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Data mining to gain intelligence from routine incident reporting. 
 
Structured Abstract: 
Purpose: Incident reporting systems are commonly deployed in healthcare but resulting 
datasets are largely warehoused. This study explores if intelligence from such datasets could 
be used to improve quality, efficiency and safety. 
Design/Methodology/Approach: Incident reporting data recorded in one NHS acute Trust 
was mined for insight (n=133,893 April 2005-July 2016 across 201 fields, 26,912,493 items). 
An a priori dataset was overlaid consisting of staffing, vital signs and national safety indicators 
such as falls. Analysis was primarily nonlinear statistical approaches using Mathematica V11.  
Findings: The organisation developed a deeper understanding of the use of incident reporting 
systems both in terms of usability and possible reflection of culture. Signals emerged which 
focused areas of improvement or risk. An example of this is a deeper understanding of the 
timing and staffing levels associated with falls. Insight into the nature and grading of reporting 
was also gained. 
Practical applications: Healthcare incident reporting data is underused and with a small 
amount of analysis can provide real insight and application to patient safety.  
Value: This study shows insight can be gained by mining incident reporting datasets, 
particularly when integrated with other routinely collected data. 
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Introduction 
Patient safety is both a national and global priority. In the English National Health Service 
(NHS), it is estimated that one in ten patients comes to serious harm as a result of their 
healthcare; half of these incidents of harm are considered preventable (Hogan et al., 2013). 
This finding is common. Across the world the World health Organization estimates as many as 
one in ten patients come to harm in high income countries during inpatient care, with almost 
50% of these incidents of harm being avoidable (WHO 2019)    
The current approach to managing safety in healthcare is to record and measure harm (NHS 
Quality Observatory, 2013) rather than fully understand the characteristics of its absence 
(Reason, 2000). Central to the collection of data on harm in the acute health sector is the 
utilization of electronic databases (Lugg-Widger et al 2018). 

Electronic incident reporting was introduced into many acute organisations to replace 
paper-based systems during the late 1990’s (Hazan, 2016) and currently such applications are 
common both across the English healthcare system and internationally. Similar systems have 
been used in the aviation industry for a number of years to manage risk and have been shown 
to be beneficial (Hudson, 2003). Despite this, large data sets linking safety to other factors are 
rarely examined in healthcare beyond survival and morbidity (Howell et al., 2015).  

 
Knowledge discovery through data mining (KDD) is an interdisciplinary area focusing 

upon methodologies for extracting useful knowledge from large volume data. The widespread 
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use of safety reporting databases has created a need for KDD approaches (IBM Research 
Series, 2012, Bates et al 2018) to investigate the full potential of the data collected.  

Most incident reporting data within the acute NHS appears to be warehoused and not 
mined for insight (Leary & Dix 2018). However, it is likely to contain ‘unknown unknowns’ - 
areas which might not already be associated with conventional key performance indicators 
(KPI) or causes of harm. A recent study found that of 589 quality and safety charts in reports 
to English NHS Trust boards only 17% (100/589) utilized incident reports (Schmidke et al., 
2017). 

The challenge of extracting knowledge from data draws upon research in statistics, 
pattern recognition, machine learning, data visualisation, optimisation, and computing to 
deliver advanced intelligence (IBM Research Series, 2012, Sivarajah et al., 2017 Fayyad et al., 
1996, Brennan and Bracken, 2015). Whilst common in industry it is still fairly uncommon in 
the NHS. 

With a large number of reports, the detection of rare events requires the use of data-
mining software which is still immature in healthcare (Rabel et al., 2017). Therefore, an 
opportunity exists to obtain deeper insight and intelligence from these data which could be used 
in different ways such as informing quality improvement. Although KDD is uncommon in 
health there have been attempts to examine the overlap between, for example, incident 
reporting and complaints (Goldsmith et al., 2015).   

Data mining has been used on existing data, such as the electronic health record data in 
the US, which is gathered from multiple organisations (Almasalha, 2013).  The standardisation 
of data is important as the quality of the data determines the value of the data mining and 
analysis (Sacristan and Dilla, 2015). Such methods are becoming more common in studies 
which examine safety (Staggs and Dunton, 2014, Leary et al., 2016, Cook et al 2019). 

