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 Web application has become an essential part of daily activities to provide 

easy accessibility that ensures better performance. It is a platform where 

sensitive information such as username, password, credit card details, 

operating system and software version. is stored that attracts intruders to 

generate most of their attacks. Intruders can steal valuable data by 

compromising web application security flaws; cross site scripting (XSS) 

vulnerability is one of these. Several studies have been conducted in order to 

prevent the XSS vulnerability. In this research, we searched Scopus Indexed 

articles published in the last 11 years (between 2008 and 2020) using two 

keywords (“XSS attack prevention” and “XSS prevention”). The purpose of 

this study was to conduct a literature review on XSS prevention techniques 

e.g., strengths and weaknesses, including structural issues and real-time 

deployment location in order to extract valuable information. This review 

identified 14 articles among the 25 selected articles that provided various 

suitable prevention techniques for XSS attacks. Seven articles are based on 

tools that have been implemented and take into account design, coding, 

testing, and integrating validation processes, six articles are about server site 

solutions, and one is about automatic mitigation solutions. As a result, this 

research will be invaluable in guiding the advancement of XSS prevention 

techniques. 
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1. INTRODUCTION 

Web applications are a mandatory requirement for businesses, organizations, and customer-behavior 

solutions in order to provide easy access and improved performance to their target users in modern life. 

Security is a major concern in web applications since they contain personal data and information about 

people. The most common web application vulnerabilities, as per the open web application security project 

(OWASP) are injection, broken authentication and session management, cross-site scripting (XSS), broken 

access control, security misconfiguration, sensitive data exposure [1]. XSS is a client-side code injection 

attack that allows an attacker to execute malicious JavaScript in the browser of another user by injecting 

vulnerable web application pages. When a random user visits the compromised page, the page will deliver 

the malicious script into the victim's browser and execute it. Three types of XSS attacks and their removal 

techniques are; (i) an attacker injects a malicious script which is permanently stored on the targeted database 

server–stored XSS vulnerability; (ii) users also inject XSS attacks via phishing emails and other websites 

https://creativecommons.org/licenses/by-sa/4.0/
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when they get a request from a crafted link, after clicking these links the injected code reflects the attack to 

the user’s browser – reflected XSS attacks or XSS Type-I attack; (iii) document object model (DOM) based 

XSS simply means an XSS vulnerability that appears in the DOM instead of the HTML part which occurs 

when a page is managing an action or performing any specific transactions [2]-[5]. 

XSS attacks should be intensely managed for security purposes. During the research, we observed 

that the majority of the proposed models and implemented tools or techniques are intended to identify and 

prevent only one or two types of XSS vulnerabilities. It should be noted that while these tools can prevent 

XSS vulnerabilities, they face obstacles in reducing the attack rate. Therefore, the goal of the study was to 

assist users in gaining an independent understanding of the existing XSS vulnerability prevention 

mechanisms as well as their strengths and weaknesses. This article also discussed the deployment location of 

the XSS vulnerability in web applications. 

The remainder of this paper is laid out as; section 2 implies some relevant research works; section 3 

provides details of the methods of this research. Result, evaluation, and discussion are outlined in section 4. 

And finally, the paper is wrapped up in section 5. 
 
 

2. RELEVANT RESEARCH WORKS 

Tariq et al. [6] proposed utilizing genetic algorithm (GA) in conjunction with threat intelligence and 

reinforcement learning (RL) to defeat XSS attacks, with the results being not only more flexible to changes in 

XSS payloads, but also more understandable to end-users. Rao et al. [7] examined XSS and its taxonomy 

including XSS attack devices, as well as analysis and prevention of XSS forgeries. Kumar et al. [8] suggested 

a unique method called obfuscation to safeguard online applications from SQL injection attacks, XSS attacks, 

and reverse engineering attacks. A comprehensive analysis of XSS exploitation as well as existing detection 

and prevention mechanisms are discussed in [9]. Stency and Mohanasundaram [10] compared XSS attack 

detection techniques in terms of algorithm simplicity, algorithm type, and performance metrics. Vital data on 

the operations of machine learning (ML), predictive analytics, and the development of the significant web 

that properly evaluates and eliminates SQL injection attack (SQLIA) with experiential value demonstrated in 

the receiver operating curve and Confusion matrix was provided in [11]. 

