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Abstract: Explainable artificial intelligence (XAI) is crucial for enhancing transparency and trust in
machine learning models, especially for tabular data used in finance, healthcare, and marketing. This
paper surveys XAI techniques for tabular data, building on] previous work done, specifically a survey
of explainable artificial intelligence for tabular data, and analyzes recent advancements. It categorizes
and describes XAI methods relevant to tabular data, identifies domain-specific challenges and gaps,
and examines potential applications and trends. Future research directions emphasize clarifying
terminology, ensuring data security, creating user-centered explanations, improving interaction,
developing robust evaluation metrics, and advancing adversarial example analysis. This contribution
aims to bolster effective, trustworthy, and transparent decision making in the field of XAI.

Keywords: explainable artificial intelligence (XAI); tabular data; interpretable; machine learning
(ML)

1. Introduction

Artificial intelligence (AI) and machine learning (ML) algorithms are used to build
models capable of achieving impressive performance with regards to prediction or clas-
sification accuracy in a wide range of domains. However, they typically have a complex,
black-box structure that prevents users from gaining a better understanding of the data or
the task. As a result, the field of explainable artificial intelligence (XAI) has developed and
grown, generating a lot of research in recent years. It is a fast-moving research field, and one
in which XAI tries to show the workings of black box algorithms in a more transparent and
more easily understood way for users who have a variety of diverse levels of knowledge.
This is especially important when the data and models are used to make safety-critical
decisions, such as in medical diagnostics or in financial risk assessments, where incorrect
decisions could be made due to bias and false correlations in the data and the model [1].
Another driver for the development of XAI is the right to an explanation for users, which is
enshrined in law in the European Union General Data Protection Regulations (GDPR).

Understanding how and why ML models make the decisions they do allows for deeper
trust to be fostered in AI and better ethical AI solutions because not only is there trust but
also accountability [2]. Making explanations easier to understand can function as a driver
for the adoption of further AI [3].

Tabular data are the main type of data that companies and businesses deal with, it
can be structured or semi-structured, and much of it is in tables, spreadsheets, databases,
and data warehouses. In the case of tabular data, XAI becomes particularly important
because many industries and applications rely on this type of data for decision making,
such as in finance, healthcare, marketing, and many other areas [4,5]. These are shown in
Table 1, which gives the domains and the areas in which explainable tabular data are used.
The areas of usage are discussed in more detail in Section 5. Figure 1 illustrates keywords
and terms used in explainable tabular data and shows how they interrelate. XAI is the
interface between ML models and human decision makers; it allows for ethical, effective,
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and trustworthy decision making in diverse domains [3,6]. XAI increases trust, but it is not
enough nor needed for trust. A complete understanding of a model does not stop it from
being untrustworthy if it is faulty. Yet models that are not understood can and are trusted
by people, for example, a smart TV.
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Figure 1. Key words used in the context of explainable tabular data.

Table 1. Showing domains and examples of uses of explainable tabular data in those domains.

Domains Examples of Applications of Explainable Tabular Data

Financial Sector Identity verification in client onboarding

Transaction data analysis

Fraud detection in claims management

Anti-money laundering monitoring

Financial trading

Risk management

Processing of loan applications

Bankruptcy prediction

Insurance industry Insurance premium calculation

Healthcare Sector Patient diagnosis

Drug efficacy

Personalized healthcare

Fraud Identification of fraudulent transactions
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Table 1. Cont.

Domains Examples of Applications of Explainable Tabular Data

Retail Sector Customer churn prediction

Improve product suggestions to a customer

Customer segmentation

Human resources Employee churn prediction

Evaluate employee performance

Manufacturing Sector Logistics and supply chain management

Order fulfilment

Quality control

Process control

Planning and scheduling

Predictive maintenance

Utility Sector Smart grid load balancing

Forecast energy consumption for customers

Education Predict student adaptability

Predict student exam grades

Course recommendations

Explainable AI is an important field of research in which several surveys have been
carried out, with some examining its specific role with regards to tabular data [5], a survey
of explainable supervised machine learning [2], a survey on XAI and natural language
explanations [7], revealing black box logic [8], a methods-centric overview with concrete
examples [4], a systematic survey of surveys on methods and concepts [9], from approaches,
limitations, and applications aspects [10]. Sahakyan et al., compiled a survey of XAI used
with tabular data, claiming that, to their knowledge, it was the first survey of this type [5].
Tabular data are used in a myriad of different disciplines, which makes it surprising that
there are not more specific XAI methods for it.

This research article seeks to build on the work done by Sahakyan et al., by providing
an up-to-date survey of XAI techniques relevant to tabular data by thoroughly analyzing
previous studies. The method used in this literature review is shown in Figure 2. Initially,
the research topic was defined to understand the scope of the review. Key words were
chosen, and several digital library databases, Google Scholar, IEEE Xplore, ACM Digital
Library, PubMed, Scopus, and Science Direct, were searched using the key words ‘Explain-
able artificial intelligence’, ‘XAI’, ‘survey’, and ‘tabular data’, and limited to the years 2021
to 2024, these being the years following Sahakyan et al.’s survey on XAI for tabular data [5].
Table 2 details the reasons for choice of databases, and Figure 2 shows the way in which
the articles were selected.

Table 2. Showing the databases chosen and the reasons for their choice.

Database Reasons

Google
Scholar

Comprehensive Coverage: Accesses a wide range of disciplines and sources,
including articles, theses, books, and conference papers, providing a broad view
of available literature.
User-Friendly Interface: Easy to use, making it accessible
Citation Tracking: Shows how often articles have been cited and helps to gauge
their influence and relevance.
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Table 2. Cont.

Database Reasons

IEEE Xplore

Specialised Focus: On electrical engineering, computer science, and electronics.
High-Quality Publications: Includes peer-reviewed journals and conference
proceedings from reputable organizations.
Cutting-Edge Research: Provides access to the latest research published in
technology and engineering.

ACM Digital
Library

Focus on Computing and Information Technology: Resources specifically related
to computing, software engineering, and information systems.
Peer-Reviewed Content: High academic quality through rigorous peer review.
Conference Proceedings: Important conferences in computing, giving the latest
research developments.

PubMed

Biomedical Focus: A vast collection of literature in medicine, life sciences, and
health, often innovative computing solutions.
Free Access: Many articles are available for free.
High-Quality Research: Peer-reviewed journals and is a trusted source for
medical and clinical research.

Scopus
Extensive Database: A wide range of disciplines
Citation Analysis Tools: Provides metrics for authors and journals.
Quality Control: Peer-reviewed literature, reliability of the sources.

ScienceDirect

Multidisciplinary Coverage: A vast collection of scientific and technical research.
Quality Journals: High-impact journals.
Full-Text Access: Access to a large number of full-text articles, facilitating
in-depth research.
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The coverage of the databases was evaluated, and the range of articles used is shown
in Figure 3. To concentrate the focus of the review, the initial selection was made from the
articles obtained from the search terms detailed in Table 3. The list of references of the
selected studies was examined to include other papers that might not have been retrieved
from the selected electronic databases. The one hundred and twenty-eight articles found
were then whittled down using the search string ‘tabular’, giving a total of twelve articles.
A further search of the twelve articles using the search string ‘Sahakyan’ left two articles.
When the field was further narrowed to articles published in 2023, the total number of
articles published was fifty-seven; five of those mention tabular data, and two of those
articles mention Sahakyan et al., Table 4 shows the search results by year, and from this it
can be seen that the interest in explainable tabular data is slowly growing. Tabular data
are found in a range of different disciplines, and XAI research is taking place, in finance,
health, management, statistics, environment, energy, law, engineering, and computing.
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Table 3. Shows the breakdown of the papers by the search terms used.

Search Terms Number of Papers

XAI AND explainable artificial intelligence 128

XAI AND explainable artificial intelligence AND 2021 28

XAI AND explainable artificial intelligence AND 2022 43
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Table 3. Cont.

