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Abstract: Objectives: This study aims to explore the capabilities of dendritic learning within feedforward tree net-
works (FFTN) in comparison to traditional synaptic plasticity models, particularly in the context of digit recognition 
tasks using the MNIST dataset. Methods: We employed FFTNs with nonlinear dendritic segment amplification and 
Hebbian learning rules to enhance computational efficiency. The MNIST dataset, consisting of 70,000 images of 
handwritten digits, was used for training and testing. Key performance metrics, including accuracy, precision, recall, 
and F1-score, were analysed. Results: The dendritic models significantly outperformed synaptic plasticity-based 
models across all metrics. Specifically, the dendritic learning framework achieved a test accuracy of 91%, com-
pared to 88% for synaptic models, demonstrating superior performance in digit classification. Conclusions: Den-
dritic learning offers a more powerful computational framework by closely mimicking biological neural processes, 
providing enhanced learning efficiency and scalability. These findings have important implications for advancing 
both artificial intelligence systems and computational neuroscience.
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Introduction

Dendritic learning represents a paradigm shift 
in our understanding of neural computation, 
diverging from the traditional focus on synaptic 
plasticity as the sole mechanism for learning 
and adaptation in the brain [1-4]. Synaptic plas-
ticity, which involves the adjustment of synaptic 
strengths based on the relative activity of pre- 
and post-synaptic neurons, has long been con-
sidered the cornerstone of learning in both  
biological and artificial neural networks [5-8]. 
This synaptic-centric view has underpinned the 
development of many neural network models 
and learning algorithms, such as backpropaga-
tion, which have achieved remarkable success 
in various applications including image recogni-
tion, natural language processing, and game 
playing [9-11].

However, recent experimental findings su- 
ggest that dendritic segments, which are the 

branched projections of neurons, also play a 
crucial role in learning and computation [12-
14]. These studies indicate that dendrites are 
not merely passive conduits for electrical sig-
nals but are active computational units capable 
of performing complex processing tasks [15]. 
Dendritic learning involves the nonlinear ampli-
fication and adaptation of signals within den-
dritic segments, enabling neurons to integrate 
and compute information in a highly sophisti-
cated manner [16, 17]. This mechanism allows 
for a significant enhancement in the computa-
tional power of individual neurons, potentially 
leading to more efficient and scalable learning 
processes.

The significance of dendritic learning extends to 
both neuroscience and artificial intelligence. In 
neuroscience, understanding dendritic func-
tions provides deeper insights into the funda-
mental processes of brain computation and 
learning [13, 18, 19]. It challenges the conven-
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tional view of neural processing and opens new 
avenues for exploring how cognitive functions 
and behaviours are mediated by neural circuits. 
In artificial intelligence, incorporating dendritic 
learning mechanisms into neural network mod-
els can lead to the development of more power-
ful and biologically plausible algorithms [20-
22]. These models could potentially achieve 
higher accuracy and efficiency, especially in 
tasks requiring the integration of complex and 
high-dimensional data.

This research explores the practical implemen-
tation and optimization of dendritic learning in 
feedforward tree networks (FFTN), aiming to 
validate its effectiveness and scalability. By 
leveraging the inherent computational capabili-
ties of dendrites, this study seeks to advance 
the state of neural computation, offering new 
perspectives and methodologies for both theo-
retical research and practical applications in 
machine learning and cognitive neuroscience.

The primary problem addressed in this research 
is the limitations of traditional synaptic plastic-
ity models in effectively capturing the complex 
dynamics of neural computation observed in 
biological systems. Synaptic plasticity, which 
focuses on the adaptation of connection 
strengths between neurons, often falls short in 
accounting for the nuanced, rapid, and ampli-
fied responses facilitated by dendritic process-
ing [2, 23]. Existing experiments have demon-
strated that synaptic adaptation is a slow and 
noisy process, which poses significant chal-
lenges for its direct implementation in artificial 
neural networks, especially in scenarios requir-
ing high computational efficiency and precision 
[2, 24]. To address these limitations, this study 
hypothesizes that incorporating dendritic learn-
ing mechanisms, specifically through the im- 
plementation of FFTN with nonlinear dendritic 
segment amplification and Hebbian learning 
rules, can significantly enhance the computa-
tional capabilities and learning efficiency of 
neural networks. By leveraging the natural 
amplification properties of dendritic segments, 
this research aims to replicate and extend the 
results from previous studies, demonstrating 
that dendritic learning can achieve higher suc-
cess rates and faster convergence compared 
to traditional synaptic plasticity models. The 
research specifically seeks to: 1. Validate the 
efficiency and scalability of dendritic learning 

frameworks in digit recognition tasks using the 
MNIST dataset. 2. Explore the impact of higher-
order input crosses facilitated by dendritic seg-
ments on the overall learning performance. 3. 
Compare the performance of dendritic learning 
models against conventional synaptic plastici-
ty-based models to highlight potential advan-
tages and areas for further optimization.

By addressing these objectives, the research 
aims to provide a deeper understanding of den-
dritic learning mechanisms and their practical 
applications, potentially paving the way for 
more advanced and biologically plausible artifi-
cial intelligence systems.

This research is an experimental and compara-
tive study aimed at validating and optimizing 
dendritic learning mechanisms in Feedforward 
Tree Networks (FFTN). It involves the construc-
tion, training, and testing of FFTNs using the 
MNIST dataset to compare their performance 
against traditional synaptic plasticity models. 
The study is designed to experimentally assess 
the efficacy of dendritic learning in a controll- 
ed machine learning environment, making it 
distinct from retrospective or observational 
studies.

The primary objective of this research is to 
experimentally validate and optimize the den-
dritic learning framework as an alternative to 
traditional synaptic plasticity models in neural 
networks. This study aims to design and con-
struct FFTN incorporating nonlinear dendritic 
segment amplification to simulate dendritic 
learning mechanisms, and to apply and fine-
tune Hebbian learning rules to enhance the  
efficiency and accuracy of dendritic learning in 
these models. The research will involve training 
and testing the FFTN models using the MNIST 
dataset to assess their performance in digit 
recognition tasks, focusing on success rates 
and error margins. Additionally, it seeks to con-
duct a comparative analysis to benchmark the 
performance of dendritic learning against con-
ventional synaptic plasticity-based neural net-
works, highlighting differences in learning effi-
ciency, scalability, and computational power. 
Another key objective is to explore the effect of 
incorporating higher-order input crosses on the 
network’s learning capability and generaliza-
tion, aiming to enhance model performance 
through increased input correlation. Ultima- 
tely, this research intends to provide a deeper 



Dendritic learning in feedforward tree networks

51 Am J Neurodegener Dis 2024;13(5):49-69

understanding of the potential advantages of 
dendritic learning in replicating biological neu-
ral processes and its implications for advanc-
ing artificial intelligence and computational ne- 
uroscience, thereby contributing significantly to 
the field of neural network dynamics and com-
putational capabilities.

Literature review

The study of neural learning mechanisms has 
long been dominated by the exploration of syn-
aptic plasticity, which posits that learning and 
memory formation are primarily facilitated by 
changes in the strength of synaptic connec-
tions between neurons. However, recent ad- 
vances in neuroscience have brought attention 
to the role of dendritic learning, suggesting that 
dendrites themselves may play a significant 
role in neural computation and learning pro- 
cesses.

