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Abstract: This study explores the concept of neural reshaping and the mechanisms through which both human and 
artificial intelligence adapt and learn. Objectives: To investigate the parallels and distinctions between human brain 
plasticity and artificial neural network plasticity, with a focus on their learning processes. Methods: A comparative 
analysis was conducted using literature reviews and machine learning experiments, specifically employing a multi-
layer perceptron neural network to examine regression and classification problems. Results: Experimental findings 
demonstrate that machine learning models, similar to human neuroplasticity, enhance performance through itera-
tive learning and optimization, drawing parallels in strengthening and adjusting connections. Conclusions: Under-
standing the shared principles and limitations of neural and artificial plasticity can drive advancements in AI design 
and cognitive neuroscience, paving the way for future interdisciplinary innovations.
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Introduction

The growing brain has always been one of  
the most fascinating topics for research and 
thought. The identification and characterization 
of the incredibly dynamic processes by which 
the brain develops and matures across time 
have received a great deal of attention [1, 2]. 
Nevertheless, despite this extensive body of 
research, we are still unsure of how the devel-
oping brain manages to overcome a wide range 
of difficulties throughout life to become a fully 
developed mature brain [3]. The development 
and maturation of the human brain are particu-
larly distinctive due to several factors. Firstly, 
the extended period of brain maturation, which 
spans from the prenatal stage to the third 
decade of life, allows for an unparalleled level 
of complexity and specialization [4]. Unlike 
most species, humans exhibit a protracted 
phase of synaptic overproduction during early 
development, followed by extensive pruning, 
which optimizes neural circuits for efficiency 
and adaptability [5]. Secondly, the human 

brain’s extraordinary plasticity enables the 
acquisition of diverse skills and knowledge, 
supporting cultural evolution and individual 
learning. This includes the dynamic formation 
of new synapses, dendritic arborization, and 
myelination, processes that vary across differ-
ent regions and are influenced by both genetic 
and environmental factors [6]. Lastly, the pre-
frontal cortex, responsible for higher-order cog-
nitive functions such as decision-making, plan-
ning, and social behavior, undergoes prolong- 
ed development, which is rare among species 
and critical for human adaptability and complex 
behaviors [7]. These unique features highlight 
the intricate interplay between biology and 
experience in shaping the human brain.

The capacity of the brain to change its connec-
tions or rewire itself is known as neuroplasticity 
or brain plasticity [8-10]. Any brain, not only the 
human brain, would be unable to mature from 
infancy to adulthood or recover from brain dam-
age without plasticity [9]. The brain is unique in 
that it simultaneously processes sensory and 
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motor inputs [10-12]. It has numerous neuronal 
routes that can mimic one another’s functional-
ity, making it simple to fix slight developmental 
mistakes or momentary loss of function due to 
damage by rerouting impulses via a different 
pathway [13]. But might artificial intelligence 
benefit from this plasticity as well? The purpose 
of this study is to provide an answer to that 
query.

The capacity for coherent thought is one of the 
definition of the brain. It takes thought for 
machines to function in the human environ-
ment. Thus, the term “machine brain” is used 
to describe it. Artificial intelligence (AI) at its 
maximum level, often known as strong AI, is 
represented by machine brain [12-14]. Training 
the machine brain is akin to training intelligent 
algorithms because, at this point, robots still 
lack true intelligence. This process is crucial to 
machine learning. Understanding a machine 
brain’s structure is crucial to research whether 
or not plasticity can be implemented in a 
machine brain. We need first have a thorough 
understanding of the physiological makeup and 
functional zoning of the human brain in order to 
comprehend the anatomy of a machine brain 
[15-18]. A human brain is composed of 80% 
water and 20% biological components [19-21]. 
It is made up of the skull, brain stem (the sub-
conscious layer), cerebellum (the layer that 
controls balance), and brain (the layer that con-
trols thought). The brain can be thought of as 
the outer layer of the human brain, with the 
cerebral cortex and the neocortex of the fore-
brain making up the majority of this layer [22]. 
The brain stem, which is situated a little up the 
neck, regulates the majority of unconscious 
behaviours. Another component of the hind-
brain is the cerebellum. It is located above the 
brain stem and controls bodily equilibrium, ner- 
ve reflexes, and muscle coordination [23]. The 
temporal lobe, which is found on both sides of 
the brain and flush with the ears, regulates our 
hearing and short-term memory [24, 25]. While 
the left hemisphere is in charge of speech, writ-
ing, language, and computing, the right hemi-
sphere is responsible for our creativity, spatial 
thinking, music, and intuitive feeling. The fron-
tal lobe determines personality, emotion, and 
planned conduct. The parietal lobe regulates 
touch, limb movements, and speech and lan-
guage understanding when it joins with the 
occipital lobe. The occipital lobe is connected 
to our vision [26].