The goal of the work Gogoi et al. [12] was to measure the efficiency of various ML algorithms in 

identifying XSS attacks in web apps and websites, as well as to utilize ML to detect XSS attacks through 

various ML methods. Kumar et al. [13] described a multi-layer prevention approach in which the attacker is 

defended at the API key authentication level using an encryption technique that prohibits the attacker from 

gaining direct access to the API. Google's secure-by-design engineering approach was proposed in [14] 

which successfully avoids DOM-based XSS vulnerabilities in large-scale web development. Ivanova and 

Rozeva [15] proposed an ML technique for detecting stored XSS attacks and defending a representational 

state transfer (REST) web service written in JAVA, which was evaluated in a specifically designed test-bed 

simulation environment that included the IntelliJ IDEA environment, Postman, and a web browser. A secure 

framework that may be used to accomplish real-time detection and mitigation of XSS attacks in cloud-based 

web applications via deep learning (DL) at a high level of accuracy was presented in [16]. A solution 

integrating three techniques to determine the most difficult attacking challenges is revealed in [17] by 

implementing Random Forest (RF), k-Nearest Neighbors (k-NN), logistic regression (LR), support vector 

machine (SVM) algorithms, content security policy (CSP) approach, web application firewall (WAF), 

intrusion detection and prevention system (IDS and IPS). Maurel et al. [18] investigated utilizing neural 

networks to identify XSS vulnerabilities utilizing static methods. 
 

 

3. METHOD 

3.1.  Article search process 

We performed a methodical search strategy to find the publications that detail how XSS 

vulnerabilities in web applications are exploited. In our methodical search proceeding, we searched with two 

keywords from the Scopus Indexed databases to evaluate the article. We began by searching for publications 

published between 2008 and 2021 using the term “XSS attack prevention” and ”XSS prevention”. 
 

3.2.  Article inclusion and exclusion criterion 

We employed a set of criteria to add and reject articles from the batch of articles discovered through 

Scopus indexing database search. Then we studied the title, abstract, methodology, and findings of each 

article to determine which ones to include and reject from the list of papers obtained by our systematic 

searching process and only articles that were utilized to avoid XSS attacks were considered. 
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3.3.  Data extraction 

Each article was assessed based on the following key points: (i) performance comparison of 

different types of XSS attack, (ii) overview of three types of XSS vulnerability detection and prevention 

techniques, (iii) deployment location of XSS vulnerability in web applications. 
 

3.4.  Defensive coding 

The defense code mechanism is performed in three stages as shown in Figure 1. The XSS prevention 

strategies were chosen first, followed by various XSS defense code techniques. Finally, injected locations 

have been identified using defense coding techniques. Figure 2 presents the categorization of defense coding 

mechanism. An updated methodology of XSS prevention for cloud platforms was given in [19] which first 

scans HTTP requests for embedded URI links that point to URLs of external JS files containing malicious 

XSS payloads. Exact taint tracking and coarse-grained both are implemented with JavaScript, and the 

researchers illustrate how the precise taint tracking API may be used to fight against XSS attacks and SQL 

injection [20]. Dembla et al. [21] offered a client-side solution using a knapsack cryptographic local proxy 

with encryption and decryption functionality to protect cookies against XSS attacks. This solution encrypts 

the cookie's value (session-ID) attribute at the cryptographic local proxy before delivering it to the browser, 

and then sends the encrypted cookie's requests to the cryptographic local proxy, which decrypts them and 

forwards them to the web server. A new approach to thwart XSS attacks was presented in [22] which is 

independent of the languages used to construct web apps and solves XSS vulnerabilities that originate from 

different interfaces. The approach is structured, configured, and constructed in .Net, XML, and XSD, then 

tested in a web application written in JSP/Servlets and deployed in the JavaBeans Open-Source Software 

(JBOSS) application server. It is determined to be effective since it allows for cross-language use with very 

little configuration to prevent XSS. A context-sensitive encoder is derived from context-free grammars in 

order to serve appropriate unparsing of potentially malicious input data for all context-free languages [23]. 

This unparsing process produces documents in which the input data has no effect on the structure of the 

document and has no effect on its intended semantics. 

 

 

 
 

Figure 1. The architecture of defense coding mechanism 

 

 

 
 

Figure 2. Categorization of defense coding mechanism 
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Wang et al. [24] proposed a dynamic detection framework (TT-XSS) for DOM-XSS using taint 

tracking at the client side which involved rewriting all JavaScript features and DOM APIs to taint browser 

rendering. To this purpose, additional data types and methods are introduced to enhance the original data 

structure's semantic description capabilities, based on which the taint traces were evaluated during page 

parsing by tainting all sources, sinks, and transfer processes. The Knuth-Morris-Pratt (KMP) string matching 

technique was used to compare the user's input string with the stored pattern of the injection string in order to 

detect any malicious code in [25]. Gupta et al. [26] offered a context-sensitive solution based on static taint 

analysis and pattern matching techniques, with an implemented prototype tool validated on a public data set 

of 9408 samples, to detect and remediate XSS vulnerabilities in web application source code. Guaman [27] 

offered a tool that allows testing and validation procedures to reduce vulnerabilities and make web 

applications secure using a REST architectural style, a design pattern facade, and Java EE from the aspect of 

design, development, and deployment. 

