
1 

 

Thermal Bioclimatic Indicators over Southeast Asia: Historical Status and 1 

Future Projections using CMIP6 2 

 3 

Mohammed Magdy Hamed1,3 *, Mohamed Salem Nashwan2, Shamsuddin Shahid3, Tarmizi 4 

bin Ismail3, Ashraf Dewan4, Md Asaduzzaman5 5 

 6 

1Construction and Building Engineering Department, College of Engineering and Technology, 7 

Arab Academy for Science, Technology and Maritime Transport (AASTMT), B 2401 Smart 8 

Village, 12577, Giza, Egypt. E-mail: eng.mohammedhamed@aast.edu   9 

2Construction and Building Engineering Department, College of Engineering and Technology, 10 

Arab Academy for Science, Technology and Maritime Transport (AASTMT), 2033 Elhorria, 11 

Cairo, Egypt. E-mail: m.salem@aast.edu  12 

3Department of Water and Environmental Engineering, School of Civil Engineering, Faculty 13 

of Engineering, Universiti Teknologi Malaysia (UTM), 81310 Skudia, Johor, Malaysia. E-14 

mail: sshahid@utm.my (S.S.), tarmiziismail@utm.my (T. I.) 15 

4Spatial Sciences Discipline, School of Earth and Planetary Sciences, Curtin University, Kent 16 

Street, Bentley, Perth 6102, Australia, E-mail: A.Dewan@curtin.edu.au  17 

5Department of Engineering, School of Digital, Technologies and Arts, Staffordshire 18 

University, Stoke-on-Trent ST4 2DE, UK, E-mail: Md.Asaduzzaman@staffs.ac.uk 19 

 20 

*Corresponding Author E-mail: eng.mohammedhamed@aast.edu 21 

  22 



2 

 

Thermal Bioclimatic Indicators over Southeast Asia: Historical Status and 23 

Future Projection CMIP6 24 

 25 

Abstract 26 

Mapping potential changes in bioclimatic characteristics are critical for planning climate 27 

change adaptation and mitigation goals. Assessment of such changes is particularly important 28 

for Southeast Asia, which has one of the world's highest ecological diversity. Twenty-three 29 

CMIP6 GCMs are used in this study to evaluate the change in 11 thermal bioclimatic indicators 30 

of Southeast Asia for two shared socioeconomic pathways (SSPs), 2-4.5 and 5-8.5. The spatial 31 

changes in the ensemble mean, 5th, and 95th percentile of each indicator for the near (2020-32 

2059) and far (2060-2099) futures for the two SSPs to understand the changes with time and 33 

associated uncertainty. The results indicate large spatial heterogeneity and temporal variability 34 

in projected changes in bioclimatic indicators. A higher change was projected in the mainland 35 

SEA for the far future and less in maritime SEA for the near future. At the same time, 36 

uncertainty in the projected bioclimatic indices was higher for mainland SEA than maritime 37 

SEA. The multimodel ensemble mean (MME) revealed a change in mean temperature in the 38 

range of -0.71 to 3.23 °C for the near and 0.00 to 4.07 °C for the far future. The diurnal 39 

temperature range was projected to reduce over most of SEA in the range of -1.1 to -2.0 °C, 40 

while isothermality to decrease by -1.1 to -4.6%. The decrease in isothermality along with a 41 

decrease in seasonality indicates a possible shift in climate, particularly in the north of 42 

mainland-SEA in the future. Maximum temperature in the warmest month/quarter was 43 

projected to increase a little more than the coldest month/quarter and the mean temperature in 44 

the driest month to increase more than the wettest month. This would cause an increase in the 45 

annual temperature range in the future.  46 

 47 

Keywords: CMIP6, GCM, SEA, Bioclimatic indicators, climate change,  48 
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1. Introduction 49 

Annual and seasonal bioclimate information is essential to understand climate influences on 50 

different species (O'Donnell and Ignizio, 2012). It is also required to estimate wildlife 51 

distribution (Molloy et al., 2014; Yoon and Lee, 2021), farming potential (Kriticos et al., 2012), 52 

human comfort (Çaliskan et al., 2013) and climate change vulnerability (Theusme et al., 2021). 53 

Global warming has altered climate in different ways in different regions of the globe. Climate 54 

change has changed several climatic characteristics intricately connected to the biosphere (Pour 55 

et al., 2019). Minor climate changes may significantly affect biological distribution (Hu et al., 56 

