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Abstract 
The Internet of Things (IoT) has witnessed unprecedented growth, revolutionising the 

way we interact with connected devices and services. While IoT offers numerous 

benefits, it presents unique challenges for digital forensics due to the sheer volume 

and diverse formats of data generated. The varied array of devices, operating 

systems, and communication protocols further complicates investigations, demanding 

tailored approaches for information extraction. The absence of standardised 

regulations within IoT forensics adds to the complexity, hindering consistency and 

reliability. The real-time nature of IoT also requires novel forensic methods that align 

with dynamic data flows. This thesis presents a comprehensive review of IoT 

forensics, addressing the complexities of investigating connected environments and 

contributing novel methodologies and frameworks to the field of digital forensics. 

This thesis proposes a comprehensive IoT framework that addresses the legal and 

technical challenges of IoT forensic processes to be validated by Machine Learning 

techniques that aid in the examination and analysis of digital forensic data collected 

from smart home environments. 

The thesis begins with a comprehensive review of the status of IoT forensics through 

a systematic literature review that explores the current legal and technical challenges 

of IoT forensics and emphasising the uniqueness of IoT forensics. 

A novel IoT digital forensics investigation framework is presented, offering a structured 

approach to investigations in IoT environments. This framework outlines four key 

phases, from preparation, live investigation, offline investigation to presentation, and 

is designed to tackle the unique challenges posed by IoT investigations, particularly 

the high volume of data. The framework is further validated through the integration of 

machine learning techniques, demonstrating its practical applicability in smart home 

environments. 

The scarcity of datasets that depict real life IoT scenarios for digital forensics use is a 

big challenge for IoT forensics researchers. Therefore, this thesis explores different 

smart home simulation strategies and tools and employs a simulator. The simulator is 

used to simulate a dataset based on hypothetically created digital forensic case 

scenarios that mimic a real-life smart home inhabitant. 
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A new approach is proposed for the use of Hash Indexed Sparse Distributed 

Representation (HI-SDR) as an input to state-of-the-art anomaly detectors. This 

technique enhances the accuracy of anomaly detection algorithms, contributing to 

improved digital forensics investigations in IoT environments. HI-SDR improves 

feature representations, enabling robust detection of anomalies such as intrusions, 

variant activities, and deviations from the smart home norm, even in the presence of 

noise. The results demonstrate that the inclusion of HI-SDR enhances the overall 

performance of anomaly detection. For instance, there was an impressive 

improvement of 17% in accuracy and an astonishing leap of over 45% in recall 

compared to the state-of-art models (OCSVM and Isolation Forest). Additionally, in the 

case of Isolation Forest, the precision score witnessed a remarkable boost from 27% 

to 49%, an uplift of 22%. Moreover, the F1 measure, a pivotal metric capturing the 

equilibrium between precision and recall, experienced a substantial 29% 

improvement, ascending from an initial score of 36% to an impressive 65%. These 

percentages underscore the evident enhancements attributed to the strategic 

combination of HI-SDR and machine learning models. This strategic combination of 

HI-SDR and machine learning models not only addresses the challenges posed by the 

unique characteristics of IoT data but also contributes substantively to the 

advancement of digital forensics in smart environments. 

This thesis demonstrates the effectiveness of the proposed framework through the 

integration of machine learning algorithms, specifically the HI-SDR employed for 

anomaly detection. This significantly improves the accuracy and efficiency of 

identifying suspicious activities in smart home environments, and hence aids in the 

analysis of high volume of data for digital forensic purposes. 
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CHAPTER 1. INTRODUCTION 
This chapter serves as an introduction to the thesis and provides an overview of the 

driving motivations behind the research's central themes. It introduces the research 

questions and outlines the specific research objectives, shedding light on the 

contributions to knowledge that this study brings. Finally, this chapter details the 

research methodology employed and concludes by providing a comprehensive 

breakdown of the thesis structure, chapter by chapter. 

1.1 Background  
The Internet of Things (IoT) landscape has experienced rapid growth in recent years, 

marked by the proliferation of diverse IoT devices and applications. While certain IoT 

devices adopt a passive approach to conserve energy and activate only, when 

necessary, there is a notable presence of constantly connected and accessible 

devices that can be operated remotely over the internet from virtually any location. The 

pervasive interconnection within the IoT ecosystem has ushered in a hyperconnected 

era where various entities, including individuals, IoT devices, cloud storage, mobile 

applications, and data, seamlessly interact with one another. This heightened level of 

interconnectivity has blurred the boundaries between virtual reality and the physical 

world, rendering many online services as tangible experiences rather than mere virtual 

events. Consequently, new terminologies such as hyperconnectivity, Internet of 

Everything (IoE), and Artificial Intelligence of Things (AIoT) have emerged to 

encapsulate and describe this transformative phenomenon (Kim, Park and Lee, 2023; 

Mohamed, Koroniotis and Moustafa, 2023). 

This rapid growth and usefulness of IoT has seen it being deployed in critical and 

strategic infrastructure sectors like healthcare, transport, agriculture, home 

automation, and smart industries among many others (Yaqoob et al., 2019). According 

to a report by Cisco (2016) on the state of IoT, it is expected that by 2030, there will 

be over 500 billion connected by the internet. The report also stated that the IoT 

business was estimated to have a revenue turnover of around $14.4 trillion by the year 

2022. This revelation indeed shows that the number of connected IoT devices has 

already surpassed the human population in the world. The benefits of comfort and 

reliability of IoT technologies to human beings have brought with them security 

concerns. Policy makers and law enforcement agencies have been left to scamper in 
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finding ways to address these security and privacy concerns. This is due to its large-

scale connectivity and over reliance on the internet for communication making it 

susceptible to cyberattacks. As was way back highlighted by Hegarty, Lamb and 

Attwood (2014), digital forensics experts still face a daunting task of handling these 

cyberattacks because of the unique and complex challenges posed by IoT like big IoT 

data, cross border legal jurisdiction, and maintaining a chain of custody. Kebande and 

Ray (2016) note that recently, researchers have been drawn to finding solutions to 

these challenges, however, this is still in its infancy.  

IoT forensics can be defined as a branch of digital forensics that combines three levels 

namely, device level forensics, network level forensics and cloud level forensics. This 

is explained further by Zawoad and Hasan (2015) who stated that IoT forensics 

involves the investigation of IoT infrastructure (device, network, and cloud). This is 

whereby local memories of IoT devices could be investigated for potential evidence, 

network log files could be retrieved to reveal user activities and the cloud being a major 

storage of IoT device data could be a source of potential evidence. 

IoT forensics is a cumbersome process as there is no standardisation of the IoT 

products, no or limited historical data is stored on the devices and them being always 

connected makes them extremely volatile (Conti et al., 2018). 

The complexity around the extraction of data from IoT environments is a major setback 

in the ability of producing legally admissible evidence in a court of law Kebande and 

Ray (2016). 

These complexities are attributed to the following reasons as brought out by Hegarty, 

Lamb and Attwood (2014). 

• The IoT spectrum poses a huge uncertainty of the originality of data, the storage 

mechanisms, the attributes associated with the data, and the privacy rights of 

the data. 

• There is a struggle to secure and maintain a chain of custody because of the 

highly volatile IoT data. 

• There are difficulties in applying the traditional digital forensics tools to extract 

data which could be stored on the cloud. 
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• Legal complexities due to cross-border jurisdiction, multi-tenancy, and service 

level agreements. 

• Varied and proprietary storage mechanisms of data which has very limited 

visibility due to IoT devices being resource constrained. 

1.2 Research Gaps 
Most of the research surveyed have proposed models and frameworks that have 

majorly focussed on conceptual levels that are more theoretical. Further 

investigation and research are required to tackle among others the following key 

issues: 

a) Development of process models, methodologies and tools that are 
practical 

Although sound principles have been applied in the proposed models and 

frameworks to tackle the complex challenges of IoT forensics, there is still exists a 

need to conduct robust experiments that can be validated scientifically. Any new 

methodologies, techniques, approaches, and tools developed must also undergo 

a scientific validation. 

b) Smart analysis and presentation of evidence 

Due to the huge data generated by IoT devices (which can be referred to as ‘Big 

IoT Data’), it is important that the research community finds a way to create 

techniques that are smart to analyse the data. This data has varied data formats 

and is generated from heterogenous devices that may make it difficult to analyse 

and produce reports that are admissible in a court of law. 

c) Provision of forensic readiness 

The production of IoT equipment and provision of IoT services that are readily 

adaptable and integrated into the current digital processes is still a challenge in 

digital forensics investigations. Even though measures have been taken to address 

security features in IoT, issues related to forensics readiness for IoT systems still 

remain clouded (Bajramovic et al., 2016). 

d) Mitigating the privacy risks 
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Privacy is a contentious issue in relation to investigation processes that involve 

personal and protected data as stipulated under the European Union (EU) data 

protection laws and General Data Protection Regulations (GDPR). Full disclosure 

must be given to the owners. This involves letting them know that their data will be 

used for the investigation process and should be made aware of how the data was 

accessed and by whom. Those who access the data must put in place protective 

measures that forbids unauthorised access, any form of manipulation and loss. 

e) Solutions to resolve legal issues 

Evidence admissibility in a key issue in digital forensics, however, many of the 

models discussed in this survey have not addressed the legal aspects related to 

how evidence is acquired. The challenges relating to cross-border jurisdictions are 

imminent in cloud forensics which is a huge part of IoT systems. There needs to 

be propositions for solutions for legal challenges as IoT relies heavily on the cloud 

both for application services and architectural structure. 

f) The need for digital warrants 

As evidenced by research done by Oriwoh et al. (2013) on the Next Big Thing 

(NBT) and Harbawi and Varol (2017) on Last on Site (LoS) algorithm models, it is 

difficult to determine the scope of the investigation. This is because, potentially 

new evidence sources are likely to be discovered during the investigation process. 

With the challenges related to limited visibility and high volatility of the data 

exposing it to manipulation and compromise, it calls for the need for mechanisms 

that are practical. This can be resolved by the implementation of digital warrants to 

enable successful retrieval of evidence from newly discovered sources. 

1.3 Research Motivation 
Due to its ever-changing and dynamic nature, coupled with the complexity it introduces 

to digital forensics investigations, the IoT phenomenon has attracted significant 

attention from scholars and researchers. It therefore becomes increasingly important 

to focus on IoT forensic research. This field is driven by the growing adoption of IoT 

devices and the rapid integration of cloud-based technologies, which present new 

challenges and opportunities for digital forensics. 
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In recent years, several trends have emerged that further emphasise the need for 

research in the application of machine learning approaches to IoT forensics. First, the 

exponential growth of IoT devices has led to an unprecedented volume of digital data 

generated from various sources. This data, often characterised by its variety, velocity, 

and volume (the three Vs of big data), poses significant challenges for traditional 

forensic techniques. Machine learning algorithms offer the potential to analyse and 

extract valuable insights from this vast amount of IoT-generated data, enabling more 

efficient and effective forensic investigations (Sarker, 2021; Dunsin et al., 2023). 

Secondly, the convergence of IoT and cloud computing has introduced complex data 

flows and distributed storage models. This trend presents unique digital forensic 

challenges, as investigators must consider the distributed nature of data and the 

potential fragmentation of evidence across multiple cloud providers and IoT devices. 

Machine learning techniques can aid in reconstructing the digital trails left by IoT 

devices, analysing fragmented data, and identifying patterns and anomalies that might 

be crucial for investigative purposes (Diro et al., 2021). 

Furthermore, the evolving legal landscape adds another layer of complexity to IoT 

forensics. Courts and legal systems are grappling with the admissibility and reliability 

of digital evidence obtained from IoT environments. Traditional digital forensics 

investigation methods may not adequately address these challenges. Therefore, 

exploring the application of machine learning approaches that adhere to digital 

evidence admissibility and validity criteria becomes imperative. 

By undertaking research in this domain, researchers can contribute to the 

development of innovative techniques that address the aforementioned trends and 

challenges. This includes exploring machine learning algorithms for data analysis, 

developing methodologies for handling distributed and fragmented evidence, and 

proposing frameworks that ensure the admissibility and validity of digital evidence in 

court. Such research has the potential to shape the future of IoT forensics and equip 

investigators with the necessary tools and techniques to effectively tackle complex 

investigations in IoT environments. 

1.4 Aim 
The aim of this research is to propose a novel Internet of Things forensic framework 

that addresses the legal and technical challenges of IoT forensic processes to be 
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validated by a Machine Learning technique that aids in the examination and analysis 

of forensic data collected from a smart home environment. 

1.5 Objectives 
The objectives of this research are as follows: 

1. To investigate through a systematic literature review, the current state of 

Internet of Things digital forensics methodologies, models, and frameworks. 

2. To study the key factors (legal and technical) affecting IoT forensics and 

recommend measures for standardisation of rules to aid the digital forensics 

investigation process. 

3. To review the automated processes in digital forensics and explore the 

application of Machine Learning concepts to aid in the analysis of IoT 

forensic evidence. 

4. To propose, design, develop, implement, and test a new IoT forensic 

framework and validate it through a novel Machine Learning approach 

detailing possible solutions to address legal and technical challenges in IoT 

forensic processes. 

5. To critically evaluate the proposed IoT forensic framework and the Machine 

Learning approach deployed. 

1.6 Research Questions 
To achieve these objectives, the following are the research questions: 

1. Research Question: What is the current state of IoT digital forensics 

methodologies, models, and frameworks, and how can they be improved to 

address the legal and technical challenges in the field?  

2. Research Question: How can standardisation of rules be achieved to mitigate 

legal and technical challenges in IoT digital forensics, and what role can 

Machine Learning play in enhancing the investigation process?  

3. Research Question: What is the effectiveness of the proposed IoT forensic 

framework and the proposed approach of integration of the Machine Learning 

technique in addressing legal and technical challenges, and how does it 

compare to existing methodologies? 
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1.7 Contributions to Knowledge 
The following are the primary and secondary contributions to knowledge by this 

research: 

Primary Contributions 

1. A novel IoT forensic framework has been proposed, 

addressing legal and technical challenges in IoT forensic 

processes.  

2. Validation of the proposed framework by selecting acceptable 

Machine Learning technique/algorithm for analysing IoT 

forensic data. 

Secondary Contributions 

3. Systematic Literature Review of IoT forensics and a review of 

the current legal and technical challenges of IoT forensics.  

4. Generation of new IoT forensic datasets representing a 

simulated smart home environment. These datasets are 

made public for future research projects. 

1.8 Research Methodology 
According to Edgar and Manz (2017), the comprehension of the purpose of science 

and the knowledge of the cyber security domain pose challenges to conducting 

research. This understanding, coupled with the complexity of modern research, 

hinders researchers from proposing experiments. Although it is widely known that 

scientific methods form the foundation of scientific inquiry, their application is further 

complicated by the certainty associated with contemporary research. Despite the 

scientific method being a simplified abstraction process followed by researchers, it 

remains a difficult and intricate endeavour (Edgar and Manz, 2017). 

While certain methods are commonly defined and yield defensible and justifiable 

results across various research fields, the constantly evolving technological 

advancements necessitate changes in these methods over time. Consequently, 

researchers are compelled to seek efficient and effective approaches to conduct their 

investigations. 
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1.8.1 Overview of Research Methods 
Research methods are broadly categorised as quantitative and qualitative. 

Quantitative methods gather numerical data for statistical analysis and explanation 

(Edgar and Manz, 2017). Williams (2007) suggests their preference due to analysis 

flexibility. Quantitative designs encompass quasi-experimental, descriptive, 

correlation, and experimental approaches. 

Qualitative methods focus on descriptive data collection and analysis, especially in 

studying human subjects' social and emotional aspects. Though categorisable, 

qualitative data lacks mathematical quantification (Edgar and Manz, 2017). 

Mixed methods, per Wisdom and Creswell (2013), combine quantitative and 

qualitative data in a single study for comprehensive integration, avoiding strict 

separation. 

This research employed a research approach based on the onion research 

methodology developed by Saunders, Thornhill and Lewis (2009) and involved a 

mixed methods methodology. The authors Saunders, Thornhill and Lewis (2009) 

associate a research approach to an onion; in this scenario, the outer most layer is 

the philosophy of the research. After the development of a research philosophy, a 

research approach is adopted and thereafter the research now goes to the third layer 

which is the research strategy. Upon defining the research strategy, the researcher 

moves to the next layer which data collection. 
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Figure 1.1 is the Saunders, Thornhill and Lewis (2009) onion research methodology.

 

Figure 1.1 Adopted Research Methodologies based on Saunders, Thornhill and 
Lewis (2009) Onion Research Methodology 

1.8.2 Research Philosophy  
Kulatunga, Amaratunga and Haigh (2007), along with many other researchers, 

emphasise the importance of considering research philosophies. Easterby-Smith, 

Thorpe and Jackson (2002) assert that neglecting a thorough reflection and 

understanding of philosophical issues can have detrimental effects on the quality and 

value of research outcomes. By engaging in thoughtful consideration of philosophies, 

researchers can identify the most appropriate research methodology from the outset 

of their study. These research philosophies assist researchers in determining the type 

of evidence needed, as well as how it should be collected and analysed to address 

the research problem effectively. Furthermore, the adoption of research philosophies 

enables researchers to resolve research questions by identifying, adapting, or creating 

research designs that may go beyond their existing knowledge or expertise (Easterby-

Smith, Thorpe and Jackson, 2002). According to Baker (2004), there are two distinct 

research philosophies: positivism and interpretivism. 

Positivism - This is commonly recognised as a "scientific" approach that relies on 

well-structured and measurable methods inspired by the scientific community's 

practices in studying natural phenomena. In this approach, researchers maintain a 
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certain level of detachment from the subjects they study and frequently employ 

observation as a means of gathering information. 

Interpretivist - Interpretivist methodology is inclined towards gathering qualitative 

data and utilises techniques such as unstructured interviews and participant 

observation, which generate this type of data. Researchers following the interpretive 

approach acknowledge that they will both influence and be influenced by the research 

activity, resulting in a natural relationship between them. They believe that it is crucial 

to analyse how humans interpret various activities and contend that methods beyond 

those employed in positivism are capable of achieving this. 

In contrast, this research adopted a positivist approach as its philosophical 

perspective, primarily due to its objectivity and reliance on logical inferences. 

Positivism places significant emphasis on measuring and verifying facts. Stage and 

Manning (2003) elaborate that this philosophy establishes an objective relationship 

between the researcher and the research topic, while also allowing for the 

incorporation of other models. 

Furthermore, the authors highlight the advantage of the positivist philosophy in basing 

hypotheses on statistics and quantifiable measures obtained through experiments, 

which facilitate the manipulation of variables. Additionally, this philosophy permits the 

use of mixed methods, encompassing both qualitative and quantitative approaches, 

enabling generalisation of the secondary data (Stage and Manning, 2003). 

1.8.3 Research Approach 
The choice of research methods employed by a researcher depends largely on the 

research paradigms that they adhere to, which ultimately determine the selection of 

strategies for data analysis. The researcher's opinions, or epistemological 

perspectives, guide the rules within a specific domain or general rules, thereby 

reflecting their beliefs regarding what to retain, discard, or modify. These perspectives 

play a crucial role in the research plan, evaluation, and monitoring process. 

Epistemological perspectives also influence a researcher's judgment of the validity 

and relevance of literature materials used in their research (Hogan and Maglienti, 

2001). These authors further argue that the theories in scientific and social research, 

particularly those aligned with a positivist philosophical perspective, tend to produce 

observations and conclusions that are independent of the theories themselves. 
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For this research, a quantitative research design was preferred due to its emphasis on 

creating testable hypotheses and generalisable theories (Amaratunga et al., 2002) in 

the field of application of machine learning in digital forensics. The application of 

machine learning algorithms relied on these hypotheses and theories to inform the 

algorithm's design. 

Quantitative methods possess fundamental and distinctive properties that enable the 

verification and application of research findings. This is particularly advantageous 

when investigating behaviours and mechanisms, as it allows for understanding of how 

different jurisdictions implement laws and the legal challenges they face, thereby 

facilitating the formulation of formalised and standardised approaches to aid in IoT 

forensics. 

Another benefit of the positivist approach, as highlighted by Amaratunga et al. (2002), 

is its capacity for comparison and replication, which helps determine the reliability and 

validity of hypothesis verification in a study. 

In this research, an inductive approach was adopted. As Bell and Bryman (2007) point 

out, an inductive approach aligns with the common understanding of the relationship 

between theory and research, where results are derived through logical reasoning. 

1.8.4 Research Strategy 
The grounded theory was based on the inductive approach. Cohen, Glaser and 

Strauss (2017) explain that in the grounded theory, the research is started with an 

open mind without any preconceived knowledge of what the results will look like. The 

resulting data forms a new theory which is placed in context through experiments. 

The grounded theory strategy was utilised in this research to thoroughly review 

existing literature and identify any gaps, leading to the generation of new ideas that 

address the research questions and objectives effectively. 

This research adopted a case study strategy approach to provide practical and viable 

solutions to the research questions posed, ultimately accomplishing its overall aim. 

1.8.5 Simulation  
Edgar and Manz (2017) acknowledge the inherent complexity of the cyber space, 

making it impractical to mathematically model every aspect, especially when 

considering human behaviour. To address this challenge, the authors propose the use 
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of computer simulations to explore system interactions, theoretical limits, and 

component performance. 

Simulation, as defined by Edgar and Manz (2017), involves the application of computer 

processes to replicate cyber or physical processes, generating similar responses and 

outputs. It effectively mimics the behaviour of real systems. By setting up complex 

models, simulations enable the investigation of various parameters, allowing for 

extensive exploration beyond manual computations. Simulation is considered a 

valuable tool for empirical research because it can serve as a proxy for generating 

data from real systems. Simulating a system offers robust control and enables the 

rapid exploration of multiple scenarios (Edgar and Manz, 2017). 

Simulations can also generate hypotheses for experimental purposes. By instantiating 

and simulating theoretical models, the resulting output can be treated as a hypothesis. 

As emphasised by Edgar and Manz (2017), simulation methodology is particularly 

useful in research involving Machine Learning. It facilitates the exploration of 

boundaries and constraints within theoretical models and provides tools for predicting 

probabilities based on mathematical models. Empirical simulation and simulation for 

decision support exemplify how simulation fits into this research, particularly in 

conjunction with Machine Learning. 

Table 1.1 describes how the research objectives were carried out in relation to the 

methodological approach employed. 

1.8.6 Data Collection and Analysis 
The data collection methods were through observations, analysis of secondary data, 

sampling, and datasets. 

Simulations of a smart home environment populated with relevant data from IoT 

devices from a simulator were used in different scenarios depicting the real-world 

phenomena under different case scenarios. 

Triangulations as part of the research were used to analyse the information and data 

gathered, So, to satisfy the objectives of the research both qualitative and quantitative 

methods were used. 

Critical analysis was used in the critical evaluation of the new framework and the 

algorithm proposed through critical analysis methods. 
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Objective Methodological 
Approach 

Description 

To investigate through a 
systematic literature 
review, the current state of 
Internet of Things digital 
forensics methodologies, 
models, and frameworks. 

Systematic Literature 
Review 
Rapid Review, etc. 

Systematic Literature 
Review (SLR) 
Rapid Review (RR) is a 
streamline approach for 
producing evidence - 
typically for informing 
emergent decisions 

To study the key factors 
(legal and technical) 
affecting IoT forensics and 
recommend measures for 
standardisation of rules to 
aid the digital forensics 
investigation process. 

Systematic Literature 
Review 
Rapid Review, etc. 

SLR and RR 
Identify gap filling measures 

To review the automated 
processes in digital 
forensics and explore the 
application of Machine 
Learning concepts to aid in 
the analysis of IoT forensic 
evidence. 

Systematic Literature 
Review 
Rapid Review 
Experiments 
Gap analysis 

SLR and RR 
Identify gap filling 
measures. 
Laboratory experiments by 
simulation of datasets 

To propose, design, 
develop, implement, and 
test a new IoT forensic 
framework and validate it 
through a novel Machine 
Learning approach 
detailing possible solutions 
to address legal and 
technical challenges in IoT 
forensic processes. 

Experiments 
Simulations 
Grounded Theory 
Case studies 
Probabilistic models 
and probabilistic 
graphical models 

SLR and RR 
Laboratory experiments by 
simulation of datasets 
Hypothesis of theories 

To critically evaluate the 
proposed IoT forensic 
framework and the 
Machine Learning 
approach deployed. 

SWOT (Strengths, 
Weaknesses, 
Opportunities, and 
Threats) analysis 
Comparative Analysis 
Statistical Analysis 

Rigorous review of the 
proposed framework 
against available state-of-
the-art ML model coupled 
with SWOT analysis. 

Table 1.1 Table showing Objectives and Research Methodology to be used. 

1.8.7 Critique of the Research Methodology 
This research heavily relied on the mixed methods approach, but it has certain 

limitations. As noted by Wisdom and Creswell (2013) implementing mixed methods 

can be challenging. This challenge was evident in this research, which consisted of 

both practical and impractical aspects. The impractical aspect involved relying 
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primarily on qualitative data for legal aspects and the development of the IoT Forensic 

Framework, while the practical aspect involves implementing machine learning 

concepts and relying on quantitative data. 

Despite these limitations, the authors (Wisdom and Creswell, 2013) hold mixed 

methods in high regard, and this research aligned with their belief that mixed methods 

are ideal for investigating complex scenarios and gaining a better understanding of the 

research results. 

In a different context, Edgar and Manz (2017) acknowledge the value of simulations 

for researching in the cyber space domain, as they closely mimic real systems. 

However, they cautioned that the reliability of simulation results hinges on the quality 

of the models employed. If the models lack sufficient empirical support, the application 

of the results may raise doubts. The authors also emphasise the importance of 

properly validating the models used, suggesting that suitable models should be 

validated through data collected from real systems via study or experimentation. 

In conclusion, the research methodology has presented an overview of different 

research methods used in cyber security. This research follows a mixed methods 

approach and onion research methodology to effectively address the research 

questions while considering the advantages and limitations of each method. The 

methodology employed in this thesis includes quantitative analysis, grounded theory, 

case study strategy, simulation, and critical analysis of data. These methods aim to 

effectively address the research questions and gain valuable insights in the field of 

study. 

1.9 Structure of the Thesis 
This thesis is structured as follows: 

Chapter 1 – Introduction 

This chapter provides the background of the research area, brief of the research gaps, 

research motivations, the aim and objectives of the research, research questions, 

contributions to knowledge and concludes with an overview of the research 

methodology. 

Chapter 2 – Literature Review 
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This chapter explores the existing literature in the field of IoT forensics. The literature 

review aims to unearth the current state-of-state in the field of IoT forensics by 

exploring the factors affecting IoT forensics, the legal and technical challenges, and 

how to overcome them. Through a systematic literature review, the findings identify 

open challenges and opportunities for IoT forensics to which this research contributes 

to. 

Chapter 3 – Automated Processes in Digital Forensics 

This chapter reviews the increasing role of automated processes in Digital Forensics. 

It highlights the recommendations made by researchers in the application of 

automation in Digital Forensics. The chapter also deeply explores anomaly detection 

and reviews the state-of-the-art anomaly detection algorithms. 

Chapter 4 – Proposed Theoretical IoT Forensic Framework 

This chapter delves into the proposed theoretical framework for conducting IoT 

forensic investigations. The framework is presented in a step-by-step guide comprising 

of four distinctive phases of the IoT forensic investigation process. 

Chapter 5 – Simulation and Dataset Generation 

This chapter explores forensic analysis techniques in smart homes, discussing the 

challenges and opportunities unique to these environments. It also reviews smart 

home simulation tools and justifies the choice of Open Smart Home Simulator 

(OpenSHS). Building on the theoretical framework from Chapter 4, this chapter 

develops forensic scenarios for simulation and dataset generation aligned with the 

proposed IoT Forensic Framework.  

Chapter 6 – The Application of HI-SDR in Anomaly Detection 

This chapter builds on the smart home datasets generated in Chapter 5 and discusses 

Sparse Distributed Representation (SDR) generation, highlighting its importance for 

forensic analysis. It explores properties critical for robust forensic analysis in smart 

home datasets and examines the role of SDR encoders. The chapter introduces a 

High-Indexed SDR (HI-SDR) encoder chosen for the research experiments and 

proposes an approach based on this encoder. It concludes by discussing the practical 
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forensic application of the proposed approach and its effectiveness on dataset 

representation for better anomaly detection. 

Chapter 7 – Test and Evaluation 

This chapter evaluates the performance of the proposed HI-SDR approach for 

anomaly detection in the generated smart home dataset. The evaluation uses 

performance metrics (accuracy, precision, recall, and F1 measure) to gain deeper 

insights into the approach's capabilities. It then compares the HI-SDR approach's 

performance to the state-of-the-art machine learning model (Isolation Forest) and One 

Class Support Vector Machines – OCSVM) chosen for the experiments to determine 

the most effective approach for anomaly detection in this context. 

Chapter 8 – Summary, Conclusion, and Future Work 

This chapter concludes the research by examining the research process and deriving 

significant findings regarding the research contributions. It also acknowledges the 

limitations of the study and offers suggestions for future research directions. 

Figure 1.2 below illustrates the overall overview of the research structure. 
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Figure 1.2 Overview of the Thesis Structure 
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CHAPTER 2. LITERATURE REVIEW 
This chapter thoroughly reviews the pertinent literature that relates to the motivations 

and contributions presented in Chapter 1 of this thesis. The purpose of the literature 

review is to ascertain the existing body of scholarly work that is relevant to this study 

and to identify areas where gaps and unanswered questions exist, thereby providing 

a contextual framework for the current research. As such, it offers background 

information, contextualises the motivations outlined in Chapter 1, and evaluates the 

extent to which the existing literature addresses these specific areas in each case. 

This chapter explores the current legal and technical challenges of IoT forensics by 

emphasising the uniqueness of IoT forensics, uses a quadrant model to expose 

conflicting scenarios in IoT forensics process, and finally, recommends the need for 

application of intelligent systems like machine learning techniques to semi-automate 

the IoT forensic process for profiling and surveillance. 

 A systematic literature review is conducted to bring to light the existing research gaps 

in IoT forensics. 

2.1 Introduction 
The continued growth of IoT devices has enabled the sharing of information within 

people and between the devices themselves. The direct communication between 

these devices is facilitated over the internet by the Application Programming Interface 

(API) and is controlled by intelligent devices of the cloud servers that enhance 

smartness to low-computing resource incapacitated IoT devices (Yaqoob et al., 2019). 

There are indeed many beneficial aspects brought about by IoT applications more so 

in the areas of transportation (automotive), retail, health care, engineering, 

construction, smart cities and many others (Kim, Ramos and Mohammed, 2017).  

According to a report by Cisco (Cisco, 2016) on the state of IoT, by the year 2030, it 

is expected that over 500 billion devices will be connected by the internet. The report 

also states that the IoT business is estimated to have a revenue turnover of around 

$14.4 trillion by the year 2022. This revelation indeed shows that the human population 

has already been surpassed by the number of connected IoT devices. 

IoT devices have limited computing capabilities in relation to processing and storage 

of data, due to this, Al-Masri, Bai and Li (2018) note that IoT environments make 
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extensive use of the cloud computing services. The authors further depict that as result 

of the continued growth of customers for cloud-based services, it is evident that there 

is growing over dependency on cloud-storage media. This translates to the need for 

having digital forensics tools that can handle large volumes of data enabling the 

extraction of data that could be potential evidence. There is also a need for training 

forensic investigators on how to collect evidence from the cloud. As is always the case 

in most forensic processes, it can be a time-consuming exercise as forensic tools may 

take a lot of time to analyse huge amounts of data. This results in a slow forensic 

examination process thereby complicating and making it difficult, more so in the 

collection of data from the cloud which could be stored in distributed locations. 

Despite this positive outlook of the emergence of IoT technologies, it brings with it 

various security attacks and threats as noted by (HaddadPajouh et al., 2018). These 

threats could be in form of attacks from viruses, illegal surveillance, Denial of Service 

(DOS) attacks among other many threats and attacks. Digital forensics experts are 

often called in to investigate these incidences.  

It is unfortunate that in the design and development of IoT devices, not much attention 

is paid to the security, due to cost implications, therefore leaving them exposed to 

susceptible threats. This gives room for hackers who exploit IoT devices’ 

vulnerabilities and carry out illegal activities that cripple the cyberspace. 

IoT forensic process brings with it unique and complex challenges. This is because 

digital investigators are required to create new investigative processes that are specific 

to IoT by drawing upon techniques and methods used in acquiring evidence from other 

established areas of digital forensics. The evidence in IoT devices is different from the 

traditional digital device (computers and mobile phones), this is because data from IoT 

devices can be in vendor specific formats that deviate from the normal electronic 

documents or file system formats.  

It is evident as noted by Kebande and Ray (2016), that the IoT systems’ complexity 

together with the inadequate or even no unified standards hinder the process of digital 

forensics by preventing the acquisition of valuable digital evidence by Law 

Enforcement Agencies (LEA) from IoT based forensic cases. The authors also concur 

that the available traditional methods, tools, and standards for digital forensics are 
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unable to handle the highly heterogeneous IoT infrastructure that is distributed across 

the globe.  

As highlighted by Al-Masri, Bai and Li (2018), even though research in digital forensics 

in cloud forensics is essential, much of the current research has focused more on the 

challenges encountered when carrying out digital forensic investigations in the cloud. 

There is minimal research that has proposed solutions that can be used to work 

around these challenges through practical models for digital forensics in the cloud. A 

lot of the available research focuses more on data storage, access control and the 

security of data in the cloud. The recent emergence of IoT which extensively uses the 

cloud computing platforms, has made it necessary to find solutions that are able to aid 

the forensic process.  

As observed by Yaqoob et al. (2019), many surveys have been conducted in the digital 

forensics interdisciplinary domains such as mobile phones, smart cities, cloud 

computing, wireless networks and smart transport systems. However, these studies 

do not conclusively tackle the IoT challenges. The authors proceed and state that 

many studies have been conducted on IoT security rather than IoT forensics. 

Even though many conceptual models and frameworks have been developed to try 

and solve the complex challenging characteristics of IoT forensics process, there still 

exist many unresolved challenges such as standardisation, legal jurisdictions, and the 

forensic analysis of big IoT data (Chernyshev et al., 2018). This is further highlighted 

by Harichandran et al. (2016) who note that most research that relates to the digital 

forensic investigative process in IoT is more theoretical than practical. 

Generally, as also observed by Harbawi and Varol (2017), the forensic process of IoT 

is still in its early stages, there are few and limited researches that have been 

conducted. The conducted research, however, lack in-depth analysis and 

experimental results which could be as a result of unavailable testing data from IoT 

devices and/or limited IoT environments. On the other hand, the few studies with 

experimental tested models are specialised to specific scenarios which means that 

they cannot be used for general wholesome IoT forensic investigation processes.  

Additionally, as noted by Babun et al. (2018), that not much room for forensic analysis 

is provided for by the currently developed IoT solutions. The authors further claim that 

due to the limited computing resource capabilities for many IoT devices coupled with 
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the unique cloud-based infrastructure makes it even difficult to store data in the 

devices for forensic purposes. Most popular IoT programming platforms like Samsung 

SmartThings, OpenHAB and others do not provide any means to have access and 

indefinitely store data in the cloud. 

2.2 Internet of Things Forensics 
IoT being an emerging technology allows small devices (things) to perform tasks as 

smart objects. The interconnection between these devices (things) is facilitated by 

different network media types. The communication between the devices generally 

makes applicable decisions through the sensor data read. 

IoT technology can be applied among various application areas for example in home 

automation, wearable technology, smart environment, smart retail, smart industry, 

transportation, health, and Agricultural farming. This is best illustrated in Figure 2.1: 

 

Figure 2.1 IoT Application 

The word forensics can loosely be referred to as the application of science and 

technology in an investigation process for the purpose of establishing facts in a 

criminal or a civil litigation. 
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Digital forensics is a discipline that combines the basics of computer science and laws 

where the collected digital data (evidence) is analysed and presented as admissible 

in a court of law for prosecution purposes. 

Forensic computing is a process that involves the identification, preservation, 

acquisition of data of potential evidence and analysis of the data to produce a report 

to be presented in a court of law in a way that follows the laid down procedures and 

acceptable laws in a particular jurisdiction.  

IoT forensics can therefore be termed as a process of applying the process of digital 

forensics in a setup that contains IoT devices. 

The authors Zawoad and Hasan (2015) have defined IoT forensics by combining three 

digital forensics levels, namely: device, network, and cloud level forensics. The device 

level forensics involves collection of local memory data from IoT devices. The network 

level forensics is where network logs are extracted and analysed. Finally, the cloud 

level forensics involves analysing the data generated and stored by IoT devices to the 

cloud services. The cloud services serve a huge role in IoT operations. This is due to 

IoT devices having low storage and computational capacity thereby relying heavily on 

the cloud services which offer benefits like convenience, large capacity, scalability, 

and on-demand accessibility. 

Digital forensics investigation process has been vibrant recently due to the emergence 

of IoT technology which is now seen as a big threat to information security. The large 

volumes of data generated by IoT devices and in turn reshared between the devices 

contains a huge potential of evidential data due to the large number and variety of IoT 

devices that are spread within a wider application area. 

As noted by Chernyshev et al. (2018), the digital evidence retrieved from an IoT setup 

can be useful because the evidence can be used by parties involved to support or 

contest any hypothesis claimed in the investigation process. This can be referenced 

to a New York Times report by Hauser (2017) where a murder case was determined 

by data from a wearable device (Fitbit). The complexity around the extraction of data 

from IoT environments is a major setback in the ability of producing evidence that is 

legally admissible in a court of law (Kebande and Ray, 2016).  
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2.3 What is unique about IoT Forensics? 
Forensics of IoT is still in its infancy as noted by Kebande and Ray (2016). The authors 

highlight that even though researchers have been attracted to this field, current Digital 

Forensics tools and techniques are not well equipped to handle the heterogeneous 

and distributed nature of the IoT setup. This has posed a challenge to the digital 

investigators and law enforcement agencies in the investigation process that can 

gather, examine, and analyse potential evidence from IoT platforms and present 

evidence that is admissible in a court of law. 

Generally, conventional digital forensics scenarios include tangible devices such as 

Personal Computers (PC), mobile phones and tablets that contain data of potential 

evidence. In an IoT setup, there is a significant change in the sources of evidence as 

there is increased number and types of devices of interest that are intangible due to 

different location sites, and the distributed nature of IoT, where the potential evidence 

may be stored on the cloud.   

It is argued by Induruwa (2011) that the cloud, due to its convenience, scalability and 

on demand accessibility plays a fundamental role in an IoT forensics. The author 

states that with the inclusion of the cloud, the issues related to redistribution in different 

locations and multi-tenancy make IoT forensics different. 

It is observed by Oriwoh et al. (2013) that in traditional digital forensics, the 

investigators use accepted methodologies that follow the standards, guidelines and 

principles provided by widely recognised bodies like; Association of Chief Police 

Officers (ACPO) and Scientific Working Group on Digital Evidence (SWGDE).  The 

authors note that in an IoT setup, these methodologies may be limited due to the 

increased scope of IoT crimes. Recently, Wachter (2018) emphasised on the privacy 

rights enshrined in the EU General Data Protection Regulation (GDPR) which make 

IoT forensics further interesting. This is because IoT devices and their (IoT) services 

have a tendency of collecting, sharing, and storing huge volumes of data that contains 

personal data that is of varied types. However, it can be noted that the personal data 

generated from IoT devices is unstructured and could be spoofed which makes the 

forensic process very challenging. 

In a forensic investigation, search and seizure is a very important step. Harbawi and 

Varol (2017) have argued that whereas search and seizure can be easily achieved in 
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a traditional digital forensics investigation, it becomes a challenge in IoT forensics and 

IoT devices are configured to work passively and autonomously. Additionally, 

D’Orazio, Choo and Yang (2017) note that even though the identification of an IoT 

device can be done, there may be no well recognised methods or tools that can help 

a forensically sound process of collecting residual evidences from the IoT device. 

Moreover, Conti et al. (2018) observe that even though there could be a few methods 

that could be used to create forensic images of IoT devices, these methods do not 

adhere to the ethical considerations when  evidence is being collected from the 

devices that are run in an environment which has multi-tenancy. These authors 

continue and state that while collected data could be preserved using the current 

techniques like hashing, the challenge in IoT setup comes in the preservation of the 

digital forensic crime scene. Different IoT nodes could still have real time and 

autonomous communication thereby making it hard to fully locate the crime scene that 

has been compromised. 

Traditional digital forensics techniques could be used to acquire and analyse some 

IoT devices, there still exists a challenge of these devices possessing vendor specific 

software, different file systems structures and diversity of communication protocols 

that add complexity (Harichandran, et al., 2016). 

Another challenge mentioned by Dehghantanha and Franke (2014), is that many IoT 

devices do not store metadata that includes temporal information such as timestamps. 

A summary of the characteristics that make IoT forensics different from other 

traditional digital forensics are as follows:  

• More challenging due to the immense growth of IoT devices and their 

distributed nature, 

• The IoT devices are heterogeneous in nature and require specialised tools to 

retrieve data, 

• Existing IoT devices could be resource constrained, 

• The data collected is huge and diversified, this brings complication in the 

forensic process,   
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The proprietary protocols, laws and regulations for implementation are widely spread 

and not standardised. 

2.4 Systematic Literature Review of IoT Forensic 
The Systematic Literature Review adapted the search methodology guidelines 

proposed by (Kitchenham, 2007). 

The aim of this review was to analyse the current state of research in relation to IoT 

forensics, expose the key challenging factors, explore the practicality of the reviewed 

literature, and discuss open issues and requirements for future research directions. 

The research questions for this review were: 

i) What are the key factors affecting IoT Forensics? 

ii) What are the current IoT forensic methodologies, models, and frameworks? 

iii) How practical and realistic are these methodologies, models, and frameworks? 

iv) What are the open challenges and requirements for future research directions? 

The strategy used to find relevant literature are presented in the search protocol that 

answers the research questions. 

The online databases used in this review were: IEEE Xplore, Springer Link, ACM 

Digital Library, Wiley Online Library, Science Direct, and Google Scholar. 

The usefulness of a search string is to capture the keywords in the research questions 

to find the desired results. To connect the keywords, the search employed Boolean 

operators (AND and OR). To attain exact words, the quotation marks were used, and 

the search string was: 

(“Digital forensic framework” OR “Digital forensic methodology” OR “Digital forensic 

model” OR “Digital forensic challenges”) AND (“IoT” OR “Internet of Things” OR “Smart 

homes” OR “Cloud of things”) 

The search string was executed on the online databases, from the results, keywords 

from the titles were read so that irrelevant papers were filtered out.  For further refining 

of the results, the search applied inclusion and exclusion criteria to analyse the 

abstracts and full text reading. 
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The exclusion phase was done by excluding papers that are not peer reviewed, and 

papers of low quality and without any scientific basis.  

The inclusion criteria used for this SLR was based on online published papers from 

2011 to 2018 and only studies that are in digital forensics field and specifically, IoT 

forensics. This SLR was subsequently published (Lutta et al., 2021). 

For this thesis, however, the literature search has been expanded to include published 

peer reviewed work up to the year 2023. 

Further exclusion exercise to refine the results was based on non-English papers.  

Figure 2.2 illustrates a flowchart that summarises the search methodology employed. 

 

 

Figure 2.2 Search Method Flowchart 
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2.5 Factors Affecting IoT Forensics  
The complex and unique challenges brought about by IoT environments in relation to 

forensic investigative process have attracted recent advancements in the research. 

These efforts are however still in their early stages of development and majorly 

focusing on the theoretical process models based on hypothetical case studies 

(Harbawi and Varol, 2017). 

 

Figure 2.3 Factors affecting IoT Forensics 

Key IoT challenges that pose difficulties in digital forensics investigations are 

established by (Hegarty, Lamb and Attwood, 2014). The authors identify fundamental 

areas that researchers should focus to provide solutions. The paper takes a view of 

the traditional digital forensics process (identification, preservation, analysis, and 
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presentation) and relates it to how it can fit into IoT forensic, however, the authors did 

not perform any practical analysis for implementation. 

Figure 2.3 depicts the challenges: 

2.5.1 Digital Evidence 
The authors Yaqoob et al. (2019) lament that the key challenges exhibited by the huge 

data to the investigators are the varied data formats and the limited solutions for real-

time log analysis. The short survival period and the limited visibility of the evidence 

can also be viewed as challenges to the investigation process more so in the 

circumstances where traditional digital forensics processes are applied in IoT 

forensics. 

2.5.2 Big IoT Data  
Due to the large data generated by IoT devices which are resource constrained and 

diversified across a huge spectrum. It is noted by Yaqoob et al. (2019) that this large 

quantity of data generated presents digital forensics expert the difficulty of collecting 

and extracting evidential data in an efficient manner.  

