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Abstract—An effective crowd management system offers 

immediate reactive or proactive handling of potential hot spots, 

including overcrowded situations and suspicious movements, 

which mitigate or avoids severe incidents and fatalities. The 

crowd management domain generates spatial and temporal 

resolution that demands diverse sophisticated mechanisms to 

measure, extract and process the data to produce a meaningful 

abstraction. Crowd management includes modelling the 

movements of a crowd to project effective mechanisms that 

support quick emersion from a dangerous and fatal situation. 

Internet of Things (IoT) technologies, machine learning 

techniques and communication methods can be used to sense 

the crowd characteristic /density and offer early detection of 

such events or even better prediction of potential accidents to 

inform the management authorities. Different machine learning 

methods have been applied for crowd management; however, 

the rapid advancement in deep hierarchical models that learns 

from a continuous stream of data has not been fully investigated 

in this context. For example, Hierarchical Temporal Memory 

(HTM) has shown powerful capabilities for application domains 

that require online learning and modelling temporal 

information. This paper proposes a new HTM-based 

framework for anomaly detection in a crowd management 

system. The proposed framework offers two functions: (1) 

reactive detection of crowd anomalies and (2) proactive 

detection of anomalies by predicting potential anomalies before 

taking place. The empirical evaluation proves that HTM 

achieved 94.22%, which outperforms k-Nearest Neighbor 

Global Anomaly Score (kNN-GAS) by 18.12%, Independent 

Component Analysis-Local Outlier Probability (ICA-LoOP) by 

18.17%, and Singular Value Decomposition Influence Outlier 

(SVD-IO) by 18.12%, in crowd multiple anomaly detection. 

Moreover, it demonstrates the ability of the proposed alerting 

framework in predicting potential crowd anomalies. For this 

purpose, a simulated crowd dataset was created using 

MassMotion crowd simulation tool. 

 
Index Terms—Alert framework, crowd management, 

hierarchical temporal memory, reactive anomaly detection, 

proactive anomaly detection, spatiotemporal data. 

 

I. INTRODUCTION 

A crowd is a large gathering of people, which can be either 

for a predefined purpose e.g. sports or pilgrimage events or 

spontaneous e.g. random gathering by chance or incidence 

such as casual crowd. Crowd density defines the number of 

people per unit of area at a specific time period [1].  
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By large, crowds are influenced by a diversity of physical 

and socio-psychological aspects which arise different crowd 

behaviours and result in different considerations of normal or 

abnormal behaviours [2], [3]. External and internal factors 

determine crowd characteristics. The external factors include 

the environment e.g. indoor and outdoor, areas e.g. entrances, 

intersections, narrow paths and size scale e.g. macro or micro 

[4]. As an illustration, some crowd management studies focus 

on the macro-level of crowd characteristics such as crowd 

flow rather than individuals’ characteristics i.e. micro level, 

such as their locations and speeds [4]. In contrast, the internal 

factors are related to the demographic characteristics of 

pedestrians e.g. cultures, gender, and age and the purpose e.g. 

the type of gait is different in shopping than public transport 

places. All these pedestrians’ characteristics make the crowd 

analysis a challenging task due to the unexpected behaviours 

such as stampede or overcrowding. 

Overcrowding might happen daily at many locations such 

as transport hubs, shopping centeres, and in large events such 

as sports stadia, pilgrimage places e.g. Hajj or Kumbh Mela, 

and concert venues [5]. The consequences of overcrowding 

can be catastrophic and cause a state of chaos. This can 

trigger panic as individuals sense a loss of control, which 

may result in disastrous crowd turbulence. Basic crowd 

management strategies can avoid the majority of crowd 

disasters by avoiding the buildup of particularly dense 

crowds and slowing their rate of movement.  

Overcrowding without proper crowd management could 

lead to hazardous situations such as stampede or congestions. 

These hazardous situations can have side effects on revenue 

and insurance, which, may cost the organisers extra money, 

and may affect their reputation severely. For example, the 

absence of crowd management in pilgrimage events at main 

intersections results in excessive congestion, which can 

threaten people’s life [6]. Moreover, urban crowd 

management becomes a major area of interest within the field 

of crowd management due to the increase of population in 

urban areas [7]. Therefore, crowd management is not only 

needed for large events, but it is also critical in daily activities 

to ensure people’s smooth movement and safety.   

In recent years, the crowd management domain has 

progressed with the use of state-of-the-art technologies 

including IoT communications and machine learning, which 

have made the crowd management more intelligent, 

sustainable, faster, and effective [8]. These technologies have 

given a whole new paradigm and a set of applications, which 

covers most of our daily life activities, particularly smart 

systems (e.g., such as smart cities, homes and transport). 

Besides, smart crowd management (SCM) applications can 

provide more insights about crowd behaviour and its size  [9]. 

This ability is facilitated by interactions among technologies 
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to sense, collect, transmit, analyse data, and infer semantic 

content and valuable information based on classification, 

density estimation, prediction and detecting anomalies. 

