
IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, VOL. XXX, NO. XXX, XXX 1
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Abstract—The Consumer Internet of Things (CIoT), a key
aspect of the IoT, aims to integrate smart technologies into
everyday life. In order to improve the spectral efficiency and
provide massive connectivity to IoT networks, non-orthogonal
multiple access (NOMA) variants like semi-grant-free (SGF)
NOMA are employed. This paper aims to maximize secrecy
energy efficiency (EE) for SGF-NOMA enabled CIoT in the
presence of untrusted users (eavesdroppers) by utilizing a single-
agent multi-agent deep reinforcement learning (SAMA-DRL)
algorithm to overcome scalability and expensive learning issues.
Given the limited long-distance transmission capabilities of CIoT
devices, which typically have low transmit power, relay nodes
are used to decode and forward data from grant-free (GF) users
to the base station. Moreover, to enhance the coverage for GF
users, the K-nearest neighbors (KNN) algorithm is utilized to
place the relay nodes at an optimal positions. Furthermore, we
design a collaborative contribution reward system to discourage
user (agent) laziness. Simulation results show that the proposed
SAMA-DRL-based SGF-NOMA algorithm for CIoT networks is
more effective than baseline algorithms, achieving a 20% increase
in secrecy EE compared to DRL-based SGF-NOMA without
KNN. Moreover, the proposed scheme outperforms benchmark
schemes in terms of EE across different radii. Additionally, we
show that the proposed algorithm with quality of service based
successive interference cancellation (SIC) is more power efficient
as compared to conventional SIC decoding order.

Index Terms—Non-orthogonal multiple access, grant-free, In-
ternet of things, grant-based, deep reinforcement learning.

I. INTRODUCTION

INTERNET of Things (IoT) is a concept that involves
connecting numerous physical objects or things that are

equipped with sensors, actuators, and communication abilities,
enabling them to gather and share data via the Internet [1]. IoT
is gaining significant interest in the context of fifth generation
and upcoming sixth generation communication systems. In
particular, IoT-driven communication technology has potential
applications in different domains like smart home, smart
grid, and smart transportation, where extensive connectivity
is needed and can significantly enhance current services [2].
It is predicted that there will be approximately 80 billion
connected devices by 2030, which is roughly 21 devices
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per person [3]. While IoT spans a multitude of industries,
consumer IoT (CIoT) focuses on bringing smart technologies
into people’s everyday life improving it across different facets.
Applications of CIoT includes home automation, wearable
devices, connected personal spaces etc. [4].

In the context of massive CIoT, important traffic features
include predominantly uplink traffic, where numerous devices
send small data transmissions. This scenario highlights the
significance of energy efficiency (EE) due to the need to
conserve battery life in potentially large-scale deployments.
Moreover, there is a requirement for partially or fully au-
tonomous communication and most importantly, the handling
of sporadic transmissions, where devices communicate in-
frequently or at irregular intervals. Moreover, CIoT devices
are typically lightweight, and a significant challenge is the
limited energy capacity and providing massive connectivity to
these devices. To accommodate the vast number of devices in
cellular-enabled CIoT networks, non-orthogonal multiple ac-
cess (NOMA) technique is a promising solution that enhances
spectrum efficiency by allowing multiple users to transmit data
using different power levels, thus enabling multiplexing of the
same spectrum resource [5]. According to the CIoT features
mentioned above, NOMA offers various access methods to
meet the diverse requirements of CIoT networks.

• Grant-Based (GB) NOMA: In the GB NOMA access
method, IoT users are required to accomplish a series
of handshakes with the base station (BS) before they can
actually transmit data [6]. This approach is specifically
designed for IoT applications that exhibit structured and
predictable communication patterns, enabling efficient
management of network resources and maintaining or-
ganized communication between devices. However, this
method results in a significant increase in signal overhead
due to the handshake process.

• Grant-Free (GF) NOMA: In this approach, the need for
a grant process is removed, allowing users to transmit
data directly to the BS [7]. This is ideal for applications
that need instant data transfer without the delay caused by
the handshake process. GF communication reduces signal
overhead and latency. However, GF communication is
susceptible to reliability collision problems.

• Semi-Grant-Free (SGF) NOMA: In SGF access, both GB
and GF users utilize the same resource block for transmit-
ting data. SGF-NOMA represents a balanced approach,
integrating the advantages of both GB and GF methods
to serve the diverse CIoT requirements [6]. Additionally,
it provides adaptive Quality of Service (QoS), which
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dynamically modifies the access method to maintain QoS
for different types of CIoT traffic.

The above NOMA access techniques are designed to meet
the specific demands and needs of CIoT networks, including
the support for a large number of devices, EE, low latency, and
consistent and reliable communication. However, the effective-
ness of these access methods depends on users’ power control
and clustering approach. Moreover, the inherent broadcast na-
ture of radio and the implementation of successive interference
cancellation (SIC) at the receivers render NOMA vulnerable
to potential security breaches from both external and internal
eavesdroppers. Therefore, an effective power control method
is required not only for optimizing EE, which aims to optimize
the use of power for data transmission, but also for ensuring
secrecy EE, which aims to optimize energy consumption for
data transmission as well as ensures that this power usage
safeguards the data from unauthorized access.

