
 Abstract— Objective: In this paper, we present a robust 

version of the well-known exact low-resolution electromagnetic 

tomography (eLORETA) technique, named ReLORETA, to 

localize brain sources in the presence of different forward model 

uncertainties. Methods: We first assume that the true lead field 

matrix is a transformation of the existing lead field matrix 

distorted by uncertainties and propose an iterative approach to 

estimate this transformation accurately. Major sources of the 

forward model uncertainties, including differences in geometry, 

conductivity, and source space resolution between the real and 

simulated head models, and misaligned electrode positions, are 

then simulated to test the proposed method. Results: ReLORETA 

and eLORETA are applied to simulated focal sources in different 

regions of the brain and the presence of various noise levels as 

well as real data from a patient with focal epilepsy. The results 

show that ReLORETA is considerably more robust and accurate 

than eLORETA in all cases.  Conclusion: Having successfully 

dealt with the forward model uncertainties, ReLORETA proved 

to be a promising method for real-world clinical applications. 

Significance: eLORETA is one of the localization techniques that 

could be used to study brain activity for medical applications 

such as determining the epileptogenic zone in patients with 

medically refractory epilepsy. However, the major limitation of 

eLORETA is sensitivity to the uncertainties in the forward 

model. Since this problem can substantially undermine its 

performance in real-world applications where the exact lead field 

matrix is unknown, developing a more robust method capable of 

dealing with these uncertainties is of significant interest.   

 

Index Terms—Electroencephalography (EEG), brain source 

localization, exact low-resolution electromagnetic tomography 

(eLORETA), event related potentials (ERPs), epilepsy, 

epileptiform discharges, forward model uncertainty.  

I. INTRODUCTION 

XACT low-resolution electromagnetic tomography 

(eLORETA) is a brain source localization (BSL) 

technique that is widely used to localize the source of 

electrical activity in the brain using electroencephalography 

(EEG) signals measured from a set of electrodes placed on the 
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scalp [1], [2]. The localized brain source resulting from this 

so-called EEG inverse problem then can be used for a better 

diagnosis and treatment of mental or neurological disorders 

such as epilepsy [3], depression [4], and schizophrenia [5]. 

eLORETA is one of the most accurate methods in localizing a 

single focal source [6] in comparison with other distributed 

source estimation techniques such as minimum norm 

estimation (MNE) [7], weighted MNE (WMNE) [7], low-

resolution electromagnetic tomography (LORETA) [8], and 

standardized LORETA (sLORETA) [9]. Furthermore, 

eLORETA shows a better performance in suppressing less 

significant sources and produces less blurred results in 

comparison with its predecessor the sLORETA technique [9], 

[10].  

It is well-established that brain activity can be modeled by 

the source current distribution, which is discretized into a set 

of current dipoles distributed over the entire cortex. 

Accordingly, solving the EEG inverse problem entails 

computing the potentials on the scalp produced by unit current 

dipoles in the brain using an appropriate head model, which is 

referred to as the forward problem [11]. The accuracy of the 

inverse solution depends on the employed head model [11]–

[13], which in turn requires expensive magnetic resonance 

imaging (MRI) or computerized tomography (CT) systems, 

necessitating high computational complexity to incorporate 

the realistic geometry of the head. This can be especially 

problematic for studies involving a large number of 

participants, where taking MRIs of all participants is 

expensive or not possible. Typical examples include 

experiments carried out for gathering an EEG dataset for 

different applications such as emotion recognition [14], 

diagnosis of mental disorders [5], etc. An alternative approach 

is using the head models developed based on the pre-

determined realistic head properties such as colin27 [15], 

ICBM152 [16], and New York head [17]. These head models 

take into account the electrical properties of the head that are 

included in the lead field matrix which comprises vectors of 

potential amplitudes received by electrodes for each active 

dipole source in the brain.  

Previous studies have demonstrated that the performance of 

BSL techniques may be extremely degraded by even a slight 

mismatch between the true and the predetermined (simulated) 

lead field matrices [13], [18], [19]. On the other hand, the 

precise knowledge of the true lead field matrix is rarely 
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available in practice. This is mainly because, in practical 

settings, many of the assumptions made about the 

predetermined head model, dipole sources, and the electrode 

array may no longer hold. In practice, when the MRI of the 

subject is not available, there is usually a considerable 

difference between the geometries of the real head and the 

predetermined model used for the inverse solution. This 

problem is referred to as geometry uncertainty in this paper. 

Furthermore, there is often a certain amount of error in co-

registering the electrode positions as well as a considerable 

uncertainty in the conductivities of tissues. The difference in 

the location and number of dipoles between the forward and 

inverse models, which is referred to as discretization 

uncertainty in this paper, can affect the results as well [20]. In 

this paper, by “forward” and “inverse” models, we mean the 

head models used for generating EEG signals and solving the 

EEG inverse problem, respectively. There may also be other 

unknown factors that impact the calculations. As a result, a 

mismatch between the lead field matrix generated by the 

simulated forward model, and the real unknown lead field 

matrix is very likely. Since this mismatch can substantially 

degrade the performance of source localization, developing a 

more robust method, which is able to deal with these 

uncertainties adaptively, is of vital importance.  

Different studies have investigated the sensitivity of the 

EEG source localization to forward model uncertainties 

including conductivity of tissues [12], [21], [22], geometry 

uncertainty (when MRIs are not available) [13], [23], and 

electrode positions [23], [24]. Analyzing a single-dipole 

source scenario using a five compartment (grey matter, white 

matter, skull, skin, and cerebrospinal fluid (CSF)) head model 

constructed based on T1-weighted and T2-weighted MRIs, 

investigators [12] reported that uncertainties in the 

conductivities of skin and skull have a significant effect on the 

accuracy of the source localization, where the simulated 

sources in their study were located in the somatosensory 

cortex. However, the inverse model’s source space was not 

constrained to the gray matter. It was created in the 

intracranial space containing both gray and white matters 

whose conductivity uncertainties were also found to have 

negligible influence on the source localization but a strong 

effect on the strength and orientation of the reconstructed 

source, respectively. Similarly, the CSF conductivity 

uncertainty also had a trivial influence on the source 

reconstruction [12]. On the other hand, the distributed source 

estimation techniques that use cortical constraint are 

considerably less sensitive to skull conductivity [22]. This 

result was obtained using a three-layer (brain, skull, and scalp) 

head model constructed based on T1-weighted anatomical 

MRIs of 14 subjects. In one study [13], the effect of different 

forward model uncertainties was assessed, and it was observed 

that the geometry and conductivity uncertainties could cause 

localization errors of up to 37 mm and 22 mm, respectively. 

The forward model in their study was a three-layer (brain, 

skull, and scalp) head model derived from an MRI dataset, and 

the brain segmentation was used to position a large number of 

sources uniformly distributed across the grey matter. 

However, they employed a simulated three-layer isotropic 

spherical head model to solve the inverse problem, and the 

source space was created in the whole intracranial space 

instead of the cortex. Similarly, one study [23] reported 

localization errors of up to 31 mm due to the conductivity 

uncertainty and observed a considerable relationship between 

the geometry uncertainty and the error of the source 

localization. In their study, six head models, including 3 four-

layer and 3 three-layer models, were constructed based on T1-

weighted MR images of four subjects, and the simulated 

sources were distributed in the inner skull boundary 

containing CSF, and the intracranial space for the three-layer 

and four-layer head models, respectively, without being 

constrained to the cortical area. Their simulations did not 

include noise and they concluded that increasing the geometry 

uncertainty and adding noise could lead to higher errors. They 

also examined the effect of electrode co-registration errors by 

tilting the simulated EEG montage 5 degrees to the left. In the 

end, they observed localization errors of up to 12 mm due to 

this shift in electrode positions. However, random electrode 

displacements have been shown not to have a significant effect 

on EEG source localization [24]. This result was reported 

using a three-layer head model derived from the MRI scan of 

one patient, and the simulated sources were positioned in the 

intracranial space with no cortical constraints.  