Numerous empirical studies have examined pedestrian 

dynamics, and several models have been developed using 

various methods including field, simulation and experimental 

[10]. Understanding the dynamics of crowds and patterns of 

the crowd’s behaviour contribute to decision making in 

artificial intelligence applications, where critical/unwanted 

situations can be predicted/avoided. The application of 

Machine Learning (ML) and Deep Learning (DL) techniques 

to crowd data opens a new approach to understand and 

manage the crowd’s behaviours.  The crowd management 

models that use ML and DL techniques can apply 

sophisticated pattern recognition, anomaly detection and 

history-based prediction by exploring correlation in data. In 

order to add intelligence and leverage the learning ability of a 

crowd management system, it is necessary to gain access to 

large volumes of crowd datasets. Therefore, the crowd 

dataset plays a key role in training, testing, and validation of 

crowd management systems as their performance is usually 

affected by the features of selected crowd dataset e.g. 

changeable densities and speeds [11]. 

The literature on crowd management has highlighted two 

main types of crowd data, which are real or synthetic datasets 

[12]. Real crowd datasets are either generated manually or by 

automatic techniques such as video analytic technologies, 

radio-frequency devices, location-based or mobile sensing. 

For instance, static or dynamic installation of cameras is 

often used to collect real crowd data in surveillance 

applications [13]. However, there are common issues with 

real crowd datasets, including cost, time, sufficiency, and 

availability. Other challenges include adhering to ethical 

issues in emergency cases. These challenges in real crowd 

datasets result in a lag between the actual empirical research 

in the crowd analysis field and the theoretical development 

[14]. Hence, recognizing these limitations of real datasets 

have motivated the use of simulation tools to generate 

representative datasets based on the required crowd 

scenarios. 

Prediction and anomaly detection are two of the 

fundamental ML techniques in the crowd management 

domain. Crowd management applications seek to identify 

anomalies in the early stages, which requires the ability to 

recognise subtle developments in patterns and provide early 

warning signs. Current methods fail to reach the full potential 

of anomaly detection and prediction, which demands further 

exploration of other potential intelligent techniques that can 

yield promising results [15]. Although there is a relatively 

large body of literature on crowd management; however, 

more investigations are required for building adaptive early 

detection techniques in an online fashion (i.e., learning from 

continuous data streams). In a natural environment, survival 

depends on the ability to recognise, interpret and anticipate 

sensory inputs and their temporal sequences. Hierarchical 

Temporal Memory (HTM), a new bio-inspired approach for 

deep learning, is a sequence memory for prediction based 

upon the knowledge of cortical neurons. HTM draws insight 

from computational science to include a set of concepts that 

are important for prediction such as feedback, attention, 

alerting, time and context as part of the learning process, all 

of which play a role in how the human brain functions [16].   

Reactive crowd management methods provide insights 

about current crowd behaviour. However, there are certain 

scenarios in which the ability to predict how crowds will 

behave is more important than merely recognising how they 

act e.g. to avoid collisions, provide early warnings or to 

identify abnormal events [17]. Essentially, the importance of 

being able to predict how crowds might behave lies in the 

ability to provide enough response time and advance warning 

of potential dangers before they occur. The potential crowd 

disasters can be mitigated (or even avoided) by employing 

proper crowd management techniques that can proactively 

detect potential problems promptly with coordinated 

readiness of the relevant authorities to take actions. This 

triggers the following question: is it conceivable that we 

could develop a proactive approach that entails anticipating 

anomalous occurrences rather than relying on the 

conventional reactive means of merely detecting problems as 

they occur? Therefore, the focus of this paper is to propose an 

online reactive and proactive (alerting framework that 

predicts anomalies) anomaly detection frameworks for crowd 

management based on the bioinspired HTM. The proposed 

reactive and proactive (alerting) frameworks aim to use 

online crowd streaming data to mitigate or avoid anomalies 

by detecting them as early as possible.   

The remainder of this paper is organised as follows: 

Section II reviews the literature on existing crowd 

management solutions while paying more attention to crowd 

anomaly detection and prediction techniques. Section III 

details the proposed reactive and proactive (alerting) 

anomaly detection framework using HTM. Then Section IV 

demonstrates the experimental evaluation of the proposed 

reactive and proactive anomaly detection solution. Finally, 

Section V concludes the work done and describes some 

potential future research directions. 

 

II. RELATED WORK 

A. Knowledge of the Crowd  

Pedestrians’ interactions in a crowd do not adhere to 

previously agreed on rules or regulations; rather, their 

movements are governed by self-organisation motion that 

results in particular spatiotemporal patterns [1]. Crowd 

behaviour is complex and difficult to represent by a universal 

rule due to the psychological factors of pedestrians and 

external factors such as the variety of environmental layouts 

that influence them [14]. Pedestrians’ behaviours rely on 

demographic and geographic characteristics of people e.g. 

