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Abstract: Bioinformatics approaches have proven useful in understanding biological responses to
spaceflight. Spaceflight experiments remain resource intensive and rare. One outstanding issue is
how to maximize scientific output from a limited number of omics datasets from traditional animal
models including nematodes, fruitfly, and rodents. The utility of omics data from invertebrate
models in anticipating mammalian responses to spaceflight has not been fully explored. Hence,
we performed comparative analyses of transcriptomes of soleus and extensor digitorum longus
(EDL) in mice that underwent 37 days of spaceflight. Results indicate shared stress responses and
altered circadian rhythm. EDL showed more robust growth signals and Pde2a downregulation,
possibly underlying its resistance to atrophy versus soleus. Spaceflight and hindlimb unloading
mice shared differential regulation of proliferation, circadian, and neuronal signaling. Shared gene
regulation in muscles of humans on bedrest and space flown rodents suggest targets for mitigating
muscle atrophy in space and on Earth. Spaceflight responses of C. elegans were more similar to EDL.
Discrete life stages of D. melanogaster have distinct utility in anticipating EDL and soleus responses.
In summary, spaceflight leads to shared and discrete molecular responses between muscle types
and invertebrate models may augment mechanistic knowledge gained from rodent spaceflight and
ground-based studies.
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1. Introduction

Exposure to the unique set of spaceflight environmental conditions, including micro-
gravity, cosmic radiation, isolation, and confinement, has been shown to induce significant
physiological changes in all studied species to date [1–3]. These physiological responses,
such as skeletal muscle atrophy, can negatively impact the health of astronauts and may
also compromise mission success if left unabated [4]. The precise molecular mechanisms
underlying physiological deconditioning in spaceflight have yet to be fully described,
and advancement of this mechanistic understanding is essential for the development of
molecularly rationalized countermeasures [5]. Such countermeasures can help maintain
astronaut health during future spaceflight missions, including long duration voyages to
Mars in which current countermeasures are likely to prove insufficient [6].

Studies leveraging data from omics disciplines, including transcriptomics, allow for a
detailed study of the complex interactions between the molecular landscape of biological
systems and spaceflight environmental conditions. Despite the scientific potential of omics
datasets captured in spaceflight, only a relatively small number have been collected, mainly
due to the resource-intensive nature of spaceflight experiments. NASA GeneLab was
established to maximize the use of the limited number of spaceflight omics datasets. The
datasets made publicly available via the GeneLab repository represent a variety of omics
data types and a range of model organisms, including microbes, plants, cell cultures, verte-
brates, and invertebrates [7,8]. Additionally, datasets from ground-based studies that are
relevant to the spaceflight environment can be accessed via public repositories, including
GeneLab and NCBI Gene Expression Omnibus (GEO) [9]. Although physiological and
other functional data is required to establish clear relationships between omics changes and
physiological changes, independent analysis of omics datasets is still useful for hypothesis
generation, which can be used to inform future research directions. There remain numerous
opportunities to use publicly available omics datasets to elucidate knowledge gaps in the
field of space biology.

One such knowledge gap that currently requires further investigation is that of shared
and discrete transcriptomic responses across biological tissue types, such as different
muscles. Addressing this knowledge gap can prove useful for designing countermeasures
that can target multiple tissues, or for providing evidence for the need to employ multiple
countermeasures to provide comprehensive protection to a variety of tissues. Aside from its
role in locomotion and posture, skeletal muscle plays other vital roles in whole-body health.
Skeletal muscle physically shields organs and helps maintain temperature homeostasis.
Additionally, as the body’s largest store of amino acids, skeletal muscle engages in crosstalk
with other organs, to synthesize organ-specific proteins [10]. When the body is threatened
by starvation or disease, skeletal muscle is broken down to provide other organs with
energy [11].

To date, antigravity muscles in the limbs have been the main focus for studying the
skeletal muscle response to spaceflight. These muscles are key to maintaining posture
under 1G conditions, and are thus highly susceptible to atrophy when unloaded [12].
Certain antigravity muscles in the lower limb, such as the soleus and gastrocnemius, are
also important for circulation, as upon contraction they pump venous blood back to the
heart, preventing pooling and stagnation [13].

Alongside reduced muscle mass, strength, and endurance, it has been found that the
mechanical unloading associated with microgravity induces a shift from type I slow twitch
fibers to type II fast twitch fibers [14,15]. Previous spaceflight and ground studies in rodents
and humans have also observed that antigravity muscles consisting of mainly type I (slow-
twitch) fibers, which are designed for slow and sustained contraction, such as the soleus
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tend to be more susceptible to atrophy compared to antigravity muscles with more type
II (fast-twitch) fibers [16]. Recently, Choi and colleagues reported findings from NASA’s
Rodent Research-1 (RR-1) mission, in which mice were flown onboard the International
Space Station (ISS) and exposed to microgravity for 37 days. They found that the weight
of the soleus in space flown mice was reduced by ~19% compared to ground control
mice [17]. In addition, they reported that the gastrocnemius, tibialis anterior (TA), extensor
digitorum longus (EDL), and quadriceps did not show significant atrophy compared to
ground control mice [17]. While significant atrophy of the soleus is consistent with findings
from similar studies, the finding of non-significant atrophy in the gastrocnemius is contrary
to previous space flown mouse studies [18–20].

Similarly, previous transcriptomic analyses of RR-1 data have reported that the soleus
showed the greatest number of significant differentially expressed genes (DEGs) [21,22]
compared to other muscle tissues. However, all muscle tissues did show significant gene
expression changes, and hierarchical clustering of these changes indicated that the muscle
tissues can be divided into two distinct groups. Group 1 consisted of plantar flexor muscles,
soleus, and gastrocnemius, while group 2 consisted of dorsiflexors EDL and TA and knee
extensors, quadriceps. In addition, microgravity responsive changes in immune-related
pathway regulation appeared to be more prevalent in group 1 muscles compared to group
2 [21]. A different analysis of RR-1 data highlighted that changes in the expression of clock
genes were fairly uniform across the muscle tissues, and yet distinct compared to other
tissues such as the liver [22]. Taken together, these findings demonstrate that while certain
muscles may not undergo significant atrophy in spaceflight, they still undergo molecular
changes that may require intervention. Additionally, these findings support the hypothesis
that in certain cases, the response to spaceflight is not identical between muscle tissues,
due to their distinct morphologies and locomotive functions [16]. Further investigation is
required to establish precise differences and similarities between the molecular responses
of different muscle tissues. Hence in this study, we compared transcriptomic data from the
fast-twitch enriched EDL, and the representative slow-twitch muscle soleus [23], collected
during the RR-1 mission. We made use of two analysis approaches, Gene Set Enrichment
Analysis (GSEA) and overrepresentation analysis (ORA) to determine the impact of the
analysis approach on outcomes and to better anticipate the array of biological responses
to spaceflight. Subsequently, to better understand the analogous nature of ground-based
studies, transcriptomic data from the RR-1 quadriceps was compared to the vastus lateralis
from a human bed rest study [24], and transcriptomic data from the gastrocnemius from a
different space flown mouse study was compared to matching HU samples from that same
study [25].