To address the above-mentioned problems, several methods 

have been proposed in the literature, including beamformer-

based techniques [25]–[28], Bayesian approaches [29], [30], 

and conductivity fitting [31], [32]. In [25] a so-called diagonal 

loading (DL) technique is applied to the MEG source 

localization problem. In the DL method, the covariance matrix 

of the measurements is replaced with a regularized version in 

which a constant factor of the unity matrix is added to the 

initial covariance matrix. Although DL is capable of reducing 

the sensitivity to some extent, it leads to a trade-off between 

the spatial resolution of linearly constrained minimum 

variance (LCMV) [33] beamformer and the signal-to-noise 

ratio (SNR) of the output [26]. On the other hand, it is not 

clear how the optimal value of the DL factor can be 

determined given known levels of uncertainty in the lead field 

matrix [27]. Eigenspace-based beamformers [26], [28] are also 

other methods that are effective in reducing the sensitivity to 

modeling errors as well as measurement noise. However, these 

methods are susceptible to the so-called “subspace swaps” 

which occur at low SNR when the eigenvalues of the signal 

subspace cannot be distinguished from the eigenvalues of the 

noise subspace adequately [27]. The robust minimum variance 

beamformer (RMVB) [20], which inherits its structure from a 

technique in the signal processing field with the same name 

[27], [34], incorporates the uncertainty of the lead field matrix 

into the estimation of beamforming spatial-filter weights, 

which are then used to reconstruct the brain source activity. In 

this method, several hyper ellipsoids, i.e., ellipsoids in higher 

dimensions, are used to define regions of uncertainty for a 

given nominal lead field vector. Despite the novelty of RMVB 

in dealing with uncertainties in the forward model, only the 

conductivity and discretization uncertainties are considered for 



the estimation of uncertainty regions in this method [20]. 

Moreover, the orientation of dipoles in the inverse solution is 

assumed to be fixed in this technique, which is also an 

inaccurate assumption that is very likely to be violated in 

practice. To overcome this problem, the authors in [35] 

reformulated the RMVB method by considering free 

orientations for dipole sources along different axes. However, 

the proposed method still fails to provide an efficient and 

accurate technique for estimating the uncertainty regions.  

Bayesian approximation error (BAE) approaches have also 

proved to be effective in dealing with different forward model 

uncertainties. The BAE method is capable of alleviating the 

source localization error caused by unknown head geometries 

[29]. However, the other sources of uncertainties are not 

considered in that proposed method. The BAE approach can 

factor in the conductivity uncertainty [30]. For this purpose, 

the real forward model can be formulated using a standard 

model accompanied by an additive approximation error term 

to encompass the effect of the skull conductivity uncertainty. 

However, this approach only was tested using high SNR 

values of 20 dB and 30 dB, concluding that the employed 

BAE method becomes uncertain when the SNR drops to 20 

dB. Similarly, conductivity fitting techniques also aim to 

improve the accuracy of the source localization by factoring in 

the conductivity uncertainty. In these methods, the 

conductivity values are fitted while estimating the location of 

the source simultaneously [31]. However, both Bayesian and 

conductivity fitting approaches still fail to address a realistic 

situation for which multiple uncertainties could be present 

simultaneously.  

In this paper, we propose a novel robust version of the well-

known eLORETA (ReLORETA) which does not employ any 

specific presumptions and can adaptively deal with different 

uncertainties, regardless of their nature. For this purpose, 

unlike the existing methods mentioned above that entail fixing 

some parameters such as the size of uncertainty regions or the 

DL factor before solving the EEG inverse problem, we 

consider a worst-case scenario where no individual 

information in setting up the model is available and let the 

lead field vectors be updated freely using a transformation 

matrix that is automatically estimated while solving the 

inverse problem. The proposed algorithm can be applied to 

any source localization problem. However, in this paper, we 

assess its application to simulated focal sources including one-

dipole sources and focal sources with an extended activity 

called “extended sources”, as well as a real EEG localization 

in an epilepsy case example. The results show that 

ReLORETA achieves a considerably better performance than 

eLORETA and remains robust in the presence of different 

uncertainties even when they exist simultaneously.  

The rest of the paper is organized as follows. Section II 

presents a brief description of the eLORETA method, then the 

proposed ReLORETA algorithm is introduced in this section 

as well. Section III provides the results of the proposed 

method for different simulated data, including single-dipole 

and extended sources, in the presence of lead field 

uncertainties as well as the results when the method is applied 

to the real data of a patient with epilepsy. Discussion and 

conclusions are given in sections IV and V, respectively.  

II. METHODS  

A. eLORETA  

Assume the vector 𝐱(𝑛)  ∈ ℝ𝑀×1 contains electric potentials 

measured by M electrodes placed on the scalp at the 𝑛𝑡ℎ time 

instant, then the relation between 𝐱(𝑛) and the neural activity 

inside the brain can be described using the EEG forward 

equation as follows  

                                𝐱(𝑛) = 𝐇𝐲(𝑛) + 𝛈(𝑛)                           (1) 

where 𝐇 ∈ ℝ𝑀×(3×𝐾) is the lead field matrix corresponding to 

K voxels that is subject to uncertainty and can be written as  

                               𝐇 = [𝐇1, 𝐇2, 𝐇3, … , 𝐇𝐾]                         (2) 

where 𝐇𝑖 ∈ ℝ𝑀×3, 𝑖 ∈ {1,2, … , 𝐾}, and 𝛈(𝑛) represents the 

background neural activity or noise. The vector 𝐲(𝑛)  ∈

ℝ(3×𝐾)×1 contains the brain source amplitudes and is an 

estimator of the current densities at K voxels and the 𝑛𝑡ℎ time 

instant. Given the scalp potential measurements 𝐱(𝑛), the 

EEG inverse problem can then be translated into finding the 

corresponding 𝐲(𝑛) that satisfies (1).  

The regularized weighted minimum norm method tries to 

find 𝐲(𝑛) by solving the following optimization problem  

                           min
𝐲(𝑛)

(𝑆𝑒𝑙(𝑛) + 𝛼𝐲(𝑛)T𝐖 𝐲(𝑛))                 (3a)   

                              𝑆𝑒𝑙(𝑛) = ‖𝐱(𝑛) − �̃�𝑒𝑙(𝑛)‖2                   (3b)   

                                     �̃�𝑒𝑙(𝑛) = 𝐇𝐲(𝑛)                              (3c)    

where 𝐖 ∈ ℝ(3×𝐾)×(3×𝐾) denotes a symmetric weight matrix, 

𝛼 ≥ 0 is the regularization parameter, and �̃�𝑒𝑙 represents the 

reconstructed EEG signals by eLORETA [1], [9]. 𝑆𝑒𝑙(𝑛) is a 

measure indicating how well the EEG signals are 

reconstructed by eLORETA at the 𝑛𝑡ℎ time point. The total 

reconstruction error of eLORETA for N time points can then 

be defined as  

                                 𝐸𝑒𝑙𝑜𝑟𝑒𝑡𝑎 = ∑ 𝑆𝑒𝑙(𝑛)𝑁
𝑛=1                          (4) 

It can be shown that the solution to this problem is linear as 

follows  

                                       𝐲(𝑛) = 𝐓𝐱(𝑛)                                 (5) 

where the matrix T is given by  

                            𝐓 = 𝐖−1𝐇T(𝐇𝐖−1𝐇T + 𝛼𝐋)+                (6) 

in which the superscript “+” denotes the Moore-Penrose 

pseudoinverse and L is the average reference operator also 

known as the centering matrix [9].  

In the eLORETA method, the weight matrix W is block-

diagonal where all elements are zero except for the diagonal 

sub-blocks denoted by 𝐖𝑖 ∈ ℝ3×3 , 𝑖 ∈ (1,2, … , 𝐾). The 

current density at the 𝑖𝑡ℎ voxel can then be computed as  

                 𝐲𝑖(𝑛) = 𝐖𝑖
−1𝐇𝑖

T(𝐇𝐖−𝟏𝐇T + 𝛼𝐋)+𝐱(𝑛)             (7) 

where 𝐇𝑖 is the lead field matrix related to the 𝑖𝑡ℎ voxel 



according to (2), and the optimum 𝐖𝑖 matrices can be 

calculated using the following set of equations  

                      𝐖𝑖 = [𝐇𝑖
T(𝐇𝐖−𝟏𝐇T + 𝛼𝐋)+𝐇𝑖]1/2.               (8) 

A simple iterative algorithm can then be used to compute the 

block-diagonal weight matrix W as follows [1] 

Step 1: Given the averaged reference lead field 𝐇 and a 

regularization parameter α ≥ 0, initialize the block-diagonal 

weight matrix W to the identity matrix. 

Step 2: Calculate 𝐖𝑖 using the symmetric square root 

matrix in (8). 

