1	Validation of a Non-invasive Imaging Photoplethysmography Device to			
2	Assess Plantar Skin Perfusion in Comparison with Laser Speckle			
3	Contrast Analysis.			
4	David Allan, N. Chockalingam, R. Naemi*			
5	Centre for Biomechanics and Rehabilitation Technology, Staffordshire University,			
6	Stoke-on-Trent, United Kingdom			
7				
8	*Corresponding Author.			
9				
10	Roozbeh Naemi,			
11	School of Life Sciences and Education,			
12	Staffordshire University,			
13	Leek Road,			
14	Stoke-on-Trent,			
15	ST4 2DF,			
16	UK			
17				
18	Tel: +44 (0) 1782 295897			
19	Email: R.Naemi@staffs.ac.uk			
20				
21				

Validation of a Non-invasive Imaging Photoplethysmography Device to Assess Plantar Skin Perfusion in Comparison with Laser Speckle Contrast Analysis.

4 Assessing skin perfusion is an established and reliable method to study impaired 5 lower limb blood flow. Laser Speckle Contrast Analysis (LASCA) has been 6 identified as the current gold standard to measure skin perfusion. Imaging 7 photoplethysmography (iPPG) is a new low-cost imaging technique to assess 8 perfusion. However, it is unclear how results obtained from this technique compare 9 against that of LASCA at plantar skin. Therefore, the aim was to investigate the 10 association between the skin perfusion at the plantar surface of the foot using iPPG 11 and LASCA. Perfusion at six plantar locations (Hallux, 1st 3rd 5th metatarsal 12 heads, midfoot, heel) was simultaneously measures using LASCA and iPPG in 20 13 healthy participants. Skin thickness and skin temperature were also collected at the 14 same plantar locations. Spearman's rank tests showed significant associations with 15 medium strength between the perfusion values measured with LASCA and iPPG 16 for most tested sites. No improvement in the relationship between iPPG and 17 LASCA data was observed when controlling for either skin thickness or skin 18 temperature. Skin perfusion values obtained using iPPG were found to be 19 significantly associated with the corresponding values obtained using the gold 20 standard LASCA device. Additionally, the measurement of perfusion using iPPG 21 is shown to be robust.

- 22
- Imaging Photoplethysmography, Laser Speckle, Microvascular, Skin Perfusion,
 Plantar soft tissue
- 25

26 **1. Introduction**

Assessing skin perfusion is an established and reliable method to study impaired lower limb blood flow [1–3]. Perfusion is a measurement of the rate at which blood is delivered to the tissue [4]. However, measurements of perfusion are a particularly challenging physiological measurement due to the spatial inhomogeneity of vessel structure and the variability of perfusion over time [5].

Common techniques used in the measurement of perfusion include laser Doppler,
Laser Speckle Contrast Analysis (LASCA), and nailfold capillaroscopy [5]. Additionally,
there are several emerging technologies aimed at measuring perfusion. These include
imaging photoplethysmography, optical coherence tomography, photoacoustic
tomography, hyperspectral imaging, and tissue viability imaging [5].

7 Recent literature regarding the measurement of perfusion has focused on the use of 8 perfusion measurement devices, particularly LASCA [6,7]. Laser Speckle Contrast 9 Analysis allows for a single-shot, full-field image of microvascular perfusion and works 10 by exploiting the interference pattern generated by the backscattering of diffuse light from 11 the skin [8]. Laser speckle contrast techniques are based on the spatial and temporal 12 statistics of the speckle pattern. When the skin is illuminated using coherent laser light, 13 the laser light is reflected by the skin's red blood cells. The reflected light creates light 14 and dark areas, which create what is known as a speckle pattern [9].

