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Abstract 

Accurate representation of precipitation over time and space is vital for hydro-climatic studies. 

Appropriate selection of gridded precipitation data (GPD) is important for regions where long-

term in-situ records are unavailable and gauging stations are sparse. This study was an attempt to 

identify the best GPD for the data-poor Amu Darya River basin, a major source of freshwater in 

Central Asia. The performance of seven GPDs and 55 precipitation gauge locations was assessed. 

A novel algorithm, based on the integration of a compromise programming index (CPI) and a 

global performance index (GPI) as part of a multi-criteria group decision-making (MCGDM) 

method, was employed to evaluate the performance of the GPDs. The CPI and GPI were estimated 

using six statistical indices representing the degree of similarity between in-situ and GPD 

properties. The results indicated a great degree of variability and inconsistency in the performance 

of the different GPDs. The CPI ranked the Climate Prediction Center (CPC) precipitation as the 

best product for 20 out of 55 stations analyzed, followed by the Princeton University Global 

Meteorological Forcing (PGF) and Climate Hazards Group Infrared Precipitation with Station 

(CHIRPS). Conversely, GPI ranked the CPC product the best product for 25 of the stations, 

followed by PGF and CHRIPS. Integration of CPI and GPI ranking through MCGDM revealed 

that the CPC was the best precipitation product for the Amu River basin. The performance of PGF 

was also closely aligned with that of CPC.  

 
Keywords: Compromise programming, global performance indicator, statistical metrics, group 

decision making, gridded data, Amu Darya River basin 

 

  



1. Introduction 

Precipitation is one of the key components of the global hydrological cycle (Roca et al., 2019; 

Tapiador et al., 2017). Any variation in the amount of precipitation received in an area can result 

in significant changes to precipitation extremes, with severe consequences to water resources, 

agriculture and ecosystem services as well as an increase in hydrological hazards (Ahmed et al., 

2016; Khan et al., 2019; Mukherjee et al., 2018; Wu et al., 2013). Precipitation is therefore 

regarded as one of the most important factors affecting the economic development of a region. 

Precipitation can generally be measured using in-situ rain gauges, satellite sensors and weather 

radar (Shen and Xiong, 2016; Sun et al., 2018). Gauge-based measurements are considered to be 

both the most important and the most reliable for collecting this data (Guo et al., 2020). 

Long-term, consistent and accurate precipitation records are required for hydro-climatic 

studies and for other applications (Tan et al., 2020). Acquiring accurate and reliable gauge records 

can be a challenge, especially in areas of complex terrain and in developing nations (Jiang et al., 

2016; Kidd et al., 2017; Li et al., 2018; Musie et al., 2019; Tan et al., 2020; Yang et al., 2020). As 

a consequence, long-term rainfall records from homogeneously-distributed gauges are not 

available in most areas around the globe. Data availability issues, and the common issue of 

unsuitable spatial and temporal resolutions of any data which is available, significantly influence 

the outcome of hydrologic studies (Beven and Westerberg, 2011). In many cases gridded climatic 

data are used to fill this information gap. High spatiotemporal resolution gridded datasets have 

been developed, and these are widely used as a proxy to overcome any data availability issues (Bai 

et al., 2018; Duan et al., 2016; Guo et al., 2020; Liu et al., 2017; Rashid et al., 2019; Yang et al., 

2020). Even though the use of GPDs is essential for hydro-climatic studies conducted in data-

sparse regions, the appropriate selection of gridded products from the global climate data pool is 

also a challenging task (Nashwan and Shahid, 2019; Salman et al., 2019). The selection of the 

most appropriate data products must consider the spatiotemporal resolution required for detailed 

hydro-climatic investigations (Gampe et al., 2019). A major drawback is the uncertainty associated 

with many gridded climate products so it is important to examine the performance and reliability 

of the chosen gridded products before use in any specific application. (Gampe and Ludwig, 2017; 

Musie et al., 2019).  