cultures, gender and age and the environment e.g. geometric 

layout.  Thus, the crowd could happen in any place and any 

time after reaching specific numbers of pedestrians or after 

reaching specific speeds or specific forms in an identified 

area. From the other side, each pedestrian has a desired speed 

and direction (i.e. vector) and able to move in two dimensions, 

which is different from vehicular movement. In addition, the 

width of ways is well-defined in vehicular facilities, whereas 

it changes over time regarding to flow states in pedestrian 

movement [18].  
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Crowd types can be classified based on the crowd form, the   

moving state, or how the crowd is handled/treated. In terms 

of the crowd form, the crowd may be classified as either 

structured or unstructured [19]. The structured crowd usually 

reflects a homogenous shape because it has a common goal; 

for example, following the prevailing direction in a planned 

path as in Hajj event. On the contrary, unstructured crowd 

reflects a heterogeneous form; for example, random 

movements in different directions as what happens in 

aggressive crowds. In terms of moving state, a crowd can be 

classified as static (a.k.a. stationary); for example, setting in 

stadiums or standing in music festivals, whereas crowd 

dynamics need more space for moving such as running in a 

marathon race. Furthermore, in the treatment of crowd 

dynamics, two approaches were followed by either looking at 

the group as one entity (holistic-based) or by dealing with 

individuals (object-based). In crowd literature, different 

properties that characterise the crowd motion have been 

identified, and spatiotemporal features are considered as 

descriptive power for different tasks such as anomaly 

detection [19], [20]. 

Therefore, crowd characteristics are essential to capture 

the details of crowd movement patterns. Besides, there are 

different standards for defining normal behaviour 

characteristics for different types of crowd. Resulting from 

different characteristics and pedestrians’ interaction, crowd 

movements can be classified to normal and 

abnormal/anomaly. Normal crowd means that the 

pedestrians follow regular movement patterns whereas 

anomaly considers a vital rise in density or multidirectional 

movements as examples of irregular patterns. It is possible to 

model normal patterns in various ways based on the 

discrepancies between normal and abnormal behaviours. 

When a behaviour diverges from patterns that are considered 

to be normal, this can be classified as an abnormal behaviour 

[21].   

B. Crowd Modelling and Anomaly Detection 

Crowd models can be built either from extracted 

information (manually or automatically) from a crowd scene 

and/or the pre-knowledge base, i.e. by experts [20], [22]. 

Robust crowd models can estimate precise features of crowd 

behaviour and help in crowd analysis. For example, in crowd 

behaviour analysis, crowd modelling techniques are 

classified into several categories that assumed the input data 

are visual, such as, motion-based techniques, 

appearance-based techniques, deep learning techniques, 

social force model and simulation modelling [3]. 

Over the past decade, crowd management research has 

focused on the use of diverse visual crowd analysis 

techniques using computer vision [23]. These computer 

vision-based techniques have three phases, which are image 

acquisition, feature extraction and crowd modelling, aiming 

to estimate density [24], detect and track trajectory [25] and 

analyse targeted object [22]. Additionally, image 

processing-based approach that uses automated CCTVs has 

been adopted for crowd monitoring [5], [13]. On the other 

hand, recently, a data-driven decision approach opens a new 

analysis framework of urban anomaly analysis that includes 

unexpected crowds [21]. This approach automatically detects 

or predicts anomalies by exploiting big data and machine 

learning algorithms [21]. 

Anomaly is something subjective or context dependent; 

for example, while some people consider it perfectly normal 

to walk from A to B, others could classify this case as an 

anomaly. Therefore, there is no consensus regarding the 

definition of an anomaly in practical conditions. Anomaly is 

an observation that arouses suspicion due to the extent to 

which it deviates from other observations [26]. Anomaly 

detection has been applied for fraud detection, patient 

monitoring to detect the abnormal situation in medical 

applications, industrial damage detection, and other domains 

[27].  

Anomaly detection techniques are classified into 

supervised, semi-supervised and unsupervised. In supervised 

anomaly detection, a fully labelled dataset, including normal 

and abnormal cases (anomalies), needs to be available. While 

in semi-supervised anomaly detection, the training data only 

represents normal cases. However, unsupervised anomaly 

detection techniques do not require labelled data. Detecting 

anomalies in dynamic problems, e.g. behaviour changing 

over time, is challenging due to the lack of labelled data for 

training; therefore, the unsupervised learning techniques are 

widely used [15], [27]. The majority of the available anomaly 

detection solutions are only suitable for resolving specific 

domain problems, therefore, they might not be generalised to 

other domains [28]. Anomaly detection  has been extensively 

researched [28]; however, there are peculiarities for the 

crowd anomalies as the crowd behaviour is highly complex, 

as there is a close relationship with socio-psychological and 

physical elements. Besides, analysing crowded scenes can be 

problematic because of the need to identify and categorise 

specific crowd behaviours that may not occur frequently and 

can be easily missed. This leads to the fact that there are few 

examples of behaviours in crowd scenarios that need to be 

learned [19]. 