Search Terms Number of Papers

XAI AND explainable artificial intelligence AND 2023 57

2021 AND tabular 2

2022 AND tabular 5

2023 AND tabular 5

2021 AND survey (in title) 5

2022 AND survey (in title) 1

2023 AND survey (in title) 8

2021 AND survey AND tabular 1

2022 AND survey AND tabular 6

2023 AND survey AND tabular 11

2021 AND survey AND tabular AND Sahakyan (Sahakyan’s article) 1

2022 AND survey AND tabular AND Sahakyan 0

2023 AND survey AND tabular AND Sahakyan 2

Figure 3 shows the breakdown of all the types of articles used in this literature review,
divided by journal and publisher. This illustrates how widespread the use of tabular data
has become.

The Objectives of This Survey

To analyze the various techniques, inputs, and methods used to build XAI models
since 2021 to determine if any newly proposed model is better for tabular data than the
already described models. This research article builds on the work done by Sahakyan
et al. by providing an up-to-date survey of XAI techniques pertinent to tabular data and
meticulously analyzing recent studies. An extensive literature review was conducted using
digital library databases, focusing on the phrases ‘Explainable artificial intelligence’, ‘XAI’,
‘survey’, and ‘tabular data’ from 2021 to 2024. The objectives of this survey are threefold:

1. To analyze the various techniques, inputs, and methods used to build XAI models
since 2021, aiming to identify any superior models for tabular data that have been
created since Sahakyan et al.’s, paper.

2. To identify and expand upon Sahakyan et al.’s description of need, challenges, gaps,
and opportunities in XAI for tabular data.

3. To explore evaluation methods and metrics used to assess the effectiveness of XAI
models specifically concerning tabular data and to see if any new metrics have
been developed.

The document is structured as follows: Section 2 introduces the theoretical foundations
of explainability, providing an overview of fundamental concepts underpinning XAI.
Section 3 delves into existing techniques for explainable tabular data analysis, categorizing
and describing different XAI techniques suitable for tabular data analysis. Section 4
highlights challenges and gaps in explainable tabular data analysis. Section 5 explores
applications of explainable tabular data analysis and its impact on decision making and
user trust in various domains. Section 6 looks ahead to future directions and emerging
trends, outlining potential research avenues in explainable tabular data analysis. Finally,
Section 7 concludes by summarizing the key findings from the literature review.

2. Background

XAI is a way of making it easier for users to understand how models obtain their
results. The main aim is to make the workings of a black box model transparent [11]. This
has meant that XAI research has burgeoned in recent years, and with it many ways to
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explain AI systems and their predictions. These methods, when integrated with an AI
system, may, but not always, meet the legal demands of legislation and guidelines such as
the GDPR’s right-to-explanation [12] and DARPA’s policies [13].

Conducting XAI research surveys is not a simple task because, not only are there
different definitions for the same word, but the taxonomies used are also different, meaning
that it is difficult to compare like with like [14–16]. Barbiero et al., have tried to remedy
this by devising a theoretical basis for XAI taxonomies [17], and Ali et al., have proposed
their own taxonomy, as have Graziani et al. [1,15]. The problem of multiple different
taxonomies continues.

The meanings of the terminology around XAI vary, with many terms having no one
agreed meaning [5,16]. Unfortunately, the various methods created have been used in
isolation, with the result that all the methods have not been brought together to form one
universally agreed way to explain all AI systems [17].

The X in XAI is referred to as ‘explainable;’ however the ML community often appears
to use the words explainability and interpretability interchangeably to explain transparency
and trust. These words, whilst not having agreed formal definitions, are slightly different.
Vilone and Longo define interpretability as “The capacity to provide or bring out the
meaning of an abstract concept” [18]. Rudin described interpretability as being a domain-
specific idea and so maintained that it could not have an all-purpose definition [19]. Barredo
Arrieta et al. define interpretability as being the ability to explain or to provide the meaning
in a human understandable way [20]. Sahakyan et al. viewed explainability as a way of
showing the features that have contributed to the result of a specific instance [5]. Barredo
Arrieta et al. also agreed with this definition, describing it as any procedure or action
conducted by the model to make clear its internal workings, meaning it provided a rationale
for its decision [20]. They also viewed explainability as being an active process, while
interpretability has been considered as being passive. Barbiero et al. argued that without
agreed explainable AI definitions based in mathematics, there are likely to be a plethora
of taxonomies containing unnecessary information, the wrong types of questions and a
narrowing of the field for future research directions, [17].

Transparency is another term that has no one agreed definition. Often transparency is
seen as an umbrella term frequently used with XAI and can be taken to mean the ability to
understand an algorithm and its decision making through such things as simulatability,
decomposability, and algorithmic transparency [5,16,20,21]. Haresamudram et al. argue
that this is all algorithm-based and should have a much broader definition, which includes
the whole life cycle. The definition would consist of algorithmic transparency, interaction
transparency, and social transparency [21]. The different aspects of transparency are
explained in Table 4.

How deep learning systems make their decisions is often known as the ‘black-box
problem’ because although it is not clear how they make decisions, they give more accurate
results. Wadden explains that the ‘black-box problem’ is not unique to AI; it occurs in
other fields. Agency is a black box in the field of youth sociology; in race and social
issues, fertility and childbirth are black-boxes [22]. The use of this term in other fields
can lead to misunderstandings, particularly when looking to use XAI in, for example,
medical settings. Burrell split the opacity problem into three parts, the first they referred
to as self-protection and concealment, where algorithms are deliberately opaque to keep
proprietary information from others [23]. The second opacity was due to the code being
indecipherable to most members of the public, and the third opacity was that which comes
from increasingly complex systems, where learning alters the original algorithm.

Sahakyan et al. also break this problem into three distinct parts: model explanation
problems, model inspection problems, and outcome explanation problems [5]. They posit
that a model explanation can be obtained by using a more transparent model to simulate
the black-box’s behavior. A model inspection explanation can be generated in visual or
textual format of some properties of the model or its output. And an outcome explanation
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can be the way an explanation of a particular instance has been generated or how it can
be altered.

Markus et al. proposed, like Sahakyan et al., three separate sorts of explanations.
The first is model-based explanations, where a simpler model is used to explain the more
complex model. The second, attribution-based explanations, where the model is explained
in terms of its input features. The third is example-based explanations, where individual
instances are examined and used to explain how the model works [24].

Table 4. Showing definitions of different aspects of transparency.

Aspects of
Transparency Definitions Reference

Transparency
Transparency does not ensure that a user will fully understand the system, but it does provide
access to all relevant information regarding the training data, data preprocessing, system
performance, and more.

[16]

Algorithmic
transparency

Refers to the user’s capacity to comprehend the process the model uses to generate a specific
output based on its input data. The main limitation for algorithmically transparent models is that
they must be entirely accessible for exploration through mathematical analysis and techniques.

[20]

Decomposability

Decomposability is the capacity to explain each component of a model, including its inputs,
parameters, and calculations. This enhances the understanding and interpretation of the model’s
behavior. However, similar to algorithmic transparency, not all models can achieve this. For a
model to be decomposable, each input must be easily interpretable, meaning complex features
may hinder this ability. Additionally, for an algorithmically transparent model to be
decomposable, all its parts must be comprehensible to a human without needing external tools.

[20]

Simulatability

This is a model’s capacity to be understood and conceptualized by a human, with complexity
being a main factor. Simple models like single perceptron neural networks fit this criterion, more
complex rule-based systems with excessive rules do not. An interpretable model should be easily
explained through text and visualizations. The model must be sufficiently self-contained for a
person to consider and reason on it as a whole.

[20]

Interaction
transparency

Is the clarity and openness in the interactions between users and AI systems? It involves giving
users feedback they understand about the system’s actions, decisions, and processes, allowing
them to understand how their inputs influence outcomes. This transparency fosters trust and
enables users to engage more effectively with technology, as they can see and understand the
rationale behind the AI’s behavior.