The contribution of this study is comparing 
machine learning plasticity and human brain 
plasticity is analysing the similarities and differ-
ences in their learning processes. It is done by 
reviewing the literature and conducting experi-
ments and comparing these to the various 
ways in which the human brain can change and 
adapt. Additionally, the paper examines the 
limitations and strengths of each type of plas-
ticity and draws conclusions about how they 
might complement each other in various appli-
cations. This includes areas such as artificial 
intelligence, cognitive psychology, and neuro-
science, psychiatry and could lead to new 
insights into how machine learning can be 
improved and made more effective in various 
domains.

Varieties and characteristics of plasticity

Three types of plasticity can be distinguished in 
the developing of brain which are, experience 
independent plasticity, experience-expectant 
plasticity, and experience-dependent plasticity 
[27]. Because it is difficult for the genome to 
specify every link in the brain, it creates a rough 
approximation of connectivity that is changed 
by internal and external events, both during 
pregnancy and in the early postnatal period 
[28]. This results in experience independent 
plasticity. Experience expectant plasticity large-
ly takes place in the first few months after birth. 
When an input is not experienced, the brain 
loses its ability to discern fine distinctions and 
becomes an expert at distinguishing stimuli 
that it gets [29]. Experience dependent plastic-
ity, which modifies the connections between 
groups of neurons as a result of experience, 
starts in the early postnatal period and lasts 
the rest of one’s life [30].

Plasticity refers to the brain’s ability to adapt 
and reorganize itself by forming new neural 
connections in response to learning, experi-
ence, or injury. This dynamic property enables 
both development and recovery, playing a criti-
cal role in cognitive, sensory, and motor func-
tions. The three types of plasticity are: 

1. Experience-Independent Plasticity: This type 
of plasticity occurs without the influence of ex- 
ternal stimuli and is primarily driven by genetic 
and molecular programs. It is most prominent 
during prenatal development and the early 
postnatal period when basic neural structures 
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and connectivity are established. Examples 
include the formation of synapses and neural 
circuits that govern basic reflexes [28]. 

2. Experience-Expectant Plasticity: This form of 
plasticity relies on specific external stimuli that 
the developing brain anticipates during critical 
periods. For example, the visual cortex requires 
exposure to visual stimuli for proper develop-
ment; without such input, the brain’s ability to 
process visual information is impaired [29]. 
This type of plasticity emphasizes the brain’s 
ability to fine-tune itself based on expected 
environmental interactions.

3. Experience-Dependent Plasticity: This type 
extends throughout life and involves the for- 
mation and strengthening of synaptic connec-
tions as a direct result of individual experienc-
es. It underpins skills such as language learn-
ing, musical training, and memory formation. 
Unlike experience-expectant plasticity, which is 
universal to all humans, experience-dependent 
plasticity is unique to each individual’s lived 
experiences [31].

Several potential mechanisms are taken into 
consideration in order to comprehend plastici-
ty. The most likely candidates, include the neu-
rogenesis, glycogenesis, the formation of con-
nections, either by axon extension or synapse 
formation, pruning, or growth of dendrites and 
thus synapses; epigenetic changes; as well as 
changes in the excitatory - inhibitory balance. 
Despite the fact that neurogenesis in the brain 
is complete at birth, it can be induced postpar-
tum under specific conditions [32, 33]. Glia can 
also possibly develop in addition to neurons 
[34]. In the human brain, glial cells make up 
around 50% of the cells, with astrocytes mak-
ing up the majority of them. There is little infor-
mation available on any unique elements that 
might affect brain astrocytosis. Along with as- 
trocyte growth, myelin production rises, which 
helps to speed up conduction along axons. 
Increased myelin production improves the ef- 
fectiveness of communication between brain 
areas, according to functional MRI studies. 
However, myelination might also have addition-
al purposes. Myelin first undergoes modifica-
tions as a result of learning [35, 36]. Axon 
grows and new synapses are formed as myelin 
continues to develop by learning process [37, 
38]. There is strong evidence to suggest that 
learning is a moment when connectedness is 

actively changing [39]. Utilizing resting-state 
functional interactions and networks is a st- 
rong tool for analysing connectivity alterations. 
Using this method, we may examine how the 
interactions between ages and the activity of 
specific brain regions alter as a result of learn-
ing. Two general properties were found after 
reviewing such investigations, according to 
research [40]. Regional interactions shift over 
development into interactions spanning greater 
cortical distances, which is the first property. 
The second property is that these developmen-
tal shifts separate local regions and integrate 
them into diverse subnetworks. Learning also 
alters the amygdala, striatum, and hippocam-
pus’ cortical connections [41]. Changes in con-
nection must be accurate enough for an altered 
circuit to process information differently and 
perform the changed or new function, which is 
a key principle.