A research by Feng and Zhao (2018) summarises the review on digital forensics 

trends used for Big Data and the challenges encountered in the acquisition of 

evidence. A Smart City project is used as a case study where IoT services collect Big 

Data and store it in the cloud. The authors note that one of the major challenges of the 

forensic process is due to the distributed nature of the cloud environment making it 

very difficult for the data acquisition techniques to retrieve evidence. In the case study, 

an example is given of a driverless car (public transport vehicle) which sends huge 

amounts of data to the cloud. This data is in turn used to control the operations of the 

car and provide local information by suggesting the best services to the customers. A 

scenario is created where this data is hacked into, and the car is crashed. It is depicted 

that it would be hard for a digital forensic investigator to again access to the data. The 

paper does not provide any viable practical solution to the challenges it highlights; 

however, it provides a summary of the challenges that have been solved and not 

solved under cloud services which could be beneficial to the research community. 

A research by Alabdulsalam et al. (2018) discusses IoT forensics and brings out its 

uniqueness of IoT forensics to traditional forensics by highlighting the challenges 

encountered. In their experiments, the authors used a smartwatch as a case study 
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and described how to acquire forensic data from an apple smartwatch. The three 

levels of IoT forensics (device, network, and cloud) have been emphasised. The paper 

describes the main challenges of IoT as; location of data, limitation of digital media 

due to lifespan, weak requirements signing up for cloud services, lack of security in 

IoT devices, device type identification, and the proprietary data formats. The limitation 

of the currently available forensic tools to handle IoT forensics has also been 

discussed, this is more so stressed by the fact that most of the IoT data is found in the 

cloud and not many forensic tools can collect data in the cloud due to the data volatility. 

In their conclusion, the authors concur that there is a need to develop an efficient 

generic model to handle IoT forensics. 

The challenges encountered with the IoT’s big data ecosystem and recent IoT 

applications are highlighted by Cartier et al. (2018). They observed that there is need 

for tools and libraries for better management of IoT-big data. 

2.5.3 High Number of Devices Spread across the Globe 
IoT forensics challenges are looked at by (Macdermott et al. (2018) with a view of 

Internet of Anything (IoA) era. The IoA is depicted by the author as an explosion of 

connected devices due to anything and everything online being connected. The author 

state that the main forensic challenge of IoT/IoA is the procedure for the acquisition of 

data in those connected devices. 

The laws surrounding accessing data in the cloud are looked at by Walden (2013). 

Given that the cloud stores a huge amount of data transmitted between IoT devices, 

the author states that one of the major challenges that digital investigators face is the 

collection of data in the cloud setup. Cross-border cooperation for mutual legal 

assistance should be encouraged to enable acquisition of data from different 

territories. The same challenges were also raised by Jahankhani and Hosseinian-Far 

(2017). 

2.5.4 Complex Computing Architecture  
As highlighted by Zawoad and Hasan (2015), IoT devices have limited computing 

capabilities and rely heavily on cloud services for their functionalities. It therefore 

follows that data will be collected from the cloud infrastructures and analysed leading 

to a form of cloud forensics investigation. 
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The complex challenges in cloud forensics are highlighted by the authors Birk and 

Wegener (2011) who acknowledge that evidence can vary significantly when collected 

via Virtual Machines (VMs) from multiple cloud deployment models; the authors 

recommended a service-specific solution. An example is given where if evidence was 

to be collected from an Infrastructure as a Service (IaaS) environment, it is 

recommended that collection is done by use of snapshot analysis or creation of 

forensic images through cloning. The setback with this solution is that it is not feasible 

for cloud service providers to clone all of their cloud servers as this will require a lot of 

storage space. 

A survey authored by Venčkauskas et al. (2015) seeks to analyse the state of cyber-

crime in IoT environments. The authors discussed issues relating to how the traditional 

digital forensics methodologies could be integrated into IoT cases. The authors clearly 

indicated the types of crimes in IoT and where potential evidential data could reside in 

cloud environments and how to extract said data. However, the authors failed to carry 

out any practical example of how to implement their recommendations leaving the 

paper more theoretical than practical. 

2.5.5 Data Spread across Multiple Platforms 
Three layers (cloud/server, network and endpoints) are outlined by Rughani (2017) 

where potential evidence can be located. The author attempted to identify issues and 

challenges encountered during the acquisition of evidence from IoT environments in 

a crime scene. Even though one of the author’s aims was to help investigators in 

acquiring data from IoT crime scenes, there is no practical example to illustrate the 

same. 

The challenges of forensic analysis encountered at the physical infrastructure on 

whose basis lies the operating systems of Industrial IoT (IIoT) are highlighted by Eden 

et al. (2017). A review of the available tools that can handle a forensic process of 

Supervisory Control and Data Acquisition (SCADA) is done resulting into a SCADA 

incident response model. 

2.5.6 Proprietary Hardware and Software 
According to Varadharajan and Bansal (2016), the data from IoT devices is 

heterogeneous unlike the data from traditional data devices. The authors further note 

that IoT data may stream at rates that are unpredictable. Additionally, the security and 
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privacy measures employed in many IoT devices do not address issues like 

ownership, management, and regulations. 

The forensic challenges faced by vehicular fog computing are highlighted by Huang, 

Lu and Choo (2017) who pointed out the difficulty in physically checking every fog 

node deployed in the system. The authors, however, provided countermeasures like 

evidence based digital forensic and traffic-based evidence approach. 

2.5.7 The Legal Challenges  
The prevalence of IoT enhancement through approaches that leverage big data 

techniques for the purposes of improving the assurance of information are surveyed 

by Underwood (2016). The author notes that it is expected that IoT will stress the 

organisational frameworks in relation to the current technical and legal spectrum. This 

will however be significant more so in forensics and safety audits. The nature of work 

for information security experts, forensic investigators and system auditors has been 

hugely changed by the prevalence of Big Data. It is more complicated by the 

emergence of IoT devices that add huge volumes and various forms of work to be 

performed by these experts. 

A survey conducted by Hon, Millard and Singh (2016) reviewed cloud computing and 

Internet of Things (both combined as “cloud of things”) in relation to key legal issues 

emanating from European Union (EU). The wider perspective on legal and regulatory 

aspects of cloud of things, major challenges, and complexities in the past, present, 

and future are highlighted.  

The following aspects are covered at length in the survey: 

• Cloud of Things (CoT) concepts and challenges are explained in relation to the 

definition of “things”, what they do, how they communicate and the role of the 

clouds and their security challenges thereof. 

• Legal relationships and liabilities involved in cloud of things; the establishment 

of different parties in CoT and their relevant roles, the contractual obligations, 

the ownership of the data and software intricated in CoT, and the potential 

sources of liability and the role played by the insurance. 

• Handling of personal data in CoT; issues related to personal data in the cloud 

of things under the EU data protection laws and General Data Protection 
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Regulations (GDPR), expounding on what data is regulated, to whom the 

responsibility falls, the applicable laws, what rights do users have over their 

data, the location, and transfers of the data. 

• The governance of CoT; tackles the key issues relating to identity, authenticity 

and trust, consumer protection, standards and the demonstration of how legal 

obligations can be complied. 

The paper outlined the various fundamental legal considerations as presently 

portrayed in the cloud of things. Although nothing much has been covered in relation 

to cloud and IoT forensics, this research is deemed resourceful in the application of 

laws in the process of IoT forensics. However, the laws are only limited to EU regions. 

There is no physical access of the storage facilities and that digital forensics 

investigators rely heavily on the Cloud Service Providers (CSP) for cooperation on the 

retrieval of evidence, this was highlighted by Feng and Zhao (2018). The cross-border 

technicalities that make it hard to establish a chain of custody as required by law have 

been highlighted as a challenge to IoT forensics. 

A paper by Losavio et al. (2018) analysed IoT and smart cities in relation to the legal 

challenges encountered in digital forensics, privacy and security and noted that 

competence of digital forensics experts in matters law was a major hinderance. The 

authors did a comparative review of legal regimes in China, Korea, Hungary, European 

Union, and the United States of America, analysing how digital forensics and 

investigations are carried out. The GDPR of the EU has been identified as well-defined 

to aid the process. The authors state that the US case decisions can be a basis for 

analysing current legal problems paving way for future regulations. They conclude by 

stating that the legislation needs to be clear on issues relating to the balance between 

public security and individual privacy freedoms.  

It is noted by Rughani (2017) that unlike in traditional digital forensics investigation 

where the process is well defined by the National Institute of Standards and 

Technology (NIST), no specific guidelines are provided for in an IoT crime scenario. 

The solutions suggested by Birk and Wegener (2011) are based on different use cases 

like the verification of Service Level Agreement (SLA) and enforcement of compliance 

aspects. 
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2.6 The Legal Challenges of IoT Forensics in Context 
The emergence of IoT era and the ever-advancing technology in nearly all the digital 

gadgets indicates that the digital forensics domain is reaching a tipping point. The 

traditional forensic tools that worked are increasingly becoming obsolete (Garfinkel, 

2010). More complex reverse engineering techniques are required as forensically 

relevant data is being stored in proprietary file formats. Users and criminals alike are 

splitting and storing data in the cloud bringing with it legal challenges (privacy and 

confidentiality rights) which limit the amount of data investigators can gain access to 

(Silva, Reed and Kennedy, 2016). 

The forensics process in an IoT environment is complex. The IoT devices themselves 

are a challenge in the forensic realm as there are many different devices in the market 

(Harichandran et al., 2016), what makes it even more cumbersome is the lack of 

standardisation for IoT devices. The data stored on the devices could be so little and 

of no historical or evidential value. The IoT devices are always connected which makes 

them more volatile (Silva, Reed and Kennedy, 2016). This adds an extra layer of 

complexity in the forensic process. Privacy is also a key element in maintaining the 

confidentiality of data as it may lead to exposure of Personally Identifiable Information  

(Ziegeldorf, Morchon and Wehrle, 2014). 

Furthermore, Singh et al. (2018) mentioned accountability as one of the IoT forensics 

challenges. The authors stress that this is because different entities manage the 

composition and the interactions between the IoT components. This is further argued 

by the authors that IoT technology is opaque due to the over usage of the IoT 

components thereby behaving in ways that vary from the original intention. Another 

key challenging aspect brought out by the authors is that the ownership, management, 

and operation of IoT components is done by people or companies that may be of 

diverse geographical locations governed by their own native laws and regulations. 

The integration of IoT devices brings with it the challenges related to security more so 

as highlighted by Mukundan, Madria and Linderman (2014). The authors note that 

confidentiality and integrity compromise is a key security and forensics hindrance. The 

need to assure the user that only authorised parties get access to the data is an issue. 

There is a compromise of data integrity if unauthorised access is gained to the data.  
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To differentiate between Digital Forensics and IoT Forensics, a clear definition and 

understanding of an IoT environment is required. According to the National Institute of 

Standards and Technology (NIST) by Megas et al. (2017) on IoT Cybersecurity 

Colloquium, it is noted that there is no common agreement on the definition of IoT. 

One definition from this NIST publication described IoT as things like sensors and 

devices (excluding computers, smartphones, and tablets) that are connected through 

the internet to communicate and/or transmit data with or between themselves. Another 

definition refers to IoT as devices or things that are not fully operational computers, 

instead they are built for a specific purpose containing sensors which enable them to 

communicate through the internet. Another definition proposed by Baig et al. (2017) 

IoT is defined as connecting smart devices like sensors to a network through the 

internet. 

There are several attempts acquainting IoT, however they are generic or broad, which 

may not reflect the actual meaning of IoT. In this research, ‘things’ were considered 

as devices (for example, agents, sensors, and actuators) that can communicate, 

detect and/or measure data with very limited or no processing power and have low 

storage capacity. Therefore, this research defines IoT as pervasive connected devices 

through the internet that collect, detect and/or measure data. We refer to things with 

very limited human control, although it could be manageable and/or configurable. 

Things could be classified based on their functionality, there are some things that can 

process data, while other things can detect and/or measure data and perhaps several 

others just observing (monitoring) data motion. 

IoT forensics can be defined as a branch of digital forensics that combines three levels 

namely, device level forensics, network level forensics and cloud level forensics. This 

is explained further by Zawoad and Hasan (2015) who stated that IoT forensics 

involves the investigation of IoT infrastructure (device, network, and cloud). This 

whereby local memories of IoT devices could be investigated for potential evidence, 

network log files could be retrieved to reveal user activities and the cloud being a major 

storage of IoT device data could be a source of potential evidence. 

The key players in the IoT forensic investigations are the Law enforcement agencies, 

IoT manufacturers, IoT users (these might be the suspects in a case) and the digital 

investigator (this could fall under law enforcement agency). These parties involved in 
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the IoT forensics have different accountability and responsibilities. There are 

conflicting interests that emanate during the forensic process to apportion liabilities 

and obligations. The users have a right to privacy and confidentiality of their data that 

must be upheld. The law enforcement agencies in their pursuit for keeping the internet 

world safe, may use means like profiling and surveillance that may infringe on user 

privacy rights.  

Most research on how IoT relates to digital forensics is argued by Harichandran, et al. 

(2016) as being more theoretical than practical. There is a need to study and link the 

conflicting aspects of IoT forensics to identify potential practical solutions that 

overcome the challenges.  

 The aim of this section of this thesis is to review the current legal and technical 

challenges of IoT forensics by devising a quadrant model that links conflicting aspects 

in IoT forensics and recommending potential ways to bridge the challenges related to 

data protection laws and privacy. 

2.6.1 Legal Implications in IoT Forensics 
Chike (2018) noted that the lack of universal rules and regulations coupled with 

standards and protocols will hinder IoT from being integrated in various organisational 

networks. Due to the continued use of IoT devices, there has been a rise in the creation 

of new regulations. 

The collected data from IoT devices can be misused in a discriminatory way that goes 

against the user privacy, it is therefore upon the organisations who hold this data to 

ensure that only authorised access is granted. The inability of organisations to put in 

place management control measures for Internet of Things complexities persists to be 

a risk concern. Policy makers have been left to scamper in finding measures to combat 

these security and privacy concerns. 

The nature of the law is complex with many layers and is distributed across different 

domains meaning that there are different interpretations and application to people 

impacted. It therefore follows that it is difficult to assign accountability due to the 

complexity of IoT and the different interpretation of the law.  

In the ever-evolving landscape of cloud computing, the challenge of ensuring the 

independence of location becomes more pronounced due to diverse regulatory 
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frameworks and data governance standards across the globe. Striking a delicate 

balance between providing seamless access to cloud resources and complying with 

region-specific data protection laws poses a formidable obstacle. Navigating through 

these complexities demands innovative solutions that not only transcend geographical 

boundaries but also safeguard user data and uphold the integrity of cloud services in 

an increasingly interconnected world.. This is noted by Hon, Millard and Singh (2016) 

who state that the use of IoT devices, some of which are highly portable coupled with 

complex supply chains may exhibit challenges especially in determining which 

country’s laws to use to apportion rights and liabilities. 

The challenging accountability aspects in IoT environment as identified by Singh et al. 

(2018) are governance and responsibility, privacy and surveillance, and safety and 

security  

In IoT regulations, two areas of significance are brought out, these are legal obligations 

and liabilities, and regulation of personal data. 

Obligation and Liability 

For a forensic process to run smoothly, full disclosure and transparency is of utmost 

importance. Accountability can therefore only be apportioned if the manufacturers of 

IoT systems are transparent about the workings of the system. Silva, Reed and 

Kennedy (2016) state that it is within the law for a technology manufacturer whose 

service leads to a loss or injury to demonstrate that the actions taken were reasonable 

or fair, failure to which, the manufacturer faces liability. 

It would be reasonable to eliminate the human element by implementing a machine 

learning algorithm to be run on the data and produce a report which is only to be 

accessed by authorised parties. However, as this approach may be acceptable by the 

law enforcement agencies, it may not be acceptable to both the suspects (data owner) 

and the Cloud Service Providers (CSP). There must be assurance of confidentiality 

and integrity to the data owners that their data is safe and the CSPs do also need 

assurance that their cloud service infrastructure is not compromised.  

Transparency obligations are enshrined in the data-protection law to data subjects and 

regulators. When forensically assessing liability, user’s liability is mostly based on 

negligence where no reasonable actions were taken to avert likely risks. Users are 
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expected to be aware of the workings of a particular IoT device before using. 

Manufacturers are not obliged by law to explain how the developed technology works 

other than to keep up with the data protections requirements (Silva, Reed and 

Kennedy, 2016) 

Privacy and Data Protection 

The data protection laws, as emphasised by Singh et al. (2018),  are underpinned by 

basic principles   which are; being fair, legitimate processing, being limited to the 

purpose, being accurate, data minimisation, storage limitation, integrity, and 

confidentiality. 

The European Union (EU) General Data Protection Regulation (GDPR) articles 

(European Union, 2016) have a key principle of EU data protection law which 

stipulates that the processing of personal data should be done in a manner that is 

lawful, fair and transparent. As required and emphasised in the Association of Chief 

Police Officers (ACPO) guidelines, the forensic process must be conducted in a 

manner that should create audit trails that can be accessed by a third party and 

achieve the same results. 

It is challenging to apply data protection rules on user data because technologies that 

generate and produce individual data have evolved dramatically with the ever-growing 

IoT environment. It can be observed that almost all data is seen as personal data with 

strict rules governing personal data more so of special interest categories. 

It is also difficult to apportion liability due to the dynamic supply chain of IoT which is 

multi-layered with multiparty ownership that could be spread across many 

geographical locations with different regulations of operations. 

As part of data protection and privacy, individuals have a right to be forgotten – in this 

case, they may ask that their personal data is deleted; this is may not be feasible in 

an IoT environment that is hugely distributed. 

2.6.2 Personal Data in IoT 
The emergence of IoT has resulted in major concerns related to privacy, security, trust 

and governance.  These concerns are unsurprising as they have been deemed as the 

potential greatest hinderance to adoption of IoT. The capability of IoT devices like 

Closed-Circuit Television (CCTV) to capture data that is not necessarily of the owner 
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of the device but any other person in the vicinity without their knowledge is a breach 

of privacy (Hon, et al., 2016). 

Walden (2013) note that many issues related to the privacy and data protection have 

arisen from cloud services which includes government agencies accessing people’s 

private data illegally. The other issue arising from privacy and data protection is the 

use of personal data for inappropriate purposes like profiling/discrimination (Collins et 

al., 2014). 

It should be noted that huge volumes of data are collected by IoT devices, in most 

cases this collection is done without the knowledge of the IoT device users. The level 

of knowledge of these users of how their data is collected and used is very limited to 

enable them give free and informed consent. 

What personal data is regulated? 

Personal data is any data that relates to an identifiable living individual. This data is 

protected under the data protection laws. The identification of a natural person can be 

done both directly or indirectly through identifiers like their names, number of 

identification (ID number), data related to their geographical location, and or their 

online identity through their IP addresses. Although still personal, data can be 

pseudonymised (remove identifiers or replace) to help in the reduction of privacy risks 

which makes it hard to identify individuals. It should, however, be noted that GDPR 

does not cover information relating to institutions, foundations and corporations which 

are legal entities because their data is not personal data. Privacy rights can be referred 

to as the right to one’s personality.  

The EU GDPR data protection laws stipulate that the storing or accessing of personal 

data of a user held by an organisation must only be consented to by the user. This 

therefore means that the user must give consent for any action on their data. Article 8 

of the EU GDPR in particular covers many rights related to the protection of personal 

data (Kokott and Sobotta, 2013).  

Who is responsible for personal data? 

Controllers control the purpose and how the data is processed under the EU data 

protection laws. The controllers are therefore primarily responsible and liable to 

comply with the laws. In instances where data is processed by third parties on behalf 
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of controllers, the third parties must abide by the regulations. In most scenarios, it is 

observed that the service providers are the controllers and processors of personal 

data. 

The EU GDPR regulations have introduced huge fines for breach of user data privacy. 

There is direct obligation and liabilities to controllers and processors of personal data 

with those who breach security obligations being fined amounts not exceeding 20 

million Euros or 4% of total annual global turnover, whichever is higher (European 

Union, 2016). 

Apportioning this liability during the IoT forensics process may be difficult to 

implement. This is due to many players being involved and the complex supply chain 

which makes identification of players very difficult. 

What rights do IoT users have? 

The rights of IoT users correspond to the obligations that the controller must abide by 

when they process users’ personal data. In the event of damages caused due to 

unlawful processing of their data, the users have a right to seek compensation. They 

have rights to access their personal data, refusal for their data to be processed in 

relation to decision making that is automated. Users can consent for their data to be 

processed or if the controller has a legal justification to process the data for legitimate 

purposes. However, under the EU GDPR regulations, conditions for valid consent is 

strict because the consent must be given freely by the user (Hon, et al., 2016).  

The EU GDPR regulations Article 21 gives the user the right to object. This means 

that, without user consent to process the personal data, data controllers must provide 

and demonstrate compelling legitimate reasons that override those of the users. This 

regulation is vague because even the very definition of compelling reasons is not 

provided leaving a vacuum as to how to distinguish between a legitimate compelling 

reason and an illegitimate one.  

Article 22 of the EU GDPR data protection laws gives a user the right to choose 

whether or not to go through individual decision-making processes that are automated 

(e.g., profiling). This is also another unclear area because data controllers find it 

difficult in handling objections because they are forced to cease provision of all 

services.  This leads to a situation where the users who are more concerned about 
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privacy of their data are left with the option of either taking up the service or leaving it 

altogether (Wachter, 2018). 

Under the GDPR laws, data controller and processors have an obligation to inform the 

users of how the collection, usage, disclosure and storage of their personal information 

is carried out and how the users may exercise their rights over that data. A report from 

the UK’s privacy regulator - Information Commissioner’s Office (ICO) (2016) indicates 

that out of ten controllers of IoT, six don’t adequately inform their customers on the 

usage of their personal data. 

The report showed that:  

• Of the analysed devices, 59 per cent of them failed to sufficiently inform the 

user of how the collection, usage and disclosure of their personal data was 

being done. 

• On the issues of storage, 68 per cent of the devices did not show how the data 

was being stored. 

• On the user’s right to be forgotten online, 72 per cent of the devices could not 

explain how a user could erase all their data from the devices. 

• And finally, 38 per cent of the devices did not have contact information that a 

customer could contact in case they had concerns related to privacy of their 

data. 

There were concerns raised relating to medical devices used by General Practitioners 

(GPs). Although these devices sent encrypted emails back to GPs, there were issues 

pertaining to the infringement of data protection laws as follows: 

• Through the IoT device, control is lost in the processing of data. 

• The quality of users’ consent is undermined as is it difficult to get it. 

• The users risk losing the whole package of services from IoT service providers 

if they don’t give consent for processing of their data in a particular way. 

• The original purpose for the processing of the data is possible abused as it may 

be processed more than required. 
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• The transmission of the personal data is at a high risk as the medium used may 

be prone to hackers who may steal the data. 

• The data collected may be used in ways that were not initially intended because 

it collected from varied devices from different sources. 

2.7 The Current Studies in IoT Forensics 
The current digital forensics approaches in the internet of things have recently been 

surveyed by several authors (Abdel-Fattah et al., 2023; Al-Hussaeni et al., 2023; 

Hassan, Samara and Fadda, 2022; Ganesh, Venkatesh and Prasad, 2022) among 

other prior authors. 

It was earlier stressed by Adjei, Babu C and Yakubu (2018) who indicated that there 

is indeed a need for an improved proactive model under which IoT crime scenarios 

can be handled. These authors concluded that none of the frameworks and models 

proposed from the sampled papers can be used to extract data in a timely and reliable 

way. This narrative is still prevalent currently as observed by Salem, Owda and Owda 

(2023) who suggest the necessity of crafting an appropriate framework for IoT digital 

forensics in order to address the obstacles and security breaches that are widespread 

in the diverse architecture of IoT settings. 

However, it can be noted that there have been several proposed IoT forensic 

processes that have included methodologies, models and frameworks which have 

contributed to the advancement of research in this area. 

This thesis discusses these processes, methodologies, models, and frameworks in 

chronological order, beginning with the oldest and progressing to the most recent 

The Next Big Thing process model was developed by Oriwoh et al. (2013), in this 

research, the authors propose a process model based on the challenges faced in the 

identification phase of the IoT forensic process. It was designed to help in the 

determination of potential sources of evidence. The triage is presented in a 1-2-3 zone 

approach whereby zone 1 consists of the identification of the person involved in the 

crime and potential evidence to be identified. Zone 2 covers all the possible devices 

within the network (routers, firewalls, switches, Intrusion Detection Systems (IDS) and 

gateways). All the devices and services (web, database, and cloud servers) outside 

the network are identified in Zone 3. This process model considers the fact that any 
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potential evidence stored in the devices could easily become unavailable due to theft, 

tampering, or destruction. With this realisation, other elements within the IoT 

environment related to the evidence must be recognised by the investigator because 

they may contain valuable artifacts to aid the investigation process. 

This process can be beneficial to the IoT forensics process more so in the identification 

phase. The challenge with this process model, however, is the development and 

testing. This is because it cannot be assumed that the investigator will have direct 

access to all the devices or even the cloud servers where the evidence could be 

stored. The resource limited IoT devices and the volatility of the cloud needs to be 

considered. The process does not also have clear laid down directions for 

investigators to follow while conducting the analysis. 

The Next Big Thing was later integrated by Perumal, Md Norwawi and Raman (2015) 

through the top down forensic approach methodology which was designed to provide 

a novel approach that enables IoT forensics investigators through defined Standard 

Operating Procedures (SOPs). It is an integrated model of the 1-2-3 zone model. The 

top-down forensics approach methodology tries to solve the challenge to do with the 

preservation of volatile data. Previous approaches in digital forensic investigations 

were vigorously conducted by this study. The study proposed approaches that can be 

helpful to the investigators of IoT environments. The setback is that it may not be 

feasible to implement its automation in a real practical environment as the authors 

have also not tested it practically. 

The Last on Scene (LoS) algorithm was proposed by Harbawi and Varol (2017) as a 

model based on the Next Big Thing process model. The LoS algorithm works by 

identifying the location of evidence in such a way the first device to be investigated is 

one that was seen last on communication chain. The authors of the LoS algorithm 

model claim that the model saves time and resources for digital investigators because 

only data of interest is sought, and therefore if found in zone 1 the process terminates, 

and a report is compiled. The investigators do not have to go through all the zones 

looking for potential evidence.  As implied by the authors themselves, the LoS 

Algorithm is a theoretical framework meaning that its practical implementation or 

application has not been performed. The legal implication aspect has also not been 

factored into this framework; this means that it may be inadmissible in a court of law. 
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Designed by Zawoad and Hasan (2015), this model encapsulates the IoT digital 

forensic processes and techniques. The authors define the term IoT forensics process 

in three levels of digital forensics: device, network, and cloud level forensics. The 

model employs a secure trusted central repository that aims to deal with the problem 

of IoT domain not being standardised. A chain of custody being a key part of a digital 

forensic investigative process, this model focuses on ensuring that a chain of custody 

is maintained. Unfortunately, there is no practical implementation of this model. 

Proposed by Kebande and Ray (2016), this process model is based on a generic 

approach that analyses digital forensics data in the IoT setup through process 

concurrency. The model is presented to capture data at all the three levels of the IoT 

forensics. 

Through the process concurrency, the model aims to establish IoT forensics readiness 

and increase the rate at which the digital evidence extracted is admissible in a court 

of law. From the readiness point of view, this model will require a momentous 

consideration to proactive scenario-driven activities to ensure that the potential 

evidence is captured with the IoT setup and that implementation for extraction and 

preservation of the evidence is done in a procedure that is well-defined and 

documented. It is through this that the evidence will be forensically sound. The 

drawback with this model, however, is that it is purely based on theoretical approach 

in the collection of the forensic data. There is no physical experimental in its 

implementation and evaluation thereby casting doubts on its practicality. 

As an extension of DFIF-IoT, Kebande et al. (2018) proposed an Integrated Digital 

Forensic Investigation Framework (IDFIF-IoT) which claimed that DFIF-IoT was 

generic with processes that relied on ISO/IEC 27043 international standards while 

IDFIF-IoT includes organisational policy making it more policy oriented. This 

framework is still more theoretical than practical and as also pointed out by the authors 

themselves, the framework needs more development so as to identify more critical 

aspects of forensics. 

The authors,(Rahman, Bishop and Holt (2016) explored the mobility forensics in its 

context to IoT.  The process of data acquisition and the classification methods for 

smart home devices are discussed in detail. An analysis of an attack scenario of the 

collected data is also discussed and a model is proposed that handles such scenarios. 
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The proposed model seeks to address; what happened, when it happened, how it 

happened, who and/or what did it, why it happened and what data was collected? This 

paper contains valuable information that can be used as a framework for controlled 

IoT forensic investigations. However, it is limited to only one device being tested. The 

model proposed was not implemented, deployed and neither was it tested. The 

authors also assumed the full availability of data, this is usually not the case for 

forensic investigations. 

IoT mobility forensics model is used by Ryu, Moon and Park (2018) to describe a 

process of data retrieval from smart devices and how this data can be classified and 

analysed. An analysis was performed based on a scenario of attacking the collected 

data and proposing a forensic model that fits such scenarios. The authors claim to 

collect data using Wireshark; however, they do not reveal from where this data is 

preserved as this is very crucial in a criminal investigation. They do not also tell if this 

data is live data, and if yes, how can it be a criminal case when all is planned and 

acted? If no, where was this data stored? Internally or in the cloud? 

In Banday (2018) experiments, mobility forensics is used whereby cookies are 

collected from kid trackers to locate a missing child. The forensic model proposed tries 

to establish what happened, why it happened, when it happened, how it happened, 

how data was collected, and what data is needed from the trackers. However, as also 

noted by the author, none of the processes proposed in the model have been tested 

or tried. 

The Cloud-Centric Framework that is able to isolate Big Data as forensic evidence 

from IoT (CFIBD-IoT) (CFIBD-IoT) framework proposed in this study consists of three 

layers. It recommended a standardised technique of how to acquire and isolate 

evidence. Authored by Kebande, Karie and Venter (2017), the research investigated 

how the spread of IoT has led to the complexity of the investigation process. A case 

study of BitTorrent is used as a focus point where cyber criminals have explored the 

avenues opened up by IoT through information theft and side channel attacks 

facilitating crime-as-a-service.   

The anonymisation techniques have been used to hide the privacy of the users thereby 

allowing private communication, this has made it possible for cyber criminals to exploit 

the feature and attack IoT setups. The challenge is that even though the law 
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enforcement agencies may get access to the client machine, they may not have 

access to evidence that may be stored in the cloud.  

The Privacy-aware IoT-Forensics (PRoFIT) model proposed by Nieto, Rios and Lopez 

(2017) incorporates privacy in its investigation process by making use of the 

requirements of ISO/IEC 29100:2011. Assurance for privacy encourages IoT devices 

to participate in digital forensics investigations in a voluntary basis. The model 

emphasises on the importance of collaboration between devices that are nearby to aid 

in the collection of the evidence and determine the context within which the crime falls. 

This makes it ideal to fit into a concept of a digital witness. The evaluation of the 

proposed model was conducted in a coffee shop which was IoT enabled with an actual 

malware propagation. Like many other models proposed, the PRoFIT model lacks the 

practical part and therefore remains a theoretical model. 

A research by Al-Masri, Bai and Li (2018), Fog-Based Digital Forensics Investigation 

Framework (FoBI) utilises the fog computing model by which intelligence is pushed by 

a gateway to the network edge. An example is given whereby a last known location of 

a device can be traced and any malfunction can also be identified using the log files. 

When a suspicious activity is found during the FoBI investigation analysis, the nodes 

or other IoT devices are notified of the potential threat so that the propagation of the 

threat to other IoT devices it minimised or eliminated. The FoBI framework, though 

workable, is not suitable for a general IoT forensic investigation. It can well be 

implemented in a home, or a controlled environment and its main purpose would be 

to track user activities and notify of any suspicious activities. The fact that a FoBI 

management software has to be installed on a node or a gateway may raise questions 

related to surveillance and may fail the test of judicial process in a court of law. 

A research by Babun et al. (2018), IoTDots is a novel digital forensics framework for 

smart environments. It comprises of IoTDots-Modifier (ITM) and IoTDots-Analyser 

(ITA) as the main components. Through the ITM, applications on the smart device can 

be analysed by way of looking for relevant information that can be of forensic value. 

The applications on the smart device are then modified by insertion of particular logs 

which in turn send the forensically relevant data to the IoTDots Logs Database (ITLD) 

at runtime. During the forensic investigation process, data processing and machine 

learning techniques are applied through the ITA on the ITLD data. This process 
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involves the learning of the state of the IoT environment and the behaviour of the users 

in the time of interest of the forensic process. Violations are then identified by the 

events and actions against the security policies put in place. 

This framework is one of its kind in IoT forensics as it has practical and experimental 

evidence. However, it is specific to a controlled group of IoT device users and may not 

be viable for random devices as IoT environments are flooded with many different 

devices. This is because, as rightly indicated by the authors, some IOT devices are 

resource constrained and may not have smart applications installed on them, this 

means that this framework cannot work on such devices. Another drawback on this 

framework is that one of the components (IoTDots-Modifier) goes against the forensic 

principle of modification of the evidence and therefore may not pass the test of a court 

of law. The authors do not specify if they have the full consent of the users as per the 

European General Data Protection Regulations when installing these components on 

the devices. Moreover, this framework appears to be a security framework rather than 

a forensic one because, critically studying it implies that it is a tracking system. 

A research by Kebande, Karie and Venter (2018), the authors proposed an 

architecture that is able to forensically incorporate Digital Forensics Readiness (DFR) 

within the IoT environments by planning and preparing for any intrusion to the IoT 

setup. The authors stated that before their paper, there was no known model or 

framework that could incorporate DFR for the purpose of incident preparedness in IoT 

setups. The framework has three distinct entities which are: Proactive Process 

(detects pre-incidents), IoT Communication Mechanism (provides smart 

communication strategies on the intelligent network for machine-to-machine devices) 

and Reactive Process (handles digital investigations in post-event response process). 

Although this framework has a practical and experimental results, it does not show 

how the general digital forensics processes of preparation, identification, acquisition, 

preservation, analysis, and reporting. This is exhibited by its inability to show the chain 

of custody and the acquisition of potential data at all levels of IoT forensics (device, 

network and cloud levels). A practical demonstration of a report or a process that is 

admissible in a court of law needs to be specifically outlined and presented. The 

framework is based majorly on how an IoT environment can best prepare for a 

potential security incident.  
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The Forensic Investigation Framework for IoT (FIF-IoT) as described by Hossain, 

Karim and Hasan (2018) is a framework that uses public digital ledger to forensically 

investigate IoT-based systems. The framework operates by storing in a Bitcoin-like 

public digital ledger all the interactions that the device makes with other devices, users, 

or cloud. The stored data is used as evidence. The setting of the framework allows 

evidence acquisition and enables the verification of evidence during the investigation 

process. This framework though well thought and explained; the experiments 

subjected on it cannot warrant its use for a forensic process that can stand the test of 

a court of law. The authors claim that there is integrity preserved yet they do not show 

how this is achieved in their experiments. 

An IoT forensics framework proposed by Hossain, Hasan and Zawoad (2018) called 

Probe-IoT uses public digital ledger in searching for evidential facts in incidents in 

systems that are IoT based. Through the framework, interactions between IoT entities 

like IoT devices, IoT users and the cloud, are collected as evidence and stored 

securely in a Bitcoin like technology. The authors claim that Probe-IoT framework 

guarantees confidentiality, integrity, non-repudiation, and anonymity for the stored 

evidence data. This is because it is stored in public ledger. The framework also 

provides a mechanism in which during an investigation of a malicious incident, the 

integrity of the stored evidence is verified by authentication for any retrieval. 

This research provides a tight security in accessing the evidence collected and can be 

extended to any evidence that is not necessarily IoT based. It would have been better 

if a real-life simulation of collection of data in a typical IoT forensic investigation was 

performed to show how this data is acquired. After the acquisition, the authors should 

have demonstrated how it is securely preserved using the framework and how its 

access by different parties as outlined in the paper is implemented. 

In this paper, the forensic artifacts retrieved from Nest’s IoT devices (thermostat, 

indoor and outdoor cameras) are analysed by the authors, Dorai, Houshmand and 

Baggili (2018). These devices were controlled by an iPhone. The source of the data 

from for the logical backup of the iPhone.  Google Home Mini was also integrated by 

the authors as another method to control the Nest devices being studied. It is claimed 

by the authors that their work produced a first usable forensic tool named FEAAS from 

open-source research. The tool, as the authors state, consolidates evidentiary data 
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into a readable report depicting user activities and what might have triggered the 

activities thereof.  

From the experiments and the analysis done by the authors, it is evident that they had 

possession of all the devices and access to all the databases storage sites. The 

authors have simulated how smart home can be controlled and also given details of 

when, what, and how the events take place. All this information could be very valuable 

in a case as the investigators can get access to the relevant information. However, 

this is usually not the case in many digital forensic cases because in most cases, the 

investigators have no access to the control phone which in this case, the authors have 

retrieved the logical data from. The tool created could also be restricted to the 

mentioned devices alone. 

This research seeks to use data reduction which entails selectively imaging data. The 

acquisition process is automated and huge amount of data is quickly analysed in time. 

The authors, Quick and Choo (2018b), state that the paper outlines a process of 

analysing huge volumes of data for forensic purposes. This data includes that from 

dissimilar devices.  

It is noted by the authors that as many devices interconnect through the internet and 

upload huge amount of data to cloud platforms distributed around the globe, it is 

important to identify relevant potential data of evidence for forensic purposes. Securing 

of the crime scene is also problematic because the wireless crime scene may leak 

data as the investigators process physical devices. 

The authors further note that the analysis of dissimilar devices is a challenge as many 

of these devices that flood the market do not adhere to forensic readiness principles.  

The data from these devices could as well be proprietary and the manufacturers are 

in most cases hesitant to give out details about the data structures used for fear of 

leaking their secret to their competitors. The reverse engineering that may be 

performed on these kinds of devices may not pass the test of a court of law as stated 

by the authors. 

Although the research was aimed at performing analysis in a faster way, the time taken 

for acquiring data in these experiments is still too much, there is need to look for 

mechanisms to ease the process of acquisition. However, there are useful forensic 

tools that the authors have proposed and used in their research that are very essential 
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in the digital forensics’ realm.  The research cannot be fully relied on as the authors 

state that they had limited access to the data and could not therefore view or query 

the data to reveal the number of dissimilar devices contained in the data.  

The authors, Nik Zulkipli, Alenezi and B. Wills (2017) proposed two approaches for 

conducting IoT investigations based on low security mechanism and constraints 

encountered in IoT setups. The real time approach for IoT forensics proposed in this 

paper appears to be too general. The authors have implemented what is perceived to 

be done in traditional digital forensics into IoT forensics. This mode of approach will 

only work if the investigator has a full access to the device, the network and where the 

data is being transmitted to and/or from (maybe the cloud). It could be a measure for 

IoT forensics readiness in a controlled environment. No practical work has been 

performed by the authors to illustrate their proposals. 

A summary is provided by Shin et al. (2018) of methods to collect and analyse data to 

improve the digital forensic process in IoT environments. Amazon Echo and Z-Wave 

devices as part of smart IoT devices together with a router were analysed to reveal 

important forensic evidence that can be extracted. This paper however lacks the 

practical solutions that can be applied in scenarios of the general IoT forensics as it 

focusses more on Amazon Echo, Z-Ware, and a home router. 

A three-layered architecture is proposed by Al-Sadi, Chen and Haddad (2018) which 

keeps track of the three level of the IoT forensics (device, network and cloud) and 

showcases where potential evidence can be found within these layers. The authors 

have outlined different types of open-source tools that can be used in every level but 

fail to give experiments on how this can be done. This research remains a theoretical 

work like many others. 

A research by Bouchaud, Grimaud and Vantroys (2018) focussed on the collection of 

data from IoT devices. The authors discussed the mode of data identification and the 

methodology of data classification from IoT devices to find the best available evidence. 

Tools and techniques to for identification and location of IoT devices are also 

proposed. The authors also claimed to develop a concept of “digital footprint” in the 

crime scene based on frequencies and interactions mapping between devices. The 

classification methodology used in this paper is too general and may be limiting to 
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other IoT scenarios. The issues to do with synchronisation of data and the aspects 

that address the legal issues also need to be discussed further as the authors noted. 

A framework is proposed by Goudbeek, Choo and Le-Khac (2018) for forensic 

investigation in IoT environments (smart homes). The authors simulated the three 

case studies to illustrate all the three levels of IoT forensics (device, network, and 

cloud). They claimed that their research fills the gap on how to acquire any type of 

data that may be potential evidence in a smart home setup. This framework looks to 

be very helpful to the digital forensic investigators, however, as these case studies are 

only simulations, it may be reasonable if the framework is applied in a real-life situation. 

A forensic investigative framework is presented by Rondeau, Temple and Lopez 

(2018) to be used in Industrial IoT applications. Their framework is based on the fact 

with which they allude that most forensics investigations happen at the higher layer 

digital domain meaning that the lowest layer domain remains hugely unexploited. They 

have therefore performed forensic investigations on the lowest physical layer of the 

network and illustrated what evidential data can be found within that lower physical 

level. 

A framework called Trust Internet of Vehicles (Trust-IoV)  is proposed by Hossain, 

Hasan and Zawoad (2017) whereby evidence that is trustworthy from internet of 

vehicles systems is collected and stored. From the experiment results of the 

framework, it is shown that in scenarios where there are strong adversaries, the 

framework can work with very minimal strains. 

A proposal by Le et al. (2019) on a permission blockchain based mechanism for IoT 

forensics which enhances integrity, authenticity, non-repudiation in the process of 

collecting and preserving evidence. 

The system provided Oriwoh and Sant (2013) was aimed at providing security and 

forensics capabilities for smart homes. The strategies involved in this system can be 

helpful in an investigation more so for first responders as it has forensic readiness 

capabilities. 

A framework is provided by Chi, Aderibigbe and Granville (2019) for acquiring data 

saved stored on the cloud by IoT devices.  The setback in this framework is that the 
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authors have not exhaustively provided the information relating to how they have 

developed their forensic tool, and the tool only seems to work with android phones. 

The acquisition of data, as shown by the authors Meffert et al. (2017), can be done 

both from the devices and the cloud. The author’s Forensic State Acquisition from 

Internet of Things (FSAIoT) framework was however not possible to retrieve deleted 

or historical data from IoT devices. More experiments should also be done to reveal 

the extent to which varied IoT devices can be able to work with this framework. 

A concept is proposed by Bouchaud, Grimaud and Vantroys (2018) where traces of 

IoT devices can be tracked down and identified. A central bridge device is used to 

connect to other devices in the surroundings. The identified devices are ranked based 

on their importance of interest. The main setback with this concept is that the world is 

flooded with varied devices which may not be identified. Zia, Liu and Han (2017) 

proposed an application specific IoT forensics investigative model where data is 

acquired, examined, and analysed resulting into a generated report. 

The authors Quick and Choo (2018a) proposed a national repository knowledge base 

for digital forensics experts. The knowledge base, with the necessary security control 

measures, could be expanded to allow for inclusion of methods that are suitable to aid 

in data reduction in a digital forensic process. 

An investigation is done by Koroniotis et al. (2018) on how Machine Learning 

techniques can be used to develop a mechanism for network forensics to track 

suspicious activities of botnets based on network flow identifiers. This piece of work 

can be used to enhance IoT forensics especially in cases of compromised IoT devices 

through botnets, however, as it is an intrusion detection mechanism, it remains to be 

a forensics readiness process. 

A forensic framework is proposed by Chhabra, Singh and Singh (2018) for big data in 

IoT environments for precision and sensitivity. The framework employs a Machine 

Learning (ML) approach using the Google’s MapReduce as the basis for 

understanding traffic, extracting, and analysing the data. Open-source tools that 

support parallel processing and scalability have also been used in the framework. 

Comparatively analysed against other ML models, the framework exhibited a 

performance metrics of 99% sensitivity. 
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Ryu et al. (2019) proposed a framework (Blockchain-based Framework IoT Forensics) 

leveraging blockchain technology to improve forensics investigations in the realm of 

IoT. This framework boasts enhanced security by utilising cryptography on the 

blockchain, making it tamper-proof and fostering trust in the collected evidence. 

Additionally, by recording all interactions between IoT devices on the blockchain, the 

chain of custody for evidence is streamlined, simplifying the process of tracking its 

origin and ownership. However, some limitations exist. The vast amount of data 

generated by numerous IoT devices could potentially congest public blockchains, 

raising scalability concerns. Furthermore, storing all data on a public ledger might pose 

privacy issues for some users. Finally, implementing and managing a blockchain-

based system for forensics adds complexity for investigators. While this framework 

offers a secure and transparent approach to IoT forensics, addressing scalability, 

privacy, and implementation challenges is crucial for its widespread adoption. 

