
Bulletin of Electrical Engineering and Informatics

Vol. 11, No. 2, April 2022, pp. 965~973

ISSN: 2302-9285, DOI: 10.11591/eei.v11i2.3557 965

Journal homepage: http://beei.org

Important factors to remember when constructing a cross-site

scripting prevention mechanism

Md. Maruf Hassan1,2, Badlishah R. Ahmad2, Ashrafia Esha1, Rafika Risha1, Mohammad S. Hasan3
1Department of Software Engineering, Daffodil International University, Dh aka, Bangladesh

2School of Computer and Communication Enginering, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
3School of Digital, Technologies and Arts, Staffordshire University, Stoke-on-Trent, Stafford, United Kingdom

Article Info ABSTRACT

Article history:

Received Aug 5, 2021

Revised Dec 20, 2021

Accepted Feb 5, 2022

 Web application has become an essential part of daily activities to provide

easy accessibility that ensures better performance. It is a platform where

sensitive information such as username, password, credit card details,

operating system and software version. is stored that attracts intruders to

generate most of their attacks. Intruders can steal valuable data by

compromising web application security flaws; cross site scripting (XSS)

vulnerability is one of these. Several studies have been conducted in order to

prevent the XSS vulnerability. In this research, we searched Scopus Indexed

articles published in the last 11 years (between 2008 and 2020) using two

keywords (“XSS attack prevention” and “XSS prevention”). The purpose of

this study was to conduct a literature review on XSS prevention techniques

e.g., strengths and weaknesses, including structural issues and real-time

deployment location in order to extract valuable information. This review

identified 14 articles among the 25 selected articles that provided various

suitable prevention techniques for XSS attacks. Seven articles are based on

tools that have been implemented and take into account design, coding,

testing, and integrating validation processes, six articles are about server site

solutions, and one is about automatic mitigation solutions. As a result, this

research will be invaluable in guiding the advancement of XSS prevention

techniques.

Keywords:

Cross site scripting

Cyber security

Web application vulnerability

XSS prevention

This is an open access article under the CC BY-SA license.

Corresponding Author:

Md. Maruf Hassan

Department of Software Engineering, Faculty of Science and Information Technology

Daffodil International University, 102, Shukrabad, Mirpur Road, Dhaka-1207, Bangladesh

Email: maruf.swe@diu.edu.bd

1. INTRODUCTION

Web applications are a mandatory requirement for businesses, organizations, and customer-behavior

solutions in order to provide easy access and improved performance to their target users in modern life.

Security is a major concern in web applications since they contain personal data and information about

people. The most common web application vulnerabilities, as per the open web application security project

(OWASP) are injection, broken authentication and session management, cross-site scripting (XSS), broken

access control, security misconfiguration, sensitive data exposure [1]. XSS is a client-side code injection

attack that allows an attacker to execute malicious JavaScript in the browser of another user by injecting

vulnerable web application pages. When a random user visits the compromised page, the page will deliver

the malicious script into the victim's browser and execute it. Three types of XSS attacks and their removal

techniques are; (i) an attacker injects a malicious script which is permanently stored on the targeted database

server–stored XSS vulnerability; (ii) users also inject XSS attacks via phishing emails and other websites

https://creativecommons.org/licenses/by-sa/4.0/

 ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 11, No. 2, April 2022: 965-973

966

when they get a request from a crafted link, after clicking these links the injected code reflects the attack to

the user’s browser – reflected XSS attacks or XSS Type-I attack; (iii) document object model (DOM) based

XSS simply means an XSS vulnerability that appears in the DOM instead of the HTML part which occurs

when a page is managing an action or performing any specific transactions [2]-[5].

XSS attacks should be intensely managed for security purposes. During the research, we observed

that the majority of the proposed models and implemented tools or techniques are intended to identify and

prevent only one or two types of XSS vulnerabilities. It should be noted that while these tools can prevent

XSS vulnerabilities, they face obstacles in reducing the attack rate. Therefore, the goal of the study was to

assist users in gaining an independent understanding of the existing XSS vulnerability prevention

mechanisms as well as their strengths and weaknesses. This article also discussed the deployment location of

the XSS vulnerability in web applications.

The remainder of this paper is laid out as; section 2 implies some relevant research works; section 3

provides details of the methods of this research. Result, evaluation, and discussion are outlined in section 4.

And finally, the paper is wrapped up in section 5.

2. RELEVANT RESEARCH WORKS

Tariq et al. [6] proposed utilizing genetic algorithm (GA) in conjunction with threat intelligence and

reinforcement learning (RL) to defeat XSS attacks, with the results being not only more flexible to changes in

XSS payloads, but also more understandable to end-users. Rao et al. [7] examined XSS and its taxonomy

including XSS attack devices, as well as analysis and prevention of XSS forgeries. Kumar et al. [8] suggested

a unique method called obfuscation to safeguard online applications from SQL injection attacks, XSS attacks,

and reverse engineering attacks. A comprehensive analysis of XSS exploitation as well as existing detection

and prevention mechanisms are discussed in [9]. Stency and Mohanasundaram [10] compared XSS attack

detection techniques in terms of algorithm simplicity, algorithm type, and performance metrics. Vital data on

the operations of machine learning (ML), predictive analytics, and the development of the significant web

that properly evaluates and eliminates SQL injection attack (SQLIA) with experiential value demonstrated in

the receiver operating curve and Confusion matrix was provided in [11].

