Sadegh-Zadeh, Seyed-Ali, Bagheri, Mahshid and Saadat, Mozafar (2024) Decoding children dental health risks: a machine learning approach to identifying key influencing factors. Frontiers in Artificial Intelligence, 7. ISSN 2624-8212
frai-07-1392597 (1).pdf - Publisher's typeset copy
Available under License Type Creative Commons Attribution 4.0 International (CC BY 4.0) .
Download (1MB) | Preview
Abstract or description
Introduction and objectives: This study investigates key factors influencing dental caries risk in children aged 7 and under using machine learning techniques. By addressing dental caries’ prevalence, it aims to enhance early identification and preventative strategies for high-risk individuals.
Methods: Data from clinical examinations of 356 children were analyzed using Logistic Regression, Decision Trees, and Random Forests models. These models assessed the influence of dietary habits, fluoride exposure, and socio-economic status on caries risk, emphasizing accuracy, precision, recall, F1 score, and AUC metrics.
Results: Poor oral hygiene, high sugary diet, and low fluoride exposure were identified as significant caries risk factors. The Random Forest model demonstrated superior performance, illustrating the potential of machine learning in complex health data analysis. Our SHAP analysis identified poor oral hygiene, high sugary diet, and low fluoride exposure as significant caries risk factors.
Conclusion: Machine learning effectively identifies and quantifies dental caries risk factors in children. This approach supports targeted interventions and preventive measures, improving pediatric dental health outcomes.
Clinical significance: By leveraging machine learning to pinpoint crucial caries risk factors, this research lays the groundwork for data-driven preventive strategies, potentially reducing caries prevalence and promoting better dental health in children.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | pediatric dentistry, machine learning, risk assessment, predictive analytics, oral hygiene, epidemiology of caries, data-driven healthcare |
Faculty: | School of Digital, Technologies and Arts > Computer Science, AI and Robotics |
Depositing User: | Ali SADEGH ZADEH |
Date Deposited: | 08 Jul 2024 09:22 |
Last Modified: | 08 Jul 2024 09:22 |
URI: | https://eprints.staffs.ac.uk/id/eprint/8319 |