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Abstract   6 

The spatiotemporal changes in precipitation pattern can have crucial implications in arid region 7 

due to its frail environment. An analysis is conducted to estimate the probable spatiotemporal 8 

alteration of annual and seasonal precipitation of Iraq through statistical downscaling of global 9 

climate model (GCM) simulations for different representative concentration pathways (RCP) 10 

scenarios. Symmetrical uncertainty (SU) and compromising programming are used for the 11 

ranking and selection of GCMs. Model Output Statistics (MOS) downscaling models are 12 

implemented using support vector machine with selected GCM variables as predictors and 13 

global precipitation climatology Centre (GPCC) precipitation as predictand. An intelligence 14 

merging approach based on Random Forest is developed to construct multi-model ensemble 15 

(MME) projection of precipitation. The results indicate more uncertain in precipitation increase 16 

in the earlier period (2010-2039) compared to the later period (2070-2099) for all scenarios. 17 

The projected seasonal precipitation changes indicate an increase in almost all months (Jan-18 

Dec) during 2010-2039 with a higher increase in winter and almost no change in summer. The 19 

spatial pattern of the changes reveals the highest decrease in precipitation in the north and 20 

northwest by -58 to -94 mm, while an increase in the middle, northeast and southeast by 6 to 21 

18 mm for different RCPs. The results of the study have potential to be utilized for strategizing 22 

policies for building climate resiliency in Iraq. 23 

 24 

Keywords: Global climate models, precipitation downscaling, support vector machine, random 25 

forest, arid region.  26 
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1. Introduction  1 

Interpretation of general circulation model (GCM) runs for future periods revealed a 2 

continuous rise of Earth’s surface temperature and thus an increase in evaporation 3 

and atmospheric water contents, and alteration of precipitation and hydrological regimes 4 

(Ouyang et al. 2015; Shahid et al. 2016; Wang et al. 2016). Such changes are 5 

projected much higher for arid regions, particularly in the west Asia (IPCC 2007; 6 

Pour et al. 2020; Salman et al. 2018a). Regions dominated by arid climate are 7 

highly susceptible to any minor alterations of climate regimes due to their frail 8 

ecosystems (Ahmed et al. 2019f; Salman et al. 2017; Sarr 2012). Besides, scarce 9 

precipitation makes such regions highly prone to hydrological extremes such as heavy 10 

rainfall-driven floods and severe droughts (Buytaert et al. 2012; Houmsi et al. 2019; 11 

Salman et al. 2018c; Wu et al. 2016). A little change in precipitation pattern causes 12 

a significant rise in precipitation extremes (Chiew et al. 2009; Groisman et al. 13 

1999; Khan et al. 2019; Nashwan and Shahid 2018; Nashwan et al. 2019; Pour 14 

et al. 2014; Shahid 2011; Shiru et al. 2019b). Hence, a large changes in climate 15 

may severely affect the western part of Asia with various climate-related disasters 16 

(Pour et al. 2018; Salman et al. 2017; Salman et al. 2018c). 17 

GCMs, generally used for climate modeling often provide unrealistic climate projections 18 

(Akhter et al. 2019; Onyutha et al. 2016; Xu et al. 2019). The appropriate GCMs is usually 19 

selected according to their performance in modeling the present climate to project the future 20 

climate variables of a region (Lutz et al. 2016; McSweeney et al. 2015; Salman et al. 2018a; 21 

Shiru et al. 2019a). Generally, multiple statistical indices are employed to decide GCM 22 

capability in modeling the existing climate of the area of interest (Ahmed et al. 2019c; Noor et 23 

al. 2019a). However, such metrics often provide conflicting results and make GCM selection 24 

intrigue (Ahmed et al. 2019e). Hence, the necessity of sophisticated approaches is evident to 25 

select a reliable GCM set for climate change projections. The use of machine learning (ML) 26 

techniques in GCM performance assessment has significantly increased in recent years (Ahmed 27 

et al. 2019d; Khan et al. 2018; Pour et al. 2018; Shiru et al. 2019a). The previous studies 28 
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reported that symmetrical uncertainty (SU) (Press et al. 1996) is the most suitable for GCM 1 

selection among the all ML methods. 2 

High-resolution climate projections are needed for majority of impact assessment studies 3 