Datix is an incident reporting and risk management platform deployed in approximately 
80% of NHS providers across England (Datix, 2019), to which members of staff of any 
professional group can report both instances of harm and near harm as a patient safety incident. 
A “patient safety incident” is defined in the NHS as “any unintended or unexpected incident 
which could have, or did, lead to harm for one or more patients receiving healthcare” (NHS 
Improvement 2017).  The Datix reporting system involves inputting information such as date 
and time stamps, the intensity of the event, classifications such as ward identifiers and a free 
text field where more detailed information regarding the event can be noted. Once all the 
information has been submitted the Datix system produces a report of the incident which others, 
for example managers, can access.  

At University Hospitals Coventry and Warwickshire NHS Trust (UHCW), 
approximately 130,000 patient safety incidents have been reported into the system since its 
introduction in 2005. The Trust has adopted two overarching approaches to utilising the 
information contained in each report. Firstly, individual investigations are conducted to explore 
the cause of each incident and secondly system-level trend analyses are carried out and are 
reported at various senior management committees which feed into strategic decision making. 
Currently, no nonlinear inferential statistics, data mining or pattern recognition techniques are 
applied. It is hypothesized that by exploring these data using KDD insight will be gained. It is 
further suggested that analysis of the free text data may lead to insight as to why events occur 
which may be more useful than simply noting how often they occur. These data utilized are 
currently in the form of an aggregate output at strategic level. This is common across 
organisations; a recent study indicated that only six percent of charts reported at board level 
provide statistics that depict the role of chance in the outcomes (Schmidkte et al., 2017). 

The Datix database represents a large, untapped source of knowledge on patient safety. 
It consists of categorical data derived from a common classification system and free text which 
in users can describe incidents in their own words. Categorical data such as time, location, type 
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and severity make up the bulk of formal reporting whereas free text is hardly ever utilized apart 
from individual analysis. Analysis of the entire dataset could provide insight and contribute to 
alleviating the ‘blame culture’ (Department of Health, 2015) which is still experienced across 
the NHS and derive organisation-level relationships that are currently undetectable. This might 
make visible safety issues that are not currently recognised and may even promote a just culture 
through transparency (NHS Improvement 2018). 

The aim of developing this technique in the most commonly used incident reporting 
system is to gain what is common in other safety critical industries, using data for insight that 
allows organisations to improve safety. If successful this technique could be used across other 
organisations that use similar data capture systems. 
 
Research question and method 
Does mining routinely collected incident data give useful intelligence for patient safety? The 
study was carried out in a large acute NHS Trust in England with a capacity of 1,189 beds. The 
Datix data set consisted of data from April 2005 to July 2016 and included 133,893 incidents 
across 201 fields (approaching 27 million items of data). The Datix database was accessed via 
a locally hosted MySQL database and analysis routines comprised standard SQL query calls to 
the database for selection and aggregation followed by analysis using the Wolfram 
Mathematica 11.1 software.  Python Scikit-learn (Pedregosa, 2011) was used for free text 
machine learning.  Scikit-learn was used for the text analysis as the algorithms offered proved 
easier to use when extracting the key features from the Singular Value Decomposition (SVD) 
process. 
 
Determination of available Datix field use in incident reports 
Initial passes through the total data set were aimed at determining which of the available 201 
fields were used routinely and robustly within the trust and which tier of the three tier Datix 
dataset would hold most validity.  This analysis revealed that 17 of the available fields were 
always unused (defining unused as containing either Null, “” or “ ”) with a further 97 fields 
unused on 95% of occasions leaving 87 fields which were used on at least five percent of 
occasions. 

To determine the utilization of the Datix system the absolute number of incidents and 
the average delay between an event occurring and being reported was examined over time.  
To determine when events occurred the number of events occurring by hour of the day was 
examined. 

The staffing and routinely collected safety KPI data (for example safety thermometer 
data spanning January 2013 to June 2014 from UHCW was overlaid with a sub-set of the Datix 
data from the same period.  This time period was chosen as it had the best overlap with the 
KPIs supplied by UHCW. The analysis aggregates the data on the monthly and ward level 
(equivalent of ‘inc locactual’ a first-tier field) with the key limiting factor being the smallest 
time window available in the KPI data which was episodic.  From previous investigation and 
on consultation with the steering group, the key parameters of interest were the absolute 
staffing levels and the ratio of health care support workers (HCSW): registered nurses (RN). 
 
