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Abstract: This study aimed to investigate whether running kinematics can be accurately estimated
through an artificial neural network (ANN) model containing GPS-based accelerometer variables
and anthropometric data. Thirteen male participants with extensive running experience completed
treadmill running trials at several speeds. Participants wore a GPS device containing a triaxial
accelerometer, and running kinematics were captured by an 18-camera motion capture system for
each trial. Multiple multilayer perceptron neural network models were constructed to estimate
participants’ 3D running kinematics. The models consisted of the following input variables: 3D
peak accelerometer acceleration during foot stance (g), stance time (s), running speed (km/h),
participant height (cm), leg length (cm), and mass (kg). Pearson’s correlation coefficient (r), root
mean squared error (RMSE), and relative root mean squared error (rRMSE) showed that ANN
models provide accurate estimations of joint/segment angles (mean rRMSE = 13.0 ± 4.3%) and peak
segment velocities (mean rRMSE = 22.1 ± 14.7%) at key gait phases across foot stance. The highest
accuracies were achieved for flexion/extension angles of the thorax, pelvis, and hip, and peak thigh
flexion/extension and vertical velocities (rRMSE < 10%). The current findings offer sports science
and medical practitioners working with this data a method of conducting field-based analyses of
running kinematics using a single IMU.

Keywords: artificial intelligence; accelerometer/s; GPS; IMU; kinematics

1. Introduction

In recent years, there has been an exploration of the use of inertial measurement
units (IMUs) to estimate joint kinematics during walking and running [1–6]. Conducting
biomechanical analysis in the field with IMUs allows sports science and medical practi-
tioners to capture an individual’s locomotion characteristics [7]. The use of IMUs allows
for more frequent analysis and reduces cost/set-up time compared to lab-based analy-
sis [7]. Traditionally, IMUs, such as accelerometers, have been employed to analyze the
acceleration profiles of bodily segments [8–10]. This type of analysis indirectly measures
walking/running kinematics to observe differences between individuals or changes under
conditions [8–10]. However, with recent advances in data processing procedures, it is now
possible to directly estimate joint kinematics in the field with IMUs [1–5].

Conventional models utilizing IMUs to estimate joint kinematics have been previously
employed to analyze patients’ walking kinematics. Analyses of patients rehabilitating
from hip arthroplasty [11] and knee ligament reconstruction [12] were used to inform
the long-term effects on patients’ post-surgery functionality. These earlier models mount
IMUs on the proximal/distal segments to the relevant joint and measure the IMU sensor
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orientation relative to the inertial frame [13]. Lab-based pre-calibration is required to ensure
accurate sensor–sensor alignment to the anatomical axes and measurement of segment
geometry so that a joint orientation matrix can be calculated [13]. The IMUs are utilized to
reconstruct a biomechanical model of the human body. The linear relationships between
the sensor acceleration profiles are then used to estimate the joint kinematics [2,14,15].

Accuracy is an important aspect of such measurements. Integration of accelerometer,
gyroscope, and magnetometer data with sensor fusion algorithms has shown root mean
squared errors (RMSEs) of <3.6◦ when estimating 3D lower limb joint angles in the lab [16].
However, concerns about using IMUs to measure segmental orientation have been previ-
ously stated when applying these systems in the field [13]. Magnetometers are employed
to reduce drift errors in the gyroscope’s angular velocity data by “resetting” the sensor
orientation. Nevertheless, magnetic disturbances in the field can affect the magnetometer’s
reference coordinates and are thus not recommended for field base use [13,17]. Additionally,
soft tissue motion can lead to misalignment of the IMU sensors [18]. This is a common
issue when conducting longitudinal analysis and greatly reduces the accuracy of models
that rely on the linear relationship between two aligned sensors [2]. As a result, there is a
lack of research that has successfully implemented these methods in the field over longer
periods [19]. Recent developments in advanced data processing procedures have overcome
previous regression-based problems with sensor misalignment [2], leading to the renewal
of the use of IMUs to obtain field-based predictions of joint kinematics [2].

One of the deep learning algorithms is the artificial neural network (ANN). This
allows for greater predictive accuracy than linear regression-based models when non-linear
relationships between independent (input) and dependent (output) variables exist [20].
ANNs consist of interconnected units (neurons) separated into three layers: input, hidden,
and output. Each layer contains several neurons, which are connected and appropriately
weighted, depending on the strength of the connection between neurons [20,21]. Each
ANN consists of training and testing modules. In the training module, the model learns the
relationship between variables and appropriately “weights” each connection, depending
on the fitting of the data structure [20]. The testing module then tests the algorithm to
analyze how accurately the model has predicted the output variable.