2015; Sintayehu, 2018), such as a shift in species distribution and ecology as the plants and 57 

animals would change their locations with the climate for survival (Bellard et al., 2012; Molloy 58 

et al., 2014; Waltari et al., 2014). The phenology and physiology of many plants may also 59 

change in response to climate variability (Bellard et al., 2012). It would also alter people's 60 

comfort and public health risk in different regions (Duanmu et al., 2017; Ragheb et al., 2016). 61 

Bioclimatic indicators are increasingly being used to analyze the effects of climate 62 

change on bio-environments (Daham et al., 2018; Rehfeldt et al., 2015; Ribeiro et al., 2019). 63 

Mapping potential changes in bioclimatic characteristics are critical for achieving climate 64 

change adaptation and mitigation goals. Bioclimatic indicators' historical and future projection 65 

is particularly important for the Southeast Asia (SEA) region. SEA is the world's most climate-66 

vulnerable area due to significant ocean-land-atmosphere interactions (Raitzer et al., 2015; 67 

Vinke et al., 2017). It is in the center of the Asian monsoon system and at the crossroads of the 68 

Asian monsoon's interactions with the El Niño–Southern Oscillation (ENSO), the Pacific and 69 

Indian Oceans and the Northern and Southern Hemispheres. Four SEA nations are rated among 70 

the world's ten most susceptible countries to climate change (Eckstein et al., 2017). According 71 

to a recent study (Raitzer et al., 2015), the SEA region's gross domestic product will decline by 72 

11% by the end of the current century as a result of the negative effects of climate change, the 73 

highest rate on the planet. Agriculture and ecological industries would be the two most affected. 74 

Crop yields will drop significantly as a result of the changing climate on the land surface. 75 

Significant biome shifts might have a detrimental effect on ecosystems and the livelihoods of 76 

millions (Woetzel et al., 2020).  77 

Several studies assess the distribution of plants (Banerjee et al., 2019; van Zonneveld 78 

et al., 2009) in SEA and others assess the distribution of animals due to climate change 79 

(Abdullah, 2003; Rauff-Adedotun et al., 2020). Asif (2019) studied the environmental impact 80 
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on marine resources, especially the fishing industry on Cambodia's coast, and its impact on the 81 

migration of citizens. Yoon and Lee, (2021) used the bioclimatic indicators to study the 82 

distribution of two different pests using MaxEnt modeling. Besides, scientists used Global 83 

Climate Models (GCMs) to assess climate change impacts on biodiversity (Flato et al., 2013; 84 

Hartmann, 2016). Dai et al., (2021) studied the impact of climate change on the distribution of 85 

two different bears using CMIP5 at current and far future (2070) in China. Wang et al., (2021) 86 

studied the projected future distribution of six species of flowering plants using Species 87 

Distribution Models (SDMs) in current, 2050, and 2070 using CMIP5 medium (RCP4.5) and 88 

high (RCP8.5) scenarios. Thus, assessing the bioclimatic indicators in historical and future 89 

scenarios across SEA is critical for the region's sustainable development. 90 

A more realistic representation of Earth's physical processes is included in the most 91 

recent CMIP6 than prior CMIPs (Eyring et al., 2016) using more robust future scenarios known 92 

as Shared Socioeconomic Pathways (SSPs) (Moss et al., 2010; Taylor et al., 2012). These SSPs 93 

examine future climate change and global economic and demographic shifts, at eight different 94 

degrees, namely SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP4-3.4, SSP4-6.0, SSP5-3.4 and 95 

SSP5-8.5. Historical and future projections of CMIP6 GCMs were found to have less 96 

uncertainty than previous versions (Almazroui et al., 2020; Deng et al., 2021; Ombadi et al., 97 

2020).  98 

  The purpose of this work is to quantify historical bioclimatic indicators and their future 99 

change in SEA under medium and high climate change scenarios. Thus, eleven thermal 100 

bioclimatic indicators were estimated for the historical period and the future until the end of 101 

the century using the SSP2-4.5 and SSP5-8.5 scenarios derived from a multi model ensemble 102 

mean of 23 CMIP6 GCMs. The study's novel is the use of readily available climate projection 103 

data to assess possible changes in bio environment in two future periods and two climate 104 

change scenarios. Additionally, it may be used to assist decision-makers and policymakers in 105 

developing future climate change mitigation and adaptation strategies in the SEA. 106 