The goal of the work Gogoi et al. [12] was to measure the efficiency of various ML algorithms in

identifying XSS attacks in web apps and websites, as well as to utilize ML to detect XSS attacks through

various ML methods. Kumar et al. [13] described a multi-layer prevention approach in which the attacker is

defended at the API key authentication level using an encryption technique that prohibits the attacker from

gaining direct access to the API. Google's secure-by-design engineering approach was proposed in [14]

which successfully avoids DOM-based XSS vulnerabilities in large-scale web development. Ivanova and

Rozeva [15] proposed an ML technique for detecting stored XSS attacks and defending a representational

state transfer (REST) web service written in JAVA, which was evaluated in a specifically designed test-bed

simulation environment that included the IntelliJ IDEA environment, Postman, and a web browser. A secure

framework that may be used to accomplish real-time detection and mitigation of XSS attacks in cloud-based

web applications via deep learning (DL) at a high level of accuracy was presented in [16]. A solution

integrating three techniques to determine the most difficult attacking challenges is revealed in [17] by

implementing Random Forest (RF), k-Nearest Neighbors (k-NN), logistic regression (LR), support vector

machine (SVM) algorithms, content security policy (CSP) approach, web application firewall (WAF),

intrusion detection and prevention system (IDS and IPS). Maurel et al. [18] investigated utilizing neural

networks to identify XSS vulnerabilities utilizing static methods.

3. METHOD

3.1. Article search process

We performed a methodical search strategy to find the publications that detail how XSS

vulnerabilities in web applications are exploited. In our methodical search proceeding, we searched with two

keywords from the Scopus Indexed databases to evaluate the article. We began by searching for publications

published between 2008 and 2021 using the term “XSS attack prevention” and ”XSS prevention”.

3.2. Article inclusion and exclusion criterion

We employed a set of criteria to add and reject articles from the batch of articles discovered through

Scopus indexing database search. Then we studied the title, abstract, methodology, and findings of each

article to determine which ones to include and reject from the list of papers obtained by our systematic

searching process and only articles that were utilized to avoid XSS attacks were considered.

Bulletin of Electr Eng & Inf ISSN: 2302-9285

Important factors to remember when constructing a cross-site scripting prevention … (Md. Maruf Hassan)

967

3.3. Data extraction

Each article was assessed based on the following key points: (i) performance comparison of

different types of XSS attack, (ii) overview of three types of XSS vulnerability detection and prevention

techniques, (iii) deployment location of XSS vulnerability in web applications.

3.4. Defensive coding

The defense code mechanism is performed in three stages as shown in Figure 1. The XSS prevention

strategies were chosen first, followed by various XSS defense code techniques. Finally, injected locations

have been identified using defense coding techniques. Figure 2 presents the categorization of defense coding

mechanism. An updated methodology of XSS prevention for cloud platforms was given in [19] which first

scans HTTP requests for embedded URI links that point to URLs of external JS files containing malicious

XSS payloads. Exact taint tracking and coarse-grained both are implemented with JavaScript, and the

researchers illustrate how the precise taint tracking API may be used to fight against XSS attacks and SQL

injection [20]. Dembla et al. [21] offered a client-side solution using a knapsack cryptographic local proxy

with encryption and decryption functionality to protect cookies against XSS attacks. This solution encrypts

the cookie's value (session-ID) attribute at the cryptographic local proxy before delivering it to the browser,

and then sends the encrypted cookie's requests to the cryptographic local proxy, which decrypts them and

forwards them to the web server. A new approach to thwart XSS attacks was presented in [22] which is

independent of the languages used to construct web apps and solves XSS vulnerabilities that originate from

different interfaces. The approach is structured, configured, and constructed in .Net, XML, and XSD, then

tested in a web application written in JSP/Servlets and deployed in the JavaBeans Open-Source Software

(JBOSS) application server. It is determined to be effective since it allows for cross-language use with very

little configuration to prevent XSS. A context-sensitive encoder is derived from context-free grammars in

order to serve appropriate unparsing of potentially malicious input data for all context-free languages [23].

This unparsing process produces documents in which the input data has no effect on the structure of the

document and has no effect on its intended semantics.