Several classes of ANNs have been employed in studies that have attempted to
predict biomechanical parameters during locomotion. Among these classes, multilayer
perceptron (MLP) networks have performed well when predicting joint kinematics during
walking [1,3,5]. MLP networks are considered a simpler form of ANN; they are easy to
train and often employed as the baseline ANN to compare newer models against [3]. MLPs
have shown an rRMSE of <9% for lower limb kinematics during walking [5]. However,
this error has increased to ~34% when analyzing knee moments during running-based
tasks [6]. As a result, more complex ANNs (convolutional neural networks) have been
developed, integrating musculoskeletal simulations into the training module to improve
accuracy [22,23]. However, these models’ pre-calibration procedures are extensive and
require access to a biomechanics lab. In principle, however, the observed increased accuracy
highlights the value of utilizing additional biomechanical input variables in ANNs to
predict joint kinematics.

Previous investigations utilizing IMUs and ANNs to predict joint kinematics have
typically stemmed from a clinical background [1,4]. Their application within sports has yet
to be explored. With team sports athletes, IMUs within global positioning systems (GPS)
are commonly used to monitor athletes’ workloads along with GPS-derived variables such
as distance and running speed [24,25]. The GPS devices are mounted at approximately
the posterior aspect of the upper thoracic spine, and the IMUs capture the acceleration
profile of the upper trunk segment. There is the potential to use a single GPS-based IMU
to measure the running kinematics of a player in the field. Previous research from the
author found that the acceleration peaks captured by the GPS-based IMU are significantly
influenced by an individual’s running kinematics [26]. More specifically, the peak velocities
of the segments during foot contact had, on average, a greater effect on the acceleration
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peaks than joint/segment angles [26]. However, the accuracy of employing GPS-based
IMU data to directly estimate the kinematic profiles of joints and segments remains unclear.

Athlete anthropometrics [27], stance time [28], and running speed [29,30] have also
been shown to have a relationship with an athlete’s running kinematics. These variables
are accessible to practitioners working with team sports athletes. Anthropometric measure-
ments are routinely collected during skinfold body composition assessments [31]. Running
speed can be accurately measured with coordinate data derived from GPS devices [32].
Stance time can also be measured with GPS-based IMU data [24,26]. Considering these,
it was hypothesized that including these variables in addition to the IMU data could
potentially increase the accuracy of ANNs in predicting running kinematics.

Including accurate estimations of an individual’s running kinematics using GPS-based
IMUs can offer more detailed biomechanical analyses of their performance in the field. The
capacity to utilize IMUs within GPS devices to conduct field-based biomechanical analysis
offers a tool for tracking an athlete’s progression during injury rehabilitation. Therefore, the
present study aims to investigate whether running kinematics can be accurately estimated
through an ANN model containing GPS-based accelerometer variables, running speed,
and anthropometric data. This study intends to explore the predictive capabilities of data
easily accessible to sports science and medical practitioners to conduct comprehensive
biomechanical analyses in the field.

2. Materials and Methods

A series of ANNs were selected and trained to predict kinematic variables (Section 2.3)
that were identified as influencing the acceleration profile of the GPS-based IMU [26].
Additional input variables, such as anthropometrics, stance time characteristics, and run-
ning speed (Section 2.2), were added to the dataset to strengthen the ANN’s predictive
capabilities. The Staffordshire University ethical committee granted ethical clearance
for this testing procedure (Reference number: LAWSON-TAGBIB-RN, approval date: 13
June 2018).

2.1. Experimental Set-Up

Thirteen males (age: 27 ± 3.7 years, height: 1.81 ± 0.06 m, mass: 82.7 ± 6.2 kg)
were selected to participate in the present study. The inclusion criteria for being selected
were that participants were experienced runners (20–40 km per week) and free from
injuries during testing. All participants gave informed written consent before testing. A
single testing session, comprising nine trials of treadmill running (1-degree inclination) for
40 s (per trial), was completed by each participant. Treadmill running speeds started at
10 km/h and increased at 1 km/h increments to 18 km/h. Each trial was captured using an
18-camera motion capture system (Vicon, Oxford, UK). Participants wore a standard-issue
vest containing a GPS device (STATSports Apex, Newry, Northern Ireland, UK) with an
embedded high-frequency triaxial accelerometer and were provided with standardized
running shoes (Puma Anzarun, Herzogenaurach, Germany).