Learning processes in the human brain

Artificial learning techniques like neural net-
work systems have aided in the development of 
the machine brain by taking advantage of sig-
nificant discoveries in the domains of neurolo-
gy, cognitive science, and other disciplines [42, 
43]. Future development will focus on under-
standing how the human brain learns. This 
implies that efficient brain learning mecha-
nisms can serve as an inspiration. On a molec-
ular, cellular, and neural circuit level, we can 
combine brain activity and perception [44]. The 
brain’s learning processes differ significantly 
from those of machines. It is crucial to com-
pletely comprehend these variations in order to 
advance machine capabilities and overcoming 
the divide between artificial intelligence and 
brain science. For building the machine brain, it 
will pave a new route. The development of the 
machine brain can be aided by interdisciplinary 
study in the fields of cognitive science, neurol-
ogy, psychiatry, and computational science 
[16]. In order to comprehend the neurological 
principles underlying the human brain’s inter-
nal cognitive processes, we must first grasp 
that it possesses a higher intelligence layer 
than the machine intelligence layers [45, 46]. 

Bridging the gap between AI and brain science 
requires a multifaceted approach that inte-
grates advancements from both fields. Firstly, 
fostering interdisciplinary research that com-
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Figure 1. Building blocks of the brain: Exploring the intricate components of 
a simple neuron - from dendrites to myelin, each piece plays a crucial role 
in transmitting signals.

Figure 2. Connecting neurons, sparking ideas: the intricate structure of the 
Synapse.

bines neuroscience, cognitive science, and 
computational modeling is essential. By study-
ing the biological mechanisms of learning and 
plasticity, AI systems can be designed with 
architectures inspired by the human brain, 
such as spiking neural networks that emula- 
te event-based communication [31]. Secondly, 
neural-inspired models, such as those mimick-
ing hierarchical organization and modular pro-
cessing observed in the brain, can enable AI  
to achieve greater adaptability and generaliza-
tion capabilities. Techniques like neuromorphic 
computing aim to replicate neural structures, 
bridging the divide between biological and arti-
ficial systems. Lastly, employing neurofeedback 

technologies provides a prom-
ising avenue for real-time in- 
teraction between AI systems 
and brain activity. Machine 
learning algorithms can anal-
yse patterns in neural data to 
guide brain plasticity enhan- 
cement, creating a synergistic 
relationship between the two 
domains. Collaborative efforts 
between neuroscientists and 
computer scientists are critical 
to designing models that align 
computational efficiency with 
biological plausibility.

Billions of neurons in the hu- 
man brain are protuberant 
cells. The nucleus, ribosome, 
protoplast network structure, 
and other components make 
up the entire cell body. Here, 
the energy sources for neural 
functions are displayed and 
numerous biochemical proce- 
sses are carried out. The axon 
is long and has few branches 
(see Figure 1), whereas these 
dendrites are small and have 
numerous branches. The axon 
is the conduit through which 
neurons transfer the informa-
tion they have activated to 
other neurons [11]. The syn-
apse, which consists of the 
presynaptic membrane, synap-
tic space, and postsynaptic 
membrane, is the structure 
that links one neuron to an- 

other (See Figure 2). Synapses allow for the uni-
directional passage of information between 
neurons without any attenuation. Synapses 
allow for the unidirectional passage of informa-
tion between neurons without any attenuation.

The synaptic body contains vesicles that alter 
and release neurotransmitters. These neu-
rotransmitters diffuse to the postsynaptic 
membrane of other neurons after passing 
through the synaptic gap and promptly bind to 
the protein receptor, altering the postsynaptic 
membrane’s permeability to ions. The mem-
brane potential follows a change in the ion con-
centration difference between the membrane’s 
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inside and exterior. The excitatory or inhibitory 
alterations in the postsynaptic membrane, whi- 
ch are caused by abrupt rising pulses when the 
membrane potential increases beyond a fixed 
value, are directly related to the learning mech-
anisms in human brain. The brain undergoes 
significant changes while a person is learning, 
including the development of new connections 
between neurons. We refer to this phenome-
non as neuroplasticity. The capacity of the 
human brain to modify, i.e., to build, bolster, 
weaken, or destroy connections between neu-
rons. These connections get stronger with  
more repetition. The messages (nerve impuls-
es) are transferred faster as these connections 
become stronger, boosting their effectiveness.

The human brain’s simulation process for 
learning

A hard issue in computational neurosciences  
is how the plasticity dynamics of multilayer 
Biological Neural Networks (BNNs) are set up 
for effective data-driven learning [47]. Artificial 
neural network algorithms are typically unri-
valled in their ability to perform a wide range of 
data-driven tasks, which begs the issue of 
whether the factors that contribute to their  
success are shared by their biological counter-
parts, specifically Spiking Neural Networks 
(SNNs). However, the continuous-time dynam-
ics, localization of operations, and spike 
(event)-based communication of biological ne- 
ural networks set them apart from Artificial 
Neural Networks (ANNs) [31]. Training on non-
stationary data is a concern of continuous 
learning [48]. An agent is limited to interacting 
with only one task at a time in a practical 
description as they are taught in succession. 
There are various requirements for a continu-
ous learning algorithm to be effective. 1) Unless 
capacity is a problem or contrary information is 
presented, agents shouldn’t forget what they’ve 
already learned. 2) In order to accelerate learn-
ing, an algorithm should be able to take use of 
task structural similarities. 3) Every time new 
information aids in the generalisation of previ-
ously learned tasks, backward transfer should 
be possible. 4) Learning now shouldn’t inter- 
fere with performance on future assignments 
because good continuous learning depends on 
a persistent capacity to learn new things [49]. 
The subtleties of not being able to learn vary. 
The ability of a neural network to minimise 
training loss for a new task may be lost. 