15 In perfused skin, the red blood cells' movement causes changes in the speckle pattern 16 generated and forms a dynamic speckle pattern. The dynamic character of the speckles 17 can be visualised with a camera with an integration time longer than the time scale of the 18 speckle fluctuations, causing the speckle pattern to be blurred on the recorded image [9– 19 11]. Increased perfusion (i.e. increased local concentration and/or increased speed of 20 moving red blood cells) result in a reduced spatial speckle contrast [9,12]. Fluctuations 21 in the speckle pattern and the reduction in contrast of the speckle pattern is, to an extent, 22 related to the speed of the illuminated objects, in this case, the red blood cells within the 23 skin [9].

1 While LASCA has been widely validated against other established methods of 2 measuring microvascular perfusion [13–17], one of its main limitations is the cost of the 3 device which limits the availability of the technique to clinicians. Therefore, a low-cost 4 alternative to measuring microvascular perfusion could aid in increasing the use of 5 perfusion measurements.

6 An alternative to LASCA is the use of Imaging Photoplethysmography (PPG). 7 Imaging PPG (iPPG) is an emerging, non-contact method that can detect heart-generated 8 pulse waves utilising peripheral blood perfusion measurements. It can capture spatial 9 information from multiple sites simultaneously [5,18–21]. In its most basic form, Imaging 10 Photoplethysmography requires only two components: a light source to illuminate the 11 tissue and a photodetector to measure small variations in light intensity. The light 12 interaction with the illuminated tissue is complex with variables such as light 13 transmission, reflection, absorption, multiple scattering, and fluorescence all affecting the 14 interaction [22,23]. Additionally, blood volume, blood vessel wall movement, and the 15 orientation of red blood cells can affect the returning light intensity received by the 16 photodetector [24–26]

Imaging Photoplethysmography measurement systems usually operate in what is known as reflection mode [5]. In reflection mode, both the illuminating light source and photodetector are situated alongside each other [5,18–21]. In reflection mode, the interaction between the light and the tissue being imaged depends on the penetration depth of the illuminating light [19–21]. Red and infrared light have been shown to penetrate the tissue for several millimetres, e.g., 2.5mm at the wavelength of 810nm [27] while other light sources such as green light will only penetrate the tissue up to 1mm [23,27]. Based on this, when using a green light source, the measurement obtained iPPG
 can be said to be a measurement of skin microvascular perfusion [21,23,27].

3 However, assuming that the measurement of iPPG using green light is a measurement 4 of skin perfusion, the skin's properties, such as skin hardness, skin thickness, and skin 5 temperature, may affect the measurement of perfusion using iPPG and must be taken into 6 account. Current literature suggests that as the skin temperature decreases the penetration 7 of light into the skin increases indicating cooling-induced transparency of skin [28]. 8 Therefore, any differences in the measured temperature of the foot need to be accounted 9 for as differences in the temperature of the skin could affect the measurement of perfusion 10 by measuring different structures of the plantar soft tissue.

11 Additionally, the effect of skin hardness must be assessed. It is suggested that collagen 12 cross-linking causes an increase in the hardness of the skin on the plantar surface of the 13 foot [29,30]. This cross-linking of the collagen fibres could increase the skin's density 14 and thus decrease the penetration of the green light into the underlying skin where the 15 blood vessels are located. By assessing the effect of skin hardness on the measurement of 16 perfusion, the effect of potential collagen cross-linking can be taken into account. Finally, 17 as highlighted previously, the penetration of the green light used in iPPG is less than that 18 of the LASCA. Hence assessing skin thickness in addition to skin hardness ensures that 19 the measurement of iPPG falls within the skin thickness limit.

Therefore, this study aimed to investigate if the plantar surface skin perfusion measured using a low-cost green light iPPG system is associated with that of the gold standard LASCA.