The standard issue vest positioned the GPS device around the posterior aspect of the
thoracic spine. The embedded triaxial accelerometer sampling frequency was set to 100 Hz
(standard manufacturer setting). The positioning of the device orientated the accelerometer
axes to the following planes of motion: y-axis (vertical), z-axis (anterior/posterior) and x-
axis (medial/lateral). Fifty-four infrared markers (14 mm) were attached to the participants,
corresponding to the modified Istituto Ortopedico Rizzoli (IOR) marker set with five
additional clusters attached to the left thigh, right thigh, left shank, right shank, and the
posterior aspect of the GPS device [33–35]. Eighteen optical cameras (VICON MXT40,
Oxford, UK) recorded the coordinate data of the infrared markers at 100 Hz [36].

Raw accelerometer and marker coordinate data were transferred from the respective
software (STATSport APEX version-2.0 and Vicon Nexus version-2.12) to Visual 3D software
version-2022 (C-Motion Inc., Germantown, MD, USA). Synchronization of accelerometer
and motion capture data was conducted by an assistant “tapping” the GPS device at the
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beginning of each running trial. The frame of the tap was established in each data set, and
then ten consecutive gait cycles were selected for analysis following a 20-s ramp period.

2.2. Input Variables

Three types of input variables were included in the ANNs (GPS-based accelerometer,
anthropometric and running speed) due to the relationships previously found with running
kinematics [26–30]. Stance time characteristics and peak accelerations during foot stance
were selected as the GPS-based accelerometer input variables. Instances of initial foot con-
tact (IFC), midstance (MS), and terminal foot contact (TFC) were identified in the vertical
acceleration profile [26], and the subsequent timings (s) between these events were calcu-
lated (stance time, IFC-MS time, MS-TFC time). The vertical (VT), anterior/posterior (AP),
medial/lateral (ML), and resultant (RES) peak accelerations during foot stance were then
calculated by identifying the largest value on each axis during this time frame. The averages
of each accelerometer variable were calculated across the ten gait cycles. Participant height
(cm), body mass (kg), and leg length (cm) (distance from the anterior superior iliac spine to
the medial malleolus) were recorded prior to testing and included as anthropometric input
variables. Running speed (km/h) was derived from the treadmill speed within each trial
and was the running speed input variable.

2.3. Output Variables

A previous investigation highlighted joint/segment kinematics that had significant
relationships with the peak accelerations of the GPS-based accelerometer at foot stance
phases [26]. Therefore, these findings provided the basis for selecting the output variables
within a series of ANNs. Joint/segment angles at IFC, MS and TFC, and peak segment
velocities during the impact (IFC-MS) and propulsion (MS-TFC) subphases were calculated
for all bodily joints/segments. Tables 1 and 2 describe the kinematics that were included as
output variables. The averages of the output variables were calculated over the ten gait
cycles for each trial.

Table 1. The joint/segment angles selected as output variables in the ANNs.

Joint/Segment Plane of Motion Foot Stance Events

Thorax
Flexion/Extension IFC & MS

Internal/External Rotation IFC

Pelvis
Flexion/Extension IFC & MS

Adduction/Abduction IFC

Hip Flexion/Extension IFC

Thigh Flexion/Extension TFC

Knee Flexion/Extension IFC

Shank Adduction/Abduction TFC

Ankle Flexion/Extension &
Internal/External Rotation MS

Foot Flexion/Extension TFC

2.4. ANN Model

The MLP class of ANNs was chosen as the deep learning algorithm to test the predic-
tive capabilities of the input variables using IBM SPSS Modeler software version-22 (IBM
Corp., Armonk, NY, USA). The model contained a feedforward architecture and was set
to default. In this type of network, the connections are unidirectional, and information
can only pass from the input layer to the hidden layer [37]. A single hidden layer was
employed, which automatically selected the most appropriate number of hidden layer units
(minimum = 1, maximum = 50). This is recommended when using MLP ANNs to prevent



Appl. Sci. 2024, 14, 1730 5 of 13

overloading of the model, which can occur with a large number of hidden layers [38]. The
dataset was partitioned randomly into a ~70% testing sample and a ~30% training sample
depending on the relative number of cases. The layers are linked by activation functions
that multiply the sum of the values in each unit by their weight, and are then transferred
to the succeeding layer [37]. The activation link functions selected were the hyperbolic
tangent γ(c) = tanh(c) = (e c − e − c)/(e c + e − c) for the hidden layer and the identity
γ(c) = c function for the output layer due to the presence of scale-dependent variables.