Negative forward transfer, which is a common 
impact for regularization-based continual le- 
arning systems, can cause learning to become 
less data efficient. In this case, we might still 
be able to achieve full performance on the new 
learning and reduce training error to zero, but 
learning would be much slower. Bringing the 
learning error to zero is the main objective, 
along with faultless performance in learning.

Artificial neural network as a ML algorithm

Any machine learning algorithm aims to identify 
the best function that converts a set of inputs 
into the desired output. A multi-layered neural 
network is an example of a machine learning 
algorithm. A multi-layered neural network is 
trained via backpropagation in order to help it 
learn the necessary internal representations 
so that it can learn any arbitrary input to output 
mapping [50-52]. It helps to first gain some 
intuition regarding the relationship between the 
correct output of a neuron and the actual out-
put of a neuron in order to comprehend the 
mathematical derivation of the multi-layered 
neural network method. Consider a simple neu-
ral network with two input units, one output 
unit and no hidden units, and in which each 
neuron uses a linear output that is the weight-
ed sum of its input. Prior to training, the weights 
will originally be assigned at random. The neu-
ron then picks up new information from training 
examples, in this instance a sequence of tuples 
(x1, x2, yt), in which x1 and x2 are the network’s 
inputs and yt are the desired result.

Given x1 and x2, the initial network will most 
likely produce an output ypred. The difference 
between the computed output ypred and the 
intended output yt is measured using a loss 
function, L(yt, ypred) (See Figure 3). The squar- 
ed error can be utilised as a loss function for 
regression analysis problems and the categori-
cal cross-entropy can be used for classification 
problems.

Therefor, the Loss function would be: 

E=L(yt, ypred)

Where E stands for the error or discrepancy. 
The weighted sum of all a neuron’s inputs 
determines its output, though:

ypred= x1w1+x2w2
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After calculating the output, the difference 
between the predicted value and the target is 
calculated. For this purpose, the appropriate 
loss function of the problem is used. The loss 
function used to quantify errors in learning is a 
crucial contributor to updating synaptic weight 
in order to reduce errors [42, 43]. Synaptic 
weights are updated by the algorithm to reduce 
loss. The following are the main mechanisms of 
learning. To enhance the learning system, the 
synaptic weights of each neuron are calculated 
for their contributions to errors and subse-
quently changed [44, 45]. 

Backpropagation artificial neural network as 
an example

A symbolic backpropagation network is shown 
in Figure 5. After the neuron or, on a larger 
scale, the neural network receives the input 
data, the output is compared to the ideal value 
to determine the error. The optimizer, a bridge 
between the error and the artificial neuron, is 
then used to examine the error. In reality, in this 
section, we derive the loss function with regard 
to the network parameters using the gradient 
reduction algorithm, and as a consequence, we 
adjust the weights and bias to lower the amount 
of error. This method is repeated until the func-
tion’s minimum value is reached.

A supervised learning approach used to train 
multi-layer perceptron is called backpropaga-
tion (Artificial Neural Networks). When creating 
a neural network, we initialise the weights with 
random values or any appropriate variable. It’s 
not necessary that the weight values we choose 
will be accurate or that they will best fit our 
model. We started out by choosing some weight 
values, but the difference between our model 
output and our real output - i.e., the error value 
- is rather large. In essence, what we must do is 
find a way to describe the model in order to 
adjust the parameters (weights) so that error is 
minimised. Backpropagation is a technique for 
training our model. Take a look at the Figure 5.

Here is a list of the steps: Calculate the error: 
How much of the real output differs from the 
model’s output; Minimum Error Check: Check 
to see if the error has been minimised; Update 
the parameters: Update the parameters if there 
is a significant error; Check the mistake once 
more after that. Continue until the mistake is  
at its lowest point; Model is ready: We can give 

Figure 3. A straightforward neural network compris-
ing a single output unit, two input units, each with a 
single input.

Here, w1 and w2 are the connection weights 
between the input and output units. Since the 
inbound weights to the neuron also affect error, 
it is these weights that must be altered in the 
network in order to support learning.

