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Abstract: Neurodegenerative diseases present complex challenges that demand advanced analytical techniques to 
decode intricate brain structures and their changes over time. Curvature estimation within datasets has emerged 
as a critical tool in areas like neuroimaging and pattern recognition, with significant applications in diagnosing and 
understanding neurodegenerative diseases. This systematic review assesses state-of-the-art curvature estimation 
methodologies, covering classical mathematical techniques, machine learning, deep learning, and hybrid methods. 
Analysing 105 research papers from 2010 to 2023, we explore how each approach enhances our understanding 
of structural variations in neurodegenerative pathology. Our findings highlight a shift from classical methods to 
machine learning and deep learning, with neural network regression and convolutional neural networks gaining 
traction due to their precision in handling complex geometries and data-driven modelling. Hybrid methods further 
demonstrate the potential to merge classical and modern techniques for robust curvature estimation. This compre-
hensive review aims to equip researchers and clinicians with insights into effective curvature estimation methods, 
supporting the development of enhanced diagnostic tools and interventions for neurodegenerative diseases.

Keywords: Curvature estimation, dataset analysis, machine learning methods, deep learning techniques, system-
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Introduction

The process of estimating the curvature of a 
dataset is an essential task in many applica-
tions, including computer graphics, computer 
vision, and pattern recognition [1]. Curvature, 
in this context, refers to the rate of change of 
the orientation of a curve or surface at a given 
point. Estimating the curvature of a dataset 
can provide valuable information about its 
shape, contour, and geometric properties, 
which can be used to perform various analysis 
and processing tasks [2].

Dataset curvature encapsulates the geometric 
structure and shape variations within the data. 
In clinical settings, particularly in neurodegen-
erative disease analysis, these variations can 

highlight morphological changes in critical  
brain regions. For example, local curvature 
changes in the hippocampus and cortical 
regions are pivotal for early diagnosis of condi-
tions like Alzheimer’s disease [3-5]. Under- 
standing these curvatures enables clinicians to 
map disease progression and develop precise 
therapeutic strategies, aligning with personal-
ized medicine’s goals [6].

In recent years, the field of computer graphics, 
computer vision, and pattern recognition has 
seen significant advancements in the develop-
ment of algorithms and methods for estimating 
the curvature of datasets [7]. However, due to 
the diverse nature of datasets and the different 
requirements of various applications, the litera-
ture on curvature estimation is fragmented, 
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and the optimal solution for a specific dataset 
depends on the task and application at hand 
[8, 9]. The objective of this systematic review 
paper is to provide a comprehensive overview 
of the current state-of-the-art algorithms and 
methods for curvature estimation of datasets. 
The research question addressed in this paper 
is: What are the most effective algorithms and 
methods for estimating the curvature of da- 
tasets, and what are their strengths and 
weaknesses?

The evolution from classical mathematical app- 
roaches to more advanced machine learning 
and deep learning techniques in the field of cur-
vature estimation is indeed a significant and 
noteworthy trend [10]. This transition can be 
attributed to several driving factors that have 
shaped the landscape of this research area. 
One key factor is the remarkable increase in 
computational power over the years, enabling 
the application of complex algorithms and 
data-driven methods that were previously com-
putationally prohibitive [11]. Additionally, the 
growing availability of large and diverse datas-
ets has prompted the exploration of machine 
learning and deep learning approaches, as 
these techniques can effectively capture intri-
cate patterns and variations within the data 
[12-14]. Furthermore, the demand for more 
robust and versatile curvature estimation me- 
thods in diverse applications, such as robotics, 
medical imaging, and autonomous navigation, 
has driven researchers to seek innovative solu-
tions beyond traditional mathematical formu- 
lations [15]. This paper will delve into these 
driving factors in the subsequent sections, pro-
viding insights into how they have influenced 
the progression of curvature estimation tech-
niques and their adaptation to the evolving 
demands of modern data analysis and pro- 
cessing.

Clinical implications of dataset curvature

The practical clinical effects of dataset curva-
ture are profound in the context of neurodegen-
erative diseases. By capturing subtle morpho-
logical deviations in brain structures, curvature 
analysis facilitates early detection of diseases 
like Alzheimer’s and Parkinson’s. For instance, 
specific curvature metrics can identify local 
atrophy in brain regions critical for cognitive 
functions. These insights enable clinicians to 
devise more effective diagnostic and treatment 

protocols, potentially improving patient out-
comes. Furthermore, curvature analysis sup-
ports the development of imaging biomarkers, 
advancing the field of precision diagnostics in 
neurology.