Based on the degree of interest, it is possible to classify the 

empirical research concerning anomaly detection into one of 

two categories: local anomaly detection and global anomaly 

detection [29]. When detecting local anomalies, it is 

important to identify any individual’s behaviour that is out of 

step with those immediately surrounding them. Local 

anomaly detection is concerned with identifying the location 

where anomaly events occur. When detecting global 

anomalies, it is essential to identify a group’s behaviour that 

is out of step with the norm. As such, global anomalies 

involve events that affect public safety, including fires, 

disasters and explosions from which individuals need to be 

able to escape. Consequently, the dynamics of the crowd 

change entirely, and the purpose of global anomaly detection 

is to identify whether the conditions in a given crowd are 

normal or abnormal. For both types, various methods have 

been devised [19].  

Crowd anomaly detection models adopted in visual-based 

and physics-based of crowd dynamics analysis [19], [30]. 

Moreover, Crowd anomaly detection solutions can be 

classified based on the main groups of inputs, including 

video anomaly detection analysis, spatiotemporal 

feature-based and dynamic pattern based [21]. The remainder 

of this section classifies machine learning (ML) techniques 
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used in crowd analysis for anomaly detection and prediction 

into statistically-based and biologically-inspired techniques.   

In terms of statistical ML methods, Zhou et al. [31] 

proposed an unsupervised Support Vector Machine (SVM) 

algorithm with Higher-Order Singular Value Decomposition 

(HOSVD) to measure the crowd density. SVM was used to 

classify different levels of crowd densities. Additionally, Wu 

et al. [32] proposed the application of SVM to estimate 

crowd density through texture analysis to deal with the crowd 

density regression problem.  Nevertheless, SVM is not the 

best choice for large datasets, and its performance degrades 

with noisy data, which makes it challenging in crowd 

management scenarios. Wang et al.  [33] introduced a crowd 

management system that uses an unsupervised machine 

learning technique, Hierarchical Bayesian Models (HBMs), 

to model different behaviours in crowded scenes. Their 

proposed model summarises the human’s interactions in a 

complicated scene and detects the anomalies by connecting 

three Hierarchical Bayesian models. However, HBMs 

usually have a high computational cost, and they need 

extensive pre-planning as these models are usually complex. 

Andersson et al. [34] estimated crowd behaviour using 

Hidden Markov Model (HMM) for behaviour recognition. 

Feng et al. utilised Gaussian Mixture Model (GMM) to detect 

abnormal events from videos, in an unsupervised form [35]. 

However, GMM is computationally expensive. 

Numerous attempts have been made by leveraging variants 

of bio-inspired algorithms to improve crowd management 

techniques. Chrysostomou et al. [36] proposed a 

multi-camera system for dynamic crowd analysis. They used 

bio-inspired optimisation algorithms: Artificial Bee Colony 

(ABC) to determine the number of required cameras and 

Artificial Spiders to indicate their positions in a crowded area. 

The main goal was to minimise the number of cameras that 

cover a crowded area and maximise the coverage area to 

reduce the number of security guards in the building. 

Abdelghany et al. [37]  have proposed an evacuation system 

for large-scale crowd facilities. They have used a genetic 

algorithm (GA) and a microscopic pedestrian simulation to 

simulate their system. The main task for GA is to find an 

optimal evacuation plan for crowd safety. However, GA’s 

computational time to converge could be significant.  

A Neural Network (NN) has been used to classify crowd 

behaviour in a dynamic crowd management system [38]. 

Additionally, a Convolutional Neural Network (CNN) has 

been adopted to estimate crowd densities in [39]. A deep 

attribute-embedding graph ranking method has been used for 

crowd video retrieval in [40]. The HTM theory and its 

implementation, the Cortical Learning Algorithms (CLAs) 

have the ability to conceptually and perceptually mimic 

neocortex learning in the brain [16]. HTM relies on online 

learning and deals with streaming data; it has shown 

promising results in anomaly detection and prediction 

applications. HTM can detect both highly subtle anomalies 

that a human operator may not notice besides anomalies in 

noisy data [41]. HTM has been used in different applications 

for detecting anomalies such as in smart homes [42] and in 

vital signs for ambient assisted living [43].  

By reviewing crowd management literature, it is apparent 

that most of the crowd prediction and anomaly detection 

models use offline models that fail to capture the dynamic 

features of streaming crowd movements data. Moreover, they 

do not offer proactive detection of anomalies. Therefore, this 

article makes use of the Hierarchical Temporal Memory 

(HTM) to create frameworks for reactive and proactive 

detection of online crowd streams. 

 

III. REACTIVE AND PROACTIVE ANOMALY DETECTION 

FRAMEWORKS USING HTM 

This section starts by giving a quick overview of HTM. 

Then, it demonstrates the HTM-based reactive and proactive 

frameworks for the early detection of crowd anomalies. 

A. Hierarchical Temporal Memory (HTM) 

The neocortex performs complex tasks, such as visual 

pattern recognition and spoken language. Jeffrey Hawkins 

and Sandra Blakeslee [16] had introduced a new bio-inspired 

machine intelligence known as Hierarchical Temporal 

Memory (HTM), which reflects how the neocortex works. 

