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Abstract

We treat simple examples of systems described by non-relativistic model Hamil-
tonians which are unconventional. They are not necessarily Hermitian opera-
tors. In practice, they often contain applied external fields which are not nec-
essarily small, and they seek to describe the effects of spatial confinement more
realistically than most of the classic calculations (some of them by the present
authors). A much studied model of a free particle confined by a non-real poten-
tial can be accommodated within the same theoretical framework. Numerical
treatment of these and similar problems seems well within the capacity of very
modest computer systems, as exemplified by a few tabulations.

1 Introduction

We consider a physical Hamiltonian H , which has real bound states, and the
corresponding Schrodinger equation

HΨ = EΨ (1)

together with boundary conditions which ensure that the wavefunction is in the
domain of H. These are conditions on the continuity and differentiability and
asymptotic conditions so that the wavefunction vanishes at infinite values of
the variables.We assume that the domain of the linear operator H is dense in
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a separable Hilbert space for which an inner product is defined, so that for all
ψ1, ψ2 in the space the inner product is denoted by < ψ1|ψ2 > . In addition for
all ψ in this space

< ψ|ψ ><∞ (2)

so that ψ can be normalised which implies we are considering bound states and
a probability interpretation can be invoked. Given such an inner product we
may define an Hermitian conjugate , H† by means of

< H†ψ1|ψ2 >=< ψ1|Hψ2 > (3)

Here we consider physical operatorsH on the Hilbert space to itself with discrete
eigenvalues and corresponding eigenvectors. On any finite subspace of such
eigenvectors H is bounded and consequently the Hermitian conjugate is unique
[1].

If H† = H then from (1)

E =< Ψ|HΨ >=< HΨ|Ψ >=< Ψ|HΨ >∗ (4)

so that E is real. Physically real energies are necessary for the bound states
to be stationary. However although it is sufficient that H† = H it is not nec-
essary and real energies may be obtained from non-Hermitian Hamiltonians
[2,3]. These can arise when the wavefunction is expressed in the modified form
Ψ = exp(−f)Φ, usually to remove a dominant term in the Hamiltonian, and the
resulting Schrodinger equation for Φ involves a non- Hermitian operator in the
space. We may also have non-Hermitian operators when H contains complex
terms , which may arise from the interaction of a field ( usually a magnetic field)
with an atomic or molecular system.In general the property that H is Hermitian
is independent of the property that the terms in H are real and non-Hermitian
operators exist where all the terms are real.
In this paper we examine techniques for treating such Hamiltonians and illus-
trate these using model problems. One of these describes the confinement of
the hydrogen atom by a harmonic potential , as opposed to an infinite barrier(
see [4-12 ] for some earlier treatments and an extensive review), and we obtain
tractable analytic approximations for the wavefunction. All of the necessary
integrals are calculated analytically using the properties of the Laguerre poly-
nomials. Another example, where H contains complex terms, and is a model
for the interaction of a particle in a defined state with a magnetic field so that
the variable is the spin values of the particle [13-15,17 ]. We also consider a
generalisation to multi-states using a well-studied complex valued Hamiltonian
[14,16,17 ] , and obtain analytical approximations making use of the properties
of the harmonic functions.
Our techniques use an appropriate basis chosen from a complete set in a Hilbert
space to form a matrix representation of the operator. The infinite matrix rep-
resenting the operator in the complete set is considered to be identical to the
operator but in some cases a different inner product is used which corresponds
to a transformation to an alternative Hilbert space. In the case of confined
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hydrogen we use an alternative inner product in which the operators are Her-
mitian and we have variational bounds from the matrix analysis. However for
the multi-state magnetic problem we use non-Hermitian matrices and we have
developed a technique for assessing convergence.

2 General Theory

Let L̂ denote a linear operator with domain DL, which is a subspace of some
Hilbert space that can be represented by a matrix operator in a complete set for
this subspace. We do not assume that L̂ is Hermitian . An important example
is where the Hilbert space is the space of square integrable functions ψ so that∫

ψ∗ψdτ <∞ (5)

In a one-dimensional example in −∞ < x < ∞ we have the complete set
{exp(−αx2)ωn(

√
αx)} for any real α > 0 and where ωn(

√
αx) is the nth degree

Hermite polynomial.
Another example using a different space, is a model problem where only a fi-
nite number of states are considered leading to a finite matrix representation in
terms of a set of these functions that form a complete set and hence span the
space.
In general, given a specified basis for the domain we may construct a represen-
tation matrix A for L̂ with elements