[21]

Social
transparency

This is the openness and clarity of an AI system’s impact on social dynamics and user
interactions. It involves making the system’s intentions, decision-making processes, and effects
on individuals and communities clear to users and stakeholders. Social transparency helps users
understand how AI influences relationships, societal norms, and behaviors, fostering trust and
the responsible use of technology.

[21]

Brożek et al. approach this problem from a legal and psychological perspective, break-
ing it down into four distinct parts: the opacity problem, the strangeness problem, the
unpredictability problem, and the justification problem [25]. They argue that ‘the human
mind is much more of a black box than the most sophisticated machine learning algo-
rithm’ [25]. In the case of the algorithms, how they work is known, even if how they arrived
at their decision is not. How the human mind works is still largely unknown. They argue
that the opacity problem is not a significant problem, as the workings of algorithms are
much better known than the workings of the human mind. They contend that algorithms
have been designed to uncover patterns beyond the grasp of the human mind. From
their perspective, while explainability is valuable, it should not hold a higher priority
than human decision making. They stated that it is the unpredictability of algorithmic
decisions that leads to human skepticism. They refer to this phenomenon as ‘strangeness’
and suggest that explanations should be approached from a psychological perspective
rather than a purely technical one.
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Comprehensibility is another term often used when explaining AI. This is often
understood as the ability of a learning algorithm to show its learned knowledge in a way
that is understandable to humans. Others refer to the quality of the language used by an
explainability method [18]. Allgaier et al. opted for a more technical approach and proposed
measures to facilitate the examination of code, like providing percentage breakdowns for
training, validation, and testing datasets. They argued that the comprehensibility of the XAI
system becomes increasingly reliant on domain knowledge as the AI application becomes
more specialized. Additionally, they recommended explaining variable names rather than
relying on abbreviations, particularly in the context of tabular data, and cautioned against
excessive length in explanations, such as overly complex decision trees [14]. Ali et al. found
that for comprehensibility, explanations need to be short and readable [1]. Table 5 shows a
summary of definitions and aspects of comprehensibility.

Table 5. Showing definitions of different aspects of comprehensibility.

Comprehensibility Definitions Reference

Comprehensibility The clarity of the language employed by a method for
providing explanations. [18]

Comprehensible systems
Understandable systems produce symbols, allowing
users to generate explanations for how a conclusion
is derived.

[18]

Degree of
comprehensibility

This is a subjective evaluation, as the potential for
understanding relies on the viewer’s background
knowledge. The more specialized the AI application,
the greater the reliance on domain knowledge for the
comprehensibility of the XAI system.

[14]

Comprehensibility of
individual explanations The length of explanations and how readable they are. [1]

Just as there are many ways of generating XAI explanations, there are also many ways
of measuring the quality of the explanations. Usually, different XAI methods yield differing
explanations on the same dataset and model; the ‘best’ metric is then selected from all
the metrics. If this is unachievable, a new XAI method might be written [26]. What do
you measure to ensure the quality of explanations? Various aspects of explanations are
checked; Li et al. devised a method of assessing consistency and run-time efficiency of
explanations [26]. Nauta et al. viewed explanation assessment as a twelve-faceted problem
and developed a twelve-property quality evaluation [27]. Their twelve properties were
correctness, consistency, completeness, continuity, contrastively, covariate completeness,
compactness, composition, confidence, context, coherence, and controllability. Lopes
et al. looked at evaluation methods as being either human centered or computer-centered
and devised their own taxonomy for evaluations [28]. They looked at trust, explanation
usefulness and satisfaction, understandability, performance, interpretability, and fidelity.
Baptista et al. evaluated SHapley Additive explanations (SHAP) explanations via the
established metrics of monotonicity, ‘trendability’, and ‘prognosability’, finding that SHAP
did trend the metrics but that model complexity could be a problem [29]. Fouladgar et al.
examined the sensitivities of time series XAI models; they found that the sensitivities varied
according to how the hyperparameters were set [30]. Oblizanov et al., used synthetic
data with local interpretable model-agnostic explanations (LIME) and SHAP and devised
a metrics calculation tool. The tool used a modified faithfulness metric, a monotonicity
metric, and an incompleteness metric. SHAP and LIME were comparable in terms of
accuracy of explanation; however, the explanations were not as accurate when used with a
decision tree compared to when they were used with linear regression [31].
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3. Existing Techniques for Explainable Tabular Data Analysis

Sahakyan et al. explained that explanations could be divided into two groups: those
that are model-specific and those that are model-agnostic. The model-specific explanations
are obtained by exploiting the model’s features and parameters; they also use the model’s
structure and its weights. Their main disadvantage is that they cannot usually be general-
ized and used on other types of models [5]. The model-agnostic explanations are generated
after a model has been trained. They can be used to explain a variety of diverse types of
models, but their main disadvantage is that the explanations may not be faithful to the
underlying AI as they are produced by a different model.

Models are often categorized into two main types of explanations: local and global.
Local explanations pertain to elucidating a single prediction, whereas global explanations
aim to expound upon the entire model’s behavior [32]. Taxonomies are established based on
the distinct approaches adopted for providing explanations, which encompass functioning-
based, result-based, conceptual, and mixed methods [32].

The functioning-based approach employs perturbation techniques, involving the ma-
nipulation of a model’s inputs to identify the most influential features, primarily focusing
on local explanations. Additionally, it can leverage the model’s structural components,
such as gradients, to determine feature importance. This approach also encompasses
meta-explanations, architectural modifications, and illustrative examples. The result-based
approach also relies on feature importance, surrogate models, and examples. The surrogate
model is a simplified rendition of the original model. The conceptual approach classifies
explanations according to overarching concepts, such as applicability, scope, problem type,
and output type. The mixed approach represents a hybrid, incorporating elements from
various other explanation approaches [32].

The explanations can be further divided into five techniques or methods [33]. The first
is explanation by simplification, where the explanation is generated through distillation
and rule extraction. The second is explanation by feature relevance, where the explanation
is generated by measuring the amount of influence a feature has on prediction. The third
is visual explanation, where explanations are in the form of pictures or plots providing
information about the model’s predictions. The fourth is explanation by concept, where a
human-relatable concept is used to generate explanations [34]. The fifth is an explanation by
example, where an explanation is generated by a factual example that justifies the outcome
predicted [35].

There are many ways of generating explanations and many different taxonomies [32].
Figure 4 shows a taxonomy based on the variety of types of explanation and is the most
like Sahakyan et al.’s, approach [33].

Several surveys on XAI and several aspects of XAI have been conducted
recently [1,4,7,8,17,36–47], to name a few. Surveys on evaluating XAI have been con-
ducted by [27], who looked at quantitative XAI evaluation methods, and [26], who defined
two metrics, consistency and efficiency, to evaluate XAI methods.
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4. Challenges and Gaps in Explainable Tabular Data Analysis

Explainable tabular data analysis plays a critical role in enhancing the transparency
and interpretability of machine learning models applied to structured data. Despite its
importance, several challenges and gaps persist in this domain, hindering its widespread
adoption and effectiveness.