Figure 1. The architecture of defense coding mechanism

Figure 2. Categorization of defense coding mechanism

 ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 11, No. 2, April 2022: 965-973

968

Wang et al. [24] proposed a dynamic detection framework (TT-XSS) for DOM-XSS using taint

tracking at the client side which involved rewriting all JavaScript features and DOM APIs to taint browser

rendering. To this purpose, additional data types and methods are introduced to enhance the original data

structure's semantic description capabilities, based on which the taint traces were evaluated during page

parsing by tainting all sources, sinks, and transfer processes. The Knuth-Morris-Pratt (KMP) string matching

technique was used to compare the user's input string with the stored pattern of the injection string in order to

detect any malicious code in [25]. Gupta et al. [26] offered a context-sensitive solution based on static taint

analysis and pattern matching techniques, with an implemented prototype tool validated on a public data set

of 9408 samples, to detect and remediate XSS vulnerabilities in web application source code. Guaman [27]

offered a tool that allows testing and validation procedures to reduce vulnerabilities and make web

applications secure using a REST architectural style, a design pattern facade, and Java EE from the aspect of

design, development, and deployment.

After studying these articles, we can conclude that a defensive coding mechanism is a type of

defensive design that works in the event of a failure, especially when high availability, safety, or security are

required. It aims to increase the overall quality of software and source code by making the source code

accessible and by ensuring that the software performs appropriately in the face of unexpected inputs or user

actions.

4. RESULTS, EVALUATION AND DISCUSSION

4.1. Search article results

Figure 3 summarized the search results of the articles. Based on the phrase cross-site scripting

attack, we discovered 81 publications published in renowned journals and conferences between January 2008

and December 2021 using our systematic article search process. Then we scanned all of the articles in detail,

identifying the most important points in each. We used two keywords to find the publications: “XSS Attack

Prevention” and “XSS Prevention,” which yielded 10 and 15 articles, respectively. We next studied each

article's title, abstract, keyword, and technique before selecting 14 publications for analysis from the Scopus

Indexed Databases. As a result of this search, 14 publications were found that explored the XSS vulnerability

prevention technique in web applications.

Figure 3. The process of article searching

Bulletin of Electr Eng & Inf ISSN: 2302-9285

Important factors to remember when constructing a cross-site scripting prevention … (Md. Maruf Hassan)

969

4.2. Descriptive analysis

Table 1 summarizes the findings of the 14 articles on XSS attack prevention strategies. We

discovered a method that can automatically insert borders and establish policies to mitigate the attacking

probability of an XSS vulnerability [28]. To safeguard the web application from XSS attacks, an execution

flow analyzer has been built that can emulate client program behavior [29]. A browser proxy has been

designed to secure the security of sensitive data using an information flow approach [30]. A server-side

approach has been implemented in some research that limits user input from untrusted sites, removes the no-

output script, and readily accommodates complicated attacks [31]-[35]. Several researchers have produced

some technologies that can reduce XSS attacks from online applications by taking into account design,

coding, testing, and incorporating validation [26], [27], [36]-[38].

Table 1. XSS attack prevention technology summary
Authors Tools Strength Weakness

Gupta et al. [26] XSSDM XSS vulnerabilities are precisely detected

and mitigated using taint analysis and

pattern matching techniques

It is necessary to improve support

for the object-oriented paradigm

Guamán et al. [27] RESTful WS To reduce flaws and strengthen the security

of web applications through design,

development, and deployment while taking
testing and validation into account

Security and software development

standards should be set to ensure

the system's integrity

Shahriar and
Zulkernine [28]

S2XS2 Create policies and dynamically insert
borders

Time-consuming and low detection
capability

Chen et al. [29] An execution flow

analyzer

Create the FSA in order to simulate the

client program's actions

Need to modify the web source

code
Xiao et al. [30] information flow The security of sensitive data is ensured by

using JSTFlow as a browser proxy

There are restrictions to the sensitive

data that has been detected

Barhoom and Kohail
[31]

server-side solution Prevent untrusted user input, modify the
trusted code structure

Retrieve from the accessible
network's server

Bisht and

Venkatakrishnan [32]

XSS-GUARD Define the server-side code and eliminate

the no-output code

Do not forbid the permissible

benign HTML
Mewara et al. [33] XSS-ME Easy accommodation of complex attack Can detect and prevent only one attack

Caliwag et al. [34] escaping technique Capable of preventing XSS attack on the

created online inventory system by
removing unnecessary data

XSS attack mitigation was the sole

focus

Maurya [35] 'Positive Security Model'

based ‘Server-side
solution’

Allow safe tags from the blacklist to

perform XSS with faster time processing
when matching attack vectors

Attackers can circumvent the input

sanitizer though it will be blocked
later

Gupta and Gupta [36] XSS-SAFE Sanitization routines are injected into the

JavaScript source code to detect and mitigate
maliciously injected XSS attack vectors