Curvature estimation methods hold significant 
potential in the study of neurodegenerative dis-
eases by enabling detailed analysis of struc-
tural brain changes. For instance, techniques 
such as Gaussian curvature have been instru-
mental in quantifying cortical thinning, a hall-
mark of Alzheimer’s disease progression [16]. 
Similarly, curvature-based metrics can identify 
subtle deformations in subcortical regions 
affected in Parkinson’s disease. These meth-
ods provide an additional layer of information 
beyond volumetric analysis, offering insights 
into the geometric and topological alterations 
associated with neurodegeneration. Further- 
more, machine learning and deep learning 
advancements in curvature estimation have 
improved the identification of biomarkers from 
high-resolution neuroimaging datasets, aiding 
early diagnosis and personalized treatment 
planning. By integrating these techniques into 
clinical workflows, researchers and practitio-
ners can better characterize disease patterns, 
potentially leading to more targeted therapeu-
tic interventions.

The paper is organized into several sections, 
each of which provides a detailed analysis of a 
specific type of curvature estimation method. 
The methods are grouped into four main ca- 
tegories: classical mathematical approaches, 
machine learning methods, deep learning tech-
niques, and hybrid methods. The review pro-
vides a summary of the key features of each 
method, along with its strengths and limita-
tions, and a discussion of its performance on 
various datasets. Finally, the paper concludes 
with a summary of the results and future direc-
tions for research in this field. In conclusion, 
this systematic review paper aims to provide a 
comprehensive overview of the current state-
of-the-art algorithms and methods for curva-
ture estimation of datasets. By evaluating the 
strengths and weaknesses of the various algo-
rithms and methods, this paper will serve as  
a valuable resource for researchers, practitio-
ners, and students in the fields of computer 
graphics, computer vision, and pattern recogni- 
tion.
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Methods

Search strategy

The search strategy for this systematic review 
was designed to identify relevant studies on 
the estimation of curvature in a dataset. The 
following electronic databases were searched: 
PubMed, Scopus, Web of Science, and Google 
Scholar. The search terms used included “cur-
vature estimation of dataset”, “curvature mea-
surement of dataset”, “curve fitting of data- 
set”, “curve analysis of dataset”, “curvature  
calculation of dataset”, and “curvature model 
of dataset”. The search was limited to articles 
published in English between the years 2010 
and 2023.

In addition to the electronic database search, a 
manual search of reference lists of relevant 
articles and reviews was conducted. The manu-
al search was also used to identify relevant 
studies that were not included in the electronic 
database search.

To ensure the completeness and accuracy of 
the search, the following inclusion and exclu-
sion criteria were applied. Inclusion criteria 
were articles that described a method for esti-
mating the curvature of a dataset, regardless 
of the type of dataset or the application. Ex- 
clusion criteria were articles that focused on 
the estimation of curvature in a single data 
point, articles that did not provide a quantita-
tive method for estimating curvature and arti-
cles that were written in languages other than 
English.

The search strategy was designed to identify all 
relevant articles and to minimize the risk of 
bias. The search was conducted by two inde-
pendent reviewers, and any discrepancies were 
resolved through consensus. The results of the 
search were reviewed and analysed to identify 
the methods and techniques used for estimat-
ing curvature in a dataset.

Inclusion and exclusion criteria

Inclusion criteria include the following: 1. The 
study must be a primary research article, writ-
ten in English. 2. The study must focus on the 
estimation of curvature of a dataset. 3. The 
study must use mathematical or computational 
methods to estimate curvature. 4. The study 

must provide sufficient information on the 
method and results of curvature estimation.

Exclusion criteria include the following: 1. The 
study must not be a conference paper or a the-
sis. 2. The study must not be a review or a theo-
retical article. 3. The study must not focus on 
the visualization or representation of the curva-
ture, but rather on the estimation itself. 4. The 
study must not be a comparative study of dif-
ferent curvature estimation methods, but rath-
er a study on a specific method. 5. The study 
must not provide insufficient information on the 
method and results of curvature estimation.

Results

Overview of included studies

A systematic search of electronic databases 
including PubMed, Scopus, Web of Science, 
and Google Scholar was conducted. The initial 
search resulted in 200 potential articles, and 
after removing duplicates and screening titles 
and abstracts, 105 full-text articles were as- 
sessed for eligibility. Finally, 105 articles were 
included in the review based on their relevance 
to the research question and inclusion criteria. 
Overall, the studies included in this review were 
considered to be of moderate to high quality, 
with some limitations in terms of sample size, 
generalizability, and potential biases (Figure 1).