In their survey, Sahakyan et al. delved into the varied types of explanation and
their adaptability to different data types. Their findings revealed that many explanation
techniques were primarily developed for image and audio data or tailored to specific AI
models, rendering them inadequately suited for tabular data types [5]. XAI techniques
are tailored for model types or data forms, and many of these techniques can be complex
and challenging to use. Moreover, these techniques face issues related to scalability and
coverage. This disparity stems from the inherent attributes of tabular data, where the
structure is defined by individual cells serving as fundamental units within the table. Each
row in a tabular dataset encapsulates unique attributes, offering a row-centric perspective,
while the columns consist of consistent data types, be it numeric or categorical values.
Unlike image data, which exhibit spatial and geometric structures, the arrangement of
columns in tabular data does not influence the integrity of the underlying information,
leading to distinct challenges in constructing adaptable and effective explanation methods
for this specific data format. Figure 5 illustrates the challenges and gaps in explainable
tabular data analysis, and how interrelated they are.
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4.1. Challenges of Tabular Data

The challenges inherent in tabular data are multifaceted, arising from issues such as
data quality, outliers, missing values, imbalanced classes, and high dimensionality. Despite
the abundance of data in tabular datasets, a sizable portion may be of inferior quality,
introducing challenges for accurate analysis and modeling. Outliers, representing extreme
values within the data, can skew results and impact the performance of machine learning
models. Additionally, the presence of missing values further complicates the analysis
process, requiring robust imputation techniques to manage the gaps in the data effectively.
Imbalanced class distributions pose challenges in classification tasks, where certain classes
are underrepresented, potentially leading to biased model outcomes. Moreover, the high
dimensionality of tabular data, characterized by many features, can overwhelm traditional
machine learning algorithms and hinder model performance.

4.2. Bias, Incomplete and Inaccurate Data

Tabular data, by their very nature, reflect the real-world phenomena it aims to capture.
If the data are incomplete, biased, or contain inaccuracies, then the insights and explanations
derived from that data are inherently limited. For example, if a dataset is missing key
variables that are important predictors of the target outcome, the XAI techniques may
end up highlighting less relevant features as being important, leading to incomplete or
potentially misleading explanations.

Similarly, if the data contain systematic biases, such as under representation of certain
demographic groups, the explanations generated may overlook or fail to account for
these biases, failing to provide a comprehensive and fair understanding of the model’s
decision-making process. This can occur deliberately and is known as fairness hacking. It
is the unethical practice of adding or removing sensitive attributes from the testing to lead
outsiders to believe that the results are fair [48]. This practice also facilitates the illegitimate
exploitation of the many definitions of fairness. This happens when tests are performed
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using many different fairness metrics, but only the metrics that produce positive results
are reported. During the process of fairness hacking, the fairness shortcomings in ML
algorithms are hidden by reporting that these algorithms are fair by certain metrics, while
the metrics that have produced negative results are suppressed. This practice undermines
transparency and accountability of explanations, as it allows organizations to misrepresent
the true fairness of their AI systems. It is important that fairness testing is conducted
comprehensively and rigorously, with all results being reported.

Noisy, or erroneous data can introduce confounding factors, making it challenging
for XAI methods to disentangle the true underlying relationships and provide accurate
explanations.

4.3. Explanation Quality

The quality of explanations can be heavily dependent on the quality and completeness
of the data used to train the machine learning models and generate the explanations. Care-
ful data curation, validation, and feature engineering become essential prerequisites for
deploying effective and trustworthy XAI systems, particularly in high-stakes applications
where the explanations play a crucial role in decision making. Addressing data quality con-
cerns should be a key consideration in the development and deployment of XAI techniques
for tabular data analysis.

4.4. Scalability of Techniques

The scalability of explainable techniques poses a significant challenge in the context of
tabular data, especially as modern datasets continue to increase in both size and complexity.
For example, in healthcare, tabular patient records encompass a wide range of medical
information, including diagnoses, treatment histories, laboratory results, and imaging
data. As these datasets expand, existing explainable methods may struggle to efficiently
process and interpret the burgeoning volume of tabular healthcare data [49]. Moreover,
large-scale tabular datasets, containing thousands or even millions of records, are increas-
ingly prevalent in various domains such as financial transactions, e-commerce sales, and
scientific research. This necessitates the development of scalable explainable techniques
capable of delivering timely and resource-efficient explanations without compromising
accuracy, particularly when analyzing vast tabular datasets to detect anomalies in financial
transactions or uncover potential disease markers in extensive genomic data. An example
of existing XAI used with tabular data is local interpretable model-agnostic explanations.
It generates explanations for specific instances, not for the whole dataset, and it can be
resource-intensive with complex models or vast datasets. Therefore, addressing the scala-
bility gap is crucial to ensure that explainable AI techniques remain practical and effective
in navigating and extracting meaningful insights from complex tabular datasets across
diverse domains, especially as the volume and complexity of tabular data continue to grow
at an unprecedented rate.

4.5. Neural Networks

Neural networks, known for their ability to manage complex patterns in data, face
limitations when dealing with such data quality issues as those found in tabular datasets.
Consequently, extensive pre-processing steps are essential to address outliers, missing
values, and other quality-related issues before leveraging neural networks for analysis.
Another critical challenge lies in the inherent complexity of learning the intricate relation-
ships between features in each dataset iteration, necessitating the relearning of structures
and patterns in each training cycle. This constant relearning process renders traditional
inductive biases used in deep learning less effective when applied to tabular data.

Furthermore, the presence of categorical features in tabular data adds another layer
of complexity, as deep learning algorithms traditionally struggle with processing this
type of data efficiently. Ensuring accurate feature importance and stability in predictions
becomes imperative, as small fluctuations in feature values can significantly impact the
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overall model predictions and result in unreliable outcomes [50]. The interplay of these
challenges underscores the need for advanced pre-processing techniques, specialized
model architectures, and robust interpretability methods to effectively navigate and extract
meaningful insights from complex tabular datasets [51]. Determining how each feature
contributes to the model predictions in the context of tabular data can be intricate, especially
when using complex machine learning algorithms. Explaining the significance of each
feature accurately for decision making is not straightforward.

4.6. XAI Methods

It is common for machine learning models that are used in tabular data analysis to
include random forests and boosting techniques, as documented by Tjoa & Guan [52]. How-
ever, Borisov et al.’s observations indicated that the most prevalent types of explainable
artificial intelligence explanations for tabular data encompass feature-highlighting explana-
tions and counterfactual explanations [50]. Despite their effectiveness it is worth noting
that these models may not offer the same level of interpretability as simpler models such as
single decision trees or logistic regression. Moreover, as the capabilities of deep learning
algorithms continue to advance, working with tabular data remains a persistent challenge.

Table 6 and Figure 6 show some of the XAI methods used with tabular data, along
with their pros and cons. The types of XAI have been classified into five groups: counterfac-
tual explanations, feature importance, feature interactions, decision rules, and simplified
models. Counterfactual explanations are a sophisticated tool for analyzing how minimal
perturbations in input features can influence model predictions. For example, they can
illustrate scenarios such as, “If the income were £5000 higher, the loan would be approved”.
These explanations typically use advanced optimization techniques to identify data points
in proximity to the original input that result in altered outcomes, utilizing methodologies
such as perturbation, generative models, or local interpretable models. While counterfac-
tuals provide clear and actionable insights, they often involve significant computational
resources and must ensure that changes remain plausible to avoid user confusion. More-
over, they may yield inconsistent results when subjected to minor variations in input
data [53]. In contrast, feature importance methods assess the quantitative impact of each
feature on the model’s predictions, utilizing techniques like permutation importance and
Shapley additive explanations. These approaches identify key features that significantly
influence outcomes and can guide model enhancements. However, they often assume that
features are independent, which can result in misleading conclusions, particularly when
features are highly correlated. Moreover, inconsistencies may occur between local and
global importance evaluations, and even minor changes to the dataset can cause significant
variations in importance rankings [54]. Feature interactions explore the combined effects of
multiple features on predictions, offering a more detailed understanding through statistical
analyses and visualizations like interaction plots. However, as the number of features
grows, complexity can complicate both interpretation and visualization. Additionally, mod-
els that emphasize feature interactions may be prone to overfitting, especially in datasets
with a limited number of samples [54]. Decision rules are logical statements that typi-
cally take the form ‘If [Condition], then [Outcome]’. It specifies a conditional relationship
where the outcome or decision is determined if the conditions specified in the rule are
satisfied [55]. The final group are simplified models. Hassija et al. refer to transferring
‘dark knowledge’, complex and hidden insights from sophisticated black-box models to
simpler ones like decision trees. This transfer allows these streamlined models to match
the predictive capabilities of more complex systems while enhancing interpretability [54].
Simplified models, such as linear approximations or decision trees, aim to approximate
the decision boundaries of complex models while preserving interpretability. While these
models generally exhibit faster computation times and enhanced understandability, they
often incur substantial accuracy losses and may introduce biases due to their restricted
representation of feature relationships. Their effectiveness can also diminish outside the
specific context of the evaluated instance, leading to a false sense of model reliability.
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Table 6. Types of XAI for tabular data and their pros and cons.