In addition to rodents, invertebrates, including C. elegans and D. melanogaster, have
been established as important model organisms for understanding biological responses to
the space environment [26]. While it is possible to isolate muscles in ground laboratories
via dissection when the sample size of fresh animals is sufficient [27], whole organism or
composite structures such as the head are typically extracted for analysis in spaceflight
experiments due to logistical challenges of dissecting samples in orbit. However, insights
related to muscle can still be uncovered. For example, reproducible downregulation of
muscle-related genes has been observed across the “International C. elegans Experiment
FIRST” (ICE-FIRST) and “C. elegans RNA Interference in Space Experiment” (CERISE)
microarray experiments [28,29]. Leandro and colleagues performed a comparative analysis
of space flown C. elegans from the ICE-FIRST experiment and space flown D. melanogaster
from the GENE experiment [3,30]. Three analysis approaches were tested on the small
subset of orthologous genes between the two organisms. Only six genes were found
to have a common transcriptomic response in both experiments, with these genes all
downregulated and associated with metabolic and neuromuscular signaling [3,31].

Terrestrial studies have set a strong precedent for using invertebrate models to de-
velop tools [13,32,33] and study conserved pathways in mammalian biological processes
such as aging [34–38]. However, the utility of omics data from space flown invertebrate
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studies, in anticipating aspects of mammalian responses to spaceflight, has yet to be fully
investigated. With large, low cost cohorts of genetic mutants, interventional invertebrate
studies are useful for establishing correlational relationships between molecular pathways
and spaceflight phenotypes, with functional measures needed for causation [29]. We reason
that if certain mechanisms are shared between mammals and invertebrate models, inverte-
brate datasets can potentially augment the limited quantity of vertebrate spaceflight omics
datasets. This in turn may prove useful in anticipating mammalian responses to spaceflight.
To test these concepts, we compared the abovementioned RR-1 EDL and soleus muscle
datasets with transcriptomic datasets of C. elegans and D. melanogaster that were flown in
the ICE-FIRST experiment and STS-121 mission, respectively. We found that spaceflight
results in discrete transcriptomic signatures between representative slow and fast twitch
muscles (soleus and EDL respectively), consistent with their opposing roles in flexion and
differential sensitivities to unloading. In addition, transcriptomic analysis revealed that
invertebrate models share select aspects of mammalian responses to spaceflight. The life
stage of invertebrate models appears to impact the degree by which they recapitulate the
responses of mammalian tissues to spaceflight.

2. Results
2.1. Datasets Used in This Study

Table 1 shows the transcriptomic datasets used in this study. These datasets included
RNA-seq and microarray datasets. Model organisms represented are mouse, fruitfly, and
nematode. A bedrest study was also selected for analysis (Refer to Methods section for
further details on criteria).

Table 1. Datasets used in the study, including the organism’s name, duration of spaceflight or unloading, assay type, sex,
strain, tissue, age, and sample size. Refer to GeneLab and GEO databases for further details. GC: ground control, FLT:
spaceflight, VC: vivarium control, HU: hindlimb unloading, Gastroc: gastrocnemius, Quad: quadriceps, VL: vastus lateralis,
F: female, M: male, Mx: mixed; H: hermaphrodite. Tg: Gal4-UAS transgenic line expressing two copies of eGFP from the
hemolectin promoter. N: number of individuals, rep: replicate of pooled samples run for transcriptomic analysis. Refer
to [24,25,37–43] for links to GeneLab processed data and versions used in this study.

Dataset Organism Duration Vehicle Assay Sex Strain Tissue Age/Stage Sample Size

GLDS-
104

M.
musculus 37 d ISS RNAseq F C57BL/6J Soleus 16 wks N = 6 (GC); N = 6

(FLT)

GLDS-99 M.
musculus 37 d ISS RNAseq F C57BL/6J EDL 16 wks N = 6 (GC); N = 6

(FLT)

GLDS-21 M.
musculus

11 d,
19 h STS-108 Microarray F C57BL/6J Gastroc 9 wks N = 4 (GC); N = 4

(FLT)

GLDS-21 M.
musculus 12 d N/A

(HU) Microarray F C57BL/6J Gastroc 9 wks N = 5 (VC); N = 5
(HU)

GLDS-
103

M.
musculus 37 d ISS RNAseq F C57BL/6J Quad 16 wks N = 6 (GC); N = 6

(FLT)

GLDS-
370/GEO
GSE24215

H. sapiens 10 d N/A
(Bedrest) Microarray M N/A VL 24-27

yrs
N = 10

(Longitudinal)

GLDS-3 D.
melanogaster

12 d,
18.5 h STS-121 Microarray Mx Tg

Whole
organ-

ism

3rd
instar
larvae

N = 50/rep × 6 (GC);
N = 50/rep × 6 (FLT)

GLDS-3 D.
melanogaster

12 d,
18.5 h STS-121 Microarray F Tg

Whole
organ-

ism
Adults N = 20/rep × 3 (GC);

N = 20/rep × 3 (FLT)

GLDS-
113 C. elegans 10 d ISS Microarray H N2

Whole
organ-

ism

Mixed
stage

N ≈ 10000/rep × 3
(GC); N ≈ 10000/rep

× 3 (FLT)
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2.2. Comparative Analysis Reveals Key Differences in Space Flown Slow and Fast Twitch Muscle

We first characterized the effects of spaceflight on fast and slow twitch muscle types
(EDL and soleus, respectively) from the RR-1 Mission (Figure 1). Differential expression
analysis (DEA) of EDL and soleus from space flown mice compared with ground controls
along with ORA and GSEA are found in Supplementary Tables S1–S6, Networks S1 and
S2 and Figures S1 and S2, respectively. Genes with the largest changes to their expression
can provide insight on important biological processes that underlie spaceflight responses.
Included in the top 10 upregulated genes in the EDL was the long non-coding RNA (Lnc-
bate10) that has been shown to protect Pgc1α from repression [44], as well as Mettl21e which
inhibits proteasomes [45]. We also observed upregulation of the cell cycle-related gene Cdk1
and Mmp12, which play a role in ECM remodeling. The top downregulated genes included
Pde2a, a phosphodiesterase (PDE), which controls degradation of cAMP and cGMP; the
downregulation of Pde2a suggests increased cAMP/cGMP signaling. Downregulated as
well was Lep, involved in energy homeostasis, and Pck1, a regulator of gluconeogenesis.
Additionally, we found downregulation of Stum, which functions in mechanotransduction.
Enriched results for the EDL show a response to radiation and reactive oxygen species
(ROS) and the induction of apoptosis. In addition, there was enrichment of inflammatory
pathways including Stat and Nf-κb, a response to wound healing and immune-related gene
sets (GO:0045087, GO:0034097) involving the production of cytokines TGFβ, IL4, IL10, and
type 1 interferon. Enrichment of genes related to glucocorticoid (GC) signaling, a stress
response pathway, was also observed. We found overrepresentation of gene sets involved
in the circadian rhythm (GO:0048511, GO:0007623) as reported previously [22,46–48], in-
cluding downregulation of Dbp, a key circadian rhythm gene involved in inducing the
transcription of other clock genes such as mPer1 [49]. GSEA results also show enrichment of
carbohydrate metabolism, consistent with previous studies reporting a greater reliance on
glucose and a shift away from lipid metabolism [50]. In addition, we found downregulation
of lipid metabolism (GO:0006631) based on ORA of downregulated genes Lep, Lpl, and
Pparγ [51–53]. Analysis also revealed enrichment of lipid transport and sequestration in
the EDL, consistent with previously reported lipid accumulation in atrophied muscles [50].
ORA of upregulated DEGs in the EDL show proliferation-related gene sets (GO:0008283,
GO:0000278) suggesting an increase in proliferation. Conversely, GSEA revealed enrich-
ment of mitogenic signaling pathways (MAPK), which correspond to the upregulation
of genes involved in cell cycle progression (Cdk1). GSEA also revealed regulation of pro-
liferation and migration of vascular endothelial cells and angiogenesis (Supplementary
Network 1, Supplementary Figure S1), suggesting spaceflight-induced changes to muscle
vasculature. Results also show the enrichment of muscle cell development, and differentia-
tion as well as upregulation of Fos, Mettl21e and Prnd, genes involved in differentiation
and the upregulation of Pax3, a stem cell marker expressed in activated satellite cells.