Characteristics of the datasets

In machine learning, the quality and character-
istics of a dataset can greatly impact the suc-
cess of a model. There are several important 
factors to consider when evaluating the charac-
teristics of a dataset in machine learning, in- 
cluding size, quality, noise, diversity, class dis-
tribution, and imbalance [17]. A large dataset 
can provide more information to the model, but 
may also require more computational resourc-
es and increase the risk of overfitting [18]. 
Quality of the data refers to the accuracy and 
consistency of the information, and it is im- 
portant to remove any irrelevant, duplicate, or 
inconsistent data [19]. Completeness is related 
to the amount of data missing and can affect 
the accuracy of the model if the data is not 
properly handled [20]. Diversity refers to the 
variety of data samples, which can help the 
model generalize better [21]. The distribution of 
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classes is important because imbalanced 
classes can result in a model that is biased 
towards the majority class [22]. Understanding 
these characteristics of a dataset can help to 
improve the performance of machine learning 
models.

The characteristics of the datasets in machine 
learning are:

• Size: The size of the dataset refers to the 
number of observations (samples) and featur- 

es (variables) included in the dataset. The larg-
er the dataset, the more complex and challeng-
ing it becomes for machine learning algorithms 
to analyse and make predictions [23, 24].

• Diversity: The diversity of the dataset refers 
to the variety of observations and features in 
the dataset [25]. A diverse dataset contains 
observations that are distinct and unique, mak-
ing it easier for machine learning algorithms to 
identify patterns and make predictions [26, 
27].

Figure 1. Identification of studies via databases 
and registers using PRISMA.
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• Balance: The balance of the dataset refers to 
the distribution of the target variable in the 
dataset. A balanced dataset contains an equal 
number of observations for each class in the 
target variable, making it easier for machine 
learning algorithms to predict the target vari-
able [22, 28].

• Quality: The quality of the dataset refers to 
the accuracy, completeness, and consistency 
of the data in the dataset [29]. A high-quality 
dataset helps machine learning algorithms 
make more accurate predictions, while a low-
quality dataset can lead to incorrect predic-
tions [19].

• Class distribution: The class distribution of a 
dataset in machine learning refers to the distri-
bution of the target class categories within the 
data, which can greatly impact the accuracy 
and performance of the models built [30, 31].

• Noise: The noise in the dataset refers to the 
presence of irrelevant or redundant informa-
tion in the dataset. The presence of noise can 
make it difficult for machine learning algorithms 
to identify the meaningful patterns in the data, 
leading to incorrect predictions [32].

The characteristics of the datasets play a cru-
cial role in the success of machine learning 
algorithms [33]. A large, diverse, balanced, 
high-quality, and low-noise dataset is ideal for 
machine learning algorithms to make accurate 
predictions [34, 35]. However, in real-world  
scenarios, the dataset is often limited by size, 
quality, and diversity, making it challenging for 
machine learning algorithms to perform well 
[36, 37]. Therefore, data pre-processing tech-
niques like feature selection, data cleaning, 
and data augmentation are essential to im- 
prove the quality of the datasets [38].

Categories for curvature estimation of dataset

There are several methods for estimating cur-
vature. This study categorizes all of these meth-
ods into four main categories, classical mathe-
matical approaches, machine learning me- 
thods, deep learning techniques, and hybrid 
methods.

• Classical mathematical approaches for cur-
vature estimation include traditional mathe-
matical models, such as Gaussian curvature, 

which measures the product of principal curva-
tures at a point on a surface, and mean curva-
ture, defined as the average of these principal 
curvatures. These models rely on differential 
geometry to quantify shape and surface char-
acteristics. Gaussian curvature is particularly 
useful in analysing smoothly varying surfaces 
and detecting saddle points, while mean curva-
ture is advantageous for assessing surface 
smoothness and identifying minimal surfaces. 
Despite their precision, these approaches face 
challenges in handling irregular or noisy data 
due to their dependency on continuous and 
noise-free surfaces.