HTM aims to provide a theoretical framework for 

understanding the neocortex by capturing its structural and 

algorithmic properties.  Like the human brain, HTM is a 

memory-based system, including its memorisation and 

learning capabilities; however, HTM works in a statistical 

realm. More importantly, HTM cannot understand what the 

patterns mean. Instead, it simply seeks patterns that are likely 

to be replicated and learned; then, it can infer by matching  

new input with previously learned patterns to distinguish 

between normal and abnormal patterns [44].  

The HTM elements involve cells, columns, layers, regions 

and hierarchy. It includes billions of brain cells that are called 

neurons, connected in columns (usually called mini-columns), 

to form layers and regions. This structure is similar in all 

parts of the neocortex; thus, all neurons in each region 

perform the same functionality and common process.    

The main learning principles of HTM include hierarchy, 

regions, Spare Distribution Representation (SDR) and time. 

In the case of crowd management, the HTM’s hierarchical 

design includes regions to store temporal information in a 

hierarchal way to memorise temporal sequences of crowd 

movement patterns. Each region consists of a set of layers, 

and it has a given functionality; for example, there are 

regions that are responsible for hearing, vision, language and 

other. Moreover, SDR is a binary coding technique where the 

number of active cells (1’s) is much smaller than the number 

of inactive cells (0’s), and the semantic meaning is 

represented across the set (distributed) of active cells. The 

SDRs have designated features including the implicit 

semantic meaning of the representation (high overlapping of 

SDRs for similar inputs) and their resistance to noise (reliable 

classification can be achieved with 50% noise) [45], [46]. 

SDR is a representational scheme of sequential information, 

and the input and output of data flow in the HTM model are 

in SDR format. HTM is a time-based continuous learning 

algorithm that can update itself over time as new input 

streaming data is received [44].  

The HTM algorithm represents the part of the world that it 

is exposed to by memorising patterns. Learning happens by 

determining spatial patterns (a group of events occurring 
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together), memorising them. Then the temporal memory (a 

chain of events taken place in the same order) identifies the 

sequences of spatial patterns and expect the future states. 

Data flows down and up the hierarchy to disambiguate 

between different possible patterns [44].  

 HTM models are universal, which means that the same 

learning principle can be applied to a variety of applications 

that have data flowing over time. The application of HTM for 

anomaly detection and prediction has shown promising 

results [41], [47]. HTM has been applied in disease diagnosis 

[48], pattern recognition (signed polish words) [49], image 

processing (license plate recognition) [50]. Moreover, HTM 

also has been used in geospatial tracking applications 

(modelling the movements of objects) that detect anomalies 

in travel patterns [51]. This article employs a similar 

approach to geospatial tracking applications to accommodate 

crowd management requirements.  

B. Reactive Crowd anomaly Detection  

In crowd management systems, it is crucial to figure out 

the travel patterns by measuring the crowd spatiotemporal 

properties focusing on density, speed and heading. The main 

crowd pedestrian spatiotemporal characteristics are [12]:    

1) The pedestrian localisation positioning (latitude, 

longitude), and the number of participants (density), 

which represent the spatial data. 

2) The movement includes speed (change of location with 

time), and acceleration (change of speed with time), 

which represent the temporal data. 

3) The direction/ heading includes the change in location 

and speed over time, which represent locations of the 

object moving over time (an example of spatiotemporal 

data).  

The remainder of this section details the main components 

of the proposed framework for detecting anomalies in crowds 

using the HTM model, as shown in Fig. 1. 

1) Data preparation 

The data preparation phase involves two steps, namely the 

generation of a crowd dataset and preprocessing the 

generated dataset. This article uses MassMotion simulator 

[52] to generate the synthetic crowd dataset for the required 

crowd scenario. The chosen scenario and context, including 

the types of anomalies, are adopted from the findings of 

previous studies [53], [54]. High densities and people 

walking in the opposite direction are two examples of crowd 

anomalies.  

The MassMotion can simulate tens of thousands of 

pedestrian movements in 2D or 3D and can export the 

generated data in different formats e.g. CSV. As shown in Fig. 

2, the main features of the generated dataset, based on a 

sampling rate of one second, are the Frame number, Agent ID, 

position (X, Y, and Z), Time, Speed, and Heading. The Speed 

feature refers to the distance (in meter) that pedestrians cover 

in a unit of time (each second). The Heading represents the 

direction of the agent in degrees.  The generated dataset 

represents individual pedestrians (agents); however, we are 

interested in the crowd itself e.g. how many pedestrians in a 

specific area at any point in time. Therefore, the data 

preprocessing step focuses on performing aggregated 

statistical calculations to compute the average values of the 

most important features, such as Speed and Heading.  

Additionally, the data preprocessing phase calculates new 

features such as Agent Count, Density, level of Crowdedness, 

and Severity Level, as shown in Fig. 3. The Heading column 

has been modified by converting negative Heading to be 

positive by adding 360 degrees to the original heading value. 

The Agent Count represents the number of pedestrians in a 

predefined area at a fixed sampling rate (once per second). 

The Density feature represents the number of pedestrians in a 

predefined area per second divided by the area, where the 

area is 100 m2. 