A number of studies have been undertaken to evaluate the performance of gridded 

precipitation products. Conventional statistical methods such as use of coefficient of determination 



(R2), root mean square error (RMSE) and mean bias error are mostly employed. The selection of 

gridded precipitation datasets is primarily based on their ability to replicate extreme precipitation 

days, dry spells, and to provide accurate precipitation density functions and other essential 

properties (Ahmed et al., 2017; Nashwan et al., 2019b). The selection of GPD has also been 

proposed based on run-off or flood simulation applications (Nashwan et al., 2019a; Try et al., 

2020), and association of gridded products with large-scale ocean-atmospheric phenomena (Erazo 

et al., 2018). Additionally, conventional statistical metrics, different similar measuring indices are 

also proposed for evaluating the performance of gridded data (Nashwan and Shahid, 2019). A 

major challenge seen in many studies are the inconsistent results obtained when using differing 

metrics or precipitation properties. For example, a product may be good in replicating dry spell 

but may completely fail in reproducing extreme events (Muhammad et al., 2019). Precipitation 

products may show differing results when using alternative hydrological models to simulate run-

off or flood events. To overcome this challenge multi-criteria decision-making tools are now used, 

with the results integrated to rank the gridded products (Salman et al., 2019). Machine learning 

algorithms such as random forest and symmetrical uncertainty are now used to assess the 

performance of gridded datasets (Nashwan and Shahid, 2019). It should be noted however, that 

the various machine learning algorithms available also produced differeng rankings in regards the 

gridded climate data. This again emphasizes the need for an MCGDM methodology as part of the 

decsion-making process.   

Compromise programming (CP) (Zeleny, 1973) is a linear mathematical method used to 

analyse multi-objective problems. This has widely been used in recent years for decision-making 

and is based on the outcomes of different statistical metrics (Muhammad et al., 2019). The theory 

behind CP is based on choosing a solution closest to a set of ideal points determined by measuring 

the distance between a set of solutions. Salman et al. (2019) employed CP when selecting the best 

gridded precipitation product for Iraq. Muhammad et al. (2019) applied a CP methodology for 

ranking evapotranspiration models. The method was also successfully used to rank global climate 

model (GCM) datasets (Raju et al., 2017). It has also been widely used in solving problems related 

to water resources and the environment (Brahim and Duckstein, 2011; Samal and Kansal, 2015; 

Zhang, 2003).  

The use of a global performance indicator (GPI) (Behar et al. (2015) is another robust 

approach used for solving multi-objective problem. It combines different performance indicators 



to provide a single, unique solution (Behar et al., 2015). Researchers used GPI for the validation 

and ranking of solar radiation models (Despotovic et al., 2015; Fan et al., 2018; Jamil et al., 2020). 

Recently, Nashwan and Shahid (2020) used a GPI technique to rank GCMs by integrating six 

performance measures. The capability shown in efficiently solving multi-objective problems when 

selecting models indicates the potential of GPI use in the selection of GPD.  

The ranking and selection of a gridded precipitation product at a single gauge location is a 

relatively simple task. The challenge arises in deciding on the best GPDs to use based on the results 

obtained at different locations within a study area. A group decision-making approach is often 

taken to overcome this problem. Salman et al. (2018) proposed a multi-criteria group decision 

analysis (MCGDA) for selecting GCMs based on their performance at different locations in Iraq. 

In such an approach, each gridded precipitation product is provided with a weight based on the 

rank obtained by the product at different locations. Performance can then be measured based not 

only on the first rank, but also on the ranks obtained in other areas.    

This study is conducted in the Amu Darya River basin in Central Asia. The objective is to 

use two multi-objectives linear programming (MOLP) methods (CP and GPI) in the ranking of 

GPDs. In-situ monthly precipitation data, recorded at 55 locations scattered throughout basin area, 

were also used. The CP and GPI results obtained were integrated using an MCGDA and the best 

was then selected. The Amu Darya is the longest transboundary river in Central Asia, traversing 

the countries of Afghanistan, Kyrgyzstan, Tajikistan, Turkmenistan and Uzbekistan (Froebrich 

and Kayumov, 2004; Mergili et al., 2013). The river provides freshwater for multipurpose 

activities such as drinking, irrigation and hydropower, and also support for the Aral Sea ecosystem 

(Kure et al., 2013; Lioubimtseva, 2014). Despite the importance of the basin system, studies related 

to the hydro-climate is very limited, principally due to the nonavailability of longer period high-

resolution precipitation data (Bobushev and Salnikov, 2014; Immerzeel et al., 2012). It appears 

that few attempts have been made to source suitable gridded climate data for the Amu Darya basin 

and surrounding regions. A brief overview of existing studies is presented in Table 1, however, no 

comprehensive study has been conducted to assess the suitability of gridded precipitation products 

for the entire basin. The selection and ranking of GPDs would assist in reliably assessing hydro-

climatic changes and impacts on water resources within the basin.  