Synaptic plasticity

The historical context and importance of synap-
tic plasticity are deeply rooted in the early 20th 
century, with foundational work by pioneers 
such as Ramón y Cajal, whose seminal contri-
butions laid the groundwork for understanding 
neural connectivity [25, 26]. Donald Hebb’s 
mid-20th-century theory, famously encapsulat-
ed as “cells that fire together, wire together”, 
further formalized these concepts, elucidating 
how repeated neural activity strengthens con-
nections [27]. Synaptic plasticity encompass- 
es various mechanisms, including long-term 
potentiation (LTP) and long-term depression 
(LTD), which respectively strengthen or weaken 
synaptic connections [28]. These processes 
are integral to memory formation and learning, 
highlighting the critical role of synaptic plastici-
ty in neural function.

Biological evidence from numerous studies has 
consistently validated the existence of LTP and 
LTD in various brain regions, including the hip-
pocampus and cortex [29]. These investiga-
tions elucidate the modulation of synaptic effi-
cacy by factors such as neurotransmitter re- 
lease, receptor density, and post-synaptic sig-
nalling pathways [30, 31]. The insights gleaned 
from biological studies have not only enhanc- 
ed our understanding of neural mechanisms 
but have also influenced the development of 
learning algorithms in artificial neural networks 

(ANNs). Particularly, synaptic plasticity has 
served as a foundational concept inspiring al- 
gorithms like the backpropagation algorithm, 
which dynamically adjusts weights to minimize 
errors, thus contributing to the advancement of 
ANNs [32-34].

Dendritic learning

An emerging focus on dendrites reveals th- 
eir once-overlooked significance, transitioning 
from passive conduits for signal transmission 
to active integrators of synaptic inputs through 
intricate, non-linear processes. Recent studies 
[35-39] have illuminated dendrites’ capacity to 
generate local spikes and facilitate the active 
propagation of electrical signals, underscor- 
ing their pivotal role in neuronal computation. 
Research findings indicate that dendritic spikes 
significantly augment the computational prow-
ess of neurons, enabling non-linear operations 
and enhancing the integration of synaptic 
inputs across extensive spatial and temporal 
domains [40, 41].

Recent experimental findings, including the 
works like Fişek and Häusse [42] and Ugawa et 
al. [43] have highlighted the presence of back-
propagating action potentials in dendrites, 
shedding light on their role in synaptic plasti- 
city and intra-dendritic learning processes. 
Moreover, theoretical models have advanced 
the notion that dendrites serve as independent 
computational subunits within neurons, with 
the capacity for complex tasks such as pattern 
recognition and decision making [13]. These 
models propose that dendritic learning has the 
potential to greatly enhance the computational 
efficiency and learning capacity of neural net-
works [44].

Dendritic learning offers distinct advantages 
over synaptic plasticity, as it enables local 
adaptation within dendritic segments, in con-
trast to changes at the synapse level [2, 45, 
46]. This capability facilitates faster and more 
robust learning processes, as dendritic seg-
ments can independently adjust to optimize the 
neuron’s overall response to inputs. Moreover, 
the integration of dendritic learning mecha-
nisms into ANNs holds promise for enhancing 
the networks’ capacity to handle complex, non-
linear tasks and improving their overall learn- 
ing performance [44, 47, 51].
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The exploration of dendritic learning presents a 
significant shift in understanding neural com-
putation and learning mechanisms. While syn-
aptic plasticity has been foundational in both 
biological and artificial neural networks, the 
inclusion of dendritic processes offers a prom-
ising avenue for advancing computational mod-
els and enhancing our understanding of brain 
function. Future research integrating dendritic 
learning with traditional synaptic models may 
lead to the development of more sophisticated 
and capable artificial intelligence systems.

Methods

Dataset

The MNIST dataset is a widely used benchmark 
in machine learning, particularly for image clas-
sification tasks. It comprises 70,000 grayscale 
images of handwritten digits (0 to 9), with each 
image having a resolution of 28×28 pixels. The 
dataset is split into two parts: 60,000 images 
are designated for training, while 10,000 imag-
es are used for testing. Each image is labelled 
with the corresponding digit it represents, mak-
ing it an ideal dataset for supervised learning 
tasks such as digit recognition. The goal of the 
digit recognition task is to train a model that 
can accurately classify each image into one of 
the ten possible digits. To achieve this, each 
28×28 image is flattened into a 784-dimen-
sional vector, and the pixel values are normal-
ized between 0 and 1 to facilitate efficient 
training. The corresponding labels are one-hot 
encoded to ensure compatibility with the clas-
sification architecture. In this study, we utilize 
the MNIST dataset to evaluate the performance 
of our proposed dendritic learning model within 
a FFTN architecture.

Preprocessing

To prepare the MNIST dataset for our experi-
ments, the following preprocessing steps were 
undertaken.

Normalization: Each pixel value in the images, 
originally ranging from 0 to 255, was normal-
ized to a range between 0 and 1. This was 
achieved by dividing each pixel value by 255. 
This normalization helps in speeding up the 
convergence of the neural network during train-
ing by ensuring that the input features are on a 
similar scale.

Mean subtraction: For each image, the mean 
pixel value was computed and subtracted from 
each pixel. This step helps in cantering the data 
around zero, which can improve the perfor-
mance and stability of the training process.

Standardization: Following mean subtraction, 
the standard deviation of pixel values for each 
image was calculated and used to scale the 
pixel values such that the resulting distribu- 
tion has a standard deviation of one. This step 
ensures that each input feature contributes 
equally to the learning process, preventing any 
single feature from dominating the learning.

Zero-variance feature removal: Pixels that had 
zero variance across all images in the training 
set were identified and set to zero. This step 
eliminates features that do not provide any dis-
criminative information, thereby reducing the 
dimensionality of the input space and poten-
tially improving model performance.

Reshaping and shuffling: The images were 
reshaped into vectors of size 784 (28×28), and 
the training data was shuffled to ensure that 
the learning algorithm receives a diverse set of 
examples during each epoch. This helps in pre-
venting the model from learning any ordering or 
sequence bias present in the dataset.

Batch preparation: The dataset was divided 
into mini batches to facilitate batch processing 
during training. Mini-batch sizes were chosen  
to balance computational efficiency with model 
convergence, commonly set between 32 and 
256 samples per batch.

Label encoding: The digit labels, originally in 
integer format, were converted to one-hot 
encoded vectors. This encoding is crucial for 
the output layer of the neural network, allowing 
it to compute the error and update weights for 
multi-class classification tasks effectively.

By implementing these preprocessing steps, 
the MNIST dataset was effectively prepared for 
training and evaluating the FFTN and dendritic 
learning algorithms explored in this study.

Neural network architecture

The FFTN architecture is designed to mimic the 
hierarchical and compartmentalized structure 
of biological neurons, particularly focusing on 
dendritic processing. The architecture consists 
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of three primary layers: input, hidden, and out-
put. Figure 1 depicts an FFTN architecture, 
clearly structured into three layers: input, hid-
den, and output. From the bottom, the input 
layer consists of four nodes, representing the 
initial data points. These nodes feed into the 
hidden layer, which includes three nodes that 
process and abstract the data received from 
the input layer. At the top, a single output node 
gathers and finalizes the outputs from the hid-
den layer, demonstrating the hierarchical and 
unidirectional data flow within this network 
model. The input layer comprises 784 units, 
corresponding to the 28×28 pixel grid of the 
MNIST dataset. Each pixel value, ranging from 
0 to 255, is normalized to have a mean of 0 and 
a standard deviation of 1, ensuring consistent 
input scaling.