 

 
Fig. 1. Workflow of proposed framework. 

  

 
Fig. 3. Generated data using MassMotion. 

 

 
Fig. 3. Preprocessed data. 

 

TABLE I: LEVEL OF CROWDEDNESS 

Density 

Person /m 2 
Crowd behaviour state 

Level of 

crowdedness 

Less than 1.79 

Normal cases 

Free walk 1 

Between 1.79 and 2 Non-contact 2 

Between 2 and 3.99 Average 3 

Between 4 and 4.99 Abnormal 

cases 

Contact 4 

5 and above Critical 5 

 

Furthermore, the data preprocessing phase involved 

creating a new column, Level of Crowdedness, to identify 

anomalies in crowded places. This column is as ground truth 

(i.e. labels) for the data representing anomalies definition in 

the representative scenario. Table I: level of crowdedness 

shows the different levels of crowdedness. Besides, the 

Severity Level of pedestrian streams has also been estimated 

based on the Density and Heading to get an entire picture of 

the serious crowd situations, as shown in Table II. Four 
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severity levels have been identified, where level Zero means 

no risk and three means it is very critical because the situation 

includes high density and reverse direction. The Level of 

Crowdedness and Severity Level may assist in devising 

proactive anomaly detection and prediction towards efficient 

crowd management. 
 

TABLE II: SEVERITY LEVEL  

Density 

Person /m 2 

Heading 

(Degree) 
State 

Severity 

level 

0 0 
No high density, no opposite 

direction 
0 

0 1 No high density, opposite direction 1 

1 0 High density, no opposite direction 2 

1 1  High density, opposite direction 3 

 

2) HTM model 

Cortical Learning Algorithm (CLA) is the practical 

implementation of several parts of the theoretical HTM 

model. CLA is structured in columns and cells that have the 

flexibility to represent feedforward (from sensors) and 

context (from another region) input simultaneously, which 

can be used to learn the sequence of crowd movement 

patterns. In the CLA algorithm, SDRs of encoded data are the 

input, while a collection of active, inactive or predictive cells 

are the output.   

The CLA algorithm works on a set of data structures, and 

two stages in the learning process Spatial Pooler (SP) and 

Temporal Memory (TM) to represent encoded data 

semantically and achieve some level of spatial and temporal 

pattern matching. An anomaly detection or a classification 

algorithm can handle the output from the TM  in order to 

detect or predict anomalies [44]. The CLA algorithm contains 

four main components which are encoders, spatial pooling 

and temporal memory, and decoder, which are outlined in the 

HTM model components of Fig. 1. Workflow of Proposed 

Framework. A summary of these components is described as 

follows: 

1) The CLA model receives a stream of different types of 

sensory data that comes from lower levels (sensory 

region). In this article, these sensory data are the 

simulated crowd dataset with features, including Speed, 

Heading, and Density. Then, the encoder (e.g., scalar or 

coordinate) encodes the input data into the equivalent 

SDR which is then forwarded to the spatial pooler. 

2) The SDRs resulting from the encoders (feedforward 

input) are fed into the SP to learn spatial features of each 

input and find a stable representation of spatial patterns. 

The output from the SP is a sparse vector, which 

represents the set of active columns. 

3) The TM receives the SDRs output of active columns 

from the SP to learn their transition over time and form 

predicted sequences based on the temporal context of 

each input.  

4) Finally, the output from TM acts as the input to the 

anomaly detection or the classification algorithm in 

order to detect or predict anomalies.  

NuPIC1 provides several types of encoders, such as scalar 

and coordinate, and decoders, such as CLA classifiers for 

 
1 https://github.com/numenta/nupic/ 

prediction. The output of the CLA anomaly detection is an 

Anomaly Score (AS), which is estimated by comparing the 

CLA’s predictions against the actual new data points that 

continuously arrive over time. The AS value is in the range 

between zero and one, where zero means no anomaly was 

detected, while one indicates an anomaly. However, the CLA 

classifier produces a probability distribution for the predicted 

field based on the number of required steps in the future. 

In case of crowd prediction, sequences often involve 

contextual dependencies covering multi-time steps. 

Prediction models require to dynamically determine how 

much to memorise of the temporal context from the history to 

make a better prediction, which is called high-order 

predictions. HTM natively supports temporal sequences, and 

is able to perform high-order predictions, learn an order as 

efficiently as possible [55]. In addition, the sequences of data 

streams frequently overlap and have branches. Therefore, a 

particular temporal context could have various possible 

outcomes in the future. HTM can make multiple predictions 

simultaneously in the future [55]. For example, for a given 

time step, the CLA classifier uses the output of the TM 

(active cells), and information from the encoder (the 

predicted field (PF), the bucket index of PF, and the record 

number) to map an association of SDR at time t. SDRs have a 

massive capacity that enables them to classify multiple 

predictions simultaneously based on its mathematical 

properties e.g. overlapping, union, matching, compression, 

with a low chance of collisions [45], [46]. 

The following subsection describes the alerting framework, 

which enables proactive detection of crowd anomalies.  