1 **2.** Methodology

2

3 For this study, an iPPG perfusion device was developed in association with Cadscan 4 (Cadscan, Chester, United Kingdom). This prototype perfusion camera is designed to be 5 used in reflectance mode. An Intel® RealSense Depth Camera (Intel®, California, United 6 States) was used as the photodetector [Figure 1]. The plantar surface of the foot was 7 illuminated using a green LED of wavelength 540nm was used [31]. The frame rate of 8 video recording was 30 frames per second (fps), and the frame size was 1280×720 pixels. 9 Recording time was set to be 300 frames (10 seconds) with the duration of recording 10 selected based on previous work by Kamshilin et al [20]. This video duration of 300 11 frames (10 seconds) corresponds approximately to 10 periods of the cardiac cycle and 12 was found based to be able to represent the most important spatial distribution features 13 with regards to the perfusion of blood within the foot [20]. The intensity of ambient 14 illumination in the laboratory was much lower than that provided by the LED illuminator. 15 After necessary approval from the ethics review committee at Staffordshire 16 University, 20 healthy participants with no history of recent major lower limb surgery or 17 neurological disorders were recruited from the local population. This study's sample size 18 was determined based on sample size calculations provided by G^* Power (version 3.1.9.6) 19 [32,33]. As this study investigates the association between LASCA and iPPG correlation 20 testing was selected. A large effect size of $\rho=0.6$ was selected with $\alpha=0.05$ and 21 power=0.8. The correlation sample size calculation based on these parameters indicated 22 the 17 participants as the minimum required number of participants .

All participants provided full written informed consent before commencing testing.
 Demographical data were recorded through a patient-led questionnaire, including
 questions related to their general health, footwear, and history of foot-related pathologies.

1 To validate the prototype iPPG perfusion camera, the participant was asked to lie 2 supine on a medical couch in a temperature-controlled room (21.5°C±1.5°C) for 10 3 minutes before testing. This acclimatisation period of 10 minutes has been established to 4 be adequate to allow the skin temperature to reach a constant value [34,35]. After the 5 acclimatisation period, the participant was asked, while remaining in a supine position to 6 place their feet at the end of the examination couch [Figure 1]. The prototype perfusion 7 (Photoplethysmography PPG) camera was then placed approximately between 40-45cm 8 away from the foot, dependent on the foot size, to enable the entire length of the foot to 9 be captured. This distance from the foot to the perfusion camera was measured, and the 10 head of the Laser Speckle Contrast Imager (Pericam, Perimed AB, Jarfalla, Sweden) was 11 placed the same distance from the foot as that of the perfusion camera [Figure 1].

12 As both the LASCA and perfusion camera work based on reflected light, care was 13 taken to ensure that both cameras were positioned as square to the foot as possible (with 14 thee cameras optical axes perpendicular to the plantar surface) to minimise parallax 15 errors. Ideally both LASCA and Perfusion camera should have the same position in 16 relation to the plantar aspect of the foot where the measurements are taken place. While 17 given the requirement for simultaneous measurements, this was not feasible, it was made 18 sure that the LASCA and Perfusion camera are aligned with respect to the longitudinal 19 axis of the foot to minimise such error [Figure 1]

20 Correct alignment of the cameras to the foot was crucial as misalignment lead to
21 the measured levels of perfusion being lower due to less light being reflected back to the
22 photodetectors, which therefore could have affected the calculation of perfusion.

A series of three, 30 second, recordings were taken, for the left foot [Figure 2]. To ensure consistent measurements, a sheet of black foam was placed over the ankle of the participant. This provided a consistent baseline condition for both the LASCA and

the perfusion camera, helping to reduce the noise within the images captured and alsoensured that only the foot was being recorded [Figure 1].

In addition to the measurements of perfusion, parameters related to temperature and skin properties were collected. Thermal images were taken to assess the skin temperature at the plantar aspect of the foot. This camera was positioned in such a way to be able to capture the whole length of the foot [Figure 1].

7 The measurement of skin hardness was conducted using a Shore-00 hardness 8 device (Shore 00, AD-100, Checkline Europe B.V, Dennenweg, The Netherlands). The 9 participant was asked to lie in the prone position face down on the medical couch with 10 their shank (shin) in the air approximately 90 degrees to the thigh. The durometer was lowered with the foot relaxed onto the following plantar sites: Hallux, 1st metatarsal head, 11 3rd metatarsal head, 5th metatarsal head, midfoot, and heel. The tissue under the durometer 12 13 was allowed to be compressed by the full weight of the device before taking the reading of hardness. Each site is tested three times, and an average value of Shore hardness for 14 15 each site calculated.