Step 3: Continue until W converges to a final value, i.e., the 

change in the calculated value of W in two consecutive 

iterations become negligible.  

The solution for the EEG inverse problem given by (7) and 

the weights satisfying the system of equations in (8) define the 

eLORETA method. 

B. ReLORETLA 

eLORETA is a genuine solution for the EEG inverse 

problem with zero localization error for single-dipole sources 

when the given lead field matrix is accurate. In practice, the 

true lead field matrix is usually unknown, and obtaining an 

accurate result may not be simple or even possible. If the 

given lead field matrix is not accurate, the objective function 

in (3) will not converge properly, and consequently, the result 

of the source localization will not be reliable.   

To overcome this problem, in ReLORETA technique we 

assume that the real lead field matrix �̃� is a transformation of 

the current inaccurate lead field matrix 𝐇 such that   

                                       �̃� = 𝐑𝐇                                       (9) 

where 𝐑 ∈ ℝ𝑀×𝑀 is the transformation matrix. The goal is to 

find the optimum R, such that the resultant lead field matrix �̃� 

given by (9) can make the objective function in (3) converge 

properly. By substituting (9) into (3), in ReLORETA the 

transformation matrix and the source amplitude are 

simultaneously calculated by solving the following 

optimization problem 

                        min
𝐑

(min
𝐲(𝑛)

(𝑆𝑟𝑒𝑙(𝑛) + 𝛼𝐲(𝑛)T𝐖 𝐲(𝑛)))       (10a)   

                              𝑆𝑟𝑒𝑙(𝑛) = ‖𝐱(𝑛) − �̃�𝑟𝑒𝑙(𝑛)‖2              (10b) 

                                       �̃�𝑟𝑒𝑙(𝑛) = �̃�𝐲(𝑛)                         (10c) 

where �̃�𝑟𝑒𝑙(𝑛) represents reconstructed EEG signals by 

ReLORETA. The inner optimization problem in (10a) can be 

solved using (3) by eLORETA. However, finding a closed 

form solution for the outer optimization problem is not 

straightforward. For this reason, we propose an iterative 

algorithm to simultaneously find the optimum R and 𝐲(𝑛) as 

follows: in the first iteration, we assume that the existing lead 

field matrix is the true lead field matrix that minimizes (10a)  

(i. e. �̃� = 𝐇), and the inner optimization problem is solved by 

eLORETA according to (3). In the next step, H is replaced 

with �̃� from (9), and the computed 𝐲(𝑛) and W are then fed 

into (10) to find the optimum R using the outer optimization 

problem as follows 

                      min
𝐑

(𝑆𝑟𝑒𝑙(𝑛) + 𝛼𝐲(𝑛)T𝐖 𝐲(𝑛))                    (11)   

Since 𝐲(𝑛) and W are given by the inner optimization, the 

second term in (11) is constant. Given EEG measurements at 

N time points, the optimization problem in (11) can then be 

reformulated as   

                                 min
𝐑

 𝐸𝑟𝑒𝑙𝑜𝑟𝑒𝑡𝑎                                 (12a) 

                           𝐸𝑟𝑒𝑙𝑜𝑟𝑒𝑡𝑎 = ∑ 𝑆𝑟𝑒𝑙(𝑛)𝑁
𝑛=1                     (12b) 

where 𝐸𝑟𝑒𝑙𝑜𝑟𝑒𝑡𝑎 is the reconstruction error of ReLORETA. 

After optimizing (12), if our initial assumption is true (i.e. 

�̃� = 𝐇), then the objective function in (10a) will converge to 

the same value for both inner and outer optimization 

problems, i.e. (3) and (11) (please see section D in the 

supplementary materials for the proof). Otherwise, the lead 

field matrix is updated according to (9) and all steps are 

repeated using the updated lead field matrix. This iterative 

process continues until the algorithm converges. To prevent 

ambiguity, we use eLORETAj to show the eLORETA method 

used for solving (3) in the 𝑗𝑡ℎ iteration. We also use similar 

notations for ReLORETA, 𝐸𝑟𝑒𝑙𝑜𝑟𝑒𝑡𝑎 , and 𝐸𝑒𝑙𝑜𝑟𝑒𝑡𝑎  in the 𝑗𝑡ℎ 

iteration and show them by ReLORETAj, 𝐸𝑟𝑒𝑙𝑜𝑟𝑒𝑡𝑎
𝑗, and 

𝐸𝑒𝑙𝑜𝑟𝑒𝑡𝑎
𝑗, respectively.  

The convergence of ReLORETA requires that (3) and (11) 

converge to the same value. As the second term in both 

objective functions is equal, then this entails that their first 

terms, i. e. 𝑆𝑒𝑙(𝑛) and 𝑆𝑟𝑒𝑙(𝑛) converge to an equal value. 

Given EEG measurements at N time points and according to 

(12b) and (4), the convergence of the algorithm is then 

achieved when the difference between 𝐸𝑟𝑒𝑙𝑜𝑟𝑒𝑡𝑎
𝑗 and 𝐸𝑒𝑙𝑜𝑟𝑒𝑡𝑎

𝑗 

converges to zero. We employ the Levenberg-Marquardt (LM) 

algorithm described in the next section to solve (12). 

1) LM Optimization 

LM is a well-known algorithm that is widely used to solve 

nonlinear least-squares problems [36]–[38]. This algorithm is 

able to find a solution even if it starts at a point very far from 

the desired minimum [36].  

The LM algorithm for finding the optimum transformation 

matrix R can be described in the matrix form as follows  

                           𝐑𝑗+1 = 𝐑𝑗 − (𝐂 + λ𝐈)−1𝐃                        (13) 

where C, D, and I represent the Hessian matrix, the derivative 

of 𝐸𝑟𝑒𝑙𝑜𝑟𝑒𝑡𝑎 with respect to R, and the identity matrix 

respectively. j stands for the number of iterations, and 𝜆 is the 

learning factor.  

For calculating the derivative matrix D, we first rewrite 

(10c) and (12b) in the matrix form as  

                                     𝐗𝑟𝑒𝑙 = �̃�𝐘 = 𝐑𝐇𝐘                        (14a)   

                                   𝐸𝑟𝑒𝑙𝑜𝑟𝑒𝑡𝑎 = ‖𝐗𝑑𝑖𝑓𝑓‖
F

2
                       (14b) 

                                      𝐗𝑑𝑖𝑓𝑓 = 𝐗 − �̃�𝑟𝑒𝑙                           (14c) 

where ‖. ‖F denotes the Forbenius norm. X, 𝐗𝑟𝑒𝑙, and Y 



matrices contain EEG measurements, reconstructed EEG 

signals by ReLORETA, and source amplitudes at N time 

instants as follows 

                       𝐗 = [𝐱(1), 𝐱(2), 𝐱(3), … , 𝐱(𝑁)]             (15a) 

          �̃�𝑟𝑒𝑙 = [�̃�𝑟𝑒𝑙(1), �̃�𝑟𝑒𝑙(2), �̃�𝑟𝑒𝑙(3), … , �̃�𝑟𝑒𝑙(𝑁)]    (15b) 

                       𝐘 = [𝐲(1), 𝐲(2), 𝐲(3), … , 𝐲(𝑁)]             (15c) 

Computing D then entails taking the derivative of a scalar 

function (i.e. 𝐸𝑟𝑒𝑙𝑜𝑟𝑒𝑡𝑎) with respect to a matrix (i.e. R) that 

obeys the chain rule and can be computed as follows  

                       𝐃 =
𝜕𝐸𝑟𝑒𝑙𝑜𝑟𝑒𝑡𝑎

𝜕𝐑
= (

𝜕𝐸𝑟𝑒𝑙𝑜𝑟𝑒𝑡𝑎

𝜕𝐗𝑑𝑖𝑓𝑓
)(

𝜕𝐗𝑑𝑖𝑓𝑓

𝜕𝐑
)         (16) 

Using the matrix algebra, we have  

                                       
𝜕𝐸𝑟𝑒𝑙𝑜𝑟𝑒𝑡𝑎

𝜕𝐗𝑑𝑖𝑓𝑓
= 2𝐗𝑑𝑖𝑓𝑓                       (17a) 

                                         
𝜕𝐗𝑑𝑖𝑓𝑓

𝜕𝐑
= −(𝐇𝐘)T                      (17b) 