In the soleus, the top upregulated genes consist of keratins, known to be important
structural proteins in muscle as well as Mettle21e, involved in ECM remodeling, also found
to be upregulated in the EDL. Dhrs9, involved in vitamin A biosynthesis, was downregu-
lated, consistent with the observation of a reduction in retinol in lipid droplets in the liver
of space flown mice [54]. Analyses also revealed downregulation of Gcat, which plays a
role in threonine metabolism. Similarly, we found downregulation of C9, which functions
in the innate immune response. Enriched results for the soleus suggest stress signaling
with the enrichment of a response to GCs (GO:0051384) and the downregulation of Ciart, a
circadian gene with a role in the transcriptional repression of Clock and Bmal1 [55]. There
were fewer immune related results in the soleus compared to the EDL (sole enrichment
of interferon gamma and downregulation of Il8 in the soleus). These results may suggest
that the EDL has a more robust immune response than soleus, consistent with findings
from a previous spaceflight study [56]. Further, GSEA indicated negative regulation of the
unfolded protein response (UPR), suggesting downregulation of endoplasmic reticulum
(ER) stress response in the soleus. Metabolic changes also differ in comparison to the
EDL, with results indicating an increase in protein metabolism (GO:0006082, GO:0019752,
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GO:0072330) using upregulated genes in ORA. This is accompanied by negative correlation
of ribosome biogenesis and negative nucleotide biosynthesis with spaceflight, all consistent
with a decrease in muscle mass. While mixed results were reported for the regulation
of lipid metabolism, the results suggest a decrease in glucose metabolism (GO:0005975).
We also found enrichment of growth related gene sets such as upregulation of growth
hormones including Igf1 and its receptor, Igf1r. However, findings also included negative
cell growth (GO:0016049) and proliferation (GO:0008283). The presence of positive and
negative growth pathways may suggest remodeling of the muscles as they respond to
the need to replenish and remove old or damaged cells in response to spaceflight. Simi-
larly, results using up- and downregulated genes in ORA also indicate both positive and
negative developmental cues including the enrichment of negative tissue development
(GO:0009888) and cell differentiation (GO:0045595). A cross comparison of the biological
processes shared between the EDL and soleus is shown in Figure 2, and shared DEGs are
presented in Supplementary Table S7.
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2.3. Molecular Signatures of C. elegans in Comparison with Fast and Slow Twitch Muscles
during Spaceflight
2.3.1. Shared Increase in Proliferation between Space Flown C. Elegans and Mouse Fast
Twitch EDL

We next asked whether invertebrate models can be used to gain insight into mam-
malian responses to spaceflight. To address this question, we performed ORA on space
flown C. elegans and utilized Ensembl orthology [57] to perform a cross-species compar-
ison with mouse muscles to assess whether the transcriptional responses to spaceflight
found in mammalian muscle are also observed in nematodes. DEGs and ORA can be
found in Supplementary Tables S8 and S9. Differential expression analysis of space flown
C. elegans revealed 106 DEGs (FDR < 0.05). Initial inspection of the enriched biological
processes of C. elegans revealed that most upregulated biological processes (BP) are related
to cell division (GO:0007049, GO:0051301) and development (GO:0032502), processes akin
to the phenotype defined in the EDL. We also found upregulation of genes related to
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cytoskeleton organization (GO:0000226, GO:0007010), chitin metabolism (GO:0006030),
and downregulation of ECM organization (GO:0030198). A cross-comparison between
C. elegans and EDL enriched biological processes, shown in Figure 3, also indicates the
shared overrepresentation of proliferation-related gene sets (GO:0008283, GO:0000278,
GO:0022402). Gene sets related to the immune response (GO:0006955), synaptic signaling
(GO:0098916) and the ECM (GO:0030198) were upregulated in the EDL but downregulated
in C. elegans. A comparison of C. elegans and EDL DEGs revealed seven shared genes. These
include an oncogene with a role in cell polarity (Cab39) [58] and a gene involved in base
excision repair (Ung) [59]. An early development gene Zcchc24 [60] was downregulated
in both datasets. In addition, we found downregulation of Rab20, a gene involved in cell
trafficking in the Golgi apparatus [61], consistent with downregulation of cell-cell signaling
(GO:0007267). Genes upregulated in C. elegans but downregulated in the EDL have roles in
uracil methylation (Trmt44), calcium-mediated synaptic transmission (Syt12), and thrombin
degradation (Thbd).
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2.3.2. Comparison between C. elegans and Mouse Slow Twitch Muscle, Soleus

Similar to findings from comparisons with EDL, we also found shared biological
processes between C. elegans and soleus (Figure 3), namely downregulation of cell pro-
liferation. However, other processes were regulated in opposite directions. Specifically,
transmembrane transport (GO:0055085), defense response (GO:0006952, GO:0098542), and
cell adhesion (GO:0007155) were downregulated in C. elegans, yet upregulated in the soleus.
We found 16 shared DEGs in C. elegans and soleus (Table 2). Upregulated in both C. elegans
and soleus are mitochondrial genes involved in mtDNA repair (Mpv17), branched chain
amino acid metabolism (Ppm1k) [62], and the DNA helicase gene Mcm2. Shared downregu-
lated genes include Thbd, involved in thrombin degradation as well as Rab20, previously
described. Genes that were upregulated in C. elegans but downregulated in the soleus
include those involved in DNA repair (Nsmce1) [63], and the unfolded protein response
(Shq1), suggesting increased damage response in C. elegans. Genes that are downregulated
in C. elegans but upregulated in the soleus are involved in muscle excitability (Ric3) [64]
and synaptic signaling (Syt12, Ric3, Htr7) [64–66] which may impact muscle contraction if
globally upregulated in neurons. Downregulated in C. elegans were Dpp4, a gene encoding
a multi-functional transmembrane protein involved in glucose uptake [67], and Plce1 in-
volved in growth and differentiation [68]. Pde4b, which codes for an enzyme that degrades
cAMP to AMP, was downregulated, suggesting increased cAMP signaling in C. elegans,
which is more akin to the EDL response.