Table 2. Peak segment velocities selected as output variables in the ANNs.

Segment Plane of Motion Type of Velocity Foot Stance Subphases

Thorax

Vertical Linear Impact & Propulsion

Horizontal Linear Impact

Lateral Linear Propulsion

Pelvis

Horizontal Linear Impact & Propulsion

Internal/External Rotation Angular Impact

Flexion/Extension,
Adduction/Abduction &

Internal/External Rotation
Angular Propulsion

Lateral Linear Propulsion

Thigh

Vertical Linear Impact & Propulsion

Internal/External Rotation Angular Impact

Flexion/Extension &
Internal/External Rotation Angular Propulsion

Shank
Adduction/Abduction Angular Impact & Propulsion

Internal/External Rotation Angular Propulsion

Foot

Adduction/Abduction Angular Impact

Internal/External Rotation Angular Impact & Propulsion

Horizontal & Lateral Linear Propulsion

A total of 49 ANNs were produced, and each output variable was tested separately.
Each ANN consisted of all the input variables, except for the peak accelerometer accelera-
tions. The axis of peak accelerometer accelerations chosen depended on the output variable
that had previously displayed a relationship with that input variable [26]. Therefore, each
ANN contained either the RES, VT, AP, or ML peak accelerometer accelerations.

2.5. Statistical Analysis

Descriptive statistics of the ANN were conducted to provide insights into the average
sample size percentages of the training and testing modules and the average number of
units within the hidden layer. The root mean squared error (RMSE) and relative root mean
squared error (rRMSE) for each ANN were calculated and used to assess the accuracy of
each model in the training and testing modules. Pearson’s correlation coefficient (r) was
used to measure the agreement between ANN estimated output variables, categorized
as weak (r ≤ 0.35), moderate (0.35 < r ≤ 0.67), strong (0.67 < r ≤ 0.90), and excellent
(≥0.90) [6]. Sensitivity analysis of the input variables was performed to determine the
individual importance of the predictors in determining the neural network and to identify
the most important input variable (MIIV). All statistical analyses were performed using
SPSS software (IBM Corporation, Armonk, NY, USA).
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3. Results

The average dataset partitions utilized within the ANNs were 72.8% ± 4.1% (training)
and 27.2% ± 4.1% (testing), with 4.1 ± 1.5 hidden units. Model summaries showed, on
average, that the accuracies of the ANNs to estimate the output variables were greater
for joint/segment angles (testing rRMSE = 13.0% ± 4.3%, r = 0.95 ± 0.03) than for peak
segment velocities (testing rRMSE = 22.1% ± 14.7%, r = 0.91 ± 0.07) (Table 3). Mean
correlation coefficients showed excellent estimations of both groups of output variables
(r > 0.90) (Table 3).

Table 3. Mean accuracy (RMSE, root-mean squared error; rRMSE, relative root-mean squared error; r,
Pearson’s correlation coefficient) of the estimated outcome variables by group.

Training Testing

Output Variable Group RMSE rRMSE (%) RMSE rRMSE (%) r

Joint/Segment Angles (◦) 3.33 ± 2.88 8.8 ± 7.4 1.86 ± 0.65 13.0 ± 4.3 0.95 ± 0.03

Peak Segment Velocities
(m/s) 5.35 ± 4.28 14.1 ± 11.5 3.83 ± 3.14 22.1 ± 14.7 0.91 ± 0.07