• Machine learning methods for curvature  
estimation utilize supervised algorithms such 
as Support Vector Regression (SVR) and Neu- 
ral Network Regression to identify patterns in 
complex and irregular datasets [39, 40]. These 
methods work by mapping non-linear relation-
ships between features and curvature values. 
For example, SVR is used to learn geometric 
relationships in structured datasets, while 
Neural Network Regression is capable of han-
dling high-dimensional and noisy data. These 
approaches often require significant training 
data and computational power but can achieve 
superior accuracy in capturing complex curva-
tures [41, 42].

• Deep learning techniques, such as Con- 
volutional Neural Networks (CNNs), leverage 
hierarchical feature extraction to estimate cur-
vature from high-dimensional data like images 
[43, 44]. For instance, CNNs are adept at iden-
tifying curvature in medical imaging by learning 
localized edge features and aggregating them 
into global curvature metrics. Advanced mod-
els like Convolutional Recurrent Neural Net- 
works (CRNNs) incorporate temporal depen-
dencies, enabling dynamic curvature estima-
tion in sequential datasets. These techniques 
excel in noisy and complex environments but 
require significant computational resources 
and annotated training datasets for optimal 
performance [45, 46].

• Hybrid methods combine the strengths of  
different approaches to estimate the curva- 
ture of the dataset [47]. For example, a combi-
nation of machine learning methods and classi-
cal mathematical approaches can be used to 
provide a more accurate curvature estimate. 
These methods can also address the limita-
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tions of individual methods and are particularly 
useful when the relationship between the data 
points is not well-defined.

Each category of curvature estimation me- 
thod has its own strengths and weaknesses. 
Choosing the right method for a particular data-
set depends on the size and complexity of the 
data, the underlying relationship between the 
data points, and the computational resources 
available.

Methods of the curvature estimation

In this section, we provide a detailed descrip-
tion of the methods employed for curvature 
estimation in datasets. The methods are cate-
gorized into three primary groups: classical 
mathematical approaches, machine learning 
methods, and deep learning techniques.

• Classical mathematical approaches: These 
methods include Gaussian curvature, which 
measures the product of principal curvatures 
at a point on a surface, and mean curvature, 
calculated as the average of these principal 
curvatures. For example, Gaussian curvature  
is particularly effective in detecting saddle 
points, while mean curvature is widely used in 
assessing surface smoothness. Other methods 
such as B-spline interpolation and Fourier 
descriptors utilize parametric and frequency 
domain techniques to estimate curvature from 
discrete points or signals. Non-parametric me- 
thods like wavelet transforms further allow mul-
tiscale analysis of curvature, providing insights 
into varying levels of detail across the dataset.

• Machine learning methods: These methods 
apply predictive models to estimate curvature 
based on relationships learned from the data. 
For instance, Support Vector Regression (SVR) 
uses kernel functions to capture non-linear 
relationships in structured datasets, while 
Neural Network Regression is effective in high-
dimensional and noisy environments by learn-
ing complex, non-linear mappings. Techniques 
such as Ridge Regression and Random Forest 
Regression are commonly used for their ability 
to model both linear and non-linear patterns 
while maintaining robustness to overfitting. 
These methods require labeled training data to 
optimize parameters for curvature estimation 
effectively.

• Deep learning techniques: Convolutional Ne- 
ural Networks (CNNs) play a crucial role in 
extracting hierarchical features from high-
dimensional data such as medical imaging. 
CNNs, for example, learn localized edge fea-
tures that contribute to global curvature met-
rics. Advanced architectures like Convolutional 
Recurrent Neural Networks (CRNNs) incorpo-
rate temporal dependencies to estimate dy- 
namic curvatures in sequential datasets. These 
methods excel in identifying intricate curvature 
patterns in noisy environments but demand  
significant computational resources and well-
annotated datasets for training.

The choice of the method depends on factors 
such as dataset size, complexity, and computa-
tional constraints. Each technique’s strengths 
and limitations are discussed in subsequent 
sections.

Classical mathematical approaches: 1. Gau- 
ssian curvature [48]; 2. Mean curvature [49]; 3. 
Principal curvature [50]; 4. Total curvature [51]; 
5. Curvature scale space [52]; 6. Gaussian pro-
cess regression [53]; 7. B-spline interpolation 
[54]; 8. Fourier descriptors [55]; 9. Wavelet 
transform [56]; 10. Non-parametric density 
estimation [57]; 11. Multiscale analysis [58]; 
12. Spline interpolation [59]; 13. Radial basis 
function interpolation [60]; 14. Convolutional 
neural networks [61]; 15. Kalman filter [62];  
16. Monte carlo simulation [63]; 17. Spectral 
analysis [64]; 18. Principal component analysis 
[65].