A "Holistic IoT Forensic Model" was proposed by Sadineni, Pilli and Battula (2019) 

emphasising a comprehensive approach to digital forensics for IoT. This model 

leverages the established ISO/IEC 27043 standard, providing a structured and well-

defined process for handling IoT forensics investigations. This can significantly 

improve consistency and reliability in evidence collection throughout the process. The 

model's strength lies in its comprehensiveness, encompassing proactive 

preparedness for forensic readiness, reactive initiation upon encountering an incident, 

and forensic analysis itself. This ensures a thorough investigation that covers all 

stages. However, some challenges exist.  Putting the model into practice might be 

difficult due to the vast diversity of IoT devices with varying capabilities. Additionally, 

the model doesn't explicitly address potential privacy concerns that could arise during 

data collection and analysis specific to IoT forensics. Overall, this model offers a 

valuable foundation for standardized and comprehensive IoT forensics, but for real-

world application, it would need to address practical implementation challenges and 

incorporate clear privacy considerations. 

Islam et al. (2019) introduced the "IoT Comprehensive Framework" designed to offer 

a holistic approach to digital forensics investigations for IoT devices. This framework 

incorporates several key modules: a Data Acquisition Module for collecting evidence, 

a Preprocessing Module for filtering and preparing the data, an Analysis Module for 

in-depth examination, and a Secure Provenance Module for maintaining a secure 
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record of access history to the evidence. Additionally, an Initialisation Process ensures 

proper configuration before investigation begins. While this framework provides a 

comprehensive plan for handling IoT forensics, some limitations exist. The 

effectiveness of data acquisition might vary depending on the specific device and its 

communication protocols. Furthermore, the success of the framework hinges on the 

secure implementation of its various modules, particularly the Secure Provenance 

Module, to ensure the integrity of the evidence trail. Overall, the framework offers a 

well-structured approach to IoT forensics, but for real-world application, addressing 

device-specific data acquisition challenges and robust security implementation will be 

crucial. 

The Digital Forensics Investigation Model (DFIM) model, proposed by Qatawneh et al. 

(2020), offers a seven-stage framework for digital forensics investigations in the IoT 

domain. This model emphasises principles like security, privacy, accuracy, and data 

reduction. While the DFIM model presents a structured approach, some critical 

aspects need consideration. Firstly, the success of the model relies on the 

effectiveness of its "modifier" component, responsible for initialization and data 

acquisition. Difficulties might arise due to the heterogeneity of IoT devices and their 

varying communication protocols. Secondly, balancing the need for data reduction 

with preserving crucial forensic details is a challenge. Finally, the paper doesn't delve 

deeply into the specifics of how the model addresses privacy concerns during the 

investigation process. In conclusion, the DFIM model provides a valuable foundation 

for IoT forensics investigations, but for real-world application, it would benefit from 

addressing challenges related to device-specific data acquisition, data reduction 

strategies, and detailed incorporation of privacy considerations. 

Koroniotis, Moustafa and Sitnikova (2020) proposed the "Particle Deep Framework" 

(PDF) for IoT network forensics. This framework leverages machine learning, 

specifically deep learning with a twist: Particle Swarm Optimisation (PSO) is used to 

fine-tune the deep learning model's hyperparameters. This approach aims to improve 

the model's ability to detect malicious activity on the network. The framework boasts 

impressive results in their study, achieving high accuracy with a low false alarm rate. 

However, some limitations are worth considering. Firstly, the effectiveness of the 

framework relies heavily on the quality and completeness of the training data used for 

the deep learning model.  If the training data doesn't encompass a wide range of attack 
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types, the model's accuracy in real-world scenarios could be compromised. Secondly, 

the computational cost of training and running deep learning models can be significant, 

potentially limiting its feasibility for resource-constrained environments. Finally, the 

paper doesn't explicitly discuss the interpretability of the deep learning model's 

decisions. Understanding why the model flags certain activities as suspicious can be 

crucial for investigators. Overall, the Particle Deep Framework offers a promising 

approach to IoT network forensics with its focus on deep learning and hyperparameter 

optimisation. However, addressing the limitations related to training data 

comprehensiveness, computational demands, and model interpretability will be 

essential for its wider adoption. 

Saleh et al. (2021) presented the "Common Investigation Process Model for Internet 

of Things Forensics" (CIPM). This framework emphasises a standardised approach to 

IoT forensics investigations. The CIPM outlines four key stages: preparation, 

collection, analysis, and final reporting. This structured approach can benefit 

investigators by facilitating a well-organized and documented investigation process. 

However, some limitations exist. The CIPM offers a general framework, and its 

effectiveness in real-world scenarios might depend on the specific nature of the 

investigation and the capabilities of the involved IoT devices. Additionally, the authors 

don’t delve deeply into the specifics of handling challenges like data heterogeneity 

across diverse IoT devices or the complexities of secure evidence storage and 

management within the CIPM’s structure. Overall, CIPM offers a valuable foundation 

for standardised IoT forensics procedures. However, for real-world application, 

addressing the limitations related to device specific considerations, data security 

concerns, and detailed guidance within each stage of the process would be beneficial. 

Ahmed, Yousef and Mohammad (2021) proposed an IoT Forensic Model that 

leverages third-party logs for forensic analysis. This approach aims to address 

challenges associated with traditional methods that require direct access to IoT 

devices, which can be difficult or even impossible in some cases. The model utilises 

logs collected from surrounding infrastructure, such as network routers or cloud 

platforms, to reconstruct events and identify potential compromises. While this offers 

a valuable alternative approach, some limitations need consideration. Firstly, the 

effectiveness of the model relies heavily on the availability and comprehensiveness of 

third-party logs. If relevant logs are missing or incomplete, the ability to reconstruct 
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events accurately might be hampered. Secondly, extracting forensic data from third-

party logs might require parsing and interpreting complex log formats, which can be 

challenging and time-consuming. Finally, the model needs to address potential privacy 

concerns, as third-party logs might contain sensitive information beyond the scope of 

the IoT device under investigation. Overall, the model offers a promising approach to 

IoT forensics by utilising third-party logs. However, for real-world application, it would 

benefit from addressing limitations related to log availability, parsing complexities, and 

incorporating strong privacy considerations. 

Fagbola and Venter (2022) proposed a "Smart Digital Model for Shadow IoT" (SDMSI) 

to address the challenge of hidden or unauthorised IoT devices (shadow IoT) on a 

network. This framework leverages machine learning algorithms to analyse network 

traffic and identify patterns that deviate from expected behaviour, potentially indicating 

the presence of shadow IoT devices. The SDMSI can be beneficial for enhancing 

network security and identifying potential vulnerabilities. However, some limitations 

need to be considered.  Firstly, the effectiveness of the model depends on the quality 

and completeness of the training data used to train the machine learning algorithms. 

If the training data doesn't encompass a wide range of legitimate IoT device activity, 

the model might generate false positives by flagging normal behaviour as suspicious. 

Secondly, machine learning models can be complex, and their decision-making 

processes might not always be easily interpretable. This can make it challenging for 

investigators to understand why the model identifies certain network activities as 

indicative of shadow IoT devices. Finally, the computational cost of training and 

running machine learning models can be significant, potentially limiting its feasibility 

for resource-constrained environments. Overall, the SDMSI offers a promising 

approach for detecting shadow IoT devices, but as observed from the previously 

reviewed work, for real-world application, addressing limitations related to training data 

comprehensiveness, model interpretability, and computational demands will be 

crucial. 

Mazhar et al. (2022) proposed a Machine-to-Machine (M2M) framework for forensic 

analysis of IoT devices. This framework utilises machine learning to automatically 

detect attacks on IoT devices. Additionally, a third-party logging server is introduced 

to capture evidence of these attacks. While this approach offers automation and 

centralised evidence collection, some limitations exist. Firstly, the reliance on machine 
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learning algorithms necessitates high-quality training data that encompasses various 

attack types.  Inaccurate or incomplete training data could lead to the model missing 

genuine attacks or generating false positives. Secondly, the security of the third-party 

logging server is crucial, as it becomes a central repository for sensitive forensic 

evidence.  Any breaches or vulnerabilities in this server could compromise the integrity 

of the entire investigation. Finally, the authors don't provide much about the specifics 

of how the framework handles the heterogeneity of IoT devices and their 

communication protocols, which can impact data collection. Overall, the M2M 

framework offers an innovative approach to IoT forensics with its focus on automation 

and centralised logging. However, as previously stated by this thesis, for real-world 

application, addressing limitations related to training data quality, third-party server 

security, and handling diverse IoT device capabilities would be essential. 

Kim, Park and Lee (2023) proposed an improved IoT forensic model that prioritises 

identifying connections and interactions between devices (interconnectivity). This 

focus on interconnectivity is a major strength, as traditional forensics can miss crucial 

information about how devices interact within an IoT ecosystem. The framework 

utilises network traffic analysis to examine data flow between devices, potentially 

revealing communication patterns and suspicious activities. Additionally, the concept 

of improved digital twins is introduced, which likely represent more comprehensive 

virtual models of physical devices that incorporate interconnectivity information. 

However, some limitations exist. The details provided don't offer specifics on how 

interconnectivity is identified or how improved digital twins are constructed. This 

makes it difficult to assess the effectiveness and accuracy of these methods. 

Furthermore, scalability challenges arise when analysing network traffic and 

maintaining digital twins for a vast number of devices. Finally, the framework needs to 

address potential privacy concerns when analysing network data or creating detailed 

digital twins of devices. Overall, the framework offers a promising direction for IoT 

forensics by focusing on interconnectivity, but addressing limitations related to missing 

specifics, scalability, and privacy considerations will be crucial for its real-world 

application. 

A framework for a Blockchain-based IoT forensics system was proposed by Makadiya, 

Virparia and Shah (2023). The framewrok explores using blockchain technology to 

improve digital forensics for IoT. While it highlights the importance of tamper-proof 
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evidence and the potential benefits of blockchain's immutability for securing the chain 

of custody, there are some key areas for consideration. The framework leans on a 

permissioned blockchain, allowing access only to authorised participants. This 

ensures trust but goes against the fully decentralised nature often associated with 

blockchain. Additionally, while scalability is mentioned as an advantage for handling 

numerous IoT devices, the authors don't delve into how blockchain would handle the 

potential data influx. Furthermore, the focus is on data collection and verification, and 

it's unclear how blockchain would integrate with other forensic tasks like analysis and 

investigation across different devices. Overall, the concept of using blockchain in IoT 

forensics is interesting, but the framework would benefit from addressing the 

limitations of permissioned blockchains and exploring its application in the broader 

forensic workflow. 

Table 2.1 gives a summary of the discussed frameworks, models, and methodologies 

above. The categorisation is based on the limitations and gaps in relation to the 

practical view of the proposed research as applied in the IoT forensic process. The 

main features of these frameworks have been identified.
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Authors Main Features Practical View of the Forensic Process Limitations and Gaps 

(Birk and Wegener, 2011) Service Specific solution for cloud forensics  

SLAs verification and compliance issues  

Snapshot analysis or cloning in the Infrastructure as 

a Service cloud environment. 

Evidence Identification and Acquisition 

Not feasible for all data to be cloned by the cloud service 

providers 

(Oriwoh et al., 2013), (Harbawi and Varol, 2017), 

(Hossain, Hasan and Zawoad, 2018), and 

(Meffert et al., 2017) 

1-2-3 Zones of IoT Forensics 

Systematic and structured approach to minimise the 

complexity of IoT investigation processes. 

Identification of more evidence sources in the absence 

of the primary source of evidence 

Last-on-Scene (LoS) algorithm 

Use of public digital ledgers to find evidence in IoT 

based systems. 

FSAIoT 

Mapping the investigation process and helping to 

identify key areas of focus. 

Devices of interest identified in the focus areas 

established. 

Evidence Identification 

Guidance on the investigative process based on 

established zones 

The identification of evidence is only partial. 

Difficulty in the development and testing 

No clear instructions/directions on how to carry out the 

analysis and the whole investigative process 

(Kebande and Ray, 2016), (Hegarty, Lamb and 

Attwood, 2014), (Venčkauskas et al., 2015), 

(Underwood, 2016). (Perumal, Md Norwawi and 

Raman, 2015), (Zawoad and Hasan, 2015), 

(Rahman, Bishop and Holt, 2016), (Banday, 

2018), (Bouchaud, Grimaud and Vantroys, 

2018), and (Oriwoh and Sant, 2013) 

Review of the current tools for forensic readiness in 

IoT 

Preserving of volatile data/evidence 

Evidence acquisition and preservation  

Maintaining chain of custody 

The proactive (readiness) and reactive (investigation) 

IoT forensic process 

Identification and acquisition of evidence 

Theoretical Practical aspect to augment the implementation, deployment, 

analysis and evaluation. 

Too generic approaches may not be suitable for IoT forensics  

(Alabdulsalam et al., 2018), (Kebande, Karie and 

Venter, 2017), (Nieto, Rios and Lopez, 2017), 

(Dorai, Houshmand and Baggili, 2018), (Al-Sadi, 

Chen and Haddad, 2018),  and (Zia, Liu and Han, 

2017) 

Incorporates privacy in the forensic process using the 

requirements of ISO/IEC 29100:2011 

Collaboration of nearby devices 

 

Identification, acquisition, and analysis of data 

 

More vigorous experiments to explore how the current tools 

can be used to fit into the proposed frameworks and solutions 

(Al-Masri, Bai and Li, 2018), (Babun et al., 2018), 

(Kebande et al., 2018), and (Kebande, Karie and 

Venter, 2018) 

Builds intelligence at the edge of the of the network 

through a gateway. 

IoTDots-Modifier (ITM) and IoTDots-Analyser (ITA) 

Forensic readiness 

Incident preparedness 

May fail the test of the judicial process due to installation of a 

management software which may be viewed as surveillance 

in a public setup. 

No clear instructions/directions on how to carry out the 

analysis and the whole investigative process 

(Hossain, Karim and Hasan, 2018) and (Le et al., 

2019) 

Uses Blockchain like mechanism for evidence 

preservation. 

Evidence preservation 

Chain of Custody 

Vigorous experiments required for the purposes of 

admissibility in a court of law 
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Provides privacy 

(Quick and Choo, 2018a) Selective data imaging, automated acquisition, and 

quick analysis 

Identification and acquisition of data Need for finding ways to reduce the time taken for acquisition 

of data 

(Goudbeek, Choo and Le-Khac, 2018) To identify and acquire any kind of evidential data in a 

Smart Home environment 

Provides guidance for quick reference for 

investigation processes involving smart home 

environments. 

All three levels of IoT forensics are covered 

Application of the simulations used in this research should be 

carried out in a real-life scenario 

(Sadineni, Pilli and Battula, 2019) Comprehensive approach to digital forensics for IoT - 

Based on ISO/IEC 27043 standard 

Offers structured process for handling 

investigations - Ensures thorough investigation 

stages 

Difficulty in practice due to diverse IoT devices Lack of explicit 

privacy considerations in data collection and analysis 

(Ryu et al., 2019) and (Makadiya, Virparia and 

Shah, 2023) 

Utilises blockchain for secure evidence tracking 

Cryptography ensures tamper-proof nature of 

evidence 

Ensures tamper-proof evidence and enhances 

security 

Streamlines chain of custody for evidence 

Enhances security and trust in evidence 

Ensures tamper-proof evidence and enhances 

security 

Scalability concerns due to congested public blockchains 

Privacy issues with storing all data on public ledger 

Complexity in implementing blockchain-based system 

Limited exploration of permissioned blockchain limitations 

Unclear integration with forensic analysis and investigation 

tasks across devices 

(Islam et al., 2019) and (Qatawneh et al., 2019) Comprehensive framework for IoT forensics  

Includes modules for data acquisition, preprocessing, 

analysis, secure provenance, and initialisation 

Seven-stage framework emphasising security, 

privacy, and data reduction 

Provides a well-structured approach for 

investigation - Ensures proper configuration before 

investigation begins 

Focuses on security, privacy, and data reduction 

principles 

Effectiveness of data acquisition varies with device and 

protocols - Reliance on secure implementation of modules, 

particularly Provenance Module 

Challenges in data acquisition due to device heterogeneity 

Balancing data reduction with preserving forensic details 

Lack of detailed privacy considerations 

(Ahmed, Yousef and Mohammad, 2021) Utilises third-party logs for forensic analysis Offers alternative to traditional direct access 

methods 

Reliance on availability and comprehensiveness of third-party 

logs  

Complexity in parsing and interpreting log formats 

(Fagbola and Venter, 2022) 

Uses machine learning for identifying shadow IoT 

devices 

Enhances network security and vulnerability 

identification 

Reliance on quality of training data 

Complexity and interpretability of machine learning models 

High Computational demands 

(Mazhar et al., 2022) 

Utilises machine learning for automated attack 

detection 

Offers automation and centralised evidence 

collection 

Reliance on training data quality 

Security concerns with centralised evidence storage 

Handling device heterogeneity in data collection 

(Kim, Park and Lee, 2023) 

Prioritises identifying connections and interactions 

between devices 

Focuses on interconnectivity for comprehensive 

investigation 

Lack of specifics on interconnectivity identification and digital 

twins  

Scalability challenges 

Privacy concerns in network data analysis 

Table 2.1 Summary of the Current Studies 
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2.8 Discussions and Analysis of the SLR 
Most of the research surveyed by this SLR proposed models and frameworks that 

have majorly focussed on conceptual levels that are more theoretical. Further 

investigation and research are required to tackle among others the following key 

issues as also emphasised by Chernyshev et al. (2018) and Yaqoob et al. (2019): 

Although sound principles have been applied in the proposed models and frameworks 

to tackle the complex challenges of IoT forensics, there still exists a need to conduct 

robust experiments that can be validated scientifically. Any new methodologies, 

techniques and tools developed must undergo a scientific validation. 

Due to the huge data generated by IoT devices (which can be referred to as ‘Big IoT 

Data’), it is important that the research community finds a way to create techniques 

that are smart to analysis the data. This data is generated from heterogenous devices 

which have vendor specific data formats that are varied making it cumbersome to 

analyse and produce reports that are admissible in a court of law when presented. 

The production of IoT equipment and provision of IoT services that are readily 

adaptable and integrated into the current digital processes are still a challenge in 

digital forensics investigations. Even though measures have been taken to address 

security features in IoT, issues related to forensics readiness for IoT systems still 

remain clouded (Bajramovic et al., 2016). 

Privacy is a contentious issue in relation to investigation processes that involve 

personal and protected data as stipulated under the EU data protection laws and 

General Data Protection Regulations (GDPR). Full disclosure must be given to the 

owners. This involves letting them know that their data will be used for the investigation 

process and should be made aware of how the data was accessed and by whom. 

Those who access the data must put in place protective measures that forbids 

unauthorised access, any form of manipulation and loss. 

Evidence admissibility in a key issue in digital forensics, however, many of the models 

discussed in this survey have not addressed the legal aspects related to how evidence 

is acquired. The challenges relating to cross-border jurisdictions are imminent in cloud 

forensics which is huge part of IoT systems. There needs to be propositions for 
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solutions for legal challenges as IoT relies heavily on the cloud both for application 

services and architectural structure. 

As evidenced by both NBT and LoS algorithm models, it is difficult to determine the 

scope of the investigation. This is because, potentially new evidence sources are likely 

to be found during the process of the investigation. With the challenges related to 

limited visibility and high volatility of the data exposing it to manipulation and 

compromise, it calls for the need for mechanisms that are practical. This can be 

resolved by the implementation of digital warrants which would help to effectively 

retrieve evidence from sources that are discovered later in the process or along the 

process. 

In conclusion, various IoT forensics frameworks have been examined, highlighting 

their strengths and limitations. Blockchain-based frameworks offer enhanced security 

but face scalability and privacy challenges. Comprehensive models like the Holistic 

IoT Forensic Model and the IoT Comprehensive Framework ensure consistency but 

must address device diversity and privacy concerns. The Particle Deep Framework 

excels in accuracy but needs comprehensive training data. Standardised approaches 

like the Common Investigation Process Model provide structure but require detailed 

guidance. These frameworks provide valuable contributions but need refinement to 

address scalability, privacy, and implementation complexity for widespread adoption. 

2.9 How can the Technical Challenges of IoT Forensics be 
Overcome? 

Singh, et al. (2018) note that although technology is not a cure all solution in solving 

accountability issues in IoT forensics, it can be used to complement all the other 

aspects to enable come up with proper rules, regulations, and standards. To better 

align this thought, the authors have suggested that technical means will help in: 

Control 

This entails what the determination of what happens through a process that has active 

steps detailing how obligations and exercise of rights are met. 

Auditing 

Auditing will make visible what happens or what happened. This will be illustrated by 

proving evidence explaining the operations of the system, actions, and the recourse 
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thereof. It is at auditing that digital forensics plays a major role in revealing what 

transpired in an event of loss of data, data breach or damages. 

Control and audit augment the accountability considerations. The auditing will 

increase transparency in the IoT systems giving rise to informed decision making by 

users and provide evidence that can be very useful in investigation processes to 

apportion liability (Singh, et al., 2018). 

To aid this research further, a quadrant model developed by Godfrey (2000) was used 

to help understand different scenarios at play in IoT forensics and propose a solution 

to the privacy, confidentiality and data integrity for a sound IoT forensic investigation 

process. 

A quadrant model tries to complement conflicting elements in a social phenomenon. 

It relates to how different aspects ranging from law to social norms affect those 

involved. In most cases, these aspects are acceptable and effective, some aspects 

might be unacceptable but effective, others may be acceptable but ineffective and 

lastly aspects may be unacceptable and ineffective. 

This research used this quadrant model and equated the acceptable and unacceptable 

elements to admissible and inadmissible (in a court of law) respectively as illustrated 

in Figure 2.4. 

 

Figure 2.4 The Quadrant Model 
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Quadrant 1 indicates actions that are effective and legally acceptable to all parties 

involved. These elements are compliant with the laws and therefore lead to an 

admissible report in a court of law. These can be for example, auditing and control, 

safety and security, confidentiality and privacy, data protection, and transparency. 

Quadrant 2 is the problem area, consists of actions that are effective in increasing 

efficiency, but where parties have conflicting views. The activities involved in this 

quadrant are for example the use profiling, surveillance, tapping, eavesdropping, and 

cloning among many other inadmissible mechanisms. Law enforcement agencies may 

want to employ those mechanisms as a security measure; however, users may claim 

that their privacy is encroached, data being accessed by unauthorised entities. This 

may lead to issues related to legal obligations and liability between IoT users and IoT 

manufacturers. 

Quadrant 3 consists of actions that are generally inadmissible in a court of law and at 

the same time ineffective. For these reasons, this quadrant will be ignored as it is 

unproductive. 

Quadrant 4 are actions which are admissible in a court of law but do not contribute to 

increased efficiency. These elements are not admissible in a court of law.  These 

actions can be for example, regulators banning some IoT devices and enforcing 

licensing for IoT devices. These actions, although admissible, they may be hard to 

implement meaning that they will be so ineffective and unproductive. This paper 

ignores the actions in this quadrant. 

2.9.1 The Quadrant Model in Context 
As the quadrant model is to complement conflicting aspects or interests, it is evident 

from this research that the conflicting parties in an IoT forensic investigation process 

are the users of IoT, manufacturers of IoT platforms, IoT service providers and Law 

enforcement agencies. All these parties have conflicting interests in that, whereas the 

law enforcement agencies may want to do profiling and surveillance on user activities, 

they are restricted by law as it is an infringement to the privacy and confidentiality of 

the user.  

The authors Singhai and Sushil (2023), Bentotahewa et al. (2022), and Ahmed et al. 

(2024) claim that IoT Service Providers and IoT manufactures alike may also install 

backdoor applications onto IoT devices to snoop on user activities and in most cases 
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collect users’ private data for marketing purposes. The IoT Services Providers and 

manufacturers deny this wrongdoing whenever an investigation comes up. They 

blame users of negligence and would also not allow forensic investigators get to 

underlying structure of the technology used their devices even though they are 

expected to be transparent in their undertakings. These conflicting aspects or interests 

put in context complicate the IoT forensic investigation process. In the digital forensics’ 

domain, forensic investigators are required to carry out their investigative process in a 

manner that is legally acceptable/admissible. The law enforcement agencies are also 

required to work within a specified terrain of regulations. All these activities are to be 

done without infringing the rights of a suspect. 

This research therefore used the quadrant model to find reasons as to why and how 

the inadmissible but effective actions can be made effective and admissible in a court 

of law. Particularly, this is to show cause why profiling can be acceptable by the user 

and be effective to the law enforcement agencies and be admissible in a court of law, 

as illustrated in Figure 2.5. 

 

Figure 2.5 Profiling and Surveillance in IoT Forensics 

2.9.2 Profiling and Surveillance in IoT Forensics 
Profiling and surveillance are useful means (when used lawfully) through which law 

enforcement agencies can use to detect any security threats that are posed by IoT 

gadgets. As highlighted earlier in this chapter, IoT data is transmitted to the cloud. The 

cloud therefore serves as a platform through which a profiling or a surveillance 

mechanism can be deployed for profiling and surveillance to give alerts or reports. 

This paper proposes the use of Machine Learning algorithm as to implement this 

mechanism. 
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2.9.3 Machine Learning for Profiling and Surveillance 
In their earlier work, Mitchell (1997) and Copeland (2000) explained that with 

experience, Machine Learning programs have the capability to improve automatically 

and learn without being explicitly programmed. 

The use of Machine Learning for profiling and surveillance is to eliminate the human 

factor and give the owner of the data the confidence for their privacy and 

confidentiality, thereby ensuring only authorised access of the data is gained. 

The human decision making as observed by Kamarinou, Millard and Singh (2017) is 

in most cases influenced by behaviours like stereotyping and prejudice. Some people 

make decisions based on the characteristics of profiles they perceive. This may distort 

evidence as it may be inaccurate, incomplete or none thereof because it may be wholly 

derived from stereotype and prejudice (Hildebrandt, 2008). 

Machine Learning being a science that consists of algorithms that can detect patterns 

in data and as highlighted by Serge and Hildebrandt (2010), different profiles of 

individuals can be created through probabilistic processing of their personal by use of 

Machine Learning. This paper argues that Machine Learning algorithms can be 

deemed appropriate to be used in profiling and surveillance.  

Singh, et al. (2016) also note that profiles only represent a version of reality which in 

some cases may not be the exact reality which is created from a process of data 

mining that includes algorithms and data used in the process. 

Recent studies exploring deep learning for anomaly detection in IoT security and 

mobile network security showcase the potential benefits of ML in these areas for 

forensic purposes (Yue et al., 2021; Gupta et al., 2022). 

2.10 Conclusion 
As a fast-growing technology, IoT is providing the much-needed convenience to 

people through innovative IoT based applications. This has enabled devices to be 

connected in large numbers thereby sharing data with each other. Hackers have taken 

advantage of this data sharing capability exploited vulnerabilities leading to criminal 

activities. Through digital forensics solutions, these hackers can be tracked down and 

the causes of the attacks identified for appropriate actions to be taken. 
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The process of data acquisition in IoT environment continues to be a challenge and 

this gives rise to opportunities for research communities to develop new digital 

forensics methodologies, techniques, and tools. With the increase of attacks related 

to IoT, there is a massive need for successful prosecution of perpetrators. The current 

models and frameworks have laid a building block for future work that should be more 

practical and experimental. As this SLR reveals, there is a need for development of 

intelligent and more efficient tools that are scientifically validated to ensure reliable 

guiding procedures leading to successful digital investigations in IoT environments. 

A plethora of digital things is encircling our world and shaping our life, they took their 

place in the harmonious complexity of the world. These things are connected 

pervasively through the internet in a very complex structure which may cause many 

challenges.  

This literature review highlights the need for more advanced mechanisms for handling 

IoT forensics. This area is multi-layered and complicated as it has many players and 

needs more cooperation between parties involved. 

The laws and regulations in place further make it a bit hard for law enforcement and 

forensic investigators to carry out their work as the issues of privacy and confidentiality 

come into play. The lack of comprehensive, widely accepted international standards, 

rules, and regulations to manage the IoT and cloud security are a big concern. as we 

continue to witness more complexity in IoT technologies with no laws to govern.  

A concerted effort between multi-disciplined experts should be mooted to consolidate 

the main areas of conflicts and provide viable solutions for long term security 

measures. These efforts should consider the development of unconventional digital 

forensic technologies to improve the effectiveness of the whole investigation process 

as well as to increase the degree of the acceptance of the parties involved in the IoT 

forensic process. 

Law enforcement agencies should carry out public awareness forums (using any 

reasonable medium) and educate the general public on the responsibilities they have 

to ensure they are safe online. Many IoT users fall prey to security scams because 

they are ignorant or negligent. 
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Whereas Machine Learning algorithms can be deemed resourceful in generating 

timely and accurate reports, it should be noted EU GDPR regulations state that the 

final decision on a person’s character should not be made solely relying on the 

automated process that violates the person’s interests.  

Overall, it should be noted that using semi-automated decision-making process 

especially that of Machine Learning algorithms in profiling and surveillance is a sure 

bet of eliminating human elements that bring with them discrimination, stereotypes, 

and prejudices. 
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CHAPTER 3. AUTOMATED PROCESSES IN DIGITAL 
FORENSICS 

This chapter reviews the increasing role of automated processes, AI, and ML in the 

field of digital forensics. It discusses how the digital revolution and the proliferation of 

connected devices have resulted in a vast amount of data, presenting both 

opportunities and challenges for law enforcement agencies. The chapter highlights the 

recommendations made by researchers to apply AI techniques in digital forensics and 

emphasises the potential of AI to transform the field by enabling more efficient 

analysis, detection, and prevention of cybercrimes. Specific areas where AI and ML 

have been used, such as malware analysis, image/video forensics, network forensics, 

and mobile forensics, are also examined. 

The chapter also delves deeply into anomaly detection by examining its application 

domains and challenges, techniques, and algorithms. A review of the state-of-the-art 

anomaly detection algorithms is carried out.  

The chapter concludes by proposing the best algorithms to be used for the analysis of 

the collected dataset for experimentation. 

3.1 Introduction 
The internet, mobile phones, and connected devices have significantly impacted daily 

life, generating vast amounts of data, including emails, contacts, videos, and photos 

(Qadir and Varol, 2020). Law enforcement agencies have adapted to this digital era, 

utilising digital intelligence through data mining and machine learning for crime 

analysis, focusing on detecting, predicting, and preventing criminal activities (Adam 

and Varol, 2020). 

Over two decades ago, researchers like Mitchell (2010) advocated for applying 

artificial intelligence in digital forensics due to the increasing data volume. Milne (2012) 

stressed the importance of digital intelligence techniques for effective digital forensics 

investigations, involving cross-referencing and linking forensic data to support policing 

elements such as intelligence-led operations and resource allocation (Ćosić, Ćosić 

and Bača, 2012). 

The authors Irons and Lallie (2014) proposed that artificial intelligence is crucial for 

overcoming digital forensic challenges, introducing the concept of "intelligent 
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forensics" to identify and predict cybercrimes. This aligns with studies integrating AI 

and automation to improve digital forensics systems and case proceedings like Al 

Fahdi et al. (2016). 

Qadir and Varol (2020) proposed a ML technique for behavioural forensics by using 

pattern recognition applications to handle large data sets in crime prevention  

Toppireddy, Saini and Mahajan (2018) employed ML techniques for spatial analysis, 

creating a monitoring and prediction tool for crime network visualisation but lacking 

real-time data capture. 

A study by Costantini, De Gasperis and Olivieri (2019) explored AI's integration into 

Digital Forensics, presenting AI as an enabling technology for evidence analysis. Their 

Decision Support System (DSS) tool, developed leveraging AI capabilities, aids in 

complex investigations. Xiao, Li and Xu (2019) applied AI for video-based evidence 

analysis, highlighting the importance of automation in digital forensics. 

Magnet Forensics (2020) introduced Magnet AUTOMATE, an advanced digital 

forensic investigation tool based on a repeatable forensic workflow, designed to 

reduce case backlog and turnaround time for cybercrime cases. 

Homem (2018) addressed automation challenges, proposing a resilient program using 

a Machine Learning-based triage method for remote evidence acquisition. This 

automated system assists forensic analysts in reducing the burden of evidence 

discovery and analysis, enabling faster resolution of critical cases and suspect 

identification (Iqbal et al., 2018). 

3.2 Areas where AI and ML have been used in Digital Forensics 
Automated Digital Forensics processes are on the rise with the need to expedite the 

analysis phase and produce faster results to aid cybercrime cases in courts of law. AI-

based applications are being utilised in the facilitation of the examination and 

analysing phases of the digital forensics process (Al Fahdi et al., 2016). This 

technology enables forensic experts in examining and analysing digital evidence 

across a huge range of cybercrime such as, spyware, hacking, malware, data theft, 

and identity theft. However, as Butterfield et al. (2018) warns, with the advancements 

of the technology, so have the computer criminals advanced in their deployment of 
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cybercrimes with more sophisticated crimes. This therefore calls for more advanced 

DF tools that are intelligent to handle these crimes. 

Researchers have been drawn to this field of AI in digital forensics which has now 

yielded specialised sub-categories. The authors Kanimozhi and Jacob (2019) 

developed an AI-based Network Intrusion Detection System with an accuracy of 

99.97% that makes use of the capabilities of ANNs in identifying intrusive traffic. 

The literature below highlights various ways in which AI and ML have been used in DF 

through the integration of algorithms with computational methods. 

Malware Analysis 

Machine Learning has been suggested by Shalaginov et al. (2018) to be a promising 

tool for automation of the static and dynamic malware analysis process. The authors 

used different Machine Learning algorithms and datasets to analyse the static features 

of portable executable binaries. In their analysis they used VX Heaven and VirusShare 

datasets and found out that for malware analysis, the C4.5 and k-Neural Networks (k-

NN) were the best algorithms. 

In a similar fashion, the authors Sharma, Rama Krishna and Sahay (2019) utilised ML 

techniques to learn about the unknown malwares through the analysis of the 

occurrence of static characteristics. Among the ML algorithms used, the Logistic Model 

Tree (LMT) and Naïve Bayes Tree (NBT) gave the best results. 

A research by Liu et al. (2017) has utilised a couple of both supervised and 

unsupervised ML algorithms for detecting malwares. This research made use of the 

available literature to develop a framework for automated malware analysis. 

Machine Learning has also been proposed by Balram, Hsieh and McFall (2019) as a 

good technique for tackling new malware variants. A detailed model based on ML 

algorithm was proposed by Bijalwan (2020). The model detects Botnets and performs 

forensic analysis. Adversarial attacks have also been explored by Chen (2019) who 

used real samples from Comodo Cloud Security Centre to conduct an all-inclusive 

experiment. 
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Image/Video Forensics 

An approach based on Deep Neural Network was designed by Szegedy, Toshev and 

Erhan (2013) to classify images for detecting objects. 

A research by Shanableh (2013) highlighted the importance of videos having potential 

evidence which could be used in a court case. The authors demonstrated this by 

deploying a Machine Learning approach which detects any deletion process from 

video evidence to assess the authenticity of the video. The approach works through 

extraction of any discriminative features from videos images and bit streams that have 

been reconstructed. This approach is based on quantisation scales, intra-coded 

macroblocks, and the quality of reconstruction. The ML techniques are used to indicate 

the rates of True Positives or False Negatives. 

The importance of double JPEG (Joint Photographic Expert Group) detection was 

mentioned by Chen, Shi and Su (2008). The authors emphasised this importance by 

proposing a scheme based on Machine Learning which could detect a double JPEG 

image compression by the use of the Markov random process. The technique of 

thresholding is applied to decrease the probability size of the transition matrices used 

for characterisation of the Markov random process features for double JPEG 

compression detection. Thereafter, the Support Vector Machine (SVM) method is 

executed for the classification process. 

A research by (Platzer, Stuetz and Lindorfer, 2014) proposed an effective solution that 

detects nudity or pornography. This solution combines machine learning techniques 

with a novel skin detection approach which leverages on upgrading machine learning 

and introduction of other novel methods that aid in increasing the rate of detected 

images. This approach uses the positioning of skin areas and skin detection within a 

picture. The SVM algorithm is used to classify the images as either pornographic or 

non-pornographic. 

The authors Saikia et al. (2017) introduced a Deep Learning (DL) approach which 

uses Region based Convolutional Neural Network (R-CNN) to automate the detection 

of objects in indoor environments. It relied mostly on images/video forensics. However, 

Nowroozi et al. (2021) warns about the adversarial image forensic by discussing the 

problematic structure and vulnerabilities associated with Machine Learning. They 

suggested the use of comparable solutions to avoid the attacks associated with this 
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process. In the emergence of increasing child pornography, Anda et al. (2018) used 

facial features for forensic analysis to present an auto age estimation process. In their 

experiments, they used ANN, CNN, and SVM as the basic machine learning 

algorithms. A technique for detecting the past processing features of MOV, MP4. And 

£GP videos has been discussed by Sandoval Orozco et al. (2020) where the forensic 

artifacts from editing applications and social platform are used. 

Network Forensics 

A Deep Learning digital forensic framework was proposed by Karie, Kebande and 

Venter (2019) to handle huge cyber space data. 

There is increasing spread of malicious Internet Protocol (IP) addresses, this is a big 

problem. Even though, the IP reputation system which in most cases handles this 

problem, this system has been deemed to be too expensive, consumes more time, 

and has high false positives. As a solution to overcome this hurdle, Usman et al. (2021) 

presented a Machine Learning based framework to handle network forensics. 

An improved version of a network forensic framework called Particle Deep Framework 

(PDF) has been proposed by Koroniotis, Moustafa and Sitnikova (2020). The 

proposed framework identifies IoT network problems in three stages. In the initial 

stage, there is collection of data from the network, the framework then adopts Deep 

Learning features by using the Particle Swarm Optimisation (PSO), and finally, the 

abnormalities are traced through the use of Deep Learning Neural Network (DNN). 

Mobile Forensics 

The exponential growth and usage of mobile phones has resulted in a need to develop 

a mobile forensic field. Machine Learning algorithms of Decision Tree (Locally 

Weighted Learning (LWL) and Bayesian Network) have been utilised by Marturana et 

al. (2011) to automate the analysis phase of the mobile forensic. With the datasets 

used for a paedophile case study, it was found that the Decision Tree provides the 

most accurate results. 

These advancements of automation in DF have helped forensic experts to find 

solutions to legal significance in less time and with some realistic costs. It can be 

argued to an extent that this automation can be used to limit future risks and problems 
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through a thorough analysis of current and previous digital evidence (Jarrett and Choo, 

2021). 

According to Jarrett and Choo (2021), the likelihood of the occurrence of future 

cybercrimes and attacks may be addressed by the use of intelligent technologies and 

other computational methodologies. There is more need to first understand how these 

intelligent technologies have been deployed thus far. This includes and not limited to 

crime scene investigation, photographing and documentation of the crime scene, 

identification, collection, preservation, and analysis of the forensic evidence and other 

forensic processes (Franke and Srihari, 2008). 

The authors Franke and Srihari (2008) highlight on the scope of digital forensic by 

stating that it (DF) goes beyond computer-related crimes and therefore includes 

computational methodologies for analysing the physical evidence found at the crime 

scene. This empirical evidence upon further review, Tanner and Dampier (2009) 

suggest that it (empirical evidence) may be used in determining the integrity of the 

digital evidence and its creditability by ensuring that it is not subjected to any form of 

alteration and/or modification. 

3.3 Implications of Automated Process in Digital Forensics 
The application of Artificial Intelligence in Digital Forensics has been studied by 

several researchers. A prior research by Dilek, Cakır and Aydın (2015) focussed more 

on the advances in the application of intelligent techniques in Digital Forensics. The 

authors reviewed the implementation of these intelligent techniques in defending 

against cybercrimes. 

According to Jarrett and Choo (2021), there are two challenges faced in the automated 

digital forensics systems. Firstly, the automated tools and systems only serve to 

facilitate the investigation process, therefore, the process still requires an expert 

human investigator to provide oversight (Jarrett and Choo, 2021). Secondly, these 

authors further state that the accuracy of the forensic process relies more on the 

human abilities of the investigators, this is because some of these intelligent tools are 

still under development which means that they have some inaccuracies, 

incompleteness, and therefore may not provide the desired robust information for 

forensic cases. To overcome these challenges, it is required that either the 

investigators are offered relevant training and skills development, or alternatively, to 
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make use of highly qualified investigators. Earlier, it was claimed by James and 

Gladyshev (2013) that in a possible scenario, practitioners who are inexperienced rely 

more on automated systems and therefore act on insufficient information. This, the 

authors (James and Gladyshev, 2013) continue and say that it leads to a high 

probability of failed investigations. In addition to this, in some instances, the digital 

forensic investigations are awarded to third party contractors, who may not be certified 

as they are self-proclaimed. This calls for a robust certification institution and 

regulatory bodies to ensure that only certified DF investigators are the only ones 

allowed to handle these investigations (James and Gladyshev, 2013). 

Another challenge being faced in this regard is the use of variant and complicated 

media formats which prove difficult to acquire or be analysed by the available 

automated systems and tools (AlFahdi, Clarke and Furnell, 2014). 

3.4 Anomaly Detection 
Anomalies could basically be referred to as unusual data points that appear dissimilar 

from most of the whole data. Other terms used to mean anomaly are: outliers, 

abnormalities, and deviants. 

These anomalies have been defined by Hawkins (1980) in his book ‘Identification of 

Outliers’ as some sort of outlier which can be observed and seen to differ significantly 

from the other observations thereby causing suspicion indicating that it has been 

generated by a different method. 

Depending on the interests and needs of the user, anomaly detection techniques may 

be employed to execute these needs. 

3.5 Application Domains for Anomaly Detection 
As was explained by Aggarwal (2015), anomaly detection can be applied in instances 

like; intrusion detection, credit card fraud, medical diagnosis, law enforcement for 

crime detection, medical diagnosis among others. 

There are key roles that Anomaly Detection can play in many different applications. 

For instance, in the databases, a variety of anomaly and outlier detection can be 

applied during the pre-processing step during data preparation. Other techniques can 

be used for building models that have the capabilities for anomaly detection in different 

scenarios. This section will explore some application domains for anomaly detection. 
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i) Intrusion Detection 

Intrusion detection is a critical area of computer security where malicious activity is 

identified and countered. Various anomaly detection techniques are employed to 

achieve this, but a major challenge lies in efficiently analysing vast amounts of data. 

Fortunately, the abundance of data also allows models to learn regular system 

behaviour through semi-supervised learning  (Chandola, Banerjee and Kumar, 2009). 

Intrusion can occur on either the host (unauthorised system access) or network level 

(external attempts to infiltrate a network). In host intrusion detection, system calls are 

analysed to identify abnormal sequences, while network intrusion detection leverages 

network traffic data and metrics for anomaly detection. 

Recent research has delved into leveraging the power of deep learning for intrusion 

detection. A study by Vanin et al. (2022) explored combining deep learning with data 

augmentation techniques (artificially generating more training data) to achieve high 

accuracy in identifying cyber threats within network traffic data. This approach 

capitalises on deep learning's ability to learn intricate patterns, leading to more 

effective intrusion detection systems.  Furthermore, a study by Mohammad et al. 

(2024)  highlights the increasing importance of Machine Learning techniques in 

Network Intrusion Detection Systems (NIDS). Researchers are actively investigating 

various ML algorithms to improve NIDS efficiency and accuracy. This study 

emphasises the importance of selecting appropriate datasets for training and 

evaluating these models. 

ii) Fraud Detection 

Anomaly detection of fraudulent activities (transactions) for credit cards, banks, and 

commercial companies are identified in this domain by use of anomaly detection 

techniques. Criminals who engage in identity theft can also be identified by use of 

anomaly detection techniques. A customer’s normal behaviours are maintained by the 

bank, abnormal activities that could be detected in such scenarios can be where a 

cash withdrawal from unusual locations. An alert will be sent by the anomaly detection 

technique. The challenge faced by this technique is the need to have a technique that 
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is capable of quickly detecting the abnormal behaviour. Mostly, online techniques are 

preferred. 

The auto-associative neural network (Aleskerov, Freisleben and Rao, 1997) was used 

to develop the CARDWATCH technique that detects fraudulent credit card 

transactions. Another neural network (Brause, Langsdorf and Hepp, 1999) was used 

to detect anomalies with low rate of false alarm. The application of unsupervised fraud 

detection based on clustering techniques was used on several credit card datasets 

(Bolton, Hand and H, 2001). The method that uses a back-propagation algorithm with 

Naïve Bayes model (Phua, Alahakoon and Lee, 2004) was developed to detect fraud 

on an automobile insurance company dataset. 

However, recent advancements explore a broader range of techniques to combat 

increasingly sophisticated fraud attempts. Deep learning, a form of artificial 

intelligence, is now a major player. These powerful models, particularly Convolutional 

Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), excel at finding 

hidden patterns in data. Several studies like Fu et al. (2016), Raghavan and Gayar 

(2019), Cheng et al. (2022), and Alfaiz and Fati (2022) have explored using these 

models for fraud detection in credit card transactions by analysing sequences of 

transactions, identifying subtle anomalies that might indicate fraudulent activity, such 

as a sudden surge in purchases or transactions originating from unusual locations. 

For fraud involving networks, like money laundering or telecom scams, Graph Neural 

Networks (GNNs) are a game-changer. These models analyse relationships within a 

network to detect suspicious connections. A recent study by Li et al. (2023) explored 

the use of GNNs to identify fraudulent rings in telecommunication networks. Their 

model analysed call data records, uncovering hidden connections between phone 

numbers involved in suspicious activity. This allowed them to identify and dismantle 

the entire fraudulent network. 