A. Related Work
To enhance EE, researchers have explored joint optimization

of resources and communication radio in the literature. To
increase the overall EE of the GB system, the authors in
[13] optimized the transmit beamforming at the BS and the
reflecting beamforming at the intelligent reflecting surface
(IRS). Motivated by the limitation of user power, the study
given in [14] focuses on maximizing EE of GB-NOMA
system. The problem of maximizing EE is transformed into a
series of sub problems aimed at maximizing sum rate thereby
using fractional programming. Every sub-problem is then
addressed using the proposed iterative water-filling solution.
In order to maximize EE, the authors of [15] investigate
the issue of jointly allocating power and subchannels in an
uplink multi-user NOMA system. In order to tackle this non-
convex optimization problem, the study suggests three deep
reinforcement learning (DRL) based frameworks, in contrast
to conventional model-based resource allocation techniques.
The goal of many research works in literature is to maximize
the sum rate for GF and SGF-NOMA based IoT networks.
However, there are limited studies that specifically address the
issue of EE. For example, GF schemes utilizing traditional
optimization methods are examined in [16] and [17]. The
authors of [16] and [17] partitioned the cell area and users and
sub-channels into equal segments in order to avoid collisions
among IoT users, employing orthogonal resources in various
layers. The allocation of resources for GF transmission using
DRL is discussed in several studies, including [18], [19], [20],
and [21]. In [18], the authors have suggested a technique for
minimizing collisions by arranging sub-channel clusters and
users within a designated area, where users compete for access
to available sub-channels using a GF approach. They addressed
the long-term cluster throughput issue by employing a DRL
algorithm for optimal power and sub-channel allocation in
GF-NOMA. In [19], users were represented as cluster heads
to optimize capacity and fulfill time constraints through the
application of a multi-agent learning algorithm. The study
in [20] explored the issue of maximizing data rate and the
number of successful long-term transmissions using a Q-
learning algorithm. The authors of [21] designed a transmit

TABLE I: Primary outcomes and limitations of recent works
Reference Primary outcomes Limitations

[8] EE Optimized power for GB users only
[9] Ergodic rate Perfect SIC

[10] Outage performance Perfect SIC
[11] Minimize waiting delay Restrict number of GF users
[12] Secrecy rate Perfect SIC

power pool for GF-NOMA to maximize system throughput.
Only a single work given in [22] maximizes the network EE
using multi-agent (MA) DRL.

The SGF-NOMA transmission scheme was initially pre-
sented in [6] to enhance connectivity and reduce collisions.
The scheme involves a single GB user sharing the channel
with multiple GF users through NOMA, and proposes two
contention control mechanisms to minimize interference to
the GB user from the GF users. The researchers derived
closed-form expressions for the outage probability of the GF
users and explored the impact of different SIC decoding
orders. The study in [23] enhances transmission resilience
and successfully lowers error floors in outage probability
without requiring users to precisely control their power. A
method for adaptive power allocation was introduced in [8]
to control the transmission power of GB users according
to their channel conditions and desired data rate, thereby
ensuring reliable decoding of their signals in the second stage
of SIC. In a study conducted in [9], the operation of an uplink
SGF-NOMA system was analyzed, which included multiple
uniformly distributed GF and GB users. The proposed scheme
paired the GF user with the received power below that of the
GB user. The study derived closed-form expressions for the
precise and approximate ergodic rates of both the GB and GF
users. The researchers in [10] investigated the impact of GF
users’ random locations on the effectiveness of SGF-NOMA
systems through the application of stochastic geometry. To
enhance the throughput and minimize the waiting delay of
GF users, the work in [11] introduces a NOMA-assisted SGF
scheme with a hybrid SIC technique, enabling a specific
number of GF users to share the GB user’s channel. The
authors in [24] introduce a SGF-NOMA scheme, facilitating
multiple multi-antenna mobile terminals and a single earth
station to utilize the satellite network concurrently within
a shared resource block. A recent study in [12] examined
the effectiveness of SGF-NOMA in enhancing the secrecy
performance. The research derives analytical expressions for
both exact and asymptotic secrecy outage probability.

B. Motivation and Contributions

The aforementioned studies primarily focus on maximizing
the sum rate and assume perfect SIC at the receiver which is
impractical. Moreover, these methods mainly concentrate on
optimizing power allocation, but they frequently neglect the
numerous QoS requirements security issues that are common
in CIoT networks. Additionally, in these approaches, IoT users
transmit directly to the base station. However, in IoT scenarios,
IoT devices are typically lightweight with lower transmit
power capability, limiting them to short-distance transmis-
sions. Furthermore, in the SGF-NOMA schemes mentioned
above, only the transmit power for GB or GF users is opti-
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TABLE II: List of symbols
Symbol Description

R Radius of the circular cell area
N Set of GB users
M Set of GF users
G Set of CIoT relays
S Set of sub-channels
E Eavesdropper
λ Density of GF users
dn Distance from n-th GB user to BS
dm Distance from m-th GF user to BS
α Path loss exponent

hn,s Channel gain from n-th GB user to BS on sub-channel s
hm,s Channel gain from m-th GF user to BS on sub-channel s
pn,s Transmit power of n-th GB user on sub-channel s
pm,s Transmit power of m-th GF user on sub-channel s
xn,s Transmitted signal of n-th GB user on sub-channel s
xm,s Transmitted signal of m-th GF user on sub-channel s
w0 Additive white Gaussian noise (AWGN)
σ2 Variance of the AWGN
ηm Battery level of m-th GF user
ISIC Residual interference from SIC imperfection
γGB
n,s SINR of n-th GB user on sub-channel s