 107 

2. Study Area and Data 108 

2.1. Study Area  109 

SEA consists of 11 countries having a 563 million population and a land area of 4.3 million 110 

km2 (Fig. 1). With 173,251 kilometers of coastline, it ranks third worldwide, after North 111 
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America and Western Europe. There are seas, land, and many islands in SEA, consisting of 112 

two primary regions (i.e., Mainland and Maritime SEA). Most of SEA's topography is flat, 113 

except for Myanmar and Indonesia, where altitudes surpass 4000 meters. SEA is one of the 114 

world's most vulnerable regions to climate change because of its unique geographic and 115 

meteorological conditions and economic, demographic, and social features (Raitzer et al., 116 

2015; Vinke et al., 2017). It has a mean annual temperature of 25.0 °C and a mean annual 117 

rainfall between 700 and 5000 mm (Peel et al., 2007; Yang et al., 2021). The natural 118 

atmospheric processes that cause climate-related catastrophes, such as droughts, floods, and 119 

other weather events, operate on a spectrum of spatial and temporal variability (Kuo et al., 120 

2020; Nashwan et al., 2018). 121 

 122 
Fig. 1 The location and topography of Southeast Asia 123 

 124 

2.2. Global Climate Models 125 

Twenty-three CMIP6 models' monthly rainfall, Tmax and Tmin simulations for the historical and 126 

future periods were used.  The GCMs (Table 1) were chosen based on the availability of 127 

projections for rainfall, Tmax and Tmin for the historical, and two SSPs, 2-4.5 and 5-8.5. The 128 
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models' outputs were acquired via https://esgf-node.llnl.gov/search/cmip6/. Only the outputs 129 

of the initial variation label r1i1f1p1 were considered out of different initializations of each 130 

GCM. The historical experiment covers the period 1975 – 2014, while the future experiments 131 

(i.e., SSP2-4.5 and SSP5-8.5) cover 2020 - 2099. The SSP2-4.5 scenario implies the middle of 132 

the road scenario, which mean global temperature will reach 2.7°C by 2100. Contrarily, SSP5-133 

8.5 represents the worst-case future scenario with double CO2 emissions levels by 2050 134 

compared to the current level and a global temperature warming of 4.4°C by the end of the 135 

century. Thus, employing these two future scenarios can reflect the variability in possible 136 

pathways of climate warming.  137 

Table 1 CMIP6 GCMs used in the study 138 

No Model Institution Country Raw 
Nominal 

Resolution 
(km) 

Reference 

1 ACCESS-CM2 CSIRO-
ARCCSS Australia 250 (Dix et al., 2019) 

2 ACCESS-ESM1-5 250 (Ziehn et al., 2019) 

3 AWI-CM-1-1-MR AWI Germany 100 (Semmler et al., 
2018) 

4 BCC-CSM2-MR BCC China 100 (Wu et al., 2018) 
5 CanESM5 CCCMA Canada 500 (Swart et al., 2019) 
6 CAS-ESM2-0 CAS-ESM China 100 (Chai, 2020) 
7 CIESM CIESM China 100 (Huang, 2019) 
8 CMCC-ESM2 CMCC Italy 100 (Peano et al., 2020) 
9 EC-Earth3 

EC-Earth Europe 

100 
(Döscher et al., 

2021) 
10 EC-Earth3-CC 100 
11 EC-Earth3-Veg 100 
12 EC-Earth3-Veg-LR 100 
13 FGOALS-g3 FGOALS China 250 (Pu et al., 2020) 
14 FIO-ESM-2-0 FIO China 100 (Song et al., 2019) 
15 GFDL-ESM4 NOAA-GFDL USA 100 (Krasting et al., 2018) 

16 INM-CM4-8 INM Russia 100 (Volodin et al., 
2019a) 

17 INM-CM5-0 100 (Volodin et al., 2019b) 

18 IPSL-CM6A-LR IPSL France 250 (Boucher et al., 
2018) 

19 MIROC6 MIROC Japan 250 (Tatebe et al., 
2019) 

20 MPI-ESM1-2-HR 
MPI-M Germany 

100 (von Storch et al., 
2017) 

21 MPI-ESM1-2-LR 250 (Wieners et al., 
2019) 

22 MRI-ESM2-0 MRI Japan 100 (Yukimoto et al., 
2019) 

23 NESM3 Nanjing 
University China 250 (Cao and Wang, 

2019) 
 139 
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3. Methodology 140 