 

 



 

Table 1 Existing studies in Amu Darya basin and neighboring regions using gridded data products 

Author Study area Gridded data used Major findings 

White et al. (2014) Amu Darya basin CRU TS-2.1 CRU could not provide 
more suitable climatic 
inputs for water modelling 

Törnqvist (2013) Amu Darya basin CRU temperature Uncertainties associated 
with CRU usage. Increase 
in temperature by 2025 
and 2100 

Lutz et al. (2013) Amu and Syr 
River basins 

APHRODITE 
precipitation and 
PGMFD temperature 

Used as a reference for 
climate projection 

Savoskul and Shevnina 
(2015) 

Syr Darya basin CRU temperature CRU upscaled to match 
with GCM 

Shibuo et al. (2007) Aral Sea 
catchment  

CRU precipitation and 
temperature as input of 
models 

Increase in evaporation 
due to irrigation and water 
diversion 

(Malsy et al., 2015) Ob river  CRU TS, GPCC, WFD, 
and APHRODITE 
precipitation 

GPCC and APHRODITE 
are better hydrological 
modelling inputs 

Haag et al. (2019) Central Asia CRU temperature and 
TRMM precipitation 

CRU has good correlation 
with observed temperature 

Khaydarov and Gerlitz 
(2019) 

Uzbekistan CHELSA precipitation 
and temperature 

CHELSA agreed with 
observed temperatures and 
precipitation 

Duethmann et al. 
(2015) 

Tarim River APHRODITE, GPCC, 
WRF, UDel and CRU 
precipitation  

APHRODITE and GPCC 
are capable of providing 
spatial distribution data 

Zandler et al. (2019) The Pamir region 
of Tajikistan 

CRU, GPCC, ERA-
interim, ERA5, MERRA-
2, MERRA-2 bias-
corrected, PERSIANN-
CDR precipitation 

MERRA–2 bias-corrected 
and GPCC, indicated 
better performance 

CRU=Climate Research Units; TRMM=Tropical Rainfall Measuring Mission; APHRODITE=Asian Precipitation-
Highly-Resolved Observational Data Integration Toward Evaluation; PGMFD=Princeton’s Global Meteorological 
Forcing Data; GPCC=Global Precipitation Climatology Centre; WFD=Forcing Data; CHELSA=Climatologies at 
high resolution for the earth's land surface areas; WRF=Weather Research and Forecasting; MERRA=Modern-Era 
Retrospective analysis for Research and Applications; PERSIANN-CDR=The Precipitation Estimation from Remotely 
Sensed Information using Artificial Neural Networks- Climate Data Record. 
  



2. Study Area and Data 

2.1 Study area 

The Amu Darya river headwaters are located in the high glacier and snow-covered mountains of 

Tajikistan and Kyrgyzstan, then passing through the northern parts of the Hindu Kush, Whakhan 

in Afghanistan, the Kara-Kum and Kyzyl Kum deserts and the arid plains of Uzbekistan before 

discharging into the Aral Sea (Chevallier et al., 2012; Ibrahimzada and Sharma, 2012; Nezlin et 

al., 2004; White et al., 2014). (White, 2014; Ibrahimzada, 2012; Nezlin, 2004; Chevallier, 2012). 

The river is 2,540 km in length, with an annual average flow of about 75 billion m3 (Ahmad and 

Wasiq, 2004). The major tributaries of the Amu river consist of the Vahsh, Pandj and Zeravshan 

(Normatov and Normatov, 2018). Figure 1(a) shows the catchment area of the Amu Darya river 

basin. Most of the basin comprises steppe land. A typical continental climate dominates the region 

(Jalilov et al., 2013). The basin can be sub-divided into three unequal zones: (1) an upstream area 

characterized by high mountains with an average altitude of 7,495 m; (2) a midstream section with 

several large irrigated oases; and (3) a downstream zone feeding the Aral Sea in the northwest 

(average elevation 200 m). The mean annual rainfall of the basin is 464 mm. The maximum 

precipitation of 2,000 mm occurs upstream (in Eastern Pamir) and the minimum downstream (100 

mm). Most rainfall occurs during winter (November to May) while the summer period (June to 

September) is relatively dry. The temperature in summer averages 35℃, while in winter it falls to 

-8℃ to -20℃	(Gaybullaev and Chen, 2013).  