Text analysis 
A selection of machine learning methods were applied to the analysis of the free form text 
fields with the aim of investigating if these could be used to determine the grade of event for 
each incident report.  The model compares the predictability of ‘high’ vs ‘very low’ event grade 
to highlight the use at the extremities of the output space. 

Machine learning (ML) refers to the field of computational tools and algorithms 
designed to allow computers to learn without being explicitly programmed.  In general, 
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machine learning algorithms are not considered in terms of T-test and F-tests but in how well 
the model can predict scenarios that were held back during the fit.  This is an effect of the 
analytical approach; it is not a question of which signals are of significant effect but how robust 
and reliable are the predictions made. 

The form of ML applied here is focused on classification, predicting the relative 
likelihood of competing assignments, in this case via a logistic regression model.  The analysis 
pipeline will comprise the cleaning of the input text, projection into numeric features and then 
the optimization of the predictive model.    

Projection of the text was done via the Latent Semantic Analysis (LSA) approach.  This 
process is described in more detail elsewhere (Landauer et al., 1998) but LSA) is a theory and 
method for extracting and representing the contextual-usage meaning of words by statistical 
computations applied to a large corpus of text. LSA is an information retrieval technique which 
analyzes and identifies the pattern in unstructured collection of text and the relationship 
between them (Li 2018)..  In this study we use the implementation offered by the Python Scikit-
learn framework.    
 
Ethical and governance considerations  
This work was reviewed by the university ethics committee. The data used in this study was 
anonymized at source by the Trust which removed patient and staff identifiable fields. An 
algorithm was then constructed to recognize names and remove them from the free text 
comments. No patient or staff identifiable data left the Trust. This process was approved by the 
Calidicott guardian of the Trust and the Trust data governance group. 
 
Results 
Datix usage  
The first aspect of the Datix data considered is how the event reporting system was first 
implemented, looking at uptake of the tool and impact on safety.  This early time effect will be 
referred to as the uptake or ‘burn in’ period.  Figure 1a) shows the variation in the number of 
reported incidents within the trust following the installation of Datix.  Figure 1b) shows the 
average delay between an incident occurring and being reported. 

In the period 2007 to 2016 there is a clear increase in events reporting, possibly arising 
from a combination of potential factors such as increasing occupancy, an uptake in reporting 
culture, improved access to the reporting system, staff training or more incidents occurring.  In 
addition to the number of events, Datix can also be used to track the delay between incidents 
occurring and being reported – as shown in Figure 1b). This shows a clear decrease in delay. 
 
Figure 1 here 
 
Severity and likelihood 
Figure 2 shows the variation over time of events divided by ordinal classification.  The data 
has been aggregated by ordinal variable with those terms not classified by this system 
combined as ‘’Null’ (e.g. “”, “ ”, “Null”, etc.).  The first clear feature of reporting is that at the 
initial introduction of Datix the majority of events were graded as having ‘Null’ harm, and 
‘Null’ likelihood.  It is not until the 2006-2007 time period that there appear to be a concerted 
effort to use both the severity and likelihood fields. 

Over the course of the data, the majority of events appear to be consistently reported at 
the lowest levels of severity and grade (negligible/minor and very low/ low respectively).  
Looking across the full data set, excluding ‘Null’ values, these reporting levels account for 
approximately 90% of all incidents.  On inspection, these low harm fields appear to have 
increased over time.   
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Figure 2 here 
 

 

Relationship between the number of incidents reported by year 
The correlation of number of incidents reported as a function of time for the full data set are 
summarized in Table I. In the majority of cases there appears to be a significant positive 
correlation – implying more events are being reported over time.  The key exceptions to this 
are the decrease in events reported as ‘Null’ and ‘Rare’ likelihood which have significantly 
decreased in absolute incident count, and the moderate and high grades which remain constant.  
 