The hidden layer contains 49 units, each 
uniquely connected to 16 non-overlapping 
input units. This configuration ensures that 
each hidden unit processes a distinct subset of 
the input space, promoting localized feature 
extraction. The connectivity is structured as fol-
lows: 1. Group Formation: The 784 input units 
are divided into 49 groups, with each group 
containing 16 consecutive pixels. 2. Unit Con- 
nectivity: Each hidden unit receives inputs 
exclusively from one of these groups, creating  
a tree-like structure where each path from an 
input to an output is independent of others.

putations by amplifying and integrating inputs 
through a nonlinear amplification function de- 
fined as f(I)=Iα, where I is the input to the den-
dritic segment, and α/alpha is a tuneable 
parameter controlling the degree of nonlineari-
ty. This mechanism allows for the adjustment of 
the dendritic segment’s sensitivity to input, 
enabling higher-order correlations and improv-
ing the model’s ability to capture intricate pat-
terns within the data. The parameter α is opti-α is opti- is opti-
mized during the training process to balance 
amplification and model generalization, con-
tributing to the network’s overall learning 
efficiency.

This section elucidates the implementation  
of nonlinear amplification mechanisms within 
these segments. Dendritic segment in the hid-
den layer incorporates a nonlinear amplifica-
tion function, modelled to enhance the input 
signals’ processing. The amplification function 
is defined as follows:

A(I) = I + αI2

Where I is the input to the dendritic segment, 
and α is a tuneable parameter controlling the 
degree of nonlinearity. This function ensures 
that higher-order interactions among inputs are 
amplified, promoting the emergence of com-
plex feature representations. Each dendritic 
segment receives inputs from its assigned 
group of 16 input units. The combined input is 

Figure 1. General view of feedforward tree network (FFTN) architecture.

The output layer consists of  
10 units, each representing a 
digit from 0 to 9. The network 
utilizes a softmax function to 
convert the raw output scores 
into probabilities, facilitating 
the classification task. The 
FFTN is specifically tailored to 
exploit the advantages of hi- 
erarchical processing, where 
each hidden unit’s limited 
receptive field allows for effi-
cient learning and generaliza-
tion from the input data.

Dendritic segments in the 
FFTN are designed to simula- 
te the complex, nonlinear pro-
cessing capabilities of biologi-
cal dendrites. Each dendritic 
segment performs local com-
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then subjected to the nonlinear amplification 
function. The parameter α is optimized during 
training to balance the amplification strength, 
ensuring robust feature extraction without 
overfitting. The nonlinear amplification effec-
tively generates higher-order correlations am- 
ong the input signals, enhancing the network’s 
ability to capture intricate patterns within the 
data. The nonlinear amplification mechanism is 
inspired by the observed behaviour of dendritic 
spikes in biological neurons, where dendritic 
segments exhibit nonlinear summation of syn-
aptic inputs. This design aims to replicate the 
computational advantages of dendritic pro-
cessing, such as enhanced signal integration 
and selective amplification of relevant input 
features.

The integration of nonlinear amplification in 
dendritic segments significantly boosts the 
FFTN’s computational power, enabling efficient 
learning and accurate classification even with  
a relatively simple network architecture. This 
approach leverages the inherent strengths of 
biological neural computation, offering a prom-
ising avenue for advancing artificial neural net-
work design.

Learning algorithm

In this study, we employ Hebbian learning [48] 
as the primary learning rule to facilitate the 
adaptation of synaptic weights in our neural 
network model. Hebbian learning, based on  
the principle that “cells that fire together, wire 
together”, enhances the synaptic strength 
between neurons with correlated activity [49, 
50]. This biologically inspired learning rule is 
crucial for implementing efficient dendritic 
learning.

Learning rule description: The weight wij bet- 
ween the presynaptic neuron i and the postsyn-
aptic neuron j is updated based on the pro- 
duct of their respective activations ai and aj. 
Mathematically, the weight update rule is given 
by:

Δwij = η . ai . aj

Where η is the learning rate, a small positive 
constant that controls the magnitude of wei- 
ght adjustments. To simulate the nonlinear 
amplification observed in dendritic segments, 
we apply a nonlinear function f(x) to the input 

activations before updating the weights. This 
enhances the learning capability by capturing 
higher-order correlations among inputs. The 
nonlinear function is typically a polynomial or a 
sigmoid function, represented as:

f(x) = x + αx2

Where α is a parameter controlling the degree 
of nonlinearity. Hebbian learning in dendritic 
segments involves local adaptation, meaning 
the weight changes are confined to specific 
dendritic branches. This localized learning 
enhances the network’s ability to handle com-
plex patterns and improves computational 
efficiency.

Implementation details: Learning rate (η� opti-η� opti-) opti-
mized through experimentation to ensure sta-
ble convergence and effective learning. Non- 
linearity parameter (α) adjusted to balance the 
network’s responsiveness and stability. Proper 
initialization of weights is critical for the effi-
cient training and convergence of neural net-
works. In our experiment, we employ a methodi-
cal approach to initialize the weights, ensuring 
that they are conducive to the learning dynam-
ics of the Hebbian rule and the network’s 
architecture.

Initialization methodology: We initialize the 
weights wij from a Gaussian distribution with a 
mean of zero and a standard deviation (σ) set to 
1. This ensures that the weights start with a 
balanced distribution, avoiding large initial val-
ues that could hinder learning. The weights are 
drawn as:

wij~N (0, σ2)

To maintain consistent input signal magnitudes 
across different layers, we normalize the initial 
weights. Each set of weights connected to a 
single neuron is adjusted to have a zero mean 
and a standard deviation of one. This normal-
ization is crucial for preventing the vanishing or 
exploding gradient problem, which can impede 
the learning process. Biases are initialized to a 
small constant value, typically 1, to ensure that 
neurons have a minimal level of activation even 
when their inputs are zero. This facilitates the 
initial propagation of signals through the net-
work and aids in overcoming any initial in- 
activity.
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Implementation details: In gaussian distribu-
tion parameters, Mean µ=0, Standard Devia- 
tion σ=1. After initializing, weights wij are nor-
malized for each neuron j such that:

w
w
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Bias value Set to 1 for all neurons in the hidden 
and output layers. By employing Hebbian learn-
ing with carefully initialized weights, our model 
leverages biologically inspired learning mecha-
nisms to achieve efficient and robust training, 
enhancing the network’s ability to learn and 
generalize from complex input patterns.