Unsupervised anomaly detection remains valuable. Isolation Forests, a recent 

technique, efficiently identifies outlier transactions that deviate from normal spending 

patterns. For example, a study by Rajeev and Devi (2022) applied Isolation Forests to 

credit card fraud detection. Their approach effectively isolated transactions that fell 

outside the typical spending habits of a cardholder, allowing investigators to focus on 

those with a higher likelihood of being fraudulent. 
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iii) Health and Medical 

Anomaly detection techniques can be used in the public health and medicine to 

purposes such as detecting mistakes like missed recordings. The data in this domain 

pertains to patient’s records of different types like name, age, blood type, weight, 

condition, address, among others. The characteristics exhibited by this data are of 

spatial and temporal. The anomaly detection techniques in this domain deal with point 

anomalies and the approaches applied are the unsupervised ones due to the 

availability of patient records. 

It is however noted that a mistake in identifying an anomaly in this domain could be of 

dire consequences due to the nature/sensitivity of the subject. Bayesian networks 

were used to detect outbreaks of diseases (Wong et al., 2003). Statistical techniques 

were used to detect anomalies in medical laboratory reference data as a pre-

processing step (Solberg and Lahti, 2005). Another approach by Suzuki et al. (2003) 

used probabilistic mixture model to visualise outliers in medical test data. 

Recent advancements in anomaly detection are further enhancing healthcare 

efficiency and accuracy. Researchers have explored utilising RNNs for anomaly 

detection in electronic health records (EHRs). RNNs excel at handling sequential data, 

making them suitable for analysing patient medical histories and identifying potential 

inconsistencies (Brown et al., 2018). Furthermore, a 2023 study investigated the 

application of Generative Adversarial Networks (GANs) for anomaly detection in 

medical images. GANs can learn the underlying distribution of normal data, allowing 

them to effectively detect abnormalities within medical scans (Esmaeili et al., 2023). 

iv) Image and Video 

In the image and video domain, the anomaly detection techniques are used to identify 

changes in still images, stream of images, and video clips. The sub-domains 

categorised under this domain are handwriting recognition, video surveillance, satellite 

imagery, spectroscopy, audio analysis, among others. One of the major setbacks in 

this domain is the high dimensionality coupled with the sheer amount of data points. 

Pokrajac, Lazarevic and Latecki (2007) proposed incremental Local Outlier Factor 
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(LOF) as an extension to the LOF algorithm to detect anomalies in data streams. This 

technique was evaluated on a dataset of video clips. To classify anomalous regions of 

images, Singh and Markou (2004) proposed a framework that uses neural networks 

as classifiers. A machine learning algorithm proposed by Davy and Godsill (2002) was 

based on SVMs to find sudden changes in audio systems. And finally, a regression 

model proposed by Da et al. (2005). 

Deep learning has revolutionised anomaly detection in images and videos. CNNs 

excel at extracting features from image and video data. A 2019 study proposed a CNN-

based approach for anomaly detection in crowd scenes, achieving high accuracy in 

identifying unusual activities (Saqib et al., 2019). Furthermore, a 2023 study explored 

employing Autoencoders, a type of deep neural network, for anomaly detection in 

video surveillance. Autoencoders can reconstruct normal video data, allowing them to 

flag deviations as anomalies (Pavuluri and Annem, 2023). 

v) Textual Data 

Anomaly detection in this domain relates to detecting emerging stories and news. This 

could be analysing the twitter traffic to detect breaking news. In the past, studies like 

one by Miller et al. (2014)  used clustering to detect spam within Twitter data. However, 

recent advancements are pushing the boundaries with the help of machine learning 

and deep learning. 

Deep learning offers another exciting avenue. Techniques like RNNs are particularly 

adept at handling sequential data, making them ideal for analysing textual content. A 

2023 study investigated employing Long Short-Term Memory (LSTM) networks, a type 

of RNN, for anomaly detection in news articles. LSTMs can learn long-term 

relationships within text data, allowing them to identify unusual writing styles or topics 

that might indicate anomalies (AGGARWAL, 2023). 

vi) Wireless Sensor Networks 

In the wireless sensor network domain, the anomaly detection uses readings from 

sensors that are distributed across a network to detect intrusion or identify faulty 

sensors. The data here could be in the form of several numerical discrete or 

continuous form, video, or audio. This data contains a fair amount of noise making it 

more difficult to detect anomalies. Bayesian Belief Networks (BNNs) were used by 
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Janakiram, Reddy V and Kumar (2006) to detect spatial and temporal anomalies in 

the sensors streaming data. To detect security attacks in wireless sensor networks, 

Phuong et al. (2006) proposed a statistical anomaly detection method. (Branch et al., 

2013) proposed a rule-based algorithm to detect anomalies in wireless sensor 

networks. A technique proposed by Idé, Papadimitriou and Vlachos (2007) was based 

on nearest neighbours. The technique detects changes in correlated streams of 

sensors. 

Recent advancements are pushing the boundaries of anomaly detection in WSNs. 

Deep learning techniques are showing promise for WSNs with image data. For 

instance, a study by Xu and Lin (2023) explored using Convolutional Neural Networks  

for anomaly detection. CNNs excel at recognising patterns in images, making them 

suitable for tasks like identifying unusual objects or activities captured by sensor 

cameras. 

3.6 Challenges of Anomaly Detection 
As it has been shown in the definition of an anomaly as rare data points within a 

majority of the data, it therefore follows that anomaly detection can be abstractly 

considered as an exercise of identifying patterns or data points that lie outside of the 

normal region. This can therefore be done by identifying the normal region and thereby 

flagging anything that falls outside of that normal region as an anomaly. This may 

seem easy, but as shown by Chandola, Banerjee and Kumar (2009), there are 

problems associated with anomaly detection as highlighted below: 

i) Differentiating and defining what is normal and abnormal may not be easy. 

ii) The changing behaviour of what is normal is ever evolving and being 

different across different domains. 

iii) Anomalies take up different forms and types depending on the domain 

within which they reside. 

iv) Availability of representative datasets with or without labels. 

v) Differentiating true anomalies from noisy data. 
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Chandola, Banerjee and Kumar (2009) further state that the majority of existing 

anomaly detection techniques have been developed to solve specific domain 

problems and therefore, may not be applied generally to other domains. 

 

3.7 Categories of Anomalies 
i) Point Anomalies  

This is the case where anomalous data points are considered to be so different from 

the rest of the data. This is explained in Figure 3.1 in which the regions N1 and N2 are 

regarded as normal since most of the data points are in these two regions. In contrast, 

O1, O2, and O3 are considered anomalies because they are way too far from the normal 

regions. 

 

Figure 3.1 Point anomalies in a two-dimensional space (Chandola, Banerjee and 
Kumar, 2009) 

ii) Contextual Anomalies 

This is where the context of the data is anomalous and not the data point itself. From 

Figure 3.2, even though the data point t1 is the same as the data point t2, the latter 

point (t2) is regarded as anomalous because it appears in an anomalous context. 
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Figure 3.2 Contextual anomalies in a monthly temperature data (Chandola, Banerjee 
and Kumar, 2009) 

iii) Collective Anomalies 

This is where the collection of data points is regarded anomalous because of the 

collection of these data points together rather than the data points on their own. In 

Figure 3.3, the data points in the electrocardiogram are regarded as anomalous 

because their appearance as a collection in this data and not because of the data 

points themselves.  

Figure 3.3 Collection anomaly in a human electrocardiogram (Chandola, Banerjee 
and Kumar, 2009) 
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The availability of data labels is a very important aspect in anomaly detection. To this 

end, the categorisation of anomaly detection techniques (Alshammari, 2018b) can be 

regarded with the availability of data labels as: 

a) Supervised 

In this category, it is assumed that there is a training dataset with labels that identify 

normal and abnormal data points. This is illustrated in Figure 3.4. 

 

Figure 3.4 Supervised Anomaly Detection (Goldstein and Uchida, 2016) 

 

b) Semi-Supervised 

Here, the assumption is that the provided training data primarily consists of normal 

instances, and any deviation from the patterns established by these normal data points 

is considered an anomaly. This is illustrated in Figure 3.5. 

 

Figure 3.5 Semi-Supervised Anomaly Detection (Goldstein and Uchida, 2016) 
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c) Unsupervised 

In this category, it is assumed that the available data is not labelled, and no training 

data is required. It is further assumed that the majority of the data points are normal 

and therefore, the technique groups or clusters the data points into cluster and any 

isolated points are considered anomalies. This is illustrated in Figure 3.6 

 

Figure 3.6 Unsupervised Anomaly Detection (Goldstein and Uchida, 2016) 

3.8 Anomaly Detection Techniques 
The discussion in this section will be about the several approaches and techniques 

used to detect anomalies. The categorisation factor used will be based on the 

fundamental technique employed by each approach, namely, classification, nearest 

neighbours, clustering, statistical, and spectral. 

i) Classification 

The techniques used in classification need labelled data from which the system can 

learn. The logic for classification is to train a classifier on the normal data points and 

thereafter an evaluation of the accuracy of the model on unidentified data points, called 

the testing data points. Depending on how many classes can be learned, the 

classification technique can be further divided into two categories namely: one-class 

and multi-class anomaly detection techniques. 

The one-class technique takes the assumption that the training data points are all 

normal. Therefore, any data point that falls outside of that normal class will be 

classified by the model as an anomaly. In Figure 3.7, the one-class model groups all 

normal data points as a one big class and any other points residing outside this class 

are flagged as anomalies. 
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Figure 3.7 One-class Classification (Chandola, Banerjee and Kumar, 2009) 

The multi-class category is similar to the one-class category except that multi-class 

can learn multiple regions of the normal data as illustrated in Figure 3.8. 

 

Figure 3.8 Multi-class Classification (Chandola, Banerjee and Kumar, 2009) 
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The classification techniques can be organised into several categories based on the 

algorithm used by the model. These are Support Vector Machines (SVM), Artificial 

Neural Networks (ANN), Bayesian Networks, and rules. 

The SVM is capable of learning the normal region from the training data samples and 

with kernel trick, the model is able to learn non-linear regions in hyperplanes (Vapnik, 

2000) and (Boser, Guyon and Vapnik, 1992). 

The ANN can be applied to one-class and multi-class classification problems. ANN 

trains a neural network model on a portion of the dataset. The testing data points are 

then fed to the network and when the network rejects the data point, it is flagged as 

an anomalous data point (De Stefano, Sansone and Vento, 2000). 

The Bayesian Networks based techniques can be applied in multi-class classifications. 

The idea behind the use of the Bayesian Networks is to estimate the prior probabilities 

whereby a testing set of data points will be fed to the network and for each data point, 

the data point with the biggest posterior score will be the class or the label. Intrusion 

in computer networks have been detected by use of Bayesian Networks (Sebyala, 

Olukemi and Sacks, 2002), (Barbará, Wu and Jajodia, 2001), and (Valdes and 

Skinner, 2000). 

Anomaly detection techniques that are based on rules, learn from normal data points 

and any data point that does not conform to any learned rule is consequently regarded 

as an anomaly. The main idea in this technique is to train a model on a training set so 

the model can derive rules. Every rule is assigned a confidence score, a ratio of the 

correctly classified data points by this rule. During the testing phase, the model will 

search for the best matching rule for each testing data point. The anomaly score for 

each testing data point will be the inverse of the confidence score of the best matching 

rule. 

From these discussions on the classification techniques, several advantages have 

been brought out and more so is the abundance of models of classification that give 

this research the flexibility to choose an appropriate model to solve the problem. 



86 
 

On the contrary, these approaches also do possess several shortcomings. One of the 

shortfalls is the difficulty to find (in some domains) training datasets that are correctly 

annotated. 

ii) Nearest Neighbours 

The techniques for anomaly detection in this category rely on distance measure 

between two data points which are computed and based on the distance, the data 

points are organised in neighbourhoods to get an understanding of the structure of the 

dataset. Methods based on distance calculate an anomaly score by assessing the 

distance between data points and their neighbouring points (Cai et al., 2023). The 

distance measures used depend on the type of the variables or the feature space. For 

numerical data points, the Euclidean distance is usually used (Tan and Steinbach, 

2006), whereas for categorical features, Jaccard distance can be used in addition to 

other available methods (Küffner et al., 2010). The algorithms within the nearest 

neighbour category can be divided further into two sub-categories: Kth nearest 

neighbour algorithm and density of the data points algorithm. 

The Kth nearest neighbour distance can be used as an anomaly score for a collection 

of data points. As an illustration, k-nearest neighbours (k-NN) determine the anomaly 

score of an instance by considering the distance to its Kth nearest neighbour. 

Meanwhile, distance-to-measure (DTM) introduces a fresh distance metric derived 

from the distances of the initial k-nearest neighbours (Gu, Akoglu and Rinaldo, 2019). 

Additionally, the local outlier factor (LOF) calculates the anomaly score by assessing 

the deviation of the instance from the local density of its neighbouring data points. 

The density-based techniques measure the density of the data points 

neighbourhoods. A data point is flagged as an anomaly if it resides in a low-density 

neighbourhood. The techniques in this category rely on having close to uniform 

densities for the data points. 

iii) Clustering 

Anomaly techniques that are clustering based carry the same similarities to the 

nearest neighbours’ techniques. The nearest neighbours’ techniques perform the 

calculation between a data point and its local nearest neighbour while the clustering-

based techniques perform the calculations between each data point and the group or 
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the cluster that it belongs to based on the similarity measure. The clustering-based 

techniques can employ both the unsupervised and semi-supervised methods. The 

clustering family assumes that the normal data has a cluster, therefore, if any data 

point is outside of this cluster is flagged as an anomalous data point. The clustering 

algorithms’ main objective is to find structures in datasets. For this reason, they are 

used for performing exploratory analysis of datasets and are used in recommender 

systems. Of these clustering techniques, some allow for data points to reside outside 

the cluster they build. The algorithms that allow for this condition can be used for 

anomaly detection (Alshammari et al., 2018a). Examples of these techniques are 

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) proposed by 

(Ester et al., 1996), Spiking Neural Network (SNN) by (Ertöz, Steinbach and Kumar, 

2004), and ROCK by (Guha, Rastogi and Shim, 2000). The output of these models is 

binary because of the nature of how these algorithms work. 

Another family of the clustering techniques performs by assuming that normal data 

points are organised around the centre of the cluster (centroid). In this case, the 

anomalous data points are those that are far away from the centre. The general 

procedure of these techniques starts by using a clustering algorithm to group the data 

points. Then for every data point, the distance from the data point to the cluster 

centroid is defined as the anomaly score. The algorithms that have successfully 

achieved this goal are for example; K-means and Expectation Maximisation (EM) 

algorithms by (Smith et al., 2002), and Self-Organising Maps (SOMs) by (Kohonen, 

1995). Recent advancements in this family include incorporating deep learning 

architectures into centroid-based anomaly detection.  Studies like Chen et al. (2020) 

proposed a Convolutional Variational Autoencoder (CVAE) for anomaly detection, 

achieving superior performance on complex, high-dimensional data. 

The third family of the clustering techniques employs an assumption that in the dense 

clusters is where the normal data resides while the low-density cluster groups are 

where the anomalous data points reside. They are algorithms that follow this 

assumption, and these are for example; the Cluster- Based Local Outlier Factor 

(CBLOF) which was proposed by (Pires and Santos-Pereira, 2005), (He, Xu and Deng, 

2003), and (Jiang, Tseng and Su, 2001). The improvement to this algorithm has been 

seen in literature where extensions to the algorithms have been developed (Sun and 

Chawla, 2004). 
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Current research on density-based anomaly detection focuses on handling complex 

data structures and improving interpretability. For instance, Scitovski and Sabo (2020) 

proposed a method called DBSCAN* that efficiently handles data with high 

dimensionality and noise. 

Like the nearest neighbours’ techniques, clustering based techniques have 

advantages such as being able to operate in both unsupervised and semi-supervised 

fashions. Another advantage is that the clustering-based techniques can work with 

many data types. As in nearest neighbours’ techniques, the performance of clustering-

based techniques relies on the performance of the clustering algorithm used. 

Consequently, the computation complexity of this technique could be high. It is also 

noted that some of the clustering techniques are not mainly geared towards anomaly 

detection but they are extended to perform anomaly detection which can make the 

performance of these approaches less than optimal (Alshammari, 2018b). 

iv) Statistical 

Statistical techniques try to fit a statistical model on the normal data point distribution 

and thereafter, to identify whether a data point is normal or anomalous, statistical tests 

are used. There are two divisions that categorise the statistical techniques for anomaly 

detection problems, these are; parametric and non-parametric techniques 

(Alshammari, 2018b). 

Parametric techniques assume the existence of a distribution and its parameters can 

be learned from the data points. The distribution parameter is estimated from the 

training data points and the probability density function for any given data point. The 

anomaly score is defined as the inverse of the probability density function. This 

category can be classified based on the distribution model used. One of the popular 

distributions is the Gaussian model. The parameter for this model can be calculated 

by the Maximum Likelihood Estimates (MLE) and the anomaly score is defined as the 

distance of the data point from the distribution mean. When the model is defined, 

simple thresholds can be applied to filter out the normal data from the anomalous data. 

Another category of parametric techniques uses a regression model to detect 

anomalies. These techniques are usually used in time-series analysis (Abraham and 

Chuang, 1989). Based on the training data points, these parametric techniques fit a 

regression model. The anomaly score for a data point is calculated by how far this 
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testing data point is from the regression model. A robust regression model proposed 

by Rousseeuw and Leroy (2005) deals with anomalies present in training dataset. 

In non-parametric techniques, there is no assumption of the existence of distribution 

of data points, rather, the distribution of the data is derived from the data points. These 

techniques can be divided into histogram and kernel-based function techniques. For 

the histogram approaches, a histogram is generated from the training data points. 

Then for the testing data points, a test is performed to determine if the data point lies 

in one of the histogram bins or not. If it does, then it is flagged as a normal data point. 

Otherwise, it is flagged as an anomalous data point. 

Kernel based techniques use kernel functions to estimate the density of the dataset. 

The techniques seem to resemble the parametric techniques ones, only that there is 

a difference of how the density function is calculated. 

In general, statistical approaches have several advantages (Alshammari, 2018b). 

Once the dataset distribution is known, it gives room for a number of available 

algorithms and options to perform anomaly detection. As the output of the anomaly 

detection models is a scalar value, it allows for more sophisticated approaches to be 

carried out based on the score. The techniques here can operate in both supervised 

and semi-supervised fashions. There is also a possibility of operation in unsupervised 

fashion for those techniques that can deal with anomalies in the training datasets. 

The main disadvantage of statistical approaches is the reliance on the existence of a 

distribution of the datasets which is often not the case in real-world data. Finding the 

appropriate statistical test can be a challenge, even if there is a known distribution of 

the data points. Multivariate datasets can be a difficult task especially for histogram-

based techniques. 

v) Spectral 

Spectral techniques or subspace anomaly detection techniques try to capture a 

meaningful representation of the data points by reducing the dimensions of the 

datasets to lower dimensions that could reveal structures not visible in the original 

form of the dataset. The reduction step is also referred to as embedding or projecting 

the data point to lower dimensions. These techniques work in an unsupervised fashion 
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and can be used in conjunction with other models. They can also be used to perform 

pre-processing for the data points before feeding the data to the model. 

One of the main advantages of using spectral techniques is their ability to handle high 

dimensional datasets. Reducing the feature space to lower dimensions makes it easier 

for the model to learn the characteristics of the data. Thus, spectral techniques can be 

used with other models that cannot handle high dimensionality. The ability for the 

spectral techniques to operate in unsupervised fashion is also another advantage 

point. Conversely, these techniques can only perform well if the data is separable 

when projected to lower dimensions. Another disadvantage is that they can be 

computationally costly especially when dealing with big datasets. 

3.9 Unsupervised Anomaly Detection Algorithms 
As explained by Alshammari et al. (2017), the main objective of unsupervised anomaly 

detection is to organise the data point into clusters or groups in a manner that enables 

the algorithms to detect data points that deviate from the normal clusters. The reason 

why the operation is unsupervised is that the data points fed to the model have no 

target labels from which to learn and draw associations. Therefore, the models are 

completely driven by the data points they receive (Alshammari, 2018b). 
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Figure 3.9 The global anomalies x1, x2 and the local anomaly x3 (Goldstein and 
Uchida, 2016) 

Figure 3.9 illustrates and explores the notion of global and local anomalies. The clear 

anomalies are x1 and x2. Techniques for global anomaly detection should be able to 

identify these points as such. However, the data point x3, being too close to the cluster 

c2 cluster, will cause an issue to global techniques as it is likely to be mislabelled as a 

normal data point. Therefore, the algorithm is said to be a global anomaly detection 

algorithm if it approaches the anomalies in a dataset in a global manner. In the event 

that the algorithm approaches the clusters individually, the data point x3 is likely to be 

flagged as an anomaly and hence the algorithm will be referred to as a local anomaly 

detection algorithm. Something to take note though is that data point c3 lies in a grey 

area and could likely pose difficulties to anomaly detection algorithms. Should it be 

flagged as an anomaly or a normal cluster? This is part of the challenge that anomaly 
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detection faces and usually, to determine to which class this cluster belongs, a domain 

human expert opinion is needed (Alshammari, 2018b). 

The unsupervised group of algorithms can be categorised as shown in Figure 3.10. 

 

i) k-Nearest Neighbour (k-NN) 

The global anomaly detection algorithm is the k-NN, however, as exhibited in Figure 

3.9, the k-NN algorithm could face difficulties detecting local anomalies. The k-NN 

algorithm group can be split into two classifications: kth-nearest neighbours and k-

nearest neighbours. The kth-nearest neighbours defines an anomaly score by 

calculating for each data point, the distance to the kth-nearest neighbours 

(Ramaswamy, Rastogi and Shim, 2000). The k-nearest neighbours on the other hand, 

defines an anomaly score by calculating the average distance of the k-nearest 

neighbours (Angiulli and Pizzuti, 2002). 

Figure 3.11 displays the results when k-nearest neighbour algorithm is applied on a 

sample artificial dataset. The anomalous data points are represented by the red data 

points, and their radius corresponds to the anomaly score they got. The k parameter 

must be set before running the algorithm. In this case (the example used in Figure 

3.11), k=10. For data points closer to the green clusters, it can evidently be seen how 

the algorithm assigns low anomaly scores to them. 

Nearest 
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Global Local Global Local HBOS 
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Figure 3.10 Categorisation of unsupervised anomaly detection algorithms 
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Figure 3.11 The k-nearest neighbour anomaly scoring of an artificial sample dataset 
(Goldstein and Uchida, 2016) 

ii) Local Outlier Factor 

The Local Outlier Factor (LOF) has been described by (Breuniq et al., 2000) as one of 

the popular local anomaly detection techniques from which many other improvements 

and extensions have emerged. The LOF algorithm can be summarised in the following 

three steps: 

1. Calculating the k-NN for every data point 

2. Calculating the local density based on the previous k-NN scores (Nk) by using 

the local reachability density (LRD) function for a data point x and an object o: 
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𝐿𝐿𝐿𝐿𝐿𝐿𝑘𝑘(𝑥𝑥) = 1/�
∑ 𝑑𝑑𝑘𝑘(𝑥𝑥, 𝑜𝑜)0∈𝑁𝑁𝑘𝑘(𝑥𝑥)

|𝑁𝑁𝑘𝑘(𝑥𝑥)| � Equation 3.1 LRD Function 

 

3. Calculating the LOF score by comparing the LRD function of a data point with 

the LRD of its k-nearest neighbours. 

 

𝐿𝐿𝐿𝐿𝐿𝐿 (𝑥𝑥) =
∑ 𝐿𝐿𝐿𝐿𝐿𝐿𝑘𝑘(𝑜𝑜)

𝐿𝐿𝐿𝐿𝐿𝐿𝑘𝑘(𝑥𝑥)0∈𝑁𝑁𝑘𝑘(𝑥𝑥)

|𝑁𝑁𝑘𝑘(𝑥𝑥)|  Equation 3.2 LOF score 

 

In simple terms, the ratio of the local densities is the LOF score. Therefore, normal 

data points will have densities similar to their local densities and the calculated 

anomaly score will be 1.0. The anomalous data points will get much larger score 

depending on how different the data point density is from its neighbours. 

iii) Connectivity-Based Outlier Factor 

The authors Tang et al. (2002) state that Connectivity-Based Outlier Factor (COF) is 

similar to LOF only that there is a difference in how the density is calculated. Whereas 

LOF calculates Euclidean distances using hypersphere centred on a data point, COF 

calculates the distance in an incremental manner by finding the shortest paths 

between data points. 

iv) Influenced Outlierness 

The INFluenced Outlierness (INFLO) was proposed by Jin et al. (2006) and is an 

extension to the LOF, it (INFLO) solves a challenge of LOF where there are two 

clusters of different density close to each other. The data points are mislabelled by 

LOF at the edges of the adjacent clusters. This issue is overcome by INFLO by 

incorporating a reverse nearest neighbours set of data points. Figure 3.12 illustrates 

this by showing two clusters of varying densities. The LOF has flagged the red data 

points as anomaly because in the hypersphere (the grey circle) there are 5 nearest 

neighbours which have high local density. INFLO will incorporate the reverse nearest 
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neighbours set of data points (the blue data points) which will make it less likely for 

INFLO to consider the red point as an anomaly. 

 

Figure 3.12 The INFLO algorithm compared to the LOF algorithm (Goldstein and 
Uchida, 2016) 

i) Local Outlier Probability 
Kriegel et al. (2009) proposed the Local Outlier Probability (LoOP) to tackle the 

interpretation of the anomaly score of the prior algorithms. As has been evident in the 

literature, some anomaly detection algorithms have binary output which could be a 

limiting factor in some applications. Other algorithms have scalar outputs value which 

measures how anomalous a data point is. This anomaly score can take arbitrary 

values depending on the data points of the dataset. This can values can make it hard 

to interpret the output of the algorithm (Alshammari, 2018b). LoOP tries to solve this 

problem by producing a probability score of how anomalous a data point is. 

ii) Local Correlation Integral 
The Local Correlation Integral (LOCI) is an improvement of the previous algorithms 

discussed so far. Developed by Papadimitriou et al. (2003), its main improvement is 

provision of a way to estimate a good value for the key parameter k. The algorithm 

delivers the best k score by iterating varying values of k for each data point and the 

maximum score is taken for the corresponding k. However, this approach is deemed 

computationally expensive (Alshammari, 2018b). Whereas in normal situations the k-

NN approaches have O(N2) complexity, the complexity in LOCI can reach O(N3). 
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iii) Approximate Local Correlation Integral 
The approximate Local Correlation Integral (aLOCI) is an extension of the LOCI 

algorithm which addresses the complexity problems. The aLOCI algorithm speeds up 

the LOCI operation by incorporating quad trees. 

iv) Cluster-Based Local Outlier Factor 
The prior discussed algorithms have a common feature which is that they rely on 

nearest-neighbours approaches. The Cluster-Based Local Outlier Factor (CBLOF) 

which was proposed by He, Xu and Deng (2003) identifies anomalies by relying on 

using clustering approaches. Due to its low computational complexity, it is common to 

use k-means. The clusters from the clustering algorithm are then grouped into small 

and big clusters by CBLOF. The distance of each data point to the cluster centroid 

times the number of data points in that cluster is how the anomaly score is calculated. 

The unweighted CBLOF (uCBLOF) proposed by Amer and Goldstein (2012) is an 

extension of the CBLOF. The uCBLOF, the authors claim that it excludes the scaling 

factor from the calculations because it introduces issues when calculating the 

densities. Figure 3.13 shows the results of applying uCBLOF on a dataset. The 

different colours correspond to the clusters identified by the clustering algorithm used 

and the radius of the data points corresponds to the anomaly score assigned by 

uCBLOF to each data point. 



97 
 

 

Figure 3.13 The unweighted Cluster-Based Local Outlier Factor (uCBLOF) algorithm 
(Goldstein and Uchida, 2016) 

v) Local Density Cluster-Based Outlier Factor 
One of the drawbacks of the CBLOF is its use of the number of a cluster data points 

as a density measure. Proposed by Amer and Goldstein (2012), the Local Density 

Cluster-Based Outlier Factor (LDCOF) uses a density measure of the identified 

clusters. Following the same approach of the CBLOF, it uses any clustering algorithm 

as a first step. This is followed by the calculations of the average distances from a 

cluster centroid to the data points that belong to it. The LDCOF calculates the anomaly 

score by dividing a data point distance to the centroid by the cluster average. 

vi) Clustering-Based Multivariate Gaussian Outlier Score 
The Clustering-Based Multivariate Gaussian Outlier Score (CMGOS), as its name 

suggests, depends on using a clustering algorithm as a first step (Goldstein and 

Uchida, 2016). The cluster density in CMGOS is calculated using a multivariate 
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Guassian model with Mohalanobis distance as the measurement function. A 

covariance matrix of each cluster is calculated after identifying the clusters by a 

clustering algorithm. The anomaly score is then defined by dividing the Mahalonobis 

distance of a data point by the X2 distribution of the confidence interval. 

vii) Histogram-Based Outlier Score 
Proposed by Goldstein and Dengel (2012), the Histogram-Based Outlier Score 

(HBOS) is a statistical anomaly detection algorithm that assumes that the feature 

space is independent. The algorithm works with the idea of developing a histogram for 

every variable (feature or dimension) in the dataset. The height of the bin represents 

a density estimator for every data point. The multiplication of the inverse of estimated 

densities is the final score. Although the assumption that the features are independent 

is limiting, this assumption gives HBOS an advantage when dealing with high 

dimensional dataset as the algorithm complexity is linear in relation to the input size. 

3.10 A Review of the State-of-the-Art Anomaly Detection Algorithms 
This section is to review the available state-of-the-art unsupervised anomaly detection 

algorithms. The authors Falcão et al. (2019) have compared unsupervised anomaly 

detection  algorithms. In their research, they have selected the algorithms, datasets, 

and metrics based on well-defined criteria. 

Selection of the Algorithms 

The following criteria was used to select the algorithms: 

• The method should be fully unsupervised therefore, semi supervised learning 

algorithms are omitted. 

• The methods should cover the main categories of unsupervised methods: 

neighbour-based, clustering, classification, statistical, angle, and density 

based. 

• The methods should have been applied successfully for an anomaly detection.  

3.10.1 Robust Principal Component Analysis (rPCA) 
Successfully applied by Kwitt and Hofmann (2007), the rPCA is based on the Principal 

Component Analysis (PCA) which is used to reduce dimensionality of datasets. A 

stated by the authors, PCA, when used, detects subspaces in datasets by identifying 
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the deviations from the expected subspaces for anomaly detection. The eigenvectors 

of the covariance matrix are the principal components of PCA and are therefore 

computed twice to improve the robustness. 

3.10.2 Angle-Based Outlier Detection (ABOD) 
The ABOD relates data to high dimensional spaces. This is implemented by using the 

variance in the angles between a data point to the other points as anomaly score 

(Lippmann et al., 2000). In a polygonal chain (p1, p2, p3), each point in the dataset is 

used as the middle point p2, of the chain, whereas the points p1 and p3 are regarded 

as any two different data points of the dataset, p1 ≠ p2 ≠ p3. Thereafter, all the angles 

of p1p2p3 are measured and their variance is used to calculate the ABOF (Angle-

Based Outlier Factor). Typically, the anomalies result in very small variance in the 

angles from a couple of points. 

3.10.3 Fast Angle-Based Outlier Detection (FastABOD) 
Like the ABOD, in FastABOD, the anomalous data points are detected depending on 

the variance of the angles between pairs of distance vectors to other points (Lazarevic 

et al., 2003). The only angles considered are the pairs between the neighbours thereby 

working in a sub-quadratic time. For each data point, the algorithm first calculates the 

ABOF to its k-nearest neighbour as the normalised scalar product of the difference 

vectors of any pair of neighbours. Then, FastABOD ranks the data points according to 

their ABOF. The smaller the ABOF, the bigger the probability that the data point is 

anomalous. 

3.10.4 One-class Support Vector Machine (one-class SVM) 
This algorithm aims at learning a decision boundary for data points grouping 

(Schölkopf et al., 2001). Despite this algorithm being first used for supervised support 

vector machines for semi-supervised anomaly detections, it can very well be used for 

unsupervised anomaly detection (Prasad, Almanza-Garcia and Lu, 2009). The one-

class SVM is trained with the dataset and then each data point is classified considering 

the normalised distance of the data point from the determined decision boundary 

(Amer, Goldstein and Abdennadher, 2013). 

3.10.5 Isolation Forest (IForest) 
Structures data points as nodes of an isolation tree, assuming that anomalies are rare 

events with feature values that differ a lot from expected data points. Therefore, 
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anomalies are more susceptible to isolation than the expected datapoints since they 

are isolated closer to the root of the tree instead of the leaves. It follows that a data 

point can be isolated and then classified according to its distance from the root of the 

tree (Liu, Ting and Zhou, 2008). 

3.11 Selection of the Metrics 
The metrics used by Falcão et al. (2019) have been used by the survey studies of 

(Powers (2011). The metrics are based on Boolean anomaly/expected labels assigned 

to a given data point. 

The authors Falcão et al. (2019) defined their thresholds based on interquartile range. 

According to Wan et al. (2014), this range (interquartile range) is the difference 

between the two quartiles Q3 and Q1. 

• Precision (P) 

True Positives (TP) were considered as the anomalies detected corresponding to the 

manifestation of the attacks, while the False Positive (FP) as the detected anomalies 

that did not. Precision is defined by Falcão et al. (2019) as the fraction of True Positives 

(TP) among the union of False Positives (FP) and True Positives (TP). 

• Recall (R) 

According to Falcão et al. (2019), Recall is mostly presented together with positives 

(P). its definition is the ratio of TP over the union of TP and the False Negatives (FN) 

which are the undetected anomalies. 

• F-Score (Fβ) and F-Measure 

The F-Score (β) metric combines both Precision (P) and Recall (R) by use of a 

parameter β. Therefore, when β > 1, R is weighted more than P. According to Powers 

(2011), the F-Measure (F1) is defined as the balanced mean of P and R, and this is 

adopted when it is deemed that FPs and FNs are equally undesired. 

• Accuracy (ACC) 

The accuracy is usually defined as the ratio of correct detections where you get both 

the True Positives (TP) and True Negatives (TN) among all the data points examined. 
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This then allows for the aggregation of the positive and negative scores into a unique 

metric (Falcão et al., 2019). 

• Area Under ROC curve (AUC) 

The Receiver Operating Characteristic (ROC) curve is a graphical plot representing 

the performance of binary classifiers when their discrimination thresholds vary: the r 

is depicted by plotting R against a False positive rate. When there is a high value of 

the area underlying the ROC curve, it signifies that the identified algorithm is suitable 

for the dataset targeted (Falcão et al., 2019). 

3.12 Performance of Algorithms 
In the research study conducted by Falcão et al. (2019), the authors have proposed a 

question: is there an algorithm (or a family) that performs better than the others? In 

their experiments and analysis, the authors obtained results by running 12 algorithms 

on 5 datasets. The results were ranked by F1 scores (see Table 3.1 below). The 

median and standard deviation score for each metric were reported.  

The observations made were that the first two algorithms belong to the classification 

family. Both Isolation Forest and One-Class SVM showed good scores for anomaly 

detection whereby Precision, Recall, and Accuracy scores were above 96%. This 

contrasted with the other classification algorithms angle-based which showed poor 

results for the F1 score. 

Another observation that was interesting was that when the authors aggregated and 

plotted the results related to each family (see Table 3.1 below). The results from this 

also showed that the classification family was the most effective even though statistical 

and density-based families showed similar results. The neighbour-based scores 

showed a bit lower score than the other families, although they (neighbour-based) 

have a higher standard deviation. It is observed that of the two neighbour-based 

algorithms (KNN and ODIN, KNN is significantly depicted as the worst, however, it 

shows a higher recall score. This according to Falcão et al. (2019), is explained by 

reason of ODIN being based on the KNN graph with some ‘indegree score’. As 

anticipated by Zhang et al. (2004) the semi-density score added on top of the KNN 

query provides a decisive support which improves the detection scores. A similar result 
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was also exhibited in the clustering family whereby the K-Means algorithm was used 

as a baseline for the LDCOF, this showed better scores. 

On the Accuracy scores observations, the authors Falcão et al. (2019) noted that even 

though the angle-based algorithms showed worst F1 scores overall,  they (angle-

based) have higher accuracy values than the clustering and neighbour-based families. 

The authors explain that this motivated by the fact that F1 score is based on Precision 

and Recall, which do not account for true negatives. As a result, higher Accuracy 

scores for angle-based algorithms compared to the corresponding F1 scores highlight 

that the percentage of true negatives is higher than the others. 

Algorithm # Combinations Family AUC Precision Recall Accuracy F1 

Isolation Forest  8 Classification 37.2 ± 0.4 99.9 ± 0.3 99.3 ± 0.4 99.7 ± 0.3 99.6 ± 0.3 

One-Class SVM  1 Classification 53.4 ± 2.9 96.6 ± 3.2 99.3 ± 0.0 96.2 ± 3.2 98.0 ± 1.9 

COF  8 Density-Based 48.8 ± 1.7 93.6 ± 3.4 97.8 ± 0.1 91.7 ± 3.1 95.7 ± 2.0 

ODIN  8 Neighbour-Based 49.9 ± 1.7 96.6 ± 2.4 99.9 ± 0.4 89.8 ± 1.6 94.6 ± 1.1 

HBOS  1 Statistical 57.8 ± 5.5 92.6 ± 5.8 99.5 ± 4.3 89.2 ± 4.7 94.3 ± 4.8 

rPCA  1 Statistical 55.0 ± 4.0 97.5 ± 3.4 95.0 ± 1.0 83.1 ± 3.2 90.6 ± 2.0 

LOF  8 Density-Based 50.0 ± 1.3 96.6 ± 3.5 88.0 ± 1.1 81.3 ± 3.1 89.6 ± 2.1 

LDCOF  8 Clustering 49.9 ± 2.3 82.4 ± 1.8 94.4 ± 0.2 77.9 ± 1.5 87.4 ± 0.7 

KNN  8 Neighbour-Based 35.9 ± 6.7 91.9 ± 5.8 75.1 ± 3.4 71.4 ± 4.0 82.8 ± 4.3 

K-Means  8 Clustering 54.4 ± 8.9 95.7 ± 5.3 68.5 ± 2.8 65.6 ± 3.4 78.3 ± 3.5 

ABOD  8 Angle-Based 90.5 ± 7.8 69.2 ± 8.1 92.4 ± 8.3 90.0 ± 1.8 75.5 ± 10.2 

FastABOD  15 Angle-Based 86.4 ± 9.2 90.6 ± 7.8 77.4 ± 5.3 67.6 ± 3.2 74.7 ± 6.1 

Table 3.1 Metric scores (median ± std) for the 12 algorithms, ordered by F1score 
(Falcão et al., 2019) 
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Figure 3.14 Results on all the datasets and all the attacks, grouped by algorithms 
families. Columns report median scores, while error bars depict the standard 

deviation (Falcão et al., 2019) 

3.13 Chosen Algorithms 
The results from Table 3.1 above show that the recommended algorithms for better 

results in anomaly detection are Isolation Forest, One Class Support Vector Machine 

(OCSVM), Connectivity-Based Outlier Factor (COF), and Out-of-Distribution Detector 

for Neural Networks (ODIN). 

The section below will focus on an in-depth discussion of these algorithms and how 

they have been implemented by other authors. 

3.13.1 Isolation Forest 
The Isolation Forest algorithm (also known as iForest) was proposed by the authors 

Liu, Ting and Zhou (2008). According to the authors, this algorithm isolates anomalies 

instead of profiling normal instances. To achieve this, the authors state that Isolation 

Forest takes advantage of two anomalies’ quantitative properties (Liu, Ting and Zhou, 

2008). These are that the anomalies: 

a) Are the minority consisting of fewer instances and 
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b) The anomalies have attribute-values which are different from the attribute-

values of the normal instances. 

This shows that anomalies can be said to be ‘few and different’, making them more 

vulnerable to be isolated than the normal points. This vulnerability to isolation is the 

reason why anomalies are isolated closer to the root of the tree. The authors then 

called this tree as Isolation Tree or iTree. With this in mind, the authors then stated 

that the Isolation Forest creates an ensemble of iTrees for a given dataset, then the 

anomalies are defined as those instances that have a shorter average path length on 

the iTrees (Liu, Ting and Zhou, 2008). 

This method only has two variables:  

i) the number of trees to build and,  

ii) the sub-sampling size. 

The figures below (Figure 3.15) show the isolation of an anomalous point against a 

normal point. 

 

In Figure 3.15, it can be seen that the isolation of an anomalous point form normal 

points only uses one line (a), unlike the isolation of the normal points in (b) which 

requires four lines for complete isolation. 

 

 

(a) Isolating an anomalous 

 

(b) Isolating a normal point 

Figure 3.15 Isolating an anomalous point against a normal point 
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The iForest Algorithm 

For a given sample of data points X in a dataset, the iForest algorithm builds an 

Isolation Tree (iTree), T. This is done using the following steps: 

1. Random selection of an attribute q and a split value p. 

2. X is divided into two subnets using the rule q < p. These subnets correspond to 

the left and right subtree in T. 

3. The steps 1 and 2 are repeated recursively until the current node only has one 

sample or the current node has all the values that are the same. 

All these steps are repeated severally to build Isolation Trees which in turn produce 

an Isolation Forest. With the understanding of how Isolation Trees are produced and 

the characteristics of the anomalous points, it can be said that most of the anomalous 

points will be located nearer to the root of the tree, reason being that they are easier 

to isolate as opposed to the normal points. An iTree is a proper binary tree, in that, 

every node in the tree has exactly zero or two daughter nodes. Assuming that all the 

nodes are distinct, each instance is isolated to an external node when iTree is fully 

grown, in this case, the number of external nodes is n and the number of internal nodes 

is n – 1; this therefore means that the total number of an iTree is 2n – 1 (Liu, Ting and 

Zhou, 2008). 

The main aim of anomaly detection is to give rise to a ranking that reflects the degree 

of anomaly. Therefore, Liu, Ting and Zhou (2008) state that another way of detecting 

anomalies is by sorting the data points according to their path lengths or anomaly 

scores, in which case, the anomalies are points which are ranked at the top of the list. 

The authors (Liu, Ting and Zhou, 2008) defined path length and anomaly score as 

follows: 

Path Length 

The Path Length h(x) of a point x is measured by the number of edges x traverses an 

iTree from the root node until the traversal is terminated at an external node (Liu, Ting 

and Zhou, 2008). 
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Anomaly Score 

For any anomaly detection method, an anomaly score is required. The problem of 

deriving such a score from the Path Length h(x) is that while the maximum possible 

height of iTree grows in the order of n, the author Wilkes (1974) shows that the average 

height grows in the order of log n. Due to this, Liu, Ting and Zhou (2008) state that, 

normalisation of h(x) by any of the above terms is either not bounded or cannot be 

directly compared. 

The iForest algorithm authors (Liu, Ting and Zhou, 2008) have compared the structure 

of iTrees to Binary Search Tree (BST) and concluded that both iTrees and BST have 

an equivalent structure. The authors have therefore borrowed the analysis of BST to 

estimate the average path length of iTree. This is because the termination of a node 

in an iTree is like an unsuccessful search in a BST in relation to the path length. 

Therefore, for a given dataset of n instances, the average path length of unsuccessful 

search in BST is given as: 

 

     c(n) = 2H (n – 1) – (2(n – 1) /n),  

 

where H(i) is the harmonic number and it can be estimated by the Euler’s constant, 

ln(i) + 0.5772156649. As c(n) is the average of h(x) given n, the authors Liu, Ting and 

Zhou (2008) used it to normalise h(x).  

The authors went further and defined the anomaly score s of an instance x as: 

 

                    𝑠𝑠(𝑥𝑥,𝑛𝑛) = 2− 𝐸𝐸(ℎ(𝑥𝑥))
𝑐𝑐(𝑛𝑛)  

 

where, h(x) represents the path length of the data point x in each Isolation Tree; E(h(x)) 

represents the expected or the average value across all the Isolation Trees; c(n) 

represents the average value of the path length h(x) given a sample size of n. 

Equation 3.3 Path Length 

       Equation 3.4 Anomaly Score 
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After the computation of the anomaly score s(x, n) for a given data point, the following 

criteria could be used to detect the anomalies 

1. If s(x, n) is close to 1, then x is very likely to be an anomaly 

2. If s(x, n) is less than 0.5, then x is likely a normal point 

3. If s(x, n) is close to 0.5 for all of the points in the dataset, then it is likely that the 

data does not contain any anomalies. 

N/B: A reminder that the anomaly score will always be greater than zero but less than 

1 for all the points, making it similar to a probability score. 

Figure 3.16 illustrates the relationship between E(h(x)) and s when the following 

conditions are applied where 0 < s ≤ 1 for 0 < h(x) ≤ n – 1. 