If we substitute (17a) and (17b) into (16) and use (14a), then 

the derivative matrix D is given by 

                                𝐃 = 2(𝐑𝐇𝐘 − 𝐗)(𝐇𝐘)T                      (18) 

In order to calculate the Hessian matrix, we can first rewrite 

(10c) in the form of the output equation of a single layer 

neural network as follows  

                                      �̃�𝑟𝑒𝑙(𝑛) = 𝑓(𝐑𝐳(𝑛))                      (19) 

where 𝐳(𝑛) is given by  

                                      𝐳(𝑛) = 𝐇𝐲(𝑛)                                (20) 

and f is a linear activation function such that 

                                  𝑓(𝐑𝐳(𝑛)) = 𝐑𝐳(𝑛).                           (21)  

The Hessian matrix can then be calculated using the method 

proposed in [39] as follows  

      𝐂 = 𝑓′′(�̃�𝑟𝑒𝑙(𝑛))
𝜕𝑆𝑟𝑒𝑙(𝑛)

𝜕�̃�𝑟𝑒𝑙(𝑛)
+ (𝑓′(�̃�𝑟𝑒𝑙(𝑛)))2 𝜕2𝑆𝑟𝑒𝑙(𝑛)

𝜕�̃�𝑟𝑒𝑙(𝑛)2      (22) 

where 𝑓′ and 𝑓′′ denote the first and second derivatives of 𝑓. 

In the proposed method 𝑓 is linear, so we have 𝑓′ = 1 and 

𝑓′′ = 0. By substituting these values in (22), the Hessian 

matrix will then be computed as    

                                             𝐂 = 𝐈                                        (23) 

2) Proposed Algorithm  

Using (13), (18), and (23), we can update the transformation 

matrix R in each iteration, and then, it can be fed into the 

eLORETAj to find the source amplitudes, i.e., the Y matrix. 

The algorithm will continue iteratively until it converges. If 

we define the differential reconstruction error (DRE) for 

iteration j as  

                      𝐷𝑅𝐸𝑗 = ‖𝐸𝑟𝑒𝑙𝑜𝑟𝑒𝑡𝑎
𝑗 − 𝐸𝑒𝑙𝑜𝑟𝑒𝑡𝑎

𝑗‖              (24) 

then the convergence of the algorithm entails that 𝐷𝑅𝐸𝑗 or the 

difference between two values of DRE in two consecutive 

iterations drops below a certain threshold value 𝜀. However, to 

make the threshold value independent of the unit of 

measurements, the DRE value in each iteration can be 

normalized as follows  

                        𝑁𝐷𝑅𝐸𝑗 =
‖𝐷𝑅𝐸𝑗−𝐷𝑅𝐸𝑗−1‖

max(𝐷𝑅𝐸)−min(𝐷𝑅𝐸)
  ,     𝑗 ≥ 2      (25) 

where  

                         𝐷𝑅𝐸 = [𝐷𝑅𝐸1, 𝐷𝑅𝐸2 , … , 𝐷𝑅𝐸𝑗]               (26) 

and 𝑁𝐷𝑅𝐸𝑗 denotes normalized 𝐷𝑅𝐸𝑗. Finally, the 

convergence of the algorithm is achieved when  𝑁𝐷𝑅𝐸𝑗 ≤ 𝜀. 

The proposed ReLORETA algorithm is summarized in the 

flowchart shown in Fig. 1 and can be described as follows:  

Step 1: Initialize the matrices R, H, and set the threshold 𝜀. 

Step 2: Given the measurement matrix X and the lead field 

matrix, find the source amplitude matrix Y using 

eLORETAj.  

Step 3: Update the transformation matrix R using (13), (18), 

and (23).  

Step 4: Calculate 𝑁𝐷𝑅𝐸 using (24) and (25). If  𝑁𝐷𝑅𝐸𝑗 ≤
𝜀 then terminate the algorithm, else go to the next 

step. 

Step 5: Update the lead field matrix using (9), replace 𝐇  

with �̃�, and go to step 2.  

After the algorithm reaches the desired threshold and stops, Y 
 

 
 

Fig. 1.  Flowchart of the proposed ReLORETA algorithm. 

 

                               
   

                           (a)                                                     (b) 
 

Fig. 2.  Different head models used for simulations: (a) the New York head 

model for generating EEG signals and (b) the head model based on the 

Colin27 MRI to solve the inverse problem. 

  

  



can then be used as the estimated source amplitudes.  

III. RESULTS 

A. Simulation Settings 

In order to assess the performance of the proposed 

algorithm in a realistic situation, we considered two scenarios. 

In the first scenario, called the worst-case scenario, we 

employed ReLORETA to localize simulated focal sources in 

different regions of the brain while taking into account 

different sources of uncertainties, including the geometry of 

the head model, misalignment of electrodes, discretization and 

conductivity uncertainties simultaneously. For this purpose, 

we used two different head models of different shapes for 

generating the EEG signals and solving the EEG inverse 

problem as shown in Fig. 2(a) and Fig. 2(b), respectively. As 

shown in this figure, the New York head was employed to 

generate the simulated EEG data, while a head model based on 

the well-known Colin27 MRI was used to solve the inverse 

problem. For constructing the forward model, the 

segmentation data provided in [17] were used to create a 

hexahedral mesh for six tissues, including gray and white 

matter, CSF, skull, skin, and air using the MATLAB FieldTrip 

toolbox [40]. The FieldTrip-SimBio pipeline [41] was then 

used to construct the forward head model using the different 

tissues and their respective conductivities. After creating the 

head model, the electrode positions were aligned with the 

surface of the head, and then dipoles were uniformly spread 

within the gray matter with an orientation orthogonal to the 

surface of the cortex. The smallest distance between the 

source space dipoles and the inner skull boundary also was 3 

mm.  In the end, the finite element method (FEM) was 

employed to compute the lead field matrix using the FieldTrip 

toolbox. For the inverse head model, the Colin27 MRI was 

first segmented into three different tissues: scalp, skull, and 

brain, and then three meshes were created at the borders of 

these tissues represented by points (vertices) connected in a 

triangular way. The number of vertices for the scalp, skull, and 

brain was 1000, 2000, and 3000, respectively. These meshes, 

together with their respective conductivities, were then fed 

into FieldTrip to construct the inverse head model. In the next 

step, the electrode positions were aligned with the surface of 

the head, and dipoles were created in the intracranial space 

without being constrained to the cortex. The symmetric 

boundary element method (BEM) presented in the 

OpenMEEG software [42] was finally used to compute the 

lead field matrix. The forward and inverse head models were 

co-registered using a 3D transformation including rotation, 

translation, and scaling according to the method described in 

[43]. In this method, the transformation is calculated between 

3 or more noncoplanar landmark points in the inverse model 

and their corresponding points in the forward model.   

The simulated EEG data were generated for 20 electrodes 

placed on the scalp according to the 10-20 placement system 

[44] using the Simulating Event-Related EEG Activity 

(SEREEGA) package [45]. In this package, the event-related 

brain potentials (ERPs) are first generated for each active 

dipole by centering a normal probability density function 

around the indicated latency with the given width. This is then 

scaled to the indicated amplitude. To simulate noise, in the 

first step, Brown noise [46] is added to the simulated ERP 

signals, and the noisy ERP signals are projected to the scalp 

using the forward lead field matrix and orientations of dipoles. 

At this stage, a final layer of noise is added to the generated 

scalp data to simulate sensor noise. This is uniform, 

temporally, and spatially uncorrelated white noise. To improve 

the effective peak to background EEG signal ratio, multiple 

trials from repeated stimuli were averaged to extract the final 

EEG waveforms. Specifically, for each EEG data, we 

employed 10 trials with a sampling frequency of 500 Hz, 

where each trial had a length of 200 samples, corresponding to 

a time sequence which may be denoted using MATLAB 

notation as [0: 2: 399] ms.  

To simulate the error in the misalignment of electrodes, we 

slightly changed the locations of electrodes in comparison 

with the standard 10-20 system by tilting the EEG set up to the 

left by 5 degrees in the forward model. As for source 

discretization, we used a 2 mm grid for the forward model, 

while a coarser grid of 10 mm was used for the inverse model. 