Ai,j = eTi Aej =< χi|L̂χj > (6)

where {ei} are column vectors with 1 in the ith position and zero elsewhere that
are matrix representations of the basis functions {χi}. The term< a|b > denotes
the inner product of the Hilbert space and in the special case where L̂ is the
identity operator , A is the overlap matrix of the basis functions. Assuming that
the number of eigenfunctions are in one to one correspondence to the separable
basis, which corresponds to the finite matrix not being deficient , we may solve
the corresponding matrix eigenvalue equation

Aui = λiui ⇒ AU = UΛ (7)

where U is a matrix with columns ui and Λ is a diagonal matrix whose diagonal
elements are the eigenvalues of A and hence of L̂. Thus we can use a similarity
transformation to find eigenvalues:

Λ = U−1AU (8)

where we assume that if there are degenerate eigenvalues then the columns of
U are chosen to be independent vectors. The eigenvalues and eigenvectors may
be complex and in general

u†iuj 6= 0 (9)
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so that the eigenvectors are not necessarily orthogonal. But we have

δij = e†iej = (U−1ui)
†U−1uj (10)

This shows that the set of vectors {ui} are orthogonal in a different inner
product defined by

(ui|uj) = u†iBuj = δij , B = (U−1)†U−1 (11)

and that we also have the representation

(ui|L̂uj) = λiδij (12)

where the base vectors {ei} have been replaced by {ui}. Thus L̂ is diagonal in
this inner product and if the λi are real it is also Hermitian. Any further unitary
transformation will preserve the Hermitian property . Thus if the eigenvalues
are real then there exists an inner product in which the matrix representation of
L̂ is Hermitian. If there is only a subset of eigenvalues that are real then there
is a subspace for which we can define such an inner product and any subsequent
unitary transformation needs to be restricted to this subspace.We note that
if L̂ is Hermitian in the original matrix inner product then we may choose U
to be unitary and then B is the identity and the two inner products are the
same.Thus formally B exists but is unknown since it depends on the exact U .
Examples of this new inner product are given in the following sections including
the treatment of a free particle interacting with a given magnetic field. More
generally we may define a transformation and the corresponding inner product
that simplifies a given non-Hermitian problem. To do this we may use U1 whose
columns are independent but not eigenvectors of A . We then have

uj = U−11 ej (13)

and
(ui|uj) = u†iB1uj = δij , B1 = (U−11 )†U−11 (14)

but L̂ is not diagonal. This is used in a subsequent section to simplify the
treatment of confining atomic hydrogen using a harmonic potential by diago-
nalising a matrix that represents part of H which contains the kinetic energy
terms and consequently we obtain a Hermitian matrix in the new inner product
which simplifies the approximations and leads to bounds. In the final section
we treat a problem with complex terms in H which is a model for a particle in
the presence of a magnetic field and show that we may choose an inner product
that depends on a parameter and that scaling may be carried out to increase
the rate of convergence of the eigenvalue problem.

An example which is not a Hermitian representation is the 2× 2 model

A =

(
0 iω2

−i 0

)
(15)
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where ω is a real parameter and the eigenvalues are the real quantities ±ω .This
is not unbroken PT symmetric [13] which would be a sufficient condition for
real eigenvalues and is considered in the last section. We obtain

U =
1√

ω2 + 1

(
iω −iω
1 1

)
(16)

and we may form the generalised inner product with

B =
ω2 + 1

2ω2

(
1 0
0 ω2

)
(17)

3 Hydrogen-like atoms in a Harmonic potential

We consider the radial wavefunction for an hydrogen-like atom confined by a
harmonic potential

H = (−1

2
(D2 +

2

r
D)− c

r
+
b2r2

2
)ψ = Eψ, D =

d

dr
(18)

The value of the parameter b describes the degree of confinement and differs
from more traditional models which usually involve an infinite barrier at some
finite value of r. The confining potential is therefore a more realistic description
of whatever field is used for the confinement and can be regarded as the leading
term of a more complicated potential . We require the radial wavefunctions to
be continuous and differentiable and that∫ ∞

0

ψ∗ψr2dr <∞ (19)

so that the wavefunctions belong to the Hilbert space with inner product∫ ∞
0

ψ∗1ψ2r
2dr (20)