Table 2. DEGs shared between space flown C. elegans and soleus muscle and their direction of
regulation. Values shown are Log2 fold change (FC).

Genes C. elegans Soleus

Both upregulated
Mcm2 0.4 0.38
Mpv17 0.39 0.32
Ppm1k 0.33 0.58

Both downregulated
Rab20 −0.4 −0.48
Thbd −0.64 −0.45

Opposite regulation
Nsmce1 0.5 −0.41

Tmem205 0.39 −0.78
Shq1 0.36 −0.36

Exosc3 0.33 −0.34
Ppp4r4 −0.32 1.63
Syt12 −0.32 0.72
Dpp4 −0.36 0.55
Ric3 −0.37 0.49
Htr7 −0.38 0.77
Plce1 −0.5 0.39
Pde4b −0.51 0.73

2.4. Cross-Comparison between Space Flown D. melanogaster and Mouse Muscles
2.4.1. Shared Stress Response in EDL and Larval D. melanogaster

We also determined whether space flown D. melanogaster share any similarities with
mammalian muscle responses spaceflight. To determine this, we individually compared
EDL with larvae and adult D. melanogaster. We reasoned that doing such may provide in-
sight into any life-stage dependencies in our findings. DEA of space flown D. melanogaster
larvae revealed 439 orthologous mouse genes (Supplementary Table S10), which were
subjected to ORA (Supplementary Table S11). Genes were compared with mouse EDL, re-
vealing 18 shared DEGs shown in Table 3. Shared upregulated genes include the circadian
rhythm gene Noct, consistent with previous observations in space flown D. melanogaster [69].
Stress-induced molecular chaperones (Hsp90aa1) were also upregulated as well as genes
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involved in the biosynthesis of carnitine and fatty acid transport (Tmlhe). Shared down-
regulated genes include Mettl26, a methyltransferase. Genes with opposing patterns
of regulation reveal key differences in metabolism including D2hgdh, upregulated in D.
melanogaster, involved in D2-HG metabolism in the mitochondria, and Cth, involved in
cysteine biosynthesis. Genes that were upregulated in the EDL but downregulated in
D. melanogaster suggest differential regulation of glycosylation (Gmppb), the cytoskeleton
(Tubb4b) and ECM organization (Hspg2, Prcp), blood pressure (Prcp), and protein ubiquiti-
nation (Plaa).

Table 3. DEGs shared between space flown D. melanogaster and EDL and their direction of regulation.
Values shown are Log2 FC.

Genes Larval D. melanogaster EDL

Both upregulated
Tmlhe 0.99 0.34
Noct 0.61 0.59

Hsp90aa1 0.51 0.53

Both downregulated
Chac1 −0.91 −1.61

Mettl26 −0.43 −0.38

Opposite regulation
Amdhd2 0.4 −0.46
Adck5 0.37 −0.5

D2hgdh 0.85 −0.32
Cth 0.49 −0.5

Surf6 0.56 −0.39
Tubb4b −0.36 0.53
Gmppb −0.33 0.33
Ypel2 −1.15 0.65
Prcp −0.59 0.32
Cotl1 −0.7 0.41
Plaa −0.36 0.32

Timm9 −0.42 0.42
Hspg2 −0.45 0.33

2.4.2. Shared Responses of Larval D. melanogaster and Soleus from Space Flown Mice

A comparison of larval D. melanogaster DEGs revealed 61 shared genes with the soleus
(Supplementary Table S12). ORA of the 38 upregulated orthologs (Supplementary Table S13)
suggested a shared increase in protein metabolism (GO:0006520, GO:0000096, GO:0006534).
Notably, both datasets include the downregulation of Pdia6, which promotes prolifera-
tion [70,71] and a mitochondrial gene, Gtpbp3, for which studies involving its knockdown
reported reduced ATP generation, increased ROS, and apoptosis [72]. The molecular chap-
erones Hspa5 and Hspb6 were also downregulated, suggesting a reduction of UPR signaling
and consistent with increased protein metabolism, features observed in the soleus. Scarb1
was downregulated in both soleus and D. melanogaster larvae. SCARB1 has been shown
to play an important role in muscle regeneration [73]. Similarly, Crym was downregu-
lated, knockout of which in mice leads to hypertrophy of fast glycolytic fibers [74]. Pnf4,
important for actin polymerization [75] was also downregulated in both soleus and D.
melanogaster larvae.

2.4.3. Comparison of Space Flown Adult D. melanogaster and Fast Twitch
Mammalian Muscles

We next compared adult D. melanogaster to the mouse muscles. Spaceflight led to 459
DEGs (FDR<0.05) in adult D. melanogaster (Supplementary Table S14). Of these, we found 101
that are orthologous to mouse genes, which were used for ORA (Supplementary Table S15).
Four of the DEGs were found to be shared with the mouse EDL dataset. Genes that showed
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upregulation of expression in the two datasets were found to be involved in chromatin
scaffolding (Ppp1r10) and replication (Mcm6). Ppm1l, downregulated in both datasets, is a
negative regulator of stress and inflammatory cytokines. Hence, its downregulation in the
EDL is consistent with an increased immune response [76]. Also dysregulated was Hspg2,
which encodes an ECM protein.

2.4.4. Comparison of Space Flown Adult D. melanogaster with Mouse Soleus

A comparison of adult D. melanogaster DEGs with soleus DEGs (FDR < 0.1) revealed
12 shared genes shown in Table 4. Genes that are upregulated in both datasets include
a myosin protein ligase (Mylip) involved in muscle atrophy, previously reported to be
induced by glucocorticoids [77]. Also upregulated were genes encoding a helicase protein
Mcm2 involved in replication and the pro-survival gene, Ppm11, which negatively regulates
SAPK-mediated apoptosis. However, Jarid2 was also upregulated in both, which represses
pro-cell cycle genes [78]. Additionally, Cbs which takes part in the transulfuration pathways
in cysteine production, is also upregulated. Genes that are downregulated in both datasets
encode a nucleoporin (Nup37), a polymerase (Polr2e) and Dnajb4, the suppression of which
has been linked to decreased growth [79]. Genes upregulated in D. melanogaster but
downregulated in mouse soleus include the helicase subunit (Mcm6) and genes involved
in cysteine production (Gnmt), calcium signaling (Inpp5a), and limb development (Fjx1).

Table 4. DEGs shared between space flown adult D. melanogaster and soleus muscle and their
direction of regulation. Values shown are Log2 FC.