(Fallmann et al. 2017; Gebrechorkos et al. 2019; Navarro-Racines et al. 2020). Hence, GCMs 4 

outputs are commonly downscaled to higher resolution mostly by statistical downscaling (SD) 5 

(Ahmed et al. 2015; Alamgir et al. 2020; Sa'adi et al. 2017). The perfect prognosis (PP) and 6 

model output statistics (MOS) are two major types of SD methods (Vandal et al. 2019; Xu et 7 

al. 2020). The MOS is more efficient in bias-correction than the PP method, and it much widely 8 

used in recent years in downscaling GCM outputs (Nashwan et al. 2020; Noor et al. 2019b; 9 

Turco et al. 2017). The regression MOS is the recent development of climate downscaling, 10 

where a climate variable is downscaled using regression model developed based on the in-situ 11 

and GCM climate variables (Ahmed et al. 2019d; Eden et al. 2012; Eden et al. 2014; Sa'adi et 12 

al. 2017; Shirvani and Landman 2016). For example, precipitation at a location is downscaled 13 

through the development of a regression model with in-situ precipitation as predictand and 14 

related GCM variables as predictors. Such multi-variable bias correction method improves the 15 

performance of downscaling and provides reliable projections of climate (Ahmed et al. 2019a; 16 

Moghim and Bras 2017; Pour et al. 2018). The performance of multi-variable bias correction 17 

depends on the method used for regression model development. The non-linear association 18 

between in-situ and GCM climate variables urges the necessity of sophisticated methods for 19 

the implementation of such model.  20 

A procedure for methodic selection of GCMs and downscaling of their simulations using a 21 

multi-variable bias correction approach is proposed in this study to project the spatiotemporal 22 

changes in precipitation of Iraq. ML algorithms are used for several purposes such as selection 23 

of GCMs, development of downscaling model and generation of GCMs ensemble mean 24 

projections. The novel procedure presented in this article can be replicated for trustworthy 25 

climate projections in any region of interest. 26 

 27 

2. Materials and Methods  28 

2.1 Geography and Climate of Iraq 29 

Iraq, situated in southwest Asia and bounded by geographical coordinates of (38°45¢E,29°15N) 30 

and (48°45¢E,38°15¢N), covers an area of 438,320 km2 (Salman et al. 2020; Yaseen et al. 2018). 31 

The climate in most of the country is subtropical desert (BWh) (Fig 1-a) (Salman et al. 2020). 32 
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Besides, the climate in two small strips in the north are considered as subtropical steppe (BSh) 1 

and subtropical (Csa) according to Köppen’s definition. The three climate zones are defined as 2 

Zone-I, II and III, respectively, in this study. Precipitation in Iraq varies widely among the three 3 

climate zones, nearly 63 mm in the southwest of Zone-I to 900 mm and above in Zone-III (Fig 4 

1b). 5 

Iraq’s climate is divided into two main seasons, summer (Jun-Sept), and winter (Nov-Mar). 6 

Spring and Autumn are two transition seasons between these two major seasons. The country 7 

experiences nearly 90% precipitation in winter (Fig 1c). Therefore, summer is usually 8 

extremely dry (Al-Ansari 2013; Salman et al. 2019; Salman et al. 2017). Temperature drops 9 

near to freezing point especially in Zone-III during winter while it often rises above 45°C in 10 

some summer days, particularly in the south of Zone-I.  11 

 12 

  
(a) (b) 

 

 

(c)  

Fig 1.  (a) Climate zones over the topographic map; (b) spatial precipitation patterns; (c) 13 

seasonal precipitation variations in Iraq. 14 

 15 



6 
 

2.2 Data and Sources  1 

GPCC precipitation extracted from the data portal of 2 

www.esrl.noaa.gov/psd/data/gridded/data.gpcc.html is utilized as a reference dataset for 3 

selection of GCMs, and downscaling and projection of precipitation of Iraq. GPCC 4 

precipitation has been proved as most efficient in reproducing in-situ precipitation of Iraq by 5 