Only recognizes the link between

stored and injected features in the
JavaScript source code

V et al. [37] BIXSAN: browser

independent XSS
Sanitizer for prevention

of XSS attacks

HTML parse tree producer is used to

improve the inconsistency of web browser
performance along with to recognize static

script tags

Unable to detect XSS of

dynamically growing parsing
quirks in the XSS cheat sheet as the

method evaluated by referring to it

Saxena et al. [38] FLAX: systematic
discovery of client-side

validation vulnerabilities

in rich Web applications

A lightweight tool in comparison to others,
with no false positives and sufficient

scalability

The complexity of sanitization
failures that persist in client-side

javascript code has not been

highlighted in FLAX testing
Wurzinger et al. [39] SWAP: mitigating XSS

attacks using a reverse

proxy

Strong detection of differences between

benign and injected javascript code

Many types of XSS attacks are

undetectable

4.3. Evaluation based on the attack type

As stated in Table 2, we investigated and evaluated each recommended strategy to see if it might be

used to counteract a specific attack. We conducted an analytical evaluation based on our experience because

we were unable to assess any of the methods in real-time practices due to the lack of implementation codes

for most methods. Except for DOM-based XSS, we found five articles regarding tools developed for server-

side XSS attacks that can detect stored and reflected XSS [26], [28], [33], [40], [41]. Four articles discussed

how their implemented tool can only detect stored XSS in server-side web applications [31], [36], [42], [43].

Only reflected XSS can be detected by two studies that are deployed for server-side location [32, and 37].

Three studies highlighted how their tools can detect reflected and DOM XSS from server-side locations [25],

[44], [45]. Five studies that are deployed for client-side location can only identify DOM XSS [24], [29], [30],

[46], and [47]. A tool for detecting stored XSS in client-side web applications was developed in a study [38].

A study developed a client-side tool capable of detecting both stored and reflected XSS [39]. In a paper,

techniques were created to detect stored XSS on cloud-based online applications [48]. A study developed a

tool for detecting reflected XSS in client-side web applications [49].

 ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 11, No. 2, April 2022: 965-973

970

Table 2. Evaluation based on the attack type
Authors Deployment location Stored XSS (persistent) Reflected XSS DOM XSS

Wang et al. [24] Client-side N N Y
Abikoye et al. [25] Server-side N Y Y

Gupta et al. [26] server-side Y Y N

Shahriar and Zulkernine [28] Server-side Y Y N
Chen et al. [29] Client-side N N Y

Xiao et al. [30] Client-side N N Y

Barhoom and Kohail [31] Server-side Y N N
Bisht and Venkatakrishnan [32] Server-side N Y N

Mewara et al. [33] Server-side Y Y N

Gupta and Gupta [36] server-side Y N N
V et al. [37] server-side N Y N

Saxena et al. [38] Client-side Y N N

Wurzinger et al. [39] Client-side Y Y N
Gupta and Gupta [40] Server-side Y Y N

Gundy and chen [41] server-side Y Y N

Agten et al. [42] server-side Y N N
Shahriar and Zulkernine [43] server-side Y N N

Shrivastava et al. [44] server-side N Y Y

Cao et al. [45] server-side N Y Y
Pan and Mao [46] Client-side N N Y

Weinberger et al. [47] Client-side N N Y

Gupta and Gupta [48] Cloud N Y Y
Stamm et al. [49] Client-side N Y N

** “Y” indicates a method that can successfully stop an attack of that type and “N” indicates a method that cannot stop an

attack of that type.

4.4. Evaluation based on deployment

Table 3 presents an analysis of each approach based on different deployment requirements. Three

methods are highly resistant to attacks: cryptography, exception management, and parsing. Pattern matching,

HTML escaping, JavaScript escaping, and ML are four techniques that are moderately resistant to attack,

whereas the XML approach is not.

Table 3. Evaluation based on deployment requirements
Method URL Login Search Detect Prevent Modify code base Resistant to attack

Cryptography N Y N N Y Y High
Pattern matching Y Y Y Y Y N Medium

XML approach Y Y Y N Y N Low

Exception management Y Y Y Y Y N High
HTML escaping Y N Y Y N N Medium

JavaScript escaping Y Y Y Y Y N Medium

Machine learning Y Y Y Y Y Y Medium
Parsing Y Y Y Y Y Y High

** “Y” indicates the method can be deployed to that injection parameter and “N” indicates the method cannot be deployed to

that injection parameter.

5. CONCLUSION

In this paper, we presented a case study on the prevention of XSS vulnerabilities in web

applications. We classified various types of defense coding techniques based on XSS prevention methods.

Furthermore, based on the deployed locations, we discussed the strengths, weaknesses, comparison, and

evaluation of various types of XSS prevention techniques. The points raised during our discussion will be

useful in making a decision about implementing XSS prevention tools to protect web applications from XSS

vulnerability exploitation. Moreover, we have concentrated on research directions and challenges related to

XSS prevention techniques. Although several techniques for preventing XSS attacks have been implemented,

their usage for real-time deployment location and extraction of estimated useful information may still be

endangered by the issue emphasized in this study.

ACKNOWLEDGEMENTS

The authors would like to acknowledge an Erasmus+ International Credit Mobility (ICM) 2019 fund

for Bangladesh awarded to Staffordshire University, UK.