These classical methods are based on mathe-
matical formulations and theories. They have 
been utilized to estimate curvature in various 
applications, including computer vision, image 
processing, and data analysis. These techni- 
ques often involve the computation of geomet-
ric properties or the manipulation of data points 
to fit specific models. The real-world applica-
tions below help illustrate the practical utility of 
these methods, providing insights into their 
real-world performance and limitations:

• Multiscale analysis: Utilized in wind farm opti-
mization to model power curves, significantly 
improving turbine performance and reliability. 
This application showcases the method’s uti- 
lity in enhancing renewable energy efficiency 
[66-68].
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• Principal curvature for object recognition: De- 
monstrates the discriminative use of curvature 
information in robust and reliable object recog-
nition, an example being automated quality 
inspection systems where curvature cues are 
critical for identifying defects [69, 70].

• B-spline interpolation: Applied in the optimi-
zation of cultivation times in agriculture, show-
ing the method’s effectiveness in classifying 
curve shapes and detecting significant differ-
ences, which is vital for precision farming [71, 
72].

While classical mathematical approaches have 
laid the groundwork for curvature estimation, a 
deeper analysis of their performance, applica-
bility, and limitations reveals a complex land-
scape. This section aims to provide a more 
nuanced understanding of these foundational 
methods. Classical mathematical approaches 
to curvature estimation, such as Gaussian 
Curvature and Mean Curvature calculations, 
have been pivotal in understanding geometric 
properties. The performance of these methods 
is often evaluated based on accuracy and com-
putational efficiency. For instance, Gaussian 
Curvature provides precise estimations for 
smoothly varying surfaces but can be compu- 
tationally intensive for large datasets. Mean 
Curvature, on the other hand, offers a balance 
between computational efficiency and accura-
cy, making it suitable for real-time applications. 
A synthesis of literature reveals that while these 
methods are highly accurate for well-defined 
mathematical models, their computational de- 
mand varies significantly with the complexity 
and size of the dataset.

The applicability of classical mathematical 
approaches extends across various domains, 
each presenting unique challenges and re- 
quirements. In the realm of image processing, 
these methods excel in analysing surface 
smoothness and continuity, critical for texture 
mapping and 3D modeling. However, their 
effectiveness can diminish when dealing with 
noisy data or irregular geometries, common  
in real-world datasets. Similarly, in domains 
requiring high precision, such as medical imag-
ing and robotics, the direct application of clas-
sical methods may be limited by their assump-
tions on data continuity and shape regularity.

Despite their foundational role, classical math-
ematical approaches are not without limita-

tions. One significant challenge is their sen- 
sitivity to data quality; noise and incomplete 
data can lead to inaccurate curvature esti-
mates. Furthermore, these methods often 
assume the dataset represents a continuous 
surface, an assumption that may not hold for 
datasets with discontinuities or sparse sam-
pling. Additionally, the computational complex-
ity of these methods can become a bottleneck 
for large-scale applications, where speed and 
efficiency are paramount.

Machine learning methods: 1. Polynomial 
Regression [73]; 2. Local Regression (LOESS) 
[74]; 3. Spline Regression [75]; 4. Gaussian 
Process Regression [76]; 5. Support Vector 
Regression (SVR) [77]; 6. Neural Network 
Regression [78]; 7. Random Forest Regre- 
ssion [79]; 8. Decision Tree Regression [80];  
9. Gradient Boosting Regression [81]; 10. 
K-Nearest Neighbors Regression [82]; 11. 
Ridge Regression [83]; 12. Lasso Regression 
[84]; 13. Elastic Net Regression [85]; 14. 
Polynomial Logistic Regression [86]; 15. Naive 
Bayes Regression [87].

Machine learning methods employ algorithms 
that learn from the input data to estimate cur-
vature. These techniques generally focus on 
building models that can predict the underlying 
structure of the data or identify patterns that 
contribute to the curvature. They are suitable 
for a wide range of applications and can be 
adapted to handle both linear and non-linear 
problems. The examples of real-world applica-
tions outlined below serve to demonstrate  
the practical effectiveness and constraints of 
these techniques, offering a glimpse into how 
they perform in actual scenarios:

• Ridge regression: Applied in environmental 
quality assessment, where it’s used to model 
the relationship between various pollutants 
and environmental quality indicators. This 
application highlights the method’s utility in 
environmental science for predicting and man-
aging air quality [88, 89].