γGF
m,s SINR of m-th GF user at CIoT relay node

γn,E SINR of eavesdropper intercepting n-th GB user
γm,E SINR of eavesdropper intercepting m-th GF user
Rn,s Secrecy rate of n-th GB user on sub-channel s
Rm,s Secrecy rate of m-th GF user on sub-channel s
E(t) SEE of the network
δN Total transmit power of GB users
ϕN Circuit power of GB users
δM Total transmit power of GF users
ϕM Circuit power of GF users
cn,s Sub-channel selection indicator for n-th GB user
bm,g Relay node selection indicator for m-th GF user
cm,s Sub-channel selection indicator for m-th GF user
τ Required data rate for GB users
τ̄ Required data rate for GF users

Pmax Maximum transmit power
Z Maximum number of GF users connected to one CIoT relay

mized. However, it is essential to jointly optimize the transmit
power for both GF and GB users in order to take full advantage
of SGF-NOMA’s benefits for IoT networks. Therefore, this
article focuses on the EE maximization with the help of a
relay node and simultaneously optimizing the transmit power
of both GB and GF users. The primary contributions of this
study are outlined as follows:

• Problem Formulation: We formulate the secrecy energy
efficiency of GF and GB users in an SGF-NOMA based
CIoT network as an optimization problem, which seeks
to jointly optimize the transmit power, sub-channel selec-
tion, and relay node selection. Secrecy energy efficiency
ensures the power used for data transmission also ensure
secure communication in the presence of eavesdroppers.
To enhance the network lifetime, we have proposed a
QoS-based SIC decoding order. This methodology not
only prioritizes users based on their QoS requirements,
but also considers their battery levels, leading to a more
balanced SIC decoding order. Additionally, the GB users
are cooperating as a decode and forward relay to extend
the coverage area and enhance signal quality, particularly
for GF users situated at the network’s edge or in areas
with poor signal strength.

• SAMA-DRL Framework with Collaborative Contribution
Reward Function: We design single agent multi-agent
(SAMA) DRL framework to address the defined opti-
mization problem. In this framework, the base station

(BS) acts as a single agent and interacts with multi-
ple agents (GF users) to determine the best actions,
such as transmit power, sub-channel, and relay selection.
Moreover, we employ the K-Nearest Neighbor (KNN)
algorithm to position the relay node in a suitable location
in order to maximize coverage for GF users. Additionally,
a reward function has been developed for the multi-agent
system to assess each agent’s contribution to the objective
function and discourage the lazy agents.

• Proposed Scheme Performance Evaluation: Initially, we
investigate the performance of our designed reward func-
tion by examining both overall reward and individual re-
ward to find out the effectiveness. Following this, we eval-
uate our suggested SAMA-DRL algorithm against various
baseline algorithms. The simulation findings confirm the
effectiveness of the proposed algorithm, demonstrating
superior performance compared to the baseline methods
in terms of EE and user lifespan across various system
parameter setups.

The rest of this article is structured as follows. Section II
introduces the system model and the optimization problem.
Section III examines the proposed SAMA-DRL framework.
Section IV outlines the results of our simulations. Section V
concludes and summarizes the article.

II. SYSTEM MODEL

We consider an CIoT network with a single BS using SGF-
NOMA technology. The BS is situated in the middle of a
circular cell area with a radius of R. We consider a set of
GB users represented by N = {1, · · · , N} share the RBs
via NOMA principles with a set of GF users denoted as
M = {1, · · · ,M}. Moreover, we consider a set of CIoT
relays G = {1, · · · , G} distributed inside the cell area.
These CIoT users transmit their uplink data via sub-channels
S = {1, · · · , S}. Additionally, we assume that there is an
evesdropper E that trying to intercept the signal of both GF
and GB users. We assume that in a given time slot t, the
GB users transmit their data directly to the central BS and
GF users to their nearest CIoT relay node to save energy.
The distribution of GF and GB users are modelled using
Homogeneous Poisson point processes (PPPs) with densities
λGF and λGB, respectively. We express the channel gain from
n-th GB CIoT user to BS with distance dn and path loss
exponent α in the s-th sub-channel as hn,s = |hn|2(dn,s)−α.
Similarly, the channel gain between the m-th GF user and
BS is defined as hm,s = |hm|2(dm,s)

−α, where dm is the
distance from m-th GF user to the BS. The channel gains of
both types of users are determined by small-scale Rayleigh
fading and path loss. List of notations used in this paper is
given in Table II.