16 Ultrasound imaging was utilised to assess the skin thickness at the following plantar sites: Hallux, 1st metatarsal head, 3rd metatarsal head, 5th metatarsal head, midfoot, 17 18 and heel. To conduct the test, a large gel pad, formed of ultrasound conductive gel, was 19 placed between the probe and the skin. This was to aid in minimising the compression of 20 soft tissues surrounding the plantar sites. A series of static images were captured for 21 analysis whereby the thickness of the skin was determined. Measurements were taken at 22 3 locations located at the left, centre, and right of the ultrasound image used to collect 23 skin thickness.

24

1 2.1. Data analysis

2 To aid in the comparison of the data obtained by the LASCA and the perfusion 3 imaging camera, a bespoke data analysis tool has been developed at Staffordshire 4 University. This data analysis tool is based on a data extraction tool provided by Perimed, 5 the manufacture of the LASCA. This data analysis tool allows for the manipulation of the obtained images to ensure that both images are the same pixel size and in the same 6 7 orientation. The analysis tool also allows for a direct comparison between the LASCA 8 data and that recorded using the perfusion device by devising a correlation matrix 9 whereby the agreement between the two images can be assessed. This method allows for 10 a direct comparison between images collected using the LASCA and the iPPG camera in the areas of the Hallux, 1st Metatarsal head, 3rd Metatarsal head, 5th Metatarsal head, 11 12 lateral midfoot, and the heel.

13 Shapiro-Wilk test was used to screen the data for normal distribution (p < 0.05). The 14 parameters of skin thickness, Shore hardness, and thermography were found to be 15 normally distributed. However, the measurement of skin perfusion measured using the 16 perfusion camera and LASCA were found to be non-normally distributed at all 17 anatomical sites of interest (Hallux, 1st Metatarsal head, 3rd Metatarsal head, 5th 18 Metatarsal head, lateral midfoot, and the heel). Therefore, non-parametric tests were 19 employed. All statistical analyses were conducted using commercially available software 20 (IBM® SPSS®v.25). Partial correlation tests were used to account for the parameters 21 related to skin and temperature.

22

23 **3. Results**

The 20 participants (9/11, M/F) recruited for this study had an average age of 38(±10)
years. The highest variability and average measurement of perfusion using the LASCA

were found at the hallux [Table 1] with the lowest perfusion value found at the midfoot.
For the measurement of perfusion using the iPPG system, the highest average value of
perfusion was found at the 1st metatarsal head with the highest variability at the 3rd
metatarsal head. The lowest average value of perfusion using the iPPG system was found
at the heel.

6 Significant correlations with medium strength (except for the 1st Metatarsal head) 7 were observed between the perfusion measured using LASCA against those obtained 8 from iPPG [Table 2]. When partial correlation which took into account the effect of skin 9 thickness, harness and temperature were used, no improvement in the relationship 10 between PPG and LASCA data was observed.

11

12 **4.** Discussion

13 Based on current literature regarding the measurement of microvascular perfusion, 14 there have currently been no studies which have looked to compare or validate imaging 15 photoplethysmography against that of the gold standard Laser Speckle Contrast Analysis 16 (LASCA). This study shows for the first time that there is a clear significant association 17 between the values obtained by imaging photoplethysmography (iPPG) compared to the gold standard LASCA device. Except for the 1st metatarsal head, all other sites across the 18 19 plantar surface of the foot showed medium-strength correlations with the results of the 20 LASCA.

To further understand the association between LASCA and iPPG the physical meaning of each measurement obtained by LASCA and iPPG [Table 2] must be explored. For LASCA, the measurement obtained is expressed as perfusion units. Perfusion units are an arbitrary measurement that, as previously mentioned, is based on the blurring of the spatial speckle pattern [9–11] and the change in spatial speckle contrast [9,12]. Whereby a higher value of perfusion unit is, to an extent, related to an increase in perfusion. Currently, within the literature there no theoretical model that can directly link changes in the spatial speckle contrast to changes in perfusion. However, there is generally agreed on assumption within the literature that a decrease in spatial speckle contrast is associated with increased red blood cell velocity and, therefore, perfusion [9,24,36,37].