Most of the Central Asian countries are considered arid to semi-arid and are vulnerable to 

climatic changes (Yadav et al., 2019). Water derived from the Amu Darya river is considered to 

of prime importance for the economy and associated livelihoods of much of the Central Asia 

population (Unger-Shayesteh et al., 2013). This area is home to more than 50 million people 

(Babow and Meisen, 2012). While the Amu river is predominantly fed by glacial melt waters, the 

permafrost found within the soil profile also provides more than 40% of the river flow, especially 

during summer (Dodson et al., 2015; Novikov et al., 2009; Punkari et al., 2014). 

 

2.2 Observed precipitation data 

Observed daily precipitation data was collected from the Ministry of Energy and Water of 

Afghanistan (MEW-AFG) and the official website of Global Summary of the Day (GSOD): 

https://www7.ncdc.noaa.gov/CDO/cdoselect.cmd?datasetabbv=GSODandcountryabbv=andgeore



gionabbv=. The differing data sources are marked with different colored symbols in Figure 1. The 

precipitation records of 55 stations for the 1979-2019 period were selected. A number of stations 

adjacent to the boundary of the basin were also selected due to the availability of longer period 

recorded data. Stations with missing or only short period records were discarded. The locations of 

stations within and adjacent to the river basin are shown in Figure 1(b). Most of the these are 

centered within the east and southeast parts of the study area, with few located in the west and 

south-west. Fewer stations are located in the northwest so data from this area is scarce. In general, 

there is a good distribution of recording locations within the basin, though some spatial variability 

is evident. 

 

2.3 Gridded precipitation data 

Seven gridded precipitation datasets were evaluated. These include: (1) Asian Precipitation-

Highly-Resolved Observational Data Integration Toward Evaluation V1101 (APHRODITE), (2) 

Climate Hazards Group Infrared Precipitation with Station V2.0 (CHIRPS), (3) National Oceanic 

and Atmospheric Administration (NOAA) Climate Prediction Center (CPC) global dataset, (4) 

University of East Anglia Climatic Research Unit TS V4.03 (CRU), (5) Global Precipitation 

Climatology Center (GPCC), (6) Princeton University Global meteorological forcing dataset for 

land surface modelling V3 (PGF), and (7) Centre for climatic research, University of Delaware 

V5.01 (Udel). Table 2 summarizes the type, resolution, frequency and period of the seven datasets. 

All the original data is formatted in Network Common Data Form (NetCDF). The statistical 

software program R was used to extract the data in comma-separated values (.csv) format for the 

statistical analysis. The common period of GPDs is 1981-2015, so the performance of the datasets 

is compared with observed data from the 55 selected locations for the period 1981-2015. 

  



 
Figure 1 (a) Location of the Amu Darya River basin in Central Asia; (b) location of rain gauge 

stations used in this study. Coloured circles indicate data source  
 



 

Table 2 List of gridded precipitation datasets used in this study  

Dataset Type Resolution Frequency Period 

APHRODITE V1101 G 0.25°	 Daily 1951–2015 

CHIRPS V2.0 S 0.05°	 Monthly 1981-2019 

CPC G 0.5°	 Daily 1979-2019 

CRU V4.03 G 0.5°	 Monthly 1901–2018 

GPCC G 0.5° Monthly 1891–2016 

PGF G 0.25°	 Daily 1948-2016 

Udel V5.01 G 0.5° Monthly 1900-2017 

G refers to gauge-based data; S denotes satellite-based data 

 

The APHRODITE precipitation product is developed using gauge precipitation data 

obtained from the Global Telecommunication System (GTS) network, as well as in-situ records 

(Yatagai et al., 2012). The product has been developed based on a new interpolation technique 

with accurate long-term gridded orographic precipitation for Asia (Kamiguchi et al., 2010). The 

data are available at 

http://aphrodite.st.hirosakiu.ac.jp/product/APHRO_V1101EX_R1/APHRO_MA/025deg_nc/. 

CHIRPS is a quasi-global rainfall dataset, spanning all latitudes from 50°S−50°N. This 

dataset has been developed by the Climate Hazard Group, combining the Tropical Rainfall 

Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis version 7 (TMPA 3B42 v7), 

global cold cloud duration rainfall estimates and several other observed databases. The product is 

widely used in many fields, particularly for hydrologic simulations and modelling (Funk et al., 

2015; Gao et al., 2018). The data can be downloaded from 

ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS-2.0/global_monthly/bils/.  