After studying these articles, we can conclude that a defensive coding mechanism is a type of 

defensive design that works in the event of a failure, especially when high availability, safety, or security are 

required. It aims to increase the overall quality of software and source code by making the source code 

accessible and by ensuring that the software performs appropriately in the face of unexpected inputs or user 

actions. 
 

 

4. RESULTS, EVALUATION AND DISCUSSION 

4.1.  Search article results 

Figure 3 summarized the search results of the articles. Based on the phrase cross-site scripting 

attack, we discovered 81 publications published in renowned journals and conferences between January 2008 

and December 2021 using our systematic article search process. Then we scanned all of the articles in detail, 

identifying the most important points in each. We used two keywords to find the publications: “XSS Attack 

Prevention” and “XSS Prevention,” which yielded 10 and 15 articles, respectively. We next studied each 

article's title, abstract, keyword, and technique before selecting 14 publications for analysis from the Scopus 

Indexed Databases. As a result of this search, 14 publications were found that explored the XSS vulnerability 

prevention technique in web applications. 
 

 

 
 

Figure 3. The process of article searching 
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4.2.  Descriptive analysis 

Table 1 summarizes the findings of the 14 articles on XSS attack prevention strategies. We 

discovered a method that can automatically insert borders and establish policies to mitigate the attacking 

probability of an XSS vulnerability [28]. To safeguard the web application from XSS attacks, an execution 

flow analyzer has been built that can emulate client program behavior [29]. A browser proxy has been 

designed to secure the security of sensitive data using an information flow approach [30]. A server-side 

approach has been implemented in some research that limits user input from untrusted sites, removes the no-

output script, and readily accommodates complicated attacks [31]-[35]. Several researchers have produced 

some technologies that can reduce XSS attacks from online applications by taking into account design, 

coding, testing, and incorporating validation [26], [27], [36]-[38]. 
 

 

Table 1. XSS attack prevention technology summary 
Authors Tools Strength Weakness 

Gupta et al. [26] XSSDM XSS vulnerabilities are precisely detected 

and mitigated using taint analysis and 

pattern matching techniques 

It is necessary to improve support 

for the object-oriented paradigm 

Guamán et al. [27] RESTful WS To reduce flaws and strengthen the security 

of web applications through design, 

development, and deployment while taking 
testing and validation into account 

Security and software development 

standards should be set to ensure 

the system's integrity 

Shahriar and 
Zulkernine [28] 

S2XS2 Create policies and dynamically insert 
borders 

Time-consuming and low detection 
capability 

Chen et al. [29] An execution flow 

analyzer 

Create the FSA in order to simulate the 

client program's actions 

Need to modify the web source 

code 
Xiao et al. [30] information flow The security of sensitive data is ensured by 

using JSTFlow as a browser proxy 

There are restrictions to the sensitive 

data that has been detected 

Barhoom and Kohail 
[31] 

server-side solution Prevent untrusted user input, modify the 
trusted code structure 

Retrieve from the accessible 
network's server 

Bisht and 

Venkatakrishnan [32] 

XSS-GUARD Define the server-side code and eliminate 

the no-output code 

Do not forbid the permissible 

benign HTML 
Mewara et al. [33] XSS-ME Easy accommodation of complex attack Can detect and prevent only one attack 

Caliwag et al. [34] escaping technique Capable of preventing XSS attack on the 

created online inventory system by 
removing unnecessary data 

XSS attack mitigation was the sole 

focus 

Maurya [35] 'Positive Security Model' 

based ‘Server-side 
solution’ 

Allow safe tags from the blacklist to 

perform XSS with faster time processing 
when matching attack vectors 

Attackers can circumvent the input 

sanitizer though it will be blocked 
later 

Gupta and Gupta [36] XSS-SAFE Sanitization routines are injected into the 

JavaScript source code to detect and mitigate 
maliciously injected XSS attack vectors 

Only recognizes the link between 

stored and injected features in the 
JavaScript source code 

V et al. [37] BIXSAN: browser 

independent XSS 
Sanitizer for prevention 

of XSS attacks  

HTML parse tree producer is used to 

improve the inconsistency of web browser 
performance along with to recognize static 

script tags 

Unable to detect XSS of 

dynamically growing parsing 
quirks in the XSS cheat sheet as the 

method evaluated by referring to it 

Saxena et al. [38] FLAX: systematic 
discovery of client-side 

validation vulnerabilities 

in rich Web applications 

A lightweight tool in comparison to others, 
with no false positives and sufficient 

scalability 

The complexity of sanitization 
failures that persist in client-side 

javascript code has not been 

highlighted in FLAX testing 
Wurzinger et al. [39] SWAP: mitigating XSS 

attacks using a reverse 

proxy 

Strong detection of differences between 

benign and injected javascript code 

Many types of XSS attacks are 

undetectable 

 