A. Transmission with SGF-NOMA

In SGF-NOMA, GB and GF users utilize a common RB
to improve the connectivity that creates SGF-NOMA. It is
important to mention that the traditional GB transmission
offers a greater capacity than what is typically needed by
CIoT users in many cases. This surplus capacity can be used
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Fig. 1: An illustrative layout of the proposed SGF-NOMA based CIoT network. GF users
send their data to the closest relay node, while GB users send their data to the BS.

to enhance connectivity for GF users through GF access. The
combined received signal from GB and GF users at the BS on
the s-th sub-channel in time slot t can be given as

yBS,s(t) =

Ns∑
n=1

√
pn,s(t)hn,s(t)xn,s(t)︸ ︷︷ ︸

Desired signal

+

Ms∑
m=1

√
pm,s(t)hm,s(t)xm,s(t)︸ ︷︷ ︸

Interference from GF users

+w0 (1)

where pn,s, xn,s is the transmit power and transmitted signal
of GB CIoT user n on sub-channel s, respectively. The pm,s,
xm,s represents the transmit power and transmitted signal from
GF m-th GF user, respectively. The w0 is the additive white
Gaussian noise (AWGN) with zero mean and variance σ2.
Likewise, the combined signal received at g-th IoT gateway1

node can be expressed as

yg,s(t) =

Ms∑
m=1

√
pm,s(t)hm,s(t)xm,s(t)︸ ︷︷ ︸

Desired signal

+

Ns∑
n=1

√
pn,s(t)hn,s(t)xn,s(t)︸ ︷︷ ︸

Interference from GB users

+w0 (2)

B. Signal Model and QoS Based SIC Decoding

In NOMA communication, the receiver uses SIC to decode
and separate the signal for different CIoT users from the
combined received signal. The SIC will be used at the GB
(relay node) user and at the BS. The GF users send their
signals to the nearest relay node which decodes and saves the
data of GF users for a single time slot in a buffer and transmits
it in the next time slot with their own data to the central BS.

1A gateway node acts as relay node that receives data from GF users
and forwards it to the BS, thereby enhancing connectivity and extending the
communication range.

Fig. 2: Illustrates conventional and proposed SIC order.

The SIC at the GB (relay node) is based on the battery level of
each GF user. Unlike conventional SIC process (where the user
with highest received power level at the receiver is decoded
first), as shown in Fig. 2, the user with highest battery power
level will be decoded first in our proposed scheme2. The user
with lowest battery power level will be decoded in the last
stage of SIC in order to extend his battery life by achieving his
QoS requirements with lowest transmit power. Let the battery
level of each GF user m is represented by ηm, then the SIC
decoding order in terms of battery power level is given as

η1,s(t) ≥ η2,s(t) ≥ · · · ≥ ηm,s(t) ≥ · · · ,≥ ηM,s(t). (3)

We assume that the SIC at the BS is determined by the order
of received power strength, as stated in [25], we have

p1,sh1,s(t)≥p2,sh2,s(t)≥· · ·pn,shn,s(t)· · ·≥pN,shN,s(t) (4)

For practical implementation, we assume imperfect SIC, where
some residual interference ISIC arises from SIC imperfection.

The signal-to-interference-plus-noise ratio (SINR) at the BS
for n-th GB user on sub-channel s in time slot t is given by

γGB
n,s (t) =

pn,shn,s(t)
Ns∑

n̄=n+1
pn̄,shn̄,s(t)+

Ms∑
m=1

pm,shm,s(t) + ISIC+σ2

,

whereas the SINR of the m-th GF user at CIoT relay node
can be expressed as

γGF
m,s(t) =

pm,shm,s(t)
Ms∑

m̄=m+1
pm̄,shm̄,s(t)+

Ns∑
n=1

pn,shn,s(t) + ISIC+σ2

,

where ISIC is a random variable follows Gaussian distribution
with zero mean and variance σ2

SIC . The eavesdropper E trying
to intercept the signal of a GB user n or a GF user m at time
t, the SINR expressions could be defined as:

γn,E(t) =
pn,s(t)|hn,E(t)|2

Ns∑
i̸=n

pi,s(t)|hi,E(t)|2 +
Ms∑
j=1

pj,g(t)|hj,E(t)|2 + σ2

,

γm,E(t) =
pm,s(t)|hm,E(t)|2

Ns∑
i=1

pi,s(t)|hi,E(t)|2 +
Ms∑
j ̸=m

pj,g(t)|hj,E(t)|2 + σ2

,

2We assume that GF users periodically report their battery status to the
BS or gateway node. Moreover, to prevent excessive signaling overhead,
updates can be triggered by events, such as when the battery level drops
below predefined critical thresholds.
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where hn,E(t) and hm,E(t) are the channel gains from the
users to the eavesdropper. The secrecy rate for the GB and
GF users at time t can be calculated as:

Rn,s(t) = [Rn,BS(t)−Rn,E(t)]
+

Rm,s(t) = [Rm,R(t)−Rm,E(t)]
+,

where Rn,BS(t) and Rm,R(t) are the rates of the GB user n
and GF user m at the BS and relay node respectively, Rn,E(t)
and Rm,E(t) are the rates at which the eavesdropper can
potentially decode the signals of n and m, and [x]+ denotes
the positive part of x, i.e., max(x, 0). The SEE of the network
can be calculated as follows

E(t)
∆
=

T∑
t=1

S∑
s=1

( N∑
n=1

Rn,s(t)

δN (t) + ϕN (t)
+

M∑
m=1

Rm,s(t)

δM(t) + ϕM(t)

)
, (5)

where δN =
∑S

s=1

∑N
n=1pn,s(t) and ϕN (t) is the circuit

power used by GB users. The δM =
∑S

s=1

∑M
m=1pm,s(t)

and ϕM(t) is the amount of circuit power for GF users.