It is more efficient to use different Hilbert spaces and consequently different sets
of basis functions, dependent on the the sizes of b and c. To do this we write
the wavefunction in terms of an asymptotic factor in the form

ψ = exp(−f)φ, (21)

where f = br2/2 or f = ar for large or small b respectively. For large b the
potential is dominated by the harmonic term and this term is always dominant
for large r leading to a discrete spectrum analogous to the harmonic oscillator
potential. But for small b the Coulomb potential term dominates for small r so
that , particularly for the lower states, the wavefunctions behave analogously
to hydrogen-like states and a is related to c. These transformations lead to
non-Hermitian operators in the inner product in (20) and this corresponds to a
similarity transformation of H

h = exp(f)Hexp(−f)⇒ Hexp(−f) = exp(−f)h (22)
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which has the same eigensolution as H. The domain of h is the set of functions
exp(f)ψ where rψ is square integrable. In order to solve the corresponding
eigenvalue problem any required boundary conditions on φ are deduced from
those on ψ. Thus we may choose the matrix representation

hrs =< ψr|Hψs >=

∫
wexp(−f)φ∗rH(exp(−f)φs)dτ

=< exp(−f)φr|Hexp(−f)φs >= (φr, hφs) (23)

where w > 0 is a chosen weight function and the new inner product to be used
is

(φr, φs) =

∫
wexp(−2f)φ∗rφsdτ (24)

To use this inner product to calculate estimates to the energies using variational
theory we need to choose f so that

(φr|hφs) = (hφr|φs) (25)

In general we may write the operator h in the form

h = T + V (26)

where V is a real potential that depends only on the coordinates but T contains
derivative terms that arise from the transformation of the kinetic energy terms.
Thus a sufficient condition that (25) will hold is that the set of functions {φr}
are chosen from a complete set so that

(φr|Tφs) = εsδrs (27)

We note that equations (24 ) and (25) are required for the representation with
this new inner product and from section 2, U1 is the matrix representation of
exp(f). In order to choose f we make use of the results

Dψ = (−φDf +Dφ)exp(−f),

D2ψ = ((Df)2φ− (D2f)φ− 2(Df)(Dφ) +D2φ)exp(−f) (28)

In the case where f = br2/2 the dominant harmonic term cancels and we may
write h = T + V where

T = (−1

2
(D2 +

2

r
D) + brD − 3

2
, V = − c

r
(29)

The eigenvalue problem for rT may be written

−2rTφ = (rD2 + 2D − 2br2D + 3br)φ = −2λrφ (30)

which has the exact solution

φn = M(−n, 3

2
, br2) = L(n,

1

2
, br2), λn = 2bn (31)
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where M is the Kummer function and L the associated Laguerre polynomials
which satisfy∫ ∞

0

L(m,
1

2
, br2)L(n,

1

2
, br2)r2exp(−br2)dr = Nnδmn (32)

These form a complete set in this Hilbert space ( note w = r2) and after nor-
malisation to φn satisfy the generalised inner product results

(φm|φn) = δmn, (φm|Tφn) = λnδmn (33)

so we can choose a basis from this set and we have a diagonal matrix repre-
senting T. The remaining matrix has the elements (φm|V φn) can be calculated
analytically summing up the powers of r and integrating the Gamma functions
exactly so as to form Hermitian matrices.For any b, b 6= 0 an asymptotic factor
is exp(−br2/2) and all solutions are finite at the origin and satisfy (2) so that
they are in the domain of H and in principle this procedure can always be used.
However for very small b the asymptotic factor might not be as important so
we can consider the alternative method of solution with f = ar. In this case we
have

T = −1

2
(D2 +

2

r
D) +

a− c
r

, V =
b2r2

r
(34)

Analogously the eigenvalue equation for T can be written

−2rTφ = (rD2 + 2D − 2arD + a2r + 2(c− a))φ = −2λrφ (35)

Choosing c/a = n + 1, n = 0, 1... then for each separate choice we have the
solution

φn = M(−n, 2, 2ar) = L(n, 1, 2ar), λn == −a
2

2
= − c2

2(n+ 1)2
(36)

and φn is chosen to be one of the basis functions. For this fixed a the other basis
functions are defined as φm = L(m, 1, 2ar) so that we use the Hilbert space of
these associated Laguerre polynomials which satisfy∫ ∞