Summary of XAI Types

Type of XAI Description Examples Pros Cons Evaluation

Counterfactual
explanations

Counterfactual explanations
illustrate how minimal
changes in input features can
change the model’s
prediction, e.g., “If income
increases by £5000, the loan is
approved”.

DiCE

Causal insight—understand
the causal relationship
between input features and
predictions.

Complexity—generating
counterfactuals is
computationally intensive,
particularly for complex models
and high-dimensional data.

Alignment with predicted
outcome—ensuring the generated
counterfactual instances closely reflect the
intended predicted outcome.

WatcherCF

Personalized
explanations—tailors
individualized insights for
better insights.

Complexity—generating
counterfactuals is
computationally intensive,
particularly for complex models
and high-dimensional data.

Alignment with predicted
outcome—ensuring the generated
counterfactual instances closely reflect the
intended predicted outcome.

GrowingSpheresCF

Decision support—aids
decision making with
actionable outcome-focused
changes

Model specificity—effectiveness
is influenced by the underlying
model’s characteristics.

Proximity to original instance—maintaining
similarity to the original instance whilst
altering the fewest features possible.

Interpretation—conveying
implications can necessitate
domain expertise.

Diverse outputs—capable of producing
multiple diverse counterfactual
explanations.

Feasible feature values—the counterfactual
features should be practical and adhere to
the data distribution.

Feature importance

Feature importance methods
assess how much each feature
contributes to the model’s
predictions.

Permutation
Importance

Helps in feature selection and
model interpretability.

May not capture complex feature
interactions.

Relative importance—rank features based
on their contribution to the model’s
prediction.

Gain Importance.
Provides insight into the most
influential features driving
the model’s decisions.

Can be sensitive to data noise
and model assumptions.

Stability—ensure consistency of feature
importance over different subsets of the data
or re-trainings of the model.
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Table 6. Cont.

Summary of XAI Types

Type of XAI Description Examples Pros Cons Evaluation

SHAP
Model impact—Assessing the influence of
individual features on the model’s
predictive performance

LIME

Feature interactions

Feature interaction analysis
looks at how the combined
effect of multiple input
features influences the
model’s predictions.

Partial Dependence
plots

Reveals intricate and
synergistic connections
among features.

Visualizing and interpreting
features can be difficult,
especially when dealing with
high-dimensional data.

Non-linear relationships—uncovers and
visualizes complex, non-linear interactions
among the features.

Accumulated Local
Effects plots.

Enhances insight into the
model’s decision-making
mechanism.

The computational complexity
grows as the number of
interacting features increases.

Holistic insight—provides a comprehensive
understanding of how features collectively
impact the model’s predictions.

Individual
Conditional
Expectation Plots

Predictive power—evaluates the combined
effects of interacting features on the model ‘s
performance.

Interaction Values

Decision rules

Decision rules provide clear,
human-readable guidelines
derived from the model, such
as “If age > 30 and income >
50k, then approve loan”.

Decision Trees
Provides clear and intuitive
insights into the model’s
predictions.

Might struggle to capture
complex relationships in the data,
leading to oversimplification.

Transparency—offers clear and interpretable
explanations of the conditions and criteria
used for decision making.

Rule-Based Models Easily understood by
non-technical stakeholders.

Can be prone to overfitting,
reducing generalization
performance

Understandability—ensures ease of
understanding by non-technical
stakeholders and experts alike.

Anchors
Model adherence—check that decision rules
capture accurately the model’s decision logic
without oversimplification.
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Table 6. Cont.

Summary of XAI Types

Type of XAI Description Examples Pros Cons Evaluation

Simplified models

Simplified models are
interpretable machine
learning models that
approximate the behavior of
a more complex black-box
model

Generalized
Additive Models.

Gives a balance between
model interpretability and
model complexity.

Might not capture the total
complexity of the underlying
data generating process.

Balance of complexity—achieves an optimal
compromise between model simplicity and
predictive performance.

Interpretable Tree
Ensembles.

Offers global insights into the
model’s decision-making
process

Needs careful model choice and
tunning to maintain a good
trade-off between interpretability
and accuracy.

Interpretable representation—ensures that
the offers transparent and intuitive insights
into the original complex model’s behavior.

Fidelity to original model—Assesses the
extent to which the simplified model
captures the key characteristics and patterns
of the original complex model.
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Borisov et al., further pinpointed three fundamental challenges pertaining to tabular
data and deep learning, namely inference, data generation, and interpretability [50]. Tradi-
tional machine learning models such as decision trees or logistic regression are inherently
more interpretable compared to complex models like neural networks commonly used
with tabular data. Therefore, explaining the predictions of these more advanced models
becomes a challenge. Their studies revealed that decision tree ensembles outperformed
deep learning models in the context of tabular data analysis. Additionally, their research
included assessing the interpretability of these models, leading to the conclusion that
improved benchmarks for the claimed interpretability characteristics and their pragmatic
applicability are necessary requirements. This research underscores the imperative for
comprehensive assessments and benchmarks to validate the interpretability of models and
their suitability for real-world applications. These findings encourage further research and
development to address the challenges associated with deep learning algorithms and their
application to tabular data [50].

4.7. Benchmark Datasets

In the realm of tabular data, there is a significant lack of universally accepted bench-
mark datasets and evaluation frameworks. Unlike the fields of computer vision and natural
language processing, which have well-established standard benchmark datasets and evalu-
ation protocols, the landscape of tabular data remains unstandardized. Two benchmarks
used on XAI for tabular data are synthetic tabular datasets and intrusion detection datasets.
Synthetic datasets are datasets that mimic the structure and complexity of real-world tabu-
lar data, providing standardized testing environments for evaluating XAI techniques [5].
Whereas the intrusion detection datasets are real-world datasets from domains like network
security, such as flow-based network traffic data, used to assess the performance of XAI
approaches in practical applications [5].

Without clear benchmarks, comparing the performance and effectiveness of vari-
ous XAI techniques for tabular data becomes challenging. Researchers and practitioners
typically use their own custom datasets or evaluation metrics, complicating meaningful
comparisons and assessments of the generalizability of proposed methods. This lack of
standardization also impedes the development of best practices, making it difficult to
identify the most promising XAI approaches for specific tabular data problems.
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4.8. Scalability

Tabular data often consist of multiple features or attributes with varying types and
scales, requiring XAI techniques to address the complexity and dimensionality of the data
in a distinct manner [56]. Non-tabular data, such as images or text, have different properties
and may need specialized approaches for effective interpretation. The scalability of XAI
techniques varies notably between tabular and non-tabular data. Tabular data present a
particularly pronounced scalability challenge due to the growing volume and intricacy of
datasets across diverse domains.

4.9. Data Structure

The XAI used for tabular data has similarities but also differences when compared to
the XAI used with other forms of data. The key differences discussed are interpretability
techniques, where feature importance and local data instances are used more commonly
with tabular data due to the different nature of the data [56]. The inherent structure of
tabular data, with rows and columns, introduces unique challenges and opportunities for
XAI techniques compared to the non-tabular formats of other data types. For example, the
interaction between features in tabular data may require specific methods to interpret and
explain the model’s decision process [42].

For tabular data, XAI techniques often focus on interpreting the importance and
interactions of the various features or variables within the dataset. Methods such as Shapley
additive explanations (SHAP), local interpretable model-agnostic explanations (LIME), and
feature importance analysis are commonly employed to identify the key drivers behind
the model’s outputs. These techniques leverage the structured and quantitative nature of
tabular data to provide insights into the model’s decision-making process.