Figure 4 depicts a perceptron network with  
just one hidden layer that can have more layers 
and neurons as needed to solve a given prob-
lem. Whereas X1, X2,..., Xn are the inputs and 
W1, W2,..., Wn are the synapses’ transmission 
efficiencies. When neurons exceed the accu-
mulation threshold, φ, the activation function, 
chooses the neurons’ output mode. The weight-
ed sum of the prior layers is utilised to deter-
mine the output’s final value:

y hpred i
i 1

m
=
=
/

Suppose each neuron’s output is calculated in 
the following manner:

hi=φ(WiXT+b)

Where, φ is the activation function so that the 
output of each neuron is not just a linear func-
tion and b is a bias so that our neuron does not 
always cross the origin and w is the weight vec-
tor of each layer:

Wi=[w11w12…w1n]

And the input vector is defined as follows:

.

.

.

X

x

x

x

2

n

T

1

=

R

T

S
S
S
S
S
S
S
S

V

X

W
W
W
W
W
W
W
W



Neural plasticity and AI learning

40 Am J Neurodegener Dis 2024;13(5):34-48

Figure 4. Multi-layer perceptron.

Figure 5. Backpropagation.

the model some inputs and it will output when-
ever the error is at its lowest possible level.

The Backpropagation algorithm employs a me- 
thod known as the Delta Rule or Gradient 
Descent to find the least value of the error func-
tion in weight space. The learning problem is 
then thought to have an answer in the weights 
that minimise the error function [53-55]. We 
are attempting to determine the weight value  
at which the mistake is minimised. In essence, 
we must decide whether to change the weight 

value for the better or for the 
worse. Once we are aware of 
that, we continue to update 
the weight value in that direc-
tion until the mistake is at its 
lowest. You can reach a point 
where updating the weight fur-
ther causes the mistake to 
grow. You should end at that 
point, and the weight value is 
the final one.

Experiments

In order to explore the classifi-
cation and regression app- 
roach, two separate datasets 
were tested. In all experi-
ments, the MLP neural net-
work with several hidden la- 
yers was employed. The objec-
tive of the regression problem 
is to continuously estimate  
the relationship between input 
and output. As a result, the 
number of prediction variables 
is the same as the number of 
neurons in the output layer. 
The number of neurons in the 
output layer is equal to the 
number of classes in the clas-
sification issue because the 
aim is to discretely estimate 
the link between input and 
output.

First experiment (regression)

The Housing dataset was the 
one utilised in this experiment. 
One of the datasets used to 
assess machine learning algo-

rithms in the regression domain is this one. 
This dataset is used to forecast home prices 
and consists of 20,640 data samples with 8 
variables, such as the average age of the prop-
erty, the number of rooms, the number of beds, 
area, etc.

In order to investigate plasticity behaviour in 
neural networks, we used a simple multi-layer 
perceptron neural network. This 3-layer neural 
network has two hidden layers with the size of 
64 and 32 neurons, respectively, and the num-
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Figure 6. Results of first experiment.

ber of neurons in the output layer is equal to 1, 
because in this problem, the goal is to esti- 
mate the house price based on the measured 
features.

In this experiment, after cleaning, the dataset 
was divided into two groups, training and test-
ing, with a training rate of size equal to 0.7. 
Then the data was pre-processed with the 
standardization method. For the statistical an- 
alysis, we used linear regression with gradient 
descent optimization to minimize the mean 
squared error (MSE). Statistical significance of 
the model was assessed using the coefficient 
of determination (R2) and p-values for individu-
al predictors, ensuring robustness in parame-
ter selection and model validity. Then the data 
was pre-processed with the standardization 
method. The batch size during training is equal 
to 128 and during testing is equal to 256, and 
the optimizer used in this experiment is one of 
the most famous optimization algorithms, i.e. 
gradient descent. The learning rate is 0.001 
and the number of repetitions (epoch) is 300. 
The activation function of the hidden layers is 
ReLU (Rectified Linear Unit) and the loss func-
tion is used according to the MSELOSS regres-
sion problem. As can be seen in Figure 6, with 

the passage of time and the 
increase in the learning rate, 
the error rate in the network 
gradually decreases.

Second experiment (classifica-
tion)

The mobileprice dataset was 
used in this experiment. This 
dataset contains 2000 train- 
ing samples and 1000 test 
samples. For statistical analy-
sis, we employed multinomial 
logistic regression to evaluate 
classification performance. We 
computed accuracy, precision, 
recall, and F1-score metrics, 
along with a confusion matrix 
to assess model performance. 
These metrics were calculat- 
ed using cross-validation to 
ensure generalizability of the 
results. Statistical significance 
was evaluated through p-val-
ues for the model coefficients 

to confirm their contribution to the predictions. 
The samples have 20 features, including clock 
speed, Wi-Fi feature, battery power, etc. In this 
matter, it is not necessary to predict the actual 
price of the device, but it is divided into one of 
4 categories based on its price range.

Multilayer perceptron neural network was used 
for this experiment. This network consists of 3 
hidden layers with size 64, 32 and 16. The 
number of neurons in the input layer is equal to 
the number of features of each sample, i.e. 20, 
and the number of neurons in the output layer 
is equal to the number of dataset classes, i.e. 
4.