This study explores the change of biothermal indicators in SEA for different future scenarios. 141 

Table 2 provides comprehensive explanations of the eleven indicators used. Except for Bio-3 142 

and Bio-4, all indications are in °C. Bioclimatic indicators collect data on annual circumstances 143 

(annual mean temperature, annual temperature range), along with seasonal average climate 144 

conditions (temperature of the coldest and warmest months). Thus, these indicators with 145 

biological significance could help researchers better understand species reactions to climate 146 

change (Pour et al., 2019). The methodology flow of work starts with the interpolation of 147 

models' outputs into a common 1.0° spatial grid using bilinear interpolation to guarantee that 148 

the study results are not biased due to different spatial representations of raw GCMs (refer to 149 

Table 1). Then, different indicators were computed for each model output for the historical 150 

period and two future scenarios. A multimodel ensemble (MME) was created using the 151 

available 23 GCMs' outputs to decrease the uncertainty in projections. The MME mean was 152 

then computed as well as the projected change in futures. The future period was divided into 153 

two (e.g., near 2020-2059 and far 2060-2100) to address the transition in future estimates.  154 

Table 2 Definitions of the thermal bioclimatic indicators where Tavg is the mean temperature 155 

((Tmax+Tmin)/2), and i is the month of the year. 156 

Indicator Equation Unit 

Bio-1 Annual mean temperature 𝐵𝑖𝑜1 =
∑ 𝑇𝑎𝑣𝑔!!"#$
!"#

12  °C 

Bio-2 Diurnal temperature range 𝐵𝑖𝑜2 =
∑ (𝑇𝑚𝑎𝑥! − 𝑇𝑚𝑖𝑛!)!"#$
!"#

12  °C 

Bio-3 Isothermality 𝐵𝑖𝑜3 =
𝐵𝑖𝑜2
𝐵𝑖𝑜7 × 100 % 

Bio-4 Temperature variation within a 
year 

𝐵𝑖𝑜4 = 𝑆𝐷{𝑇𝑎𝑣𝑔#, … , 𝑇𝑎𝑣𝑔#$}
× 100 % 

Bio-5 Maximum monthly temperature 𝐵𝑖𝑜5 = max({𝑇𝑚𝑎𝑥#, … , 𝑇𝑚𝑎𝑥#$}) °C 
Bio-6 Minimum monthly temperature 𝐵𝑖𝑜6 = min({𝑇𝑚𝑖𝑛#, … , 𝑇𝑚𝑖𝑛#$}) °C 
Bio-7 Annual temperature range 𝐵𝑖𝑜7 = 𝐵𝑖𝑜5 − 𝐵𝑖𝑜6 °C 
Bio-8 Mean temperature of wettest 
quarter 𝐵𝑖𝑜8 =

∑ 𝑇𝑎𝑣𝑔!!"%
!"#

3  °C 

Bio-9 Mean temperature of driest quarter 𝐵𝑖𝑜9 =
∑ 𝑇𝑎𝑣𝑔!!"%
!"#

3  °C 

Bio-10 Mean temperature of warmest 
quarter 𝐵𝑖𝑜10 =

∑ 𝑇𝑎𝑣𝑔!!"%
!"#

3  °C 
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Bio-11 Mean temperature of coldest 
quarter 𝐵𝑖𝑜11 =

∑ 𝑇𝑎𝑣𝑔!!"%
!"#

3  °C 

 157 

4. Results  158 

Thermal bioclimatic indicators estimated using different GCMs were used to form an MME. 159 

The following sections present the historical MME mean of each indicator. Besides, the 160 

projected changes in the mean, 5th, and 95th percentile for each indicator for the near and far 161 

futures for SSP2-4.5 and SSP5-8. 5 are presented.  162 

4.1. Annual mean temperature (Bio-1) 163 

The spatial distribution of Bio-1 at different grids over SEA is presented in Fig. 2. The Bio-1 164 

in SEA ranges between 20.0 and 28.0 °C, except for the far north, where it is as low as 2.0°C. 165 

Topography had a significant impact on the spatial distribution of Bio-1 over SEA. It is low in 166 

the northern and southern mountains and high in the plains. The MME mean of projected Bio-167 