Bulletin of Electr Eng & Inf ISSN: 2302-9285

Important factors to remember when constructing a cross-site scripting prevention … (Md. Maruf Hassan)

971

REFERENCES
[1] Open Web Application Security Project® (OWASP), OWASP Top 10 – 2017 The Ten Most Critical Web Application Security

Risks, Accessed on: Apr. 27, 2021. [Online]. Available: https://owasp.org/www-pdf-archive/OWASP_Top_10-

2017_%28en%29.pdf.pdf

[2] K. Pranathi, S. Kranthi, A. Srisaila and P. Madhavilatha, “Attacks on Web Application Caused by Cross Site Scripting,” 2018
Second International Conference on Electronics, Communication and Aerospace Technology (ICECA), 2018, pp. 1754-1759, doi:

10.1109/ICECA.2018.8474765.

[3] G. Shanmugasundaram, S. Ravivarman and P. Thangavellu, “A study on removal techniques of Cross-Site Scripting from web
applications,” 2015 International Conference on Computation of Power, Energy, Information and Communication (ICCPEIC),

2015, pp. 0436-0442, doi: 10.1109/ICCPEIC.2015.7259498.

[4] S. Tuza, S. Alarabi, S. Alamri and N. Innab, “Advanced Approach on XSSDS Technique,” 2018 21st Saudi Computer Society
National Computer Conference (NCC), 2018, pp. 1-5, doi: 10.1109/NCG.2018.8593178.

[5] I. Hydara, A. B. M. Sultan, H. Zulzalil, and N. Admodisastro, “Current state of research on cross-site scripting (XSS) – A

systematic literature review,” Information and Software Technology, vol. 58, pp. 170–186, 2015, doi:
10.1016/j.infsof.2014.07.010.

[6] I. Tariq, M. A. Sindhu, R. A. Abbasi, A. S. Khattak, O. Maqbool, and G. F. Siddiqui, “Resolving cross-site scripting attacks

through genetic algorithm and reinforcement learning,” Expert Systems with Applications, vol. 168, p. 114386, 2021, doi:
10.1016/j.eswa.2020.114386.

[7] L. J. Rao, S. K. Basha, and V. R. Krishna, “Prevention and Analysing on Cross Site Scripting,” Advances in Intelligent Systems

and Computing Intelligent System Design, pp. 731-739, 2020, doi:10.1007/978-981-15-5400-1_69.
[8] D. Kumar, A. Kumar and L. Shing, “Enhance Web Application Security Using Obfuscation,” Turkish Journal of Computer and

Mathematics Education (TURCOMAT), vol. 12, no. 12, pp. 1984-1989, 2021.
[9] K. Vijayalakshmi and E. S. Mohamed, “Case Study: Extenuation of XSS Attacks through Various Detecting and Defending

Techniques,” Journal of Applied Security Research, vol. 16, no. 1, pp. 91-126, 2021, doi:10.1080/19361610.2020.1735283.

[10] V. S. Stency and N. Mohanasundaram, “A Study on XSS Attacks: Intelligent Detection Methods,” Journal of Physics:
Conference Series, vol. 1767, no. 1, pp. 012047, 2021, doi: 10.1088/1742-6596/1767/1/012047.

[11] G. S. Rani, S. Sarika and P. Rupa, “A study of prevention and detection analysis of SQL injection attack,” AIP Conference

Proceedings, vol. 2358, pp. 0500152021, doi: 10.1063/5.0059318.
[12] B. Gogoi, T. Ahmed and H. K. Saikia, “Detection of XSS Attacks in Web Applications: A Machine Learning Approach,”

International Journal of Innovative Research in Computer Science & Technology, vol. 9, no. 1, pp. 1-10, 2021,

doi:10.21276/ijircst.2021.9.1.1.
[13] A. Kumar, A. Gupta, P. Mittal, P. K. Gupta and S. Varghese, “Prevention of XSS attack using Cryptography & API integration

with Web Security,” Proceedings of the International Conference on Innovative Computing & Communication (ICICC) 2021, pp.

1-6, 2021, doi:10.2139/ssrn.3833910.
[14] P. Wang, J. Bangert and C. Kern, “If It’s Not Secure, It Should Not Compile: Preventing DOM-Based XSS in Large-Scale Web

Development with API Hardening,” 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE), 2021, pp.

1360-1372, doi: 10.1109/ICSE43902.2021.00123.
[15] M. Ivanova and A. Rozeva, “Detection of XSS Attack and Defense of REST Web Service – Machine Learning Perspective,”

ICMLSC'21: 2021 The 5th International Conference on Machine Learning and Soft Computing, pp. 22-28, 2021,

doi:10.1145/3453800.3453805.
[16] I. O. Ayo, W. T. Abasi, M. Adebiyi and O. Alagbe,” An implementation of real-time detection of cross-site scripting attacks on

cloud-based web applications using deep learning,” Bulletin of Electrical Engineering and Informatics, vol. 10, no. 5, pp. 2442-

2453, 2021, doi: 10.11591/eei.v10i5.3168.
[17] H. -C. Chen, A. Nshimiyimana, C. Damarjati and P. -H. Chang, “Detection and Prevention of Cross-site Scripting Attack with

Combined Approaches,” 2021 International Conference on Electronics, Information, and Communication (ICEIC), 2021, pp. 1-4,

doi: 10.1109/ICEIC51217.2021.9369796.
[18] H. Maurel, S. Vidal, and T. Rezk, “Statically Identifying XSS using Deep Learning,” SECRYPT 2021 - 18th International

Conference on Security and Cryptography, pp. 1-12, Jul 2021.