Genes Adult D. melanogaster Soleus

Both upregulated
Mylip 0.7 0.41
Ppm1l 0.69 0.46
Mcm2 0.69 0.38

Cbs 0.42 2.09
Jarid2 0.89 0.39

Both downregulated
Nup37 −0.33 −0.39
Polr2e −0.36 −0.47
Dnajb4 −0.33 −0.41

Opposite regulation
Gnmt 0.72 −0.6
Inpp5a 0.44 −0.86
Fjx1 0.41 −0.54

Mcm6 0.37 −0.79

2.5. Comparison between Ground-Based Unloading Models and Muscles from Space Flown Mice
2.5.1. Comparison between Gastrocnemius from Hindlimb Unloaded and Space
Flown Mice

To gain insight on shared transcriptomic signatures of ground-based unloading models
and space flown mice, a transcriptomic analysis was conducted on RNA of gastrocnemius
from space flown mice and a time and age-matched HU study (GLDS-21). Analyses
revealed 75 DEGs (p < 0.05) in the gastrocnemius from hindlimb unloading (HU) mice
(Supplementary Table S16) and 115 DEGs (p < 0.05) in the gastrocnemius from space flown
mice (Supplementary Table S17). The top upregulated genes in the HU model have roles in
UPR (Hspa1b, Hspa1a, Atsf3), and fatty acid biosynthesis and metabolism (Fasn, Ppargc1a).
Proto-oncogenes Fos and Jun were also upregulated in HU mice. In contrast, a previous
study reported upregulation of Fos and Jun in human muscle after exercise [80]. Addition-
ally, the top 10 most downregulated genes include mitochondrial genes such as Idh2, which
takes part in the electron transport chain, Bdh1 involved in ketone metabolism, and Ldhb,
which catalyzes the conversion of pyruvate to lactate. ORA performed on DEGs from gas-
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trocnemius of HU mice (Supplementary Table S18) revealed differential regulation of stress
responses (GO:0033554, GO:0009628), as well as muscle tissue proliferation (GO:0048659),
differentiation (GO:0035914) and development (GO:0007519).

Conversely, the top upregulated genes in the gastrocnemius from space flown mice
include Mt1 and Mt2, genes that have antioxidant activity and glucocorticoid response
elements [81]. We also found upregulation of a number of tumor suppressor genes such
as Btg2, Cebpd, Gadd45g, Cdkn1a and Tp53inp1 [82–86], suggesting reduced growth and
proliferation. Cidec, which codes for a protein that promotes lipid droplet formation in
adipocytes [87], was also upregulated. ORA of upregulated DEGs in spaceflight gastroc-
nemius (Supplementary Table S18) suggests a stress response as shown by differential
regulation of GC signaling (GO:0071385). ORA also revealed upregulation of glucose
metabolism (GO:0032868) in the gastrocnemius from space flown mice, suggesting alter-
ations in energy homeostasis.

A comparison of DEGs in HU and spaceflight gastrocnemius revealed five shared
genes with similar patterns of regulation. DEGs upregulated in both datasets suggest that
HU and spaceflight both lead to altered circadian rhythm (Nfil3), regulation of proliferation
(Btg2) and changes to endothelial adhesion (Cyr61), and scaffolding of acetylcholine recep-
tors at the neuromuscular junction (Musk), which may potentially alter muscle function.
Additionally, Bdh1, a gene involved in metabolism of ketone bodies, is downregulated
in both datasets. This is consistent with a previous study showing an increase in ketone
bodies such as 3-hydroxybutyrate in liver of mice flown on STS-135 [54].

2.5.2. Comparison of Muscles from Bed Rest Study and Space Flown Mice

Next, we investigated shared transcriptomic responses between representative mixed
fiber type muscles, and vastus lateralis muscles (VL) obtained from a bedrest study (NCBI
GEO GSE24215/GLDS-370) (349 DEGs, ± 1.5 FC, p < 0.05, Supplementary Table S19) versus
quadriceps of space flown mice (887 DEGs, p < 0.05), Supplementary Table S20). Eight genes
were shared between these datasets (Table 5). Upregulated in both datasets was Tbc1d12
involved in increasing glucose uptake [88], whereas the shared downregulated genes in-
cluded Ptp4a3, the downregulation of which increases expression of ECM genes [89], and
Fbxo40, the downregulation of which has been observed in muscular dystrophy [90]. Addi-
tionally, Ssmpx, a gene induced by stretching of muscles, was downregulated in the human
VL but upregulated in mouse quadriceps [91]. ORA of DEGs in human VL (Supplementary
Table S21) revealed downregulation of nucleotide metabolism (GO:0009117, GO:0006753)
and oxidation-reduction processes usually associated with oxidative phosphorylation
(GO:0055114). Conversely, ORA results for mouse quadriceps (Supplementary Table S22)
showed downregulation of protein metabolism (GO:0030163, GO:0044257, GO:0051603,
and GO:0006511) and a response to stress (GO:0033554).

Table 5. DEGs shared between human bedrest VL and space flown mouse quadriceps and direction
of expression. Values shown are Log2 FC.

Genes Vastus Lateralis Quadriceps

Both upregulated
Tbc1d12 0.84 0.29
Lonrf3 1.09 0.7

Both downregulated
Ptp4a3 −1.26 −0.61
Mgst3 −1.11 −0.41
Fbxo40 −1.1 −0.17
C7orf50 −0.89 −0.46

Opposite regulation
Smpx −1.09 0.30
Hccs −0.84 0.30
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3. Discussion
3.1. Mechanisms of Muscle Atrophy Resistance

Skeletal muscles are highly adaptive to changes in mechanical forces and display
a robust regenerative capacity. In response to weight-bearing or cell damage, cells can
initiate pro-survival signaling pathways that increase cell viability and growth, maintain
cell number homeostasis, and allow proliferation to meet functional needs. Analysis of
the transcriptomic response in the EDL from space flown animals reveals enrichment and
overrepresentation of gene sets involved in necrosis, wound healing, immune response,
and proliferation, which altogether may suggest a compensatory proliferation in reaction
to cell damage. Since mature muscles cells do not divide, the enrichment of proliferative
terms may represent the recruitment of satellite cells, which then differentiate into new
myofibers [92] to achieve muscle regeneration after cellular insult [93]. This hypothesis
is supported by enrichment of developmental GO terms and the upregulation of genes
such as Fos and Pax3 known to be expressed in activated satellite cells during muscle cell
development and in early muscle regeneration post trauma [94,95]. Previous studies also
show tissue regeneration markers of satellite cell activation in murine quadriceps during
spaceflight [96]. Spaceflight and its analogs can lead to impaired immunity [97–102]. A
more robust immune response in the EDL may also indicate damage and repair events in
this muscle, given the role the immune system plays in the regeneration process [103,104].
In the EDL, the upregulation of Il15, which codes for an immune modulating cytokine
previously noted to confer hypertrophic effects. Increased Il15 expression may contribute
to regeneration and prevent excessive atrophy in response to unloading [105]. Addi-
tionally, these results also suggest changes to vasculature, which may impact nutrient
availability and therefore growth. Previous work on the HU model revealed impaired
vasodilation [106] and vasoconstriction [107] in feed arteries of weight bearing plantar
flexors. Similarly, radiation exposure has been shown to impact development in human
vessel models [108]. The involvement of the above mentioned differentially expressed
genes in skeletal muscle atrophy can be tested in future spaceflight experiments.