In contrast, XAI for image or text data may involve different approaches, such as
visualizing the regions of an image that are most salient to the model’s prediction or
highlighting the specific words or phrases that contribute the most to a text classification
outcome. These modality-specific techniques take advantage of the unique properties of
the data, such as spatial relationships in images or semantic dependencies in text.

Despite these differences, there are some common themes and approaches that span
multiple data types. For example, the concept of counterfactual explanations, which explore
“what-if” scenarios to understand how changes in the input would affect the model’s output,
can be applied to both tabular and unstructured data.

4.10. Model Evaluation and Benchmarks

To address the challenge of evaluating the practical usefulness of interpretability
methods, there is a growing emphasis on creating improved benchmarks for assessing
the interpretability characteristics of models used with tabular data [57]. These bench-
marks help validate the effectiveness of interpretability methods in real-world applications,
ensuring their reliability and utility.

Additionally, when dealing with tabular data, the black-box nature of certain machine
learning models, such as deep neural networks, presents a fundamental gap in trans-
parency [54]. In such cases, post-hoc explainable techniques like SHAP and LIME may
offer insights into model predictions but may not fully capture the underlying mechanisms
of these complex models, particularly when applied to extensive tabular datasets [58].

Moreover, the lack of consensus and standardization in assessing these explanations
adds another layer of complexity. The absence of consistent evaluation methods and
terminology in explainable AI (XAI) further complicates the comprehensive assessment of
explanations, especially in the context of diverse disciplines dealing with extensive tabular
datasets. Therefore, addressing scalability and standardization gaps becomes crucial to
ensure the practicality and effectiveness of explainable AI techniques when analyzing large
and complex tabular datasets, such as those found in healthcare, finance, and scientific
research [59].
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4.11. Review

Addressing future challenges in explainable artificial intelligence requires a multi-
faceted strategy that encompasses technological advancements, regulatory frameworks,
and ethical considerations. Enhancing interpretability could be achieved by developing
user-centric explanations tailored to various audiences and establishing standardized for-
mats for clarity. Investing in advanced visualization tools could enable users to intuitively
grasp model behavior. Tackling model complexity would involve promoting inherently
interpretable models and adopting hybrid approaches that merge complex models with
interpretable surrogates. Robust data governance is vital for maintaining data quality and
fairness, alongside regular fairness audits to identify and mitigate biases. Building trust
and accountability calls for transparency in model training and embedding explainability
as a fundamental principle from the design phase. Collaboration among AI researchers,
ethicists, and domain experts is essential for exploring new methodologies, supported
by open-source initiatives and shared benchmarks for evaluating XAI methods. Ongoing
education and training for stakeholders would enhance their understanding of XAI con-
cepts, while incorporating ethics into AI curricula would prepare future practitioners to
address the moral implications of their work. By implementing these strategies, the field
of XAI could evolve to be more effective, transparent, and trustworthy, fostering greater
acceptance and application of AI technologies in critical domains.

While XAI methods for tabular data share some similarities with those for other data
formats, the unique challenges and characteristics of tabular data necessitate the devel-
opment of specialized techniques to provide comprehensive and actionable explanations.
Understanding these nuances is crucial for selecting and applying the most appropriate
XAI approaches for a given problem and data context.

In summary, while explainable techniques hold promise for enhancing the trans-
parency and trustworthiness of machine learning models applied to tabular data, several
challenges and gaps must be addressed to realize their full potential. Overcoming these
obstacles will require interdisciplinary collaboration among researchers, practitioners, and
policymakers to develop innovative solutions and establish best practices.

5. Applications of Explainable Tabular Data Analysis

Explainable tabular data analysis has various uses across different domains where
understanding and explaining the results of machine learning models used on tabular data
are crucial. XAI is an interdisciplinary research field, and its applications can be found in
finance, healthcare, autonomous vehicles, and many more areas [11].

5.1. Financial Sector

Examples of explainable tabular data analysis use cases in the financial sector are
identity verification in client onboarding, transaction data analysis [60], fraud detection in
claims management [60,61], anti-money laundering monitoring [62], financial trading [63],
risk management [62], and the processing of loan applications, to name a few [60,61].
Černevičienė and Kabašinskas identified that credit management was an important research
area [60].

In the finance industry, banks and lending institutions use explainable tabular data
analysis to explain credit scoring models. Customers can receive explanations for not only
why their credit applications were accepted or rejected but also to help them understand
what factors influenced the decision [64]. Counterfactual explanations describe what
changes in the input data would result in a different outcome from a predictive model.
These explanations provide insights into the “what-if” scenarios by highlighting the key
features or variables that, if different, could have led to an alternate prediction or outcome.
Counterfactual explanations are particularly valuable in machine learning interpretability
as they help users understand the sensitivity of a model’s predictions to changes in input
variables and provide actionable insights for improving outcomes or understanding the
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model’s decision-making process. These explanations can be used to give customers an
idea of what they need to do to improve their credit scores.

An important area is risk management, which encompasses fraud detection, loan
default, and bankruptcy prediction [62]. XAI can identify patterns in transaction data and
explain why certain transactions are flagged as fraudulent. Post-hoc explanations such as
visual explanations, explanations by simplification, and feature relevance are the types of
XAI used.

Retail banking customer churn is another area in which XAI can be used in order to
predict which customers are likely to leave and why [65]. The types of explanations used
in this case are SHAP and LIME. The data can give information to plan a retention scheme.

5.2. Healthcare Sector

In healthcare, explainable tabular data analysis can be applied to explain the model
predictions used for patient risk assessment, diagnosis, or treatment recommendations [63].
The most commonly used type of explanation is post-hoc explanations such as LIME and
SHAP. Doctors and patients can benefit from the explanations in making personalized
healthcare decisions.

Patient diagnosis can be achieved by using tabular data from patient records. XAI
can help explain predictions made by models regarding potential diagnoses or treatment
plans [66,67].

Drug efficacy can be achieved by analyzing patient responses to treatments across
various demographics. The role of XAI is in helping to understand which factors influence
drug effectiveness [68].

Context-sensitive explanations in the medical field have been researched [69]. This
is useful when trying to provide personalized healthcare because there are multiple de-
partments with their own types of data and with their own terminology; explanations
will be needed to provide explanations to people with differing levels of understanding.
By using context-sensitive explanations, the explanations can be tailored to each different
setting. Multimodal explanations are also used to integrate diverse forms of information to
provide more comprehensive and meaningful insights into the reasoning behind AI model
predictions or decisions [70].

Cloud-based explainability services are cloud-hosted platforms or tools that offer
explanations and interpretability for machine learning models and AI systems. These
services are designed to help organizations and developers analyze, understand, and
validate the decisions made by AI models, especially when deployed in cloud environments.
Research has been undertaken in the healthcare sector to use XAI on cloud-based and edge-
based electronic health records (EHRs); post-hoc explanations such as LIME, SHAP, and
counter-factual explanations were used [71].

5.3. Fraud

Explainable tabular data analysis can be used in the field of fraud detection to provide
explanations for why a transaction or an anomaly was flagged as potentially fraudu-
lent [60,61,64]. This helps fraud analysts understand the model’s decision and take appro-
priate actions in a timely fashion. Anomaly detection methods, like isolation forest and
local outlier factor (LOF), are frequently employed for fraud detection. These techniques
pinpoint instances that deviate significantly from the majority of the data, and the identified
anomalies can be analyzed to uncover the reasons for their classification as fraudulent.

Research has been done on real-time interpretability, which is where explanations are
provided in real time [72]. This means that a system is able to generate explanations or
justifications for its outputs promptly and continuously as new data are processed and
predictions are made.
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5.4. Retail Sector

It is used in business to explain why a customer is predicted to churn [73]. This can
include highlighting the key features contributing to the churn risk and allowing companies
to take targeted actions to retain their customers. In human resources (HR) departments, it
can be employed to understand why employees are likely to leave a company. This can
help with retention strategies and the improvement of workplace conditions. Insurance
companies use this type of analysis to explain how premiums are calculated and why
certain people receive higher or lower rates. This transparency can build and increase trust
with policyholders.