[19] S. Gupta and B. B. Gupta, “Enhanced XSS Defensive Framework for Web Applications Deployed in the Virtual Machines of
Cloud Computing Environment,” Procedia Technology, vol. 24, pp. 1595–1602, 2016, doi: 10.1016/j.protcy.2016.05.152.

[20] T. Saoji, T. H. Austin, and C. Flanagan, “Using Precise Taint Tracking for Auto-sanitization,” PLAS '17: Proceedings of the 2017

Workshop on Programming Languages and Analysis for Security, pp. 15–24, 2017, doi: 10.1145/3139337.3139341.
[21] D. Dembla, Y. Chaba, K. K. Yadav, M. Chaba, and A. Kumar, “A Novel and Efficient Technique for Prevention of Xss Attacks

Using Knapsack Based Cryptography,” Advances in Mathematics: Scientific Journal, vol. 9, no. 7, pp. 4513–4521, 2020, doi:

0.37418/amsj.9.7.20.
[22] J. Shanmugam and M. Ponnavaikko, “A solution to block Cross Site Scripting Vulnerabilities based on Service Oriented

Architecture,” 6th IEEE/ACIS International Conference on Computer and Information Science (ICIS 2007), 2007, pp. 861-866,

doi: 10.1109/ICIS.2007.45.
[23] L. Hermerschmidt, S. Kugelmann and B. Rumpe, “Towards More Security in Data Exchange: Defining Unparsers with Context-

Sensitive Encoders for Context-Free Grammars,” 2015 IEEE Security and Privacy Workshops, 2015, pp. 134-141, doi:

10.1109/SPW.2015.29.
[24] R. Wang, G. Xu, X. Zeng, X. Li, and Z. Feng, “TT-XSS: A novel taint tracking based dynamic detection framework for DOM

Cross-Site Scripting,” Journal of Parallel and Distributed Computing, vol. 118, pp. 100–106, 2018, doi:

10.1016/j.jpdc.2017.07.006.
[25] O. C. Abikoye, A. Abubakar, A. H. Dokoro, O. N. Akande, and A. A. Kayode, “A novel technique to prevent SQL injection and

cross-site scripting attacks using Knuth-Morris-Pratt string match algorithm,” EURASIP Journal on Information Security, vol.

2020, no. 14, pp. 1-14, 2020, doi: 10.1186/s13635-020-00113-y.
[26] M. K. Gupta, M. C. Govil, G. Singh and P. Sharma, “XSSDM: Towards detection and mitigation of cross-site scripting

vulnerabilities in web applications,” 2015 International Conference on Advances in Computing, Communications and Informatics

(ICACCI), 2015, pp. 2010-2015, doi: 10.1109/ICACCI.2015.7275912.
[27] D. Guamán, F. Guamán, D. Jaramillo, and R. Correa, “Implementation of Techniques, Standards and Safety Recommendations to

Prevent XSS and SQL Injection Attacks in Java EE RESTful Applications,” New Advances in Information Systems and

Technologies Advances in Intelligent Systems and Computing, vol 444, pp. 691–706, 2016, doi: 10.1007/978-3-319-31232-3_65.

 ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 11, No. 2, April 2022: 965-973

972

[28] H. Shahriar and M. Zulkernine, “S2XS2: A Server Side Approach to Automatically Detect XSS Attacks,” 2011 IEEE Ninth

International Conference on Dependable, Autonomic and Secure Computing, 2011, pp. 7-14, doi: 10.1109/DASC.2011.26.
[29] H. Chen, J. Sun, Q. Zhang, and K. Mao, “An Execution-flow Based Method for Detecting Cross-Site Scripting of Ajax

Applications,” International Journal of Advancements in Computing Technology, vol. 2, no. 4, pp. 67–76, 2010.

[30] W. Xiao, J. Sun, H. Chen and X. Xu, “Preventing Client Side XSS with Rewrite Based Dynamic Information Flow,” 2014 Sixth
International Symposium on Parallel Architectures, Algorithms and Programming, 2014, pp. 238-243, doi:

10.1109/PAAP.2014.10.

[31] T. S. Barhoom and S. N. Kohail, “A new server-side solution for detecting Cross Site Scripting attack,” 2011 International
Journal of Computer Information Systems, vol. 3, no. 2, pp. 19-23, 2011.

[32] P. Bisht and V. N. Venkatakrishnan, “XSS-GUARD: Precise Dynamic Prevention of Cross-Site Scripting Attacks,” Detection of

Intrusions and Malware, and Vulnerability Assessment Lecture Notes in Computer Science, vol. 5137, pp. 23–43, 2008, doi:
10.1007/978-3-540-70542-0_2.