Salman et al. (2018b).  6 

Several GCMs are available in the coupled model intercomparison project (CMIP5). The 7 

GCMs having simulations for all the RCPs are considered for their performance assessment 8 

(Table 1). To downscale the precipitation, the GCM predictors namely, air temperature, sea 9 

level pressure, relative and specific humidity, eastward and northward wind and geopotential 10 

height at four pressure levels namely, 925,850,700,600 and 500 are used. Those data are 11 

obtained from the website of https://cds.climate.copernicus.eu. The GCMs variables are re-12 

gridded into 2°×2° resolution for selection of GCMs. The 2º resolution is selected based on the 13 

mean resolution of the considered GCMs. 14 

 15 

Table 1. The global climate models considered in the study 16 

No GCM Institute Resolution 
(Lon x Lat) 

1 BCC-CSM1-1 Beijing Climate Center, China 2.8° × 2.8° 

2 CanESM2 Canadian Centre for Climate Modelling and Analysis, 
Canada 2.8° × 2.8° 

3 GISS-E2-H NASA Goddard Institute for Space Studies, USA 2.5° × 2.5° 
4 HadGEM2-ES Met Office Hadley Centre, UK 1.87° × 1.25° 
5 MIROC5 

Agency for Marine-Earth Science and Technology, Japan 

1.4° × 1.4° 
6 MIROC-ESM 2.8° × 2.8° 

7 MIROC-ESM-
CHEM 2.8° × 2.8° 

8 NorESM1-M Norwegian Meteorological Institute, Norway 2.5° × 1.9° 
9 NorESM1-ME 2.5° × 1.9° 
10 MPI-ESM-LR Max Planck Institute for Meteorology, Germany 1.87° × 1.86° 
11 MPI-ESM-MR 1.87° × 1.86° 

12 BCC-
CSM1.1(m) Beijing Climate Center, China 2.8° × 2.8° 

13 CNRM-CM5 Centre National de Recherches Météorologiques, France 1.4° × 1.4° 
14 HadGEM2-AO National Institute of Meteorological Research, Korea  1.87° × 1.25° 
15 CCSM4 National Center for Atmospheric Research, USA 1.25° × 0.94° 

16 CSIRO-Mk3.6.0 Commonwealth Scientific and Industrial Research 
Organization, Australia 1.86° × 1.87° 

17 INMCM4.0 Institute of Numerical Mathematics, Russia 2.0° × 1.5° 

18 CMCC-CM Centro Euro-Mediterraneo sui Cambiamenti Climatici, 
Italy 0.75° × 0.75° 

19 GFDL-CM3 Geophysical Fluid Dynamics Laboratory, USA 2.5° × 2.0° 
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20 CMCC-CMS Centro Euro-Mediterraneo sui Cambiamenti Climatici, 
Italy 3.75° × 3.71° 

 1 

3. Methodology 2 

3.1  Procedures 3 

The following steps are used for GCM selection, statistical downscaling and precipitation 4 

projections: 5 

i. GCM precipitations are interpolated into the considered resolution of 2º×2º. The GPCC 6 

precipitation is also upscaled to the same resolution for comparison. 7 

ii. SU is used to evaluate the similarity between the annual precipitation simulated by GCM 8 

and produced by GPCC over the grid points of Iraq.  9 

iii. Compromise programming index (CPI) is used to assimilate ranking of all the grid points 10 

over Iraq to estimate the overall ranking of GCMs for the country.  11 

iv. All the selected GCM predictors are interpolated to the resolution of GPCC (0.5º×0.5º). 12 

v. Stepwise regression is used to choose the GCM predictors from multiple levels for 13 

precipitation prediction at all the GPCC grid points of Iraq. Predictors are selected for each 14 

month separately to capture seasonal variability in precipitation. 15 

vi. Selected GCM predictors (Fig 2) are used as input in a support vector machine (SVM) 16 

where the GPCC precipitation is considered as output to develop MOS models. 17 

vii. The downscaling models are used to project the precipitation for four RCPs. 18 

viii. RF regression is utilized to calculate the multi-model ensemble (MME) mean of projected 19 

precipitation.  20 

ix. The MME mean precipitation for three future periods (2010 – 2039, 2040 – 2069, and 21 