Table i here    
 
Breakdown of events over time 
In addition to the date stamp of when events occurred, Datix includes a field for the incident 
time. Figure 3 shows the hour-by-hour breakdown for all events reported with a time stamp, 
rounded to the nearest hour.  The data was fit with a variety of models comprising a step 
function, offset, and linear background with and without an offset in time.  The optimal model, 
judged using the F-test, is over-laid on Figure 3 and takes the form: 
 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝐸𝐸) = �
2200 +

5500
1 + 𝐸𝐸−2(𝑡𝑡−8)  , 𝐸𝐸 < 8 

2200 +
5500

1 + 𝐸𝐸−2(𝑡𝑡−8) − 300(𝐸𝐸 − 8), 𝐸𝐸 > 8  
 

 
 
Where t is the time post-midnight.  The model can be interpreted as comprising a base line of 
approximately 2000 events, a step function centered at 8am of approximately 6000 events, 
followed by a gradual decrease until midnight.   
 
Figure 3 here 
 
The hourly breakdown of events can also be applied to the individual types of adverse event 
occurring on the wards.  Figure 4 shows the breakdown by hour for the three most commonly 
reported adverse events in UHCW over the dataset. These were ‘Falls’, ‘Ulcers’ and the 
‘TAdmin’ first tier field (TAdmin is a field associated with treatment errors). The data has been 
presented in two forms – both as absolute values and as a proportion of the events reported 
within that time window.   
 
Figure 4 here 
 
From the data displayed in Figure 4 a number of features of interest can be observed. Overall 
falls are by far the most prominent adverse effect reported and their occurrence remains 
constant throughout the 24-hour period, however they make up the majority of incidents in the 
early hours of the morning, around five am.  In the period midnight to seven am pressure ulcers 
and TAdmin errors are unlikely to be reported. There is a steep increase in the number of 
pressure ulcers and TAdmin events being reported between seven am and 10am. In the final 
period from 10am to midnight the number of pressure ulcers being reported declines slowly 
whereas the number of TAdmin errors declines steeply.   
 



6 
 

Analysis of the integration of incident report data and staffing/ key performance indicator data 
sets 
The relationship between the absolute number of events opened is compared to the achieved 
staffing level on ward is shown in Figure 5.  The data appears to show two distinct regions 
divided in the region 50 - 60 whole time equivalents (WTE).  Below 50 WTE there is a strong 
positive correlation, with an increase in reporting with staffing and above 60 WTE there is a 
sudden drop to a lower staffing independent rate. To investigate this behavior the data was fit 
with a regional dependent linear model of the general form: 
 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑥𝑥) = �
𝑚𝑚0 𝑥𝑥 + 𝑐𝑐0 , 𝑥𝑥 < 𝑥𝑥𝐵𝐵 
𝑚𝑚1 𝑥𝑥 + 𝑐𝑐1 , 𝑥𝑥 ≥ 𝑥𝑥𝐵𝐵    

 
where 𝑥𝑥𝐵𝐵 is the boundary term between the two regions. The optimal model was found to 
Model 2 which is a first order polynomial below 53.1 WTE and a flat background above.  This 
behavior is included on Figure 5 with the coefficients summarized in Table II. 
 
Table II here 
 
 
The relationship between the absolute number of events opened is compared to the achieved 
staffing level on ward is shown in Figure 5. The data shows an increase in reporting with 
staffing, with a significant positive correlation, most notably in the region 10 – 60 WTE posts.  
Interestingly, it appears that above 60 WTE the number of events undergoes a rapid decline, 
though the sparsity of data in this region limits the reliability of any analysis on this region.  
However, this is worthy of further scrutiny.  
 
Figure 5 here 
 
Prediction of grading from text  
The hyper-parameter search resulted in an optimized model with average testing accuracy of 
80.3%.  A sub set of the models are summarized in Table III, giving the best and worst 
performing parameters judging by the average of the test accuracy over all cross-validation 
sets.  The key features to the optimal performance appear to be the ‘number of topics’ (with an 
increase in accuracy when more features are projected out of the free text) and a lower 
‘Minimum Document Frequency’ (Min DF) implying better performance when uncommon 
words are included.   