Furthermore, for the forward model, we set the conductivities 

of the gray and white matter, CSF, skull, skin, and air to 0.8 

S/m, 0.4 S/m, 2.2 S/m, 0.0290 S/m, 0.25 S/m, and 2.5e-14 

S/m, respectively. However, the conductivities of the scalp, 

the skull, and the brain in the inverse model were set to 0.33 

S/m, 0.0041 S/m, and 0.33 S/m respectively. All of the 

conductivity values were chosen according to the conductivity 

values and ratios of the real human head tissues reported in 

[47].  

In all cases, the EEG data were generated in the presence of 
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Fig. 3. Simulated EEG signals and their respective topographic distributions 
for two different single-dipole sources located at (a) the MNI coordinates of 

[50, -20, -12] mm and (b) the MNI coordinates of [-24, -14, -20] mm, 

corresponding to right Brodmann area 21 (middle temporal gyrus) and the 
left hippocampus, respectively. 

 



high and low levels of noise associated with SNR values of 5 

dB and 20 dB, respectively. The SNR was calculated in dB 

according to [35] as follows:  

                              𝑆𝑁𝑅 = 10log10(
tr(𝐶𝑅𝑠)

tr(𝐶𝑅𝑛)
)                    (27) 

where “tr” denotes the trace of a matrix, 𝐶𝑅𝑠 ∈ ℝ𝑀×𝑀 is the 

scalp ERP signal covariance matrix, and  𝐶𝑅𝑛 ∈ ℝ𝑀×𝑀 is the 

background EEG noise covariance matrix. In this paper, the 

𝐶𝑅𝑛 matrix is calculated using EEG data when the related 

source was not active.   

In all simulations, the regularization parameter 𝛼 was set to 

0.05 which is FieldTrip’s default value (see the supplementary 

data for further details of tuning 𝛼). To set the threshold value 

𝜀, a three-step process was implemented as follows: in the first 

step, 20 EEG data from 20 different sources, uniformly 

distributed within the gray matter, were generated. In the 

second step, we set 𝛼 = 0.05 and ran ReLORETA 60 

iterations for all 20 sources and calculated the NDRE values 

for each iteration according to (25). In the last step, we 

observed that in all cases when  𝑁𝐷𝑅𝐸𝑗 falls below a certain 

value named 𝑁𝐷𝑅𝐸𝑐𝑢𝑡𝑜𝑓𝑓 , the localization error of 

ReLORETA converges to its final value. So, we finally set 

𝜀 = 𝑁𝐷𝑅𝐸𝑐𝑢𝑡𝑜𝑓𝑓 . Using this process, the values of 𝜀 for both 

single-dipole and extended sources were set to 0.005. To 

better understand the relationship between EEG signals 

reconstruction error and localization accuracy, we additionally 

calculate the normalized reconstruction error (NRE) for each 

simulation as follows  

                                   𝑁𝑅𝐸 =
‖�̃�−𝐗‖

‖�̃�‖
                                 (28) 

where 𝐗 contains the reconstructed EEG signals by eLORETA 

or ReLORETA, and 𝐗 is the EEG measurement matrix.  

The transformation matrix R was initialized to the identity 

matrix, and the initial lead field matrix was computed using 

the inverse head model according to the 10-20 electrode 

placement system. Finally, localization error for single-dipole 

sources was simply calculated as the Euclidean distance 

between the estimated and the true source positions. For 

extended sources, the distance between the center of the 

predicted source, which is the dipole with the greatest 

moment, and the center of the true source structure was 

considered as the source localization error. In all simulations 

in this paper, unconstrained source orientations were used for 

solving the inverse problem.  

B. Single-Dipole Source Results 

In order to evaluate the performance of ReLORETA in 

dealing with the underlying source activity being modeled as a 

single dominant dipole, we simulated 60 single-dipole sources 

in different lobes and depths of the gray matter where the 

depth of each source was measured according to its distance 

from the nearest electrode on the scalp. The distances between 

the most superficial source and the nearest electrode on the 

scalp and the most superficial source and the inner surface of 

 
(a) 

 

 

(b) 

 

 
(c) 

 

Fig. 4. (a) true source location (simulated) and localization results of (b) 

eLORETA and (c) ReLORETA, for the EEG data shown in Fig. 3(a). 
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Fig. 5. (a) true source location (simulated) and localization results of (b) 

eLORETA and (c) ReLORETA, for the EEG data shown in Fig. 3(b). 

 
TABLE I 

SOURCE LOCALIZATION ERRORS FOR SIMULATED SINGLE-DIPOLE SOURCES SHOWN IN FIG. 4 AND 5  USING ELORETA AND THE PROPOSED RELORETA TECHNIQUES 

Source area 
Source 
location 

(mm) 

eLORETA 
estimated 

location (mm) 

eLORETA 
estimation 

error (mm) 

ReLORETA 
estimated 

location (mm) 

ReLORETA 
estimation 

error (mm) 

eLORETA 

NRE  

ReLORETA 

NRE 

Right Brodmann area 21 [50 -20 -12] [50 -20 20] 32 [50 -20 -10] 2 0.18 0.11 

Left Hippocampus [-24 -14 -20] [-40 10 -40] 35.09 [-20 -10 -20] 5.65 0.21 0.05 

 

 



the skull were approximately 14 mm and 5 mm, respectively.  

Fig. 3(a) and Fig. 3(b) show two generated EEG signals with 

an SNR of 5 dB and their respective interpolated topographic 

distributions for a superficial source (i.e., near the surface of 

the cortex) and a deep source located at MNI coordinates of 

[50, -20, -12] mm and [-24, -14, -20] mm. These coordinates 

reside in the temporal lobe and correspond to the right middle 

temporal gyrus (Brodmann area 21; superficial source) and the 

left hippocampus (deep source), respectively. The temporal 

lobe is specifically of important relevance to neurological 

disorders and is commonly involved in medically refractory 

epilepsy [48]. Moreover, many epileptic seizures begin in the 

hippocampus, as 50-75% of patients with epilepsy who have 

autopsies had damage to the hippocampus [49]. The 

localization results of eLOREATA and ReLORETA related to 

these EEG signals are also illustrated in Figs. 4 and 5, 

respectively. The estimated source locations, their 

corresponding localization errors, and NRE values are shown 

in Table I, with ReLORETA showing substantially better 

performance than eLORETA for both source locations. 

Accordingly, the NRE value of ReLORETA is less than 

eLORETA, which is due to the minimization of the 

reconstruction error for each simulation as described by (12).   

To further evaluate the accuracy of eLORETA and 

ReLORETA, the box plots of the overall source localization 

errors and corresponding NRE values for all 60 simulated 

sources in the presence of two levels of noise are shown in 

Fig. 6. For each box, the central horizontal line indicates the 

median, and the top and bottom edges indicate the 75𝑡ℎ and 

25𝑡ℎ percentiles, respectively. The upper and lower whiskers 

extend to the most extreme data points not considered outliers. 

The symbol “o” depicts the average value of each box. The 

results demonstrate that the proposed ReLORETA algorithm 

improves the overall accuracy of the source localization 

considerably. Also, the overall NRE of ReLORETA is less 

  

(a) (b) 

Fig. 6. Box plots of (a) overall source localization errors and (b) overall NRE 

for simulated single-dipole sources.  
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Fig. 7. Simulated EEG signals and their respective topographic distributions 

for two extended sources located at (a) the MNI coordinates of [50, -20, -12] 
mm and (b) the MNI coordinates of [-24, -14, -20] mm, corresponding to right 

Brodmann area 21 (middle temporal gyrus) and the left hippocampus, 

respectively. 
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Fig. 8. (a) true source location (simulated) and localization results of (b) 
eLORETA and (c) ReLORETA for the EEG data shown in Fig. 7(a).  
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Fig. 9. (a) true source location (simulated) and localization results of (b) 

eLORETA and (c) ReLORETA, for the EEG data shown in Fig. 7(b). 

 



than eLORETA. In terms of noise levels, both methods 

performed similarly and their accuracy slightly decreased 

when a high level of noise was applied. However, the error of 

ReLORETA still remains below 13 mm in the worst case. It is 

worth mentioning that we deliberately put the simulated 

sources in the voxels of the forward model which their 

equivalent voxels did not exist in the inverse model, such that 

the distance between the nearest dipole to the source center 

and the true location of the source in the inverse model was at 

least 2 mm. This is the reason for the minimum error of 2 mm 

in the outputs due to discretization.  