2070 – 2099) are utilized to assess the future precipitation changes. 22 

 23 

Methods are elaborated in the following sections. 24 

 25 
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  1 

Fig 2. The multi-variable model output statistics (MOS) downscaling of precipitation 2 

 3 

3.2 Symmetrical Uncertainty (SU) 4 

The SU assesses similarity between the GCM and GPCC precipitation using the concept of 5 

information entropy. If GCM precipitation is similar to GPCC precipitation, the information 6 

gain (IG) is high and vice-versa. The higher precipitation depths usually provide larger IG 7 

values. SU is used to overcome the IG’s shortcoming of inclination of higher values. The SU 8 

between GCM and CPCC precipitation (𝑋! and 𝑋" respectively) can be estimated from their 9 

entropies (𝐻(𝑋!) and 𝐻%𝑋"&) as 10 

𝑆𝑈$𝑋! , 𝑋"& = 	2 *
#$%𝑋! &𝑋"'
((*!),(-*".

+                                                          (1) 11 

A SU value near to unity means the high similarity and vice-versa (Shreem et al. 2016). 12 

 13 

3.3 Compromise programming index (CPI) 14 

The SU ranks the GCMs according to their performance at individual grid locations. The CPI 15 

is used to assimilate the ranking of all the grid points (18 grid points to cover the country). The 16 

CPI is estimated as 17 

𝐶𝑃𝐼 = /∑ 1𝑥!/ − 𝑥!∗1
12

!3/ 4
//1

          (2) 18 

where; 𝑥!/ is the rank of a GCM, 𝑥!∗ is the ideal rank (considered 1 in this study) and p is a 19 

parameter. To provide a linear equation, p is considered to 1. A GCM with highest CPI value 20 

offers the best performance. The GCMs with ranks below or equal to 3 are considered to 21 

estimate CPI. Others are assigned a zero CPI. 22 
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 1 

3.4 Support vector machine (SVM) 2 

SVM regression is used to develop the MOS model for downscaling the GCMs. SMV 3 

mathematically express the connection of GPCC precipitation, (y) with GCM predictors, 4 

(xi) as, 5 

𝒚 = 𝒇(𝒙𝒊) = 	𝒘𝝓(𝒙𝒊) + 𝒃             (3) 6 

where w and b represent weight vector and error, respectively; ϕ is the kernel 7 

function. In SVM, the parameters (𝑤, 𝑏) are minimized to derive the optimum relationship. 8 

The statistical software R package e1071 is used for model development. The model is trained 9 

for the period of 1961 to 1993 and tested for 1994-2005. A cross-validation approach is 10 

employed to optimize the hyperparameters of the SVM model.  11 

 12 

3.5 An ensemble using Random Forest (RF) regression 13 

A non-linear regression model developed by RF is employed to generate the MME 14 

mean of GCM precipitation (Ahmed et al. 2019b; Ahmed et al. 2019d; Sa'adi et 15 

al. 2017; Salman et al. 2018a). The precipitation of selected GCMs are considered 16 

as input and the GPCC precipitation as output for development of RF model at each 17 

grid. The training and testing periods for the RF model are similar to those considered for 18 

the SVM model. The developed RF model is used to produce the MME mean of precipitation 19 

projections of selected GCMs. The MME mean precipitation is finally used for evaluation of 20 

future changes in precipitation in comparison to historical precipitation (1971 – 2000).  21 

 22 

4. Results and discussion 23 

4.1  GCM ranking 24 

The spatial distribution of the GCMs for the top three ranks provided by SU over the 18 grid 25 

points of Iraq is shown in Fig 3. The GCMs are represented by different colors in the maps. 26 