 

4.3.  Evaluation based on the attack type 

As stated in Table 2, we investigated and evaluated each recommended strategy to see if it might be 

used to counteract a specific attack. We conducted an analytical evaluation based on our experience because 

we were unable to assess any of the methods in real-time practices due to the lack of implementation codes 

for most methods. Except for DOM-based XSS, we found five articles regarding tools developed for server-

side XSS attacks that can detect stored and reflected XSS [26], [28], [33], [40], [41]. Four articles discussed 

how their implemented tool can only detect stored XSS in server-side web applications [31], [36], [42], [43]. 

Only reflected XSS can be detected by two studies that are deployed for server-side location [32, and 37]. 

Three studies highlighted how their tools can detect reflected and DOM XSS from server-side locations [25], 

[44], [45]. Five studies that are deployed for client-side location can only identify DOM XSS [24], [29], [30], 

[46], and [47]. A tool for detecting stored XSS in client-side web applications was developed in a study [38]. 

A study developed a client-side tool capable of detecting both stored and reflected XSS [39]. In a paper, 

techniques were created to detect stored XSS on cloud-based online applications [48]. A study developed a 

tool for detecting reflected XSS in client-side web applications [49]. 
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Table 2. Evaluation based on the attack type 
Authors Deployment location Stored XSS (persistent) Reflected XSS DOM XSS 

Wang et al. [24] Client-side N N Y 
Abikoye et al. [25] Server-side N Y Y 

Gupta et al. [26] server-side Y Y N 

Shahriar and Zulkernine [28] Server-side Y Y N 
Chen et al. [29] Client-side N N Y 

Xiao et al. [30] Client-side N N Y 

Barhoom and Kohail [31] Server-side Y N N 
Bisht and Venkatakrishnan [32] Server-side N Y N 

Mewara et al. [33] Server-side Y Y N 

Gupta and Gupta [36] server-side Y N N 
V et al. [37] server-side N Y N 

Saxena et al. [38] Client-side Y N N 

Wurzinger et al. [39] Client-side Y Y N 
Gupta and Gupta [40] Server-side Y Y N 

Gundy and chen [41] server-side Y Y N 

Agten et al. [42] server-side Y N N 
Shahriar and Zulkernine [43] server-side Y N N 

Shrivastava et al. [44] server-side N Y Y 

Cao et al. [45] server-side N Y Y 
Pan and Mao [46] Client-side N N Y 

Weinberger et al. [47] Client-side N N Y 

Gupta and Gupta [48] Cloud N Y Y 
Stamm et al. [49] Client-side N Y N 

** “Y” indicates a method that can successfully stop an attack of that type and “N” indicates a method that cannot stop an 

attack of that type. 

 

 

4.4.  Evaluation based on deployment 

Table 3 presents an analysis of each approach based on different deployment requirements. Three 

methods are highly resistant to attacks: cryptography, exception management, and parsing. Pattern matching, 

HTML escaping, JavaScript escaping, and ML are four techniques that are moderately resistant to attack, 

whereas the XML approach is not. 

 

 

Table 3. Evaluation based on deployment requirements 
Method URL Login Search Detect Prevent Modify code base Resistant to attack 

Cryptography N Y N N Y Y High 
Pattern matching Y Y Y Y Y N Medium 

XML approach Y Y Y N Y N Low 

Exception management Y Y Y Y Y N High 
HTML escaping Y N Y Y N N Medium 

JavaScript escaping Y Y Y Y Y N Medium 

Machine learning Y Y Y Y Y Y Medium 
Parsing Y Y Y Y Y Y High 

** “Y” indicates the method can be deployed to that injection parameter and “N” indicates the method cannot be deployed to 

that injection parameter. 

 

 

5. CONCLUSION 

In this paper, we presented a case study on the prevention of XSS vulnerabilities in web 

applications. We classified various types of defense coding techniques based on XSS prevention methods. 

Furthermore, based on the deployed locations, we discussed the strengths, weaknesses, comparison, and 

evaluation of various types of XSS prevention techniques. The points raised during our discussion will be 

useful in making a decision about implementing XSS prevention tools to protect web applications from XSS 

vulnerability exploitation. Moreover, we have concentrated on research directions and challenges related to 

XSS prevention techniques. Although several techniques for preventing XSS attacks have been implemented, 

their usage for real-time deployment location and extraction of estimated useful information may still be 

endangered by the issue emphasized in this study. 
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