The CPC is an observation-based gridded precipitation product developed by the Climate 

Prediction Center, National Centers for Environmental Prediction (Tanarhte et al., 2012). The data 

are available at ftp://ftp.cdc.noaa.gov/Datasets/cpc_global_precip/. The CRU used an angular 

distance weighting interpolation method to grid monthly gauge data acquired from the World 

Meteorological Organization (WMO), NOAA and other national networks. These cover the entire 

global land surface apart from Antarctica (New et al., 2000). The data is available at 

https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.03/.  



The GPCC was established in 1989 by Deutscher Wetterdienst as the German contribution 

to the World Climate Research Programme (WCRP) (Becker et al., 2012). The product was 

developed by combining data from global telecommunication system (GTS), synoptic weather 

information, monthly climate monitoring reports and data from the national hydro-meteorological 

monitoring organizations of 190 countries around the world (Schneider et al., 2014), accessible 

via https://psl.noaa.gov/data/gridded/data.gpcc.html.  

The PGF datasets have been developed by Princeton University by combining several 

global station–based datasets with the National Centers for Environmental Prediction–National 

Center for Atmospheric Research (NCEP–NCAR) reanalysis (Duan et al., 2016). The PGF data 

are available at: http://hydrology.princeton.edu/data/pgf/v3/0.25deg/daily/.  

The UDel precipitation dataset has been developed by the University of Delaware. It is 

based mainly on the data of 22,000 globally distributed rain gauges. The product also uses Global 

Historical Climate Network data and data from the Legates and Willmott archive of station 

climatology (Matsuura and Willmott, 2012). The data can be accessed via 

https://www.esrl.noaa.gov/psd/data/gridded/data.UDel_AirT_Precip.html. 

 

3. Methodology  

3.1 Procedure   

The general procedure used in achieving the objectives of this study is as follows: 

1. Daily observed rainfall records and gridded data (available only at the daily scale) were 

converted to monthly values to make them consistent in terms of frequency; 

2. The ability to use the gridded precipitation in replicating observed precipitation at each station 

was examined via an array of statistical metrics;   

3. The data values were standardized (range of 0 to 1) to remove the influence of the differing 

metrics;  

4. CPI and GPI were employed to integrate the results;  

5. The gridded precipitation products were then ranked using CPI and GPI for each station point; 

6. Finally, the MCGDA technique was applied to merge the rankings of the precipitation product 

for the whole river basin. 

 



The evaluation of the quality of gridded precipitation products is commonly performed by 

comparing gridded data with the data of the nearest rain gauge (Tan et al., 2020) or interpolation 

of gridded data at each gauge location (Ahmed et al., 2019). In this study, GPDs were interpolated 

at the station location using an inverse distance weighting method and then the interpolated 

precipitation was compared with the observed precipitation. Details of the statistical indices, 

MOLP methods and group decision-making methods used in the present study are described in the 

following sections. 

 

3.2 Performance assessment 

Six statistical metrics were used to evaluate the accuracy of the precipitation products. These 

included the coefficient of determination (R2), normalized root mean square error (NRMSE), 

Percentage of Bias (PBIAS), Kling-Gupta Efficiency (KGE), Modified Index of Agreement (MD), 

and the Ratio of standard deviation (rSD) These statistical methods are routinely used to evaluate 

the performance of the differing characteristics of observed precipitation, including the mean, 

variability and association. A description of the statistical indices is provided in Table 3. The range 

and optimum values of the indices are also shown in Table 3. 

 

  



Table 3 Statistical indices used for evaluating the performance of precipitation products in 

estimating observed precipitation  

Statistical indices Range Optimal value 
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where, 𝑋! and 𝑋" are the gridded (g) and observed (o) precipitation, respectively; 𝑟 is Pearson’s correlation; 𝜇	and 
𝜎	represent mean and standard deviation  

 

3.3 Multi-objective linear programming (MOLP)  

Two MOLP methods (CPI and GPI) were used to integrate the results and to derive a single metric. 

The MOLPs are described below. 

 

3.3.1 Compromise programming index (CP) 

The CP is a MOLP method. A Pareto-optimal solution of a multi-objective problem is obtained by 

estimating minimum distance of a utopian solution (Raju et al., 2017; Zeleny, 1973. It uses 

statistical metrics such as R2, NRMSE, PBIAS, MD and other metrics in the calculation (Salman 

et al., 2019). CP uses 1 as the optimal value for R2 and zero for other statistical indices. The CPI 

is expressed as: 

𝐶𝑃𝐼 = )*
!