The key feature to the optimal performance appears to be the number of topics, with 
the worst performing being those at the lower end of the numeric features projected out of the 
SVD method and a lower cut-off for the minimal document frequency (DF) for the tf-idf 
vectoriser. 
   
Table iii here 
 
The optimal model showed an accuracy of 79% when trialed on the full optimization set and 
79% for the validation set.  The model shows good performance for both ‘high’ and ‘very low’ 
states. 
 
Implications for Research 
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Mining routinely collected incident data can provide intelligence for safety in healthcare. This 
data is collected by many types of healthcare organizations but is rarely used beyond the 
investigation of serious incidents. It is not utilized fully in healthcare but appears to be a 
valuable source of insight into both safety and workforce issues. Healthcare organizations 
appear to lack the resource in terms of time and expertise to extract and analyze these data and 
therefore automating these processes might make this intelligence more accessible to 
healthcare decision makers.  Fuller use of incident reporting systems, could be employed as a 
strategy to enhance a culture of learning and improvement within healthcare. Such intelligence 
can also be used to inform workforce planning, for example in this study higher registered 
nurse staffing was associated with increased reporting.  
 
 
Conclusions and recommendations 
There was a clear pattern to the uptake period post deployment of Datix in the trust. The 
majority of fields (around 52%) available within the Datix database remained unused on 95% 
of entries in this study. When coupled with the time pressures on ward staff this raises a 
question regarding the optimization of data collection. It may be possible that the current form 
of input can be simplified by removing some of these apparently vestigial fields. A consensus-
building study recommended that it was important to standardize and link data sets (84.6% and 
73.1% agreed respectively) and educating staff on the quality of reports was most useful (77% 
agreed) (Howell et al., 2017).  

This study was able to reveal patterns that could be exploited in order to improve care. 
A number of relationships between staffing, rates of reporting and nature of incidents was 
revealed and could be tested in a larger dataset and diverse organisations for generalizability. 
The temporal patterns which show when incidents occur could be used to focus staffing for 
example. The proportion of falls compared to TADMIN errors and pressure ulcers for example 
is higher between midnight and seven am, though the absolute number of falls is relatively 
constant over the 24-hour period. Falls at night have been reported to result in more severe 
injury (Lopez-Soto et al., 2016) thus using this data to improve care and review staffing levels 
at times of higher risk is likely to have direct benefit in terms of improving safety and outcomes. 

KDD techniques applied to incident reporting systems data provide opportunities for 
learning at an organizational level. In order to fully understand the implications of traditionally 
visualized data, statistics should be applied to enable decision makers to more readily 
distinguish genuine signals from the noise both at the board level and on the front line 
(Goodwin et al., 2003, Hazan 2016). 

An increase in low grade events, while high harm events remain constant, would be 
consistent with an improvement in the general reporting culture assuming that the lower the 
harm of an event the less likely it is to be reported (Shaw et al., 2005).  In addition, if we 
consider that the highest severity events have increased, at the lowest rate, yet the grades of the 
highest are constant this suggests that the safety measures in place are well designed and keep 
high harm events occurring with low likelihood (as grade is a combination of likelihood and 
severity).  These two in combination suggest that the trust is developing a culture of safety - 
regularly reporting events across all levels of harm and reducing the highest grades as a 
proportion of events since 2006. 

When patients are becoming mobile in the early morning and overnight they are 
vulnerable to falling – with other adverse events appearing to either decrease in likelihood or 
go undetected.  Pressure ulcers, despite being likely to have developed over several hours, are 
rarely detected overnight and are most often detected during the 7am to 10am period which 
may be due to staff become aware of pressure damage, for example, when washing patients.  
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  The period between seven am and 10 am is clearly where the demand on the staff 
appears to change the most rapidly with the type and rate of adverse events changing more 
rapidly than at other times during the 24-hour period. These patterns all demonstrate key 
features to highlight on the ward level.  

As regards staffing levels an increase in events as a function of absolute staffing leads 
to a series of competing hypotheses – either that registered nurses cause more adverse events 
to occur or that the presence of more nurses leads to an increase in awareness and reporting. 
Once a tipping point has been reached there is a falloff in incidents which could be due to 
increased vigilance.   