• Neural network regression for volume of  
fluid (VOF): Demonstrates a viable approach for 
generating accurate predictions of fluid dynam-
ics, important for modelling and simulation in 
chemical engineering and hydrodynamics [90, 
91].
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The adaptation of machine learning methods  
in curvature estimation has opened new ave-
nues for addressing complex datasets and 
diverse application needs. This section delves 
deeper into the performance, applicability, and 
limitations of these methods, providing a more 
granular perspective on their role in the field. 
The performance of machine learning methods 
in curvature estimation is characterized by their 
ability to learn from data, improving accuracy 
with increased training samples. Techniques 
like support vector regression (SVR) and ran-
dom forest regression have shown to be highly 
effective in capturing non-linear relationships 
within data, crucial for accurate curvature esti-
mation. Neural network regression, in particu-
lar, has demonstrated remarkable adaptability 
to complex curvature patterns, albeit at the 
cost of increased computational resources. A 
synthesis of studies shows that machine learn-
ing methods, while versatile, exhibit a trade-off 
between computational demand and predic-
tion accuracy, significantly influenced by the 
choice of algorithm and the complexity of the 
task at hand.

Machine learning methods have proven to be 
highly applicable across a spectrum of domains 
requiring curvature estimation, from geological 
mapping to biomedical imaging. Their strength 
lies in handling datasets with high variability 
and noise, where traditional mathematical 
approaches might struggle. However, their 
applicability is contingent upon the availability 
of large and representative training datasets. 
In scenarios where data is scarce or highly 
skewed, the performance of machine learning 
models can be compromised, highlighting the 
importance of robust dataset preparation.

Despite their promising capabilities, machine 
learning methods are not without challenges. 
One of the primary limitations is the “black box” 
nature of many machine learning models, which 
can obscure the understanding of how deci-
sions are made. This lack of interpretability  
can be a significant drawback in fields where 
transparency and explicability are critical. Fur- 
thermore, the performance of these methods 
heavily depends on the quality and quantity of 
the training data. Inaccurate, incomplete, or 
biased training data can lead to models that 
perform poorly or are overly generalized. Lastly, 
the computational cost and resource require-

ments for training complex models can be pro-
hibitive for some applications, necessitating a 
balance between model complexity and practi-
cal feasibility.

Deep learning techniques: 1. Convolutional 
neural networks (CNNs) [92]; 2. Recurrent neu-
ral networks (RNNs) [93]; 3. Generative adver-
sarial networks (GANs) [94]; 4. Autoencoders 
[95]; 5. Deep belief networks (DBNs) [96]; 6. 
Stacked autoencoders [97]; 7. Convolutional 
autoencoders [98]; 8. Deep convolutional  
neural networks (DCNNs) [99]; 9. Generative 
adversarial autoencoders (GAEs) [100]; 10. 
Recursive neural networks (RvNNs) [101]; 11. 
Convolutional recurrent neural networks (CR- 
NNs) [102]; 12. Transfer learning with pre-
trained models [103]; 13. Deep reinforcement 
learning (DRL) [104]; 14. Long-short-term mem-
ory networks (LSTMs) [105]; 15. Restricted 
boltzmann machines (RBMs) [106]; 16. Convo- 
lutional LSTMs (ConvLSTMs) [107]; 17. Support 
vector regression (SVR) with deep features 
[108].

Deep learning techniques are a subset of 
machine learning methods that leverage com-
plex neural networks to estimate curvature. 
These approaches are particularly effective at 
handling large and high-dimensional datasets, 
as well as problems that involve spatial or tem-
poral dependencies. They have been success-
ful in a wide range of applications, including 
computer vision, natural language processing, 
and time-series analysis [92]. The real-world 
applications below help illustrate the practical 
utility of these methods, providing insights into 
their real-world performance and limitations:

• Convolutional neural networks (CNNs): Em- 
ployed in image-based curvature estimation, 
such as in medical imaging for tumour detec-
tion, where the accurate estimation of shapes 
and boundaries is crucial for diagnosis and 
treatment planning [109].