A genetic mechanism that may contribute to the difference in sensitivity to atrophy
between the EDL and soleus may involve regulation of PDEs, which hydrolyze and tightly
control cAMP/cGMP. cAMP/cGMP are ubiquitous second messenger signaling molecules
known to protect against atrophy, increase myofiber size, and promote conversion to
faster glycolytic fibers [109]. Our results showed downregulation of phosphodiesterase
genes (Pde2a) in the EDL suggesting increased cAMP/gAMP signaling. In contrast, the
upregulation of Pde2a, along with five other phosphodiesterase genes (Pde3a, Pde4a, Pde4b,
Pde4c, Pde9a) in the soleus suggests decreased cAMP/cGMP signaling. Further work is
needed to define levels of cAMP signaling in different muscle types during spaceflight
and whether this pathway can be exploited to prevent muscle atrophy during spaceflight.
Additionally, in the EDL, a long non-coding RNA (Lncbate10) was upregulated, which
is known to protect Pgc1α from repression in adipose tissues [44]. This coincides with
the upregulation of Pgc1α, a gene whose expression is also known to protect against
atrophy [110]. The expression of Lncbate10 has been shown to be induced by high cAMP
concentrations, consistent with the downregulation of the cAMP regulator, Pde2a [44].
Spaceflight is known to induce slow-to-fast muscle fiber conversion [111]. In addition
to Pgc1α upregulation in the EDL, we also observed the upregulation of Mettl21e, both
of which are known to drive hypertrophy of type II myofibers [45,112]. Additionally,
we observed the downregulation of Vegfa in the soleus, which was not observed in the
EDL. This suggests opposing regulation of a key growth signal in vasculature of the two
muscle types, which influence nutrient availability and ultimately, the propensity for
muscle growth.

3.2. Glucocorticoids and the Circadian Rhythm

The enrichment of glucocorticoid (GC) signaling suggests that spaceflight led to
upregulation of the stress response. This is consistent with the reported rise in plasma
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and urine cortisol levels observed in certain but not all of spaceflight studies [113,114].
GCs are steroidal signaling molecules with many roles including the regulation of energy
homeostasis. They can cause the breakdown of amino acids and a decrease in insulin
sensitivity, which were previously observed in the soleus [115]. GCs can also induce
expression of clock genes via GC response elements and may therefore have a role in
perturbing the circadian rhythm and sleep cycles during spaceflight [22,116–118]. The
disturbance of the circadian rhythm in both muscles (EDL and soleus) may also negatively
impact muscle mass. For example, knockout of a key circadian gene, Bmal in mice led
to premature aging including sarcopenia [119]. Perturbations in GC and the circadian
signaling have been implicated in disorders such as metabolic syndrome, [120–122], sleep
disturbances [123,124], immune dysregulation [100,125,126] and cataracts [127]. Hence,
these signaling pathways may potentially represent therapeutic targets for the detrimental
effects of spaceflight.

3.3. Spaceflight Alters Mechanosensing and Neuronal Signaling in Mouse Muscle

Transcriptomic analysis of muscles from space flown mice revealed alterations in
signaling pathways involved in mechanotransduction and neuromuscular communication.
For example, results showed downregulation of Stum in the EDL, which encodes a protein
important for the sensing of mechanical stimuli in proprioceptive neurons [128]. This
finding is consistent with the effects of unloading and reduced proprioception observed
during spaceflight [128,129]. Similarly, we observed enrichment of genes involved in Rho
signaling, one of the pathways that can promote stress fiber formation [130]. Contractility
changes in stress fibers is thought to be one the mechanisms by which mechanical forces
exerted on the extracellular matrix (ECM) can be sensed by a cell [131]. We also found dif-
ferential expression of a number of genes involved in neuron excitability such as Grin2b, the
dysregulation of which leads to decreased muscle tone [132]. In the soleus, the enrichment
of gene sets involved in nervous system development and negative axon extension and the
downregulation of neurogenesis (GO:0022008) suggest changes to motor neuron signaling.

3.4. C. elegans Shows Similarity to Mouse Fast Twitch Muscle Responses to Spaceflight

Rodents have been widely used to extrapolate human responses to spaceflight due
to their significant genetic, physiological, and anatomical similarities. C. elegans, how-
ever, have been widely used to study developmental processes since at least 83% of the
proteome has a human homologue and ~8000 of its proteins have matching human gene
transcripts [133]. The use of C. elegans as a spaceflight model has advantages over rodent
models such as their relatively simpler maintenance requirements and smaller body size
that allows for a larger number of individuals to be flown in space. In addition, C. elegans
allows the use of genetic and molecular tools to dissect specific pathways and can be
used for the analysis of potential countermeasures. A caveat of our comparison is that the
transcriptomics was performed on a population of animals of mixed ages, and that nema-
todes contain multiple tissues—neurons, gut, reproductive tissue, in addition to muscles.
Understanding how responses in C. elegans mirror mammalian responses to spaceflight
may allow for better extrapolation to mammalian results. While the comparison between
C. elegans and mouse muscles revealed differences in spaceflight-induced regulation of
developmental genes, there was a shared increase in proliferation-related terms with the
more atrophy resistant EDL. Similarly, we posit that C. elegans may resist muscle atrophy
through shared increased cAMP signaling as indicated by the downregulation of Pde4b, en-
coding a cAMP regulatory enzyme, variants of which were upregulated in the soleus. The
more proliferative transcriptomic signature in C. elegans is more similar to that of the EDL,
suggesting shared mechanisms of resistance and may point to a utility for the organism in
anticipating responses of fast twitch muscle fibers. Additionally, while C. elegans have been
used for uncovering mechanisms of innate immunity analogous to humans, their immune
response to spaceflight was not comparable to that seen in fast or slow twitch muscle. This
may be due to the lack of an adaptive immune system in C. elegans [134].
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3.5. Discrete Life Stages of D. melanogaster May Have Distinct Utility for Studying Muscle Types

Establishing shared responses to spaceflight between D. melanogaster and mammalian
muscles also may be of value in anticipating mammalian responses to spaceflight. D.
melanogaster are desirable as flight payloads due to their relatively small experimental
footprint and their ease of maintenance. A comparison between different life stages of D.
melanogaster and mammalian fast and slow twitch muscles revealed that discrete fly life
stages may have differing utility for modeling certain features of the response to spaceflight
in these mammalian muscle types. For example, an increase in protein metabolism as well
as the downregulation of the UPR, two key features of the soleus response, were observed
in D. melanogaster larvae. Conversely, protein metabolism was downregulated in adult D.
melanogaster and not observed in the fast twitch EDL. This may suggest stage-dependent
differences in metabolism. Moreover, other features of mature adult D. melanogaster are
more akin to the fast twitch muscle, including an increase in amino acid production,
calcium signaling and limb morphogenesis suggesting an environment with more growth
signals. With regards to metabolism, the increase in expression of genes involved in
fatty acid transport in adult D. melanogaster is akin to that of the EDL. However, adult D.
melanogaster also shows a shared degradation of myosin protein with slow twitch muscle
EDL. Furthermore, we also found a similar stress response between space flown adult
D. melanogaster and mouse fast twitch muscle as indicated by differential regulation of
circadian rhythm and antioxidant response genes.