The machine learning applications employed to investigate the free text comments 
suggest that firstly there appears to be a routine and reliable difference in the type of language 
used between events at the extremes of the reporting scale that can be detected by machine 
learning techniques. Furthermore, in addition to being able to advise on the grading of events 
(theoretically decreasing the time required to report an incident and increasing consistency of 
event grading between staff) this form of analysis can also be used to report key phrases and 
inform briefings on what the underlying causes are at different levels of harm/severity. 

It is possible, given a larger data set, that the algorithm could be trained by locality/ 
medical specialty and used to produce key phrases indicative of each level of harm.  Not only 
serving as a tool to assist at a clinical level but advising managers on underlying topics that 
may otherwise go unnoticed.   

A key point is that these approaches are self-optimizing, given access to a database they 
can be trained and set to report with minimal operator interface with the key limiting factor 
being the regularity with which a reasonable quantity of data is input to affect the output state.   

Due to the relatively small scale of events reported at the harmful end of the scale the 
available training set is too small to form a coherent, reliable model. The current limiting 
factors to increased performance appear to be threefold: firstly, the limited size of data, with 
only approximately 1,100 events graded as “high”. Secondly the subject specificity of the text 
encoding could be improved and finally there is the issue of inconsistency in the way in which 
the text fields are used, with variation in input length, and terminology between staff. Even 
with these caveats there is a great deal of potential to develop this in future as this was one 
relatively small dataset.  

Fuller use of incident reporting systems, such as Datix, could be employed as a strategy 
to enhance a culture of learning and improvement within ultra-safe industries.  

There remains an issue with data quality and specificity in routinely collected NHS 
Data (Leary et al., 2017). The Datix common classification system for example is based on 
medical work and harms which means the nuance of the wider workforce is not collected.  

These datasets have huge potential to improve the safety and quality of care for example 
linking to other patient level data (Leary et al., 2016, de Vos et al., 2018), but largely remain 
underutilized. 

This short study has shown that there is insight to be gained by mining the Datix dataset 
in the acute setting and that while the incident reporting dataset is often simply warehoused the 
dataset examined in this study shows that such datasets in general have the potential to inform 
decision making and reduce harm.  In summary, there are three potential benefits within the 
Datix set.  

The first is a deeper understanding of the use of incidence reporting systems both in 
terms of usability and a possible reflection of culture. The second demonstrates the benefits of 
integration-by overlaying with other datasets such as vital signs and staffing, signals start to 
emerge which help focus areas of improvement or management of risk. In addition, this study 
illustrates that the possibility of using deep machine learning to move to predictive modelling 
appears realistic with the subsequent development of a dictionary/ontology. 
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The Datix database represents a large, untapped source of knowledge on patient safety, 
which could, through the aggregated analysis of the entire database, contribute to alleviating 
blame culture still experienced across the NHS (Hazan, 2016) and derive organisation-level 
relationships that currently appear undetectable. 

 
 
 

 
Strengths and limitations of this study  
 
One of the strengths of the study is that it has demonstrated that using data mining methodology 
to examine patient safety is feasible if suitable data sets are available. It has further shown that 
overlaying of other data sets to the data collected from an incident reporting system can help 
focus on areas which are at risk or may require improvement. The study is strengthened by the 
employment of patient level data and has revealed patterns in the data obtained. 
Limitations of the study include the possibility of incomplete or incorrect completion of input 
into the incident reporting system by users, that the data is not publicly available and that the 
study is based on a limited data set from a single NHS Trust in England rather than a number 
of Trusts across the UK. 
 
 
 
Ethical approval 
This work was reviewed by the university ethics committee. The data used in this study was 
anonymized at source by the Trust which removed patient and staff identifiable fields. An 
algorithm was then constructed to recognize names and remove them from the free text 
comments. No patient or staff identifiable data left the Trust. This process was approved by the 
Caldicott guardian of the Trust and the Trust data governance group. 
 