• Generative adversarial networks (GANs) for 
Curvature Estimation: An innovative application 
could involve the reconstruction of 3D models 
from 2D images in architectural design, provid-
ing a practical example of how deep learning 
can bridge the gap between two-dimensional 
drawings and three-dimensional physical mod-
els [110, 111].
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As the frontier of curvature estimation contin-
ues to expand, deep learning techniques stand 
out for their unprecedented capacity to process 
complex, high-dimensional datasets. This sec-
tion offers a deeper dive into the nuances of 
performance, applicability, and the inherent 
limitations of these advanced computational 
methods. Deep learning techniques, particu-
larly CNNs and RNNs, have significantly ad- 
vanced the field of curvature estimation by pro-
viding tools capable of capturing intricate pat-
terns in data that were previously elusive. 
These models excel in tasks involving spatial 
and temporal data, making them exceptionally 
suited for applications in dynamic environ-
ments such as real-time navigation and auto-
mated surveillance. Their performance advan-
tage stems from the ability to learn hierarchical 
features, enabling nuanced understanding of 
the data. However, the high level of accuracy 
and detail comes at the cost of computational 
complexity and the need for substantial train-
ing data to achieve optimal performance.

The applicability of deep learning techniques in 
curvature estimation spans a broad range of 
fields, from autonomous vehicle navigation to 
the analysis of biological structures. Their 
robustness against noise and the ability to 
learn from unstructured data make them par-
ticularly valuable in processing real-world data-
sets fraught with imperfections. Nevertheless, 
the effective deployment of these models is 
predicated on the availability of vast amounts 
of labelled data and computational resources, 
limiting their accessibility to scenarios where 
such resources are plentiful.

While deep learning offers powerful tools for 
curvature estimation, several limitations tem-
per their universal applicability. The “black box” 
nature of deep learning models poses signifi-
cant challenges in interpretability, making it dif-
ficult to understand or predict their behaviour 
in untested scenarios. This opacity can be a 
critical issue in domains requiring explainabili-
ty, such as healthcare and criminal justice. 
Additionally, the success of deep learning mod-
els hinges on the quantity and quality of the 
training data, with poor data leading to biased 
or inaccurate models. Lastly, the computation-
al and financial costs associated with training 
and deploying deep learning models can be 

prohibitive, especially for small organizations or 
projects with limited budgets.

Results and comparison of methods

In this section, we present the results and  
comparison of various state-of-the-art meth-
ods for estimating dataset curvature. The aim 
of this comparison is to provide a better under-
standing of the strengths and weaknesses of 
each method and to identify the most suita- 
ble approach for different applications. To facili-
tate the comparison, we have summarized the 
papers in Table 1.

This study employed a descriptive research 
method to analyse 105 academic papers. The 
papers were categorized into three distinct 
groups: classical mathematical approaches, 
machine learning methods, and deep learning 
techniques, as well as a combination of these 
approaches.

Figure 2 illustrates the percentage of research 
papers (105 in total) that focused on curvature 
estimation and were published within the afore-
mentioned period. It can be observed that the 
highest percentage of publications (15.24%) 
occurred in 2015, while the lowest percentage 
(0.95%) occurred in 2012.

Figure 3 presents a histogram that displays  
the trends in research on curvature estimation 
across different years. The histogram indicates 
that the highest use of curvature estimation 
occurred in the year 2015, while the lowest use 
was observed in 2012. It is interesting to note 
that after 2015, the use of curvature estima-
tion increased significantly, surpassing the 
usage in the years preceding 2015. This sug-
gests that there has been a growing interest in 
curvature estimation and its applications in 
various fields. The data presented in Figure 2 
highlights the importance of staying up-to-date 
with the latest trends and developments in 
research to ensure the most efficient and effec-
tive use of curvature estimation techniques.

In Figure 4, you can see the percentage break-
down of the classification of 105 research 
papers related to curvature estimation. The 
majority of these papers, as shown in the fig-
ure, employed classical mathematical approa- 
ches (56 papers). Meanwhile, thirty-one papers 
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Table 1. Curvature estimation of a dataset: summary of methods
No Reference Year Methods Category Advantages Limitations Applications
1 [112] 2010 Principal  

Component 
Analysis

Classical 
mathematical 
approaches

This method allows the creation of an alternative 
pedotransfer function

Some hydrological constants

2 [113] 2010 Total Curvature Classical 
mathematical 
approaches

Contour-Based Corner Detectors

3 [114] 2010 Principal  
Component 
Analysis

Classical 
mathematical 
approaches

The observed trends are probably more generally 
valid than the results of one large experiment 
which was carried out under one specific combi-
nation of environmental factors

4 [115] 2010 Environmental 
Kuznets curve 
(EKC)