In car dealerships, XAI can be used, with regression models, to regularly evaluate the
performance of their service advisors [74]. The service advisors are the public face of the
dealerships and need to retain and recruit customers.

Customer segmentation is the categorization of current and prospective clients by
common attributes. XAI can help explain the reasoning behind segmenting customers
based on purchasing behavior and demographics [75].

Context awareness explanations have been used in recommender systems to improve
suggestions made to the customer [76].

5.5. Manufacturing Sector

Manufacturing companies can use XAI to explain why a product failed a quality
control check. This can lead to work and process improvements and reduce the number
of defects. In logistics and supply chain management, this sort of analysis can explain
decisions related to inventory management, shipping routes, and order fulfillment, assisting
with better decision making [77,78]. E-commerce platforms use this type of analysis to
explain product recommendations to customers. It can highlight the features or historical
behavior that influenced the recommendations.

Manufacturers make use of decision support systems (DSSs) to assist with quality
control, process control, planning, and scheduling [79]. DSSs allow for the integration of
transparent and interpretable machine learning models and methodologies within DSSs
to provide human users with understandable explanations for AI-generated recommen-
dations, predictions, or decisions. The goal of incorporating XAI in DSS is to enhance
human trust, comprehension, and acceptance of AI suggestions by offering insights into
the rationale behind the system’s outputs. XAI can help by using sensor data and historical
maintenance records to explain predictions about equipment failures [80].

Integration of business intelligence (BI) refers to the process of combining XAI with
traditional business intelligence tools and platforms to enhance data analysis, decision-
making, and insight generation within an organization. By integrating XAI with BI systems,
companies can leverage advanced analytics, machine learning models, and interpretability
features to gain deeper and more actionable insights from their data. An example of
this is where XAI workflows are tailored to support a manufacturer’s daily operations
and decision making by taking into account the interconnected value of individual data
components, models, and services. This type of collaborative platform can use a variety of
AI explainability techniques for a wide range of manufacturing applications [81].

5.6. Utility Sector

Explainability as a service (EaaS) is a cloud-based solution that offers explainable
artificial intelligence (XAI) capabilities through a subscription or pay-per-use model. It
helps organizations to use advanced explainability tools for their AI applications without
needing to develop these capabilities internally. Many sectors, such as healthcare, finance,
human resources, and insurance, use EaaS.

It can be applied by utility companies to explain how they forecast energy consumption
for customers. XAI is used in smart grid load balancing, where different types of data are
used from several sources; some of the data are tabular data [82]. This transparency can help
consumers make informed decisions about their energy usage. Explainable tabular data
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analysis can also be used to explain why certain legal decisions or compliance assessments
have been made. This can be critical where transparency and fairness are essential.

5.7. Education

In the education sector, XAI can show why students receive the grades they do or
recommendations for courses. This can help teachers tailor their teaching methods. Student
adaptation involves adjusting study habits, learning strategies, and time management
skills to meet the demands of different subjects or educational levels. XAI has been used to
predict levels of adaptability [83]. Nnadi et al. used SHAP, LIME, Anchor, and accumulated
local effects (ALE), all of which are post-hoc explanations.

5.8. Summary

In these applications, explainable tabular data analysis not only improves model
transparency but also enhances decision making, fosters trust, and assists in compliance
with regulations, making it a valuable tool to use across a wide range of industries and
use cases.

6. Future Directions and Emerging Trends

A significant amount of earlier research has concentrated on improving the quality
of explanations and offering suggestions for future research. Nevertheless, there is still
uncertainty surrounding the terminology employed in the field of XAI, highlighting the
need for future research to establish standardized definitions to encourage a broader
acceptance of XAI.

The work done by Vellido and Martín–Guerrero as far back as 2012 highlighted an
important challenge in the field of explainable artificial intelligence (XAI)—the lack of
publicly available tabular datasets that possess both annotated labels and concept-related
attributes [84]. Alkhatib et al. noted that this gap in accessible data has hindered progress
in specific research efforts focused on XAI techniques for tabular data. In 2023, they
encountered obstacles in locating publicly accessible tabular datasets that possessed both
annotated labels and concept-related attributes [85]. The creation of such datasets would
encourage specific research into XAI and tabular data.

Currently, an area of research focus is on methods of adversarial example-based analy-
sis; this is being done on natural language processing tasks and on images. Examination
of these methods on tabular data could be a useful area of research [42]. Explanations can
always be improved and created to be more user-focused; this would involve the develop-
ment and use of intelligent interfaces capable of interacting with the user and generating
relevant explanations [75]. In critical decision areas such as medicine, for example, the
expert user would need to be able to interact with the system and would need to know that
any mapping of ‘causability’ and explainability is extremely reliable [42]. This would give
two areas of further research, relevant explanations, and user interaction with the model
or system. Table 7 and Figure 7 give further suggestions for research ideas that have been
obtained from the articles examined in this research.

Security has a significant role to play in promoting trust in the use of XAI. People want
to know that their data is safely stored and that results from models using their data are
only available to a restricted set of people. This is also an obligation under GDPR, where
personal data should not be stored longer than necessary for the purposes for which it was
collected; this is the principle of storage limitation. The research and development of XAI
is particularly important in the context of the GDPR, which requires the implementation
of appropriate technical and organizational safeguards to ensure the security of personal
data against unauthorized or unlawful processing, accidental loss, destruction, or damage.
Under GDPR fairness, hacking would come under unlawful processing.
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Table 7. Suggested areas of further research.

Possible Research Areas Suggestions

Hybrid Explanations [86]

Combining multiple XAI techniques to provide more comprehensive and robust explanations for
tabular data models [86].
Integrating global and local interpretability methods to offer both high-level and
instance-specific insights.

Counterfactual
Explanations

Generating counterfactual examples that show how the model’s predictions would change if certain
feature values were altered [87].
Helping users understand the sensitivity of the model to different feature inputs and how to achieve
desired outcomes.

Causal Inference [85]
Incorporating causal reasoning into XAI methods to better understand the underlying relationships
and dependencies in tabular data [88].
Identifying causal features that drive the model’s predictions, beyond just correlational relationships.

Interactive Visualizations

Developing interactive visualization tools that allow users to explore and interpret the model’s
behavior on tabular data [89].
Enabling users to interactively adjust feature values and observe the corresponding changes in model
outputs [89].

Scalable XAI
Techniques [4]

Designing XAI methods that can handle the growing volume and complexity of tabular datasets across
various domains [90].
Improving the computational efficiency and scalability of XAI techniques to support
real-world applications.

Domain-specific XAI

Tailoring XAI approaches to the specific needs and requirements of different industries and
applications that rely on tabular data, such as finance, healthcare, and manufacturing.
Incorporating domain knowledge and constraints to enhance the relevance and interpretability of
explanations [91].

Automated Explanation
Generation [92]

Developing AI-powered systems that can automatically generate natural language explanations for the
model’s decisions on tabular data [93].
Bridging the gap between the technical aspects of the model and the end-user’s understanding [93].
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Another aspect of data security under GDPR is safety from adversarial attacks; as these
are constantly changing, it is an area of constant research [8]. LIME and SHAP explanations
for tabular data can be manipulated by exploiting their reliance on perturbing input data
for estimation. The proposed attack substitutes a biased black-box model with a model
surrogate to effectively conceal bias, for instance, from auditors. An out-of-distribution
detector is trained to divide the input data so that the black-box model’s predictions remain
biased within the in-distribution, but its behavior on the perturbed data is controlled. This
allows the explanations to seem fair, even though the underlying model may be biased. The
aim is to use the fundamental mechanisms of LIME and SHAP, which rely on perturbing
the input data to estimate the feature importance and give explanations. By carefully
crafting a model surrogate that exhibits the desired behavior on the perturbed data, the real
nature of the black-box model’s biases can effectively be hidden. This technique presents a
real and concerning threat, as it could enable the masking of harmful biases in high-stakes
AI systems from regulatory oversight and public scrutiny. It emphasizes the need for
robust and comprehensive testing of XAI methods to ensure they are not susceptible to
such manipulative attacks [94]. SHAP is the XAI technique most susceptible to adversarial
attack [94].