[33] B. Mewara, S. Bairwa, J. Gajrani and V. Jain, “Enhanced browser defense for reflected Cross-Site Scripting,” Proceedings of 3rd

International Conference on Reliability, Infocom Technologies and Optimization, 2014, pp. 1-6, doi:
10.1109/ICRITO.2014.7014761.

[34] J. A. Caliwag, R. A. Pagaduan, R. E. Castillo, and W. V. J. Ramos, “Integrating the Escaping Technique in Preventing Cross Site

Scripting in an Online Inventory System,” ICISS 2019: Proceedings of the 2019 2nd International Conference on Information
Science and Systems, pp. 110–114, doi: 10.1145/3322645.3322696, March 2019

[35] S. Maurya, “Positive security model based server-side solution for prevention of cross-site scripting attacks,” 2015 Annual IEEE

India Conference (INDICON), 2015, pp. 1-5, doi: 10.1109/INDICON.2015.7443473.
[36] S. Gupta and B. B. Gupta, “XSS-SAFE: A Server-Side Approach to Detect and Mitigate Cross-Site Scripting (XSS) Attacks in

JavaScript Code,” Arabian Journal for Science and Engineering, vol. 41, no. 3, pp. 897–920, 2015, doi: 10.1007/s13369-015-

1891-7.
[37] S. C. V. and S. Selvakumar, “BIXSAN: browser independent XSS sanitizer for prevention of XSS attacks,” ACM SIGSOFT

Software Engineering Notes, vol. 36, no. 5, pp. 1–7, 2011, doi: 10.1145/2020976.2020996.
[38] P. Saxena, S. Hanna, P. Poosankam, and D. Song, “FLAX: Systematic Discovery of Client-side Validation Vulnerabilities in Rich

Web Applications,” Proceedings of the Network and Distributed System Security Symposium, NDSS 2010, San Diego, California,

USA, 2010.
[39] P. Wurzinger, C. Platzer, C. Ludl, E. Kirda and C. Kruegel, “SWAP: Mitigating XSS attacks using a reverse proxy,” 2009 ICSE

Workshop on Software Engineering for Secure Systems, 2009, pp. 33-39, doi: 10.1109/IWSESS.2009.5068456.

[40] S. Gupta and B. B. Gupta, “Automated Discovery of JavaScript Code Injection Attacks in PHP Web Applications,” Procedia
Computer Science, vol. 78, pp. 82–87, 2016, doi: 10.1016/j.procs.2016.02.014.

[41] M. Van Gundy and H. Chen, “Noncespaces: Using randomization to defeat cross-site scripting attacks,” Computers & Security,

vol. 31, no. 4, pp. 612–628, 2012, doi: 10.1016/j.cose.2011.12.004.
[42] P. Agten, S. V. Acker, Y. Brondsema, P. H. Phung, L. Desmet, and F. Piessens, “JSand: complete client-side sandboxing of third-

party JavaScript without browser modifications,” Proceedings of the 28th Annual Computer Security Applications Conference,

December 2012, pp. 1–10, doi: 10.1145/2420950.2420952.
[43] H. Shahriar and M. Zulkernine, “Injecting Comments to Detect JavaScript Code Injection Attacks,” 2011 IEEE 35th Annual

Computer Software and Applications Conference Workshops, 2011, pp. 104-109, doi: 10.1109/COMPSACW.2011.27.

[44] A. Shrivastava, S. Choudhary and A. Kumar, “XSS vulnerability assessment and prevention in web application,” 2016 2nd
International Conference on Next Generation Computing Technologies (NGCT), 2016, pp. 850-853, doi:

10.1109/NGCT.2016.7877529.

[45] Y. Cao, V. Yegneswaran, P. Porras, and Y. Chen, “Poster: a path-cutting approach to blocking XSS worms in social web
networks,” Proceedings of the 18th ACM conference on Computer and communications security - CCS 11, October 2011, pp.

745–748, doi: 10.1145/2046707.20934832011.

[46] J. Pan and X. Mao, “DomXssMicro: A Micro Benchmark for Evaluating DOM-Based Cross-Site Scripting Detection,” 2016
IEEE Trustcom/BigDataSE/ISPA, 2016, pp. 208-215, doi: 10.1109/TrustCom.2016.0065.

[47] J. Weinberger, P. Saxena, D. Akhawe, M. Finifter, R. Shin, and D. Song, “A Systematic Analysis of XSS Sanitization in Web

Application Frameworks,” Computer Security – ESORICS 2011 Lecture Notes in Computer Science, vol 6879, pp. 150–171,
2011, doi: 10.1007/978-3-642-23822-2_9.

[48] S. Gupta and B. B. Gupta, “CSSXC: Context-sensitive Sanitization Framework for Web Applications against XSS Vulnerabilities

in Cloud Environments,” Procedia Computer Science, vol. 85, pp. 198–205, 2016, doi: 10.1016/j.procs.2016.05.211.
[49] S. Stamm, B. Sterne, and G. Markham, “Reining in the web with content security policy,” Proceedings of the 19th international

conference on World wide web – WWW, 2010, pp. 921–930, doi: 10.1145/1772690.1772784 10.