8 For the value of perfusion obtained by the iPPG device, this is a dimensionless value 9 that is related to red blood cell-volume pulsations within a tissue at the mean heart rate. 10 The higher the amplitude of the red blood cell pulsations recorded, the higher the volume 11 of red blood cells provided to the tissue and, therefore, a larger value of perfusion.

Whilst LASCA and iPPG can be said to be measuring two separate measurements namely the red blood cell velocity (LASCA) and red blood cell volume (iPPG) they can both be said to be measuring perfusion. Perfusion defined is the rate at which blood is supplied to the soft tissues of the body.

Due to the difference in the wavelength of infrared light used in LASCA versus that of the green light that is used in iPPG, the penetration depth of LASCA would be deeper compared to that of the iPPG. Hence compared to the LASCA device, the iPPG measures perfusion at a shallower skin depth.

However, when the effect of skin thickness, skin stiffness, and temperature was
considered, no improvement in the relationship between iPPG and LASCA was observed.
This can indicate that the association between the measurements are not affected by these
confounding variables.

1 When looking at the properties of the skin, in particular, the thickness of the skin 2 across the plantar surface of the foot the average thickness was found to be 0.07±0.01cm 3 and is in line with previous research, investigating skin thickness in healthy participants 4 [38]. As previously mentioned the average penetration depth of green light into the skin 5 is approximately 1mm (0.10 cm) [23,27] while for the infrared light used by the LASCA, 6 the penetration depth into the skin is approximately 2.5mm. In comparison, the 7 measurements of perfusion using the LASCA will be a measurement of perfusion in the 8 dermal layer of the plantar soft tissues due to its larger penetration depth [27,38]. 9 Therefore, the measurement of perfusion using the iPPG system is a more representative 10 measurement of plantar skin microvascular perfusion compared to that of LASCA.

11 The ability to say that the measurement of perfusion using the iPPG system is a 12 measurement of skin perfusion and that the measurement is linked to that of LASCA 13 allows for this approach to be used in various situations. This may aid in the assessment 14 of wound healing. Laser speckle contrast analysis has been an important tool in the study 15 of wound healing. In particular, in the case of burns, it was found that burns that healed 16 within 14 days were found to have higher perfusion compared to burns that took more 17 than 14 days to heal or ultimately required surgery [39]. Additionally, this prototype 18 camera may find uses in the treatment and care of diabetic foot ulcers. The current 19 research has shown that ulcers that have good perfusion around the wound are more likely 20 to heal and thus prevent amputation [6,40–42]. Currently, there are no low cost clinically 21 viable methods to measure the perfusion of the foot; thus, this prototype perfusion device 22 may bridge that gap and aid in the treatment and prevention of foot ulcers.

However, one of the main limitations of this study is that it was limited to healthy participants though this is a necessary first step to initially validate the concept. The findings of this study need to be validated in a clinical population, such as those with diabetes or burns, to ensure that this link between LASCA and iPPG is consistent between
groups. Due to the non-invasive nature of this testing protocol, this will allow for large
scale cohort studies to be performed with minimal impact on participants.

In conclusion, based on the results of this validation study, there is a significant association between the values obtained by this new perfusion imaging (PPG) camera when compared to the gold standard LASCA device. Additionally, due to the penetration depth of green light, it can be said that the perfusion measured using this new iPPG camera is that of skin microvascular perfusion. Future research is however required to investigate if this link between LASCA and iPPG exists in clinical populations such as those with diabetes and how the device can be best implemented clinically.

12 Acknowledgements

This work is supported through a project titled "3D perfusion mapping for diabetic foot
ulcer assessment" funded by Innovate UK grant number 104477 under the January 2018
sector competition: strand 2, emerging and enabling technologies.