Training protocol

Forward propagation: In the forward propaga-
tion phase, the input data is passed through 
the network to generate the output. Each input 
image from the MNIST dataset, consisting of 
28×28 pixels, is flattened into a vector of 784 
units. Normalization is applied to ensure the 
input data has a zero mean and unit variance. 
The input vector is divided into groups, each 
connecting to the hidden units. For each hid-
den unit hj we need to calculate the weighted 
sum zj: 

z w . x bj ij i j1i
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=
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Where wij are the weights connecting input xi to 
hidden unit hj, and bj is the bias term. Then we 
need to apply the nonlinear activation function 
σ: 

aj = σ(zj)

Where ( ) 1
1z
e z

=
+v -  is the sigmoid function. Each 

hidden unit’s output is fed into the output layer 
units. For each output unit ok we need to com-
pute the weighted sum zk:
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Where wjk are the weights connecting hidden 
unit hj to output unit ok, and bk is the bias term. 
Apply the activation function to obtain the out-
put ak: 

ak = σ (zk)

To convert the outputs into probabilities, we 
apply the softmax function: 
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The Tree Backpropagation (TBP) process in- 
volves updating the weights to minimize the 
error between the predicted and actual out-
puts. For each output unit ok, compute the error 
term δk: 

δk = (P(ok) - yk) . σ’(zk)

Where yk is the actual label, and σ’(zk) is the 
derivative of the activation function. For each 
hidden unit hj we need to compute the error 
term δj: 

( ) ( ). w . ' zk k jk jk
=d d v/

For each weight wjk and bias bk in the output 
layer:

wjk ← wjk - η . δk . aj

bk = bk - η . δk

For each weight wij and bias bj in the hidden 
layer: 

wjj ← wjj - η . δj . xi

bj = bj - η . δj

Repeat the forward and backpropagation  
steps for a predefined number of epochs or 
until convergence is achieved. The cross-entro-
py cost function is utilized to measure the per-
formance of the network by comparing the  
predicted output with the actual labels. It is 
defined as:

1 log ( ( ))

(1 ) . log (1 ( ))
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Where M is number of training examples, N is 
the number of output classes, yi,k is the binary 
indicator (0 or 1) if class label k is the correct 
classification for input i and P(ok) is the predict-
ed probability of class k for input i. The cross-
entropy function penalizes incorrect classifica-
tions more heavily, thereby providing a robust 
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measure for optimization. It ensures that the 
network’s outputs closely match the true distri-
bution of the data by minimizing the divergence 
between the predicted and actual probability 
distributions.

Hyperparameter optimization

The learning rate (η� is a critical hyperparame-
ter that controls the step size at each iteration 
while moving toward a minimum of the loss 
function. For this experiment, we initially set the 
learning rate based on preliminary trials and 
refined it through grid search to achieve opti-
mal performance. Starting with a broad range, 
we tested values from 0.0001 to 0.01, incre-
menting logarithmically. The learning rate that 
minimized the validation error without causing 
significant fluctuations in the training process 
was selected. For our final configuration, the 
optimal learning rate was found to be η= 
0.003, which provided a balance between con-, which provided a balance between con-
vergence speed and stability.

Momentum (µ) is used to accelerate gradient 
vectors in the right directions, thus leading to 
faster converging. It helps to dampen oscilla-
tions and smooth out the optimization path. We 
experimented with momentum values ranging 
from 0.5 to 0.99. The adjustment was done 
incrementally to observe the impact on the  
convergence rate and stability of the training 
process. Through this iterative process, we 
identified µ=0.9 as the optimal value, which 
effectively reduced oscillations and enhanced 
the convergence speed while maintaining sta-
bility across different runs.

To prevent overfitting and enhance the general-
ization capability of our model, we employed 
regularization techniques. We primarily used 
L2 regularization, which adds a penalty equal to 
the sum of the squared values of the weights to 
the loss function. This technique helps in con-
straining the weights, thereby reducing model 
complexity. We optimized the regularization 
parameter (α� by testing values ranging from 
0.0001 to 0.01. The selection criterion was the 
minimization of the validation loss without a 
significant increase in the training loss. The 
optimal regularization parameter was deter-
mined to be α=0.001, which effectively bal-α=0.001, which effectively bal-, which effectively bal-
anced the trade-off between minimizing loss 
and maintaining model simplicity. Additionally, 
we monitored the model’s performance on the 

validation set to ensure that the regularization 
was effective in reducing overfitting without 
compromising accuracy.

By carefully tuning these hyperparameters, we 
achieved a robust and efficient training pro-
cess, leading to improved performance and 
generalization of the dendritic learning model. 
The systematic optimization of the learning 
rate, momentum, and regularization parame-
ters played a crucial role in enhancing the over-
all efficacy of the proposed neural network 
architecture.

Input crosses

Incorporating and amplifying input crosses 
within the FFTN architecture serves to enhance 
the model’s performance by leveraging higher-
order correlations between input data. This pro-
cess begins with the selection of input pairs 
and triplets from the MNIST dataset, which  
consists of 784 individual pixel values per 
image. By randomly choosing indices to form 
these input combinations, the model ensures  
a diverse and representative set of input cr- 
osses that can capture various inter-pixel 
relationships.

The mathematical formulation for these cross-
es is straightforward yet powerful. For pairs of 
inputs, the cross product Xi,j is defined as the 
product of the pixel values at the specified indi-
ces i and j: 

Xi,j = Xi . Xj

Similarly, for triplets, the cross Xi,j,k is calculated 
as:

Xi,j,k = Xi . Xj . Xk

These crosses are then appended to the origi-
nal input vector, thus enriching the model’s 
input space with these higher-order interac-
tions. Following their calculation, each input 
cross undergoes a nonlinear amplification func-
tion to enhance its influence within the net-
work. This function, defined as A(X)=X+X2, ser- 
ves to emphasize the importance of higher-val-
ue crosses, effectively amplifying their impact 
on subsequent layers of the network. The 
amplified input crosses are seamlessly inte-
grated into the dendritic segments of the  
FFTN, where they undergo local application of 
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the amplification function before being passed 
on to the hidden units.

This integration not only enriches the input rep-
resentation but also enables the network to 
detect and utilize complex patterns and inter-
actions that may be overlooked by simpler 
models. The selection of input crosses is care-
fully managed to keep computational demands 
within practical limits; typically, about 10,000 
input crosses are selected and amplified for 
each hidden unit. This strategy balances the 
enhanced modelling capacity afforded by the 
expanded input space with the need to main-
tain computational efficiency.

The overall impact on the learning dynamics of 
the FFTN is substantial. By introducing these 
amplified input crosses, the network gains the 
ability to understand and generalize from the 
data more effectively. This capability is espe-
cially beneficial for discerning subtle patterns 
and nuances within the dataset, which might 
escape detection under standard learning algo-
rithms. Ultimately, by adopting this approach, 
the FFTN not only deepens its computational 
prowess but also more closely mirrors the com-
plex, nonlinear processing observed in biologi-
cal dendritic structures, providing a robust and 
biologically inspired framework for tackling ad- 
vanced problems in neural computation.

Experimental setup

The experimental setup for the neural network 
utilizes a FFTN with dendritic learning mecha-
nisms, tailored specifically for the MNIST data-
set, which comprises 60,000 training images 
and 10,000 test images of handwritten digits. 
This extensive dataset serves as the founda-
tion for the training process, which begins with 
data normalization to ensure that pixel values 
range between 0 and 1, potentially supple-
mented by data augmentation techniques like 
random rotations and scaling to bolster the 
dataset’s variability.

The initialization of the network involves setting 
weights using a Gaussian distribution, centred 
around zero with a standard deviation of one, 
and normalizing these weights to achieve zero 
mean and unit variance across inputs to hidden 
units. The network’s architecture is methodi-
cally constructed with an input layer of 784 
units, a hidden layer of 49 units, and an output 

layer of 10 units corresponding to each digit 
class. The forward propagation employs activa-
tion functions like sigmoid or ReLU, with den-
dritic segments incorporating nonlinear amplifi-
cation functions to refine the data flow through 
the network.