C. Alerting Framework for Proactive Anomaly Detection 

Most of the existing anomaly detection models detect 

anomalies after they do happen; however, for crowd 

management, the early detection of anomalies can help in 

avoiding several critical situations such as collisions. An 

alerting mechanism [56] can be used to trigger a warning in 

the run-up to a target event to bring about a phasic change in 

alertness. The warning effectively causes a switch from a 

resting state to a new state in which preparations are made in 

readiness to alert anomalies and respond to an anticipated 

sign. Therefore, the proposed alerting framework can predict 

potential anomalies (e.g., high density, opposite movements). 

To do so, the proposed crowd alerting framework integrates 

prediction and anomaly detection modules to achieve fast 

response and early detection, as shown in Fig. 4. 

The altering framework predicts crowd anomalies. As 

shown in Fig. 4, the CLA prediction model receives the input 

sensor data, such as Speed and Heading, as well as the 

Severity Level to predict the potential level of severity 

(multiclass classification, PSL [0, 1, 2, 3]). The CLA 

prediction model can predict multistep ahead of severity level 

(e.g., predicted severity level minutes or hours ahead). Then, 

the output from the CLA prediction model (predicted severity 

level) besides the original input features become the input to 

train the CLA anomaly detection model so that it can identify 

anomalies. The crowd prediction task is a multivariate 

multistep sequence prediction task, as it involves multivariate 

inputs (e.g. Speed, Heading and/or Severity Level) and it 

aims to predict a sequence of severity levels (e.g. sequence 

size is 60). Therefore, the alerting framework is designed to 
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identify anomalies that may happen multistep ahead. Once 

potential anomalies got identified, an early alarm is sent to 

operators to perform the proper actions that can enable them 

to avoid or mitigate potential crowd problems. 
 

 
Fig. 4. Alerting framework for predicting anomalies. 

 

The outcome from the alerting framework classifies the 

anomalies into three categories, namely warning, cautions, 

and advisories. A warning alert necessitates an immediate 

response, whereas a caution requires rapid response and an 

advisory is intended to inform about a marginal condition 

with no need to respond. As an illustration, if there is an 

abnormal change in crowd patterns, where the crowd severity 

level is changed from one (normal densities with opposite 

direction) to three (critical density with opposite direction), 

then there is a need for immediate action rather than just an 

advisory. 

 

IV. EXPERIMENTAL EVALUATION  

A. Experimental Setup  

This section describes the crowd scenarios used in the 

experiments, the CLA parameters and the performance 

metrics. 

1) Crowd scenario 

The conducted experiments consider two types of crowd 

scenarios: (1) Uni-directional with a single anomaly, and (2) 

Uni-directional with multiple anomalies. The first crowd 

scenario, Uni-directional with a single anomaly, simulates 

the crowd flow in a single direction; the anomaly is 

represented by the density level, where low density is 

considered as normal, while high density is considered as an 

anomaly. The low density means that there is a maximum of 

four pedestrians per square meter at any point in time, while 

high density means there are more than four pedestrians per 

square meter at any time. Fig. 5 exhibits the unidirectional 

scenario with a single anomaly behaviour, where the 

anomaly is represented by high-density values (higher than 

four).   
 

 
Fig. 5. Single anomaly (high density). 

 

The second scenario, unidirectional with multiple 

anomalies, exhibits two anomalies resulting from the high 

density and agents walking in the opposite direction 

(Heading), as shown in Fig. 6. 
 

 
Fig. 6. Multiple anomalies (high density, opposite direction). 

 

2) CLA parameters and implementation platform 

The implementation of the experiments is conducted using 

the open-source Python-based NuPIC, which is recognised as 

the state-of-the-art implementation of the HTM learning 

algorithm. The CLA model requires a thorough selection of 

various hyperparameters to guarantee the best possible 

performance. These hyperparameters are related to encoders, 

spatial pooler, and temporal memory. The CLA parameters 

are initially generated using a medium-size swarm2. Then, the 

output from the swarming process is manually tuned to 

optimise the SP and TM related parameters. The conducted 

experiments use scalar and coordinate encoders. In the 

following experiments, the coordinate encoder uses Heading 

and Speed instead of x and y; and uses Density instead of 

radius to encode the spatiotemporal data. The Level of 

Crowdedness is the predicted field, and the learning phase is 

enabled until a certain amount, then, stopping the learning 

phase, and the inference phase is applied.  

3) Performance metrics 

Both accuracy and f_measure are used to evaluate the 

performance of the anomaly detection algorithms. The 

accuracy is estimated as follows: 

 

where TP is referred to a true positive, and TN is the true 

negative. Additionally, the f_measure is estimated based on 

recall and precision as follows: 

 

where recall represents the ratio of accurately identified 

positive examples as a proportion of the total number of 

positive examples, and the precision is the ratio of accurately 

identified positive examples as a proportion of the total 

number of positive predictions. 

B. Experiments 

This section demonstrates the experiments for the reactive 

and proactive detection of crowd anomalies. 