"#$

+𝑥"$ − 𝑥"∗+
&-

$
&

	 (1) 

 

where i is the statistical index; 𝑥"$ is normalized value of index i for gridded precipitation dataset 



1; 𝑥"∗ is normalized ideal value of index i; and P is the parameter which is considered 1 for linear 

programming and more than 1 for non-linear programming. In this study, the P was considered 1. 

The CPI is always positive where a smaller value of CPI indicates better performance of a gridded 

data.  

 
3.3.2 Global performance indicator (GPI) 

GPI (Despotovic et al., 2015) is a robust MOLP that can be used to overcome any disparities in 

the results derived from the different statistical metrics. It is estimated from the scaled values of 

the metrics by subtracting the value from the median value. The GPI of a gridded product, i can 

be defined as: 

𝐺𝑃𝐼" =*
!

'#$

𝑎'0𝑦2' − 𝑦"'3,			𝑤ℎ𝑒𝑟𝑒	𝑎'

= {−1	𝑓𝑜𝑟	𝑅																											+ 1	𝑓𝑜𝑟	𝑎𝑙𝑙	𝑜𝑡ℎ𝑒𝑟	𝑒𝑟𝑟𝑜𝑟𝑠	 

(2) 

where 𝑦2' represents median of the scaled values of indicator j; 𝑦"'is scaled value of indicator j for 

ith gridded data and n is the number of statistical metrics. The higher value of GPI of a gridded 

data indicates a better performance. 

 

3.4 Multi-criteria Group Decision-Making (MCGDA) 

An MCGDA was employed to rank the GPDs for the whole Amu Darya River basin. In this 

proposed approach, each gridded product provided a weight based on the position achieved by the 

product at different stations to estimate an integrated index (𝐼(). The weight of a product was set 

as an inverse of the rank, meaning that if a product obtained first, second and third rank at 𝑎$, 𝑎) 

and 𝑎* stations, 𝐼( for the product was estimated to be:  

𝐼( = 𝑎$(1/1) + 𝑎)(1/2) + 𝑎*(1/3)	 (3) 

A gridded product ranked lower than three at a location was considered a poor performer at that 

location, and therefore assigned a zero weighting. The 𝐼( value of different gridded products was 

used to provide a final ranking of the products in the basin. 

 

4 Results 

4.1 Spatial distribution of mean annual precipitation 



The average annual precipitation between the observed and gridded data is presented in Figure 2. 

This shows that the maximum precipitation was observed in the northeast of Afghanistan and 

south-east of Tajikistan while the minimum in the east of the basin. The gridded products also 

indicated maximum precipitation values in the northeast of Afghanistan and south-east of 

Tajikistan, and over a small part of Uzbekistan. Precipitation amounts decreased towards the west 

and northwest parts of the basin in Uzbekistan and Turkmenistan and over a wide area in the north 

of Afghanistan. The maximum mean annual precipitation in the north of the basin for each method 

was calculated as - UDel (1052 mm), CHIRPS (904.6 mm), APHRODITE (877.2 mm), GPCC 

(827.7 mm), PGF (728 mm), CRU (688 mm) and CPC (428 mm) The minimum values of annual 

average precipitation in the northwest were calculated as - CPC (53 mm), UDel (67 mm), CHIRPS 

(69 mm), GPCC (76.9 mm), PGF (98.72 mm), CRU (93 mm) and APHRODITE (84 mm). 

 



 
Figure 2. Spatial distribution of mean annual precipitation, observed and gridded products over 

Amu Darya basin 



 

4.2 Statistical performance of gridded precipitation datasets  

The ability of the gridded precipitation products to replicate the differing properties of the observed 

data at all stations was evaluated using six statistical indices. Results for the different datasets at 

all stations are presented in Figure 3. The upper, middle and lower lines of the box represent the 

75-th, 50-th (median) and 25-th percentile values. Where values of a product are closer to the 

optimum value of a metric (Table 3), than the product can be considered superior. Figure 3 also 

shows that the median of R2 for CPC was closest to 1 (optimum value) followed by PGF, CHIRPS 

and APHRODITE. The median of KGE was close to 1 only for PGF and CPC, while it was more 

or less the same for the other products. The CPC showed good agreement in terms of median of 

rSD, followed by CRU and GPCC. The value closest to zero PBIAS (optimum) was observed for 

CPC, while the performance of other products was found to be similar in terms of PBIAS. The 

lowest NRMSE was obtained for APHRODITE, CPC, PGF and CHIRPS.  