All Variables 4.52 ± 3.87 12.0 ± 10.3 3.03 ± 2.62 18.4 ± 12.4 0.93 ± 0.06

Joint angle estimations had the smallest range in rRMSE (4.1–20.5%), with thorax
flexion/extension angle during MS being the most accurate (RMSE = 0.65◦; rRMSE = 4.1%;
r = 0.98) (Table 4). However, estimations of the flexion/extension peak angular velocity dur-
ing propulsion (MS-TFC) had the greatest accuracy of all output variables (RMSE = 0.24 m/s;
rRMSE = 2.2%; r = 0.9) (Table 5), and performed better when the RES accelerometer peak
acceleration was included over the AP. The five joint/segment angles that could be pre-
dicted with the highest accuracy were thorax flexion/extension at IFC (RMSE = 0.93◦;
rRMSE = 7.6%; r = 0.98; MIIV = height) and MS (RMSE = 0.65◦; rRMSE = 4.1%; r = 0.98;
MIIV = ACC Peak), pelvis flexion/extension at IFC (RMSE = 1.82◦; rRMSE = 9.6%; r = 0.95;
MIIV = height) and MS (RMSE = 1.56◦; rRMSE = 9.2%; r = 0.96; MIIV = height), and hip
flexion/extension at IFC (RMSE = 2.26◦; rRMSE = 9.9%; r = 0.96; MIIV = L leg length)
(Figure 1).

Table 4. Individual accuracy (RMSE, root-mean squared error; rRMSE, relative root-mean squared
error; r, Pearson’s correlation coefficient) of the estimated joint/segment angles during testing.

Output Variable

Accelerometer Peak
Accel Axis Body Joint/Segment Plane of Motion Gait Phase RMSE (◦) rRMSE (%) r

RES

HIP Flexion/Extension IFC 2.26 9.9% 0.96
KNEE Flexion/Extension IFC 2.47 19.3% 0.83

THORAX Flexion/Extension IFC 0.93 7.6% 0.98
THORAX Internal/External Rotation IFC 1.86 15.0% 0.92
ANKLE Flexion/Extension MS 2.19 12.2% 0.96
PELVIS Flexion/Extension MS 1.56 9.2% 0.96

ML

THORAX Internal/External Rotation IFC 1.46 11.6% 0.95
ANKLE Internal/External Rotation MS 1.17 12.6% 0.95
SHANK Adduction/Abduction TFC 2.47 10.9% 0.96
THIGH Flexion/Extension TFC 3.27 15.8% 0.97

VT

HIP Flexion/Extension IFC 1.70 10.0% 0.97
THORAX Flexion/Extension IFC 1.58 19.5% 0.94
ANKLE Flexion/Extension MS 1.79 13.6% 0.96
PELVIS Flexion/Extension MS 1.08 11.5% 0.98
ANKLE Internal/External Rotation MS 1.87 15.4% 0.96

AP

PELVIS Adduction/Abduction IFC 2.10 12.7% 0.94
PELVIS Flexion/Extension IFC 1.82 9.6% 0.95

THORAX Flexion/Extension MS 0.65 4.1% 0.98
ANKLE Internal/External Rotation MS 2.15 19.0% 0.93
FOOT Flexion/Extension TFC 2.91 20.5% 0.92
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Table 5. Individual accuracy (RMSE, root-mean squared error; rRMSE, relative root-mean squared
error; r, Pearson’s correlation coefficient) of the estimated peak segment velocities during testing.

Output Variable

Accelerometer Peak
Accel Axis Body Segment Plane of Motion Gait Phase RMSE (m/s) rRMSE (%) r

RES

SHANK Adduction/Abduction IFC-MS 1.88 12.2% 0.97
PELVIS Internal/External Rotation IFC-MS 3.09 15.5% 0.91
PELVIS Anterior/Posterior IFC-MS 1.32 10.8% 0.94
SHANK Adduction/Abduction MS-TFC 4.93 44.9% 0.69
PELVIS Flexion/Extension MS-TFC 2.99 20.7% 0.88
THIGH Flexion/Extension MS-TFC 0.24 2.2% 0.99
SHANK Internal/External Rotation MS-TFC 5.30 28.8% 0.91

THORAX Medial/Lateral MS-TFC 2.43 15.6% 0.96

ML

FOOT Adduction/Abduction IFC-MS 5.29 29.3% 0.87
SHANK Adduction/Abduction IFC-MS 2.57 13.5% 0.96
FOOT Internal/External Rotation IFC-MS 2.89 18.4% 0.92

PELVIS Adduction/Abduction MS-TFC 3.20 28.0% 0.89
THIGH Flexion/Extension MS-TFC 0.61 5.3% 0.99
FOOT Internal/External Rotation MS-TFC 10.07 31.0% 0.88