Backpropagation is crucial in this setup, utiliz-
ing a cross-entropy cost function to determine 
the disparity between predicted and actual out-
puts. This is followed by tree backpropagation 
(TBP), which updates weights by aggregating 
changes in reverse, from the output back to the 
input layers. The training regimen is executed 
over several epochs in mini-batches, with an 
adaptive learning rate that is fine-tuned based 
on performance metrics observed during the 
epochs.

Validation of this training involves a rigorous 
procedure for hyperparameter tuning, begin-
ning with the creation of a validation set com-
prising 10% of the training data, which is pro-
cessed identically to the training set. Key 
hyperparameters such as learning rate, mo- 
mentum, and regularization constants are 
meticulously optimized through methods like 
grid search or random sampling, focusing on 
maximizing performance metrics like accuracy 
or validation loss. An early stopping mechanism 
is implemented to halt training upon minimal 
improvement in validation loss, thereby con-
serving resources and preventing overfitting.

The testing phase is pivotal for evaluating the 
generalizability and effectiveness of the train- 
ed model on unseen data. The best-performing 
model, determined during the validation phase, 
is tested using the MNIST test set. This phase 
employs a comprehensive array of evaluation 
metrics including accuracy, confusion matri-
ces, and error rates, alongside precision, recall, 
and F1-scores to thoroughly assess the mod-
el’s performance. Performance analysis not 
only compares the dendritic learning model 
against traditional synaptic models but also 
examines its scalability and adaptability to dif-
ferent data volumes and complexities, thus 
providing crucial insights into its potential real-
world applicability and areas for further en- 
hancement.

In this study, we employed machine learning 
algorithms as part of the statistical analysis. 
Specifically, we used supervised learning algo-
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Figure 2. Combined accuracy plot.

Figure 3. Combined loss plot.

Table 1. Training and validation metrics

Epochs Training 
Accuracy

Validation 
Accuracy

Training 
Loss

Validation 
Loss

10 0.50 0.45 1.50 1.55
20 0.70 0.68 0.90 0.95
30 0.85 0.82 0.45 0.50
40 0.92 0.89 0.25 0.30
50 0.95 0.92 0.20 0.25

rithms, including decision tree classifiers and 
logistic regression models, to classify and pre-
dict outcomes based on the training data. The 
decision tree classifier splits the data into 
branches based on feature values, while logis-
tic regression models the probability of a binary 
outcome using a sigmoid function. To evaluate 
the performance of these models, we used 
common metrics such as accuracy, precision, 
recall, and F1-score, ensuring the robustness 
and generalizability of the models for the given 
dataset.

Results

Training performance

The training process was ex- 
ecuted for 50 epochs with  
a feedforward tree network 
(FFTN) architecture. The learn-
ing curves were generated to 
illustrate the progression of 
training and validation accura-
cy, as well as the correspond-
ing loss over the epochs. The 
accuracy over epochs demon-
strated a significant improve-
ment, with training accuracy 
increasing consistently from 
approximately 10% to 95%, 
and validation accuracy rising 
steadily from around 10% to 
92% by the end of 50 epochs. 
Correspondingly, the loss over 
epochs showed a sharp de- 
crease, with training loss drop-
ping from initial high values to 
a stable plateau around 0.2, 
while validation loss followed a 
similar downward trend, stabi-
lizing around 0.25.

Figures 2 and 3 depict the 
training and validation accura-
cy and loss over 50 epochs for 

a neural network model trained on the MNIST 
dataset. Figure 2 shows both training and vali-
dation accuracy increasing steadily and closely 
together as epochs progress, indicating that 
the model is learning effectively and generaliz-
ing well to unseen data. Figure 3 illustrates a 
similar trend in loss reduction, with both train-
ing and validation loss decreasing sharply and 
converging towards each other, further sup-
porting the model’s capability to learn consis-
tently without overfitting. The parallel decline in 
loss alongside increasing accuracy confirms 
the model’s improving performance over time. 
These trends reflect a well-tuned learning pro-
cess, with appropriate model complexity and 
training duration to optimize performance on 
the given task.

Table 1 details the training and validation met-
rics across 50 epochs, showing systematic 
improvement in both training and validation 
accuracy, as well as a steady decrease in loss. 
Early epochs show a substantial disparity bet- 
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ween training and validation outcomes, with 
training consistently ahead, indicative of initial 
overfitting. However, as epochs progress, this 
gap narrows significantly, suggesting effective 
model generalization. The dramatic drop in 
training loss from 1.50 to 0.20, alongside vali-
dation loss from 1.55 to 0.25, underscores the 
model’s increasing ability to minimize error 
while enhancing its predictive accuracy on both 
seen and unseen data. By epoch 50, the con-
vergence of training and validation accuracy to 
0.95 and 0.92, respectively, along with closely 
aligned loss values, reflects the model’s robust 
learning capability and optimal fit to the datas-
et without significant overfitting.

Convergence analysis

The convergence analysis focuses on the stabi-
lization phase of the learning curves, particu-

gree of reliability in its predictions across both 
seen and unseen data.

Figure 5 depicts a continuing decline in both 
training and validation loss, though at a slo- 
wer rate than in earlier epochs. Training loss 
decreases from about 0.25 to 0.20, and valida-
tion loss follows closely from 0.30 to 0.25. The 
close alignment of these curves further con-
firms the model’s effective learning and gener-
alization capabilities, with the final epochs 
showing the model’s optimized and stable state 
where it has effectively minimized prediction 
errors.

The training and validation metrics stabilized 
smoothly without significant fluctuations, dem-
onstrating robust convergence, and the close 
alignment between training and validation 

Figure 4. Zoomed accuracy plot: close convergence of training and valida-
tion accuracy in the final epochs, indicating strong model generalization 
and minimal overfitting.

Figure 5. Zoomed loss plot: continuous decline in training and validation 
loss during the final epochs, demonstrating effective error minimization and 
model stabilization.

larly during the final 10 epochs 
of training. This phase is criti-
cal to understanding the mod-
el’s ability to generalize and 
avoid overfitting. The stabiliza-
tion phase of the training pro-
cess reveals that the train- 
ing accuracy stabilized around 
95%, while the validation ac- 
curacy reached approximately 
92%. Concurrently, the training 
loss plateaued at around 0.20, 
and the validation loss stabi-
lized at 0.25, indicating effec-
tive learning and generaliza-
tion of the model.

Figures 4 and 5 illustrate the 
zoomed-in training and valida-
tion accuracy and loss curves 
during the final epochs (41-50� 
of model training. Figure 4 
reveals a gradual and steady 
increase in both training and 
validation accuracy, from app- 
roximately 0.92 to 0.95 and 
0.89 to 0.92 respectively. This 
close progression suggests th- 
at the model not only learns 
consistently but also general-
izes well to new data as the 
epochs advance. The narrow-
ing gap between the training 
and validation lines indicates 
minimal overfitting, with the 
model maintaining a high de- 
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ing model achieved a test accuracy of 91%. The 
synaptic plasticity model, used as a baseline, 
achieved a test accuracy of 88%.

Figure 6 presents a bar chart comparing the 
test accuracy of two different models: the 
Dendritic Learning Model and the Synaptic 
Plasticity Model. The dendritic learning model 
achieves a higher test accuracy of 91.0%, sig-
nificantly outperforming the synaptic plasticity 
model, which posts an 88.0% accuracy. This 
comparison underscores the effectiveness of 
the dendritic learning approach in handling the 
classification task more efficiently than the tra-
ditional synaptic plasticity methods. The supe-
rior performance of the dendritic model may be 
attributed to its more complex and nuanced 
learning mechanisms, which could be better at 
capturing and generalizing the underlying pat-
terns in the dataset.