1) Reactive experiments  

Two different experiments were conducted for two types 

of anomalies (single anomaly and multiple anomalies). The 

performance of CLA (using both scalar and coordinate 

 
2 http://nupic.docs.numenta.org/stable/guides/swarming/index.html 
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encoders) is evaluated against other anomaly detection 

methods namely, k-Nearest Neighbor Global Anomaly Score 

(kNN-GAS), the Independent Component Analysis-Local 

Outlier Probability (ICA-LoOP) and also the Singular Value 

Decomposition Influence Outlier (SVD-IO). 

a) Uni-directional scenario (single anomaly)  

This experiment is based on a dataset representing single 

crowd anomaly (high densities, as previously shown in Fig. 5, 

and the data consists of 14068 records. Fig. 7 shows the 

performance of CLA using scalar and coordinate encoders 

against kNN-GAS, ICA-LoOP and SVD-IO. Looking at Fig. 

7, it is apparent that both versions (scalar and coordinate) of 

the CLA model significantly outperform the counterparts for 

detecting single anomaly (high density). Furthermore, using 

coordinate encoder improves the performance of the CLA 

model as opposed to using the scalar encoder. The coordinate 

encoder managed to improve the CLA anomaly detection 

over scalar encoder by around 7 % (F_measure of 99.08% in 

case of the coordinate encoder as opposed to 92.26% for the 

scalar encoder). 
 

 
Fig. 7. Reactive detection of anomalies using uni-directional scenario with a 

single anomaly. 

 

b) Uni-directional Scenario (Multiple anomaly)  

This experiment aims to investigate the performance of the 

CLA compared to other anomaly detection algorithms for 

crowd anomaly detection based on a dataset with two types of 

anomalies (i.e., high densities, bi-directional flow with 

normal density). This dataset consists of 12337 records. Fig. 

8 confirms the same results found in Fig. 7, where the CLA 

(using scalar or coordinate encoders) significantly 

outperform the other anomaly detection counterparts. 
 

 
Fig. 8. Reactive detection of anomalies using uni-directional scenario with 

multiple anomalies. 

 

It can be concluded that, from the two previous 

experiments, CLA model outperforms KNN-GAS, 

ICA-LoOP and SVD-IO in detecting anomalies in the 

unidirectional scenario with both single and multiple 

anomalies. In addition, using the coordinate encoder, for 

encoding Heading, Speed and Density inputs, boosts the 

F_measure results to 99.08% and 94.22% in case of single 

and multiple anomalies, respectively.   

2) Predicting anomalies using the alerting framework 

This experiment aims to evaluate the performance of the 

proposed alerting framework for the proactive detection of 

crowd anomalies using scalar and coordinate encoders. For 

predicting the Severity Level, the scalar encoder uses Speed 

and Severity Level as input features, and outputs the 

Predicted Severity Level (PSL). For anomaly detection, the 

input features in case of the scalar encoder are Speed and PSL, 

while the coordinate encoder uses Speed, Heading and PSL 

features. The output from the alerting framework is early 

anomaly scores in the range between zero and one. Therefore, 

we have used a threshold to distinguish normal from 

abnormal cases of the predicted severity level. The altering 

framework considers the predicted severity level as an 

anomaly if it is greater than the prespecified threshold (0.5). 

Fig. 9 summarises the performance of the alerting 

framework using both the scalar and coordinate encoders. It 

is interesting to see the ability of the altering framework to 

proactively predict potential anomalies, with an F_measure 

of 92.30% for the scalar encoder and 94.66% for the 

coordinate encoder. Finally, it is notable that the coordinate 

encoder slightly outperforms scalar encoder for detecting 

anomalies in crowd dataset. 

 

 
Fig. 9. Proactive detection (predicting) of anomalies using the alerting 

framework. 

 

V. CONCLUSION AND FUTURE WORK 

This article investigated the adoption of HTM-based 

model for the reactive and proactive detection of crowd 

anomalies to mitigate or avoid any potential accidents. Due to 

the limitations associated with real crowd datasets, this article 

presents a new synthetic crowd dataset generated using the 

MassMotion simulator. The generated dataset reflects two 

crowd scenarios involving both single and multiple 

anomalies. The article proposes a novel HTM-based reactive 

crowd anomaly detection framework. Then, it proposes a 

novel alerting framework for the proactive detection of 

crowd anomalies. The altering framework consists of two 

separate modules for prediction and anomaly detection. The 

prediction model predicts the crowd severity level for the 

upcoming 60 seconds. Then, the anomaly detection model 

makes use of the predicted severity level to predict crowd 

anomalies. The reactive approach for anomaly detection 

showed significant improvement of CLA over kNN-GAS, 

ICA-LoOP and SVD-IO in detecting anomalies. Moreover, 
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the coordinate encoder outperforms the scalar encoder for the 

CLA-based experiments. Finally, the proposed alerting 

framework managed to predict potential crowd anomalies 

with an F_measure of 94.66% and 92.30% using coordinate 

and scalar encoders, respectively.  

As a future work, we will focus on improving the 

prediction accuracy of the crowd prediction model by paying 

more attention to crowd anomalies. 
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