THIGH Internal/External Rotation MS-TFC 6.30 27.0% 0.91
PELVIS Medial/Lateral MS-TFC 6.73 19.8% 0.93

VT

PELVIS Anterior/Posterior IFC-MS 4.83 28.1% 0.87
THORAX Anterior/Posterior IFC-MS 6.26 47.8% 0.85
THIGH Vertical IFC-MS 5.71 27.2% 0.91
THIGH Flexion/Extension MS-TFC 0.71 5.7% 0.98
PELVIS Anterior/Posterior MS-TFC 2.75 17.4% 0.92
THIGH Vertical MS-TFC 1.34 9.3% 0.91

THORAX Vertical MS-TFC 2.76 18.0% 0.93

AP

THIGH Internal/External Rotation IFC-MS 2.06 13.2% 0.98
THORAX Anterior/Posterior IFC-MS 4.88 48.5% 0.80
THORAX Vertical IFC-MS 15.06 65.0% 0.82
THIGH Flexion/Extension MS-TFC 0.52 4.4% 0.99
FOOT Anterior/Posterior MS-TFC 3.18 20.4% 0.91
FOOT Medial/Lateral MS-TFC 1.22 12.9% 0.95
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Sensitivity analysis of the input variables showed that participant height (cm) had the
highest average relative importance across estimations of joint angles (mean = 75% ± 25%)
and was the most important variable in 7 ANNs (Figure 2), whereas the participant’s
right leg length (cm) had the highest average relative importance across estimations of
peak segment velocities (mean = 63% ± 29%) and was the most important in eight ANNs
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(Figure 2). Peak accelerometer accelerations were ranked fourth (joint angles) and seventh
(peak segment velocities) in average relative importance (Figures 2 and 3).
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18 25% 100% 43% 23% 26% 23% 23% 29% 26%
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Mean 36% 58% 75% 62% 59% 55% 31% 57% 38%
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Key: Output Variable Number) Accelerometer Peak Accel Axis-Body Segment-Plane of motion-Gait phase.

(1) RES-HIP-Flex/Ext-IFC;  (2) RES-KNEE-Flex/Ext-IFC;  (3) RES-THORAX-Flex/Ext-IFC;  (4) RES-THORAX-Int/Ext Rot-IFC;  (5) RES-ANKLE-Flex/Ext-
MS;   (6) RES-PELVIS-Flex/Ext-MS;  (7) ML-THORAX-Int/Ext Rot-IFC;  (8) ML-ANKLE-Int/Ext Rot-MS;  (9) ML-SHANK-Add/Abd-TFC;  (10) ML-
THIGH-Flex/Ext-TFC;  (11) VT-HIP-Flex/Ext-IFC;  (12) VT-THORAX-Flex/Ext-IFC;  (13) VT-ANKLE-Flex/Ext-MS;  (14) VT-PELVIS-Flex/Ext-MS;  (15) 
VT-ANKLE-Int/Ext Rot-MS;  (16) AP-PELVIS-Add/Abd-IFC;  (17) AP-PELVIS-Flex/Ext-IFC;  (18) AP-THORAX-Flex/Ext-MS;  (19) AP-ANKLE-Int/Ext 
Rot-MS;  (20) AP-FOOT-Flex/Ext-TFC

Estimation of joint/segment angles

Figure 2. Matrix of relative importance for the input variables in the estimation of joint/segment
angles. Speed = running speed (km/h); ACC peak = accelerometer peak acceleration (g);
Height = participant height (cm); Mass = participant mass (kg); LLegLength = participant left
leg length (cm); RLegLength = participant right leg length (cm); StanceTime = accelerome-
ter derived stance time (s); IFC-MSTime = accelerometer derived time between IFC and MS;
MS-TFCTime = accelerometer derived time between MS and TFC; STDEV = Standard deviation.
The color scale represents the relative importance of each variable in the ANN: dark green = most
important, light yellow = least important.
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Key: Output Variable Number) Accelerometer Peak Accel Axis-Body Segment-Plane of motion-Gait phase.