- 16
- 17 Declaration of Interest
- 18 The authors report no conflict of interest
- 19

20

- 21
- 22

23 References

Geyer MJ, Jan YK, Brienza DM, et al. Using wavelet analysis to characterize the
 thermoregulatory mechanisms of sacral skin blood flow. J Rehabil Res Dev.

2004;41:797-805.

2	[2]	Humeau A, Koïtka A, Abraham P, et al. Spectral components of laser Doppler
3		flowmetry signals recorded in healthy and type 1 diabetic subjects at rest and
4		during a local and progressive cutaneous pressure application: Scalogram
5		analyses. Phys Med Biol. 2004;49:3957-3970.
6	[3]	Stefanovska A, Bracic M, Kvernmo HD. Wavelet analysis of oscillations in the
7		peripheral blood circulation measured by laser Doppler technique. IEEE Trans
8		Biomed Eng. 1999;46:1230–1239.
9	[4]	Roustit M, Cracowski JL. Non-invasive Assessment of Skin Microvascular
10		Function in Humans: An Insight Into Methods. Microcirculation. 2012;19:47-64.
11	[5]	Allen J, Howell K. Microvascular imaging: Techniques and opportunities for
12		clinical physiological measurements. Physiol Meas. 2014;35.
13	[6]	Behforootan S, Chatzistergos PE, Chockalingam N, et al. Localized pressure
14		stimulation using turf-like structures can improve skin perfusion in the foot.
15		Microcirculation. 2019;0–1.
16	[7]	Mennes OA, van Netten JJ, van Baal JG, et al. Assessment of microcirculation in
17		the diabetic foot with laser speckle contrast imaging. Physiol Meas.
18		2019;40:065002.
19	[8]	Aizu Y, Asakura T. Bio-speckle application blood flow. Opt Laser Technol.
20		1991;23.
21	[9]	Draijer M, Hondebrink E, Van Leeuwen T, et al. Review of laser speckle contrast
22		techniques for visualizing tissue perfusion. Lasers Med Sci. 2009;24:639-651.
23	[10]	Boas DA, Dunn AK. Laser speckle contrast imaging in biomedical optics. J
24		Biomed Opt. 2010;15:011109.
25	[11]	Briers JD, Mcnamara PM, O'Connell ML, et al. Laser Speckle Contrast Analysis

1		(LASCA) for Measuring Blood Flow. Microcirc Imaging. 2012;147–163.
2	[12]	Li H, Liu Q, Lu H, et al. Directly measuring absolute flow speed by frequency-
3		domain laser speckle imaging. Opt Express. 2014;22:21079.
4	[13]	Bezemer R, Klijn E, Khalilzada M, et al. Validation of near-infrared laser speckle
5		imaging for assessing microvascular (re)perfusion. Microvasc Res [Internet].
6		2010;79:139–143. Available from: http://dx.doi.org/10.1016/j.mvr.2010.01.004.
7	[14]	Binzoni T, Humeau-Heurtier A, Abraham P, et al. Blood perfusion values of
8		laser speckle contrast imaging and laser doppler flowmetry: Is a direct
9		comparison possible? IEEE Trans Biomed Eng. 2013;60:1259–1265.
10	[15]	Tew GA, Klonizakis M, Crank H, et al. Comparison of laser speckle contrast
11		imaging with laser Doppler for assessing microvascular function. Microvasc Res
12		[Internet]. 2011;82:326–332. Available from:
13		http://dx.doi.org/10.1016/j.mvr.2011.07.007.
14	[16]	Millet C, Roustit M, Blaise S, et al. Comparison between laser speckle contrast
15		imaging and laser Doppler imaging to assess skin blood flow in humans.
16		Microvasc Res [Internet]. 2011;82:147–151. Available from:
17		http://dx.doi.org/10.1016/j.mvr.2011.06.006.
18	[17]	Mahé G, Humeau-Heurtier A, Durand S, et al. Assessment of skin microvascular
19		function and dysfunction with laser speckle contrast imaging. Circ Cardiovasc
20		Imaging. 2012;5:155–163.
21	[18]	Hosaka R, Noji R. Biomedical Signal and Image Processing projects using
22		Matlab and Labview tools. IFMBE Proc 65 [Internet]. 2017;17:1061–1064.
23		Available from:
24		http://journals.sagepub.com/doi/10.1177/0142331215600254%0Ahttp://www.hb.
25		se/Global/THS/BalticFashion_rapport_Smarttextiles.pdf%0Ahttp://linkinghub.els