1 revealed an increase of 1.08 and 1.86 °C for the near and far futures for SSP2-4.5. There was 168 

almost no difference in the projected changes between the near and far futures (SSP2-4.5) for 169 

most Maritime SEA, except for Sarawak, Malaysia. It was projected to increase by 4.0°C above 170 

the historical levels for SSP2-4.5 in Mainland SEAs. The areal means of the 5th and 95th 171 

percentiles of the projected changes were -0.71 and 3.23 °C for the near future and 0.00 and 172 

4.07 °C for the far future.  In the case of SSP5-8.5, the projected MME mean changes in Bio-173 

1 were almost the same as SSP2-4.5 during the near future. However, the changes were 174 

expected to increase during the far future by 2.53-4.87 °C. The areal means of 5th and 95th 175 

percentiles of the projected changes for SSP5-8.5 were -0.49 and 3.46°C for the near future 176 

and 1.17 and 5.50°C for the far future. It indicates more uncertainty in projection for the far 177 

future and SSP5-8.5 than the near future and SSP2-4.5 178 

 179 
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 180 
Fig. 2 Spatial distribution of the changes in annual mean temperature (Bio-1) for SSP2-4.5 181 

and SSP5-8.5 in the near and far future: 5th percentile (left), mean (middle) and 95th percentile 182 
(right) of 23 GCM projections.  183 

 184 

4.2. Diurnal temperature range (Bio-2) 185 

Bio-2 is defined as the difference between daily Tmax and Tmin, which significantly impact the 186 

ecosystem and public health (Ehbrecht et al., 2019). Due to its position near the equator, the 187 

diurnal temperature range (Bio-2) in SEA is low, as seen in Fig. 3. Bio-2 ranged between 1.0 188 
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and 11.0°C, with the lowest in the coastal regions of the Maritime SEA and the highest in the 189 

far north of Mainland SEA. A higher increase in Tmin than Tmax, implying a drop in Bio2 in 190 

many locations of the world due to global warming (Karoly et al., 2003; Shahid et al., 2012). 191 

The MME projected a mean change in Bio-2 ranging between -0.42 and 0.41 °C for SSP2-4.5, 192 

and -0.79 and 0.40 °C for SSP5-8.5, for the near and far futures. There were no significant 193 

changes in spatial distribution in mean Bio-2 for future periods. The areal means of the 5th and 194 

95th percentiles of the projected changes for SSP2-4.5 were -2.5 and 3.15 °C for the near future 195 

and -2.50 and 3.00 °C for the far future. Besides, they were projected to increase by -2.48 and 196 

3.10 °C for the near future and -2.5 and 2.94 °C for the far future for SSP5-8.5. In addition, 197 

there were no major variations in the areal means of 5th and 95th percentiles for different futures. 198 
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 199 
Fig. 3 Spatial distribution of the changes in the diurnal temperature range (Bio-2) for SSP2-200 

4.5 and SSP5-8.5 in the near and far future: 5th percentile (left), mean (middle) and 95th 201 
percentile (right) of 23 GCM projections. 202 

  203 
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4.3. Isothermally (Bio-3) 204 

The spatial distributions of historical Bio-3 and its future projections over SEA are shown in 205 

Fig. 4. Bio-3 is the ratio of the annual mean diurnal temperature range (Bio-2) to the annual 206 

temperature range (Bio-7). A Bio-3 > 100% indicates smaller diurnal temperature variability 207 

as compared to annual temperature variability. It is an essential bioclimatic indicator for SEA 208 

because of its tropical topography and maritime environment (Nix, 1986; O'Donnell and 209 

Ignizio, 2012). During 1975 – 2014, the mean Bio-3 ranged between 13.0 and 79.0%, as shown 210 

in Fig. 4. For SSP2-4.5, the MME mean change ranged between -3.4 and 0.7% during the near 211 

future and -4.6 and 1.4% during the far future. Bio-3 mean changes (5th percentile) were 212 

estimated to be -14.9 and -15.3% for the near and far future, with the lowest values in the 213 

coastal region in the south and central of SEA (i.e., the Philippines). The same regions may 214 

also experience a large change in Bio-3 (95th percentile). However, the overall changes would 215 

be between 4.47 and 32.82% for the near future and 3.83 and 31.08% for the far future. For 216 

SSP5-8.5, the MME mean changes were expected to vary between -3.83 and 0.85% during the 217 

near future and -6.91 and 2.10% during the far future. The areal means of 5th and 95th 218 

percentiles of projected changes were -15.0 and 13.04% for the near future and -16.03 and 219 