Spaceflight and analog studies using D. melanogaster may allow for greater mecha-
nistic insight on muscle gene regulation under spaceflight conditions. To date, on-orbit
sampling of invertebrate models has mostly involved whole animals due to the logistical
challenges of performing microdissections of tissues. Transcriptomic signatures can vary
across muscle types and such differences may not be captured when analyzing the overall
transcriptome from the whole organism. For example, each muscle type in D. melanogaster
has a discrete pattern of isoform expression of Troponin, which regulates thin filament
contraction [30,135]. We found that these isoforms are also differentially expressed in both
spaceflight and analog experiments, consistent with a previous report [30]. Advances in
sample preservation and in situ dissections on orbit will greatly improve our ability to gain
mechanistic knowledge from smaller model organisms.

3.6. Differential Regulation of ECM in Spaceflight across Organismal Models

Our results indicate differential regulation of ECM-related processes in C. elegans, D.
melanogaster, and rodent EDL in response to spaceflight. Specifically, C. elegans showed
downregulation of ECM organization and cell adhesion gene sets while these were upregu-
lated in the EDL. Similarly, there was downregulation of ECM genes Hspg2, Prcp in larval
D. melanogaster, while these genes were upregulated in the EDL. Hspg2 encodes Perlecan,
which is involved in ECM organization [135]. PRCP activates Prekallikrein, which cleaves
fibronectin, a component of the ECM [136]. Hspg2 was also differentially regulated in adult
D. melanogaster. Comparison of vastus lateralis from bedrest and quadriceps from space
flown mice also revealed a shared upregulation of Ptp4a3, the downregulation of which
increases expression of ECM genes [89]. These results suggest a general trend of increased
expression of ECM-related genes in rodents and humans compared to downregulation in
smaller model organisms such as D. melanogaster and C. elegans. The ECM plays impor-
tant roles in a plethora of biological processes ranging from growth, migration, structural
organization, barrier formation, and the immune response [137]. It is also impacted by
spaceflight or simulated microgravity, as part of the mechanotransduction pathways in-
volving integrins and mechanically activated ion channels [138]. The differences in the
direction of regulation of ECM-related genes may be due to differences in body or tissue
structure (hence differing ECM composition) and the differences in the timing of sampling
and duration of flight. However, differential expression of ECM-related genes in all space-
flight models and analogs tested in this study suggest that ECM remodeling is likely to be
a universal response to spaceflight.
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3.7. Transcriptomic Signatures of Spaceflight Models and Analogs Exhibit Similarities and
Key Differences

Ground-based analogs such as HU have proven useful in anticipating many aspects
of the musculoskeletal response to microgravity. Analysis of the transcriptome of the gas-
trocnemius from space flown rodents and a time-matched HU study revealed differences
in transcriptomic signatures between these two models, particularly in the direction of reg-
ulation of genes involved in cell proliferation, circadian rhythm, endothelial cell adhesion,
and motor neuron signaling. These changes are consistent with musculoskeletal atrophy,
gait changes, sleep disturbances, and altered vascular function in humans that experienced
spaceflight. However, we recognize that experimental limitations may impact comparative
analysis of ground-based and spaceflight studies in rodents. Specifically, differences in ani-
mal handling and housing of space and ground-based rodent models can potentially affect
the results. The use of appropriate housing controls and introduction of manipulations in
controls that consider the additional handling associated with sending payloads to space
(e.g., transport in ground vehicles, landing forces, light-dark cycle changes) may minimize
the confounding factors when comparing findings from ground-based versus spaceflight
rodent studies.

We also compared muscles from a rodent spaceflight and human bedrest study, two of
the relatively resource intensive approaches to modeling human responses to spaceflight.
Both have key advantages relative to ground-based rodent models. The former is expected
to reflect mammalian responses to actual spaceflight and the later, actual human physio-
logical responses to unloading. We found that representative mixed fiber type muscles in
HU mice and humans on bedrest (quadriceps and VL, respectively) share similarities in
differential expression of Tbc1d12, a gene involved in glucose uptake. In addition, Fbxo40,
a gene that is also upregulated in a denervation model for muscle atrophy [90] is similarly
responsive to both spaceflight in rodents and bedrest. Further, FBXO40 functions as a
muscle-specific E3 ubiquitin ligase that is regulated by activated STAT3, thereby increasing
insulin resistance in mice under 1G conditions [139]. Upregulation of both Tbc1d12 and
Fbxo40 in bedrest and rodent spaceflight models is consistent with reported perturba-
tions in glucose metabolism observed in humans in space [140]. These findings provide
a rationale for testing whether targeting Fbxo40 and its signaling partners will be useful
in mitigating muscle atrophy and altered glucose metabolism in both spaceflight and
Earth-based scenarios.

4. Materials and Methods
4.1. Datasets Used in This Study

Table 1 lists the various datasets used in this study. These datasets can be found in
NASA GeneLab and are cited in these references [24,25,37–41]. The datasets involving
mice flown on the ISS make use of the NASA Rodent Research notation for the various
experimental groups. Specifically, NASA RR-1 validation mice consisted of four groups to
also enable assessment of the contributions of age and cage configuration. These include
Spaceflight (FLT) and Ground Control (GC) groups, which both make use of the NASA
rodent habitat. The GC group was run with a 4-day delay to allow for replication of
actual temperature, gas partial pressures, and humidity conditions of the FLT group. In
addition, a baseline (Basal) group was euthanized on Earth one day after launch to compare
changes in both the FLT and GC groups. Lastly, a Vivarium (Viv) control comprising mice
maintained in standard housing was also included to determine the impact of the mouse
habitat hardware in the results obtained from the FLT and GC groups. Refer to [17] for
further details. NASA GeneLab generated omics data from the following comparisons:
Basal vs Viv controls, GC vs Viv controls, FLT vs GC [17]. In this work, we focus on the GC
and FLT groups. A number of bedrest studies focusing on muscle have been published,
with a variety of assay approaches (coding and non-coding RNA), main experimental
variables, and tissue collection schemes [24,141,142]. For this current analysis, we selected
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a transcriptomic dataset from a previous bedrest study [24] based on availability of raw
expression data from coding RNA.