The figure shows that the NorESM1-M provides the best precipitation simulation in majority 27 

of grid locations. The CSIRO-Mk3-6-0 has better accuracy in the east and BCC-CSM1.1(m) 28 

at a few southeast grids. The BCC-CSM1-1 and CSIRO-Mk3-6-0 found as the second best 29 
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models in the middle and west respectively. Those GCMs are also found to be the third best 1 

model in a major part of Iraq. 2 

  
(a) (b) 

 

 

 

 

(c) 
 3 

Fig 3. The GCMs ranked (a) first; (b) second; and (c) third by SU in modelling precipitation at 4 

different gird locations of Iraq 5 

 6 

The CPI estimated for each GCMs by aggregating their ranking at different grid points is given 7 

in Table 2. Nine GCMs (NorESM1-M, CSIRO-Mk3-6-0, BCC-CSM1.1(m), BCC-CSM1-1, 8 

HadGEM2-ES, HadGEM2-AO, GFDL-CM3, IPSL-CM5A-LR, CCSM4) are found to obtain 9 

a CPI more than zero, and therefore, those GCMs are initially selected. 10 

 11 

Table 2. Compromise programming index estimated for different GCMs for Iraq   12 

GCM CPI 

 NorESM1-M 10.33 
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CSIRO-Mk3-6-0 5.98  

BCC-CSM1.1(m) 4.66  

BCC-CSM1-1 4.65  

HadGEM2-ES 3.33  

HadGEM2-AO 2.66  

GFDL-CM3 0.5  

IPSL-CM5A-LR 0.5  

CCSM4 0.33  

CESM1-CAM5 0  

FIO-ESM 0  

GFDL-ESM2G 0  

GFDL-ESM2M 0  

GISS-E2-H 0  

GISS-E2-R 0  

IPSL-CM5A-MR 0  

MIROC5 0  

MIROC-ESM 0  

MIROC-ESM-CHEM 0  

MRI-CGCM3 0  

 1 

For consistency in climate change projection, it is suggested that GCMs should able to simulate 2 

both precipitation and temperature reliably. Among the top GCM given in Table 2, only two 3 

GCMs namely HadGEM2-ES and HadGEM2-AO are found common with top temperature 4 

GCMs selected for Iraq in the previous study conducted by Salman et al. (2018a). Therefore, 5 

those two GCMs are finally downscaled and used for precipitation projections.  6 

 7 

4.2 Downscaling of GCMs precipitation  8 

The selected GCMs are downscaled based on GPCC precipitation at a resolution of 9 

0.5º×0.5º. The efficiency of downscaling models is visually assessed using the scatter 10 

plots of areal average annual and seasonal (summer and winter) GPCC and 11 

downscaled precipitation (Fig 4). The results obtained by each GCM demonstrate a 12 

good agreement with the monthly GPCC precipitation. Downscaling precipitation is 13 
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always a difficult task. Unlike temperature downscaling, it is never possible to get a 1 

perfect match between observed and downscaled precipitation. This issue is more 2 

crucial, especially in the arid regions (Nashwan et al. 2020). Higher values are 3 

always underestimated by downscaling model for arid region as those phenomena are 4 

very erratic and rare in the arid regions (Ahmed et al. 2019d). This study also 5 

shows similar results. The higher values are underestimated for annual and both 6 

seasons, while lower values are overestimated, particularly for winter. However, the 7 

under- or over-estimations are not very high. Therefore, its accuracy of precipitation 8 

downscaling models is considered acceptable. 9 

 10 

  11 
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Fig Error! No text of specified style in document.. Comparison of the GPCC and 2 

downscaled GCM monthly average of annual; winter and summer precipitation (upper) 3 

to (lower) 4 

 5 

4.3 Multi-model ensemble mean precipitation 6 

To assess the RF performance in generation of ensemble mean, the agreements between the 7 

MME mean and the GPCC precipitation averaged for entire Iraq for both annual and seasonal 8 
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scales are shown in Fig 5. The data points in the plots are aligned very close to the diagonal 1 

line, which sugests adequate competence of RF model in generating ensemble mean 2 

precipitation. 3 

. 4 

  
(a) (b) 