12.20% for the far future. The locations with high Bio-3 in the historical period, like Indonesia 220 

and Sarawak in Malaysia, showed the lowest changes for different future scenarios. 221 
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 222 
Fig. 4 Same as Figure 3 for isothermally (Bio-3)  223 

 224 

4.4. Temperature seasonality (Bio-4) 225 

The seasonality of temperature (Bio-4) is the amount of temperature fluctuation averaged over 226 

the years, estimated based on the standard deviation in percentage (O'Donnell and Ignizio, 227 

2012). The historical changes in two future climate projections (SSP2-4.5 and 5-8.5) of Bio-4 228 

are presented in Fig. 5. An increase in Bio-4 indicates a greater variability of temperature 229 
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fluctuation. The spatial distribution of Bio-4 indicates a non-homogeneous pattern over the 230 

SEA. The south of SEA (Indonesia, Malaysia, Brunei, and Singapore) showed the mean Bio-4 231 

of 4.0%, while the north showed nearly 36.0%. Overall, the spatial distribution of projected 232 

changes was found the same for different scenarios for the mean, 5th, and 95th percentiles. The 233 

MME mean change in Bio-4 was estimated as 1.36% for SSP2-4.5, and 0.70% for SSP5-8.5, 234 

for the near future, while 0.40% for SSP2-4.5 and -0.51% for SSP5-8.5 for the far future. The 235 

spatial means of the 5th percentile of the projected changes for SSP2-4.5 were estimated as -236 

4.10% for the near future and -4.21% for the far future. Besides, they were projected to change 237 

by -4.06% for the near future and -2.52% for the far future for SSP5-8.5. On the other hand, 238 

the areal means of 95th percentile was projected to change 2.90% for the near future and 6.31% 239 

for the far future for SSP2-4.5, while it was 5.03% for the near future and 2.63% for the far 240 

future for SSP5-8.5. 241 
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 242 
Fig. 5 Same as Figure 3 for seasonality (Bio-4) 243 

 244 

4.5. Maximum temperature in the warmest month (Bio-5) 245 

Fig. 6 presents the spatial distribution of maximum monthly temperature (Bio-5) during the 246 

historical period over SEA along with two future scenarios (SSP2-4.5 and 5-8.5). The Bio-5 in 247 

SEA was ranged between 16.0 and 38.0°C. The highest value was observed in Myanmar and 248 

Thailand, while the lowest was in the north of Myanmar. The projected change in mean Bio-5 249 
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showed an increase of 1.17 and 1.98 °C for the near and far futures for SSP2-4.5, while 1.35 250 

and 3.27 °C for the near and far futures for SSP5-8.5. The means of 5th and 95th percentiles of 251 

the projected changes for SSP2-4.5 were -2.03 and 4.63 °C for the near future and -1.40 and 252 

5.48 °C for the far future. For SSP5-8.5, the means of 5th and 95th percentiles of the projected 253 

changes were almost the same as SSP2-4.5 during the near future. However, in the far future, 254 

the areal means of 5th and 95th percentiles of the projected changes were -0.29 and 7.07 °C. 255 

 256 
Fig. 6 Same as Figure 3 for the maximum temperature in warmest month (Bio-5) 257 

 258 
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4.6. Minimum temperature in the coldest month (Bio-6) 259 

. Fig. 7 presents the minimum monthly temperature in the coldest month (Bio-6) over SEA, 260 

ranging between -17.0 and 27.0°C. The spatial distribution of Bio-6 was different from Bio-5 261 

over SEA in many aspects. The lowest value was in the north (-17.0°C), and the highest in the 262 

coastal regions of Indonesia, Brunei, and the Philippines. The MME projected a mean change 263 

in Bio-6 by 1.06 and 1.88 °C for SSP2-4.5 and 1.27 and 3.15 °C for SSP5-8.5, for the near and 264 

far futures, respectively. The areal means of 5th and 95th percentiles of the projected changes 265 

for SSP2-4.5 were -1.39 and 3.50 °C for the near future, and -0.60 and 4.31 °C for the far 266 

future. Like Bio-5, the means of 5th and 95th percentiles of projection for SSP5-8.5 was the 267 

same as SSP2-4.5 during the near future. Nevertheless, in the far future, they were projected to 268 

increase by 0.69 and 5.69 °C for SSP5-8.5. North Myanmar would experience the lowest 269 

change in the 5th percentile and the highest change in the 95th percentile for all SSPs and future 270 

periods.  271 
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 272 
Fig. 7 Same as Figure 3 for minimum temperature in the coldest month (Bio-6)  273 