In this experiment, the training data is divided 
into two categories, training and testing, with a 
training rate of size equal to 0.7 in order to train 
and evaluate the model. The batch size was set 
to 64, the optimizer was gradient descent, the 
number of epochs was 60, and the learning 
rate was set at 0.004. For the hidden layers, 
the Rectified Linear Unit (ReLU) activation func-
tion was utilised, while softmax was used for 
the final layer. Cross-entropy is the chosen loss 
function. As seen in Figure 7, the error rate in 
the network gradually declines as time goes on 
and the learning rate rises.
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Exploring experiments

The results of both machine-learning experi-
ments show the optimization of processing 
pathways to improve information transmission 
and processing efficiency. In the second sec-
tion, it was stated that increased myelin pro-
duction improves the effectiveness of commu-
nication between brain areas, according to 
functional MRI studies. In that both entail the 
improvement of processing paths to increase 
information transmission and processing effi-
ciency, it might be compared to how machine 
learning algorithms work. In the case of the 
brain, increased myelin production can lead to 
faster and more efficient transmission of sig-
nals between brain regions, allowing for more 
rapid processing of information. Similarly, in 
machine learning, algorithms are trained to 
identify patterns and make predictions based 
on input data. Over time, as the algorithm is 
exposed to more data and receives feedback 
on its performance, it can optimize its process-
ing pathways to improve its accuracy and effi-
ciency. In both cases, the end goal is to im- 
prove the effectiveness of information process-
ing, either through faster and more efficient  
signal transmission in the brain or through 

tum, and hippocampus change as a result of 
learning experiences. This allows for the forma-
tion of new neural pathways and the strength-
ening of existing ones, leading to increased  
efficiency in processing information. Similarly, 
machine learning algorithms work by strength-
ening connections between various elements 
within the system. In both cases, strengthening 
connections leads to improved performance 
and more accurate results.

In the review of Varieties and characteristics of 
plasticity, it was stated that several potential 
mechanisms are taken into consideration in 
order to comprehend plasticity. The most likely 
candidates include neurogenesis, glycogene-
sis, the formation of connections, either by 
axon extension or synapse formation, pruning, 
or growth of dendrites and thus synapses; epi-
genetic changes; as well as changes in the 
excitatory-inhibitory balance. Results clearly 
show that machine learning algorithms also 
use a combination of these mechanisms to 
improve their performance. In the same way 
that neurogenesis and glycogenesis contribute 
to the formation of new connections in the 
brain, machine learning algorithms use optimi-
zation techniques to update the connections 
between neurons and improve the accuracy of 

Figure 7. Results of second experiment.

improved accuracy and effi-
ciency in machine learning al- 
gorithms.

The results clearly show that 
the machine learning algorith- 
ms receive and process input 
data, adjusting its parameters 
to improve performance. Over 
time, the algorithm becomes 
more effective in recognizing 
patterns and making predic-
tions, much like how the human 
brain becomes more efficient 
through learning experiences. 
It was stated earlier that learn-
ing also alters the amygdala, 
striatum, and hippocampus’ 
cortical connections. Both le- 
arning (in the human brain)  
and machine learning algo-
rithms involve strengthening 
and adjusting connections bet- 
ween different elements. In the 
human brain, the connections 
between the amygdala, stria-
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predictions. Similarly, the formation of new con-
nections in the brain through axon extension or 
synapse formation is similar to the process of 
weight updates in machine learning algorithms. 
Additionally, pruning in the brain is similar to 
regularization techniques in machine learning 
algorithms that aim to reduce overfitting by 
removing redundant connections. The excitato-
ry-inhibitory balance in the brain is also similar 
to the balance between positive and negative 
weights in machine learning algorithms that 
determine the final prediction. Lastly, epigene-
tic changes in the brain can be compared to the 
changes in the model parameters in machine 
learning algorithms that are made after multi-
ple training iterations.

According to the generality of the results, it can 
be inferred that the concern of training on non-
stationary data in continuous learning is similar 
to the operation of machine learning algorithms 
in that they both require the ability to adapt and 
change in response to new and changing data. 
Machine learning algorithms are designed to 
continually learn and improve their performan- 
ce as they receive new data, allowing them to 
make more accurate predictions and decisions. 
Similarly, in continuous learning, the model 
must be able to continually update and adapt 
to changing data in order to remain accurate 
and relevant. This requires the model to be able 
to recognize patterns and changes in the data 
and make updates accordingly. In both cases, 
the ability to adapt and change in response to 
new data is essential for success.

Discussion

Machine learning algorithms have come a long 
way in recent years, allowing computers to 
learn and perform tasks like image classifica-
tion, speech recognition, and even playing com-
plex games. However, the methods used by 
machine learning algorithms are very different 
from the way the human brain processes infor-
mation. In this paper, we examined the con- 
cept of plasticity in both the human brain and 
machine learning algorithms and compared the 
two.