To gain a deeper understanding of the model’s 
performance, a detailed error analysis was  
conducted, focusing on precision, recall, and 
F1-score for each digit class, along with a con-
fusion matrix to visualize the distribution of 
misclassifications. Precision, recall, and F1- 
Score are commonly used metrics in classifica-
tion tasks to evaluate the performance of 
machine learning models. Precision quantifies 
the accuracy of the positive predictions made 
by the model, indicating the proportion of true 
positive predictions among all positive predic-
tions. On the other hand, recall measures the 
model’s ability to correctly identify all positive 
instances from the actual positive samples. 
F1-Score, the harmonic mean of precision and 
recall, offers a balanced measure of the mod-
el’s performance, accounting for both false 
positives and false negatives. These metrics 
are essential for assessing the effectiveness 
and reliability of classification models across 
various domains.

Figure 7 showcases a confusion matrix for the 
Dendritic Learning Model, providing a detailed 
visualization of the model’s classification accu-
racy across different digit classes from the 
MNIST dataset. The diagonal elements, repre-
senting correct classifications, dominate the 
matrix, indicating strong predictive accuracy. 
Notably, certain off-diagonal elements such as 
the predictions for digits ‘1’, ‘2’, ‘3’, ‘5’, ‘7’, and 
‘9’ show relatively higher counts, pointing to 
frequent misclassifications between these dig-

Table 2. Stabilization metrics for the final 10 
epochs: demonstrates the converging trends 
in training and validation accuracy and loss, 
indicating effective model stabilization and 
optimal generalization performance in the 
concluding phases of training

Epochs Training 
Accuracy

Validation 
Accuracy

Training 
Loss

Validation 
Loss

41 0.94 0.91 0.22 0.27
42 0.94 0.91 0.21 0.26
43 0.94 0.91 0.21 0.26
44 0.94 0.91 0.21 0.26
45 0.94 0.91 0.20 0.26
46 0.95 0.92 0.20 0.25
47 0.95 0.92 0.20 0.25
48 0.95 0.92 0.20 0.25
49 0.95 0.92 0.20 0.25
50 0.95 0.92 0.20 0.25

accuracy suggests minimal overfitting. The final 
validation accuracy of 92% indicates strong 
generalization from training data to unseen 
data, affirming the model’s effectiveness in 
capturing relevant features and patterns from 
the MNIST dataset.

Table 2 presents the stabilization metrics for 
the final 10 epochs of the training process, 
detailing training, and validation accuracy, as 
well as training and validation loss. Throughout 
these epochs, training accuracy improves 
slightly from 0.94 to 0.95, while validation 
accuracy increases from 0.91 to 0.92, indicat-
ing effective model tuning and generalization 
as the model approaches an optimal state. 
Both training and validation losses show a 
decreasing trend, stabilizing at a low of 0.20 
and 0.25 respectively, which suggests that the 
model is effectively minimizing errors and not 
overfitting despite further training. The close 
convergence of training and validation metrics 
in these final epochs demonstrates the mo- 
del’s robustness and ability to generalize well  
to unseen data without significant overfitting.

Testing performance

The performance of the dendritic learning 
model was evaluated on the MNIST test set. 
The key metric for this evaluation was the over-
all accuracy, which reflects the proportion of 
correctly classified images. The dendritic learn-
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Figure 6. Success rate comparison chart: demonstrates the superior test 
accuracy of the Dendritic Learning Model (91.0%� compared to the Synaptic 
Plasticity Model (88.0%�, highlighting the effectiveness of dendritic learning 
mechanisms in enhancing model performance.

Figure 7. Confusion matrix for dendritic learning model: highlights the mod-
el’s classification performance across all digit classes, with special atten-
tion to misclassifications that suggest areas for improvement in distinguish-
ing visually similar digits.

its. For instance, the model confuses digit ‘2’ 
with ‘3’ and ‘8’, and similarly, ‘3’ with ‘2’ and ‘8’, 
likely due to visual similarities among these  
digits. This pattern suggests potential areas  
for further refinement in the model’s feature 
extraction and classification layers to better dif-

ferentiate among similarly sha- 
ped digits.

Figures 8-10 display the preci-
sion, recall, and F1-score for 
each digit class, respectively, 
providing a detailed insight 
into the classification perfor-
mance of the Dendritic Lear- 
ning Model on the MNIST data-
set. Figure 8 reveals varying 
precision across digit classes, 
with particularly high precision 
for digits ‘0’ and ‘9’, indicating 
fewer false positives for these 
classes. In contrast, digits ‘5’ 
and ‘8’ exhibit lower precision, 
suggesting more frequent in- 
correct positive classifications 
for these digits. Figure 9 sh- 
ows that the recall is generally 
lower across most classes, wi- 
th significant variability, high-
lighting potential issues with 
false negatives, especially for 
digits like ‘5’ and ‘8’ that also 
had lower precision scores. 
Figure 10 consolidates these 
metrics, indicating overall per-
formance with high F1 scores 
for digits ‘0’ and ‘9’, and lower 
scores for ‘5’ and ‘8’. These fig-
ures collectively illustrate that 
while the model performs well 
for certain digits, it struggles 
with others, particularly where 
there is a visual similarity that 
might confuse the model, im- 
pacting both precision and 
recall.

Table 3 provides a detailed 
overview of precision, recall, 
and F1-score for each digit 
class, quantifying the Dendri- 
tic Learning Model’s classifi- 
cation performance on the 
MNIST dataset. The data re- 
veals consistently high preci-

sion and recall values across most digits, with 
digits ‘0’ and ‘6’ showcasing the highest preci-
sion and recall, each at 0.92 and 0.91 respec-
tively, resulting in the highest F1-scores of 
0.915. This indicates a strong ability of the 
model to correctly identify and classify these 
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Figure 8. Precision bar chart: shows precision scores for each digit class, 
highlighting the model’s accuracy in identifying true positives across differ-
ent classes.

Figure 9. Recall bar chart: depicts recall scores for each digit class, under-
scoring the model’s ability to correctly identify all relevant instances within 
each class.

Figure 10. F1-score bar chart: combines precision and recall to provide a 
harmonic mean (F1-score� for each digit class, reflecting the overall accu-
racy and reliability of the model’s classification performance.

digits with minimal false positives or negatives. 
In contrast, digits ‘4’ and ‘9’ exhibit the lowest 
scores in all three metrics, which might suggest 
challenges in distinguishing features unique to 

these digits or similarities with 
other digits that lead to high- 
er misclassification rates. The 
table underscores the model’s 
overall robustness but also hi- 
ghlights specific areas where 
performance could potentially 
be enhanced.

The analysis of the confusion 
matrix provides valuable in- 
sights into the performance of 
the model, highlighting that 
the majority of misclassifica-
tions occurred between digits 
with similar shapes, such as 1 
and 7, or 3 and 8. Moreover, 
the evaluation of precision, 
recall, and F1-score metrics 
indicates consistently high val-
ues across all digit classes, 
suggesting a balanced perfor-
mance with minimal bias to- 
wards any specific class. The- 
se findings underscore the 
effectiveness of the dendritic 
learning model in achieving 
not only high overall accuracy 
but also robust performance 
across various evaluation met-
rics, showcasing its ability to 
effectively learn and general-
ize from the MNIST dataset. 
The detailed error analysis fur-
ther validates the model’s effi-
cacy in handling complex digit 
classification tasks, reinforc-
ing its suitability for real-world 
applications.