C. Extended Source Results 

For evaluating extended sources, we simulated 60 different 

sources at the same locations as the single-dipole sources 

while each source contained 33 active dipoles such that the 

total moment of dipoles was set to be the same as single-

dipole sources. For this purpose, we placed a dipole in the 

center of the source and then spread the rest of the dipoles 

within a 10 mm radius. Figs. 7(a) and (b) show the simulated 

EEG signals for two extended sources with centers located at 

the same locations as two single-dipole sources: right middle 

temporal gyrus (Brodmann area 21) and left hippocampus, 

respectively. The source localization results and the 

corresponding NRE values can be found in Figs. 8 and 9 and 

Table II. Similar to performance for the single-dipole sources, 

the ReLORETA outputs are still considerably more accurate 

than the eLORETA outputs for both areas. The box plots of 

the overall source localization errors and NRE for all 60 

extended sources are also shown in Fig. 10. While the 

performance of both methods slightly decreased in comparison 

with their estimations for single-dipole sources, the accuracy 

of ReLORETA still remained stable with average errors of 6 

mm and 8 mm for low and high levels of noise, respectively. 

Accordingly, the average NRE of ReLORETA is lower than 

eLORETA as expected. It should be noted that the nearest 

dipole to the true location of the source center in the inverse 

model is displaced by 2 mm because of discretization. By 

deducting this 2 mm error from the overall error, we can 

conclude that on average only less than 5 mm of the total error 

is due to the ReLORETA output. This is while, as mentioned 

before, the radii of the simulated sources in the forward model 

are also 10 mm. This means that, even when ReLORETA 

estimates a source with the mentioned 5 mm bias, the 

estimated source value still remains inside the boundary of the 

source with respect to its central dipole. However, as 

mentioned before, the central dipole of the source in the 

inverse model is always at a 2 mm distance from the true 

location of the source center.  

In the worst-case scenario discussed above, we assumed no 

individual information, including no available MRI of the 

subject. However, for a number of source localization 

problems, including epilepsy source localization, MRIs of 

patients are available. For this reason, in the second scenario, 

we assumed that the MRI of the subject is available and the 

geometry of the inverse and forward models are the same. For 

this purpose, we used a six-shell New York head as the 

forward model, and a simplified three-shell and a six-shell 

New York head model were employed for the source 

localization. Four simulations were then carried out in this 

scenario as follows: in the first simulation, we distorted the 

forward model by the three remaining uncertainties including 

geometry and conductivity uncertainties as well as errors in 

electrode positions. In the rest of the simulations, the forward 

model was distorted only by one source of uncertainty 

individually in each simulation while other sources of 

uncertainties were removed from the forward model.  

After carrying out the simulations, the following results 

were obtained: in all cases, we observed that ReLORETA 

results were considerably more accurate than eLORETA. The 

accuracy of both methods decreased only negligibly when 

using the three-shell model. However, eLORTEA accuracy 

was affected more than ReLORETA. In the first simulation, 

when simulating the three remaining uncertainties 

simultaneously, we observed that the overall error of both 

methods decreased compared with the worst-case scenario. In 

the rest of the simulations, misalignment of electrodes, 

conductivity uncertainties, and discretization uncertainties had 

the greatest impacts on eLORETA accuracy for single-dipole 

source localizations by causing average errors of 12 mm, 11 

mm, and 8 mm, respectively. The maximum errors of 

eLORETA for these uncertainties were also 32 mm, 24 mm, 

and 18 mm respectively. The same uncertainties applied to 

extended sources caused average errors of 15 mm, 13 mm, and 

9 mm, and maximum errors of 40 mm, 30 mm, and 26 mm, 

respectively for eLORETA. On the other hand, for 

ReLORETA, the discretization uncertainty, misalignment of 

electrodes, and conductivity uncertainty had the greatest 

impacts on the results with average errors of 7 mm, 6 mm, and 

TABLE II 
SOURCE LOCALIZATION ERRORS FOR SIMULATED EXTENDED SOURCES SHOWN IN FIG. 8 AND 9 USING ELORETA AND THE PROPOSED RELORETA TECHNIQUES 

Source area 
Source 
location 

(mm) 

eLORETA 
estimated 

location (mm) 

eLORETA 
estimation 

error (mm) 

ReLORETA 
estimated 

location (mm) 

ReLORETA 
estimation 

error (mm) 

eLORETA 

NRE  

ReLORETA 

NRE 

Right Brodmann area 21 [50 -20 -12] [60 -20 20] 33.52 [50   -20   -10] 2 0.130 0.042 

Left Hippocampus [-24 -14 -20] [-40   10   -40] 35.09 [-30    -20   0] 5.65 0.105 0.017 

 

 

 

  

(a) (b) 

Fig. 10. Box plots of (a) overall source localization errors and (b) overall NRE 

for simulated extended sources. 



TABLE III 
SOURCE LOCALIZATION ERROR FOR REAL DATA USING ELORETA AND RELORETA TECHNIQUES 

Approximate source location 

(mm) 

eLORETA 
estimated location 

(mm) 

eLORETA 
estimation 

error (mm) 

ReLORETA 
estimated 

location (mm) 

ReLORETA 
estimation 

error (mm) 

NRE 

eLORETA 

NRE 

ReLORETA 

[-20 -5 -20] 

Left Amygdala-Hippocampal 
Junction 

[-60 0 -30] 

Left Temporal Pole 
(Brodmann area 38) 

41.53 
[-30   10   -10] 

Anterior Insula 
20.61 0.360 0.077 

 

 

2 mm respectively for single-dipole sources. The maximum 

errors of ReLORETA for these uncertainties were also 9 mm, 

14 mm, and 10 mm, respectively. For extended sources, the 

same uncertainties caused average errors of 7 mm, 6 mm, and 

5 mm, and maximum errors of 11 mm, 14 mm, and 14 mm, 

respectively. To evaluate sensitivity to electrode placement 

errors, we displaced electrode positions randomly and 

observed that the resulting error was considerably lower than 

when the EEG setup was tilted. All of the mentioned results 

are related to simulations with a 5 dB noise. The complete 

results of this scenario including the localization error, the 

noise sensitivity and NRE of eLORETA and ReLORETA, and 

the effect of the number of samples on the results are reported 

in the supplementary materials. 

D. Real Data Results 

In this section, we present the result of the proposed 

ReLORETA algorithm for localization of the underlying brain 

source (i.e., epileptiform discharge) in a patient with epilepsy 

where the related data contained EEG signals of 20 channels 

corresponding to the same 20 electrodes used for the 

simulations in sections II and III. On scalp EEG, the discharge 

was located on the left, centered at electrode F7, which 

classically represents activity predominantly from the left 

anterior temporal region. We employed the same inverse 

model we used in the simulations where the conductivities of 

the scalp, the skull, and the brain were set to 0.33 S/m, 0.0041 

S/m, and 0.33 S/m, respectively. The regularization parameter 

𝛼 and the threshold 𝜀 were set to 0.05 and 0.005, respectively 

similar to the simulations. The true location of the source was 

near the amygdala and hippocampus boundary, with a center 

located at the MNI coordinates of [-20 -5 -20] mm 

approximately. These coordinates are based on the location of 

seizures captured using intracranial recordings with depth 

electrodes. More specifically, the patient had depth electrodes 

implanted in the left and right amygdala and hippocampus. 

However, the true location of the source can never be known 

with a zero error as an infinite or even a large number of 

electrodes cannot be implanted.  

Fig. 11 shows the EEG measurements as well as their 

interpolated topographic distribution where each trace is 

averaged over 13 measured spikes. The localization results 

and corresponding NRE values of eLORETA and ReLORETA 

can also be found in Fig. 12 and Table III. The first 

noteworthy point is that NRE and errors of both methods 

nearly fall into the range that had previously been predicted in 

our simulations for extended sources, i.e., Fig.10, with 

localization errors of 41.53 mm and 20.61 mm, and NRE 

values of 0.360 and 0.077 for eLORETA and ReLORETA, 

respectively. This shows that the most important sources of 

uncertainties were successfully included in the forward model 

used for simulations such that NRE values and accuracies of 

both methods correspond to the simulation results. Moreover, 

ReLORETA shows a higher accuracy and lower NRE than 

eLORETA, further underscoring the robustness of the 

proposed algorithm with real-life data. Please refer to section 

D of the supplementary materials to see the convergence of 

ReLORETA based on the NRE measure for the real EEG data 

shown in Fig. 11. 