- 1 evier.com/retrieve/pii/S0169433217323383%0Ahttp://link.springer.com/10.1007
- 2 /978-981-10-5122-7%0Ahttp://xl.
- [19] Kamshilin AA, Teplov V, Nippolainen E, et al. Variability of Microcirculation
 Detected by Blood Pulsation Imaging. PLoS One. 2013;8.
- 5 [20] Kamshilin AA, Miridonov S, Teplov V, et al. Photoplethysmographic imaging of
 6 high spatial resolution. Biomed Opt Express. 2011;2:996.
- [21] Kamshilin AA, Nippolainen E, Sidorov IS, et al. A new look at the essence of the
 imaging photoplethysmography. Sci Rep [Internet]. 2015;5:1–9. Available from:
 http://dx.doi.org/10.1038/srep10494.
- 10 [22] Anderson RR, Parrish JA. The optics of human skin. J Invest Dermatol [Internet].
- 11 1981;77:13–19. Available from: http://dx.doi.org/10.1111/1523-
- 12 1747.ep12479191.
- 13 [23] Lister T, Wright PA, Chappell PH. Optical properties of human skin. J Biomed
 14 Opt. 2012;17:0909011.
- 15 [24] Daly SM, Leahy MJ. 'Go with the flow ': A review of methods and
- 16 advancements in blood flow imaging. J Biophotonics. 2013;6:217–255.
- 17 [25] Tamura T, Maeda Y, Sekine M, et al. Wearable photoplethysmographic
 18 sensors—past and present. Electron . 2014;3:282–302.
- 19 [26] Nitzan M, Adar Y, Hoffman E, et al. Comparison of systolic blood pressure
 20 values obtained by photoplethysmography and by Korotkoff sounds. Sensors
- 21 (Switzerland). 2013;13:14797–14812.
- [27] Bashkatov AN, Genina EA, Kochubey VI, et al. Optical properties of human
 skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000
 nm. J Phys D Appl Phys. 2005;38:2543–2555.
- 25 [28] Khalil OS, Yeh S, Lowery MG, et al. Temperature modulation of the visible and

1		near infrared absorption and scattering coefficients of human skin. J Biomed Opt.
2		2003;8:191.
3	[29]	Singh VP, Bali A, Singh N, et al. Advanced Glycation End Products and Diabetic
4		Complications. Korean J Physiol Pharmacol. 2014;18:1.
5	[30]	Avery NCC, Bailey AJJ. The effects of the Maillard reaction on the physical
6		properties and cell interactions of collagen. Pathol Biol. 2006;54:387-395.
7	[31]	Cui W, Ostrander LE, Lee BY. In Vivo Reflectance of Blood and Tissue as a
8		Function of Light Wavelength. IEEE Trans Biomed Eng. 1990;37:632-639.
9	[32]	Faul F, Erdfelder E, Lang AG, et al. G*Power 3: A flexible statistical power
10		analysis program for the social, behavioral, and biomedical sciences. Behav Res
11		Methods. 2007;39:175–191.
12	[33]	Faul F, Erdfelder E, Buchner A, et al. Statistical power analyses using G*Power
13		3.1: Tests for correlation and regression analyses. Behav Res Methods.
14		2009;41:1149–1160.
15	[34]	Jonasson H, Bergstrand S, Nystrom FH, et al. Skin microvascular endothelial
16		dysfunction is associated with type 2 diabetes independently of microalbuminuria
17		and arterial stiffness. Diabetes Vasc Dis Res. 2017;14:363-371.
18	[35]	Hultman M, Fredriksson I, Larsson M, et al. A 15.6 frames per second 1-
19		megapixel multiple exposure laser speckle contrast imaging setup. J
20		Biophotonics. 2018;11:1–9.
21	[36]	Draijer MJ, Hondebrink E, van Leeuwen TG, et al. Connecting laser Doppler
22		perfusion imaging and laser speckle contrast analysis. Opt Diagnostics Sens VIII.
23		2008;6863:68630C.
24	[37]	Khalil A, Humeau-Heurtier A, Abraham P, et al. Microvascular blood flow with
25		laser speckle contrast imaging: Analysis of static scatterers effect through