Comparison with baseline

The dendritic learning model 
underwent a comprehensive 
comparative analysis against  
a traditional synaptic plastici-
ty-based model to assess per-
formance enhancements. In 
this evaluation, crucial metrics 
including accuracy, precision, 

recall, and F1-score were scrutinized. The re- 
sults of the performance metrics comparison 
revealed that the dendritic learning model 
exhibited superior performance across all eval-
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precision, alongside a 3% improvement in recall 
and a 3% enhancement in F1-score. This indi-
cates not only its enhanced capability to cor-
rectly identify true positives (precision) but also 
its efficiency in minimizing false negatives 
(recall), leading to a higher overall harmonic 
mean of precision and recall (F1-score). These 
results highlight the advanced learning and 
generalization capabilities of the dendritic 
model, suggesting it is better equipped to  
handle complex pattern recognition tasks like 
those presented by the MNIST dataset.

The scalability of the dendritic learning model 
was assessed by varying the input data size 
and network complexity to observe changes  
in performance, a crucial analysis for under-
standing the model’s robustness and efficiency 
in handling different scales of data and net-
work structures. Specifically, the scalability 
analysis involved testing with 10%, 50%, and 
100% of the dataset to assess data size varia-
tions. Additionally, network complexity varia-
tions were evaluated with 25, 49, and 100 hid-
den units. These assessments provide insights 
into how the model performs under different 
data and network conditions, which is essential 
for its practical application in various real-world 
scenarios.

Figures 12 and 13 illustrate the scalability of 
the Dendritic Learning Model as it relates to 
data size and network complexity, respectively. 
Figure 12 shows a clear upward trend in mo- 
del accuracy as the percentage of data used 
increases, beginning from 85.0% with 10% of 
the data and reaching 91.0% with 100% of the 
data. This gradual increase suggests that the 
model benefits significantly from larger datas-
ets, likely due to better generalization from 
more comprehensive training examples. Figure 
13 depicts model accuracy as a function of the 
number of hidden units, starting from 87.0% 
with 25 units and plateauing at around 92.0% 
with 100 units. The model’s accuracy improves 
notably as the network complexity increases up 
to a certain point, after which the gains in ac- 
curacy diminish, indicating a potential optimal 
point beyond which additional complexity does 
not yield proportional benefits.

Tables 5 and 6 provide quantitative data on 
how variations in data size and network com-
plexity impact the accuracy of the Dendritic 
Learning Model. Table 5 shows a progressive 

Table 3. Precision, recall, and F1-score for 
each digit class
Digit Precision Recall F1-Score
0 0.92 0.91 0.915
1 0.90 0.89 0.895
2 0.91 0.90 0.905
3 0.92 0.91 0.915
4 0.89 0.88 0.885
5 0.90 0.89 0.895
6 0.92 0.91 0.915
7 0.90 0.89 0.895
8 0.91 0.90 0.905
9 0.89 0.88 0.885

uated metrics. Conversely, the synaptic pla- 
sticity model, serving as a baseline, displayed 
comparatively lower performance metrics in 
comparison.

Figure 11 illustrates a comparative analysis of 
performance metrics between the Dendritic 
Learning Model and the Synaptic Plasticity 
Model across four categories: accuracy, pre- 
cision, recall, and F1-score. The Dendritic 
Learning Model consistently outperforms the 
Synaptic Plasticity Model across all metrics, 
demonstrating superior overall performance. 
Specifically, the Dendritic model shows a 
noticeable advantage in accuracy (91.0% vs. 
88.0%� and F1-score (90.5% vs. 87.5%�, which 
are critical indicators of the model’s effective-
ness and balance between precision and recall. 
The graph visually highlights the superiority of 
the dendritic approach in handling classifica-
tions more accurately, suggesting that its learn-
ing mechanisms are better suited for extracting 
and generalizing features from the MNIST data-
set. This comparison not only validates the effi-
cacy of the Dendritic Learning Model but also 
underscores potential areas for improvement 
in traditional synaptic models.

Table 4 succinctly summarizes the compara- 
tive performance metrics between the Dendri- 
tic Learning Model and the Synaptic Plasticity 
Model. The Dendritic Learning Model consis-
tently surpasses the Synaptic Plasticity Model 
across all measured metrics - accuracy, preci-
sion, recall, and F1-score - underscoring its 
superior ability to accurately classify and pre-
dict outcomes. Notably, the dendritic model 
exhibits a 3% higher accuracy and a 3% greater 
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Table 4. Comparative performance metrics

Metric Dendritic Learning 
Model

Synaptic Plasticity 
Model

Accuracy 91% 88%
Precision 91% 88%
Recall 90% 87%
F1-Score 90.5% 87.5%

Figure 11. Model comparison chart: showcases the superior performance of the Dendritic Learning Model over the 
Synaptic Plasticity Model across all major performance metrics, highlighting its effectiveness in achieving higher 
accuracy, precision, recall, and F1-score in digit classification.

increase in accuracy as more data is utilized: 
accuracy climbs from 85% with only 10% of the 
data to 91% when the full dataset is used. This 
indicates that the model’s performance im- 
proves significantly with access to more train-
ing data, likely due to enhanced learning of the 
underlying patterns within the dataset. Table 6 
illustrates that increasing the number of hidden 
units in the model’s architecture from 25 to 
100 also enhances accuracy, from 87% to  
92%. However, the increment in accuracy 
becomes less pronounced as the number of 
hidden units reaches 100, suggesting a pla-
teau effect where further increases in complex-
ity yield diminishing returns.

The impact of data size on accuracy is evi- 
dent, as the model demonstrates a significant 
increase in accuracy with larger datasets, 
showcasing its capability to effectively leverage 
more data. Similarly, the influence of network 
complexity on accuracy is apparent, with high- 
er accuracy observed as network complexity 
increases. This suggests that the model effi-
ciently utilizes additional hidden units for en- 
hanced feature representation and classifica-

tion. Moreover, the scalability analysis reaffirms 
the robustness of the dendritic learning mo- 
del, revealing its ability to perform well across 
various configurations, including different data 
sizes and network complexities. Notably, the 
model maintains high performance levels even 
with variations in dataset size and network 
structure, underscoring its scalability and 
adaptability to different scenarios.

Discussion

The findings from this research on dendritic 
learning in feedforward tree networks under-
score a significant advancement over tradition-
al synaptic models, particularly in the areas of 
accuracy, precision, recall, and F1-score. As 
detailed in the results section, dendritic models 
outperform synaptic models across all metrics, 
corroborating the hypothesis that dendritic 
mechanisms can enhance computational effi-
ciency and accuracy. Current literature, such as 
work by Poirazi and Papoutsi [13], has hinted at 
the potential of dendritic structures to handle 
complex computations more effectively than 
synaptic-only models, which our findings ro- 
bustly support. Moreover, the research aligns 
with experimental findings by Hodassman et al. 
[2], who noted the limitations of synaptic plas-
ticity in capturing the rapid and nuanced dy- 
namics of neural processing, a gap effectively 
bridged by dendritic learning mechanisms.