E. Regularization effect 

To investigate the effect of the regularization parameter 𝛼 

on the results, we carried out a simulation in which we first 

increased the value of alpha with a constant step from 0.1 to 

0.9, and then, in each step, we computed the localization 

errors and NRE values of eLORETA and ReLORETA for the 

source localization problem shown in Fig. 9. The results are 

illustrated in Fig. 13. The value of alpha has no effect on the 

localization, and for each alpha, ReLORETA gives a 

considerably better localization accuracy. However, as shown 

 
 

Fig. 11. Superimposed real EEG signals from an actual patient based on the 

20 electrodes used for source localization and the related topographic 

distribution. Each trace has been averaged over 13 measurements 

(epileptiform discharges).  
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Fig. 12. Source localization results for the real EEG measurements depicted 

in Fig. 12. The actual source location is around the left amygdala-
hippocampal junction centered at MNI coordinates of [-20 -5 -20] 

approximately. (a) eLORETA output and (b) ReLORETA output. 



by the dotted line, using 𝛼 = 0.05, eLORETA achieves a 

reconstruction error as small as what ReLORETA achieves 

using 𝛼 = 0.58, but its localization error is still substantially 

higher than ReLORETA. This is mainly because eLORETA is 

using the wrong lead field matrix for localization. It can be 

proven as long as the lead field matrix is distorted, decreasing 

the EEG reconstruction error by any method, including tuning 

𝛼, cannot improve the localization results (please see section 

B in the supplementary materials for the proof). Moreover, the 

results further suggest that for each alpha, the lead field matrix 

properly converges toward its true value using ReLORETA, 

thereby improving the localization accuracy.  

IV. DISCUSSION 

In this paper, we propose a robust version of the eLORETA 

method, named ReLORETA, for the localization of brain 

sources while the forward model is distorted by uncertainties. 

To the best of our knowledge, this is the first study proposing 

a method capable of dealing with major sources of 

uncertainties simultaneously and without any individual 

information in setting up the model. To examine the 

performance of the proposed method, we first simulated a 

worst-case scenario where different sources of the forward 

model uncertainties including the conductivity uncertainty, 

error in co-registration of the electrodes, as well as differences 

in the geometry and source space resolution between the 

forward and inverse models, were present simultaneously. The 

simulation results in this scenario show that ReLORETA 

provides substantially more accurate results than eLORETA in 

all cases of single-dipole and extended sources. In the second 

scenario, we simulated different uncertainties both 

simultaneously and individually while the geometries of the 

forward and inverse models were the same, which is 

equivalent to a situation where the MRI of the subject is 

available. For this purpose, a six-shell New York head model 

was used to generate EEG signals, and a simplified three-shell 

and a six-shell New York head model were used for the source 

localization. The results of ReLORETA in this scenario were 

also substantially more accurate than eLORETA. Furthermore, 

ReLORETA demonstrated superior performance in dealing 

with different individual uncertainties in comparison with 

previous studies [20], [30], [31], [35]. The accuracy of both 

methods only negligibly decreased when using the three-shell 

model compared with the six-shell model, while eLORETA’s 

performance was affected more than ReLORETA’s 

performance. These results corroborate the previous findings 

[12] that gray matter, white matter, and CSF conductivities 

have a negligible effect on the source localization since their 

omission did not affect the localization results considerably. 

However, the accuracy of both methods in the second scenario 

increased compared with the worst-case scenario confirming 

the results of other studies [13], [23] that reported increased 

localization error due to the geometry uncertainty. This also 

suggests that using a head model based on the MRI of the 

subject can substantially improve the localization results and 

should be a priority. According to the results, error in co-

registration of electrodes can seriously degrade the source 

localization results, and for both eLORETA and ReLORETA, 

it was one of the major sources of uncertainties, which 

confirms the previous findings [23]. The proposed method was 

also applied to real EEG data from a patient with epilepsy, and 

the localization accuracy of both methods in this case mirrored 

the results of the simulated data. ReLORETA remained robust 

in dealing with the real data and showed a better performance 

than eLORETA. The ability of ReLORETA to show 

reasonable localization accuracy with limited numbers of 

electrodes may be of great value in clinical settings where 

applying high numbers of electrodes is not practical.  

All simulations and experiments in this paper were 

performed on a computer with 8 GB of RAM and an Intel 

Core i7-8565U 1.80 GHz processor using MATLAB R2020a. 

We observed that, in all cases, ReLORETA successfully 

converged in less than 60 iterations and usually closer to 25. 

Each iteration required an average time of 2 seconds to 

complete resulting in 50 seconds for the algorithm to 

converge. This time is reasonably short for an iterative 

algorithm, especially for the applications in which the source 

localization is performed offline.   

V. CONCLUSION 

In this paper, we presented a robust version of the 

eLORETA method called ReLORETA to deal with different 

uncertainties in the forward modeling that affects the source 

localization accuracy. For this purpose, we first assumed that 

the true lead field matrix is a transformation of the existing 

inaccurate lead field matrix, and then we proposed an iterative 

algorithm, in which we took advantage of the Levenberg-

Marquardt optimization, for estimating this transformation 

accurately. In order to assess the accuracy of the proposed 

method, we first created a realistic forward model by taking 

into account different sources of uncertainties, including the 

conductivity and geometry of the head model, misalignment of 

electrodes, and discretization of source space. The 

ReLORETA algorithm was then applied to single-dipole and 

extended sources generated by the realistic head model as well 

as real data from a patient with epilepsy. The results showed 

that the proposed ReLORETA algorithm gives considerably 

better results for both simulated and real data than eLORETA. 

and can be a reliable method for practical applications. 

 

(a) 

 

(b) 

Fig. 13. (a) NRE values and (b) localization accuracies for the source 

localization problem shown in Fig. 9 using different values of 𝛼. The 

horizontal dotted line shows the NRE values of eLORETA and ReLORETA 

using 𝛼 = 0.05 and 𝛼 = 0.58, respectively.  



REFERENCES 

[1] R. D. Pascual-Marqui, “Discrete, 3D distributed, linear imaging 

methods of electric neuronal activity. Part 1: exact, zero error 

localization,” ArXiv07103341 Math-Ph Physicsphysics Q-Bio, Oct. 

2007. 
[2] M. Iwai et al., “Evaluation of sensor and analysis area in the signal 

source estimation by spatial filter for magnetocardiography,” IEEE 

Trans. Magn., pp. 1–1, May 2021. 
[3] H. Rajaei et al., “Dynamics and distant effects of frontal/temporal 

epileptogenic focus using functional connectivity maps,” IEEE Trans. 

Biomed. Eng., vol. 67, no. 2, pp. 632–643, Feb. 2020,  
[4] Y. Zhang, T. Gong, S. Sun, J. Li, J. Zhu, and X. Li, “A functional 

network study of patients with mild depression based on source 

location,” Proc. IEEE Int. Con. Bioinformatics Biomed. (BIBM), pp. 
1827–1834, Dec. 2020.  

[5] K. Masychev et al., “Advanced signal processing methods for 

characterization of schizophrenia,” IEEE Trans. Biomed. Eng., vol. 68, 
no. 4, pp. 1123–1130, Apr. 2021. 

[6] T. Halder et al., “Performance evaluation of inverse methods for 

identification and characterization of oscillatory brain sources: Ground 

truth validation &amp; empirical evidences.” bioRxiv., p. 395780, Jan.  

2019.  

[7] R. D. Pascual-Marqui, “Review of methods for solving the EEG inverse 
problem,” Int J Bioelectromagn., vol. 1, no. 1, pp. 75–86, 1999. 

[8] R. D. Pascual-Marqui et al., “Low resolution electromagnetic 

tomography: a new method for localizing electrical activity in the 
brain,” Int. J. Psychophysiol., vol. 18, no. 1, pp. 49–65, Oct. 1994. 

[9] R. D. Pascual-Marqui, “Standardized low-resolution brain 

electromagnetic tomography (sLORETA): technical details,” Methods 
Find. Exp. Clin. Pharmacol., vol. 24 Suppl D, pp. 5–12, 2002. 

[10] M. A. Jatoi et al., “EEG based brain source localization comparison of 

sLORETA and eLORETA,” Australas. Phys. Eng. Sci. Med., vol. 37, 
no. 4, pp. 713–721, Dec. 2014. 

[11] S. Asadzadeh et al., “A systematic review of EEG source localization 

techniques and their applications on diagnosis of brain abnormalities,” 
J. Neurosci. Methods, vol. 339, p. 108740, Jun. 2020.  