(1) RES-SHANK-Add/Abd-IFC-MS;  (2) RES-PELVIS-Int/Ext Rot-IFC-MS;  (3) RES-SHANK-Add/Abd-MS-TFC;  (4) RES-PELVIS-Flex/Ext-MS-TFC;    
(5) RES-THIGH-Flex/Ext-MS-TFC;  (6) RES-SHANK-Int/Ext Rot-MS-TFC;  (7) ML-FOOT-Add/Abd-IFC-MS;  (8) ML-SHANK-Add/Abd-IFC-MS;        
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(13) ML-THIGH-Int/Ext Rot-MS-TFC;  (14) VT-THIGH-Flex/Ext-MS-TFC;  (15) VT-THIGH-Int/Ext Rot-IFC-MS;  (16) VT-THIGH-Flex/Ext-MS-TFC;  
(17) RES-PELVIS-Horizontal-IFC-MS;  (18) RES-THORAX-Lateral-MS-TFC;  (19) ML-PELVIS-Lateral-MS-TFC;  (20) VT-PELVIS-Horizontal-IFC-MS; 
(21) VT-THORAX-Horizontal-IFC-MS;  (22) VT-THIGH-Vertical-IFC-MS;  (23) VT-PELVIS-Horizontal-MS-TFC;  (24) VT-THIGH-Vertical-MS-TFC;  
(25) VT-THORAX-Vertical-MS-TFC;  (26) AP-THORAX-Horizontal-IFC-MS;  (27) AP-THORAX-Vertical-IFC-MS;                                                     
(28) AP-FOOT-Horizontal-MS-TFC;  (29) AP-FOOT-Lateral-MS-TFC

Estimation of peak segment velocities

Figure 3. Matrix of relative importance for the input variables in the estimation of peak seg-
ment velocities. Speed = running speed (km/h); ACC peak = accelerometer peak acceleration (g);
Height = participant height (cm); Mass = participant mass (kg); LLegLength = participant left
leg length (cm); RLegLength = participant right leg length (cm); StanceTime = accelerome-
ter derived stance time (s); IFC-MSTime = accelerometer derived time between IFC and MS;
MS-TFCTime = accelerometer derived time between MS and TFC; STDEV = Standard deviation.
The color scale represents the relative importance of each variable in the ANN: dark green = most
important, light yellow = least important.
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4. Discussion

This study aimed to determine the predictive capabilities of ANNs containing GPS-
based accelerometer, running speed, and anthropometric data to estimate running kinemat-
ics. The study’s results provide preliminary insights into the application of deep learning
algorithms with data that are easily accessible to sports science and medical practitioners
working with team sports athletes to conduct analyses of running kinematics in the field.

Correlation coefficients of the estimated vs. actual output variables ranged from strong
to excellent across all output variables, showing that the model’s performance was highly
accurate. Overall, estimations of joint/segment angles (mean rRMSE = 13.0 ± 4.3%) were
better than peak segment velocities (mean rRMSE = 22.1 ± 14.7%). Previous research [26]
found that peak segment velocities had a greater effect on GPS-based accelerometer peak
accelerations than joint/segment angles in linear regression-based analysis. Conversely, in
the current study, better accuracy was observed in predicting joint/segment angles than
in predicting peak segment velocities. This indicates a stronger relationship between the
input variables and joint/segment angles. Including added input variables (running speed,
stance times, anthropometrics) or the capability of ANNs to utilize non-linear relationships
may be responsible for this finding.

Sensitivity analysis of the input variables highlighted that the GPS-based IMU vari-
ables were, on average, not the most important variables in both joint/segment and peak
segment velocities estimations (Figures 2 and 3). However, the performance of each ANN
must be considered. Accelerometer peak acceleration had the highest relative importance
in estimating thorax flexion/extension at MS, which was the most accurate estimation of all
joint/segment angles. Despite this, the value of including anthropometric input variables in
ANNs has become evident in the current study. The input variables with the highest mean
relative importance for joint/segment angles were participant height (75 ± 25%) and mass
(62 ± 26%). For peak segment velocities, leg length (right = 63 ± 29%; left = 60 ± 27%) and
height (60 ± 29%) were the highest. Anthropometric data has been previously employed
within the pre-calibration procedures of conventional neural networks to improve the
accuracy of estimating joint kinematics [3]. Our results also show that anthropometric data
can aid multilayer perceptron ANNs instead of relying on IMU data alone.