The human brain is an incredibly complex organ 
that is capable of processing large amounts of 
information and adapting to new stimuli. This 
ability to change and adapt is known as plastic-
ity, and it is one of the key features that sets 

the human brain apart from computers. In con-
trast, traditional computer programs are rigid 
and can only perform the tasks that they were 
specifically programmed to do. However, with 
the advent of machine learning algorithms, 
computers are now able to learn and adapt to 
new data.

The perspective of plasticity in machine learn-
ing algorithms refers to the ability of algorithms 
to change and adapt to new data and informa-
tion, in a manner that is similar to how the 
human brain adapts and changes. It is consid-
ered to be an important aspect of machine 
learning algorithms, as it allows them to im- 
prove their performance and accuracy over 
time.

In supervised learning, for example, plasticity 
allows the algorithm to learn the relationship 
between the input and output variables, and to 
adjust its parameters in order to minimize the 
prediction error. In reinforcement learning, 
plasticity allows the algorithm to learn from its 
actions and to adjust its policy in order to maxi-
mize reward.

Plasticity can be achieved through various 
methods, such as gradient descent, genetic 
algorithms, or other optimization methods. The 
specific implementation of plasticity depends 
on the algorithm being used and the goals of 
the learning process. Plasticity is a crucial prop-
erty that enables machine learning algorithms 
to learn and improve over time, allowing them 
to perform better on new and unseen data.

As shown in the experiments section, one of 
the most commonly used machine learning 
algorithms is Multilayer Perceptron (MLP). MLP 
is a fully connected class of feedforward artifi-
cial neural network (ANN). ANNs are inspired by 
the structure and function of the human brain, 
and they consist of interconnected nodes or 
neurons that process information. Each neuron 
receives input from other neurons, processes 
that input, and produces an output that is used 
by other neurons. In this way, ANNs are able to 
model complex relationships and patterns in 
the data.

As it is shown in the experiments, plasticity in 
an MLP refers to the ability of the model to 
adjust its weights and biases in response to 
new input data. This enables the model to learn 
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and improve its performance over time. The 
plasticity of an MLP is determined by the opti-
mization algorithm used to train the model, 
such as stochastic gradient descent, which 
adjusts the weights and biases in response to 
the error between the predicted output and 
actual target.

While both the plasticity of an MLP and the 
human brain share the basic concept of being 
able to change and adapt, there are important 
differences between the two. One of the main 
differences is that the plasticity of an MLP is 
limited to adjusting the weights and biases of 
its connections, whereas the plasticity of the 
human brain involves a much more complex set 
of processes, including the growth of new neu-
rons and synapses, the rearrangement of exist-
ing connections, and the release of neur- 
otransmitters that modulate the strength of 
connections.

Additionally, the plasticity of an MLP is largely 
determined by the algorithms and parameters 
used during training, whereas the plasticity of 
the human brain is influenced by a wide range 
of factors, including genetics, experience, and 
environmental factors. While both the plasticity 
of an MLP and the human brain share some 
similarities, they are also significantly different 
in terms of their underlying mechanisms, com-
plexity, and scope of influence.

The human brain is capable of adapting and 
changing in response to new experiences and 
information. This process is known as neuro-
plasticity, and it is the key to the brain’s ability 
to learn and form new connections between 
neurons. When we experience new stimuli, our 
brain forms new connections between neurons 
and strengthens existing connections. This pro-
cess allows the brain to store new information 
and learn new skills.

Neuroplasticity is not only important for learn-
ing but also for recovery from injury. The brain 
is able to reorganize itself and form new con-
nections to compensate for lost or damaged 
areas, which can help patients recover from 
strokes and other injuries. While both the 
human brain and machine learning algorithms 
are capable of learning and adapting to new 
data, there are several key differences bet- 
ween the two. Firstly, the human brain is capa-
ble of forming new connections between neu-

rons, whereas machine learning algorithms can 
only adjust the weights of their existing connec-
tions. Secondly, the human brain is capable of 
processing information in a parallel manner, 
whereas machine learning algorithms typically 
process information in a sequential manner. 
Finally, the human brain is capable of learning 
from a wide variety of stimuli, whereas machine 
learning algorithms are typically designed to 
learn from specific types of data.

Plasticity is a key feature of both the human 
brain and machine learning algorithms. While 
the methods used by each are different, both 
are capable of adapting to new data and learn-
ing from experience. The human brain remains 
unrivalled in its ability to process information in 
a parallel manner and learn from a wide variety 
of stimuli, but machine learning algorithms are 
rapidly improving and offer a promising alterna-
tive for solving complex problems. The combi-
nation of the two may offer new insights and 
solutions to the challenges facing us in the 
future.