[12] J. Vorwerk et al., “Influence of head tissue conductivity uncertainties on 

EEG dipole reconstruction,” Front. Neurosci., vol. 13, p. 531, 2019. 

[13] O. Steinsträter et al., “Sensitivity of beamformer source analysis to 

deficiencies in forward modeling,” Hum. Brain Mapp., vol. 31, no. 12, 

pp. 1907–1927, Dec. 2010. 
[14] H. Becker et al., “Emotion recognition based on high-resolution EEG 

recordings and reconstructed brain sources,” IEEE Trans. Affect. 

Comput., vol. 11, no. 2, pp. 244–257, Apr. 2020. 
[15] C. J. Holmes et al., “Enhancement of MR images using registration for 

signal averaging,” J. Comput. Assist. Tomogr., vol. 22, no. 2, pp. 324–

333, Apr. 1998. 
[16] J. C. Mazziotta et al., “A probabilistic atlas of the human brain: theory 

and rationale for its development. The International Consortium for 

Brain Mapping (ICBM),” NeuroImage, vol. 2, no. 2, pp. 89–101, Jun. 
1995. 

[17] Y. Huang et al., “The New York Head—A precise standardized volume 
conductor model for EEG source localization and tES targeting,” 

NeuroImage, vol. 140, pp. 150–162, Oct. 2016. 

[18] S. D. Fickling et al., “Distant sensor prediction of event-related 
potentials,” IEEE Trans. Biomed. Eng., vol. 67, no. 10, pp. 2916–2924, 

Oct. 2020. 

[19] L. Zagorchev et al., “Patient-specific sensor registration for electrical 
source imaging using a deformable head model,” IEEE Trans. Biomed. 

Eng., vol. 68, no. 1, pp. 267–275, Jan. 2021. 

[20] S. A. H. Hosseini et al., “Electromagnetic brain source imaging by 
means of a robust minimum variance beamformer,” IEEE Trans. 

Biomed. Eng., vol. 65, no. 10, pp. 2365–2374, Oct. 2018,  

[21] G. Wang and D. Ren, “Effect of brain-to-skull conductivity ratio on 
EEG source localization accuracy,” BioMed Res. Int., vol. 2013, p. 

459346, 2013. 

[22] M. Stenroos and O. Hauk, “Minimum-norm cortical source estimation 
in layered head models is robust against skull conductivity error,” 

NeuroImage, vol. 81, pp. 265–272, Nov. 2013,  

[23] Z. A. Acar and S. Makeig, “Effects of forward model errors on EEG 
source localization,” Brain Topogr., vol. 26, no. 3, pp. 378–396, Jul. 

2013. 

[24] Y. Wang and J. Gotman, “The influence of electrode location errors on 
EEG dipole source localization with a realistic head model,” Clin. 

Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol., vol. 112, no. 9, pp. 
1777–1780, Sep. 2001. 

[25] J. Gross and A. A. Ioannides, “Linear transformations of data space in 

MEG,” Phys. Med. Biol., vol. 44, no. 8, pp. 2081–2097, Aug. 1999. 
[26] K. Sekihara et al., “Application of an MEG eigenspace beamformer to 

reconstructing spatio-temporal activities of neural sources,” Hum. Brain 

Mapp., vol. 15, no. 4, pp. 199–215, Apr. 2002. 
[27] S. A. Vorobyov et al., “Robust adaptive beamforming using worst-case 

performance optimization: a solution to the signal mismatch problem,” 

IEEE Trans. Signal Process., vol. 51, no. 2, pp. 313–324, Feb. 2003. 
[28] K. Sekihara et al., “Reconstructing spatio-temporal activities of neural 

sources using an MEG vector beamformer technique,” IEEE Trans. 

Biomed. Eng., vol. 48, no. 7, pp. 760–771, Jul. 2001. 
[29] A. Koulouri et al., “Compensation of domain modelling errors in the 

inverse source problem of the Poisson equation: Application in 

electroencephalographic imaging,” Appl. Numer. Math., vol. 106, pp. 
24–36, Aug. 2016. 

[30] V. Rimpiläinen et al., “Improved EEG source localization with 

Bayesian uncertainty modelling of unknown skull conductivity,” 
NeuroImage, vol. 188, pp. 252–260, Mar. 2019. 

[31] Z. Akalin Acar et al., “Simultaneous head tissue conductivity and EEG 

source location estimation,” NeuroImage, vol. 124, pp. 168–180, Jan. 
2016. 

[32] M.-X. Huang et al., “A novel integrated MEG and EEG analysis method 

for dipolar sources,” NeuroImage, vol. 37, no. 3, pp. 731–748, Sep. 
2007. 

[33] B. D. Van Veen et al., “Localization of brain electrical activity via 
linearly constrained minimum variance spatial filtering,” IEEE Trans. 

Biomed. Eng., vol. 44, no. 9, pp. 867–880, Sep. 1997. 

[34] R. G. Lorenz and S. P. Boyd, “Robust minimum variance 
beamforming,” IEEE Trans. Signal Process., vol. 53, no. 5, pp. 1684–

1696, May 2005. 

[35] P. Chrapka et al., “Estimating neural sources using a worst-case robust 
adaptive beamforming approach,” Biomed. Signal Process. Control, vol. 

52, pp. 330–340, Jul. 2019. 

[36] J. d. J. Rubio, “Stability analysis of the modified Levenberg–Marquardt 
algorithm for the artificial neural network training,” IEEE Trans. Neural 

Netw. Learn. Syst., vol. 32, no. 8, pp. 3510–3524, Aug. 2021. 

[37] A. Noroozi et al., “A Fuzzy Learning Approach for Identification of 

Arbitrary Crack Profiles Using ACFM Technique,” IEEE Trans. Magn., 

vol. 49, no. 9, pp. 5016–5027, Sep. 2013. 

[38] A. Noroozi et al., “A fuzzy alignment approach for identification of 
arbitrary crack shape profiles in metallic structures using ACFM 

technique,” 20th Iranian Conf. Elec. Eng. (ICEE2012), May 2012, pp. 

894–899.  
[39] C. Bishop, “Exact calculation of the hessian matrix for the multilayer 

perceptron,” Neural Comput., vol. 4, no. 4, pp. 494–501, Jul. 1992. 

[40] R. Oostenveld et al., “FieldTrip: Open source software for advanced 
analysis of MEG, EEG, and invasive electrophysiological data,” 

Comput. Intell. Neurosci., vol. 2011, p. e156869, Dec. 2010. 

[41] J. Vorwerk et al., “The FieldTrip-SimBio pipeline for EEG forward 
solutions,” Biomed. Eng. Online, vol. 17, no. 1, p. 37, Mar. 2018. 

[42] A. Gramfort et al., “OpenMEEG: opensource software for quasistatic 

bioelectromagnetics,” Biomed. Eng. OnLine, vol. 9, no. 1, p. 45, Sep. 
2010. 

[43] A. Sarkar et al., “Comparison of manual vs. automated multimodality 

(CT-MRI) image registration for brain tumors,” Med. Dosim. Off. J. Am. 

Assoc. Med. Dosim., vol. 30, no. 1, pp. 20–24, 2005. 

[44] V. Jurcak et al., “10/20, 10/10, and 10/5 systems revisited: their validity 

as relative head-surface-based positioning systems,” NeuroImage, vol. 
34, no. 4, pp. 1600–1611, Feb. 2007. 

[45] L. R. Krol et al., “SEREEGA: simulating event-related EEG activity,” J. 

Neurosci. Methods, vol. 309, pp. 13–24, Nov. 2018. 
[46] X. Mao et al., “Environmental Brownian noise suppresses explosions in 

population dynamics,” Stoch. Process. Their Appl., vol. 97, no. 1, pp. 

95–110, Jan. 2002. 
[47] H. McCann et al., “Variation in reported human head tissue electrical 

conductivity values,” Brain Topogr., vol. 32, no. 5, pp. 825–858, Sep. 

2019 
[48] S. Chabardès et al., “The temporopolar cortex plays a pivotal role in 

temporal lobe seizures,” Brain J. Neurol., vol. 128, no. Pt 8, pp. 1818–

1831, Aug. 2005. 
[49] A. Chatzikonstantinou, “Epilepsy and the hippocampus,” Front. Neurol. 

Neurosci., vol. 34, pp. 121–142, Apr. 2014. 