Availability of data  
The data that support the findings of this study are available from UHCW NHS Trust but 
restrictions apply to the availability of these data as they are not publicly available. Data are 
however available from the authors upon reasonable request and with permission of the 
originating NHS Trust. 
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Table I:  Correlation coefficients for the number of incidents reported per day vs time with 
data aggregated by event rating.  A positive value of r indicated an increase in reported events 
between 2005 and 2016 while a negative value of r indicated a decrease in reported events over 
the same period.  Signals have been interpreted by considering if they would be detected on a 
smaller data set (‘Strong’ at n = 100, ‘Moderate’ at n = 365, ‘Weak’ for otherwise significant 
signals) at the α = 0.005 significance level. 
 

Intensity Rating Pearson r 
 
P value 

Correlation 
interpretation 

Severity Null -0.65 <0.001 Strong 
 Negligible 0.52 <0.001 Strong 
 Minor 0.66 <0.001 Strong 
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 Moderate 0.40 <0.001 Strong 
 Major 0.13 <0.001 Weak 
 Catastrophic 0.13 <0.001 Weak 
Likelihood Null -0.29 <0.001 Moderate 
 Almost certain 0.07 <0.001 Weak 
 Likely 0.25 <0.001 Moderate 
 Possible 0.54 <0.001 Strong 
 Unlikely 0.43 <0.001 Strong 
 Rare -0.10 <0.001 Weak 
Grade Null -0.29 <0.001 Moderate 
 Very low 0.46 <0.001 Strong 
 Low 0.40 <0.001 Strong 
 Moderate -0.01 0.26 None 
 High 0.01 0.34 None 

 
 
Table II:  Comparison of linear model performance within a regional optimized fit.  P values 
are taken from the F-stat, comparing variance with the next most complex model.  The three 
models follow the form of the equation above excluding the marked terms and fitting in order 
of increasing complexity. 
 
Model Term Model 1  Model 2 Model 3 

𝑐𝑐0 9.7(±0.4) -3.8(±0.9) -3.9(±0.9) 
𝑐𝑐1 20.0(±0.4) 16.7(±0.7) 19(±2) 
𝑚𝑚0 (excluded) 0.59(±0.03) 0.59(±0.03) 
𝑚𝑚1 (excluded) (excluded) -0.03(±0.02) 
𝑥𝑥𝐵𝐵 34.2 53.1 53.11 

Variance 64.79 51.83 51.75  
F-stat - 174.2 1.07 
°Freedom ratio - 1 / 697  1 / 696 
P value - < 0.0001 0.30 

 
 
Table III: Summary of extremities of the model performance for the machine learning pipeline 
over hyper-parameter space.     
   

 
Number of 
topics Max DF Min DF 

Mean Test 
Accuracy 

 11 0.94 0.023 0.730 
 10 0.99 0.023 0.730 
Worst 5: 10 0.72 0.020 0.731 
 10 0.85 0.019 0.733 
 11 0.87 0.019 0.734 
 35 0.98 0.0047 0.798 
 38 0.99 0.0034 0.799 
Best 5: 38 1.00 0.0036 0.799 
 39 0.88 0.0028 0.801 
 28 0.87 0.0060 0.803 
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Figure 1:  Break down of incidents as reported into Datix by date of event a) absolute number 
of events and b) average delay between an event occurring and being reported. Data has been 
smoothed to the monthly level. 
 

 
 
Figure 2: Breakdown of count of intensity of incident for severity (a) and b)), Likelihood (c) 
and d)) and grade e) and f)). The first figure for each category compares the number of null and 
not null events while the second compares the number of not null events by category.  
 
 

 
 
Figure 3:   Hour-by-hour breakdown of all events reported with a time stamp.  Error bars 
assume the data follows a Poisson distribution. The highlighted region reflects the period 7 – 
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10 am when the fastest increase in events occurs. The line represents the best model found from 
a combination of linear and logistic functions judging quality by the F-test. 
 

 
 
 
Figure 4:  Hour-by-hour event count breakdown for the three most common clinical detail 
recorded in Datix as a) and b) falls, c) and d) pressure ulcers and e) and f) TADMIN. The first 
depiction in each category represents the total number of events while the second represents 
the proportion of events at each time period.  Each line represents the best model found from a 
combination of linear and logistic functions judging quality by the F-test. 
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Figure 5:  The variation in monthly reporting levels (total events) with nurses in post. The two 
least square regression lines show the general trend of the observations in regions 10-60 wte 
and above 60 wte. 
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