BIOGRAPHIES OF AUTHORS

Md. Maruf Hassan received his Bachelor of Information System degree from

Australian Catholic University in 2007, and also obtained the Master degree in Computer

Science & Engineering from East West University in 2014. Currently, he is continuing his

PhD in Computer Engineering from Universiti Malaysia Perlis. He is also working as faculty

member at the Department of Software Engineering, Faculty of Science and Information

Technology, Daffodil International University. His research interest includes application layer

vulnerability detection in web application, multi-factor authentication, steganography. He can

be contacted at email: maruf.swe@diu.edu.bd.

https://orcid.org/0000-0002-4475-2664
https://scholar.google.com/citations?user=VrP8APcAAAAJ&hl=en
https://scholar.google.com/citations?user=VrP8APcAAAAJ&hl=en
https://publons.com/researcher/3636537/md-maruf-hasan/

Bulletin of Electr Eng & Inf ISSN: 2302-9285

Important factors to remember when constructing a cross-site scripting prevention … (Md. Maruf Hassan)

973

Badlishah R. Ahmad obtained Bachelor of Engineering with Honors (B.Eng.

(Hons)) in Electrical & Electronic Engineering from Glasgow University in 1994. He

continued his Master of Sciences (M.Sc.) in Optical Electronic Engineering at University of

Strathclyde and graduated in 1995. He then continue his study at PhD level at the same

university and completed in 2000. His research interests are in computer and

telecommunication network modelling, optical networking and embedded system based on

GNU/Linux. He has four (4) years teaching and research experiences in Universiti Sains

Malaysia (USM). Since 2004 until now he is working in Universiti Malaysia Perlis

(UniMAP). He is currently the Dean and a Professor at the School of Computer and

Communication Enginering and also the Head of Embedded Computing Research Cluster,

Universiti Malaysia Perlis (UniMAP). He has developed 3 undergraduate and 1 M.Sc (Mix

mode) programs. He has authored and coauthored more than 300 conferences and journal

papers. He has supervised more than 20 Master of Science (Research) students and 14 Ph.D

students. He is currently supervising 10 PhD students in his research area. Total of 24 research

products exhibited in Malaysian and International Research Exhibition. Among them are

“SHOENIX: An Operating System For Embedded Applications”, Gold Medal at British

Invention Show (BIS) and “SNETMON: Smart Monitoring Network Traffic Monitoring”,

Gold Medal at Inpex United State of America. He can be contacted at email:

badli@unimap.edu.my.

Ashrafia Esha received her Bachelor of Software Engineering degree from

Daffodil International University in 2020.Currently she is doing a Master of Science in Major

in Cybersecurity at Daffodil International University. She worked as a Lecturer (Contractual)

at the Department of Software Engineering, Daffodil International University. Now she works

as a software quality assurance engineer at Syntech Solution Ltd. Bangladesh. Her research

interest area is on cybersecurity, web application vulnerability, steganography, retrospective

analysis of hematological malignancy. She can be contacted at email:

ashrafia.swe0076.c@diu.edu.bd.

Rafika Risha obtained her Bachelor of Science (BSc.) degree in Software

Engineering from Daffodil International University in 2020. Currently, she is doing her

Master of Science (MSc.) in Software Engineering (Major in Cyber-security) at Daffodil

International University. Now she works as a Software Quality Assurance Engineer at

Echologyx Ltd. Bangladesh. She worked as a Lecturer (Contractual) at the Department of

Software Engineering, Daffodil International University. Her interested research areas are

cybersecurity, web application layer vulnerability, data mining, and steganography. She can be

contacted at email: rafikarisha54321@gmail.com.

Mohammad S. Hasan has worked as Lecturer and as Assistant Professor in the

past. Now, he works as a Senior Lecturer in the Department of Computing, Staffordshire

University. He is involved in postgraduate research e.g. Masters by Research (MRes), PhD

supervision, Erasmus project management for many countries, external examination for other

universities, MSc course management, postgraduate and undergraduate teaching. He can be

contacted at email: m.s.hasan@staffs.ac.uk.

mailto:ashrafia.swe0076.c@diu.edu.bd
mailto:rafikarisha54321@gmail.com
https://orcid.org/0000-0002-4862-2728
https://scholar.google.com/citations?hl=en&user=durU81wAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57194844651
https://publons.com/researcher/2399011/r-badlishah-ahmad/
https://orcid.org/0000-0001-7184-6458
https://scholar.google.com/citations?hl=en&authuser=1&user=nJTP4FgAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57218575017
https://publons.com/researcher/4962539/ashrafia-esha/
https://orcid.org/0000-0002-2579-4359
https://scholar.google.com/citations?user=aclye5MAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57218575733
https://publons.com/researcher/4949817/rafika-risha/
https://orcid.org/0000-0003-0458-4536
https://scholar.google.com/citations?hl=en&user=CCkREJ0AAAAJ
https://publons.com/researcher/2118721/mohammad-s-hasan/