 274 

4.7. Annual range of temperature (Bio-7) 275 

Fig. 8 presents the annual temperature range (Bio-7) for historical and future scenarios in the 276 

SEA region. Bio-7 is the temperature variation during a certain period, which refers to the 277 

difference between Bio-5 and Bio-6. The spatial variability of Bio-7 was very high, between 278 

2.0 and 33.0 °C, for SEA. The highest was in the north region (Myanmar, Thailand, Laos, and 279 



19 

 

Vietnam), and the lowest was in the southeast (North Maluku). The mean change in Bio-7 was 280 

projected between -1.00 and 0.65 °C in the near future and -1.83 and 0.73 °C in the far future 281 

for SSP2-4.5, while it was projected between -1.19 and 0.59 °C in the near future and -3.15 282 

and 1.02 °C in the far future for SSP5-8.5. For SSP2-4.5, Bio-7 mean changes in the 5th 283 

percentile were -3.66 and -3.68 °C for the near and far future. The lowest change was in the 284 

SEA Mainland. The highest change in Bio-7 for the 95th percentile was also in the same region, 285 

between 0.50 and 9.74 °C for the near future and 0.43 and 9.63 °C for the far future. For SSP5-286 

8.5, the areal means of 5th and 95th percentiles were -3.58 and 4.06 °C for the near future and -287 

3.64 and 4.00 °C for the far future. The main change for each scenario and each future period 288 

was more in the north (SEA Mainland). 289 
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 290 
Fig. 8 Same as Figure 3 for annual temperature range (Bio-7)  291 

 292 

4.8. Mean temperature of the wettest quarter (Bio-8) 293 

Because the SEA region had a varied climate, the distribution of rainfall varies considerably 294 

throughout the year. As a result, the region's wettest quarter varies greatly. The wettest quarter 295 

for each grid point was calculated by the total rainfall over three consecutive months. Fig. 9 296 

depicts the historical and projected mean temperature during the wettest quarter (Bio-8). The 297 
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historical Bio-8 ranged between 9.0°C in the north of Myanmar and 29.0°C in the south of the 298 

region. The MME mean revealed that the mean changes in Bio-8 were expected to be 1.04 and 299 

1.76 °C for the near and far futures for SSP2-4.5, while for SSP5-8.5, the changes were 300 

expected to be 1.21 and 2.97 °C for the near and far futures. For SSP2-4.5, the 5th percentile 301 

ranged between -5.26 and 0.04 °C in the near future, while in the far future, it ranged between 302 

-3.50 and 0.74 °C. The areal mean change of the 95th percentile was ranged between 1.78 and 303 

6.81 °C in the near future and 2.83 and 6.77 °C in the far future. In the case of SSP5-8.5, the 304 

areal means of 5th and 95th percentile of the projected changes were estimated to be -0.55 and 305 

3.32°C for the near future and 1.11 and 5.33°C for the far future. 306 
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 307 
Fig. 9 Same as Figure 3 for the mean temperature of the wettest quarter (Bio-8)  308 

 309 

4.9. Mean temperature of the driest quarter (Bio-9) 310 

The rainfall for the three successive months was computed for each grid point to select the 311 

driest quarter. Fig. 10 illustrates the historical and future projection mean temperature through 312 

the driest quarter. During 1975 – 2014, the mean Bio-9 ranged between -6.0 and 28.0°C, where 313 

the lowest value in the north of Myanmar and the highest value distributed in coastal regions 314 
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in the south. There were only three grids in the north region that contained historical Bio-9 less 315 

than 4.0°C. For SSP2-4.5, the MME mean change ranged between 0.51 and 2.10 °C during the 316 

near future and 1.13 and 3.54 °C during the far future. Bio-9 mean changes (5th percentile) 317 

were estimated to be -0.94 and -0.16 °C for the near and far future, with the lowest values in 318 

Myanmar. The 95th percentile changes were expected to be between 1.86 and 8.04 °C for the 319 

near future and 2.65 and 8.96 °C for the far future. For SSP5-8.5, the mean change of Bio-9 320 

was ranged between 0.61 and 2.45 °C in the near future, while during the far future, it ranged 321 

between 1.98 and 5.80 °C. The areal means of the 5th and 95th percentiles were -0.72 and 3.87 322 