C. Relay Node and Sub-channel Selection

For the given system model, sub-channel selection for GB
users and two selections needed to be optimized for GF users,
i.e., CIoT relay selection and sub-channel selection. We define
three variables cn,s, bm,g and cm,s for sub-channel of GB
users, gateway node and sub-channel selection for GF users,
respectively. We have

cn,s(t) =

{
1, if n ∈ N select sub-channel s,

0, otherwise.
(6)

bm,g(t) =

{
1, if m ∈ M select relay node g,

0, otherwise.
(7)

cm,s(t) =


1, if m ∈ M select sub-channel s

occupied by GB user n,

0, otherwise.

(8)

D. Problem Formulation

Our aim is to maximize the EE of the network while
satisfying their QoS requirements thereby optimizing the
transmit power for GB and GF users, users clustering and
selecting appropriate CIoT gateway selection for GF users.
The optimization problem can therefore be expressed as

maximize
cn,s,cm,s,bm,g,pn,s,pm,s

E (9)

s.t. (3) (9a)
(4) (9b)

pn,s(t) ≤ Pmax, ∀n,∀t, (9c)
pm,s(t) ≤ Pmax, ∀m,∀t, (9d)
S∑

s=1

cn,s(t) ≤ 1, ∀n,∀t, (9e)

S∑
s=1

cm,s(t) ≤ 1, ∀m,∀t, (9f)

G∑
g=1

bm,s(t) ≤ 1, ∀m,∀t, (9g)

S∑
s=1

Rn,s(t) ≥ τ, ∀n, ∀t, (9h)

S∑
s=1

Rm,s(t) ≥ τ̄ , ∀m,∀t, (9i)∑
m∈M

bm,g(t) ≤ Z, ∀t, (9j)

where the SIC decoding order of GB and GF users is rep-
resented by (9a) and (9b), respectively. (9c) provides the
maximum transmit power limit for GB user n, while (9d)
mentions the maximum transmit power limit for GF user m.
Constraint (9e) restricts the GB users to choose a maximum
of one sub-channel per time slot t. Constraints (9f) and (9g)
limit the GF users to select at most on the relay node and on
the sub-channel. (9h) and (9i) are the required data rates for
GF and GB users, respectively. (9j) represents the number of
GF users that connect with one CIoT relay.

III. PROPOSED SAMA-DRL FRAMEWORK FOR
SGF-NOMA SYSTEMS

Power control is a critical aspect in SGF-NOMA for several
reasons. As different users may have varying QoS require-
ments, including data rate, latency, and reliability, power
control helps allocate power accordingly among these users.
By adjusting power levels dynamically, SGF-NOMA can bal-
ance the QoS among users with varying channel conditions,
ensuring that users with weaker signals still meet their QoS
requirements. Moreover, dealing with GF users with sporadic
traffic and limited energy makes things more challenging. We
leverage ML techniques to solve this challenge due to their ex-
cellent capability in resource allocation in wireless networks.
We propose single-agent in integration with MA-DRL to solve
this two-fold problem. In particular, we adapt SARL on the BS
side to strengthen the coordination with GB users and allocate
them resources efficiently and intelligently. Due to the non-
involvement of the BS in the resource allocation process and
the sporadic nature of GF users, we adapted MARL in the
second level to find the optimal resources for GF users and
also ensure the QoS requirements of GB users. The proposed
SAMA-DRL framework is able to overcome the following
problems.

1) Scalability and non-stationarity: Scalability is one of the
inherent problems in MARL algorithms. As the number
of agents increases, the state and action spaces increase
exponentially. Moreover, in a multi-agent environment,
all agents learn and interact simultaneously. Since a
changing environment depends on the combined actions
of all agents rather than an agent’s own behaviour.
Furthermore, state transitions and rewards are no longer
stationary for an agent (agents face moving target
problems) [26]. As a result, agents need to adapt to
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other agents’ changing policies. Therefore, we limit the
MARL part to GF users only to handle these issues.

2) Expensive learning: It is expensive to learn using single-
agent learning [27]. For example, when a single agent
(i.e., the BS) is used to find optimal resources for both
GB and GF users, the complexity of the BS increases.
Therefore, the BS as an agent is responsible to allocate
optimal resources to GB users only.

Next, we modelled the environment as MDP for the pro-
posed SAMA-RL framework. An MDP is composed of a tuple
(N ,S, A, r), where N represents the number of agents in the
environment, S, A, r representing state space, action space and
reward, respectively.

A. MDP for Single Agent Learning

• Agent: The BS works as an agent to identify the best
resources for GB users.

• State Space Sn: The BS obtains the channel gain of GB
users as a state.

• Action: The agent selects a combination of power lev-
els for GB users as an action. Power levels determine
the total number of actions. For N GB users and P
power levels, we have a maximum NP combinations.
Let O represent the total number of combinations and
each combination corresponds to an action a, i.e., O =
[a1, a2, · · · , aO]. At time step t, the selected action is
a(t) = [p1, p2 · · · , pN ].

• Reward: The agent gets GB users’ EE as a reward
signal, if the agent does not violate the maximum power
constraints, otherwise, the agent will get a reward of zero.

