
The vulnerability values ranged from 0.249 to 0.569. The
values were then classified into five categories using
Junk's optimization method. Figure 3 shows the resulting
flood vulnerability map of Peninsular Malaysia.

The map (Figure 3) shows that coastal areas of Penin-
sular Malaysia are the most vulnerable, while the central
areas are the least susceptible to floods. The highest

vulnerability was observed along the coastal regions in
the northwest, extreme northeast, central-east and south-
west of the Peninsula. The rest of the coastal regions
exhibited flood vulnerability scores in the range
0.402–0.466.

4.3 | Flood hazard map

Figure 4 shows a flood hazard map of the area. Recent
floods that occurred in Peninsular Malaysia in 1965,
1967, 1971, 1973, 1983, 1988, 1993, 1998, 2000, 2007,
2008, 2009, 2010 and 2014 are taken into account. The
map was developed based on inundation areas during
historical floods, estimated through ground observation
and satellite images. The result indicates that floods
mostly occur on the coastal plains. The flood hazard vul-
nerability is higher in the south, especially on the south-
east and southwest coastal areas, while flood
vulnerability is lower in the Centre of the Peninsula as
these areas are generally not exposed to floods.

4.4 | Flood risk estimation

Figure 5 shows spatial distribution of flood risk. This
map has been developed by multiplying the flood hazard

FIGURE 3 Composite flood vulnerability map of peninsular

Malaysia

FIGURE 4 Flood hazard map (source: Department of

Irrigation and Drainage, Malaysia)
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map data with the flood vulnerability map data. The
flood risk values were divided into five classes using
Junk's optimization technique to derive the flood risk
map. The values range from 0 to 0.569, with the lower
value indicating low flood risk and higher values indicat-
ing higher risk. Figure 5 shows the highest flood risk
zone (0.452–0.569) is located in the northeast coastal
region. A large part of the southeast and southwest coasts
also has a high flood risk rating (0.389–0.451). In general,
it appears that locations with a high flood risk are more
prevalent on the east coast than on the west coast.

There is a general conception that flood risk is much
higher in the northeast coastal region (Nashwan, Shahid,
et al., 2018b; Pradhan & Youssef, 2011). It is also highly
devastating when flood occurs in urbanised areas along
the central-western coast. The flood risk map generated
in this study was found to match very well with the con-
ception. Comparison of the flood risk map with flood vul-
nerability factors revealed causes of high flood risk in the
northeast and central-western coasts. In the northeast, a
high ratio of vulnerable people, low household income
and greater inequality in wealth distribution (e.g., high
Gini coefficient) are major factors contributing to flood
risk. On the other hand, high population density together
with a high ratio of foreign nationals is associated with
high flood risk in the central-western coastal region of
Peninsular Malaysia.

4.5 | Validation of flood risk map

The general perception regarding flood risk is that devas-
tating flood events occur more frequently, that is, the risk
is higher, in the northeast districts of Malaysia. Some dis-
tricts in the southeast, however, are also severely affected
by frequent floods. The AUC ROC tool was used to evalu-
ate whether the flood risk map, developed using the inte-
grated method proposed in this study, was able to map
the flood risk zones of Peninsular Malaysia. The results
are shown in Table 6 and indicate that the prediction
capability of the integrated method is 0.93, reinforcing
the suggestion that integrated use of both the catastrophe
and entropy methods can provide the locations of flood
risk with good accuracy.

5 | CONCLUSION

A data-driven MCDA approach through the integration of
both catastrophe and entropy theories is proposed in this
work which can provide an unbiased assessment of flood
risk distribution in Peninsular Malaysia. This method can
also be used for systematic assessment of the factors rele-
vant to flood vulnerability and risk zone delineation.
Seven major factors were accountable for flood risk. These
were population density, percentage of vulnerable people,
household income, and economy of the region, percentage
of foreign nationals, elevation and forest cover. Using the
proposed MCDA technique, this study revealed that
coastal regions of Peninsular Malaysia are highly vulnera-
ble to floods than inland locations. The highest flood risk
was observed on the northwest coast. The efficiency of the
proposed method was assessed using the AUC-ROC tool
which indicated an accuracy of 0.93. The spatial variability
of flood susceptible zones, and the factors that influence it,
can be used to develop measures necessary for reducing
future flood risk in Malaysia. The methodological frame-
work necessary for the reliable mapping of flood risk pro-
posed in this study, can be applied elsewhere. Despite the

FIGURE 5 Spatial distribution of flood risk

TABLE 6 The performance of integrated catastrophe-entropy

method in mapping flood risk

Flood risk True positive False positive

1 34 45

2 15 18

3 6 9

4 5 6

5 3 5

Sum 63 83

AUC 0.93
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method was used to determine flood risk locations, there
is opportunity to improve this work. For example, sensitiv-
ity of flood vulnerability factors can be evaluated to under-
stand their relative importance. In addition, accuracy of
the maps generated in this study depends on the quality
and resolution of data. Hence, the effect of uncertainty in
determining flood vulnerability and risk can be estimated
in a future work. Besides, data of smaller administrative
unit (sub-district or council) can be used for mapping flood
risk areas accurately.
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