Dendritic learning differentiates itself from syn-
aptic learning by exploiting the non-linear pro-
cessing capabilities of dendritic trees within 
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Table 6. Performance by network complex-
ity: displays the positive impact of increasing 
network complexity on model accuracy, with 
diminishing returns observed as complexity 
continues to increase
Hidden Units Accuracy
25 87%
49 91%
100 92%

Table 5. Performance by data size: illustrates 
how increasing the percentage of data used 
for training improves the accuracy of the 
Dendritic Learning Model, emphasizing the 
benefits of larger training sets
Data Size (%� Accuracy
10 85%
50 89%
100 91%

Figure 12. Scalability data size plot: demonstrates a positive correlation be-
tween model accuracy and data size, highlighting the model’s enhanced 
performance and generalization with larger datasets.

Figure 13. Scalability network complexity plot: shows the impact of increas-
ing network complexity on model accuracy, illustrating diminishing returns 
beyond a certain level of complexity.

neural networks, thereby en- 
abling a more nuanced inte-
gration and processing of syn-
aptic inputs. This approach 
allows dendritic models to cap-
ture higher-order interactions 
among inputs that synaptic 
models typically overlook. The 
advantages of dendritic learn-
ing are evident in its ability  
to achieve higher performance 
metrics, as demonstrated by 
the enhanced accuracy and 
faster convergence rates ob- 
served in this study. Unlike 
synaptic learning, which ad- 
justs weights based solely on 
the error gradient, dendritic 
learning adapts through local-
ized changes within dendritic 
segments, offering a more flex-
ible and potent learning mech-
anism that can potentially lead 
to more profound insights into 
cognitive functions and more 
effective AI systems.

The incorporation of input 
crosses within the FFTN archi-
tecture significantly impacted 
the learning dynamics and 
overall performance of the 
model. By introducing higher-

order correlations among input features, den-
dritic models were able to extract more com-
plex patterns and dependencies within the 
data, which is particularly crucial for tasks 
involving intricate and high-dimensional inputs 
like those in the MNIST dataset. This method 
mirrors biological processes more closely, 
where dendritic trees integrate inputs from var-
ious sources to generate a coherent output. 
The effectiveness of this approach was reflect-
ed in the improved model accuracy when han-
dling larger datasets and more complex net-
work architectures, validating the hypothesis 
that dendritic learning can harness these high-
er-order correlations to enhance computational 
power and efficiency.

The implementation of dendritic learning mech-
anisms in artificial neural networks, as de- 
monstrated in this study, offers profound impli-
cations for neuroscience, particularly in under-
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standing complex neural processing. The en- 
hanced performance of dendritic models sug-
gests that dendrites play a more active role in 
synaptic integration and neural computation 
than traditionally understood. This aligns with 
recent neuroscientific findings that suggest 
dendrites are not merely passive conduits for 
signal transmission but are capable of perform-
ing complex independent computations, which 
can significantly influence neural network dyna- 
mics.

By mimicking the function of biological den-
drites in a computational model, this research 
provides a framework for testing theories  
about neural processing in a controlled envi-
ronment, which could lead to new hypotheses 
about cognitive functions and neural plasticity. 
For instance, the ability of dendritic learning 
models to effectively manage higher-order cor-
relations and complex data patterns might  
help explain how neural circuits process large 
amounts of information efficiently and adap-
tively, leading to insights into the physiological 
processes behind learning and memory in the 
human brain.

In the domain of machine learning, the findings 
from this research elucidate the potential of 
dendritic learning to enhance the functionality 
and efficiency of artificial neural networks. The 
dendritic learning models demonstrated supe-
rior capabilities in pattern recognition, particu-
larly in complex tasks such as digit recogni- 
tion from the MNIST dataset, suggesting that 
these models could be effectively applied to 
more complex real-world tasks such as image 
and speech recognition, natural language pro-
cessing, and even in sophisticated robotics for 
enhanced decision-making processes.

The ability of dendritic models to outperform 
traditional synaptic models in terms of accura-
cy and efficiency indicates their potential to 
reduce computational costs and increase the 
speed of neural computations. This could be 
particularly beneficial in developing more ad- 
vanced AI systems that require real-time pro-
cessing of large datasets. Additionally, the 
application of dendritic learning principles 
could lead to the development of more robust 
and scalable AI systems that are capable of 
more human-like reasoning and decision-mak-
ing, paving the way for AI to better integrate into 

societal structures in roles that require com-
plex judgment and interaction.

The integration of dendritic learning mecha-
nisms into mainstream machine learning mod-
els could also encourage a shift towards more 
biologically inspired algorithms in AI, fostering  
a closer collaboration between the fields of 
computational neuroscience and artificial intel-
ligence. This interdisciplinary approach could 
accelerate the development of AI systems that 
are not only more capable but also more under-
standable from a biological perspective, poten-
tially addressing some of the ethical concerns 
surrounding AI by making their decision-making 
processes more transparent and relatable to 
human cognitive processes.

Despite the significant advancements demon-
strated by the dendritic learning model in this 
study, several limitations were encountered 
that could impact broader applicability and 
scalability. One major challenge is the compu-
tational complexity inherent in the dendritic 
learning algorithms, which can lead to increas- 
ed computational costs when scaling to larger 
datasets or more complex network architec-
tures. This complexity arises from the need to 
manage and process higher-order interactions 
within dendritic trees, which, while beneficial 
for performance, require substantial computa-
tional resources. Additionally, the model’s 
dependency on finely tuned hyperparameters 
such as the nonlinearity parameter (α� and 
learning rates poses challenges in training sta-
bility and model convergence, particularly in 
diverse and dynamic real-world scenarios 
where optimal hyperparameter settings can 
vary significantly.

Future research should focus on addressing 
the computational efficiency of dendritic learn-
ing models to facilitate scalability and broader 
application. Exploring parallel processing ar- 
chitectures or advanced hardware accelera-
tions like GPUs or TPUs could potentially mi- 
tigate computational demands. Additionally, 
developing adaptive learning algorithms that 
can dynamically adjust hyperparameters in  
real time could enhance training stability and 
performance across varying conditions. An- 
other promising area is the integration of den-
dritic learning principles with other forms of 
neural network architectures, such as recur-
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rent neural networks (RNNs) or convolutional 
neural networks (CNNs�, to evaluate the bene-
fits of dendritic mechanisms in other contexts 
of AI, such as sequential data processing or 
image recognition. Further research could also 
explore the biological veracity of these models, 
aiming to deepen the alignment between ar- 
tificial dendritic learning systems and their bio-
logical counterparts, potentially opening new 
insights into neural processing and brain-
inspired computing.

Conclusion

This research has successfully demonstrated 
the effectiveness of dendritic learning in 
enhancing the computational capabilities of 
FFTN, significantly outperforming traditional 
synaptic plasticity models across key perfor-
mance metrics such as accuracy, precision, 
recall, and F1-score. The significance of these 
findings lies in their potential to revolutionize 
both our understanding of neural computation 
in biological systems and the development of 
more advanced artificial intelligence technolo-
gies. The dendritic learning model not only pro-
vides a more accurate representation of neuro-
nal processing but also introduces a powerful 
framework for tackling complex pattern recog-
nition tasks that could benefit a wide range of 
AI applications. Future research should focus 
on enhancing the scalability and computational 
efficiency of dendritic learning models, explor-
ing their integration with other neural network 
architectures, and expanding their application 
to other complex datasets to fully realize their 
potential and address the broader challenges 
in AI and neuroscience.
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