B. MDP for Multi-Agent Learning

• Agents: We represent the GF users as agents interacting
with the environment.

• State Space: GF users receive their data rates as a state.
• Action: The action for GF users consists of sub-channel

selection and transmit power, am = {pm, cm}.
• Reward: Reward assignment methods in multi-agent re-

inforcement learning can be categorized into two distinct
approaches: global and local rewards. The global reward
approach uniformly allocates a single global reward to
all agents, irrespective of their individual contributions.
Consequently, this may result in lazy agents receiving
disproportionately higher rewards relative to their actual
contributions, leading to lack of motivation for optimizing
their policies. Conversely, diligent agents may receive
lower rewards, even when their actions are beneficial,
due to the negative impact of lazy agents on the overall
system, causing confusion regarding the optimal policy.
In contrast, the local reward approach assigns distinct
rewards to each agent based on their individual behavior,
thereby discouraging laziness. However, this approach
may fail to provide rational incentives for agents to
collaborate, potentially leading to the development of
selfish and greedy behaviors. Therefore, in our designed
reward function, reward of each agent is proportional to

Algorithm 1 SAMA-DRL Based SGF-NOMA Algorithm without KNN

1: Parameter Setup Phase:
2: Setup the parameters for the single agent (BS) and multi-agents
3: Set replay memory for SA and MAs
4: Initialize Q-network weights and set target weights as primary Q-network (for both

SA and MAs)
5: Training Phase:
6: for Episode e = 1 to E do
7: Environment reset
8: for Time step t = 1 to T do
9: Single agent (BS):

10: Input state sn(t)
11: Choose action an(t) using ϵ-greedy policy
12: Obtain a new state sn(t + 1) as well as reward rn(t)
13: Save the experience in replay memory
14: Multi-agents (GF users):
15: for each GF agent m do
16: Input state sm(t)
17: Select action am(t)
18: end for
19: All agents perform joint actions obtain new state s(t+1) and reward r(t)
20: for Each IoT agent m do
21: Save a tuple of sm(t), am(t), r(t), sm(t + 1) to replay memory
22: end for
23: Single agent (BS) and Multi-agents:
24: Select batches equally from memory D
25: Using (13), reduce loss between the the primary network and target network

using a stochastic gradient
26: if e % == Tu then
27: Update target Q-network weights
28: end if
29: end for
30: end for

its contribution to the total energy efficiency. Thus, the
reward for the ith agent can be calculated as:

Ri = Rtotal ×
EEi∑N
j=1 EEj

,

where Rtotal is the total energy efficiency of the system
and EEi is the EE of i-th agent.

To learn optimal action policies for a given environment, an
agent receives a state s(t) and chooses action a(t) from the
action space, following a policy π. A policy π

(
a(t)|s(t)

)
is

the mapping from state s(t) to action a(t). The agent receives
the next state s(t+1) and reward r(t) for the action taken in
the previous time step t. Agent form an experience e(t+1) =(
s(t), a(t), s(t + 1), r(t)

)
. The goal of each agent is to find

an optimal policy π∗ and maximize the discounted long-term
reward defined as R(t) =

∑∞
t=1 γ

t−1r(t), where γ ∈ [0, 1]
is the discount factor and reflects the importance of future
reward as compared to the immediate reward. The classical
Q-learning algorithm is based on an action-value function (Q
function) to locate the optimal policy π∗. An action-value-
function is defined as the expected return after taking action
a(t) in a given state s(t), we have

Qπ

(
s(t), a(t)

)
= Eπ

[
R(t)

∣∣s(t) = s, a(t) = a
]
. (10)

The achievable maximum and optimal action-value function
by a policy π for a given state s(t) and action a(t) can be
expressed by the Bellman equation as below,

Q∗
π∗

(
s(t), a(t)

)
= Es(t+1)

[
r + γ max

a(t+1)
Q∗(s(t+ 1),

a(t+ 1)
)
|s(t), a(t)

]
. (11)

The DRL is the extended version of classical RL where the
Q function is approximated by a deep neural network with
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Algorithm 2 SAMA-DRL Based SGF-NOMA Algorithm with KNN

1: Input:
2: Location or distances of users D = [d1, d2, · · · , dm], m ∈ M
3: Desired number of gateway nodes G
4: Output:
5: A set of G clusters, each having a gateway node g
6: Steps:
7: Select G data items from D randomly as initial centroids
8: Repeat
9: Allocate each user to its closest centroid

10: For each cluster, compute the new mean
11: Until convergence criteria met
12: Place the relay nodes on final centroids
13: Repeat lines 1-30 of Algorithm 1