4.2. Processed RNAseq Data

Differential expression data of RNA-seq datasets (GLDS-99, 103 and 104) were down-
loaded from NASA GeneLab. The NASA GeneLab online database describes the stan-
dard analysis pipeline used to generate this processed data. Briefly, the percentage of
rRNA in raw fastq files was assessed using HTStream SeqScreener (version 1.0.0) and
then filtered using Trim Galore! (version 0.6.2). The quality of both raw and trimmed
reads was evaluated with FastQC [143] (version 0.118), while MultiQC [144] (version 1.7)
was used to generate MultiQC reports. Indexes for Mus musculus genome were gen-
erated with genome version mm10-GRCm38 (Mus_musculus.GRCm38.dna.toplevel.fa),
and Mus_musculus.GRCm38.96.gtf using STAR [145] (version 2.7.1a). Processed reads
were aligned to the Mus musculus reference with STAR (version 2.7.1a) and aligned
reads were then quantified using RSEM [146] (version 1.3.1). Quantification data was
imported to R [147] (version 3.6.0) with tximport [148] (version 1.14.0) and normalized
with DESeq2 [149] (version 1.26.0). Differential expression analysis was conducted in
R (version 3.6.0) using DESeq2 (version 1.26.0). All groups were compared using the
Wald test and the likelihood ratio test was used to generate the F statistic p value. Gene
annotations were assigned using the following Bioconductor and annotation packages:
STRINGdb [150], PANTHER.db [151], and org.Mm.eg.db [152]. Differential expression
analysis using DESeq2 [153] was performed on expression data from space flown sub-
jects against ground controls to assess gene level changes in these muscles and use in
downstream pathway analysis.

4.3. Processing of Microarray Data

For Affymetrix microarray datasets (GLDS-3 and GLDS-21), the raw expression data
were downloaded from NASA GeneLab database. The data were normalized using the
‘affyNormQC.R’ r script applying the RMA algorithm through the oligo R package with
default parameters. The ‘affyNormQC.R’ r script was also used to generate quality control
with parameter ‘do.logtranspaceflightorm’ set to TRUE. The microarray experiments were
annotated with the r script ‘annotateProbes.R’, which employed Annotation-Db class
probe annotations specific to the chip used in each experiment from the Bioconductor
repository. In cases where multiple probes mapped to the same gene ID, representative
probes were selected with the highest mean normalized intensity across all samples. The
limmaDiffExp.R r script was used to perform differential gene expression analysis on
normalized expression data to perform pair-wise comparisons for all groups. For each
probe set, the variance of mean signal intensities was estimated, improved by an empirical
Bayes method for combining variances of probes showing similar variability, and the
significance of the difference between the means was evaluated with a t-test to obtain p
values. p values were adjusted for multiple hypothesis testing using the Benjamini and
Hochberg method to control the false discovery rate [154,155]. Raw Agilent microarray data
(GLDS-113 and GLDS-370) were downloaded from NASA GeneLab. Data were analyzed
using Gene Spring software (Agilent Technologies, Santa Clara, CA, USA). Background
correction was performed using the ‘normexp’ method (with offset = 50), and between
array normalization was performed utilizing the quantile normalization method with
a log2 transformation. Control probes and those without a RefSeq ID were removed,
while probes mapping to the same RefSeq ID were collapsed by mean expression (leaving
~20,700 genes for analysis). All datasets used are outlined in Table 1 and anatomical
locations of mammalian muscles are shown in Figure 1.

4.4. Pathway Analysis

First, differential expression analysis (DEA) was performed to reveal DEGs, the top 10
of which sorted by fold change values were used to pinpoint central players that orchestrate
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the response to spaceflight. ORA using WebGestalt [156] was then performed on DEGs to
determine enriched gene ontology terms (Log2 FC > 0.32 or < -0.32, FDR adjusted p < 0.05).
A variance stabilizing transformation was applied to the count data from datasets GLDS-99
and GLDS-104, and a Gene Set Enrichment Analysis was performed with FDR threshold of
< 0.1 using Cytoscape [157]. The EnrichmentMap and Autoannotate Cytoscape plugins
were used to visualize and annotate clusters of overlapping gene sets to help identify
overarching enriched functional themes and aid in the interpretation of the effects of
spaceflight in distinct muscle types. A comparative analysis was performed on the results
from each muscle.

5. Conclusions

This study aimed to determine the effects of spaceflight on the transcriptome of dis-
tinct mammalian muscle types and to define shared transcriptomic signatures across a
variety of model organisms. Our analyses revealed that spaceflight elicited both shared
and discrete responses in representative slow and fast twitch muscle types (soleus and EDL
respectively). The shared responses between these muscle types include altered expression
of genes involved in GC stress responses and the circadian rhythm. These two muscle
types displayed differences in transcriptomic signatures pertaining to immune function
and cellular growth, with the EDL exhibiting greater degree of differential regulation of
these processes based on the number of differentially expressed genes between spaceflight
and ground samples. Additionally, EDL and soleus showed differences in the transcrip-
tomic response of genes involved in ER stress mechanisms. Our findings also highlight the
possible role of Pde2a as a key molecule that may confer the atrophy resistance seen in the
EDL. We also found that the muscle specific Ubiquitin E ligase Fbxo40 was downregulated
across models for muscle atrophy (bedrest and spaceflight), suggesting a possible target
for countermeasures development. These results were also used as a backdrop for the com-
parison to spaceflight responses of non-mammalian models. The molecular signature of C.
elegans in response to spaceflight showed greater similarity to that of the EDL. Furthermore,
the transcriptomic signature of the larval stage of D. melanogaster showed more similarity
to the slow twitch muscle soleus. In contrast, the response of adult D. melanogaster was
more akin to that of fast twitch muscle EDL. Muscles from rodent spaceflight and human
bedrest studies indicate alterations in glucose homeostasis and circadian rhythm which are
consistent with findings in humans that experienced spaceflight.

As expected for a highly resource intensive data collection endeavor, spaceflight omics
datasets are rare and can have differences in experiment designs. One of the advantages
of applying unbiased bioinformatics analyses of gene expression data is that patterns,
differences, or similarities in the regulation of biological processes can be observed from a
relatively small number of datasets. We have demonstrated that such an approach can be
used to continue to gain insight on the shared responses across model organisms and also
between ground and flight analogs for microgravity. However, we recognize limitations
in this study, including the possibility that differing experiment designs across datasets
such as duration of flight, relative life stage and gender and sex can impact the results
obtained. In addition, several datasets yielded a relatively small number of differentially
expressed genes, which can limit the ability to find shared molecular signatures across
multiple datasets. As more spaceflight and analog datasets become available from the
various model organisms, follow-up analyses can be conducted using the approach we
have employed. We anticipate that doing so will reveal additional shared mechanisms
across the model organisms of spaceflight. Although the use of invertebrate models such as
D. melanogaster and C. elegans show promise in anticipating select spaceflight responses of
specific muscles, our findings also confirm the marked differences in molecular signatures
across these model organisms when dissections are not possible. Hence, the use of rodents
to extrapolate human responses to spaceflight continue to have major advantages from
a physiology perspective versus classic non-mammalian genetic model systems such
as D. melanogaster and C. elegans. However, our findings raise the possibility of using
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invertebrate models as a first step toward conducting precision animal research in future
deep space missions.
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