 
(c ) 

Fig 5. Comparison of GPCC and downscaled multi-model ensemble mean of (a) 5 

annual; (b) winter; and (c) summer precipitation 6 

 7 

4.4 Projection of annual precipitation 8 

Fig 6 demonestrates the shift in annual precipitation of Iraq for three future periods and four 9 

RCPs. The UB (blue horizontal line) in the figure represents the upper bound of precipitation 10 

change at 95% confidence level, ESM (red) refers to MME mean, and LB refers to lower bound 11 

of 95% confidence level. The MME precipitation is found closer to LB compared to UB, which 12 

indicates higher uncertainty in projection of larger raise in precipitation. A higher augmentation 13 
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of precipitation is projected in the earlier period (2010-2039) compared to the last period (2070-1 

2099) for all scenarios. Overall, the preceipitatin is projected to increase more in Zone-I 2 

compared to other zones. 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

Fig 6. Changes in annual precipitation (%) in three future periods, 2010-2039 (pink), 2040-25 

Zone-I 

Zone-II 

Zone-III 
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2069 (yellow) and 2070-2099 (red) for four RCPs 1 

 2 

4.5 Seasonal changes in precipitation 3 

The monthly precipitation changes in different climate zones for different RCPs and three 4 

future periods are shown in Figs. 7 to 9. An increase in precipitation in almost all months is 5 

noticed during 2010-2039 (Fig. 7). A higher increase is projected for winter months, while 6 

almost no change during summer. More or less similar results are observed for 2040-2069 7 

(Figure 8) and 2070-2099 (Figure 9). Winter precipitation is found to increase mode while 8 

almost no change in summer precipitation. 9 

 10 

Zone-I Zone-II 

  
Zone-III 

 
Fig 7. Changes in seasonal precipitation in three climate zones during 2010–2039 in 11 

comparison of 1961-1990 for different RCPs. 12 

 13 

 14 

 15 

 16 

  17 
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 1 

Zone-I Zone-II 

  
Zone-III 

 
Fig 8. Changes in seasonal precipitation in three climate zones during 2040–2069 in 2 

comparison of 1961-1990 for different RCPs. 3 

 4 

Zone-I Zone-II 

  
Zone-III 

 
Fig 9.  Changes in seasonal precipitation in three climate zones during 2070–2099 in 5 

comparison of 1961-1990 for different RCPs. 6 

 7 
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 1 

4.6 Geographical distribution in annual precipitation changes 2 

The geographical distribution of annual precipitation changes in three future time horizones 3 

with reference to base years is presented in Fig 10. A reduction of precipitation is noticed in 4 

the northwest of Iraq for all RCP. A higher decrease is projected in the northwest of Zones-I 5 

and II during 2010-2039 by -72 to -103 mm, while the highest increase in the central region 6 

and some parts in the northeast by approximately 9-20 mm for different RCPs. During 2040-7 

2069, a decrease in precipitation is noticed in the northwest by -85 to -55 mm, while a higher 8 

increase in the central and east Iraq by 21-28 mm for different scenarios. The changes are 9 

found very similar during 2070-2099. The highest decrease are observed in Zone-III and 10 

northwest of Zone-II in the range of -94 to -58 mm, while the higher increase by around 6 to 11 

24 mm at a few locations in the central, northeast and southeast of Iraq for different RCPs. 12 

  13 
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 1 

 2 

Fig 10. Geographical distribution of annual precipitation changes for three future periods and 3 

four RCPs.  4 

 5 

4.7 Geographical distribution in seasonal precipitation changes 6 

The geographical distributions of winter, autumn and spring precipitation changes for 7 

three future time horizones are presented in Figs 11, 12 and 13, respectively. The 8 

summer precipitation is very less; almost zero in most of the country. Changes in 9 

summer precipitation were also found very less and therefore, not presented here. 10 