 

Figure 3.16 The relationship of expected path length E(h(x)) and anomaly score (Liu, 
Ting and Zhou, 2008) 

From Figure 3.16 above, the relationship of expected path length E(h(x)) and anomaly 

score s, c(n) is the average path length as defined in Equation 3.3. If the expected 

path length E(h(x)) is equal to the average path length c(n), then s = 0.5, regardless 

of the value of n (Liu, Ting and Zhou, 2008). 
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Anomaly Detection using iForest 

The use of iForest for anomaly detection is in a two-stage process. The first stage is 

training which usually builds isolation trees by use of the sub-samples of the training 

set. The second stage - testing, passes the test instances through isolation trees to 

obtain an anomaly score for each instance. 

Training stage 

In the training stage, iTrees are constructed by recursively partitioning the given 

training set until instances are isolated or a specific tree height is reached of which 

results a partial model. Note that the tree height limit l is automatically set by the sub-

sampling size  𝜓𝜓: 𝑙𝑙 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙𝑐𝑐𝑛𝑛𝑐𝑐(𝑙𝑙𝑜𝑜𝑐𝑐2 𝜓𝜓), which is approximately the average tree 

heigh. The rationale of growing trees up to the average tree height is that we are only 

interested in data points that have shorter-than-average path lengths, as those points 

are more likely to be anomalies (Liu, Ting and Zhou, 2008). 

The details of this training stage are illustrated in the Algorithm 3.1 and Algorithm 3.2 

below. 

Algorithm 3.1: 𝑐𝑐𝐿𝐿𝑜𝑜𝑖𝑖𝑐𝑐𝑠𝑠𝑖𝑖(𝑋𝑋, 𝑖𝑖,𝜓𝜓) 

Inputs: X – input data,   t – number of trees,   ψ – sub-sampling 

size 

Output: a set of  t iTrees 

1. Initialise Forest 

2. set height limit  𝑙𝑙 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙𝑐𝑐𝑛𝑛𝑐𝑐(𝑙𝑙𝑜𝑜𝑐𝑐2 𝜓𝜓) 

3. for i=1 to t do 

4.       𝑋𝑋′ ←  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑙𝑙𝑐𝑐(𝑋𝑋,𝜓𝜓) 

5.       𝐿𝐿𝑜𝑜𝑖𝑖𝑐𝑐𝑠𝑠𝑖𝑖 ←  𝐿𝐿𝑜𝑜𝑖𝑖𝑐𝑐𝑠𝑠𝑖𝑖 ∪ 𝑐𝑐𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐(𝑋𝑋′, 0,1) 

6. end for 
7. return Forest 
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Algorithm 3.2: iTree(X,e,l) 

Inputs:  X – Input data,   e – current tree height,   l – height limit  

Output: an iTree 

1. if e≥ 𝑙𝑙 𝑜𝑜𝑖𝑖 |𝑋𝑋| ≤ 1 then 

2.    return 𝑐𝑐𝑥𝑥𝑁𝑁𝑜𝑜𝑑𝑑𝑐𝑐{𝑆𝑆𝑐𝑐𝑆𝑆𝑐𝑐 ← ⌈𝑋𝑋⌉} 

3. else 

4.     let Q be a list of attributes in X 

5.     randomly select an attribute q ∈ 𝑄𝑄 

6.     randomly select a split point p from max and min values 

of attribute q in X 

7.     𝑋𝑋𝑙𝑙 ← 𝑓𝑓𝑐𝑐𝑙𝑙𝑖𝑖𝑐𝑐𝑖𝑖(𝑋𝑋, 𝑞𝑞 < 𝑠𝑠) 

8.      𝑋𝑋𝑟𝑟 ← 𝑓𝑓𝑐𝑐𝑙𝑙𝑖𝑖𝑐𝑐𝑖𝑖(𝑋𝑋, 𝑞𝑞 ≥ 𝑠𝑠) 

9.     return inNode{𝐿𝐿𝑐𝑐𝑓𝑓𝑖𝑖 ← 𝑐𝑐𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐(𝑋𝑋𝑙𝑙 , 𝑐𝑐 + 1, 𝑙𝑙), 

10.                       𝐿𝐿𝑐𝑐𝑐𝑐ℎ𝑖𝑖 ← 𝑐𝑐𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐(𝑋𝑋𝑟𝑟 , 𝑐𝑐 + 1, 𝑙𝑙), 

11.                       𝑠𝑠𝑠𝑠𝑙𝑙𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝑖𝑖 ← 𝑞𝑞, 

12.                       𝑆𝑆𝑠𝑠𝑙𝑙𝑐𝑐𝑖𝑖𝑆𝑆𝑠𝑠𝑙𝑙𝑆𝑆𝑐𝑐 ← 𝑠𝑠} 

13. end if 
 

In the iForest algorithm above (Algorithm 3.1), there are two input parameters (sub-

sampling size ψ and the number of trees t). The sub-sampling size ψ controls the 

training data size. It is found that when ψ is increased to a desired value, the detection 

of the iForest is reliable thereby eliminating the need for further increase of ψ as this 

increase only increases the processing time and memory size without any meaningful 

gain in the performance of the detection (Liu, Ting and Zhou, 2008). 
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The ensemble size is controlled by the number of tree t. After the training process, a 

collection of trees is returned making it ready for the evaluation stage, the authors Liu, 

Ting and Zhou (2008) state that the complexity of training an iForest is 

𝐿𝐿(𝑖𝑖𝜓𝜓 𝑙𝑙𝑜𝑜𝑐𝑐 𝜓𝜓). 

Evaluating Stage 

In this stage, an anomaly score s is derived from the expected path length E(h(x)) for 

each test instance. When instances are passed through each iTree in an iForest, the 

path length E(h(x)) is derived. By the use of the PathLength function, a single path 

length h(x) is derived by counting the number of edges e from the root node to a 

terminating node as instance x traverses through an iTree. The termination of x at an 

external node where Size>1, the return value is e plus an adjustment c(Size). The 

anomaly score is found by computing s(x, ψ) in Equation 3.4 when h(x) is obtained 

for each tree of the ensemble. The PathLength details are illustrated in Algorithm 3.3 

below. 
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Algorithm 3.3: PathLength(x, T, e) 

Inputs : x - an instance,  T - an iTree,   e - current path length; 

to be initialised to zero when first called 

Output: path length of x 

1. if T is an external node then 
2.      return 𝑐𝑐 + 𝑐𝑐(𝑖𝑖. 𝑠𝑠𝑐𝑐𝑆𝑆𝑐𝑐) {𝑐𝑐(. ) is defined in Equation 3.3} 

3. end if 
4. a ← T.splitAtt 

5. if xa < T.splitValue then 
6.      return PathLength(x, T.left, e + 1) 

7. else {xa ≥ T.splitValue} 

8.       return PathLength(x, T.right, e + 1) 

9. end if  
 

The top m anomalies are found by simply sorting the data in descending order using 

s. The first m instances are the top m anomalies. 

3.13.2 One Class SVM (OCSVM) 
In one class classification, the constitution of the problem is covered by a single target 

sample of the same class represented by a training set usually separated from the any 

novel samples that do not belong to the same class (i.e., outlier samples). This 

algorithm (OCSVM) has been applied successfully in the various detection and 

classification tasks such as communication network performance, wireless sensor 

network, forensic science, detection of handwritten digits and objection detection 

among others (Noumir, Honeine and Richard, 2012). 

According to Hempstalk and Frank (2008), the OCSVM algorithms have been 

extended to both binary and multiclass classification tasks through the application of 

a single one-class classifier to each class and subsequently combining the decision 
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rules. The task of one class classification consists of identifying a sphere of minimum 

volume that englobes all (or most of) the training data by jointly estimating the centre 

and its radius. 

Through the concept of reproducing kernels explored by Aronszajn (1950), a kernel 

function 𝑘𝑘(. , . ) defines a nonlinear transformation Φ(∙) of the input space into some 

feature space. What is required in the nonlinear characteristics is the inner product 

which can be evaluated using a kernel function 〈Φ(𝑥𝑥𝑖𝑖),Φ�𝑥𝑥𝑗𝑗�〉 = 𝑘𝑘�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗� for 

any 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗  from the input space X. 

The main idea of OCSVM is to find a sphere of minimum volume that contains all the 

training samples. Therefore, the sphere, being described by its centre c and its radius 

r, is obtained by solving the constrained optimisation problem. 

                                                  
𝑠𝑠𝑐𝑐𝑛𝑛
𝑖𝑖, 𝑐𝑐                    𝑖𝑖2    

           Subject to ‖𝛷𝛷(𝑥𝑥𝑖𝑖) − 𝑐𝑐‖2 ≤ 𝑖𝑖2  for  i= 1,2,…….,n 

The above constraint may be deemed restrictive by tolerating a small fraction of the 

samples to be outside the sphere. In so doing, robustness is yielded such that there 

is less sensitivity to the presence of outliers in the training dataset. Due to this, Noumir, 

Honeine and Richard (2012) specified v to be a positive parameter for trade-off 

between the sphere volume and the number of outliers. The problem then becomes 

the estimation of c, r, and a set of non-negative slack variables 𝜁𝜁1,𝜁𝜁2 … . . , 𝜁𝜁𝑛𝑛: 

             
𝑠𝑠𝑐𝑐𝑛𝑛
𝑖𝑖, 𝑐𝑐, 𝜁𝜁 𝑖𝑖2 +  1

𝑣𝑣𝑛𝑛
∑ 𝜁𝜁𝑖𝑖𝑛𝑛
𝑖𝑖=1                                                                

subject to ‖𝛷𝛷(𝑥𝑥𝑖𝑖) − 𝑐𝑐‖2 ≤ 𝑖𝑖2 + 𝜁𝜁𝑖𝑖 for all i = 1,2,…….,n 

By the introduction of the Kurush-Kuhn-Tucker (KKT) optimality conditions, the 

following equation is derived:  

Equation 3.5 

Equation 3.6 
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𝑐𝑐 = �∝𝑖𝑖 Φ(𝑥𝑥𝑖𝑖),
𝑛𝑛

𝑖𝑖=1

 

where the ∝𝑖𝑖 solves the optimisation problem. 

Kittidachanan et al. (2020) have recently discussed the OCSVM algorithm. They 

differentiated SVM and OCSVM by stating that whereas both algorithms (SVM and 

OCSVM) work in unsupervised learning where only one class is considered, OCSVM 

tries to find hyperplane to separate the outlier from normal data during the training 

process (Kittidachanan et al., 2020). 

In the training process, the first step is to transform input data into kernel function, the 

data is then mapped from input space onto high-dimensional space (feature space). 

The algorithm then finds the best separating hyperplane from training data by 

maximising the margin. 

The margin in this case is represented as: 

𝑀𝑀𝑠𝑠𝑖𝑖𝑐𝑐𝑐𝑐𝑛𝑛 =  𝑏𝑏/‖𝒘𝒘‖ 

The objective function is represented as: 

𝑠𝑠𝑐𝑐𝑛𝑛𝑐𝑐𝑠𝑠𝑐𝑐𝑠𝑠𝑐𝑐 𝑓𝑓(𝒘𝒘) =
‖𝒘𝒘‖2

2
+

1
𝑣𝑣𝑛𝑛

�𝜁𝜁𝑖𝑖

𝑛𝑛

𝑖𝑖+1

− 𝑏𝑏  

subject to : �𝑤𝑤 ∙ 𝛷𝛷(𝑥𝑥𝑖𝑖)� ≥ 𝑏𝑏 −  𝜁𝜁𝑖𝑖 , 𝜁𝜁𝑖𝑖  ≥ 0,∀𝑐𝑐 = 1, . . . . ,𝑛𝑛 

where v is the regularisation coefficient, or the parameter-controlled crossing of the 

data or the proportion of outliers. This parameter v is ranged from 0 to 1. The 

optimisation problem in the objective function above is usually solved by its dual form 

as below: 

minimise: −∑ ∑ ∝𝑖𝑖∝𝑗𝑗 𝐾𝐾�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗�𝑛𝑛
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1  

subject to:  ∑ ∝𝑖𝑖𝑛𝑛
𝑖𝑖=1 = 1, 0 ≤∝𝑖𝑖≤

1
𝑣𝑣𝑛𝑛

 

Equation 3.8 

Equation 3.7  
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where the kernel function is 𝐾𝐾�𝑥𝑥𝑖𝑖,𝑥𝑥𝑗𝑗� = 𝛷𝛷(𝑥𝑥𝑖𝑖)𝑇𝑇 ∙ 𝛷𝛷�𝑥𝑥𝑗𝑗� 

The difference between two class and one class SVM is shown in Figure 3.17. 

 

Figure 3.17 Two class SVM (Kittidachanan et al., 2020) 
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Figure 3.18 One Class SVM (Kittidachanan et al., 2020) 

According to the authors Liu and Xu (2014), Lin and Lin (2003), and Chih-Wei Hsu, 

Chih-Chung Chang, Chih-Jen Lin (2008), the popular kernel functions that are 

frequently applied to OCSVMs are: 

Linear: 

𝐾𝐾�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗� = 𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗 

Polynomial: 

𝐾𝐾�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗� = �𝛾𝛾𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗 + 𝑖𝑖�𝑑𝑑 , 𝛾𝛾 > 0, 

 

Equation 3.9 

Equation 3.10 
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where d is the degree of the polynomial kernel function (Chang and Lin, 2011). 

Radial Basis Function (RBF): 

𝐾𝐾�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗� = 𝑐𝑐−𝛾𝛾�𝑥𝑥𝑖𝑖−𝑥𝑥𝑗𝑗�
2
, 𝛾𝛾 > 0 

Sigmoid: 

𝐾𝐾�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗� = tanh�𝛾𝛾𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗 + 𝑖𝑖�, 

where i, j ∈  𝑁𝑁. Parameters 𝛾𝛾 serve as mapping threshold coefficients that define 

boundary characteristics, and r is shifting parameter that controls the threshold of 

mapping. 

Using grid search for hyperparameter tuning, the authors Kittidachanan et al. (2020) 

focussed on finding the best value of v (regularisation coefficient/proportion of 

outliers), and 𝛾𝛾 parameter in the kernel function. 

SVM models are based on the hyperparameter values, therefore, grid search is used 

as a hyperparameter tuning process to the purpose of estimating the optimal values 

of parameters for an SVM model. In OCSVM, the two parameters considered are 𝛾𝛾 

and v. 

 

 

 

 

 

 

Equation 3.11 

Equation 3.12 
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A summary of the grid search algorithm of OCSVM is as follows in Algorithm 3-4: 

Algorithm 3.4: Grid Search OCSVM Hyperparameter Selection Algorithm. 

     Input: Target dataset 𝑿𝑿𝑡𝑡𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡 and 𝒀𝒀𝑡𝑡𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡 , 

                 Hyperparameter 𝛾𝛾𝑟𝑟𝑡𝑡𝑛𝑛𝑡𝑡𝑡𝑡 and 𝜈𝜈𝑟𝑟𝑡𝑡𝑛𝑛𝑡𝑡𝑡𝑡  

      Output: Optimal hyperparameter combination 

          �𝛾𝛾𝑜𝑜𝑜𝑜𝑡𝑡 , 𝜈𝜈𝑜𝑜𝑜𝑜𝑡𝑡� 

1. prepare training data without negative class 

      (𝑿𝑿𝑡𝑡𝑟𝑟𝑡𝑡𝑖𝑖𝑛𝑛 ,𝒀𝒀𝑡𝑡𝑟𝑟𝑡𝑡𝑖𝑖𝑛𝑛)   

2. prepare testing data with negative class and positive class 
(𝑿𝑿𝑡𝑡𝑟𝑟𝑡𝑡𝑖𝑖𝑛𝑛 ,𝒀𝒀𝑡𝑡𝑟𝑟𝑡𝑡𝑖𝑖𝑛𝑛)  

3. set minimum of AUC: 𝑠𝑠𝐴𝐴𝐴𝐴𝑏𝑏𝑡𝑡𝑏𝑏𝑡𝑡 = 0 ; 

4. for each hyperparameter combination (𝛾𝛾 , 𝜈𝜈) from 

(𝛾𝛾𝑟𝑟𝑡𝑡𝑛𝑛𝑡𝑡𝑡𝑡 , 𝜈𝜈𝑟𝑟𝑡𝑡𝑛𝑛𝑡𝑡𝑡𝑡) 

do 
5. train an OCSVM model with hyperparameter (𝛾𝛾 , 𝜈𝜈) by 𝑿𝑿𝑡𝑡𝑟𝑟𝑡𝑡𝑖𝑖𝑛𝑛 

; 
6. predict 𝑌𝑌𝑡𝑡𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡 with train model by 𝑿𝑿𝑡𝑡𝑡𝑡𝑏𝑏𝑡𝑡 ; 

7. calculate the AUC by 𝒀𝒀𝑡𝑡𝑡𝑡𝑏𝑏𝑡𝑡 and 𝒀𝒀𝑡𝑡𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡 ; 

8. if 𝑨𝑨𝑨𝑨𝑨𝑨𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 < 𝑨𝑨𝑨𝑨𝑨𝑨  then 

9. �𝛾𝛾𝑜𝑜𝑜𝑜𝑡𝑡 , 𝜈𝜈𝑜𝑜𝑜𝑜𝑡𝑡� = (𝛾𝛾, 𝜈𝜈);  

10. return �𝛾𝛾𝑜𝑜𝑜𝑜𝑡𝑡 , 𝜈𝜈𝑜𝑜𝑜𝑜𝑡𝑡�; 
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3.13.3 Connectivity-Base Outlier Factor (COF) 
COF was introduced by Tang et al. (2002) to improve the effectiveness of Local Outlier 

Factor (LOF) in patterns that have the same neighbourhood density as an outlier. 

Whereas LOF calculates Euclidean distances using hypersphere centred on a data 

point, COF calculates the distance in an incremental manner by finding the shortest 

paths between data points. 

The authors’ (Tang et al., 2002) idea of COF is based on the idea of differentiating ‘low 

density’ from ‘isolativity’. Low density is referred to as the understanding that the 

number of objects in the ‘close’ neighbourhood of an object is (relatively) small, while 

isolativity is referred to as the degree to which an object is connected to other objects. 

So, generally, a low density outlier results from a deviation from a pattern of high 

density, whereas an isolated outlier results from a deviation from a pattern that is 

connected (Tang et al., 2002). Therefore, an outlier detector should take both cases 

into consideration. 

The following ae the definitions for the formulation of the connectivity-based outlier 

factor (COF). 

Definition 1: 

Let 𝑃𝑃,𝑄𝑄 ⊆ 𝒟𝒟,𝑃𝑃 ∩ 𝑄𝑄 = ∅ and, 

P, Q≠ ∅. 𝑑𝑑𝑐𝑐𝑠𝑠𝑖𝑖(𝑃𝑃,𝑄𝑄) = 𝑠𝑠𝑐𝑐𝑛𝑛{𝑑𝑑𝑐𝑐𝑠𝑠𝑖𝑖(𝑥𝑥,𝑦𝑦) ∶  𝑥𝑥 ∈ 𝑃𝑃 & 𝑦𝑦 ∈  𝑄𝑄}, 

Call 𝑑𝑑𝑐𝑐𝑠𝑠𝑖𝑖(𝑃𝑃,𝑄𝑄) the distance between P and Q. 

For any given  𝑞𝑞 ∈  𝑄𝑄,, q is the nearest neighbour to P in Q if there is a 𝑠𝑠 ∈  𝑃𝑃 

such that 𝑑𝑑𝑐𝑐𝑠𝑠𝑖𝑖(𝑠𝑠, 𝑞𝑞)  = 𝑑𝑑𝑐𝑐𝑠𝑠𝑖𝑖(𝑃𝑃,𝑄𝑄). 

Definition 2: 

Let 𝐺𝐺 = {𝑠𝑠1,𝑠𝑠2, . . . . .𝑠𝑠𝑟𝑟} be the subset of 𝒟𝒟. 
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A set based nearest path (SBN-path) from 𝑠𝑠1 on G is a sequence 〈𝑠𝑠1,𝑠𝑠2, . . . . . ,𝑠𝑠𝑟𝑟〉 

such that for all 1 ≤ 𝑐𝑐 ≤ 𝑖𝑖 − 1,𝑠𝑠𝑖𝑖+1 is the nearest neighbour of set {𝑠𝑠1, . . . . ,𝑠𝑠𝑖𝑖} 

in {𝑠𝑠𝑖𝑖 + 1, . . . . ,𝑠𝑠𝑟𝑟}. 

The SBN-path is used to indicate the order of presenting the nearest objects (Tang et 

al., 2002). 

 

Figure 3.19 The Set Based Nearest (SBN) Path (Tang et al., 2002) 

Definition 3: 

Let s = 〈𝑠𝑠1,𝑠𝑠2, . . . . . , 𝑠𝑠𝑟𝑟〉 be an SBN-path. 

A set based nearest trail, or SBN-trail, with respect to s is a sequence  〈𝑐𝑐1, . . . , 𝑐𝑐𝑟𝑟−1〉 

such that for all 1 ≤ 𝑐𝑐 ≤ 𝑖𝑖 − 1, 𝑐𝑐𝑖𝑖 = (0𝑖𝑖 ,𝑠𝑠𝑖𝑖 + 1),  

where 0𝑖𝑖 ∈ {𝑠𝑠1, . . . ,𝑠𝑠𝑖𝑖},  and 

 𝑑𝑑𝑐𝑐𝑠𝑠𝑖𝑖 (𝑐𝑐1) =  𝑑𝑑𝑐𝑐𝑠𝑠𝑖𝑖 (0𝑖𝑖 ,𝑠𝑠𝑖𝑖 + 1) = 𝑑𝑑𝑐𝑐𝑠𝑠𝑖𝑖 ({𝑠𝑠1, . . . ,𝑠𝑠𝑖𝑖}, {𝑠𝑠𝑖𝑖 + 1, . . . ,𝑠𝑠𝑟𝑟}). 

Each 𝑐𝑐1 is called an edge. 

The sequence is 〈𝑑𝑑𝑐𝑐𝑠𝑠𝑖𝑖(𝑐𝑐1), . . . ,𝑑𝑑𝑐𝑐𝑠𝑠𝑖𝑖(𝑐𝑐𝑟𝑟−1)〉 is the cost description of 

〈𝑐𝑐1, . . . , 𝑐𝑐𝑟𝑟−1〉. 
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In the event that 0𝑖𝑖 is not uniquely determined, the tie is broken by a pre-defined order. 

This therefore means that SBN-trail is unique for any SBN-path. 

 

Figure 3.20 SBN-trail (Tang et al., 2002) 

 

Definition 4: 

Let s = 〈𝑠𝑠1,𝑠𝑠2, . . . . . ,𝑠𝑠𝑟𝑟〉 be an SBN-path from 𝑠𝑠1 and 𝑐𝑐 = 〈𝑐𝑐1, . . . , 𝑐𝑐𝑟𝑟−1〉 be 

the SBN-trail with respect to s. The average chaining distance from 𝑠𝑠1 to 𝐺𝐺 − {𝑠𝑠1}, 

denoted by 𝑠𝑠𝑐𝑐 − 𝑑𝑑𝑐𝑐𝑠𝑠𝑖𝑖𝐺𝐺(𝑠𝑠1), is defined as: 

 𝑠𝑠𝑐𝑐 − 𝑑𝑑𝑐𝑐𝑠𝑠𝑖𝑖𝐺𝐺(𝑠𝑠1) =  �
2(𝑖𝑖 − 1)
𝑖𝑖(𝑖𝑖 − 1)

𝑟𝑟−1

𝑖𝑖=1

∙ 𝑑𝑑𝑐𝑐𝑠𝑠𝑖𝑖(𝑐𝑐𝑖𝑖) ∙ 

The weighted sum of the cost description of the SBN-trail for some SBN-path from 𝑠𝑠1 

is the average chaining distance from 𝑠𝑠1 to 𝐺𝐺 − {𝑠𝑠1}. As the cost description is 

unique for 𝑠𝑠1, this definition is rewritten as: 

𝑠𝑠𝑐𝑐 − 𝑑𝑑𝑐𝑐𝑠𝑠𝑖𝑖𝐺𝐺(𝑠𝑠1) =
1

𝑖𝑖 − 1
∙  �

2(𝑖𝑖 − 1)
𝑖𝑖(𝑖𝑖 − 1)

𝑟𝑟−1

𝑖𝑖=1

∙ 𝑑𝑑𝑐𝑐𝑠𝑠𝑖𝑖(𝑐𝑐𝑖𝑖) 
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When the fraction preceding the summation sign as the weight is viewed, the average 

chaining distance can then be viewed as the average of the weighted distances in the 

cost description of the SBN-trail. This means that if edges close to pi are larger than 

those further away, then they contribute more to the average chaining distance as 

illustrated in Figure 3.21 below. 

 

Figure 3.21 Average chaining distance (Tang et al., 2002) 

Definition 5: 

Let p ∈  𝒟𝒟 and k be a positive integer. The connectivity-based outlier factor (COF) 

at p with respect to its k-neighbourhood is defined as: 

𝐴𝐴𝐿𝐿𝐿𝐿𝑘𝑘(𝑠𝑠) =
|𝑁𝑁𝑘𝑘(𝑠𝑠)| ∙ 𝑠𝑠𝑐𝑐 − 𝑑𝑑𝑐𝑐𝑠𝑠𝑖𝑖𝑁𝑁𝑘𝑘(𝑜𝑜)(𝑠𝑠)
∑ 𝑠𝑠𝑐𝑐 − 𝑑𝑑𝑐𝑐𝑠𝑠𝑖𝑖𝑁𝑁𝑘𝑘(0)(0)0∈𝑁𝑁𝑘𝑘(𝑜𝑜)

∙ 

The COF at p is the ratio of the average chaining distance from p to 𝑁𝑁𝑘𝑘(𝑠𝑠) and the 

average chaining distance from p’s k-distance neighbours to their own k-distance 

neighbours. It indicates how far away a point shifts from a pattern. It further compares 

the point to the points around it to influence the outlier factor as illustrated in Figure 

3.22. 
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Figure 3.22 An example of calculating COF (Tang et al., 2002) 

3.13.4 Out-Of-Distribution Detector (ODIN) 
ODIN was proposed by Liang, Li and Srikant (2017). The author stated that ODIN is a 

simple and effective method that does not require any change on a pre-trained neural 

network. The experimental methodology is based on observation that state that 

through the use of temperature scaling and adding small perturbations to the input can 

separate the SoftMax score distributions between in- and out-of-distribution images, 

which in turn allows for more effective detection (Liang, Li and Srikant, 2018). The 

authors’ experiments also show that ODIN can be used for diverse network 

architectures and datasets. 

The authors (Liang, Li and Srikant, 2018) have considered a problem to distinguish in- 

and out-of-distribution images on a pretrained neural network. A variety of variables 

have been defined: PX and QX have been used to denote two distinct data 

distributions defined on the image space X. A neural network f is assumed have been 

trained on a dataset drawn from the distribution PX. The PX has been called the in-

distribution and QX has been called the out-distribution. 

The ODIN Detector is built on two components which are the temperature scaling and 

input preprocessing. These components are described as below: 
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Temperature Scaling 

For a neural network f = (f1, …., fN), it is assumed that it has been trained to 

classify N classes. For an input x, the neural network assigns a label 𝑦𝑦�(x)=arg 

maxi Si(x;T) by computing the softmax output for each class. 

                      𝑆𝑆𝑖𝑖(𝑥𝑥;𝑖𝑖) = 𝑡𝑡𝑥𝑥𝑜𝑜 (𝑓𝑓𝑖𝑖(𝑥𝑥)/𝑇𝑇)
∑ 𝑡𝑡𝑥𝑥𝑜𝑜�𝑓𝑓𝑗𝑗(𝑥𝑥)/𝑇𝑇�𝑁𝑁
𝑗𝑗=1

, 

where  𝑖𝑖 ∈  𝐿𝐿+ is the temperature scaling parameter and is set to 1 during the 

training. For each input x, the maximum softmax probability S𝑦𝑦�(x;T) = maxi 

Si(x;T) is called the softmax score. In their work, the authors Liang, Li and Srikant 

(2017) have mentioned that prior research has shown that the temperature scaling 

can be used to distil the knowledge in neural networks (Hinton, Vinyals and Dean, 

2015) and could also be used to calibrate the prediction confidence in classification 

tasks (Guo et al., 2017). 

Input Preprocessing  

Further to the temperature scaling, Liang, Li and Srikant (2017) pre-processed the 

input by adding small perturbations: 

 

                     𝑥𝑥� = 𝑥𝑥− ∈ 𝑠𝑠𝑐𝑐𝑐𝑐𝑛𝑛(−∇𝑥𝑥 log 𝑆𝑆𝑦𝑦�(𝑥𝑥;𝑖𝑖)), 

 

where the parameter  ∈ is the perturbation magnitude. This method, as stated by the 

authors (Liang, Li and Srikant, 2018) is inspired by Goodfellow, Shlens and Szegedy 

(2015)’s idea of adversarial examples in which small perturbations are added to 

decrease the softmax score for the true label thereby forcing the neural network to 

make predictions that are wrong. For this, the ODIN authors Liang, Li and Srikant 

(2017) state that their goal and setting is the opposite of the adversarial examples. 

The authors’ aim is to increase the softmax score of each input without needing a class 

label at all. It is also noted that the computation of the perturbations can be done easily 

 

Equation 3.13 Softmax Score 

 Equation 3.14 
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by back-propagation of the gradient of the cross-entropy loss with respect to the input 

(Liang, Li and Srikant, 2018). 

Out-of-distribution Detector 

The ODIN detector combines the two components (temperature scaling and input 

preprocessing). For every input point x, a calculation for the pre-processed input point 

𝑥𝑥� is performed according to  Equation 3.4. The pre-processed input point 𝑥𝑥� is fed into 

the neural network then its calibrated softmax score S(𝑥𝑥�;T) is calculated and this 

score is compared to the to the threshold  𝛿𝛿. When the softmax score is greater than 

the threshold, the input point x is classified as in-distribution and vice versa. 

Therefore, the out-of-distribution detector can be mathematically described as: 

𝑐𝑐(𝑥𝑥; 𝛿𝛿,𝑖𝑖,∈) = �1 𝑐𝑐𝑓𝑓 𝑠𝑠𝑠𝑠𝑥𝑥𝑖𝑖 𝑠𝑠(𝑥𝑥�;  𝑖𝑖)  ≤  𝛿𝛿,
 0 𝑐𝑐𝑓𝑓𝑠𝑠𝑠𝑠𝑥𝑥𝑖𝑖 𝑠𝑠(𝑥𝑥�;  𝑖𝑖)  >  𝛿𝛿. 

The choice of the parameters T, ∈, and 𝛿𝛿 is so that the true positive rate is 95%. 

The true positive rate in this case is the fraction of in-distribution input points that are 

correctly classified as in-distribution images. 

3.14 Conclusion 
The integration of automated processes, AI, and ML into digital forensics has brought 

significant advancements to the field. These technologies have facilitated the 

examination and analysis of digital evidence, leading to faster results and improved 

efficiency in handling cybercrime cases. However, challenges remain, as automated 

tools still require human oversight and expertise to ensure accuracy and reliability. 

Ongoing development and training are necessary to enhance the capabilities of these 

intelligent systems. Despite these challenges, the use of automated processes in 

digital forensics holds great potential for future risk mitigation and the effective 

handling of digital evidence. As technology continues to advance, it is crucial for 

forensic investigators to stay updated and leverage intelligent tools to address the 

evolving landscape of cybercrimes and attacks. By embracing AI and automation, the 

field of digital forensics can better serve the demands of the digital age and contribute 

to the successful resolution of criminal investigations.  

 

Equation 3.15 Out-of-Distribution 
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CHAPTER 4. PROPOSED THEORETICAL IoT FORENSIC 
FRAMEWORK 

This chapter delves into the theoretical framework for conducting IoT forensic 

investigations, aiming to provide investigators with a structured and systematic 

approach to navigate the complexities of this unique landscape. 

The chapter begins by acknowledging the gaps and limitations in existing research 

and highlights the need for a comprehensive framework that addresses the challenges 

specific to IoT environments. It emphasises the importance of timely and dependable 

data extraction and analysis, considering the constant connectivity and vast amounts 

of data generated by IoT devices. 

The proposed IoT forensic framework is presented as a step-by-step guide, 

encompassing four distinct phases: Preparation, Live Investigation, Offline 

Investigation, and Presentation. Each phase is meticulously designed to cater to the 

specific requirements and circumstances of IoT investigations, taking into account 

factors such as live crime scenes, offline devices, evidence preservation, analysis 

techniques, and reporting. 

Throughout the chapter, we explore the intricacies of each phase, discussing the key 

stages, sub-stages, and their significance in the investigative process. The framework 

recognises the critical need for securing crime scenes, documenting details 

meticulously, and maintaining a chain of custody to ensure the integrity of the 

investigation. 

Additionally, this chapter underlines the importance of adapting the framework to suit 

individual investigations, as each case may present its own unique challenges and 

requirements. Practical implementation, case studies, and validation are 

recommended to assess the effectiveness of the framework in real-world IoT crime 

scenarios. 

By offering a structured approach, this theoretical framework aims to enhance the 

effectiveness and efficiency of IoT forensic investigations, aiding investigators in the 

extraction of crucial evidence in a timely and reliable manner. Ultimately, this chapter 

seeks to contribute to the field of digital forensics by providing valuable insights and 
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guidance for investigators, helping to ensure justice is served and IoT-related crimes 

are prevented in this rapidly evolving landscape of interconnected devices. 

4.1 Introduction 
A survey conducted by Adjei, Babu and Yakubu (2018) examined the existing 

approaches to digital forensics in the context of IoT. The survey identified various gaps 

and limitations in the sampled papers, highlighting the necessity for an enhanced 

proactive model to effectively address IoT crime scenarios. The survey concluded that 

very few of the frameworks and models proposed in the sampled papers could extract 

data in a timely and dependable manner. Over time, several IoT forensic processes 

have been proposed, encompassing methodologies, models, and frameworks, which 

have collectively advanced research in this field. 

In this chapter, a step-by-step process of an IoT forensic process is proposed and 

presented to aid in the investigation of this research. A Theoretical IoT Forensic 

Investigation Framework is proposed and developed and utilises some processes from 

a network forensic framework developed by Hikmatyar, Prayudi and Riadi (2017). The 

framework has been developed with the emphasis being placed solely on IoT. 

The framework is shown in Figure 4.1. 

The framework follows the traditional digital forensic investigation process; however, 

it has been modified to accommodate the challenging scenarios in an IoT investigation 

scene. It emphasises on the critical activities that underscore the integrity and efficacy 

of the investigative process through authorisation, maintaining of a chain of 
custody, and documentation. It stresses the crucial need for authorisation, 

highlighting the legal and ethical gateway to accessing and scrutinising sensitive data 

at any level of the forensic process. Additionally, the framework emphasises the strict 

need to maintain a chain of custody, recognising it as indispensable for ensuring the 

reliability and admissibility of evidence in a court of law. Further, the practice of 

documentation, particularly contemporaneous notes, is underscored for its role in 

providing a real-time, accurate record, serving as a transparent and accountable guide 

throughout the investigation. 

The framework has four distinct phases, namely, preparation, live investigation, offline 

investigation, and presentation phase. 
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Figure 4.1 Proposed IoT Forensic Investigation Framework 

Each of these phases and steps have been explained below. 

4.2 Preparation Phase (1.0) 
For any investigation process, thorough preparation is crucial to ensure its successful 

completion. The stages involved in the preparation phase go beyond initial notification 

and include key steps that lay the foundation for a comprehensive investigation. These 

stages encompass notification, authorisation, preparation of the investigation plan, 

securing the crime scene, documenting the scene, and determining whether the scene 

is still active or offline. 
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Notification (1.1) 

Notification serves as the initial step in an IoT forensic investigation, where law 

enforcement agencies or forensic investigators are informed of a suspected violation 

of the law. This notification takes the form of a detailed report that highlights the 

potential occurrence of a crime. It is essential to provide accurate and comprehensive 

information in the report to assist investigators in assessing the gravity of the situation 

and determining the necessary actions to be taken. 

Authorisation (1.2) 

Upon receipt of a report indicating a suspected crime, obtaining proper authorisation 

becomes crucial to enable investigators to access the relevant data and evidence. 

This authorisation is typically obtained through legal means, such as a warrant of 

arrest or a search and seizure warrant issued by the police. The authorisation should 

clearly outline the areas and scope within which the investigator has been granted 

access, ensuring compliance with legal procedures, and protecting the rights of all 

parties involved. 

Preparation of the Investigation Plan (1.3) 

Once authorisation has been obtained, the investigative team responsible for 

conducting the inquiry must meticulously plan and organise the necessary resources 

to effectively address the case. This includes acquiring appropriate software, 

hardware, and personnel with expertise in IoT forensic investigations. Pertinent 

training and briefing sessions should also be conducted for first responders, equipping 

them with the requisite knowledge, skills, and protocols to be followed upon arriving at 

the crime scene. 

Securing the Crime Scene (1.4) 

Preserving the integrity of the crime scene is of utmost importance in an IoT forensic 

investigation. The crime scene must be secured promptly to prevent any unauthorised 

access or tampering, which could compromise the validity and reliability of the 

evidence. Measures should be taken to seal off the area, control access, and prevent 

contamination, ensuring that the scene remains undisturbed until the investigation is 

complete. This involves establishing strict protocols and guidelines to be followed by 

all personnel involved in the investigation. 
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Documenting the Scene (1.5) 

Thorough documentation of the crime scene is an essential step in an IoT forensic 

investigation. Investigators must conduct a meticulous examination of the scene, 

taking note of the various connections, types of communication, and hardware 

components present. Detailed photographs, sketches, and written descriptions should 

be captured to accurately record the condition and layout of the scene. It is imperative 

to document each step undertaken during the investigation process, creating a clear 

and traceable chain of custody that ensures the integrity of the evidence and 

establishes a foundation for subsequent analysis. 

Is the Scene Live? (1.6) 

As part of the preparation phase, investigators must determine whether the crime 

scene is still active or has transitioned to an offline state. This assessment helps in 

understanding the current state of the IoT environment and the potential risks and 

challenges involved in collecting and preserving evidence. By verifying the scene's 

activity status, investigators can tailor their approach accordingly, whether it requires 

immediate proactive measures for preserving live evidence or focuses on subsequent 

offline investigation procedures. 

The meticulous execution of each stage within the preparation phase sets the 

groundwork for a systematic and effective IoT forensic investigation. These initial steps 

play a pivotal role in establishing a solid framework for subsequent phases, enabling 

investigators to proceed with confidence and maximise their chances of uncovering 

valuable evidence and insights in the pursuit of justice. 

4.3 Live Investigation Phase (2.0) 
Due to the inherent characteristics of IoT environments, where devices are constantly 

connected, it is possible that the crime scene remains active and live. In such cases, 

a proactive approach must be adopted to prevent the loss of crucial evidence. The 

Live Investigation Phase of IoT forensic investigations comprises of the identification, 

live preservation, live analysis, and writing of wither a preliminary or status report. 

Each of these stages play a crucial role in effectively managing and analysing the live 

crime scene. 
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Identification (2.1) 

During this stage, the first responder(s) must diligently identify any readily available 

devices within the IoT environment that could potentially contain evidential value. This 

involves analysing the process events leading up to the incident and gathering 

information from witnesses or users present during the occurrence. By piecing 

together this information, investigators can gain insights into the triggers and context 

of the incident, forming an initial understanding of what transpired. 

Live Preservation (2.2) 

Live preservation involves immediate actions taken to maintain the integrity of the 

evidence within the live crime scene. This stage consists of several sub-stages that 

ensure crucial elements are safeguarded: 

Steady Supply of Power (2.2.1) 

In a live crime scene, maintaining a stable power supply is vital to prevent the loss of 

valuable evidence. To mitigate the risk of power disruptions, an uninterrupted power 

supply (UPS) should be employed whenever available, ensuring that devices and 

systems remain powered during the investigation process. 

Shielding of Communication (2.2.2) 

To prevent contamination and preserve the integrity of the investigation, it is imperative 

to isolate the network and communication mechanisms within the IoT environment. By 

disconnecting the live crime scene from external networks, investigators can eliminate 

the possibility of unauthorised access or interference. 

Collection and Acquisition of Volatile Data (2.2.3) 

Volatile data, which can be easily lost or altered, must be swiftly collected, and 

acquired to capture real-time evidence. This includes data stored in memory, 

temporary files, and active network connections. Specialised tools and techniques are 

employed to ensure the proper extraction and preservation of volatile data, which can 

provide crucial insights into the immediate events surrounding the incident. 
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Protecting Collected Evidence (2.2.4) 

Once evidence is collected, it must be carefully protected to prevent loss, 

contamination, or theft. Strict protocols should be followed to securely store and 

transport the collected evidence, ensuring that its integrity is maintained throughout 

the investigation process. Proper labelling, sealing, and documentation are essential 

to establish a clear chain of custody and facilitate its admissibility in legal proceedings, 

if necessary. 

Continuous Monitoring (2.2.5) 

Continuous monitoring of the live crime scene and its communication channels is 

critical to detect any anomalies, leaks, or potential intruders. Investigators must closely 

observe the network traffic, system logs, and device behaviour to identify any 

unauthorised activities or unusual patterns. This ongoing monitoring provides valuable 

insights and helps in determining the scope and impact of the incident. 

Live Analysis (2.3) 

To establish an initial hypothesis and gain preliminary insights into the incident, a live 

analysis is conducted during this stage. The sub-stages involved in this process 

include: 

Application of the Analysis Strategy (2.3.1) 

Based on the nature of the investigation, an appropriate analysis technique or method 

is selected. This could involve examining network traffic, analysing system logs, 

conducting memory forensics, or utilising specialised tools and algorithms designed 

for IoT environments. The chosen strategy guides investigators in collecting relevant 

data and performing the subsequent analysis effectively. 

Detection of a Crime (2.3.2) 

Through the application of the chosen analysis strategy, investigators aim to determine 

whether a violation of the law has occurred, constituting a crime that requires further 

investigation and analysis. This stage involves examining the collected evidence and 

identifying any suspicious activities, unauthorised access, data breaches, or other 

malicious actions. 
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Capturing of more Evidence (2.3.4) 

Upon confirming that a crime has taken place, the investigation proceeds to capture 

additional evidence, both volatile and non-volatile, that could strengthen the case. This 

includes expanding the scope of data collection beyond the initial observations and 

actively seeking out relevant information within the live crime scene. Investigators may 

deploy specialised tools and techniques to extract data from IoT devices, network logs, 

cloud services, and other sources, ensuring a comprehensive and thorough 

examination. 

Report Writing (2.4) 

Following the completion of the Live Investigation Phase, it is essential to document 

all actions taken and findings within a comprehensive report. This report serves as a 

record of the investigation process, providing a detailed account of the steps followed, 

evidence collected, analysis conducted, and initial conclusions reached. The report 

should adhere to proper documentation practices, including a clear chain of custody 

for all evidence, accurate timestamps, and a thorough description of the crime scene. 

In instances where no significant evidence or indications of a crime are found during 

the live investigation, a status report should be prepared to document the outcome of 

the steps taken. This report serves to officially communicate that the investigation has 

concluded and no further action is required at that stage. It is important to maintain 

thorough documentation even in cases where no criminal activity is detected, as it 

ensures transparency and accountability in the investigative process. 

By following the systematic framework outlined in the Live Investigation Phase, 

investigators can effectively manage and analyse live crime scenes within IoT 

environments. The emphasis on proactive preservation, continuous monitoring, and 

careful evidence collection enables the preservation of vital data and enhances the 

chances of successfully identifying and prosecuting perpetrators in IoT-related crimes. 

4.4 Offline Investigation Phase (3.0) 
The offline investigation phase in an IoT environment, also known as reactive 

investigation, occurs when the IoT devices are disconnected or offline, often due to 

being collected from the crime scene and secured at a different location. This phase 
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may also be conducted as a follow-up to the live investigation, aiming to optimise the 

overall investigation process. The following stages are involved in this phase: 

Identification (3.1) 

In the identification stage, investigators must carefully identify and locate potential 

evidence, including IoT devices that may contain data of evidential value. Thoroughly 

search all relevant areas where evidence may be concealed. It is crucial to maintain 

an open mind, employ keen investigative skills, and uncover any potential evidence 

without making assumptions prematurely. 

Collection and Acquisition (3.2) 

During the collection and acquisition stage, all identified evidence must be gathered 

and the data contained within extracted for further analysis. This process involves 

employing appropriate forensic techniques to ensure the preservation and extraction 

of valuable evidence stored within the IoT devices. 

Preservation (3.3) 

To maintain the integrity of the investigation, preserving the collected evidence is of 

utmost importance. This stage involves three sub-stages: 

Seize (3.3.1) 

Under the authority of a valid search and seizure authorisation, any evidence collected 

from the crime scene should be properly seized. It is essential to correctly label and 

secure all seized items, ensuring that authorised personnel are the only ones with 

access until after the investigation is completed. 

Transport (3.3.2) 

Once seized, all collected evidence must be securely transported from the crime scene 

to a forensic laboratory or a designated secure storage facility. Proper packaging and 

protection are necessary to prevent any damage or tampering during transportation. 