1		modelling and simulation. Proc - UKSim-AMSS 8th Eur Model Symp Comput
2		Model Simulation, EMS 2014. 2014;82–86.
3	[38]	Chao CYL, Zheng YP, Cheing GLY. Epidermal Thickness and Biomechanical
4		Properties of Plantar Tissues in Diabetic Foot. Ultrasound Med Biol.
5		2011;37:1029–1038.
6	[39]	Lindahl F, Tesselaar E, Sjöberg F. Assessing paediatric scald injuries using laser
7		speckle contrast imaging. Burns. 2013;39:662–666.
8	[40]	Yudovsky D, Nouvong A, Schomacker K, et al. Monitoring temporal
9		development and healing of diabetic foot ulceration using hyperspectral imaging.
10		J Biophotonics. 2011;4:565–576.
11	[41]	Yudovsky D, Nouvong A, Pilon L. Hyperspectral imaging in diabetic foot wound
12		care. J Diabetes Sci Technol. 2010;4:1099–1113.
13	[42]	Jayanthy AK, Sujatha N, Reddy MR, et al. Non invasive blood flow assessment
14		in diabetic foot ulcer using laser speckle contrast imaging technique. Biomed
15		Appl Light Scatt VIII. 2014;8952:89521D.
16		
17		

Table 1: The average value and standard deviation of thermography, Shore hardness, and skin thickness for each of the plantar sites tested

		Thermography (°C) Shore-00 hardness		Skin thickness (cm)	
-	Hallux	28.39 ± 4.2	23 ± 8	0.07 ± 0.02	
	1 st Metatarsal Head	29.79 ± 3.14	28 ± 12	0.07 ± 0.01	
	3 rd Metatarsal Head	29.68 ± 2.75	19 ± 10	0.07 ± 0.01	
	5 th Metatarsal Head	29.25 ± 2.8	27 ± 10	0.07 ± 0.01	
	Midfoot	29.95 ± 2.23	23 ± 6	0.06 ± 0.01	
	Heel	29.65 ± 2.68	34 ± 7	0.06 ± 0.01	
3		I			
4					
5					
6					
7					
8					
9					
10					
11					
12					
12					
13					
14					
15					
16					

2	Table 2: Laser Speckle (LASCA) and Plethysmography (PPG) average values and
	standard deviation. In addition the results of correlation testing are presented.

3	Left Foot	LASCA	PPG	Correlation
4	Hallux	69.03±46.61	2.53±1.61	r=0.635, p=0.003
5	1 st Metatarsal Head	59.86±31.36	3.29±2.37	r=0.38, p0.098
6	3 rd Metatarsal Head	55.32±27.72	3.06±2.87	r=0.58, p=0.007
7	5 th Metatarsal Head	57.48±30.33	2.22±1.75	r=0.612, p=0.004
8	Midfoot	42.71±21.77	2.05±1.45	r=0.683, p=0.001
9	Heel	53.97±32.9	1.76±1.74	r=0.646, p=0.002
10	Whole foot	56.4±30.16	2.49±1.79	r=0.648, p=0.002

- 1
- 2

3 Figure 1. Testing setup for the collection of perfusion data using the Laser Speckle

- 4 Contrast Imager and the prototype iPPG camera system.
- 5
- 6

8 Figure 2. A) Example image of LASCA output after recording B) Example image of

9 iPPG perfusion after data capture.