20 
 

Fig 11 shows a reduction of winter precipitation in the north, while a slight augmentation 1 

in the southern region. The reduction of precipitation in the northern mountainous 2 

region is found up to 100 mm for RCP8.5 during 2070-2099. The increased 3 

precipitation in the southwestern desert is observed up to 15 mm for almost all 4 

scenarios. 5 

Opposite scenarios are observed for spring. Increased precipitation is projected in the northern 6 

zone in the range of 7-13 mm, while a decrease in the northern part of the western desert up to 7 

-21 mm for most of the scenarios. Overall, the changes in precipitation in spring are found less. 8 

Precipitation projection for autumn is seen more or less similar to spring. Increased 9 

precipitation is projected in the north and a decrease in the west of Iraq. However, changes in 10 

autumn precipitation are found more compared to spring precipitation. An increase up to 23 11 

mm in the north, while a decrease up to -30 mm in the north of the western desert are found for 12 

all RCPs. 13 

 14 

 15 
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 1 

Fig 11. Geographical distribution of winter precipitation changes for three future periods and 2 

four RCPs 3 

 4 

  5 
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 1 

 2 

Fig 12. Geographical distribution of autumn precipitation changes for three future periods and 3 

four RCPs 4 

  5 



23 
 

 1 

 2 

Fig 13. Geographical distribution of spring precipitation changes for three future periods and 3 

four RCPs. 4 

 5 

Very limitted studies have assessed the possible changes in precipitation in the Arabian 6 

peninsula. Bozkurt and Sen (2013) projected climate in the Euphrates–Tigris Basin (ETB) 7 

using three GCMs for Special Report on Emissions Scenarios (SRES) scenarios and reported 8 

a possible abatement of winter precipitation in Zone-III and increase in the south of ETB. The 9 

study concluded that Iraq might experience more water stress due to reliance on the water 10 
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supply of ETB on upstream countries. The findings correlate with the projections made in this 1 

study, which also reveals a significant reduction of winter precipitation in Zone-III and ian 2 

augmentation in the south of Iraq. Almazroui et al. (2016) used CMIP5 GCMs for projection 3 

in the Arabian Peninsula and reported precipitation reduction for RCP4.5 and RCP8.5 in 4 

southern Arabian Peninsula. The present study confirms a significant precipitation reduction 5 

over entire Iraq by 0% - 5% for all RCPs while a notable raise in the southern and west in a 6 

rate of 30 – 65% and at a rate of 20 -30% in the north of Iraq under most of RCPS. Peleg et al. 7 

(2015) employed four GCMs for precipitation projections over the Eastern Mediterranean 8 

region and projected less frequent precipitation (10–22% less) in the mid of this century. The 9 

present study also projects a possible reduction in precipitation in most of Iraq in all the 10 

seasons. 11 

 12 

5. Conclusion 13 

A methodology is proposed for the derivation of GCM ensemble and their downscaling for 14 

precipitation projections. Application of the proposed method selected two GCMs (HadGEM2-15 

ES and HadGEM2-AO) for precipitation projection of Iraq. The results indicate that the SVM 16 

is capable to downscale GCM precipitation. The findings of the geographical distribution of 17 

precipitation changes estimated based on RF generated MME reveal a decrease in precipitation 18 

in the northwest of Iraq for all RCPs. The highest decrease during 2010-2039 is projected in 19 

the northwest of Zones-I and II, while an augmentation in the middle and some parts in the 20 

northeast of Iraq. The higher decrease in the precipitation in the middle of the century (2040-21 

2069) is projected in the northwest, while an increase in the central and eastern Iraq. The 22 

changes are found very similar for the period 2070-2099. A large precipitation reduction is 23 

noticed in the north and northwest while an augmentation at a few locations in the central, 24 

northeast and southeast Iraq for the different RCPs. The precipitation projected with 25 

uncertainty estimated in the study can help policy-makers in streamlining the existing policies 26 

to improve climate resiliency. In future, multiple gridded precipitation datasets can be 27 

employed for the assessment of uncertainty in GCM selection and precipitation projections due 28 

to the gridded data used as a reference. Besides, other sophisticated ML methods can be applied 29 

for the implementation of downscaling model. 30 

 31 
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