TABLE III: Network and Training Parameters

Path loss (α) 3
AWGN(w0) -174 dBm
Pmax 1 W
Required data rate for GB users 10 bps/Hz
Sub-channel bandwidth 10 KHz [18]
Training episodes 400
No. of neurons in each layer {500, 300, 100}
Discount factor γ 0.9
Update target frequency 1000
Learning rate 0.001

weights θ, known as a deep Q network (DQN). Because the
classical Q-learning becomes expensive as the size of state and
action spaces increases. Therefore, keeping a large Q table
for state action pairs, DQN only memorizes the weights θ
of the neural network minimizes computation and memory
complexity. The DQN of an agent consists of the primary Q
network and target network that produces the actual Q value
and target Q value, respectively, to calculate the loss between
the actual and predicted Q values. By employing an ϵ-greedy
strategy, the agent(s) explore the environment by taking a
random action with ϵ , while with a probability of 1− ϵ, they
opt for the action with the highest Q value. During training,
the Q network’s weights are updated by selecting a random
mini-batch of data from the experience replay. The target value
produced by the target Q network can be represented as

y(t) = r(t) + γ argmax
a(t+1)∈A

Q
(
s(t+ 1), a(t+ 1); θ̄

)
, (12)

where θ̄ represents the weights parameters of the target Q
network which is replaced with the weights θ of the primary
Q network after a fixed number of training steps. To train the
primary Q network, the loss between the target network values
and the primary network Q values can be minimized using

L(θ) =
(
y(t)−Q(t)(s(t), a(t); θ)

)2
. (13)

C. Baseline Algorithm

The process of the benchmark algorithm which we con-
sidered as a baseline for our proposed work is given in
Algorithm-1. We defined the training parameters for both
levels, i.e., for the single agent (BS) and multi-agents (GF
users). First, the single agent receives the state and selects
action based on ϵ-greedy policy. After that, all the GF users
select actions i.e., transmit power and sub-channel. Both the
single agent and multi-agents perform the actions and receive
the next state and corresponding reward from the environment.
All the agents save the current state, the next state and the

TABLE IV: Benchmark schemes and proposed scheme architecture

Scheme Relay Node KNN applied GB user power optimization
Benchmark 1 No No No
Benchmark 2 No No Yes
Benchmark 3 Yes No Yes

Proposed Yes Yes Yes

reward to their memory. Agents sample random batches from
the replay memory and minimize the loss between primary Q
values and target Q values using stochastic gradient descent
in order to train the primary network. The primary network
weights are transferred to the target network weights once a
set number of training episodes completed.

D. Proposed Algorithm

To minimize the energy consumption of GF users, we placed
relay nodes in the cell area using the K-means clustering
algorithm, a process given in Algorithm-2. We set the value
of G and initialize these as centroids and keep iterating until
there is no change to the centroids. Placed the relay node on
the final centroid. Finally, assign each GF user to the closest
relay node. After that, the training phase for GF users begins
and they transmit their data to the corresponding relay node.
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Fig. 3: Reward Comparison

IV. NUMERICAL RESULTS

In this section, we present the numerical results from
simulations conducted with the network settings and training
hyperparameters configurations shown in Table III. Through
simulation results, these parameters are used to evaluate how
well the proposed algorithms perform. Analyzing the proposed
algorithm’s performance in comparison to other algorithms
that are currently in the literature, we use the following
benchmark schemes, summarized in Table IV:

• SGF-NOMA without relay node and GB users trans-
mit power optimization: In this network scenario, GF
and GB users transmit their data to the BS directly. More-
over, GB users sends data with a fixed power allocation.
Most of the existing works adopted this architecture.

• SGF-NOMA scheme without relay node and with GB
users transmit power optimization: In this baseline
scheme, the transmit power of both types of users is opti-
mized without having a relay node, given in Algorithm-1.
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Fig. 4: Individual reward Comparison

• SGF-NOMA scheme with relay node without KNN
and with GB users transmit power optimization: A
relay node is used but at a fixed location, i.e., KNN is
not used for finding an optimal location for relay node.

A. Reward Comparison

In this section, we compared the reward obtained by all
agents and their contribution to the global reward.

• Combine Reward Comparison: Choosing the appropriate
reward function is essential for optimizing the objective
function, especially in a multi-agent system. To assess
the performance of the agents using our proposed reward
function, we compared it with a standard reward func-
tion in which all agents obtained an equal reward. The
results depicted in Fig. 3 show that our agents achieved
a higher reward compared to those using the baseline
reward function. This is because in our proposed reward
function, each agent receives a distinct reward based
on their individual contribution to the overall reward
value. On the other hand, when using a uniform reward
function, all agents receive a combined and same reward
that encourages laziness and discourages efficient and
effective exploration of the environment.

• Individual Reward Comparison: Fig. 4 illustrates the indi-
vidual reward obtained by each agent and its contribution
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Fig. 5: Performance with fixed and dynamic users in each cluster.

to the objective function. There is a significant disparity in
the rewards obtained by each agent in the baseline reward
function, given in Fig. 4(a). Only one agent (Agent-
4) contributed more to the total reward, while the rest
of the agents performed poorly. When agents receive a
combined reward without accounting for their individual
contributions, they may become lazy and fail to actively
explore the environment for optimal states and actions.
In contrast, agents in our proposed reward function made
significant contributions to the overall system objective,
as shown in Fig. 4(b). Moreover, in a system where agents
share the same resources, it is necessary to distribute the
resources. Therefore, in our proposed reward function,
all users in the network can equitably share the limited
resources to maintain the fairness.

B. Impact of Users in Each Cluster

Fig. 5 presents a comparison of our proposed approach
to both fixed and dynamic clustering. In fixed clustering,
the number of users per RB is fixed, whereas in dynamic
clustering, users select the RB and transmission power
based on the DRL algorithm. The second case, dynamic
clustering with DRL, achieved the best results in terms
of EE. By allowing the number of users per RB to vary,
the DRL algorithm utilizes the spectrum more efficiently.
The formation of clusters is based on current network
conditions, resulting in optimal load distribution across
the RBs.