Store (3.3.3) 

The acquired digital evidence should be stored in an appropriate and secure database, 

while any other seized devices should be stored in a controlled environment. 
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Maintaining a detailed chain of custody is vital, documenting all individuals who 

accessed the evidence, along with the date and time of access. 

Examination (3.4) 

The examination stage involves a thorough analysis of the collected evidence to 

uncover the nature of the committed criminal offense. This stage comprises two sub-

stages: 

Logging of Files (3.4.1) 

Due to the potentially large volumes of IoT data that may have been collected, all 

digital evidence is provisioned in a database for efficient management and retrieval. 

Proper logging and organisation of files facilitates subsequent analysis and 

examination. 

Classification (3.4.2) 

During the classification sub-stage, the evidence is categorised and classified based 

on criteria established by the investigative team. This classification aids in structuring 

the subsequent analysis and ensures a systematic approach to identifying relevant 

patterns or anomalies. 

Analyse (3.5) 

The analysis stage involves conducting a detailed and in-depth investigation of the 

evidence to determine any violations of laws or regulations. Using appropriate forensic 

tools and methodologies, the analysis aims to reveal meaningful findings and establish 

a clear course of action for further legal proceedings. 

In summary, the offline investigation phase in IoT forensic investigations plays a 

crucial role in uncovering and analysing evidence that may have been collected from 

the crime scene or obtained after the live investigation. This phase involves meticulous 

identification, collection, preservation, examination, analysis, and documentation of 

digital evidence. By following a systematic and well-defined process, investigators can 

maximise the potential of the collected evidence to reveal the nature of the criminal 

offense committed and provide valuable insights for legal proceedings. 

During the identification stage, investigators must employ their expertise to identify 

potential evidence, including IoT devices, and conduct thorough searches to uncover 
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hidden data. The collection and acquisition stage requires the use of specialised 

forensic techniques to gather evidence and extract valuable data from IoT devices, 

ensuring the preservation of evidential integrity. 

Preservation is a critical aspect of the offline investigation phase, encompassing the 

proper seizure, transportation, and storage of collected evidence. Maintaining a robust 

chain of custody and employing hash functions helps safeguard the integrity of the 

evidence and ensures its admissibility in legal proceedings. 

The examination stage involves meticulous logging and classification of digital 

evidence, allowing for efficient management and subsequent analysis. By conducting 

a detailed analysis of the evidence, investigators can uncover patterns, anomalies, 

and indications of criminal activity, providing a solid foundation for legal action. 

By following a systematic and rigorous offline investigation process, forensic 

investigators can effectively navigate the complexities of IoT environments and 

leverage the available evidence to uncover the truth. The successful completion of this 

phase lays the groundwork for the subsequent stages of the investigation, ensuring 

that justice is served, and the integrity of the legal system is upheld. 

4.5 Presentation Phase (4.0) 
The presentation phase is the culmination of the IoT forensic investigation process, 

where the findings and results are presented in a comprehensive report. This final 

phase comprises several key stages that contribute to the overall effectiveness and 

impact of the investigation. This final phase has these stages: 

Documentation and Final Report (4.1) 

During the investigation process, it is crucial to have thorough documentation. This 

involves creating a detailed report that captures all the activities conducted throughout 

the various stages of the investigation. The report should offer a comprehensive 

overview of the methods utilised, evidence gathered, analysis carried out, and the final 

findings and conclusions. Thorough documentation is vital as it ensures transparency, 

promotes collaboration with other stakeholders, and acts as a reliable record for 

possible legal proceedings. 
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Conclusion (4.2) 

The conclusion stage of the offline investigation phase serves as the closing remarks 

of the investigation report. It involves summarising the key findings, evidence, and 

analysis conducted throughout the investigation process. This section provides a 

concise overview of the investigation, highlighting the main outcomes and conclusions 

drawn from the evidence collected and analysed. The conclusion should be written in 

clear and simple language, ensuring that it can be easily understood by both 

professionals and non-professionals involved in the case. 

Reconstruction (4.3) 

Reconstruction is a crucial stage of the presentation phase that focuses on piecing 

together the sequence of events that occurred during and after the crime. Through 

careful analysis of the collected evidence, including digital data, witness testimonies, 

and expert opinions, investigators aim to reconstruct the series of actions and events 

that led to the incident. This process provides a coherent narrative and helps establish 

a timeline of events, aiding in understanding the circumstances surrounding the crime. 

The reconstruction is typically documented in the investigation report, which details 

the investigative steps taken, the evidence reviewed, and the rationale behind the 

determined sequence of events. 

Dissemination (4.4) 

The dissemination stage involves making the investigative report available within the 

forensics community and relevant stakeholders. By sharing the findings, 

methodologies, and insights gained from the investigation, the wider forensic 

community can benefit and use this information to enhance their own practices and 

investigations. Dissemination may occur through various channels, such as 

conferences, workshops, research papers, or specialised forums dedicated to forensic 

science and IoT investigations. This stage contributes to the collective knowledge and 

expertise in the field, fostering continuous improvement and promoting best practices 

for future similar cases. 

The presentation phase serves as the final step in the IoT forensic investigation 

process, where the results and conclusions of the investigation are compiled, 

summarised, and shared. By effectively communicating the findings and sharing the 
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investigative process with the relevant stakeholders, the presentation phase ensures 

transparency, facilitates collaboration, and contributes to the advancement of forensic 

science in the context of IoT investigations. 

4.6 Automation of the Proposed Forensic Framework 
Part of the objectives of this research is the semi-automation of the IoT forensic 

processes. This study therefore attempts to apply Machine Learning techniques to 

semi-automate the Examination step within the proposed IoT forensic framework as 

shown in Figure 4.2. 

 

Figure 4.2 Steps Proposed for Automation 

This semi-automation of IoT forensic processes, is aimed at leveraging the capabilities 

of machine learning techniques to enhance the efficiency and effectiveness of 

analysing big IoT data. Recognising the growing complexity and scale of IoT 

environments, the study endeavours to harness the power of machine learning to 

semi-automate the Examination step within the proposed IoT forensic framework. 

Through the application of carefully selected machine learning algorithms – Isolation 

Forest and One Class Support Vector Machines (detailed in Section 3.13), this 

research seeks to advance the analysis of IoT big data, thereby augmenting the 

investigative capabilities of forensic practitioners. Specific attention is geared towards 

the tasks within the Examination step, such as data classification, pattern recognition, 

and anomaly detection, which lend themselves to semi-automation through machine 

learning as further explored in Section 6.6. Anticipated outcomes of this endeavour 

include notable improvements in analysis speed and accuracy, as well as the ability 

to discern complex patterns and anomalies in IoT data streams. While recognising the 
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challenges inherent in semi-automation, including the need for high-quality training 

data and algorithmic interpretability, the research aims to mitigate these obstacles 

through rigorous data preprocessing, model validation, and human oversight 

mechanisms as described in Sections 6.5 and 6.6 with a detailed illustration in Figure 

6.2. Ultimately, the proposed semi-automation endeavours to contribute to the 

advancement of IoT forensic methodologies, filling a critical gap in the literature and 

equipping forensic investigators with innovative techniques to address the evolving 

landscape of huge data encountered IoT digital forensics investigations. 

4.7 Conclusion 
The proposed theoretical IoT forensic framework presented in this chapter offers a 

comprehensive and structured approach to conducting investigations in the context of 

the IoT. By incorporating the insights gained from the different phases of the 

investigation process, the framework addresses the unique challenges posed by IoT 

environments, such as constant connectivity and vast data volumes.  

During the Preparation Phase, the framework emphasises the importance of thorough 

planning, notification, and authorisation to ensure a solid foundation for the 

investigation. The Live Investigation Phase recognises the need for proactive 

measures to preserve and analyse evidence in real-time, considering the dynamic and 

interconnected nature of IoT systems. The Offline Investigation Phase focuses on the 

meticulous collection, preservation, examination, and analysis of offline or collected 

IoT devices, ensuring the integrity of the investigation is maintained. 

The framework also highlights the significance of reconstruction, where the sequence 

of events is pieced together to provide a coherent narrative of the crime. This stage 

aids investigators in understanding the circumstances surrounding the incident and 

helps establish a timeline of events. Furthermore, the Presentation Phase facilitates 

the dissemination of investigation findings to the forensics community, promoting 

knowledge sharing, collaboration, and continuous improvement in the field. 

The framework acknowledges the need for strong security measures to secure crime 

scenes, prevent contamination, and maintain the chain of custody of evidence. It also 

emphasises the importance of detailed documentation throughout the investigation 

process to ensure transparency, traceability, and accountability. 
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While the proposed framework offers a structured and systematic approach, it 

recognises the need for flexibility and adaptation to suit the specific requirements of 

each investigation. Real-world implementation and case studies are essential to 

validate and refine the framework, considering the evolving nature of IoT technologies 

and associated forensic challenges. 

In conclusion, the proposed theoretical IoT forensic framework contributes to the field 

of digital forensics by providing guidance and structure for investigators in navigating 

the complexities of IoT investigations. By following this framework, investigators can 

enhance the effectiveness and efficiency of their investigations, aiding in the pursuit 

of justice and the prevention of IoT-related crimes in the ever-expanding world of 

connected devices.  
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CHAPTER 5. SIMULATION AND DATASET GENERATION 
This chapter provides a comprehensive overview of forensic analysis in smart homes 

as an IoT environment and explores the challenges and opportunities inherent in 

investigating smart home environments. 

The chapter begins by introducing the concept of smart homes and their increasing 

prevalence in modern society. It highlights the diverse range of interconnected devices 

and sensors found within these environments and emphasises the significance of 

forensic analysis in uncovering evidence related to crimes, anomalies, or security 

breaches. One of the key topics discussed in this chapter is the use of simulation for 

generating data in smart home forensic analysis. It delves into the benefits and 

limitations of simulation and introduces the OpenSHS simulator as a powerful tool for 

simulating smart home environments. By utilising OpenSHS, researchers can 

generate realistic data and scenarios to analyse various forensic aspects. The chapter 

explores different aspects of simulation, including the generation of sensor data and 

activity patterns. It discusses how simulation can aid in understanding the behaviour 

of smart home systems and assist in identifying deviations or anomalies that may 

indicate suspicious activities. 

Furthermore, the chapter outlines the preparatory steps for conducting forensic 

analysis in smart homes using simulation. It provides insights into setting up the 

OpenSHS simulator, configuring simulated devices, and designing realistic scenarios 

to mimic actual smart home environments. These steps ensure that the generated 

data aligns with real-world situations, enhancing the accuracy and reliability of forensic 

investigations. 

5.1 Introduction 
In recent years, researchers have shown a growing interest in analysing data obtained 

from IoT environments. Alongside the collection of this data, there has been a surge 

in research focused on developing intelligent machine learning algorithms and 

techniques to enhance service provision for smart home residents (Alshammari et al., 

2017). For instance, the creation of intelligent services requires effective 

methodologies to classify and recognise Activities of Daily Living (ADLs) as well as 

detect anomalies in ADLs. However, reliable datasets are necessary to test and 

validate the results of such research projects (Helal et al., 2011). The medical field 
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particularly recognises the importance of analysing ADLs due to their effectiveness in 

detecting patients' medical conditions (Tapia, Intille and Larson, 2004). Therefore, 

researchers need to construct datasets that accurately represent the data collected 

from smart home scenarios (Alshammari et al., 2017). 

However, building real smart homes to gather datasets from such scenarios is often 

costly and impractical for many projects, as noted by Helal et al. (2011), Armac and 

Retkowitz (2007), Lei et al. (2010), Synnott, Nugent and Jeffers (2015) and Mendez-

Vazquez, Helal and Cook (2009). These authors also highlight several issues 

researchers encounter when constructing real smart home scenarios, such as the 

challenge of determining optimal sensor placement, lack of flexibility, difficulty in 

finding suitable participants, and concerns regarding privacy and ethical implications 

posed by smart homes (Fu et al., 2011). 

Although smart home datasets do exist, as mentioned by Alemdar et al. (2013) and 

Cook et al. (2003), they often do not fully meet the requirements of the research being 

conducted. These datasets may not allow the incorporation of additional sensors or 

grant the researcher control over the generated scenarios. Moreover, creating real 

datasets can be a labour-intensive task, and if not executed carefully, it may lead to 

inaccurate outcomes.  

Building real smart home test beds presents challenges in preparing the datasets, as 

highlighted by Alshammari et al, (2017). One of these challenges is ensuring the 

continuous and robust capture of sensor data. Additionally, there is a need for a 

suitable documentation method to accurately record all the activities of the smart home 

inhabitants. 

5.2 Simulation Tools 
The challenges associated with constructing real smart homes to generate authentic 

datasets can be effectively addressed through the utilisation of dataset simulation 

tools. These tools offer a rapid means of generating datasets and provide a robust 

mechanism for capturing sensor data. By employing simulation tools, researchers can 

overcome the limitations and difficulties of gathering data from real smart home 

environments. 
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Simulation tools also prove beneficial in accurately annotating activities ADL by 

offering features like pausing or fast-forwarding the simulation process. When 

developing machine learning algorithms targeted at specific functionalities, 

researchers heavily rely on the availability of representative datasets. Typically, these 

datasets are divided into two groups: training and testing. The model creation process 

involves initialising parameters and training the model on a portion of the dataset. 

Subsequently, the model is tested on a different subset of the same dataset, and the 

results are evaluated. These results help identify whether modifications need to be 

made to the smart home setup (such as adding or removing smart devices) or if the 

generated scenarios should be adjusted. Simulation provides the flexibility to make 

such changes, which would be costly and unfeasible in a real smart home scenario 

(Alshammari et al., 2017).  

Figure 5.1 illustrates the degree to which a researcher can tweak and modify scenarios 

in both real and simulated smart home environments. It clearly demonstrates that such 

modifications are more easily accomplished in a simulated environment, as 

researchers can revisit and modify the smart home design as needed. 

As previously mentioned, it is evident that virtually simulated smart home offers much 

more flexibility and is less costly compared to a real smart home simulation (Synnott, 

Nugent and Jeffers, 2015). The simulated environments can be augmented by the 

advancement of computer graphics for example, the virtual reality technologies which 

can provide immersive and semi-realistic experiences that could imitate real-life 

experiences. 

By employing dataset simulation tools, researchers can mitigate the challenges posed 

by physical smart home construction and leverage the advantages of flexibility and 

adaptability offered by simulations. This enables them to refine their models and 

experiments more efficiently, leading to improved results and insights in the field of 

smart home research. 

5.3 Smart Home Simulation Tools 
Smart home simulators are developed to serve many different purposes, however, the 

main functions of these simulators are mostly to collect data or to visualise a smart 

home scenario (Renoux and Klügl, 2019). 
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Figure 5.1 The workflow of smart home test beds (a) Real; (b) Simulated 
(Alshammari et al., 2017)  

According to Synnott, Nugent and Jeffers (2015), there are two main approaches that 

categorise the smart home simulation tools;  

i) Model-based 
ii) Interactive based approaches. 

A third hybrid approach that combines both model-based and interactive simulation is 

proposed by Alshammari et al. (2017). This approach combines interactive data 

generation for short periods of time which are in turn aggregated into full days with 

model-based approach. 
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5.3.1 Model-based Approach 
The model-based approach employs pre-defined models of activities in the generation 

of synthetic data. The order of events, the probability with which they occur and the 

duration of time for activity is explicitly specified by this model. These events can be 

real time or not.  The main advantage of this approach is that it enables a researcher 

to generate huge amounts of datasets within a short time. The quality of the generated 

data is dependent majorly on the quality of the modelling technique used. However, a 

drawback of this approach is that it does not allow for capturing of sophisticated 

interactions or unforeseeable accidents which are quite usual in real smart homes 

(Mendez-Vazquez, Helal and Cook, 2009). It is also claimed by Renoux and Klügl 

(2019) that because model based simulators mostly use large granularities of event 

and activities, it may be difficult to develop (model) fine-grained events and activities. 

Finally, for the very reason that these approaches are in most cases scripted entirely, 

it means that if a researcher wishes to simulate many days of data, he/she will need 

each day scripted independently. These drawbacks make is unsuitable for this 

approach to be used in application areas like e-health which require data for several 

days/weeks so as to detect patterns that are long-term. 

Some of the simulators that use model-based approach are discussed below: 

PerSim 3D 

Developed by Lee et al. (2015), PerSim 3D is a smart home simulation tool whose aim 

is to generate datasets that are realistic of the inhabitants’ activities in complex 

scenarios. A Graphical User Interface (GUI) is provided by this tool to visualise 

inhabitants’ activities in a 3-Dimensional (3D) view. Users of the tool are able to define 

contexts of acceptable values per given set ranges that suit their projects. This tool, 

however, is not available freely for public use. 

SIMACT 

This tool is also a 3-Dimensional simulator designed to recognise activities of a smart 

home inhabitant. Developed by Bouchard et al. (2010), SIMACT contains scenarios 

that are pre-recorded and captured from experiments to aid in the generation of 

datasets to recognise ADLs. The tool is an open source and has 3D capabilities 

developed with Java Monkey Engine (JME). 
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DiaSim 

A tool created by Bruneau, Jouve and Consel (2012), DiaSim is developed using Java 

for ubiquitous systems of computing which can work with varied smart homes. The 

tool has an editor that enables a researcher to create different scenarios in virtual 

environments. 

Context-Aware Simulation System (CASS) 

The aim of the CASS tool is to generate context information and testing context 

awareness applications in virtually built smart homes. Developed by Park et al. (2007), 

CASS allows a researcher to create different contexts with set rules. An example of 

the rules that could be set is like turning the heating on once the temperatures go down 

to a particular range. Conflict of rules are able to be spotted by this tool and is able to 

determine the best position to place the sensors. The GUI provided by this tool offers 

a 2D visualisation of the virtual smart home.  

Context-Awareness Simulation Toolkit (CAST) 

CAST is a simulation tool developed by Kim et al. (2006), it is designed for testing 

context-awareness applications, it also offers visualisation of different contexts. There 

is generation of context-awareness information of ADLs of smart homes. This tool is 

not publicly available and is under proprietary technology. 

5.3.2 Interactive Approach 
Unlike the model-based approach, the interactive approach has the capability of 

capturing interactions of ADLs in an interesting and in finer details (Alshammari et al., 

2017). The approach employs almost an avatar which can be controlled by the 

researcher, simulated or human participants. The avatar (which has sensors and/or 

actuators) is able to move and interact with the simulated virtual smart home 

environment. The interactions could be carried out both in an active or passive way. 

An example of a passive interaction is where you install a pressure sensor on the floor 

such that when the avatar walks on it, the sensor detects it and emits a signal. In the 

case for active interactions, good examples could be an action to turn the lights on/off 

or sensors when a door is opened. A drawback for this approach, however, is that it 

takes a lot of time to generate adequate datasets, this is because all interactions must 

be captured in real time. As further claimed by Renoux and Klügl (2019), an interactive 
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approach is majorly restricted to in situations where data generation is only done for a 

short period of time. This means that the focus is only placed on specific activities. 

Some of the tools that use interactive approach are highlighted below: 

Intelligent Environment Simulation (IE Sim) 

IE Sim tool developed by Synnott et al. (2014), is used for generation of datasets by 

capturing both normal and abnormal ADLs of smart home inhabitants. It provides a 2D 

GUI for researchers to design their virtual smart home environments. The tool allows 

the researcher to add more sensors to the virtual smart home. An avatar is then used 

for simulation to capture the ADLs data. This tool is not publicly available for use. 

Residential environment and Ambient sensor simulator 

The authors Ariani et al. (2013) developed a smart home simulation tool which 

captures the inhabitant’s activities/interactions through ambient sensors. A researcher 

designs the virtual smart home using a map editor that is incorporated in the tool for 

2D outputs. Ambient sensors are then added to the virtual smart home by the 

researcher.  

UbiREAL 

This java based simulation tool designed by Nishikawa et al. (2006) enables the 

development of pervasive (IoT) applications in a 3D virtual smart home. A researcher 

is allowed to simulated smart devices’ communications and operations at the network 

level. 

V-PlaceSims  

This simulation tool by Lertlakkhanakul, Choi and Kim (2008) allows a researcher to 

design a smart home from a floor plan. Through a web interface, multiple users are 

able to interact with the virtual smart home environment. The focus of this tool is the 

improvement of the designs and management of the smart home. 

5.4 Selected Tool 
A survey conducted by Synnott, Nugent and Jeffers (2015) to analyse simulation tools 

that are in existence for the purposes of generating data in a smart home environment 

revealed that; because of the cost of the technology of the sensors, limitations for the 

availability of the smart home devices, considerations for time, and configurations of 
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the sensors for optimum results, smart home simulation tools serve a valuable role for 

smart home research. It is further identified by the authors that many of the available 

simulation tools emphasise more on the applications that are context-awareness 

capabilities rather than to generate representative datasets. Additionally, the available 

simulation tools lack a feature that provides support for multiple inhabitants. 

This research adopted the Open Smart Home Simulator (OpenSHS) simulation tool 

for the design of the virtual smart home and generation of datasets. OpenSHS was 

designed by Alshammari et al. (2017). 

5.4.1 Reasons for OpenSHS 
This simulation tool has been selected because it is an open-source application and 

therefore offers the flexibility for modification and scalability depending on the needs 

of the researcher. The tool also enables a researcher to simulate the Activities of Daily 

Living (ADLs) in a 3-dimensional virtual environment.  

OpenSHS incorporates a hybrid approach in generating datasets by employing both 

the model-based and interactive approaches. The tool enables quick and large 

generation of datasets through a mechanism offered by tool where recorded ADLs are 

replicated. The replications have fine-grained details as the activities are captured in 

real-time, similar to the interactive approaches. OpenSHS has the flexibility to add 

different activity labels that can be customised by the researcher and tailored to their 

needs. It also has a fast-forwarding feature which facilitates the simulation of long 

inactivity periods (Alshammari et al., 2018b). 

A summary of the five main advantages of OpenSHS are: 

i) Scalability: the tool can be easily extended to accommodate additional kinds of 

new sensors and smart devices through a provided smart devices library.  

ii) Accessibility: the tool is designed to work on any platform which makes it easier 

for researchers to access and use the tool on any operating system. 

iii) Interactivity: the tool offers a type of real-time style of how the interactions 

between the participants and the smart home are captured. This enables 

generation of datasets that are richer. 
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iv) Reproducibility: OpenSHS being an open-source tool, it allows researchers to 

reproduce datasets which can be used to validate activities of other research 

studies. 

v) Flexibility: the tool allows researchers to simulate different smart home 

scenarios that relate to their needs. The ability to modify and customise the 

tools adding or removing sensors and smart devices to meet the research 

desires. 

5.5 Data Acquisition in a Simulated Environment 
A variety of data exists, this raw data may be acquired directly or may be observed 

from different systems. In a methodological way, the aim of data science approaches 

is to be able to process and clean the raw data for preparation for further analysis. 

As noted earlier, it is not always feasible to acquire data from real world scenarios due 

to limited access to the systems that we may be interested in. It is due to the factor 

that simulation comes in handy in the creation of artificial systems that mimic the real-

world scenarios. As stated by Lorig and Timm (2020), in simulated systems, the 

execution and investigation can be done in a speed that could be slow or accelerated 

depending on what the researcher needs. The simulated systems pose no restrictions 

for access and can be easily restored to the original state without ant expenses 

encountered.  

In the real-world systems, the conventional acquisition of data process is dependent 

on the data being collected and exported for example from a data warehouse. The 

acquired data then undergoes a step-by-step methodology of processing, cleaning, 

exploration, and analysed in a quantitative way to derive qualitative insights which aid 

in the decision-making. 

In the contrary to the conventional way, the data acquisition approach in a simulated 

environment only targets some small data of a specific set as stated by Kuhl et al. 

(2006). This data may include the system/device information needed for the creation 

of the process model. The knowledge or experience of the participants to be 

incorporated in the creation of the simulation model. The simulation experiments are 

carried out to acquire the data that is desired. Renoux and Klügl (2019) states that this 
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data can be used for testing augmented living algorithms and/or for identifying patterns 

for learning rules on activities of inhabitants of smart homes. 

Figure 5.2 is an illustration of data acquisition in simulated and real-world scenarios. 

 

Figure 5.2 Conventional and simulated data acquisition process 

5.6 The Design of Open Smart Home Simulator (OpenSHS) 

There are three main phases involved in the design of the OpenSHS.  

They are: 

i) Design Phase 

ii) Simulation Phase 

iii) Aggregation Phase 

These phases are described as follows: 

i) Design Phase 

A researcher designs a virtual smart home environment by importing smart devices, 

assigns labels to the activities, and designs the contexts.  
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The floor design is done based on the needs of the researcher in relation to the 

experiments being carried out. Smart devices and sensors are then imported into the 

smart home from a library provided by OpenSHS simulator. The devices and sensors 

provided by the tool are: 

• Light controllers 

• Door sensors 

• Appliances (Television, Fridge, etc.) 

• Sensor Devices (floor sensors on carpets, couch and/or bed) 

• Lock Devices 

Labels are attached to the activities, for example, these labels could be; eat, sleep, 

work, personal or other, this depends entirely on the requirements of the researcher. 

The final part of the design phase is the design of the contexts to be simulated. The 

context in this case would be in relation to the time frames that a researcher wants to 

use in the simulation; these time frames would be like morning, afternoon, or evening. 

The initial states of the devices are specified for every context. 

This is illustrated in Figure 5.3: 

 

Figure 5.3 The Design Phase of OpenSHS 
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ii) Simulation Phase 

Contexts 

The Open SHS has a total of four contexts: a participant has two contexts in the day 

(morning and evening). and the other two contexts are in the week (weekday and 

weekend) for simulation purposes.  

The OpenSHS module is started, and the researcher specifies which context (morning, 

afternoon, or evening) they wish to simulate. The tool has a default start time; however, 

this can be changed according to the needs. The default state of the sensors and the 

3D positioning of the avatar is set. The participants then simulate the ADLs in the 

context set by themselves. The outputs of the sensors and different devices’ states 

during the time of the simulation are captured and deposited in a temporary dataset 

for storage. The sampling rate is set to one second by default but can be reconfigured 

to desired rate. At the completion of a simulation by a participant, the application 

control is sent back to the main module to start the simulation of another context. 

The purpose of this simulation phase is for capturing granularity of the realistic 

interactions of the participants.  

 

 

The flow of the simulation phase is as shown in Figure 5.4: 

 

Figure 5.4 The Simulation Phase of OpenSHS 
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The process of capturing these fine-grained activities in a prolonged set of time may 

be difficult, to solve this, OpenSHS offers a solution to solve this problem by employing 

a mechanism named fast-forwarding. This allows for a participant to have control of 

the activities in relation to how long the activity should last (time span). In this case, 

say a participant wanted to watch television for a period of 30 minutes. If the participant 

did not want to go about the whole activity in real-time, he can therefore set a time 

span of 30 minutes. The tool then copies and repeats the sensors and devices’ existing 

states in the specified time span.  

Figure 5.5 illustrates this: 

 

Figure 5.5 Fast Forwarding for an Activity in OpenSHS 

iii) Aggregation Phase 

At the end of the simulation phase, the generated events (sample activities for every 

context) are aggregated to produce the final dataset. As shown in Figure 5.6; the 

purpose for aggregation is for the production/generation of datasets that are large for 

a short time of simulation. An algorithm for replication of the simulation phase output 

is developed by drawing appropriate samples for every designated context. 

As it is not feasible for a participant to sit down the whole day simulating their ADLs, 

OpenSHS has implemented an Events Replication mechanism. In this case, the 

participant only simulates real time sample activities in a given context and these 

events are replicated to produce rich datasets. 
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Execution of Experiments 

The designed smart home in the OpenSHS consists of a bedroom, kitchen, bathroom, 

living room and an office.  

The smart home has been fitted with binary sensors as seen in Table 5.1 on page 163. 

These sensors are in the state of either ON (1) or OFF (0) and are divided into two 

groups of either being passive or active.  The passive sensors do not need a 

participant to explicitly interact with them. However, they respond to the position and/or 

the movement of the participant, for example, a floor sensor is activated when the 

participant steps on it.  

The active sensors are the ones that change their state when the participant explicitly 

interacts with them. These kinds of interactions are for example turning on the TV, 

switching the light on, or opening the door.  

The activity labels included in the datasets are sleep, eat, personal, work, leisure, and 

other. 

This is as shown in Figure 5.7: 

Figure 5.6 Aggregation Phase of OpenSHS 
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Figure 5.7 Aerial View of the OpenSHS 

The majority of the existing smart devices’ state is in binary by nature (Alshammari et 

al., 2017), this consists of things that can be opened and closed or rather anything 

which has the capability of detecting the presence or absence of an object. It is noted 

that the binary simplification of the device state cannot fully cover all the states that 

smart devices can have, however, to aid the usefulness of anomaly detection, this 

simplicity serves the purpose. An example can be said of the state of a television; it 

could be ON playing a particular channel station, it could as well be on a sleep mode 

to preserve power, or it could actually be turned OFF completely. All these states help 

in detecting the daily patterns of an inhabitant of a smart home. 

In the event that there is a need for implementing a middleware to add a service for 

detecting anomaly, the threshold can be set manually or by a technical to set the 

threshold on every set of devices. The threshold set turns the output of the sensors 

into a binary form. 
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5.7 Anomaly Activities for Forensic Analysis 
The definition of anomaly, in some context, can be deemed clear and can be easily 

quantified. The easier example is the tracking of a patient’s heart rate where the 

heartbeat counts can either be quantified as normal or abnormal. However, in the 

context of a smart home, it is difficult to define and quantify the anomaly behaviour of 

the inhabitant. In trying to define and quantify these behaviours may be tedious and 

prove subjective because inhabitants vary from each other (Alshammari et al., 2018b). 

5.8 What is considered an Anomaly, Attack or Error? 
The author, Oriwoh (2015) has defined and distinguished these three aspects. The 

author defines an anomaly in a smart home as an occurrence which does not follow 

the expected or an already-known outcome or pattern. The author further describes 

an anomaly as an element or a set of elements within a group of similar or related 

elements that does not conform to the normal pattern of occurrence. In a setting of a 

smart home which only has one occupant, an anomaly can arise when two people are 

present when there should only be one person at that particular time. 

Typical examples given for a smart home anomaly are: 

- A persistent network probing 

- A member of the smart home occupants coming back home in unusual hours 

An attack is defined by Oriwoh (2015) as an intentional (caused on purpose) malicious 

anomaly. A good example of this is the occurrence of persistence network probing that 

denies the Smart Home occupants’ access to the network, i.e Denial of Service attack. 

Consequently, if a sensor detects a broken water pipe caused by freezing water, then 

this can be defined as an anomaly, however, if there is a physical destruction by an 

intruder, then that becomes an attack. 

An error is defined as a failure or fault. 

Other than the broad classification of anomalies into errors and attacks, Kumar et al. 

(1994) classifies anomalies into four classes: 

• An Intrusion that is not an Anomaly i.e. False Negatives 

• Non-Intrusion that is an Anomaly i.e. False Positives 
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• Non-Intrusion that is not an Anomaly i.e. True Negatives 

• Intrusion that is an Anomaly i.e. True Positives 

It is challenging to differential between attacks and errors in a smart home setup 

because the nature of humans is so unpredictable. The change of human behaviour 

may have a huge impact on how the Machine Learning algorithms learn the patterns. 

To therefore minimise the wastage of resources, Smart Homes’ anomaly detection 

systems should be developed in a manner that minimises the responses triggered by 

False Positives. In the same breath, it should be noted that these anomaly detection 

systems should not be designed/tweaked extremely in such a way that in their attempt 

to reduce the False Positives, they allow for True Positives to pass through in the end. 

5.9 Hypothetical Case Scenarios for Forensic Analysis 
In relation to forensic scenarios, however, there are some activities that reveal 

anomalies that may lead to a forensic investigation in a smart home. 

The focus is placed on the data that is generated through motion and/or sensors that 

are placed within the smart home setup. 

This data therefore can be from 

a) Devices 

As there are a variety of smart home devices that can be implemented, it might prove 

difficult to extract meaningful data for forensic purposes. To this end, it is imperative 

that the forensic investigators exploit the configuration information of the environment 

(smart home) for the purposes of identifying the devices in place. This configuration 

information could give a clue on the name of the smart home, the setup of the rooms 

and the devices deployed in those rooms. This clue will enable the investigator to 

choose their points of target in relation to data and devices (Kim et al., 2020). 

As this research involves simulation, the simulated devices are already known, and 

their deployment is also explicitly done. Therefore, the forensic data sought will not 

necessarily be that from the devices. However, identification of devices deployed 

within a smart home setting is important in a digital forensic case as it helps the 

investigation.  
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b) Motion/Movement 

The motion/movement data can be used in determining an invasion/intrusion into the 

smart home. The timestamps for these intrusion events can help distinguish 

allegations of theft and determine whether false claims were made by the smart 

homeowner. 

The sensors placed on doors and carpets will reveal their states (open/closed) 

whenever they get attached to by other objects (in this case, intruders). 

In the OpenSHS, the sensor data will be stored with all the activities that happened in 

the form of the sensor acceleration (active/inactive), sensor status (open/closed) 

A scenario is envisioned whereby the sensor data is able to shed light on claims on 

whether a person (participant/intruder) of the smart home was indeed at a specific 

place at that very specific time. This data will be obtained from the sensors that are 

deployed within the OpenSHS simulator. 

The combination of motion and sensor data can easily determine whether someone 

has entered or left the smart home.  

c) Other activities 

These other activities include those that appear abnormal to the daily happenings of 

that smart home. 

These are as below: 

• Main door (front) open; in case of a burglary investigation, the forensic 

investigators can establish whether the inhabitants left the door open, or the 

robbers hacked the door system to gain access. 

• When the fridge door is left open; leading to food being spoilt. 

• When the television is left on. 

• When the lights are left on (bathroom and bedroom). 

• When the wardrobe doors are left open. 

• When the oven is left on for long time. 
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5.10 Normal Day to Day Activities 
These are the daily activities happening in the smart home as captured by the 

OpenSHS simulator. 

The smart homeowner has a daily routine for the seven days of the week (Monday to 

Sunday). He goes to work on Monday to Friday (he leaves the house at around 08:30 

in the morning and returns at around 17:30 in the evening) and is in the house on 

weekends (Saturday and Sunday). The smart homeowner has a domestic worker who 

comes in the house Monday to Friday. The domestic worker arrives when the smart 

homeowner leaves for work and leaves when the owner arrives from work. 

On a normal workday, the smart homeowner would start the day by waking up at 

around 07:00 in the morning. The following are the activities that he does before he 

leaves for work: 

a) Get up from bed 

b) Turn on the bedroom light (turn off on exit) 

c) Open the bedroom door (close when exiting) 

d) Open the bathroom door (close after using bathroom) 

e) Turn on the bathroom light (turn off after use) 

f) Use the bathroom (toilet and shower) 

g) Back to the bedroom room after shower 

h) Open the wardrobes to choose clothes (close it afterwards) 

i) Head to the kitchen area 

j) May use any kitchen facilities to prepare his breakfast 

k) May head to the living room to have his breakfast there (may also just have it 

in the kitchen) 

l) While in the living room having breakfast, he may watch the television 

m) The smart homeowner leaves the house, and the domestic worker enters the 

house 
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Once in the smart home (this is normally between 08:30 and 17:30), the domestic 

worker is expected to do the normal house chores, these activities can be the 

following: 

a) Tidy up all the rooms 

b) Use the kitchen to cook (fridge and oven) 

c) Arrange clothes in the wardrobes 

On coming back from work, the homeowner relieves the domestic worker. The owner 

embarks on the normal evening activities namely: 

a) Inspects the house to ensure the domestic worker has done the daily house 

chores 

b) Sit in the living room watching TV 

c) Have dinner (go to the kitchen, may open fridge to take food and use oven) 

d) May use home office 

e) Go to bathroom for shower  

f) Go to bedroom for sleep 

On weekends, the smart homeowner spends the time in house and may use his home 

office to work. The owner may also leave the house for his own social activities. The 

domestic worker does not come on weekends. 

5.11 Proposed Forensic Case Scenarios 
From the daily patterns created by the normal activities within the smart home, 

abnormal activities may arise that will require a forensic audit. 

These abnormal activities will be those that deviate from the normal daily activities 

captured. These activities may include: 

a) Smart homeowner not waking up at all on a workday (died in bed?) 

b) The owner wakes up, goes to the bathroom but never comes out (fell/fainted in 

the bathroom?) 

c) The owner goes to work but never returns home 
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d) The owner accuses the domestic worker of stealing his valuables in the home 

office or bedroom 

e) The domestic worker gets in the house and just watches television the whole 

day 

f) The domestic worker is accused of misusing the privilege, (ie, going to sleep in 

the owners bed the whole day, turning on all the lights and not turning them off 

thereby wasting electricity) 

g) The domestic worker leaving the house and returning a few hours before the 

owner returns 

All these claims constitute a forensic case which can be investigated to prove or 

disprove the claims. 

5.12 Forensic Preparations for Smart Home Dataset Generation 
By use of data aggregation mechanisms, logs and data which are potentially useful 

for the forensic investigation can be collected.  

In this preparation stage, the following should be identified. 

• All the events or activities making up the ADLs. 

• All core activities and events of the smart home inhabitant. 

• All the activities and events of the devices within the smart home. 

• Location of storage for logs (establish whether they are local or in the cloud). 

An attack on a smart home may not necessarily occur from a single source and may 

be target to many different areas within the smart home. Adequate preparation is a 

key strategy for first responders to address these types of attacks and to ensure that 

forensic investigators are able to collect as much relevant data/evidence as possible 

(Oriwoh, 2015). 

In a real time, live investigation of a forensic case, information gathering is commenced 

immediately after the investigators receive an alert. As is the case, more information 

should be sought from victims (smart home inhabitants) regarding what might have 

happened or/and what might have triggered the event. 
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Once the nature of the investigation has been established, the scope of the 

investigation must now be established so that the investigation is narrowed down to 

the scope. The scope is determined by identifying the physical and the logical 

perimeters of the investigation. The identification of the scope helps in determining if 

the incident that occurred involved physical devices located within the smart home or 

if the devices were connected to externally. External parties may also be established 

in the scope; this especially in the event that external family members are involved 

and may therefore need to be contacted as far as the investigation is concerned. A 

perfect scenario is depicted as for example, a smart home inhabitant received an order 

of groceries from his/her supplier without his/her knowledge. The inhabitant may then 

contact the supplier denying the order only to find out that one of their friends or 

external family member ordered the groceries without informing them. It is therefore 

important that all the aspects (humans and devices) are explicitly identified. The 

identified scope also helps understand which laws are applied in the investigation 

(international or local). 

The following should be identified: 

• The type and number of incidents involved; establish their relationship and how 

they overlap between themselves. 

• Any locations where aggregation and storage of the smart home data logs is 

done. 

• The affected devices. 

• The affected areas of the smart home (Kitchen, Living Room, Bathroom, etc). 

• Identify the devices that can be disconnected (analysis can be done offsite if 

possible) and those that need to be analysed on site. 

• For each affected device, distinguish the physical and logical evidence held on 

it. 

• Identify the volatile evidence so that it is acquired first and soonest as possible 

during the investigation process. 

• Consideration of the law to be applied, this should include the ethical and moral 

boundaries in place. 
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5.12.1 Dataset Generation 
The OpenSHS was used in the acquisition of the IoT forensic dataset based on the 

described scenarios in Section 5.11 following the IoT forensic process developed in 

IoT Forensic Framework in Figure 4.1. 

The dataset from the sensors is in binary form. The reasons for the binary form was 

given by Alshammari et al. (2017) as: 

• Many sensors are designed with binary states. This means that it is either ON 

or OFF. For this thesis experiment, a sensor in standby mode is considered 

OFF. 

• Binary state makes it easier for sensors to be implemented in available 

middleware. 

• Machine Learning encoders work closely with binary form. 

The OpenSHS has 29 sensors which form part of the part of the headers of dataset. 

The sensors are placed on carpets, doors, lights, bed, couch, fridge, oven, tv, 

wardrobes, among others as seen in Table 5.1. 

In addition to these sensors, the dataset also contains the activity column that 

describes what activity (eat, sleep, work, personal, other, or anomaly) being simulated. 

Another column included in the dataset is the timestamps. This captures the time the 

sensor was activated and aggregated accordingly during the aggregation phase of the 

simulation process. 
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 Name Type Description State 
1 bathroomCarp Binary Bathroom carpet sensor Passive 

2 bathroomDoor Binary Bathroom door sensor Active 

3 bathroomDoorLock Binary Bathroom door lock sensor Active 

4 bathroomLight Binary Bathroom ceiling light Active  

5 bed Binary Bed contact sensor Passive  

6 bedTableLamp Binary Bedroom table lamp Active  

7 bedroomCarp Binary Bedroom carpet sensor Passive  

8 bedroomDoor Binary Bedroom door sensor Active 

9 bedroomDoorLock Binary Bedroom door lock sensor Active  

10 bedroomLight Binary Bedroom ceiling light Active  

11 couch Binary Living room couch Passive  

12 fridge Binary Kitchen fridge Active  

13 hallwayLight Binary Hallway ceiling light Active  

14 kitchenCarp Binary Kitchen carpet sensor Passive  

15 kitchenDoor Binary Kitchen door sensor Active  

16 kitchenDoorLock Binary Kitchen door lock sensor Active  

17 kitchenLight Binary Kitchen ceiling light Active  

18 livingCarp Binary Living room carpet sensor Passive 

19 livingLight Binary Living room ceiling light Active  

20 mainDoor Binary Main door sensor Active  

21 mainDoorLock Binary Main door lock sensor Active  

22 office Binary Office room desk sensor Passive  

23 officeCarp Binary Office room carpet sensor Passive  

24 officeDoor Binary Office door sensor Active  

25 officeDoorLock Binary Office door lock sensor Active  

26 officeLight Binary Office ceiling light Active  

27 oven Binary Kitchen oven sensor Active  

28 tv Binary Living room TV sensor Active  

29 wardrobe Binary Bedroom wardrobe sensor Active 

Table 5.1 OpenSHS Smart Home Sensors  (Alshammari et al., 2017)
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The OpenSHS aggregation phase utilises an aggregation algorithm (embedded within 

the simulator) to merge the diverse scenarios produced by different participants into a 

single, unified dataset. This consolidated dataset is then commonly presented in a 

format compatible with Comma-Separated Values (CSV) files. An example of such a 

dataset is illustrated in Table 5.2. 

wardrobe officeLight kitchenDoorLock fridge bedroomDoor bathroomCarp … Activity timestamp 

1 1 0 1 0 0 … sleep 2021-03-01 07_55_16 

1 0 1 1 0 0 … leisure 2021-03-01 07_55_17 
0 1 1 1 1 1 … other 2021-03-01 07_55_18 
1 1 0 0 0 0 … personal 2021-03-01 07_55_19 
0 0 1 0 0 1 … anomaly 2021-03-01 07_55_20 
1 1 0 1 0 0 … eat 2021-03-01 07_55_21 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

Table 5.2 A sample of the full generated dataset 

The full generated dataset is published on GitHub repository (Lutta, 2023). 

5.13 Conclusion 
Setting up a fully-fledged real smart home for research purposes is costly as 

highlighted in the literature. The existence of smart home simulators like OpenSHS 

aid researchers in the field of IoT to easily come up with different scenarios that utilise 

these simulators to generate highly elaborate and representative datasets. 

In conclusion, this chapter has provided an in-depth exploration of forensic analysis in 

smart homes, focusing on the integration of simulation techniques and the utilisation 

of the OpenSHS simulator. Through a comprehensive review of smart home 

simulation tools, the chapter highlighted the reasons for selecting OpenSHS as the 

preferred simulator for data generation and forensic analysis in smart home 

environments. 

The methodology for data acquisition in simulated environments was meticulously 

outlined, emphasising the significance of generating realistic datasets for effective 

forensic investigations. The chapter delved into the features and capabilities of 

OpenSHS, showcasing its ability to simulate various smart home devices, sensor 

readings, and user activities. This simulator proved instrumental in creating accurate 

and reliable datasets that closely resemble real-world smart home scenarios. 

The chapter further elucidated the process of creating hypothetical case scenarios 

within the OpenSHS simulator and generating corresponding datasets. These 
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datasets were carefully crafted to encompass a wide range of activities, interactions, 

and events that investigators may encounter in real-world forensic analysis. 

It is worth noting that the generated dataset was made publicly available on the GitHub 

repository, fostering collaboration and knowledge sharing within the forensic analysis 

community. This open approach promotes the advancement of smart home forensics 

and encourages researchers and practitioners to explore, evaluate, and refine forensic 

techniques. 