There were five joint angles (Hip flexion/extension at IFC; Thorax flexion/extension at
IFC; Thorax flexion/extension at MS; Pelvis flexion/extension at IFC; Pelvis flexion/extension
at MS) and two peak segment velocities (Thigh flexion/extension during propulsion; Thigh
vertical during propulsion) that had rRMSEs of <10% (Figure 1). Previous investigations
have typically only analyzed lower limb kinematics and found hip flexion/extension
RMSE values of 5.1–5.6◦ and knee flexion/extension RMSE values of 4.8–6.5◦ during
running [22,23]. The present study differed from previous investigations, as estimations of
joint/segment angles at specific gait events were estimated rather than the continuous joint
angle over the whole gait cycle and the type of ANN used. Nevertheless, our results showed
that the RMSE values of knee flexion/extension at IFC were 2.47◦. It can be suggested
that MLP ANNs could achieve similar or greater accuracy in estimating hip and knee
sagittal joint angles than previous methods. These findings also highlight the importance
of including anthropometric data, as they had the highest importance in four of the five
most accurate variables (Figure 1). Accurate estimations of peak thigh flexion/extension
and vertical velocities during propulsion were also observed (rRMSE ≤ 9.3%). However,
there are no previous studies against which to compare these results.

There are several practical applications of the present study’s findings. Analyzing
the sagittal plane kinematics of athletes in the field can provide sports science and medi-
cal practitioners with useful insights into their athletes’ physical condition and running
performance. Trunk flexion/extension angle has been shown to increase when localized
muscular fatigue is present [39,40]. Additionally, more experienced runners typically have
less trunk flexion and reduced peak hip flexion during foot contact, resulting in increased
performance [41] and reduced injury risk [42]. Segment velocities can also be used to
characterize performance, as thigh flexion/extension angular velocity has been shown to
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be a determining factor during sprint running [43]. Our results showed that all of these
variables could be accurately estimated with ANNs, thus providing practitioners with a
method to quantify running performance and monitor fatigue in the field.

The findings of this study can also be used in relation to sports injury analysis. Accu-
rate estimations of knee flexion/extension angle were found, which could be employed in
connection with anterior cruciate ligament (ACL) injuries. Athletes who have undergone
ACL reconstruction can limit knee extension during running for up to one-year post-
surgery [44]. Therefore, monitoring this variable during rehabilitation can provide insights
into an athlete’s progress. It has also been suggested that athletes with limited knee flexion
during running, jumping, and cutting tasks have a greater risk of suffering noncontact
ACL injuries [45], which is prevalent among female athletes [46]. However, it must be
stated that the current study analyzed only the prediction capabilities during straight-line,
steady-state running. Whether the same accuracies in running kinematic estimation can
be achieved in jumping and multidirectional tasks remains unclear. However, the present
study offers the potential for practitioners to accurately measure sagittal plane kinematics
that are of interest in hip and knee injuries.

Furthermore, the methodology employed in this study utilized commercially available
software (IBM SPSS Modeler software version-22) to compute the MLP ANNs. Using
this software does not require knowledge or experience in building and training ANNs.
Most sports science and medicine university degrees teach the use of SPSS software during
their research methods modules. Thus, the methodology used in the present study is
reproducible by those sports science and medical practitioners who have undergone a
university degree and can be introduced into their daily practices.

The limitations of the present study are that the output variables were specific to
gait events. Analyzing joint/segment angles and velocities over the whole gait cycle
would provide a more comprehensive insight into the capacity of ANNs to predict running
kinematics with data from GPS devices and anthropometric measurements. Additionally,
MLPs are a simple form of ANN, and greater accuracy may be achieved with more complex
classes of ANNs [3].

Moreover, the present study used a small number of participants. Considering the
high accuracies reported here, increasing the sample size would allow for more data to train
the ANN model and lead to potentially stronger predictions. Future research could explore
this concept and aim to estimate kinematics over the whole gait cycle instead of specific
time events. In addition, including multidirectional running would allow for kinematic
analysis of the more sports-specific movement tasks that athletes complete in the field.

5. Conclusions

The present study showed that running kinematics can be predicted with ANNs
consisting of GPS-based IMU, treadmill-derived running speed, and anthropometric data.
Accurate estimations of sagittal plane joint/segment angles and peak segment velocities
were achieved. The highest estimation accuracy was found for flexion/extension angles of
the thorax, pelvis and hip, and peak thigh flexion/extension and vertical velocities. Our
findings offer sports science and medical practitioners working with this data a method of
conducting field-based analyses of running kinematics. The proposed method could have
practical implications for measuring biomechanical variables associated with performance
and injury rehabilitation in the field.
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