Table 4 provides a summary of stations showing the performance of the various gridded 

precipitation products (representing the number of stations at which a product ranked first in terms 

of particular metrics). APHRODITE was found to be the best at 11, 8, 1, 6 and 8 stations in terms 

of R2, KGE, MD, rSD, PBIAS and NRMSE respectively. Likewise, CHIRPS was found best at 

15, 12, 16, 8, 6 and 13 stations in terms of R2, KGE, MD, rSD, PBIAS and NRMSE respectively. 

At some locations more than one product had the same R2, and therefore they were given the same 

rank. To illustrate this, it can be seen that a high R2 value (0.65) was obtained for both 

APHRODITE and CPC at a station located in the northwest. Both were therefore ranked 1st in that 

specific location. For this reason, the total number of locations at which different products obtained 

a first rank rating is greater than the total number of stations (55) studied. 

The analysis indicates that CPC was the best performer for the majority of the stations 

(stations 19, 22, 26, 16, 23 and 18 in terms of R2, KGE, MD, rSD, PBIAS and NRMSE, 

respectively). It was not possible, however, to conclusively determine performance ability due to 

the statistical indices exhibiting dissimilar results when compared with the observed data. Station 

elevation may also affect product suitability. As result CPI and GPI were estimated for all products 

at each location based on their performance. 

 



 
Figure 3 Box and Whisker plots of R2, KGE, MD, rSD, PBIAS and NRMSE, obtained by different 

gridded precipitation products at 55 observed locations in Amu Darya River basin 

[APH=APHRODITE; CHIR=CHIRPS]. 

 
  



Table 4 Number of stations at which different gridded datasets were ranked top in terms of various 

statistical measures 

Statistical 
indices 

 Gridded Precipitation Data   

APHRODITE CHIRPS CPC CRU GPCC PGF UDel 

R2 11 15 19 0 0 16 0 

KGE 8 12 22 0 1 15 1 

MD 1 16 26 0 1 15 1 

rSD 6 8 16 8 7 7 7 

PBIAS 6 6 23 6 4 5 7 

NRMSE 8 13 18 0 0 16 1 

 
 

4.3 Ranking of gridded precipitation datasets using compromise programming 

The CPI of each gridded precipitation product was estimated from the statistical metrics at each 

different location. CPI values at all the 55 stations, for all seven gridded precipitation products are 

presented in Figure 4. The values in are presented using a colour ramp where green indicates a 

high value of CPI, red indicates a low value of CPI and yellow indicates a performance result near 

to the median value of CPI. Results revealed a superior performance for PGF and CHIRPS at many 

of the stations. These results indicate that, PGF and CHIRPS performed best at many stations when 

they were ranked using CPI, while CPC performed best at many stations in term of different 

statistics. 

 



 
Figure 4. The heat map showing the CPI values estimated for different gridded precipitation 

datasets at all the observed locations in the study area. 



 
Further evaluation of CPI performance was undertaken. The spatial distribution of the stations 

where a product achieved 1st, 2nd and 3rd rank is shown in Figure 5. Figure 5(a) shows that CPC 

was the best-gridded product observed, with most locations aligned with the observed values. 

CHIRPS was also found to be a good performer at many stations, particularly those located in the 

south. PGF gave superior results in the central region, while APHRODITE was best at a number 

of locations in the northwest. Figure 5(b) shows APHRODITE as the second-best product in the 

central and northern region of the Amu Darya basin. The PGF and CHIRPS were ranked second 

at many locations where they were not ranked the best. A large heterogeneity was noticed in 3rd 

ranked gridded product. Overall, CHIRPS and PGF were ranked third at most of the locations 

where they were not ranked 1st or 2nd.  

A summary of stations at which different products achieved 1st, 2nd and 3rd rank based on 

CPI are given in Table 5. The results show that CPC ranked top in terms of CPI at most of the 

stations (20). This was followed by PGF (14), CHIRPS (12) and APHRODITE (8). The CRU and 

GPCC did not rank well at any location, while Udel ranked top only at a station located on the 

border of the basin in the south-central part of the study area. APHRODITE ranked 2nd at most of 

the stations (17) followed by PGF (14) and CHIRPS (10). PGC and CHIRPS were also ranked 3rd 

at most of the stations (12). CPC ranked best at 20 stations and was second or third best for only 

six stations.   