In summary, this chapter has extensively examined the various aspects of forensic 

analysis in smart homes, with a particular emphasis on the integration of simulation 

techniques using the OpenSHS simulator. By thoroughly reviewing smart home 

simulation tools, detailing the methodology for data acquisition, highlighting anomaly 

activities, creating hypothetical case scenarios, and generating the datasets, this 

chapter has significantly contributed to the field of digital forensics. The insights 

provided through the simulations will help researchers in IoT forensics to tackle the 

complexities of smart home environments and enhance their ability to develop 

solutions that can investigate crimes, anomalies, and security breaches effectively. 
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CHAPTER 6. THE APPLICATION OF HI-SDR IN ANOMALY 

DETECTION 
The previous chapter (CHAPTER 5) has enabled the generation of datasets through 

simulation. With the datasets, this chapter 6 explores the application of Hash Indexed 

Sparse Distributed Representation (HI-SDR) in anomaly detection within the context 

of IoT environments, particularly with the generated smart homes dataset. It delves 

into the concept of Sparse Distributed Representation (SDR) as a fundamental data 

encoding method in Hierarchical Temporal Memory (HTM) systems. The chapter 

introduces the HI-SDR encoder, its properties, capabilities, and the role it plays in 

representing multi-dimensional input data for anomaly detection. The chapter 

concludes by presenting the practical application of anomaly detection in IoT forensics, 

the legal implications, and the limitations that may exist for the forensic process. 

6.1 Introduction 
Sparse Distributed Representation (SDR) has been proposed by the Cortical Learning 

Algorithms (CLAs) to encode input data, which serves as the fundamental data 

structure in the Hierarchical Temporal Memory (HTM) theory (Ahmad and Hawkins, 

2015; Alshammari, 2018b). 

The encoder's task is to convert the input data, regardless of whether it is numerical, 

categorical, single-column, or multi-columnar, into a format that enables the HTM 

system to learn and recognise patterns. The quality of the encoders is vital for the 

overall performance of the entire system, as they function like our senses, translating 

visual, auditory, or tactile information into representations that our brains can process. 

This research leverages the High Indexed SDR encoder developed by Alshammari et 

al. (2018a) to preprocess (transform) the simulated IoT forensic dataset generated 

from the OpenSHS simulator (see Section 5.12.1.1) before being analysed by the 

machine learning algorithms chosen in subsection  3.13 of this thesis. 

6.2 Sparse Distributed Representation 
An SDR serves as the fundamental information representation and a key component 

in every HTM system. This section provides a mathematical formalisation of SDRs 

and outlines the fundamental operations that can be applied to them. 
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The notations and definitions presented in this section are derived from the work of 

Ahmad and Hawkins (2015).  

The following compilation comprises a collection of definitions and mathematical 

notations that will be utilised consistently throughout this research: 

SDR: is a binary array with primarily zeros and a small proportion of ones (active bits). 

Typically, the active bits constitute around 2% of the array. The total number of bits in 

an SDR is denoted as 'n'. An SDR 'x' consists of an n-length array of binary 

components 'bi', where 'i' represents the index of each component in the array. For 

instance, x = [b0, b1, ……, bn-1]. The total number of components in 'x' with a value of 

1 is indicated by 'wx'. The variable 'w' is chosen as an abbreviation for ‘width’. The 

components with a value of 1 are referred to as active bits since they represent firing 

or active neurons. An example of an SDR 'x' with n = 10 and w = 3 is shown below: 

X = [0 0 1 1 1 0 0 0 0 0] 

It is not a must for the set of active bits w to be consecutive. 

6.2.1 SDR Properties 
The work of Alshammari (2018b) has elaborated on the properties of SDRs. There is 

an optimal value where the chance of having two identical SDRs is at its global 

minimum. The author shows that SDRs have good noise robustness which can be 

exploited to achieve several interesting capabilities. Another property of an SDR is 

that it can be recognised and identified correctly from a group of SDRs. 

A collection of SDRs can be stored and retrieved with a high level of confidence. This 

further demonstrates the noise tolerance of SDRs when the parameters are 

appropriately configured within a reasonable range. Another crucial property of SDRs, 

known as the 'union property' in HTM literature, allows multiple SDRs to be combined 

into a single representation by performing a logical OR operation on all the SDRs. Due 

to the sparsity and inherent properties of SDRs, it is possible to store these SDRs 

without corruption as long as there are a sufficient number of bits available. 

(Alshammari, 2018a). 

Operations on SDRs are exclusively performed on the active bits (w), resulting in a 

time complexity of 0(w). The total size of the SDR (n) does not affect these 
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computations. Due to the sparsity of SDRs, the number of active bits (w) is typically 

much smaller than the total number of bits (n). 

6.2.2 SDR Encoders 
According to Purdy (2016) a well-functioning HTM system must possess certain 

properties to produce good results. These properties are as follows: 

• Deterministic: When given the same input, the resulting Sparse Distributed 

Representation (SDR) should always be the same upon repeated processing. 

• Fixed in dimensions: The SDRs generated by the system should have a 

consistent number of total bits, maintaining a fixed dimensionality throughout. 

• Fixed in sparsity: The SDRs should maintain a fixed number of active (1) bits, 

ensuring a consistent level of sparsity in the representations. 

• Capturing semantics: Similar inputs should have an overlapping set of active 

bits in their respective SDRs, enabling the system to capture and represent the 

semantic similarities between inputs. 

A deterministic encoder is crucial for an effective encoder within an HTM system. 

Without determinism, the system would struggle to recognise and learn the sequence 

of SDRs when the representations of original values change over time. 

Preserving the dimensionality of the encoder's output is essential throughout the 

learning process. Many operations in the Spatial Pooler (SP) and Temporal Memory 

(TM) rely on bit-wise comparisons between successive SDRs. If the dimensionality of 

the SDRs changes over time, it can lead to incorrect calculations by the HTM system's 

components. Thus, maintaining a fixed number of bits is important. 

Similarly, the sparsity of the SDRs, which refers to the ratio of active bits to the total 

number of bits, should also remain fixed. The choice of sparsity depends on the 

specific application but typically ranges from 1% to 35%, as suggested by Purdy 

(2016). This fixed sparsity ensures consistent calculations during the HTM system's 

operations. 

Defining semantic similarity between inputs is a challenging task and highly dependent 

on the data type. For example, in the case of natural numbers, semantic similarity can 

be easily defined within a known value space. By specifying the minimum and 

maximum values allowed in the dataset, one can determine the semantic similarity 
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between two natural numbers. For instance, if the value space ranges from 1 to 100, 

the numbers 1 and 2 would be considered semantically similar, while 1 and 100 would 

be the most dissimilar. 

NuPIC offers a range of built-in encoders designed to handle different data types, 

which can be broadly categorised into numerical data (encodes numerical data types) 

and categorical data (encodes categorical data types). 

6.3 The Use of SDR Encoders for IoT Forensics Datasets 
To handle multiple dimensions or columns of input data in a Machine Learning model, 

the recommended approach is to encode each dimension separately using the 

previously mentioned encoding techniques. These individual encoded representations 

can then be concatenated into a single Sparse Distributed Representation (SDR) that 

is sequentially fed into the Machine Learning model. 

However, working with a large number of dimensions can lead to a challenge known 

as "the curse of dimensionality," as described by Bellman and Dreyfus (2015). This 

issue arises when the learning model struggles to effectively learn from high-

dimensional data. Increasing the number of training samples can be a potential 

solution, but it can be costly and impractical depending on the specific application. 

A more practical approach is to reduce the number of dimensions by employing 

techniques such as Principal Component Analysis (PCA) or feature selection. PCA 

helps in identifying the most important components of the data, while feature selection 

techniques assign more weight to relevant features or eliminate irrelevant ones 

(columns) that have minimal impact on the Machine Learning model's accuracy. 

Referring back to CHAPTER 5 in Table 5.1, the dataset has twenty-nine binary 

sensors fed into the Machine Learning model, the question arises: how can we 

represent or encode this multi-dimensional input? In Machine Learning literature, the 

typical solution is to concatenate the outputs of several encoders into a single SDR. 

Scalar encoders can be utilised to represent the binary state of each sensor, along 

with categorical encoders if applicable. It is crucial to ensure that these encoders 

possess the properties mentioned earlier in Section 6.2.1 for optimal performance. 
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By using appropriate encoders and addressing the dimensionality challenge, it 

becomes possible to effectively encode and represent multi-dimensional input data 

within a Machine Learning model. 

6.4 The chosen HI-SDR Encoder 
This research adopted the Hash-Indexed Sparse Distributed Representation (HI-SDR) 

encoder developed by Alshammari (2018c). HI-SDR is designed to meet the 

necessary criteria for effective encoders, as outlined in Section 6.2.1. HI-SDR encoder 

exhibits determinism, meaning that if it receives two identical inputs, it will generate 

the same SDR for both inputs. Additionally, the sparsity level and the number of bits 

used by the encoder are fixed, satisfying the first three prerequisites for reliable 

encoders. However, the aspect that proves challenging for the encoders discussed in 

the prior section is the fourth property, which involves capturing semantics. 

In order to fulfil the fourth property requirement, it was necessary to devise a method 

that ensured both unique encoding for each record and preserved the determinism 

and sparsity of the resulting SDR. The HI-SDR presents a solution by employing a 

hash function, which takes the input records and generates a digest (Alshammari, 

2018c). The author utilised the generated digest to assign unique positions to w-bits 

within the resulting SDR. Whenever the same record is encountered again, the hash 

function will produce an identical digest, thus maintaining determinism and enabling 

the creation of distinct SDRs for every input configuration. 

At a high level, the functioning of the HI-SDR encoder is illustrated in Figure 6.1. The 

encoder operates by taking a complete dataset record, such as [0, 1, 0, 0, ..., 0], and 

passing it through a hashing function to generate a hash digest. This digest is then 

utilised to determine the placement of active bits within the SDR. The process involves 

extracting each digit from the digest and utilising it as the index for assigning the 

location of active bits, resulting in an outcome similar to what is depicted in the Figure 

6.1. The HI-SDR encoder incorporates several parameters, which are extensively 

elaborated upon in the next section. 

The author (Alshammari, 2018b) conducted tests and experiments involving various 

hashing functions. Two key requirements considered were the speed of the function 

and the randomness of the resulting hash digest. To satisfy the speed requirement, 

cryptographic hashing functions were excluded, as they are intentionally designed to 
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be slow for enhanced security. Instead, the author explored several non-cryptographic 

hashing functions, including the Python implementations of CRC32 and Adler-32. After 

thorough experimentation, the author ultimately selected the xxHash function by Collet 

(2015) for use in their study. This choice was driven by its superior speed and the 

desirable level of randomness exhibited by the generated digests. 

 

Figure 6.1 The HI-SDR encoder (Alshammari, 2018c) 

The distinctive aspect of the Hi-SDR encoder is its ability to assign a unique 

representation to each activity (i.e., sleep, personal, eat, work). By employing varied 

placements of active bits throughout the input space, the encoder facilitates faster 

learning and enables clearer differentiation of inputs by the Machine Learning Model, 

surpassing the performance of standard encoders. This characteristic becomes 

evident when observing the encoder's operation (Alshammari, 2018b). 

The HI-SDR encoder possesses the capability to provide a unique representation for 

any input, regardless of its density. Whether a record contains no active bits (e.g., [0, 

0, 0, 0, ..., 0]) or is fully dense (e.g., [1, 1, 1, 1, ..., 1]), both will receive a distinct Sparse 

Distributed Representation (SDR) with consistent sparsity and a fixed number of active 

w-bits. This characteristic allows the encoder to meet the necessary properties of an 

effective encoder. It becomes particularly valuable when the encoder needs to operate 

in an unsupervised manner with an arbitrary number of sensors. 

To assess the capabilities of the HI-SDR encoder, additional experiments were 

conducted by the author (Alshammari, 2018b), utilising the same set of their datasets. 
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The HI-SDR encoder achieved a score of 76.59%. The parameters for the HI-SDR 

encoder were set as follows: n = 600, w = 3, and p = 8. These experiments provided 

further insight into the potential effectiveness of the HI-SDR encoder. The author also 

noticed that the SDRs are more active because of the number of partitions (p). The 

details of the parameters of the HI-SDR and the algorithm are explained in Section 7.2 

of this thesis. 

6.5 The Proposed HI-SDR Approach 
The innovative approach outlined in this context involves the utilisation of the HI-SDR 

as a transformative mechanism for datasets, enhancing their representations to make 

them more understood by machine learning models. By adopting the HI-SDR 

technique, the dataset undergoes a profound reconfiguration that enhances its 

suitability for comprehension and utilisation by various machine learning algorithms. 

This approach not only improves general data understanding but also plays a pivotal 

role in anomaly detection, a critical aspect of modern data analysis. 

SDR, at the core of this methodology, holds remarkable advantages that ripple across 

various applications, as exemplified in Section 6.3, particularly within the domain of 

smart home datasets. SDR encoding offers a unique way of representing data, 

wherein information is conveyed through patterns of active and inactive elements. This 

approach stands in contrast to conventional methods that often involve dense 

representations where each element carries independent meaning. 

One of the primary merits of SDR is its inherent robustness against noise and 

distortions. Due to its distributed nature, minor corruptions in the data have limited 

impact, making SDR particularly adept at handling real-world data that might suffer 

from imperfections during collection or transmission. This noise resilience is of 

paramount importance in the context of smart home datasets, where sensor readings 

or inputs can occasionally be erroneous due to environmental factors or technical 

glitches, which can be indicative of anomalies. 

Furthermore, the HI-SDR technique augments the utility of SDR by introducing a 

structured yet efficient indexing mechanism. Hashing provides a means to map 

complex data patterns onto fixed-length representations, facilitating quicker retrieval 

and comparison of data instances. This is crucial in scenarios like smart homes, where 

rapid decision-making based on real-time data is pivotal. By incorporating hash 
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indexing, the HI-SDR approach not only enhances the interpretability of transformed 

datasets but also provides computational advantages, enabling expedited querying 

and processing — essential for timely anomaly detection. 

The significance of employing HI-SDR within smart home datasets stems from the 

multifaceted nature of such data. Smart homes generate a diverse array of data, 

spanning from occupancy patterns and energy consumption to device interactions and 

environmental variables. This inherent heterogeneity demands a representation that 

can encapsulate these nuances without succumbing to data overload. SDR, in its 

sparsity and resilience, aligns perfectly with this requirement, and the Hash Index 

extension further bolsters its applicability by introducing a structured framework for 

dealing with anomalies. 

The proposed HI-SDR approach introduces an innovative solution for enhancing 

dataset representations, making them more compatible with machine learning models. 

The advantages of leveraging SDR are underscored by its noise resilience and 

capacity to capture intricate data patterns. These benefits are magnified in the context 

of smart home datasets, where the diverse and dynamic nature of data necessitates 

a flexible yet efficient representation scheme. Through the incorporation of hash 

indexing, the HI-SDR approach not only enhances data interpretability but also 

empowers streamlined data handling, making it a compelling avenue for advancing 

machine learning applications, especially in the sphere of anomaly detection within 

smart homes and beyond. 

6.5.1 The Proposed Approach in Context 
The proposed approach is depicted in Figure 6.2. Upon the preparation of the 

generated IoT forensic dataset (see Section 5.12.1.1), several critical steps were taken 

to ensure accurate results. This involved careful preprocessing and a comprehensive 

approach to both training and testing the machine learning models, with a primary 

focus on mitigating false alarms and enhancing the efficacy of anomaly detection. The 

dataset has a total of 524,287 records which were split into training and testing with a 

ratio of 70:30. The two state-of-the-art machine learning algorithms used for the 

experiments were Isolation Forest and OCSVM from the four reviewed algorithms in 

Section 3.13.  These were unsupervised, meaning that they do not require any labelled 

data. The processed data is fed into these state-of-the-art machine learning algorithms 
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to produce anomaly scores. The anomaly scores obtained from these two algorithms 

are recorded for performance evaluation in the experiments.  

The experiment is then repeated, with the same training and testing data split. 

However, in these subsequent experiments, the dataset is then transformed by 

encoding using the HI-SDR encoder, the generated SDR data is fed to the state-of-

the-art ML algorithms to produce the anomaly scores. To ascertain the effectiveness 

of the applied models, a robust evaluation methodology is adopted. This entails 

measuring performance across four well-established evaluation metrics: Accuracy, F1 

Measure, Precision, and Recall, all elaborated upon in Section 7.3. These metrics 

collectively provide a comprehensive view of the model's performance – accuracy 

quantifies overall correctness, the F1 Measure offers a balanced view of precision and 

recall, while precision and recall individually shed light on false positives and false 

negatives. 

The HI-SDR algorithm consists of two distinct components: the hashing part and the 

SDR construction part. 

In the first part, the array containing sensor readings is passed through a hashing 

function to generate a hash digest. The authors (Alshammari, 2018b) tested multiple 

non-encryption hashing functions, and the results indicated that the xxHash function 

(Collet, 2015) yielded the most favourable outcomes when applied to the binary 

datasets. 

The second part involves constructing the SDR based on the obtained hash digest. 

The algorithm below provides the pseudo-code for the implementation of the 

construction algorithm. This algorithm accepts four parameters, namely: 

• "hash": This represents the hash digest generated in the hashing part. 

• "n": This parameter denotes the total number of bits in the SDR. 

• "w": This parameter represents the desired number of active bits in the SDR. 

• "p": This parameter indicates the number of partitions to be used in the 

construction process. 

By specifying these parameters, the algorithm can effectively construct the SDR 

representation. 
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Figure 6.2 The Proposed Approach using SDR 

 

The algorithm can plainly be explained as follows: 

Algorithm: HI-SDR Encoder 

Inputs: 

- sensorReadings: Array of binary dataset 

- n: Total number of bits in the SDR 

- w: Number of active bits in the SDR 

- p: Number of partitions 
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Output: 

- SDR: Sparse Distributed Representation 

Procedure: 

1. Hashing Part: 

   1.1. Compute hashDigest using xxHash on the binary dataset.  

2. SDR Construction Part: 

   2.1. Initialise SDR as an array of size n with all bits set to 0. 

   2.2. Divide the hashDigest into p partitions. 

   2.3. For each partition: 

        2.3.1. Convert the partition into a decimal value, partitionValue. 

        2.3.2. Calculate the position in the SDR as position = partitionValue % n. 

        2.3.3. Set the bit at position in the SDR as active (1). 

3. Randomise w Active Bits: 

   3.1. Create a list, activeBits, of size n with all indices. 

   3.2. Shuffle the activeBits list randomly. 

   3.3. Select the first w elements from the shuffled activeBits list. 

   3.4. For each selected index, set the corresponding bit in the SDR as active 

(1). 

4. Return the generated SDR. 

The pseudocode for the SDR construction is in Algorithm 6.1: 
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Algorithm 6.1: SDR construction algorithm. 
 
1: procedure CONSTRUCT-SDR (hash, n, w, p) 
2: SDR ← [0] ∗ n ►SDR is n length zero array 
3: skip ← INT (n/partitions) 
4: hashDigits ← STR (hash) ►Converts the hash digits to string 

5: if w > (skip/10) then                         ►Divide by 10 because there are 10 digits 
6: Raise ValueError 
7: end if 
  9: for d in hashDigits do 
10: i ← INDEX(d) 
11: if i == p then 
12: break 
13: end if 

 ri ← INT (d) + 1 ►Calculating the relative index position 
15: pct ← FLOAT (ri)/10 
16: ri ← ROUND (skip ∗ pct) − 1 

17: for j in RANGE (w) do 
18: diff ← (w − 1) 
19: SDR [ri + (i ∗ skip)+ j − diff ]=1   
20: end for 
21: end for 
22: return SDR 
23:  end procedure 

 
6.6 Practical Forensic Application of the Proposed Approach 
The proposed approach leverages on anomaly detection derived from experimental 

analysis of the IoT forensic dataset generated. For this research and for forensic 

purposes, the generated IoT forensic dataset is treated as the collected evidence from 

the simulated smart home environment. 

This research proposed to semi-automate the examination and analysis of the IoT 

investigation process as explained in Section 4.6. The logging of files and classification 

steps are equated to the data processing where the dataset is pre-processed (see the 

proposed approach in Figure 6.2) before being analysed (in this case, encoding then 
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fed to the models). The anomaly scores are then leveraged to ascertain the degree of 

deviation from the normal behaviour. 

The final part of the proposed approach (see Figure 6.2) is on forensic decision making 

by forensic investigation team. It is critical to understand how anomaly detection could 

help investigators in their investigation process. This application must be undertaken 

in strict adherence to the legal regulations established within the specific jurisdiction 

where it is being employed. Moreover, it's imperative to recognise that this proposed 

approach, involving the integration of anomaly detection for IoT forensics, should not 

be solely relied upon by forensic investigators. Moreover, it's imperative to recognise 

that this proposed approach, involving the integration of anomaly detection for IoT 

forensics, should not be solely relied upon by forensic investigators. 

While anomaly detection is a powerful tool for flagging unusual patterns of behaviour, 

it should serve as an initial step rather than a conclusive determination. The anomalies 

detected should be considered as prompts, triggering further investigative efforts. The 

investigators must proceed to gather concrete evidence to support their observations. 

Relying solely on anomaly scores without substantial evidence could lead to erroneous 

conclusions. Additionally, the contextual and situational nuances surrounding the 

deviations must be taken into account. Anomaly detection might spotlight activities 

that, on the surface, appear suspicious, but upon closer examination, could have 

innocuous explanations. These subtleties underscore the importance of coupling 

technological insights with human judgment and traditional investigative methods. In 

essence, anomaly detection's role lies in augmenting investigative efficiency by 

highlighting potential leads and deviations from established norms. However, it's 

pivotal to recognise that it is merely a steppingstone to a comprehensive investigation. 

Adhering to legal protocols and exercising sound investigative practices ensures that 

anomaly detection contributes substantively to the pursuit of truth while preventing 

undue reliance on potentially misleading data. 

6.6.1 Anomaly Detection for the Forensic Scenarios 
Anomaly detection can indeed be a valuable tool for identifying suspicious or unusual 

activities within a smart home environment. Going through each proposed forensic 

case scenario in Section 5.11, a discussion can be made on how anomaly scores 

produced by ML models can assist forensic investigators. 
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Smart Homeowner Not Waking Up on a Workday (Possible Death): 

In the normal routine, the smart homeowner wakes up around 07:00 on workdays. An 

ML model trained on this routine would assign a certain anomaly score to this activity 

if it doesn't occur as expected. 

If the homeowner fails to wake up, this could be an indicator of an unusual event like 

a medical emergency or even death. High anomaly scores in this context would trigger 

an alert for further investigation. 

Owner Goes to Bathroom but Doesn't Come Out (Possible Injury/Faint): 

After waking up, the homeowner typically goes to the bathroom and then proceeds 

with other activities. If the bathroom door remains closed for an extended period 

without other activities occurring, an anomaly score would increase. 

An elevated anomaly score here might suggest an accident, fall, or medical issue. It 

could help investigators identify a potential problem within the bathroom. 

Owner Doesn't Return Home After Work: 

The owner usually returns home around 17:30 after work. If this activity doesn't occur, 

the ML model would assign a high anomaly score. 

A significant anomaly score here could indicate an unusual event like a car accident 

or any incident preventing the owner from returning. This could prompt investigators 

to check the owner's whereabouts. 

Accusation of Valuables Theft: 

The activities of the owner and the domestic worker in areas like the home office and 

bedroom are part of the normal routine. Deviations, such as unexpected access during 

certain times, might lead to higher anomaly scores. 

If valuable items go missing, analysing anomaly scores for access to those areas 

during non-routine times could help identify potential suspects or establish patterns of 

unusual behaviour. 

Domestic Worker Watching TV All Day: 

If the domestic worker deviates from their usual activities (tidying up, cooking, etc.) to 

just watch TV, this behaviour would receive a high anomaly score. 
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An elevated anomaly score could suggest uncharacteristic behaviour, helping 

investigators focus on unusual patterns that might indicate neglect of duties or 

unauthorised activities. 

Domestic Worker Misusing Privileges (Wasting Electricity): 

Turning on all lights and not turning them off is a deviation from normal behaviour. 

Anomaly scores would reflect such changes in patterns. 

High anomaly scores in this case could highlight power wastage or unauthorised 

behaviour. Investigating patterns of energy consumption could help confirm the claim. 

Domestic Worker Leaving and Returning Hours Before Owner: 

The domestic worker typically enters and leaves the house based on the owner's 

schedule. If they deviate from this pattern, the anomaly score would rise. 

Anomaly scores indicating this behaviour could be a clue to investigate if the worker 

is engaging in unauthorised activities outside their work hours. 

In all these cases, the anomaly scores provide a quantitative measure of how much 

an observed activity deviates from the established norm. High anomaly scores can 

serve as triggers for further investigation and prioritisation of cases. Investigators can 

use these scores to identify potentially suspicious activities, corroborate claims, and 

gather evidence to prove or disprove allegations. 

Cautiously, the effectiveness of anomaly detection heavily depends on the quality of 

the training data and the chosen machine learning algorithm. It's therefore crucial to 

fine-tune the models to minimise false positives and negatives and to interpret the 

anomaly scores within the context of the specific smart home environment and its 

residents' behaviour patterns. 

6.6.2 Enhancing Forensic Investigations through Anomaly Detection in IoT 
Environments 

In the contemporary landscape of forensic investigations, the integration of anomaly 

detection within IoT environments has emerged as a game-changing approach. By 

harnessing the power of anomaly detection, investigators can uncover unusual 

behaviour patterns that warrant scrutiny, significantly enhancing their capacity to solve 

complex real-life cases. This multifaceted strategy capitalises on the potential of IoT 
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technologies to provide insights and leads, while also requiring meticulous attention to 

legal considerations and acknowledging the inherent limitations of anomaly detection. 

This section examines the applications of anomaly detection across various scenarios, 

navigates the legal complexities associated with this approach, and examines the 

nuanced limitations that necessitate a balanced approach. Through this exploration, 

the profound implications of integrating anomaly detection into forensic investigations 

come to light. 

Unusual Behaviour Detection in Smart Homes: 

In scenarios involving smart homes, anomaly detection serves as a valuable tool for 

identifying unusual activities that might warrant forensic investigation. For instance, if 

a homeowner reports a theft, anomaly detection can be applied to analyse access 

patterns to specific areas, such as the bedroom, during the reported time of the 

incident. By assigning higher anomaly scores to activities that deviate from the 

established norms, investigators can focus their efforts on individuals with elevated 

scores, leading to targeted inquiries and evidence collection. 

Additionally, anomaly detection can be utilised to address suspicions of misuse of 

privileges within the smart home environment. By monitoring energy consumption 

patterns and light usage, the system can identify deviations from the expected 

behaviour. This information helps investigators determine if unauthorised activities, 

such as excessive energy usage or lighting, have taken place and evaluate the impact 

of such behaviour. 

Suspicious Activity in Cybercrime Investigations: 

In the realm of cybercrime investigations, anomaly detection proves its worth by 

detecting unauthorised activities and potential security breaches. For instance, in a 

scenario where a hacker gains control over a smart home system, anomaly detection 

can track unusual access and control patterns. Activities such as changes in 

thermostat settings during the night can be flagged as suspicious, alerting 

investigators to a possible security breach. This approach allows for the early 

identification of ongoing cyberattacks and provides insights into the hacker's tactics 

and objectives. 
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Employee Misconduct Detection: 

Anomaly detection can play a crucial role in addressing suspicions of employee 

misconduct within a workplace. For example, if an employee is suspected of using 

office resources for personal tasks, anomaly detection can be employed to monitor 

digital activities. Deviations from the expected behaviour, such as accessing personal 

websites during non-working hours, can result in elevated anomaly scores. These 

scores enable investigators to pinpoint employees engaging in unauthorised 

behaviour, potentially leading to policy adjustments or disciplinary actions. 

Network Intrusion Detection: 

In the context of network intrusion and insider threat detection, anomaly detection 

provides a means to identify potentially malicious activities. By observing data access 

patterns, the system can detect abrupt changes in behaviour related to sensitive data. 

When an employee suddenly accesses significant amounts of sensitive information 

outside their established pattern, the system assigns high anomaly scores. This aids 

in the detection of insider threats or potential data breaches by analysing deviations 

from the norm. 

Detecting Insider Threats: 

For organisations aiming to detect insider threats, anomaly detection proves 

invaluable. In scenarios involving data theft, anomaly detection can identify employees 

who are accessing large quantities of sensitive data outside their typical patterns. Such 

behaviours result in high anomaly scores, indicating potential data theft. This approach 

allows investigators to prevent insider threats by monitoring and addressing abnormal 

access behaviour. 

6.6.3 Legal Considerations and Limitations: 
Legal Considerations 

When applying anomaly detection in forensic investigations and cybercrime cases, 

certain legal considerations must be considered. Privacy laws must be upheld, 

ensuring compliance with regulations when collecting and analysing data from smart 

devices or digital activities. Unauthorised access to personal information or network 

data can lead to legal repercussions. Furthermore, digital rights should be respected, 

and proper authorisation must be obtained before monitoring any activities involving 
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individuals' devices or networks. In cases where data collection involves individuals' 

privacy, obtaining informed consent is a legal imperative. See Section 2.6 where this 

research discussed the legal issues in IoT. The proposed Theoretical IoT Forensic in 

Figure 4.1 clearly provides the steps that need to be followed in the IoT forensic 

investigation process which includes data collection. 

Limitations 

Despite its effectiveness, anomaly detection has certain limitations that investigators 

should be aware of. False positives and false negatives can occur due to factors such 

as insufficient historical data or evolving patterns. False positives might lead to 

unnecessary investigations, while false negatives could result in overlooking crucial 

evidence. Moreover, context plays a significant role. Anomaly detection might not 

account for the full context of an activity, potentially leading to misinterpretations. 

Privacy concerns should also be acknowledged, as monitoring activities without proper 

authorisation can infringe upon individuals' privacy rights, raising ethical and legal 

concerns. Lastly, the quality of training data is pivotal; inaccurate or incomplete data 

can lead to misleading results. 

Incorporating anomaly detection into smart home environments and digital activity 

monitoring significantly enhances the investigative capabilities in real-life forensic 

cases and cybercrime investigations. By identifying deviations from established 

norms, investigators can uncover suspicious behaviour, pinpoint patterns, and 

prioritise inquiries (forensic triage). However, ensuring legal compliance with privacy 

laws and digital rights is paramount throughout the investigative process. Recognising 

the limitations and potential for false results, anomaly detection should be used as a 

complementary tool alongside traditional investigative methods, leveraging its 

strengths to enhance the effectiveness of forensic investigations. 

6.7 Conclusion 
In conclusion, Chapter 6 demonstrates the significance of applying HI-SDR in the 

realm of anomaly detection within IoT environments. It highlights the crucial role of 

SDRs in encoding data for HTM systems and outlines the properties that make SDRs 

suitable for anomaly detection. The chapter presents the HI-SDR encoder as a 

powerful tool that not only maintains determinism and fixed sparsity but also introduces 

a mechanism for capturing semantics through hash indexing. 



184 
 

Furthermore, the proposed approach of leveraging HI-SDR in enhancing dataset 

representations for machine learning models is discussed. The chapter emphasises 

the benefits of employing SDRs in noise-resilient and robust anomaly detection, 

particularly in the context of smart homes where real-world data can be imperfect due 

to various factors. The incorporation of hash indexing is highlighted as a means to 

structure and expedite data processing, enabling rapid decision-making and timely 

anomaly detection. 

The chapter concludes by addressing the application of anomaly detection in various 

forensic scenarios, ranging from identifying suspicious activities in smart homes to 

addressing cybercrime and employee misconduct. Legal considerations surrounding 

privacy and data collection are emphasised, and the potential limitations and nuances 

of anomaly detection are discussed. The proposed approach is positioned as a 

complementary tool to traditional investigative methods, emphasising the importance 

of combining technological insights with human judgment for accurate and meaningful 

forensic investigations. Overall, this chapter provides a comprehensive understanding 

of the role and application of HI-SDR in anomaly detection within IoT environments, 

laying the foundation for the subsequent discussions in the thesis. 
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CHAPTER 7. TEST AND EVALUATION 
In this chapter, the test and evaluation of the performance of the proposed model is 

carried out to gain deeper insights into its ability to detect anomalies in the smart home 

forensic dataset generated. Additionally, the chapter compares the performance of the 

state-of-the-art machine learning algorithms selected in Section 3.13 without SDR 

encoding and with SDR encoding to determine the best-performing approach for the 

predefined model scenario. 

The chapter begins by providing a comprehensive explanation of how the experiments 

are designed, including discussions on contextual information, different experiment 

parameters, and evaluation metrics. This serves as the foundation for the subsequent 

phase, where extensive experiments are carried out through parameter optimisation 

to select the parameter settings that yield the best performance for the proposed 

model. 

These optimised parameter settings were used to compare the performance of the 

proposed model with other anomaly detection algorithms and techniques. The 

evaluation is carried out using the state-of-the-art machine learning algorithms 

(OCSVM and Isolation Forest), where performance metrics which included accuracy, 

recall, precision, and F1-measure are employed for performance evaluation. 

7.1 Experimental Setup 
Experimental studies were conducted on the selected state of the art anomaly 

detection techniques and algorithms to test and compare their performance with and 

without SDR. The overall experimental design is depicted in Figure 7.1. 

The experiments start by preparing the dataset which is then fed to the selected state-

of-the art Machine Learning models. The models produce an anomaly score that is 

recorded. The prepared dataset is then encoded using the HI-SDR encoder and the 

encoded data (SDR data) is then fed to the models to produce an anomaly score. 

Embedded within the testing methodology is an empirical experimentation aimed at 

refining (optimising) the parameter settings of the HI-SDR in the proposed approach. 

This entails carrying out numerous performance iterations to comprehensively assess 

the behaviour of the proposed approach using the resulting anomaly scores. Through 

this empirical experimentation, the parameter settings that yield the best anomaly 
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scores are identified. These settings are subsequently employed to conduct an 

additional evaluation of the proposed approach, comparing it against the state-of-the-

art models without SDR. 

 

Figure 7.1 The Experimental Setup 

It is important to note that, in each experiment, a consistent set of fixed parameters 

was applied to a given model for execution on the dataset. The model is initialised and 

reset as though encountering the currently employed dataset for the very first time. 

Every examined model was supplied with the complete dataset generated (see 

Section 5.12.1) by all sensors, gathered at a consistent sampling rate (once every 

second). The decision to provide the model with the entirety of the data stemmed from 

the belief that the model should have the capacity to grasp the comprehensive pattern 

of the smart home resident's behaviours. These patterns exhibit a natural evolution, 

entailing an inherent time-related aspect to the activities. Opting for individual models 

for each sensor would risk obfuscating this temporal dependency and the sequential 

nature of these activities. 

The range of anomaly scores generated by the machine learning models spans from 

0.0 to 1.0, correlating to a percentage range of 0.0% to 100%. These scores signify 

the degree of anomaly exhibited by a specific record in relation to the model. 

7.2 Experiment Parameters 
Within this section, the parameters employed in the experiments defined in Section 

6.5.1 are utilised to determine the optimal settings for anomaly detection. Conversely, 

the parameters used for the evaluation of performance are outlined in Section 7.3. 

These parameters are listed in Table 7.1. 
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SDR Parameters 
hash Hash digest generated  
n Total number of bits in the SDR 
w The desired number of active bits in the SDR 
p The number of partitions to be used in the construction process 

Performance Metrics Parameters 
Accuracy Overall correctness 
F1 
Measure Balance of precision and recall 
Precision True positive proportion 
Recall True positive coverage. 

Table 7.1 Experiment Parameters 

The implementation codes for all the models used in the experiments are provided in 

the appendix as: 

a) Appendix A:  Isolation Forest Implementation Code 

b) Appendix B: OCSVM Implementation Code 

c) Appendix C: Isolation Forest with HI-SDR Implementation Code 

d) Appendix D: OCSVM with HI-SDR Implementation Code 

7.3 Performance Metrics 
This thesis employs objective metrics to evaluate the performance of the proposed 

anomaly detection algorithm. The performance is carried out by comparing the 

anomaly score outputs of the algorithm under two conditions: one without the 

implementation of the HI-SDR encoder, and the other with the HI-SDR encoder 

incorporated. This comparative analysis enables a comprehensive evaluation of the 

algorithm's performance and sheds light on the added value brought by the HI-SDR 

encoder in enhancing anomaly detection accuracy. Consideration for errors is based 

on false alarms and failures to detect anomalies. A false alarm arises when an 

anomaly is erroneously detected in a location where none exists.  

 

 

 

 

  True Class 

  Anomaly Normal 

Output Class 
Anomaly TP FP 

Normal FN TN 
Table 7.2 Contingency Table 
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Given the contingency table where True Positives (TP), number of correctly detected 

anomaly activities, False Positives (FP), number of activities falsely detected as 

anomaly, and False Negatives (FN), number of activities falsely detected as normal, 

as shown in Table 7.2. The Precision and Recall may be estimated as in Equation 7.1 

and Equation 7.2: 

 

𝐿𝐿𝑐𝑐𝑐𝑐𝑠𝑠𝑙𝑙𝑙𝑙 =
𝑖𝑖𝑃𝑃

𝑖𝑖𝑃𝑃 + 𝐿𝐿𝑃𝑃
 Equation 7.1 

Recall serves as an indicator for evaluating an algorithm's inclination towards under 

estimation. It is the percentage of observations that are actually positive that were 

predicted to be positive. A greater recall value signifies a reduced likelihood of 

encountering under-detection issues. 

𝑃𝑃𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑜𝑜𝑛𝑛 =
𝑖𝑖𝑃𝑃

𝑖𝑖𝑃𝑃 + 𝐿𝐿𝑁𝑁
 Equation 7.2 

 

Precision offers insights into an algorithm's predisposition towards over estimation. A 

higher precision value indicates a reduced probability of encountering over estimation. 

This is because higher precision signifies that the algorithm is being more cautious in 

labelling instances as positive, thereby minimising the risk of including false positives 

in the results. In essence, precision serves as a valuable metric to evaluate the 

balance between true positives and false positives, helping to ensure the algorithm's 

accuracy in avoiding over-segmentation scenarios. 

The Harmonic Mean (HM), often referred to as the F-measure (F1 measure of F 

Score), serves as a singular metric that seamlessly integrates Precision and Recall, 

assigning them equal weights. It comes into play as a valuable tool, yielding a 

substantial value only when both Precision and Recall are concurrently elevated 

(high). This measure encapsulates the essence of striking a balance between accurate 

positive predictions and comprehensive capture of actual positives. In situations where 

an optimal equilibrium between Precision and Recall is sought after, the F-measure 

becomes a critical assessment criterion. The F1 Measure is estimated as in Equation 

7.3: 
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𝐿𝐿1 𝑀𝑀𝑐𝑐𝑠𝑠𝑠𝑠𝑆𝑆𝑖𝑖𝑐𝑐 =  
2

1
𝑃𝑃𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑜𝑜𝑛𝑛  +  1

𝐿𝐿𝑐𝑐𝑐𝑐𝑠𝑠𝑙𝑙𝑙𝑙
 Equation 7.3 

Within the realm of evaluating machine learning models, the accuracy metric emerges 

as a cornerstone for assessing a model's prowess in classification tasks. This metric 

serves as a comprehensive gauge of the model's ability to accurately predict outcomes 

across various classes. Its popularity is attributed to its straightforwardness and 

inherent comprehensibility, rendering it a ubiquitous yardstick for model assessment. 

However, beneath its apparent simplicity lies a necessity to grasp its intricacies and 

acknowledge its constraints (its reliability diminishes when classes are imbalanced). 

This ensures a more informed and balanced evaluation of a model's true performance. 

As with any metric, accuracy should be used in conjunction with other performance 

measures. Accuracy can be estimated as in Equation 7.4: 

𝑠𝑠𝑐𝑐𝑐𝑐𝑆𝑆𝑖𝑖𝑠𝑠𝑐𝑐𝑦𝑦 =  
𝑖𝑖𝑃𝑃 + 𝑖𝑖𝑁𝑁

𝑖𝑖𝑃𝑃 + 𝑖𝑖𝑁𝑁 + 𝐿𝐿𝑃𝑃 + 𝐿𝐿𝑁𝑁
 Equation 7.4 

To assess the effectiveness of a ML model, the anomaly scalar score, which falls 

within the range of 0.0 to 1.0 (0% to 100%) is generated by the specific ML algorithm 

under examination. This categorisation enables a direct comparison with the input 

value. As elaborated earlier in this section (Performance Metrics), these performance 

metrics play a crucial role in evaluating and examining the capabilities of the ML 

algorithms. 

In accordance with the findings of Nehmer et al. (2006) and the work of (Haque, 

Rahman and Aziz, 2015), anomaly detection models employed within smart home 

systems ought to exhibit a high recall rate, ensuring the detection of nearly all 

anomalies, coupled with a high precision rate to effectively minimise false positives in 

anomaly detection. 

7.4 Results 
This section describes the experimental results obtained from the two state-of-the art 

ML algorithm followed by a comparison of their performance against the proposed HI-

SDR solution after the parameters were optimised. The performance is tested using 

the objective metrics discussed in Section 7.3. 
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7.4.1 State-of-Art Algorithms Results 
Here, the experiments were conducted to establish the performance of Isolation Forest 

and OCSVM algorithms without SDR. These results are depicted in Figure 7.2. 

 

Figure 7.2 Results of Isolation Forest and OCSVM without SDR 

7.4.2 Results of the Proposed HI-SDR Solution 
The HI-SDR parameters and algorithm are explained in Section 7.2. The first step in 

utilising the HI-SDR encoder was to optimise its parameters. This section, therefore, 

conducts experiments to determine the optimised parameters by combining the HI-

SDR parameters for higher performance. 

7.4.2.1 HI-SDR Parameter Optimisation 

Given the wide array of applications in anomaly detection and the continuous 

advancement of algorithms designed for detecting anomalies, there is a growing need 

for an automated assessment approach to gauge the performance of various 

algorithms. This approach is commonly known as objective evaluation, and its purpose 

is to compare the outcomes produced by distinct algorithms. This comparison involves 

contrasting each algorithm's output with the established ground truth and quantifying 

the disparities using objective metrics. The main hurdle in this context is the existence 

of one or more decision process parameters (referred to as thresholds) that 

significantly impact the results yielded by the algorithms. Consequently, these 

evaluation methods should serve the dual purpose of aiding in the selection of optimal 

Method F1 Accuracy Precision Recall
Isolation Forest 36% 20% 27% 53%
OCSVM 58% 20% 64% 53%
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parameters for each algorithm while also ranking different algorithms based on the 

specific requirements of the given application. 

The HI-SDR parameters are discussed in Section 7.2. The author Alshammari (2018a) 

established that the optimised parameters for the HI-SDR encoder as conducted in 

their experiments  were n = 600; w = 3; and p = 8. This research adopted this approach 

and conducted experiments by using a mix (combination) of n, w, and p parameters 

to establish the best combination for better performance. The dataset being a binary 

dataset of 1s and 0s, the w parameter which denotes the active bits in an SDR array 

was used as the base of the other parameters. Therefore, the first combination done 

was to compare the performance of w=1, with respective increments of both n and p. 

The results are shown in Figure 7.3. 

 

Figure 7.3 Results of w=1 with n and p Combinations 

The results in Figure 7.3 show that there is no significant improvement of performance 

with these parameter combinations. For the IForest, an increase in the size of the SDR 

(n) decreases the performance for F1 Measure and Precision by 5% and 6% 

respectively. The performance is even much lower when p is increased. For OCSVM, 

the performance is low when p is increased as the results are null. 

The best performance for w=1 is seen when n=100 and p=1. 

The next combination was to use w=2. The results were: 

No SDR n=100 n= 200 n = 300 n = 300 p=2  n = 600
F1 36% 65% 65% 60% 46% 60%
Accuracy 20% 37% 37% 37% 27% 37%
Precision 27% 49% 49% 43% 33% 43%
Recall 53% 99% 99% 99% 73% 99%

No SDR n=100 n= 200 n = 300 n = 300 p=2  n = 600
F1 58% 55% 0% 55% 0% 55%
Accuracy 20% 37% 0% 37% 0% 37%
Precision 64% 38% 0% 38% 0% 38%
Recall 53% 100% 0% 100% 0% 100%
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Figure 7.4 Results of w=2 with n and p Combinations 

The results in Figure 7.4 again do not show any significant improvement of 

performance. The results also show that the parameter p when increased, reduces 

the performance with an increase for w. When the length of the SDR n is increased, 

both the IForest and OCSVM performance is low. For example, when w=2, n=300, 

and p=1, the F1 Measure and Precision reduce by 5% and 6% respectively for IForest. 

The OCSVM model does not return any results with these combinations. Although 

there are some good performances of OCSVM when n=600, all the performance 

metrics for IForest are severely affected by the increase in the size of n. 

The combination of the parameter w=3 had the results shown in the following Figure 

7.5.  