°C for the near future and 1.01 and 5.97 °C for the far future.  323 
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 324 
Fig. 10 Same as Figure 3 for the mean temperature of the driest quarter (Bio-9)  325 

 326 

4.10. Mean temperature of the warmest quarter (Bio-10) 327 

The mean temperature for the consecutive three months at each grid point was computed to 328 

determine the warmest quarter. Bio-10 is the average temperature calculated during the hottest 329 

quarter. Fig. 11 depicts the geographical distribution of Bio-10 and its projected changes over 330 

the SEA. The Bio-10 ranged between 11.0 and 29.0°C over SEA. The lowest value of Bio-10 331 
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was in the north, and the highest was along the coastal regions. The Bio-10 dispersion followed 332 

the geography of SEA. The mountains regions showed the lower Bio-10, while plains showed 333 

higher values. The mean future changes in Bio-10 was ranged between 0.87 and 1.61 °C in the 334 

near future, and 1.58 and 2.61 °C in the far future for SSP2-4.5, while it ranged between 1.03 335 

and 1.77 °C in the near future and 2.70 and 4.08 °C in the far future for SSP5-8.5. For SSP2-336 

4.5, Bio-10 mean changes (5th percentile) were projected as -0.93 and -0.26 °C for the near and 337 

lowest change in the SEA Mainland for the far future. They were likewise in the 95th percentile 338 

change in Bio-10, with a value between 2.07 and 7.05 °C in the near future and 2.93 and 8.52 339 

°C in the far future. For SSP5-8.5, the projected 5th and 95th percentiles' means were -0.72 and 340 

3.86 °C in the near future and 0.87 and 6.04 °C in the far future. The highest changes were 341 

projected in the north for all scenarios and future periods.  342 



26 

 

 343 
Fig. 11 Same as Figure 3 for the mean temperature of the warmest quarter (Bio-10)  344 

 345 

4.11. Mean temperature of the coldest quarter (Bio-11) 346 

The mean temperature over three consecutive months was computed at each grid point to get 347 

the coldest quarter. Bio-11 is the mean temperature of the coldest quarter. The spatial 348 

distribution of Bio-11 is presented in Fig. 12. The Bio-11 showed negative value only at two 349 

grids, while it ranged between zero and 27.0°C at other grids. The Bio-11 was lowest in the 350 
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north of Myanmar and the highest in the coastal region of Indonesia. For SSP2-4.5, the MME 351 

projected the changes in Bio-11 by 1.06 and 1.84 °C in the near and far futures. The projected 352 

mean changes for SSP5-8.5 were 1.25 and 3.10 °C. The mean change in Bio-11 was like Bio-353 

10, a similar increase in all future scenarios except for SSP5-8.5 in the far future. For SSP2-354 

4.5, the anticipated mean change of 5th and 95th percentiles were -0.84 and 3.28 °C in the near 355 

future and -0.05 and 4.07 °C in the far future. There were no differences in the near future 356 

projections between SSP5-8.5 and SSP2-4.5. However, in the far future, the 5th and 95th 357 

percentiles mean changes were 1.16 and 5.45 °C, respectively. 358 
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 359 
Fig. 12 Same as Figure 3 for the mean temperature of coldest quarter (Bio-11)  360 

 361 

5. Conclusions  362 

The present study assessed the geographical distribution of 11 thermal bioclimatic indicators 363 

in SEA and their possible spatiotemporal changes in the futures with associated uncertainty 364 

under medium and high climate change scenarios. The MME and 90% confidence interval of 365 

the projections of 23 GCMs were used.  The study revealed an increase in mean and seasonal 366 
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temperature over the whole SEA. However, the temperature would rise more in the warmest or 367 

wettest months compared to cold or dry months. This would cause an increase in the annual 368 

temperature range. A decrease in diurnal temperature range and increase in annual temperature 369 

range would cause a decrease in their ratio, and thus the isothermality. A decrease in seasonality 370 

at the same time may cause a shift in the climate in some parts of SEA. The environmental and 371 

conservation scientists can use the maps and information generated in this study to understand 372 

possible changes or shifts in biodiversity due to climate change. It can also be used by the 373 

governments of the region for sustainable development planning. Future studies can be 374 

conducted to evaluate the changes in other bioclimatic indicators related to rainfall and 375 

humidity. Besides, the species' sensitivity to the projected climate can be estimated to assess 376 

their risk and migration.  377 
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