At present, the plasticity of machine-learning 
algorithms is limited compared to that of the 
human brain. The human brain is capable of 
changing and adapting to new information in a 
much more complex and nuanced way than 
machine learning algorithms. This is because 
the human brain has a much larger number of 
neurons and connections, as well as a more 
complex network of feedback mechanisms that 
allow it to change and adapt over time.

However, it is not impossible that we will reach 
the plasticity of the human brain in machine-
learning algorithms in the future. With advanc-
es in technology and a better understanding  
of the human brain and its functions, it is pos-
sible that machine-learning algorithms could 
be developed to have a level of plasticity that is 
similar to the human brain.

Machine learning algorithms have made re- 
markable advancements in recent years, with 
the ability to learn and improve with experience 
becoming a key characteristic of these algo-
rithms. This plasticity of machine learning algo-
rithms has opened up new avenues for the 
development of new technologies, which could 
significantly impact various industries in the 
future.
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One of the areas where the plasticity of machine 
learning algorithms could have a significant 
impact is in the field of robotics. With the ability 
to learn and improve with experience, robots 
equipped with machine learning algorithms 
could be trained to perform complex tasks in a 
more efficient and autonomous manner. This 
could result in significant advancements in the 
field of industrial robotics, where robots could 
be trained to perform tasks with precision and 
accuracy, leading to increased productivity and 
reduced costs.

Another area where the plasticity of machine 
learning algorithms could have a significant 
impact is in the field of autonomous vehicles. 
With the ability to learn and adapt to new situa-
tions, machine learning algorithms could play a 
key role in the development of autonomous 
vehicles, which could make driving safer and 
more efficient. Autonomous vehicles could 
learn from their experiences on the road, and 
make decisions based on real-time data, lead-
ing to a safer and more efficient driving experi-
ence for passengers.

Additionally, the plasticity of machine learning 
algorithms could have implications in the field 
of medicine. With the ability to learn and im- 
prove with experience, machine learning algo-
rithms could be used to develop personalized 
medicine, where medical treatments could be 
tailored to individual patients based on their 
unique medical history and other factors. This 
could lead to more effective treatments and 
better outcomes for patients.

The plasticity of human brain and artificial intel-
ligence in the learning process is an exciting 
area of research with the potential to revolu-
tionize the treatment of brain disorders, such 
as autism, learning disorders, memory disor-
ders or developmental disorders which are 
related to low rate of brain plasticity. In future 
studies, research could be directed towards 
understanding how the plasticity of artificial 
intelligence algorithms can be utilized to en- 
hance the plasticity of the human brain. 

One potential direction is to investigate how  
the use of personalized machine learning algo-
rithms can improve learning outcomes in indi-
viduals with brain disorders. This could involve 
creating customized training programs that 
adapt to the unique needs and abilities of each 

individual, taking into account their specific 
strengths and weaknesses.

Another direction could be to explore the poten-
tial of neurofeedback techniques, which use 
machine learning algorithms to provide real-
time feedback on brain activity, to enhance 
brain plasticity. This could involve developing 
algorithms that can identify patterns of brain 
activity associated with successful learning 
and using this information to guide training and 
rehabilitation programs. By understanding how 
these two systems can work together, we can 
potentially unlock new avenues for improving 
learning outcomes and enhancing the quality of 
life for individuals with brain disorders.

The comparison between human brain plastici-
ty and artificial intelligence plasticity presents 
not only a scientific inquiry but also a concep-
tual framework for innovation. We propose that 
the interplay between these systems can sig-
nificantly influence advancements in educa-
tion, healthcare, and adaptive technologies. 
For example, leveraging insights from neuro-
plasticity to design more adaptive AI systems 
could revolutionize personalized education and 
rehabilitation. Conversely, applying AI models 
to analyse neural connectivity patterns may 
unlock new methods for enhancing cognitive 
functions and recovery in neurological disor- 
ders.

Furthermore, the concept of continuous learn-
ing in AI - modelled after human brain adapt-
ability - highlights the potential for machines  
to operate in dynamic, nonstationary environ-
ments. This has profound implications for 
autonomous systems, where rapid adaptation 
is critical. However, we emphasize that ethical 
considerations, particularly regarding the au- 
tonomy of AI systems and their integration into 
human-centric domains, must remain central 
to this discourse.

Lastly, we posit that understanding the limita-
tions of current AI in replicating human neuro-
plasticity underscores the necessity of inter- 
disciplinary research. The synergy between 
neuroscience, computational sciences, and 
cognitive psychology is not merely beneficial 
but essential for addressing the complex chal-
lenges of replicating adaptive intelligence in 
machines.
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In conclusion, the plasticity of machine learn- 
ing algorithms could have significant implica-
tions for the development of new technologies 
in the future. With the ability to learn and 
improve with experience, machine learning al- 
gorithms could play a key role in the develop-
ment of robotics, autonomous vehicles, and 
personalized medicine, among other fields. As 
these technologies continue to evolve, the 
future implications of the plasticity of machine 
learning algorithms are sure to be far-reaching 
and impactful.
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