C. EE Performance Comparison

The proposed algorithm demonstrates a remarkable im-
provement in energy efficiency relative to the baseline al-
gorithms, as depicted in Fig. 6. This improvement can be
attributed to the strategic placement of relay nodes, optimized
transmit power, and efficient user clustering for both GF and
GB users. The implementation of the K-Nearest Neighbors
algorithm facilitates the optimal positioning of relay nodes,
allowing GF users to transmit data over shorter distances at
lower power levels. Additionally, the BS, acting as an agent,
fine-tunes the power of GB users to attain optimal EE. The
GF users also play a critical role as agents in determining
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Fig. 6: EE comparison of the proposed scheme with benchmark schemes.

the optimal power settings and forming NOMA clusters to
minimize interference. In contrast, Benchmark 3 lacks the
KNN-based placement of relay nodes. Benchmark 2 omits the
use of relay nodes entirely, resulting in direct transmissions
to the central BS by GF users. Furthermore, Benchmark 1
not only excludes relay nodes but also maintains a constant
transmit power for GB users, resulting in the least energy-
efficient algorithm among the compared methods.

D. Performance with Different Radii

Fig. 7 demonstrates that our proposed NOMA algorithm
outperforms conventional benchmarks in terms of energy
efficiency across different cell radii. This effectiveness is
attributed to the strategic placement of relay nodes and opti-
mized transmit power for both GB and GF users. Notably, the
EE advantage is maintained even as the cell radius increases,
which typically leads to degraded performance because of
increased path loss effects. The proposed scheme’s resilience is
partly due to the reduced transmission distance for GF users,
which mitigates the impact of path loss and thus improves
EE. In contrast, Benchmark 1 exhibits the lowest efficiency
because it depends on direct transmissions to the BS by GF
users and fixed-power transmissions by GB users, without
taking into account channel conditions. Our proposed method
offers a more practical approach for real-world IoT applica-
tions. It minimizes transmission distances and adjusts power
levels based on individual user channel gains, in contrast to
traditional methods that assume long-distance direct transmis-
sion to the central BS. It is worth noting that IoT devices have
limited processing capabilities and cannot transmit over long
distances. Therefore, our proposed scheme is more practical
compared to existing methods, as it eliminates the need for
users to transmit their data directly to the central BS.

E. Impact of the Proposed QoS-Based SIC Order

Fig. 8 shows a comparison of the performance of different
SIC ordering strategies for the given CIoT setup. The battery
level of the user in both SIC ordering initially decreases drasti-
cally due to the exploration phenomena. Since the users act as
agents and initially choose random actions (power levels), they
may opt for high transmit power levels for data transmission.
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In the proposed QoS-based SIC scenario, the user with the
highest battery level is given priority in decoding, which is a
strategy that prioritizes device longevity and energy efficiency.
It can be observed that the proposed QoS-based SIC decoding
order outperforms the conventional SIC decoding order. The
conventional SIC decoding order prioritizes users based on
the highest received power level, while in our proposed SIC
order, users with the lowest battery level are decoded in the
final stage of SIC, thereby avoiding interference from other
users and achieving the required QoS with the lowest possible
transmit power, which enhances the lifespan of users with
low battery levels. However, this ordering results in a slight
delay due to the SIC decoding order. In the conventional SIC
decoding order, users with the highest received power level
are decoded first, regardless of their battery level. The users
decoding in the first stage of SIC face interference from other
users in the same NOMA cluster, and therefore, to achieve
the required QoS, they must transmit with a high power
level. Consequently, the conventional SIC ordering is the least
energy-efficient, which can degrade the network lifetime.

F. System Performance with Increasing Eavesdroppers

Fig. 9 compares the EE of the proposed algorithm with
benchmark schemes with increasing number of eavesdroppers.
it is evident that the proposed algorithm outperforms the
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benchmark schemes in every case. To ensure that the intended
recipient receives a stronger signal than eavesdroppers, users
may need to increase their transmission power. Moreover,
multiple eavesdroppers can increase interference in the com-
munication channels, which may necessitate legitimate users to
retransmit data or boost their transmission power to overcome
interference. The EE of all schemes falls as the number of
eavesdroppers rises for the reasons mentioned above.

V. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

In this article, we have investigated the problem of energy-
efficient resource allocation in the SGF-NOMA based CIoT
network in the presence of untrusted users. We minimize the
overall energy consumption by jointly optimizing the resource
selection decisions, transmit power, subchannel assignment,
and relay node selection using SAMA-DRL. We take into ac-
count the appropriate position of the relay node and use KNN
for this purpose to enhance coverage for GF users. We have
employed collaborative contribution reward function to avoid
agents’ laziness and utilized QoS based SIC decoding order.
Our study compares the performance of our proposed SAMA-
DRL based SGF-NOMA CIoT network with various baseline
algorithms. Simulation results demonstrate that our approach
using SAMA-DRL has enhanced rewards and outperformed
baseline algorithms in terms of secrecy EE across different
network parameters. We will use lifelong learning to further
improve the performance of SGF-NOMA CIoT networks with
multiple antenna system in our future work.
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