The newer EU AI Act takes a risk-based approach and classifies AI into four categories,
with each being deemed less risky than the previous one. Depending upon the level
of risk, different requirements apply. The AI Act places particular focus on high-risk
AI systems, which are required to meet stringent requirements, including transparency
and explainability. This means that providers of high-risk AI systems must ensure that
their models can provide understandable explanations for their decisions and predictions.
High-risk AI systems, such as those used in healthcare and credit scoring, are expected
to be transparent and have human oversight; however, many such systems use black box
algorithms and tabular data. This aspect of the requirements, as described in Articles 13
and 14, can be met using XAI. Users of high-risk AI systems have the right to receive clear
information about how the AI system works, which necessitates the development and
integration of XAI techniques to fulfill these obligations.

For intermediate systems like recommender systems and chatbots, users should be
informed of the capabilities and limitations of the system, and in particular users should be
told that they are interacting with a bot [95].

To facilitate meaningful human oversight, the AI Act requires that explanations be
provided in a manner that humans can comprehend. This enhances the importance of XAI
in making AI models interpretable and understandable. There is a requirement that AI
systems, particularly high-risk ones, are designed in a way that allows for the traceability
of decisions. XAI techniques help by providing detailed insights into how different inputs
affect outputs, making it easier to audit and trace decisions.

The AI Act emphasizes the importance of ensuring that AI systems do not perpetuate
biases or discrimination. For tabular data, XAI methods can help detect and explain biases
in the system, allowing steps to promote fairness to be taken. Further research areas will
no doubt become apparent as the Act is used more widely [96].

Existing XAI has few evaluation metrics to demonstrate how effective the explanations
are. This could be a vast area of research, particularly when explanations are generated
for a wide range of users, all with their own specific needs. There needs to be an accepted
way of measuring not only the quality but also the satisfaction of explanations. This would
benefit users and researchers as it would allow for a better comparison between models.

Future research in XAI should focus on establishing clear definitions, enhancing user-
focused explanations, incorporating user interaction, ensuring data security, and devising
robust evaluation metrics. Adversarial example-based analysis, user-specific explanations,
and addressing security concerns are emerging areas of interest in XAI research [42,90].
Another key area is that of intra-metric measurements to avoid the selection of different
favorable metrics and omitting the unfavorable metrics.
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7. Conclusions

Explainable artificial intelligence has emerged as an important field of research in
recent years, driven by the need to understand the complex, black-box nature of AI and
machine learning models. XAI aims to provide more transparent and easily understandable
explanations of how these models make decisions. This is crucial for building trust and en-
abling ethical decision-making, especially in safety-critical domains such as healthcare and
finance. Given that tabular data are the predominant data format used in many industries,
XAI becomes particularly important for these types of datasets. While several surveys have
been conducted on XAI approaches, methods, and applications, there is a surprising lack
of XAI techniques specifically tailored for tabular data, despite its widespread use across
diverse disciplines. This was highlighted in Sahakyan et al.’s paper, and it remains the case.
Overall, XAI is seen as a main driver for the broader adoption and trust in AI-powered
decision-making systems.

Machine learning and XAI communities often use the terms “explainability” and
“interpretability” interchangeably when referring to the goal of making AI systems more
transparent and trustworthy. There is still a lack of agreed-upon formal definitions, which
has led to the proliferation of different taxonomies and frameworks in the XAI field.
Establishing agreed-upon mathematical definitions for these concepts could help provide a
more unified foundation for XAI research and development.

The “black-box problem” is a multifaceted challenge, and researchers have proposed
various frameworks for categorizing and addressing the various aspects of model opac-
ity. The “black-box problem” also has legal, psychological, and technical dimensions,
and researchers are exploring various approaches to improve the comprehensibility and
explainability of AI systems beyond just the technical aspects.

Assessing the quality of XAI explanations is a multi-faceted challenge, with researchers
exploring diverse technical and human-centric metrics and frameworks to tackle this
problem. There are model-specific explanations that exploit internal model structures and
model-agnostic explanations that are more generally applicable but may be less faithful
to the underlying model. Taxonomies of explanation approaches further categorize the
different explanations into five key techniques for generating XAI explanations. These
are simplification, feature relevance, visual, conceptual, and example-based, which can be
further organized into different taxonomical frameworks.

Despite the critical importance of explainable tabular data analysis, there are significant
challenges and gaps that persist in this domain, stemming from the inherent properties of
tabular data and the limitations of current XAI techniques. Addressing these challenges
is crucial for enhancing the transparency and interpretability of machine learning models
applied to structured data.

There are significant scalability challenges of explainable techniques for tabular data, as
well as the limitations of neural networks in effectively managing the unique characteristics
and quality issues present in tabular datasets. The complex challenges posed by categorical
features, feature importance, and stability in tabular data require the development of
advanced techniques, specialized architectures, and robust interpretability methods to
effectively analyze and extract insights from complex tabular datasets.

There is also a critical need for improved benchmarks and assessment frameworks
to validate the interpretability and practical usefulness of machine learning models, es-
pecially when applied to complex tabular datasets, which have unique challenges and
scalability issues associated with applying XAI techniques, and there is a need for greater
standardization and interdisciplinary efforts to address these gaps.

There is an urgent need for further research into XAI techniques that are robust
against adversarial attacks. If malicious actors can exploit the vulnerabilities of prominent
explanation methods to obscure harmful biases, it poses a grave threat to the integrity
and trustworthiness of AI systems, particularly in high-stake domains. Developing XAI
approaches that are impervious to such manipulative tactics is paramount, as it would
ensure that the explanations provided are a faithful and accurate reflection of the model’s
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true decision-making process. This, in turn, would bolster transparency, accountability, and
public trust in the deployment of AI, allowing for more rigorous auditing and oversight.
The pursuit of XAI techniques resistant to adversarial attacks is a crucial frontier in using
the full potential of AI while safeguarding against its misuse.

The key research challenges and future directions include standardizing terminology,
addressing data availability, adapting adversarial analysis to tabular data, and developing
more user-focused and reliable explanations, particularly for critical applications. The ex-
ploration and advancement of XAI must consider the security and regulatory requirements,
particularly under the GDPR and the EU AI Act, while also addressing the need for robust
evaluation metrics and user-focused explanations.

This survey has examined the language and terminology used in XAI generally so
as to clarify XAI and make it clearer to those using it. Sahakyan et al.’s paper explained
models that could be used with tabular data along with their pros and cons. This paper
has sought to build on their paper by discussing the terminology used, the types of XAI
applications used in different domains, and has sought to highlight challenges and gaps
that are still present and to suggest further areas that could be carried out in this field.

Explainable AI has emerged as a critical field of research, driven by the need to build
trust and enable ethical decision making in the face of complex, black-box AI models. As
tabular data remains the predominant format used across many industries, the develop-
ment of XAI techniques tailored for structured data is of paramount importance. However,
the research community still faces significant challenges in establishing agreed-upon defini-
tions, addressing the unique characteristics of tabular data, and devising robust evaluation
frameworks. Addressing these gaps is crucial not only for enhancing the transparency
and interpretability of AI systems but also for ensuring compliance with evolving security
and regulatory requirements, such as those outlined in the GDPR and the EU AI Act.
By focusing on user-centric explanations, robust evaluation metrics, and the incorpora-
tion of security best practices, the XAI research community can pave the way for the
broader adoption and trust in AI-powered decision-making systems across a wide range of
safety-critical domains.
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