0

L(m, 1, 2ar)L(k, 1, 2ar)rexp(−ar)dr = Nmδmk (37)

and the basis can be normalised in this inner product.( Note w = r). The ma-
trix elements (φm|V φk) can be calculated exactly using the 3-term recurrence
relation for the associated Laguerre polynomials. Thus in all cases we have
transformed to a different inner product and hence to different Hilbert spaces
but the solutions are in the domain of H. When we use f = ar, since a depends
on a particular n, the chosen basis is suitable for one particular eigenvalue of the
original system and only φn is a standard solution for a hydrogen-like equation
with charge c. For f = br2/2 the same basis can be used to estimate all the
states.The difference in these procedures relates to the different dominant terms
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in the potential which approximate a harmonic system or a hydrogen-like sys-
tem. The convergence and rate of convergence measured by the number of basis
functions required supports the different choices of basis functions for large and
small b.

3.1 Example Calculations

In Table1 we present the calculated energies for a range of values of b2 for the
ground state and first excited state respectively. For the lower values we use
the basis L(n, 1, 2ar) and the corresponding inner product whereas for b2 > 9
we use the basis L(n, 1/2, br2) and the alternative inner product.Two values are
given at b2 = 9 so as to compare calculations from the two inner products. In
each case we have upper bounds for the energies so that at b2 = 9 we see that
the L(n, 1, ar) basis gives slightly better estimates. But for larger b the number
of basis elements required is smaller using L(n, 1/2, br2).

The harmonic potential may be used to model confinement of the hydrogen
atom.One advantage is that the potential is effective for all r rather than in the
case of an infinite barrier at r = R for some R. Previously [11] we calculated
the effect of such infinite barriers and for the ground state at R = 1 we obtained
2.3740 so that this is approximately equivalent to using b2 = 9 in the present
calculations but the corresponding potential is not infinite and the wave function
is not identically zero near r = R. A similar comparison for the first excited
state is when R = 1.7 which approximately corresponds to b2 = 3.2 in the
present calculations.
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Table 1: Ground(GS) and First Excited State(ES) Energies

b2(GS) E0 b2(ES) E1

0.0001 -0.4999 0.00001 -0.1248
0.001 -0.4985 0.001 -0.1064
0.01 -0.4857 0.0025 -0.0833
0.1 -0.3844 0.005 -0.0507
0.35 -0.1846 0.01 0.0033
0.5 -0.0878 0.1 0.5223
0.75 0.0540 0.5 1.6253
1.0 0.1797 1.6 3.3095
2.0 0.5938 3.2 4.9427
4.0 1.2237 6.0 7.0401
9.0 2.3699 9.0 8.8107
9 2.3712 9 8.8118
16 3.5716 16 12.0596
36 6.0676 36 15.5305
100 11.2664 100 31.9661
2500 66.8615 2500 168.2903

4 Particle in a magnetic field

Examples of this generalised inner product can be illustrated by considering the
problem of a particle interacting with a magnetic field. Initially we consider a
particle that in the absence of the field has a particular degenerate energy with
two spin states. In the presence of the field the Hamiltonian has the form

H = E0I− µ(σxBx + σyBy + σzBz) (38)

where Bx, By, Bz are the components of the magnetic field, I is the unit matrix
and σx, σy, σz are the Pauli spin matrices ( for spin 1

2 particles) given by

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
(39)

Choosing E0 = rcos(θ), Bz = irsin(θ).Bx = s,By = 0, µ = −1 leads to a well
known model problem ( [14]-[15] ) given by the 2 × 2 matrix representation
acting on the vector of spin components

A =

(
rexp(iθ) s

s rexp(−iθ)

)
(40)

where r, θ, s are real. This is a non-Hermitian matrix but has PT symmetry.
The operator T transforms i → −i whereas P is the matrix that interchanges
the spin variables given by

P =

(
0 1
1 0

)
(41)

9



For any vector x we have
PTAx = APTx (42)

The eigenvalues of A are given by

λ = rcos(θ)±
√
s2 − r2sin(θ) (43)

so we obtain a pair of real eigenvalues or a complex conjugate pair depending on
the values of the parameters. Application of the PT operators to the eigenvalue
equation gives

PTAx = APTx = E∗PTx (44)

so that that PTx is an eigenvector of A with eigenvalue E∗. Initially we consider
the case of real eigenvalues which is defined by Bender [14] to be unbroken PT
symmetry where the action of PT leaves the eigenvalue equation unchanged
and a new (positive definite) inner product is constructed to treat this problem
where