 

 

 



 
Figure 5 Ranking of gridded precipitation products based on CPI for all stations over the study 

area [a= 1st position, b= 2nd position and c is 3rd position] 

 



 

4.3 Ranking of gridded precipitation datasets using GPI 

Color-coded GPI for all the products at all stations is presented in Figure 6. The minimum absolute 

value of GPI indicates the best performance of a product.  

The CPC for most of the stations indicated a performance result near to the median value.  

Both PGF and CHIRPS also recorded GPI values near to zero for many stations. Stations where a 

product achieved 1st, 2nd and 3rd rank based on GPI, are shown in Figure 7. The spatial pattern of 

the results obtained using GPI were found to be very similar to those obtained using CPI. CPC was 

the best gridded precipitation product, with most of the locations aligned with estimated values 

(Figure 7(a)). CHIRPS was found best as some locations in the south and PGF was better at stations 

mostly located in the central region. APHRODITE was the second-best gridded precipitation 

product at most of the locations (Figure 7(b)). PGF and CHIRPS were also ranked the 2nd best 

product at many locations. PGF and CHIRPS ranked 3rd at most of the stations (Figure 7(c)).   

Table 5 shows a summary of the results obtained by GPI. This shows CPC is the best 

product in terms of GPI at 25 locations, followed by PGF (16) and GHIRPS (10). Other products 

were only found to be best at between zero and two locations. APHRODITE ranked 2nd at most 

of the stations (22) followed by CHIRPS (12) and PGF (8). PGF and CHIRPS were also found to 

achieve a 3rd rank at most of the stations (13 and 12 stations, respectively), followed by Udel at 

10 stations and CRU at 7 stations. CPC was best at many stations, however it was not good at most 

locations where it was not ranked best. 

 

 



 
Figure 6 Heat map, showing GPI values estimated for different gridded precipitation datasets at 

observed precipitation stations in the study area 



 
Figure 7 Ranking of gridded precipitation products based on GPI at all stations over the basin  

 



4.4 Group decision-making process 
MCGDA was used to select the best gridded dataset as the results obtained from CPI and GPI were 

too disparate. The results are presented in Table 5. The GPDs products were first weighted 

according to the number of stations achieving 1st, 2nd and 3rd ranks, with the results then used to 

derive an integrated index (last column, Table 5) using equation (3). Higher values indicate a better 

performance for a particular product. Table 5 shows the highest value for CPC (followed by PGF 

and CHIPS) suggesting that CPC is the best product for representing precipitation in the Amu 

Darya River basin. The integrated index for CPC and PGF were very close; it should be noted, 

however, that the spatial resolution of PGF (0.25°) is higher than CPC (0.5°). For this reason, PGF 

is ideal for hydro-climatic studies where higher resolution precipitation data is essential. 

 
Table 5 Overall rank of the gridded precipitation products for the study area  

Products Rank based on CPI Rank based on GPI MCGDM 
 1st 2nd  3rd  1st 2nd  3rd   
APH 8 17 5 2 22 5 5.47 
Chrips 12 10 12 10 12 12 6.83 
CPC 20 6 6 25 7 3 9.08 
CRU 0 4 7 0 3 7 1.36 
GPCC 0 3 5 1 2 5 1.14 
PGF 14 14 12 16 8 13 8.22 
Udel 1 1 8 1 1 10 1.5 

 
 
5 Conclusion 

 

Seven gridded precipitation datasets for Amu Darya River basin were evaluated. The results of six 

statistical indices were merged using two MOLP algorithms. These were subsequently integrated 

using an MCGMA approach to rank the GPDs products. The results indicate that CPC appears to 

be the most suitable product for studying the spatiotemporal hydro-climate characteristics of the 

basin. PGF also provided results that were very close to the CPC values. The use of both MOLP 

and MCGMA has provided an ability to select and use reliable gridded precipitation products. CPC 

can be recommended an ideal technique to use in hydro-climatic studies. PGF can also be used, 

particularly where high spatial resolution is required. The selection of an accurate and reliable 

gridded climate product for a particular geographic region can be a challenging task as some 



compromise is usually required in regards the ability of the product to simulate different 

precipitation properties. The methodology proposed in this study for selecting the best gridded 

climate product can be employed in any region. It should be noted, however, that only precipitation 

products with long recording timeframes and higher spatial resolutions (~0.5°) were considered. 

A large number of reliable, satellite-based precipitation products are now available, albeit for 

shorter time spans, and the performance of those products needs to be evaluated in future to 

determine suitability for use. Other multi-objective linear and non-linear methods, as well as group 

decision methods, can also be employed and should be investigated.  
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