The results when w=3 as seen from Figure 7.5. There is a significant improvement of 

performance results when the size of the SDR (n) is increased to 300. This 

improvement is exhibited in both the IForest and OCSVM. On the contrary, the 

increase of p does not yield any improved results and neither does the increase of the 

size of the SDR (n). For example, using the optimised parameters from the author of 

the HI-SDR - Alshammari (2018a), by an increase of n to 600 and p to 8, performs 

poorly compared to when n=300 and p=1. This is illustrated in Figure 7.6 

No SDR n=150 n = 300 n=300 p=2  n = 600  n = 600 p=2
F1 36% 65% 60% 46% 21% 46%
Accuracy 20% 37% 37% 27% 7% 27%
Precision 27% 49% 43% 38% 23% 33%
Recall 53% 99% 99% 73% 19% 73%

No SDR n=150 n = 300 n=300 p=2  n = 600  n = 600 p=2
F1 58% 0% 0% 0% 55% 0%
Accuracy 20% 0% 0% 0% 37% 0%
Precision 64% 0% 0% 0% 38% 0%
Recall 53% 0% 0% 0% 100% 0%
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Figure 7.5 Results of w=3 with n and p Combinations 

 

 

Figure 7.6 Comparative Results for Increase of n and p Parameters 

These comparative results in Figure 7.6 confirm that the increase of n to more than 

300 and p to 8, decrease the performance of both IForest and OCSVM in all the four 

performance evaluation metrics. 

More experiments were conducted to evaluate the effectiveness of increasing the 

value of w and p as seen in Figure 7.7 and Figure 7.8. In both cases, the performance 

No SDR n=100 n = 300  n = 300 p = 3 n=450 n=600  n = 600 p = 3  n = 600 p = 8
F1 36% 60% 65% 46% 60% 60% 46% 45%
Accuracy 20% 37% 37% 27% 37% 37% 27% 27%
Precision 27% 43% 49% 33% 43% 43% 33% 32%
Recall 53% 99% 99% 73% 99% 99% 73% 73%

No SDR n=100 n = 300  n = 300 p = 3 n=450 n=600  n = 600 p = 3  n = 600 p = 8
F1 58% 18% 55% 0% 0% 0% 18% 18%
Accuracy 20% 7% 37% 0% 0% 0% 7% 7%
Precision 64% 17% 38% 0% 0% 0% 17% 16%
Recall 53% 19% 100% 0% 0% 0% 19% 19%
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of OCSVM is not desirable because there are null results indicating that the 

combination does not achieve the expected results for good model performance. 

 

Figure 7.7 Results of w=4 with n and p Combinations 

 

Figure 7.8 Results of w=5 with n and p Combinations 

From these experiments, the optimised parameters are achieved when w=3, n=300, 

and p=1. These optimised parameters produced the following results in Table 7.3. 

  IForest with SDR OCSVM with SDR 
F1 65% 55% 
Accuracy 37% 37% 
Precision 49% 38% 
Recall 99% 100% 

Table 7.3 Optimised Results with SDR 

No SDR n = 300 n=300 p=2  n = 600
F1 36% 65% 46% 65%
Accuracy 20% 37% 27% 37%
Precision 27% 49% 33% 49%
Recall 53% 99% 73% 99%

No SDR n = 300 n=300 p=2  n = 600
F1 58% 0% 55% 0%
Accuracy 20% 0% 27% 0%
Precision 64% 0% 38% 0%
Recall 53% 0% 73% 0%
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Precision 27% 33% 49% 49%
Recall 53% 73% 99% 99%

No SDR n=100 p=2 n = 300  n = 600
F1 58% 0% 0% 0%
Accuracy 20% 0% 0% 0%
Precision 64% 0% 0% 0%
Recall 53% 0% 0% 0%
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7.5 Results Analysis and Discussion 
This section of the thesis discusses the results by analysing how the state-of-the-art 

algorithms performed without the SDR against with SDR for anomaly detection. The 

performance evaluation was carried out using the traditional learning method with the 

objective performance metrics F1 Measure, Accuracy, Precision, and Recall. 

Following an evaluation of anomaly detection performance using the state-of-the art 

algorithms and techniques, this research has summarised the optimal scores achieved 

by each algorithm and technique through the experiment outlined in Section 7.1. 

These results are presented in Figure 7.9. The results garnered from this evaluation 

distinctly underscore the remarkable advantages of the proposed HI-SDR solution, 

showcasing its superior performance in comparison to the established state-of-the-art 

algorithms. This not only emphasises the substantial efficacy of HI-SDR but also 

elucidates the incremental advantage gained by introducing this innovative approach 

to anomaly detection. 

The incorporation of an SDR encoder into state-of-the-art algorithms presents a 

compelling approach that leads to notable enhancements in algorithmic performance. 

Notably, when applying the SDR encoding to both IForest and OCSVM, there emerges 

a remarkable improvement of 17% in the Accuracy score and a significant leap of over 

45% in the Recall score. These findings exemplify the robust impact of SDR on 

enhancing the algorithms' ability to accurately identify anomalies. 

Furthermore, the utilisation of SDR encoding results in a substantial enhancement for 

IForest's Precision score. Notably, the Precision score, which starts at 27% without 

SDR encoding, experiences a remarkable boost to 49% when integrated with SDR.  
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Figure 7.9 Evaluation Results with and without SDR 

This notable uplift in precision reinforces the value of SDR encoding in refining the 

algorithms' ability to precisely detect anomalies. 

Delving deeper into the evaluation metrics, the F1 Measure score for IForest also 

demonstrates compelling growth with the integration of SDR encoding. Specifically, 

the F1 Measure score witnesses a remarkable 29% improvement, advancing from an 

initial score of 36% to an impressive 65%. This upswing in F1 Measure underscores 

the substantial benefit gained by leveraging SDR encoding to optimise the overall 

anomaly detection performance of the algorithm. 

However, it's worth highlighting that an intriguing observation emerged: OCSVM 

demonstrated slightly better performance without the incorporation of SDR, 

particularly in relation to F1 Measure and Precision metrics. This nuanced finding adds 

depth to the understanding of the interplay between SDR and algorithmic behaviour, 

showcasing that while the general trend favours SDR integration, there are specific 

instances, such as with OCSVM, where its absence results in more favourable 

outcomes for certain evaluation criteria. 

IForest OCSVM IForest with SDR OCSVM with SDR
F1 36% 58% 65% 55%
Accuracy 20% 20% 37% 37%
Precision 27% 64% 49% 38%
Recall 53% 53% 99% 100%
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These results underscore the enhanced capabilities of the state-of-the-art algorithms 

when integrated with SDR encoding. Through this integration, the acquired patterns 

from both the original simulated data and the semantically enriched data 

representation are synergistically harnessed in innovative combinations. This strategy 

not only facilitates improved performance but also underscores the power of 

leveraging learned patterns across different dimensions of data processing. The 

integration of SDR encoding yields multifaceted improvements across various 

evaluation metrics, reaffirming its capacity to significantly elevate the proficiency of 

state-of-the-art algorithms in anomaly detection scenarios. 

To leverage the use of Anomaly Detection for forensic investigations, it should be 

noted that the used algorithm should correctly identify true anomalies and avoid false 

positives. 

Reducing False Alarm: 

The integration of SDR encoding generally improves the precision and accuracy of 

anomaly detection algorithms, making them more discerning in labelling anomalies. 

This can help to reduce false alarms and minimises false alarms while still effectively 

detecting genuine anomalies. 

Enhancing Anomaly Detection: 

The integration of SDR encoding also leads to a significant improvement in the recall 

of anomaly detection algorithms. This means that the algorithms are less likely to fail 

to detect anomalies. The improved recall indicates that more true anomalies are 

successfully identified. However, it is important to balance recall with precision. While 

higher recall is desirable, it should not come at the expense of significantly increased 

false alarms. 

7.6 Summary 
In conclusion, this chapter focused on the testing and evaluation of anomaly detection 

techniques and algorithms, with a particular emphasis on the integration of SDR using 

the HI-SDR encoder. The experimental setup involved rigorous experimentation on 

the state-of-the-art machine learning algorithms, specifically Isolation Forest and 

OCSVM, both with and without the incorporation of SDR. The experimental design 

encompassed various parameters such as SDR size (n), number of active bits (w), 
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and number of partitions (p). — to unveil the intricate interplay within the anomaly 

detection landscape. 

The primary objective of the experiments was to assess the impact of SDR on anomaly 

detection performance, measured through objective metrics including Accuracy, F1 

Measure, Precision, and Recall. The results showed that the integration of SDR 

encoding consistently improved the overall performance of the algorithms across 

multiple metrics. This enhancement was particularly pronounced in terms of Accuracy, 

Recall, Precision, and the F1 Measure. The experimental findings indicated that SDR 

encoding contributed to more accurate and comprehensive anomaly detection, 

highlighting the benefits of leveraging SDR in refining algorithmic performance. 

However, it is noteworthy that while the overarching trend exhibited the positive impact 

of SDR, there were nuanced instances where specific algorithms, particularly OCSVM, 

showcased slightly better performance in the absence of SDR integration for certain 

evaluation criteria. Nevertheless, the overall trend emphasised the effectiveness of 

SDR encoding in enhancing anomaly detection accuracy, which is crucial for 

applications in various fields, including forensic investigations. 

For instance, the integration of SDR encoding led to an impressive improvement of 

17% in Accuracy and an astonishing leap of over 45% in Recall. Additionally, in the 

case of IForest, the Precision score witnessed a remarkable boost from 27% to 49%, 

an uplift of 22%. Moreover, the F1 Measure, a pivotal metric capturing the equilibrium 

between Precision and Recall, experienced a substantial 29% improvement, 

ascending from an initial score of 36% to an impressive 65%. These percentages 

underscore the palpable enhancements attributed to the strategic combination of SDR 

encoding with state-of-the-art algorithms. 

In summary, the experimental results underscored the significant advantages of 

incorporating SDR encoding into state-of-the-art anomaly detection algorithms. This 

innovative approach not only demonstrated the potential for enhanced performance 

but also showcased the broader capability of leveraging learned patterns in multiple 

dimensions of data processing. The chapter's findings serve to support the feasibility 

and utility of utilising SDR-based techniques in enhancing the accuracy and 

effectiveness of anomaly detection algorithms, with potential implications for various 

real-world applications.
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CHAPTER 8. SUMMARY, CONCLUSION, AND FUTURE WORK 
This thesis has presented a novel IoT forensics framework that aids IoT forensic 

process. To evaluate the practicality of the framework, a smart home environment was 

simulated, dataset generated, and this research proposed an approach using HI-SDR 

which leveraged Machine Learning approaches to detect anomalies. Additionally, this 

thesis has meticulously analysed the status of IoT forensic domain by conducting a 

state-of-the-art systematic literature review to highlight future directions. 

8.1 Summary  
The rapid proliferation of IoT technologies has ushered in a transformative era, 

reshaping how we interact with our surroundings and how interconnected devices 

communicate. This remarkable integration of IoT into diverse aspects of contemporary 

life has not only brought about numerous advantages but has also presented a set of 

distinct challenges and opportunities within the realm of digital forensics. As IoT 

devices continue to grow exponentially in number and variety, a significant challenge 

arises in handling the sheer volume and diversity of data they generate. These devices 

produce copious amounts of data in varying formats and from disparate sources. This 

diversity can complicate the process of collecting, storing, and analysing relevant data 

during digital forensic investigations. Developing effective methodologies and 

frameworks for managing this influx of data becomes paramount. 

One of the complexities of IoT is the diverse array of devices, operating systems, and 

communication protocols that it encompasses. This diversity creates a landscape 

where each device may possess unique hardware and software characteristics, 

necessitating tailor-made investigation techniques. Consequently, digital forensics 

professionals must adapt to this heterogeneity and devise strategies to extract 

pertinent information. 

A pressing issue that has emerged alongside these challenges is the lack of 

standardised regulations within IoT forensics. The vast and diverse IoT landscape, 

coupled with the unique attributes of each device, makes it arduous to establish a one-

size-fits-all forensic guideline. This absence of standardisation impedes the 

consistency and reliability of investigations. Without a unified framework, investigators 

often find themselves navigating a labyrinth of diverse protocols, leading to 

inefficiencies and potential oversights. 
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An intriguing aspect of IoT is its real-time functionality, with many devices operating 

within dynamic environments where data is generated and transmitted continuously. 

This real-time nature presents a departure from traditional forensic methodologies, 

requiring investigators to develop and adopt real-time forensic approaches that align 

with these evolving scenarios. 

However, the ubiquity of IoT also raises concerns about privacy and data security. IoT 

devices frequently collect sensitive personal and environmental data, sparking a 

delicate balance between the imperatives of digital forensics and safeguarding user 

privacy. Adhering to privacy regulations while still extracting vital information adds 

another layer of complexity to IoT digital forensics. Moreover, the susceptibility of IoT 

devices to cybersecurity threats poses an additional challenge. Due to factors for 

example, limited processing power, inadequate security measures, and infrequent 

updates, these devices are often vulnerable. This vulnerability can significantly impact 

digital forensic investigations, as compromised devices might not preserve data as 

expected. 

Despite these challenges, there are substantial opportunities within IoT digital 

forensics. The rich contextual data generated by IoT devices, such as timestamps and 

geolocation, can enhance the accuracy and depth of investigations, providing crucial 

insights into events. The interconnectivity of IoT devices creates intricate digital 

footprints that offer insights into user behaviours, actions, and interactions, enabling 

investigators to reconstruct events with greater clarity. 

Collaboration is emerging as a pivotal aspect of IoT digital forensics. The intricate 

nature of IoT ecosystems necessitates cooperation between disciplines like 

cybersecurity, data science, and legal expertise. This interdisciplinary approach can 

yield more comprehensive and effective forensic investigations. 

 

This thesis was motivated by the following research questions, with the intention of 

examining the hypotheses posited in the research. 

1. Research Question: What is the current state of IoT digital forensics 

methodologies, models, and frameworks, and how can they be improved to 

address the legal and technical challenges in the field?  
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Hypothesis: Given the rapid evolution of IoT technologies and the increasing 

complexity of digital ecosystems, it is hypothesised that the current state of IoT 

digital forensics methodologies, models, and frameworks is characterised by a 

fragmented landscape with varied approaches, lacking standardised 

procedures and comprehensive frameworks. Additionally, it is expected that 

existing methodologies may struggle to effectively address the intersection of 

legal and technical challenges in IoT forensics, including issues such as data 

privacy, jurisdictional concerns, and the diverse range of IoT devices and 

protocols. However, it is anticipated that advancements in interdisciplinary 

collaboration, the development of specialised tools and techniques, and the 

establishment of clearer regulatory guidelines can lead to significant 

improvements in IoT digital forensics methodologies, enabling more robust 

investigations and better alignment with legal requirements. 

2. Research Question: How can standardisation of rules be achieved to mitigate 

legal and technical challenges in IoT digital forensics, and what role can 

Machine Learning play in enhancing the investigation process?   

Hypothesis: It is hypothesised that standardisation of rules in IoT digital 

forensics can be achieved through collaborative efforts among stakeholders, 

including industry professionals, policymakers, and regulatory bodies. Such 

standardisation efforts are expected to address legal and technical challenges 

by establishing uniform guidelines, protocols, and best practices for collecting, 

analysing, and presenting digital evidence from IoT devices. Furthermore, it is 

anticipated that Machine Learning algorithms can significantly enhance the 

investigation process by automating certain aspects of forensic analysis, such 

as anomaly detection, pattern recognition, and predictive modelling. Machine 

Learning techniques have the potential to improve the efficiency and accuracy 

of digital forensic investigations in IoT environments, enabling investigators to 

sift through large volumes of data, identify relevant evidence, and uncover 

insights that may otherwise be overlooked. Through the integration of 

standardised rules and Machine Learning driven approaches, it is believed that 

IoT digital forensics can become more effective, reliable, and adaptable to the 

evolving landscape of connected devices and technologies. 
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3. Research Question: What is the effectiveness of the proposed IoT forensic 

framework and the proposed approach of integration of the Machine Learning 

technique in addressing legal and technical challenges, and how does it 

compare to existing methodologies?  

Hypothesis: It is hypothesised that the proposed IoT forensic framework, 

integrated with Machine Learning techniques, will demonstrate effectiveness in 

addressing both legal and technical challenges compared to existing 

methodologies. This hypothesis assumes that the integration of Machine 

Learning algorithms will enhance the capability to automate the analysis of 

complex IoT data, leading to improved accuracy, efficiency, and scalability in 

digital forensic investigations. Additionally, it is expected that the proposed 

framework will provide better support for addressing legal challenges by 

incorporating standardized rules and procedures, thereby ensuring the 

admissibility and reliability of digital evidence in legal proceedings. 

In Chapter 2, a Literature Review is carried out to answer the research questions 1 

and 2. This chapter provides a comprehensive overview of IoT forensics by presenting 

a state-of-the-art Systematic Literature Review. It defines IoT forensics as a branch of 

digital forensics encompassing device, network, and cloud-level investigations. The 

challenges of uncertainty, chain of custody, and cross-border jurisdiction are 

discussed, highlighting the difficulties in handling IoT data. The chapter emphasises 

the lack of standardised processes and the limitations of existing theoretical models. 

It points out the need for practical methodologies and tools that can be scientifically 

validated. The significance of smart analysis, privacy protection, and 

recommendations for legal solutions to combat the lack of standardisation in IoT 

forensic are outlined, along with the potential of digital warrants. The chapter 

concludes by underscoring the importance of addressing IoT forensics challenges due 

to the growing adoption of IoT devices and cloud-based technologies and proposes 

significant future research directions. 

Chapter 3 answers research 3 and explores the integration of automated processes, 

AI, and machine learning in digital forensics. It highlights the advancements brought 

by these technologies, including faster results and improved efficiency in handling 

cybercrime cases. However, it also notes that automated tools still require human 
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oversight to ensure accuracy. The chapter emphasises the potential for AI and 

automation in risk mitigation and effective digital evidence handling. It concludes by 

encouraging forensic investigators to embrace these technologies to adapt to the 

evolving landscape of cybercrimes. 

Chapter 4 answers research questions 1 and 3 and proposes a novel IoT forensic 

framework that provides a step-by-step process to aid the forensic process. The 

framework outlines the various phases of the investigation process, from preparation 

and live investigation to offline investigation and presentation of findings. The chapter 

emphasises the need for security measures, documentation, and flexibility while 

adhering to the proposed framework. It recognises the significance of reconstructing 

events and structuring investigations for effective communication within the forensic 

community. The framework serves as a structured guide for investigators navigating 

complex IoT investigations and promoting transparency, traceability, and 

accountability. 

Chapter 5 discusses the significance of using simulation techniques for generating 

realistic datasets in IoT forensic analysis. It highlights the OpenSHS simulator as a 

valuable tool for creating elaborate and representative datasets for smart home 

environments. The chapter explains the methodology of dataset acquisition in 

simulated environments and provides unique hypothetical forensic case scenarios for 

simulations. This chapter generates IoT forensic datasets depicting real life scenarios 

and publishes this dataset to be accessed publicly by the research community. It 

stresses the importance of these datasets in advancing the field of smart home 

forensics and promoting collaboration among researchers. The chapter positions 

simulation techniques as a means of tackling the complexities of IoT forensic analysis 

effectively due to inadequate real smart homes for research. 

Chapter 6 introduces the idea of Sparse Distributed Representation and explores the 

application of HI-SDR in anomaly detection within IoT environments. It discusses the 

properties of SDRs that make them suitable for anomaly detection and introduces the 

HI-SDR encoder. The chapter emphasises the benefits of using SDRs in noise-

resilient and robust anomaly detection. It highlights the role of HI-SDR in enhancing 

dataset representations and proposes an approach to which the HI-SDR can be 

incorporated with ML models for better performance for anomaly detection. The 
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chapter illuminates how anomaly scores can be attributed to the forensic scenarios to 

help investigators eliminate false alarms and lay emphasis on true anomalies for 

further investigations. 

Chapter 7 illustrates and carries out the experiments to test the hypothesis of this 

research on whether the incorporation of HI-SDR for better representation can improve 

the anomaly scores compared to state-of-the-art ML models. 

Using anomaly detection for forensics purposes requires that the algorithm is accurate 

enough to provide true anomalies while reducing the false alarms. Therefore, the 

performance of the proposed approach of using SDR was compared with and without 

SDR on the state-of-the-art models using the traditional ML performance metrics, 

Accuracy, F1 Measure, Precision, and Recall. 

8.2 Conclusion 
While the evolution of IoT forensics has led researchers to start thinking of ways to 

develop specialised tools and software tailored to address the unique challenges 

posed by IoT ecosystems, the available frameworks often lean more towards the 

theoretical than the practical. Theoretical frameworks provide a conceptual 

understanding of how IoT forensic investigations should be conducted, but they often 

lack the detailed guidance needed for real-world implementation. This divide between 

theory and practice further accentuates the need for standardised regulations and 

methodologies that can bridge this gap. 

Another significant concern is the lack of real-life scenarios to test and refine IoT 

forensic research and development. Without access to diverse and realistic case 

studies, it becomes challenging to validate and improve existing forensic techniques, 

tools, and frameworks. Real-life scenarios are essential for assessing the 

effectiveness of digital forensic approaches in different IoT contexts and uncovering 

potential limitations and areas for improvement. 

Furthermore, the available IoT simulated datasets often fall short in representing the 

complexity and diversity of real-world IoT scenarios. These datasets might not 

accurately capture the intricacies of IoT device interactions, data generation, and 

transmission within dynamic environments. Consequently, relying solely on such 
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simulated datasets can hinder the development of robust forensic methodologies that 

can effectively address the challenges of real-world IoT investigations. 

As the significance of IoT digital forensics gains recognition, the establishment of 

standardised security practices and best-in-class methodologies becomes crucial. The 

IoT industry is gradually acknowledging the necessity of uniformity in security and 

forensic procedures, paving the way for greater consistency and reliability in 

investigations. To address the lack of standardised regulations, the theoretical nature 

of existing frameworks, the dearth of real-life scenarios, and the unsuitability of 

available datasets, there is a pressing need to develop new datasets that accurately 

reflect the complexities of IoT environments. These datasets should encompass a 

variety of devices, communication protocols, and dynamic scenarios to enable 

researchers and practitioners to create, test, and refine forensic techniques that are 

truly applicable to the challenges of IoT investigations. Only through such 

advancements can IoT digital forensics effectively keep pace with the rapid evolution 

of IoT technologies and the diverse array of challenges they bring. 

The statistical analysis of the integration of SDR encoding resulted in a noteworthy 

advancement: Accuracy increased by a significant 17%, and Recall demonstrated a 

remarkable surge of more than 45%. Furthermore, when examining the IForest 

algorithm, Precision scores exhibited an impressive rise from 27% to 49%, indicating 

a notable uplift of 22%. Notably, the F1 Measure, a critical metric that balances 

Precision and Recall, experienced a substantial improvement of 29%, progressing 

from an initial score of 36% to an impressive 65%. These percentage increments 

highlight the tangible improvements achieved through the strategic fusion of SDR 

encoding with state-of-the-art algorithms. 

The behaviour patterns learned from the data stream at different hierarchical levels of 

the proposed approach, along with the enhanced semantic representation of the data 

using HI-SDR encoding, are effectively fused through innovative combinations with 

state-of-the-art model to produce better performance. As a result, these findings 

provide substantial support for the proposed hypothesis. 

8.3 Contributions to Knowledge 
The contributions to knowledge offered by this thesis are divided into primary and 

secondary contributions and are summarised as follows: 



206 
 

1. The primary contributions are: 

(a) A novel IoT forensic framework has been proposed, addressing legal 

and technical challenges in IoT forensic processes. This framework 

offers a structured approach for investigators to navigate the 

complexities of IoT environments, facilitating efficient and effective 

investigations. 

(b) Validation of the proposed framework by selecting acceptable Machine 

Learning technique for analysing IoT forensic data. The introduction of a 

new approach of applying HI-SDR as an input to state-of-the-art anomaly 

detectors represents a significant contribution. This technique enhances 

the accuracy of anomaly detection algorithms, contributing to improved 

forensic investigations in IoT environments. Performance testing of the 

proposed approach is comprehensively provided to show how it has 

been fused with the state-of-the-art models and how it improves the 

performance of these models. 

2. The secondary contributions are: 

(a) A comprehensive SLR of IoT forensics and a review of the current legal 

and technical challenges of IoT forensics. The SLR identified gaps in 

existing IoT forensic frameworks, methodologies, and models and 

highlighted the need for practical and validated approaches. The review 

sets the stage for further research by identifying future directions for the 

research community. 

(b) Generation of an IoT Forensic dataset of a smart home capturing 

forensically simulated scenarios with annotated anomalies. A review of 

the literature on smart homes highlights the absence of a standardised 

dataset specifically designed for IoT forensics within smart 

environments. Utilising OpenSHS, this research emulated forensic 

scenarios in the daily routines of a smart home resident and provided 

annotations to the dataset. This dataset is now publicly accessible, 

enabling the research community to test and evaluate their machine 

learning algorithms and develop intelligent applications to aid the Digital 

Forensics domain. 
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8.4 Future Work 
The culmination of this research project has revealed significant insights into the realm 

of IoT forensics, encompassing challenges, opportunities, and novel methodologies. 

Yet, as the IoT and digital forensics domains continue to evolve, numerous areas for 

future research and development come into focus. This section presents potential 

directions for further exploration and refinement within the realm of this research. 

An important avenue for future work involves enhancing standardisation and 

guidelines in IoT digital forensics. Although this thesis has reviewed some of the legal 

aspects surrounding IoT forensics and proposed some guidelines, there remains much 

to be done. The absence of universally accepted regulations and protocols remains a 

challenge. Collaborative efforts between legal experts, cybersecurity professionals, 

digital forensics practitioners, and IoT industry stakeholders are essential to establish 

comprehensive standards that address the unique features of IoT devices and 

environments. 

The gap between theoretical frameworks and practical implementation is another area 

warranting attention. While this thesis has introduced a novel IoT forensic framework, 

bridging this gap is crucial. Future research should be geared towards providing 

detailed implementation guidelines, methodologies, and toolkits aligned with the 

proposed frameworks. Practical resources would empower investigators to apply 

frameworks effectively in real-world situations, ensuring consistency and reliability in 

IoT forensic investigations. 

To overcome the limitations of simulated datasets and better represent real-world IoT 

environments, generating authentic case studies and datasets is essential. These 

case studies should encompass diverse IoT devices, communication protocols, and 

dynamic scenarios. Researchers and practitioners can then use these real-life 

scenarios to validate and refine forensic methodologies, tools, and frameworks. 

One of the key challenges in IoT forensics research is the absence of standardised 

and representative datasets for anomaly detection. Reliable datasets are essential to 

validate any anomaly detection methods for forensics. Yet, the very nature of 

anomalies makes detection a complex endeavour. In smart home contexts, anomalies 

are rare and inherently subjective. Each resident has distinct habits and routines, 

making it challenging to impartially determine if an event is anomalous. Recognising 
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this subjectivity, this research allowed the participants to classify events as anomalies 

based on their personal routines. The dataset then recorded these participant-defined 

anomalies. For future studies, it would be beneficial to develop datasets employing the 

same approach but delving into intricate scenarios and representing multiple 

residents. 

Exploring advanced machine learning approaches within IoT forensics holds potential 

for further advancement. Integration of deep learning techniques, such as 

convolutional neural networks (CNNs) and recurrent neural networks (RNNs), could 

enhance anomaly detection accuracy. Techniques like transfer learning and ensemble 

methods could also lead to more robust solutions. 

In light of data privacy concerns, research should focus on privacy-preserving forensic 

techniques. Methods for extracting relevant forensic evidence while upholding privacy 

and adhering to regulations deserve exploration. Techniques like differential privacy 

and homomorphic encryption could be integrated into IoT forensic methodologies to 

ensure responsible data handling. 

Interdisciplinary collaboration emerges as a crucial aspect. Engaging legal experts, 

cybersecurity specialists, data scientists, and digital forensics practitioners in 

collaborative efforts can lead to integrated solutions. This approach could yield unified 

tools, methodologies, and frameworks addressing the multifaceted challenges of IoT 

investigations. 

In conclusion, the potential for innovative research and practical solutions in IoT digital 

forensics is substantial. As IoT technologies continue reshaping our world, the digital 

forensics field must evolve concurrently to address challenges and opportunities. The 

suggestions provided offer a roadmap for researchers, practitioners, and industry 

stakeholders to collectively contribute to IoT forensics, upholding the security and 

integrity of our interconnected world. This thesis has explored the complex landscape 

of IoT forensics, laying the groundwork for practical solutions that can enhance digital 

investigations in the era of IoT. The proposed IoT forensic framework, the application 

of HI-SDR encoding to improve the performance for anomaly detection, and the 

insights gained from this research contribute to the advancement of knowledge in the 

field, enabling more effective and efficient approaches to address the challenges 

posed by IoT environments. 
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APPENDICES  

Appendix A: Isolation Forest Implementation Code 

 
import pandas as pd 
import numpy as np 
from itertools import cycle 
from sklearn.ensemble import IsolationForest 
from sklearn import metrics 
 
bankdata = pd.read_csv('D:/dataset.csv') 
testing = pd.read_csv('D:/dataset.csv') 
 
testing_data = testing.drop('timestamp', axis=1) 
print ("Shape of testing_data_full>>>>>>>>>>", 
testing_data.shape) 
processed_data = bankdata.drop('Activity', axis=1) 
processed_data = processed_data.drop('timestamp', axis=1) 
 
num_of_samples= 524287 
num_of_training_samples= 170000 
 
processed_data = processed_data[0:num_of_samples] 
print ("shape of processed data>>>>>>>>>>", 
processed_data.shape) 
 
training_data = processed_data[0:num_of_training_samples] 
print ("shape of training data>>>>>>>>>>", 
training_data.shape) 
 
testing_data = 
testing_data[num_of_training_samples+1:num_of_samples] 
print ("shape of testing data>>>>>>>>>>", testing_data.shape) 
 
# ## Convert pd dataframe to numpy arry - and loop round array 
to select data row by row. Next step we feed each row to 
encoder to compue SDR for each row 
 
a = [] * 1 
a = np.array(a, dtype= 'i4') 
 
a = np.append(a, processed_data) 
print ("shape of a data>>>>>>>>>>", a.shape) 
 
################DEFINE and Fit the model######### 
## 'some of the parameters in IsolationForest are important 
for model optimisation .. important one is contamination' 
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model = IsolationForest(n_estimators=100, max_samples='auto', 
contamination='auto', max_features=1.0) 
 
input = (a.reshape(-1,29)) 
print ("shape of input >>>>>>>>>>", input.shape) 
training = input[0:num_of_training_samples] 
 
testing = input[num_of_training_samples+1:num_of_samples] 
 
model.fit(training) 
 
 
print("=================testing for 
IForest==================================") 
 
testing_data['anomaly'] = model.predict(testing) 
 
print ('----- model prediction --> number of 1 and -1') 
print(testing_data['anomaly'].value_counts()) 
 
print ('f1 =') 
print (metrics.f1_score(testing_data['Activity'], 
testing_data['anomaly'], average='weighted', 
labels=np.unique(testing_data['anomaly']))) 
print ('Accuracy') 
print (metrics.accuracy_score(testing_data['Activity'], 
testing_data['anomaly'],normalize=True)) 
print ('Precision') 
print (metrics.precision_score(testing_data['Activity'], 
testing_data['anomaly'], average='weighted', 
labels=np.unique(testing_data['anomaly']))) 
print ('Recall') 
print (metrics.recall_score(testing_data['Activity'], 
testing_data['anomaly'], average='weighted', 
labels=np.unique(testing_data['anomaly']))) 
 
print("=================End of testing for 
IForest==================================") 
 

Appendix B: OCSVM Implementation Code 

 
import pandas as pd 
import numpy as np 
from sklearn.svm import OneClassSVM as svm 
from sklearn import metrics 
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bankdata = pd.read_csv('D:/dataset.csv') 
testing = pd.read_csv('D:/dataset.csv') 
 
testing_data = testing.drop('timestamp', axis=1) 
print ("Shape of testing_data_full>>>>>>>>>>", 
testing_data.shape) 
processed_data = bankdata.drop('Activity', axis=1) 
processed_data = processed_data.drop('timestamp', axis=1) 
 
num_of_samples= 524287 
num_of_training_samples= 170000 
 
processed_data = processed_data[0:num_of_samples] 
print ("shape of processed data>>>>>>>>>>", 
processed_data.shape) 
 
training_data = processed_data[0:num_of_training_samples] 
print ("shape of training data>>>>>>>>>>", 
training_data.shape) 
 
testing_data = 
testing_data[num_of_training_samples+1:num_of_samples] 
print ("shape of testing data>>>>>>>>>>", testing_data.shape) 
 
# ## convert pd dataframe to numpy arry - and loop round array 
to select data row by row. Next step we feed each row to 
encoder to compue SDR for each row 
 
a = [] * 1 
a = np.array(a, dtype= 'i4') 
 
a = np.append(a, processed_data) 
print ("shape of a data>>>>>>>>>>", a.shape) 
 
################DEFINE and Fit the model######### 
## 'some of the parameters in IsolationForest are important 
for model optimisation .. important one is contamination' 
 
################divide data into training and test 
sets########### 
 
clf = svm(gamma='scale').fit(training) 
 
testing_data['CLF_anomaly'] = clf.predict(testing) 
 
##########Evaluation 
print ("Testing for OCSVM 
=========================================================") 
print ('CLF_f1 =') 
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print (metrics.f1_score(testing_data['Activity'], 
testing_data['CLF_anomaly'], average='weighted', 
labels=np.unique(testing_data['CLF_anomaly']))) 
print ('CLF_Accuracy') 
print (metrics.accuracy_score(testing_data['Activity'], 
testing_data['CLF_anomaly'],normalize=True)) 
print ('CLF_Precision') 
print (metrics.precision_score(testing_data['Activity'], 
testing_data['CLF_anomaly'], average='weighted', 
labels=np.unique(testing_data['CLF_anomaly']))) 
print ('CLF_Recall') 
print (metrics.recall_score(testing_data['Activity'], 
testing_data['CLF_anomaly'], average='weighted', 
labels=np.unique(testing_data['CLF_anomaly']))) 
print ("End of Testing for SVM 
=========================================================") 
 
 

Appendix C: Isolation Forest with HI-SDR Implementation Code 

import self 
import xxhash 
import pandas as pd 
import numpy as np 
import pickle 
from itertools import cycle 
from sklearn.ensemble import IsolationForest 
from sklearn import metrics 
 
 
bankdata = pd.read_csv('D:/dataset.csv') 
testing = pd.read_csv('D:/dataset.csv') 
 
testing_data = testing.drop('timestamp', axis=1) 
print ("Shape of testing_data_full>>>>>>>>>>", 
testing_data.shape) 
processed_data = bankdata.drop('Activity', axis=1) 
processed_data = processed_data.drop('timestamp', axis=1) 
 
num_of_samples= 524287 
 
num_of_training_samples= 170000 
 
processed_data = processed_data[0:num_of_samples] 
print ("shape of processed data>>>>>>>>>>", 
processed_data.shape) 
 
training_data = processed_data[0:num_of_training_samples] 
print ("shape of training data>>>>>>>>>>", 
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training_data.shape) 
 
testing_data = 
testing_data[num_of_training_samples+1:num_of_samples] 
print ("shape of testing data>>>>>>>>>>", testing_data.shape) 
 
##Build SDR## 
 
def build_sdr(hash, n, w, partitions): 
    sdr = [0] * n 
    skip = int(n / partitions) # 500/5 = 100 
    hash_digits = str(hash) 
 
    if w > (skip / 10): #100/10 = 10 
        # We divide by 10 because we have 10 possible values 
per hash digit. 
  
        raise ValueError('Not enough space. Please change the 
parameters values.') 
 
    for i, d in enumerate(cycle(hash_digits), start=0): 
        if i == partitions: 
            break 
 
        # Calculating the relative index position (0:far left, 
9:far right) in a partition 
        ri = int(d) + 1 
 
        pct = float(ri) / 10 
        ri = int(round(skip * pct)) - 1 
 
        for j in range(w): 
            diff = (w - 1) 
            sdr[ri + (i * skip) + j - diff] = 1 
 
    return sdr 
def xxhash32_encoder(processed_data_row): 
    row = ''.join(map(str, processed_data_row)) 
    row = str.encode(row) 
    x = xxhash.xxh32() 
    x.update(row) 
    hash = x.intdigest() 
    return abs(hash) 
 
###############this is weher we start to use 2 functions 
created above: 1. xxhash32_encoder and 2. build_sdr 
 
## convert pd dataframe to numpy arry - and loop round array 
to select data row by row. Next step we feed each row to 
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encoder to compue SDR for each row 
 
processed_data = np.array(processed_data) 
 
a = [] * 1 
a = np.array(a, dtype= 'i4') 
n = 300 
w = 3 
p = 1 
for row in processed_data: 
   hash = xxhash32_encoder(row) 
 
   sdr_data = np.array(build_sdr(hash, n=n, w=w, 
partitions=p)) 
   #print ("SDR", sdr_data) 
   a = np.append(a, sdr_data) 
print ("shape of a data>>>>>>>>>>", a.shape) 
 
################DEFINE and Fit the model##### 
####### 'some of parameters in IsolationForest are important 
for model optimisation .. important one is contamination' 
 
model = IsolationForest(n_estimators=100, max_samples='auto', 
contamination='auto', max_features=1.0) 
sdrinput = (a.reshape(-1,n)) 
##############################################################
##############################################################
#################### 
# Convert the numpy array to a pandas DataFrame 
sdr_df = pd.DataFrame(sdrinput) 
 
# Save the DataFrame to a CSV file 
sdr_df.to_csv('sdrinput.csv', index=False) 
##############################################################
##############################################################
#################### 
 
print ("shape of SDR Input>>>>>>>>>>", sdrinput.shape) 
sdrtraining = sdrinput[0:num_of_training_samples] 
print ("Shape of sdrtraining>>>>>>>>>>", sdrtraining.shape) 
 
model.fit(sdrtraining) 
 
print("=================testing for SDR  + 
IForest==================================") 
print ("Shape of sdrinput>>>>>>>>>>", sdrinput.shape) 
 
sdrtesting=sdrinput[num_of_training_samples + 
1:num_of_samples] 
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print ("Shape of testing_data>>>>>>>>>>", testing_data.shape) 
print ("Shape of sdrtesting>>>>>>>>>>", sdrtesting.shape) 
 
testing_data['anomaly'] = model.predict(sdrtesting) 
 
############################################################## 
# sdrtesting is a numpy array 
np.savetxt('sdrtesting.csv', sdrtesting, delimiter=',') 
##############################################################
##############################################################
#################### 
 
print ('----- model prediction --> number of 1 and -1') 
print(testing_data['anomaly'].value_counts()) 
 
print ('f1 =') 
print (metrics.f1_score(testing_data['Activity'], 
testing_data['anomaly'], average='weighted', 
labels=np.unique(testing_data['anomaly']))) 
print ('Accuracy') 
print (metrics.accuracy_score(testing_data['Activity'], 
testing_data['anomaly'],normalize=True)) 
print ('Precision') 
print (metrics.precision_score(testing_data['Activity'], 
testing_data['anomaly'], average='weighted', 
labels=np.unique(testing_data['anomaly']))) 
print ('Recall') 
print (metrics.recall_score(testing_data['Activity'], 
testing_data['anomaly'], average='weighted', 
labels=np.unique(testing_data['anomaly']))) 
 
print("=================End of testing for SDR  + 
IForest==================================") 
 

Appendix D: OCSVM with HI-SDR Implementation Code 

import xxhash 
import pandas as pd 
import numpy as np 
from sklearn.svm import OneClassSVM as svm 
from itertools import cycle 
from sklearn.ensemble import IsolationForest 
from sklearn import metrics 
 
bankdata = pd.read_csv('D:/dataset.csv') 
testing = pd.read_csv('D:/dataset.csv') 
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testing_data = testing.drop('timestamp', axis=1) 
print ("Shape of testing_data_full>>>>>>>>>>", 
testing_data.shape) 
processed_data = bankdata.drop('Activity', axis=1) 
processed_data = processed_data.drop('timestamp', axis=1) 
 
num_of_samples= 524287 
 
num_of_training_samples= 170000 
 
processed_data = processed_data[0:num_of_samples] 
print ("shape of processed data>>>>>>>>>>", 
processed_data.shape) 
 
training_data = processed_data[0:num_of_training_samples] 
print ("shape of training data>>>>>>>>>>", 
training_data.shape) 
 
testing_data = 
testing_data[num_of_training_samples+1:num_of_samples] 
print ("shape of testing data>>>>>>>>>>", testing_data.shape) 
 
##Build SDR## 
 
def build_sdr(hash, n, w, partitions): 
    sdr = [0] * n 
    skip = int(n / partitions) # 500/5 = 100 
    hash_digits = str(hash) 
 
    if w > (skip / 10): #100/10 = 10 
        # We divide by 10 because we have 10 possible values 
per hash digit. 
 
        raise ValueError('Not enough space. Please change the 
parameters values.') 
 
    for i, d in enumerate(cycle(hash_digits), start=0): 
        if i == partitions: 
            break 
 
        # Calculating the relative index position (0:far left, 
9:far right) in a partition 
        ri = int(d) + 1 
 
        pct = float(ri) / 10 
        ri = int(round(skip * pct)) - 1 
 
        for j in range(w): 
            diff = (w - 1) 
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            sdr[ri + (i * skip) + j - diff] = 1 
 
    return sdr 
def xxhash32_encoder(processed_data_row): 
    row = ''.join(map(str, processed_data_row)) 
    row = str.encode(row) 
    x = xxhash.xxh32() 
    x.update(row) 
    hash = x.intdigest() 
    return abs(hash) 
 
###############this is where we start to use 2 functions 
created above: 1. xxhash32_encoder and 2. build_sdr 
 
## convert pd dataframe to numpy arry - and loop round array 
to select data row by row. Next step we feed each row to 
encoder to compue SDR for each row 
 
processed_data = np.array(processed_data) 
 
a = [] * 1 
a = np.array(a, dtype= 'i4') 
n = 300 
w = 3 
p = 1 
for row in processed_data: 
   hash = xxhash32_encoder(row) 
 
   sdr_data = np.array(build_sdr(hash, n=n, w=w, 
partitions=p)) 
   #print ("SDR", sdr_data) 
   a = np.append(a, sdr_data) 
print ("shape of a data>>>>>>>>>>", a.shape) 
sdrinput = (a.reshape(-1,n)) 
 
############################################################## 
# Convert the numpy array to a pandas DataFrame 
sdr_df = pd.DataFrame(sdrinput) 
 
# Save the DataFrame to a CSV file 
sdr_df.to_csv('sdrinput.csv', index=False) 
############################################################## 
 
print ("shape of SDR Input>>>>>>>>>>", sdrinput.shape) 
sdrtraining = sdrinput[0:num_of_training_samples] 
print ("Shape of sdrtraining>>>>>>>>>>", sdrtraining.shape) 
 
sdrtesting=sdrinput[num_of_training_samples + 
1:num_of_samples] 
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#############Training the Algorithm >>> svm 
 
clf = svm(gamma='scale').fit(sdrtraining) 
##clf.predict(X) 
testing_data['CLF_anomaly'] = clf.predict(sdrtesting) 
 
##########Evaluation 
print ("Testing for SDR + SVM 
=========================================================") 
print ('CLF_f1 =') 
print (metrics.f1_score(testing_data['Activity'], 
testing_data['CLF_anomaly'], average='weighted', 
labels=np.unique(testing_data['CLF_anomaly']))) 
print ('CLF_Accuracy') 
print (metrics.accuracy_score(testing_data['Activity'], 
testing_data['CLF_anomaly'],normalize=True)) 
print ('CLF_Precision') 
print (metrics.precision_score(testing_data['Activity'], 
testing_data['CLF_anomaly'], average='weighted', 
labels=np.unique(testing_data['CLF_anomaly']))) 
print ('CLF_Recall') 
print (metrics.recall_score(testing_data['Activity'], 
testing_data['CLF_anomaly'], average='weighted', 
labels=np.unique(testing_data['CLF_anomaly']))) 
print ("End of Testing for SDR + SVM 
=========================================================") 
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Appendix E: Sample Datasets 

 

wardrobe tv oven officeLightofficeDoorofficeDoorofficeCarpoffice mainDoor mainDoor livingLight livingCarp kitchenLighkitchenDookitchenDo kitchenCarhallwayLigfridge couch bedroomLbedroomDbedroomDbedroomCbedTableLbed bathroom bathroom bathroom bathroom Activity timestamp
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 2021-03-01 07_55_16
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 2021-03-01 07_55_17
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 2021-03-01 07_55_18
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2021-03-01 07_55_19
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2021-03-01 07_55_20
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 2021-03-01 07_55_21
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 2021-03-01 07_55_22
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 2021-03-01 07_55_23
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 2021-03-01 07_55_24
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 2021-03-01 07_55_25
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 2021-03-01 07_55_26
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 2021-03-01 07_55_27
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 2021-03-01 07_55_28
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 2021-03-01 07_55_29
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 2021-03-01 07_55_30
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 2021-03-01 07_55_31
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 2021-03-01 07_55_32
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 2021-03-01 07_55_33
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 2021-03-01 07_55_34
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 2021-03-01 07_55_35
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 2021-03-01 07_55_36
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 2021-03-01 07_55_37
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 2021-03-01 07_55_38
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 2021-03-01 07_55_39
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 2021-03-01 07_55_40
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 2021-03-01 07_55_41
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 2021-03-01 07_55_42
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 2021-03-01 07_55_43
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