(u|v) = (CPTu)†v = u†(TPC†v) (45)

and

C =
1

cos(α)

(
isin(α) 1

1 −isin(α)

)
(46)

with sin(α) = rsin(θ)/s. The matrix of the normalised eigenvectors is

U =
1√

2cos(α)

(
exp(iα/2) exp(−iα/2)
exp(−iα/2) −exp(iα/2)

)
(47)

and consequently

(U−1)†U−1 =
1

cos(α)

(
1 −isin(α)

isin(α) 1

)
= TPC† (48)

Thus the inner product constructed in [14] for this PT symmetric system
is identical with the inner product constructed for a general matrix in the last
section. In the case that the eigenvalues are real we have a Hermitian matrix
representation. We note that since U is only unique up to normalisation then
we may use alternative inner products using different normalisations which will
lead to alternative definitions of C [15 ] .
This problem can be generalised to Hamiltonians with multiple energy states in
the form

H = −D2I− µ(σxBx + σyBy + σzBz), D =
d

dx
(49)

and the components of the field may be chosen as arbitrary functions of x. The
Hamiltonian is completely defined by taking the domain to be within the space
of square integrable functions in −∞ < x <∞ and we require real eigenvalues
for bounded stationary states. Here we consider the particular example where
Bx = By = 0, Bz = ix3, µ = −1. This problem is a well-studied problem [14,17]
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and the reality of the eigenvalues has been established ([18],[19]). From (49) we
obtain two one-dimensional differential equations:

Hψ = (−D2 + ix3)ψ = Eψ (50)

and
H1ψ1 = (−D2 − ix3)ψ1 = Eψ1 (51)

From the first of these equations (50) , writing ψ = χ1 + iχ2 we obtain the two,
coupled ,real differential equations

(−D2 − E)χ1 − x3χ2 = 0, (−D2 − E)χ2 + x3χ1 = 0 (52)

This is the same pair of coupled equations that need to be solved for (51) if
we write ψ1 = χ1 − iχ2. Consequently we may obtain the complete solution by
solving (50) for bounded wave functions and E real. Thus the domain considered
is such that ψ is sufficiently smooth so that it is continuous and differentiable
everywhere and is also in the Hilbert space of square integrable functions so
that

ψ(x)→ 0, x→ ±∞ (53)

We develop an algorithm for estimating the solutions of (50) and the error in
such solutions. We use a matrix calculation with a finite basis of size N chosen
from the harmonic functions in the form

φn = exp(−αx2/2)ωn(
√
αx)Nn, n = 0, 1.. (54)

Nn =
1

22n!

√
α

π
(55)

where ωn are the nth degree Hermite polynomials and α > 0 is a chosen non-
linear parameter. For any α this set is a complete orthonormal set for the space.
Using the relations

xφn = (
√

(n+ 1)φn+1 +
√
nφn−1)

1√
2α

(56)

and

−d
2φn
dx2

= (−α2x2 + α(2n+ 1))φn (57)

we may represent the linear operator H by the matrix h+ iv where

hmn = α(
1

2
(2n+ 1)δm,n −

√
(n+ 1)(n+ 2)δm,n+2 −

√
n(n− 1)δm,n−2) (58)

and

vmn =
1

(2α)3/2
{
√

(n+ 1)(n+ 2)(n+ 3)δm,n+3 +
√

(n+ 1)(3n+ 3)δm,n+1+

3n
√
nδm,n−1 +

√
n(n− 1)(n− 2)δm,n−3} (59)
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We note an important property of these matrices, namely that they are band
limited. This will enable an error analysis to be carried out. It is also possible
to scale so that x→ γx so that

(hN + iγ5v)x = E0x, E0 = Eγ2 (60)

Where hN is the truncated matrix of size N and parameter γ can be chosen
as small as we like, but for any choice since the matrix is non-Hermitian, we
may obtain both real and complex eigenvalues. If we obtain convergence for
any real eigenvalue as N →∞ then we obtain an eigenvalue of the operator ( or
equivalently the infinite matrix in the complete set) . It is also possible to vary
both α and γ as N increases to improve convergence but in the calculations
presented here we fix α = 0.5, γ = 0.5. The algorithm for estimating the
eigenvalues is simply extracting the real eigenvalues from the eigenvalues of
(60). We have used Maple to obtain the eigenvalues and the calculation can
be done easily and quickly for large N. In the Table 2 we list the estimated
eigenvalues where we have increased N until we have convergence to 8 figures.
These values agree with those given in [14] to 7 or 8 figures but lower states can
be obtained with smaller values of N .

Table 2: Calculated Eigenvalues

n Energy ∆
0 1.15626707 1.0× 10−21

2 4.1092288 9.7× 10−21

3 7.5622739 1.9× 10−19

4 11.314422 8.3× 10−19

5 15.291554 3.6× 10−18

6 19.451529 3.4× 10−17

7 23.776740 5.8× 10−17

8 28.217525 6.1× 10−16

9 32.789083 1.2× 10−15

10 37.469825 7.4× 10−15

In order to estimate the error we expand ψ so that

ψ =

∞∑
n=1

cnφn (61)

and then by truncating ψ we have

H

N∑
n=1

anφn =

N∑
n=1

N∑
m=1

Hmnanφm +

N∑
n=1

M+N∑
m=N+1

Hmnanφm (62)

We note that the two terms on the right hand side are orthogonal and the second
term, which we denote by χ̂ is orthogonal to the first term. Thus for the exact
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energy E we have

< ψ̂ + χ̂|(H − E)ψ̂ >=< ψ̂|(H − E)ψ̂ > + < χ̂|χ̂ > (63)

If χ̂ = 0 we have that the result is exact and we have a matrix operator rather
then an operator with an infinite matrix representation. We now choose ψ̂ to
be a normalised eigenfunction of the matrix h with eigenvalue E0 where the
elements of h are given by

hmn = Hmn, 1 ≤ m,n ≤ N (64)

then
< ψ̂ + χ̂|(H − E)ψ̂ >= (E0 − E)+ < χ̂|χ̂ >= (E0 − E) + ∆ (65)

and the last term, ∆, is a measure of the truncation effects of representing the
operator by a finite matrix. Explicitly we use

ψ̂ =

N∑
n=1

anφn, χ =

N∑
n=1

M+N∑
m=N+1

Hmnanφm (66)

We are not assuming that H is Hermitian so E0 may be complex. We may
make the following observations from examining ∆

1. If ∆ increases for an identifiable state then this matrix eigenvector is not
an approximation to a state of the operator. ( It may vary with N so
much that it is impossible to identify a state with truncation N with one
for truncation N+1 but for large ∆ we cannot make any identification
with the eigenstate of h and the eigenstate of H ).

2. If ∆ decreases as E0 converges then we can identify E0 as an approximation
to some E.

3. Since ∆ depends on the eigenvector, then any parameters in the choice of
complete set ( such as the exponent in the harmonic basis ) can be chosen
to minimise ∆.In the space defined ,(62) is of the required form since the
operation on ψ is closed in the space and it is band limited. This property
is not an unusual one. One of the simplest forms of a band limited example
is a tri-diagonal but in the example considered M = 3.

The values of ∆, that are also given in Table 2, are obtained with a max-
imum size N = 90 but the numerical process is very quick and the size of
the matrix is not a significant problem. However the smaller values in the
table can be obtained with smaller eigenvalue calculations. For example
for N = 12 we obtain the lowest state E0 = 1.15598023,∆ = 0.00118631
and for N = 20 the calculated values are E0 = 1.15626805,∆ = 0.0001527.
If however we use N = 50 then E0 = 1.5626707,∆ = 2.29× 10−13 . Also
in this case the largest absolute value of the eigenvalues is obtained from a
complex pair one of which is E0 = 11.0605965+i276.421748,∆ = 142.659.
So we have confidence in the estimate for the ground state but there are
complex eigenvalues of the matrix which are not valid estimates of the
physical problem.
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5 Summary

We have found approximate solutions to model problems for systems which
include a confining field. These may be considered as generalising the tra-
ditional confinement and do not involve an abruptly rising infinite barrier
at a specified point, but rather a more realistic potential which is large in
the asymptotic region. One example treats the confinement of hydrogen by
a harmonic potential and for the problem of a free particle the imaginary
potential confines the particle to a bound state problem. We represent
the operators by matrices to obtain accurate estimates of the energies.In
all cases the essential property is that we have real bound states and we
have illustrated that these can be treated when the given operators are
non-Hermitian.
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