Classical 
mathematical 
approaches

Seeking empirical regularity and theoretical 
structure

Environmental Kuznets Curve

5 [116] 2010 Curvature Scale 
Space

Classical 
mathematical 
approaches

The focusing function can be designed to make 
the travel time moveout exact in certain generic 
cases that have practical importance in seismic 
processing and interpretation. The focusing  
function can be generalized to other surfaces, 
most importantly to the spherical reflector  
(spherical multi focusing)

Multi focusing

6 [117] 2010 Ridge Regression Machine learn-
ing methods

Growth analysis should ideally reveal a  
relationship between the concentration of a  
compound/substrate and its effect on a particu-
lar growth parameter

 

7 [118] 2010 Ridge Regression Machine learn-
ing methods

Profitable for environmental quality Semiparametric and flexible nonlinear  
parametric modelling

8 [119] 2011 Multiscale Analysis Classical 
mathematical 
approaches

Estimate the time required to complete produc-
tion runs

Investigating models in the context of 
product development for Mass Custom-
ization

Log-linear model and modifications,  
Exponential models, Hyperbolic models, 
Comparison of univariate models, Multivariate 
models, Forgetting models

9 [120] 2011 Principal  
Component 
Analysis

Classical 
mathematical 
approaches

ROC curve and its important components like 
area under the curve, sensitivity at specified 
specificity and vice versa, and partial area under 
the curve are discussed

Receiver Operating Characteristic (ROC)

10 [121] 2011 Multiscale Analysis Classical 
mathematical 
approaches

A less popular multivariate curve resolution 
method based on a weighted alternating least-
squares algorithm, MCR-WALS, also incorporates 
the measurement error information and non-
negativity constraints, which makes this method 
a potential tool when obtaining composition and 
contribution profiles of environmental data

PCA

11 [122] 2011 Principal Curvature Classical 
mathematical 
approaches

An approach that directly uses curvature cues in 
a discriminative way to perform object recognition 
to provide quantitative evidence that curvature 
information of objects can be discriminatively 
used in a robust and reliably manner for object 
recognition

HoG
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12 [123] 2012 Spline  
Interpolation

Classical 
mathematical 
approaches

This technique targets the object of natural 
selection itself, the optimal classification of 
curve shapes and the detection of significant 
differences between them, as well as practically 
relevant questions such as detecting the impact 
of cultivation times and the minimum required 
number of experimental repeats

R

13 [124] 2013 Curvature Scale 
Space

Classical 
mathematical 
approaches

Find both satisfactory estimates and invalid 
procedures and recommend two simple intervals 
that are robust to a variety of assumptions, robust 
to model misspecification

Precision-recall (PR) & receiver operating 
characteristic 
(ROC)

14 [125] 2013 Multiscale Analysis Classical 
mathematical 
approaches

Accurately modelled power curves will definitely 
improve the turbine performance, making the 
power generated more reliable and contribute 
tremendously in transforming a wind farm into a 
wind power plant

Genetic algorithm (GA), evolutionary program-
ming (EP), particle swarm optimization (PSO), 
differential evolution (DE), neural network 
algorithm

15 [126] 2013 Principal  
Component 
Analysis

Classical 
mathematical 
approaches

The corresponding results show that the  
algorithms more rapid and accurate compared to 
other algorithms

16 [127] 2013 Principal  
Component 
Analysis

Classical 
mathematical 
approaches

LightCycler480

17 [128] 2013 Multiscale Analysis Classical 
mathematical 
approaches

They can be simulated by heavily left tailed 
distributions, and by the use of a blur approach 
to account for striping artifacts y applying the blur 
numerous times with random directions, it is pos-
sible to obtain realistic striping noises.  
This finding gives users with a tool by which they 
can simulate and evaluate the effect of uncer-
tainty of such type of errors in DTMs.

18 [129] 2013 Ridge Regression Machine  
learning 
methods

Nelson-Siegel model can become heavily  
collinear depending on the estimated/fixed shape 
parameter

Nelson-Siegel model

19 [130] 2013 Curvature Scale 
Space

Classical 
mathematical 
approaches

Estimators of pointwise standard errors are 
provided introduce a non-parametric estimator of 
a time dependent predictive accuracy function

Area under the curve (AUC)

20 [131] 2013 Curvature Scale 
Space

Classical 
mathematical 
approaches

Showing that the proposed approach per forms 
comparably to state-of-the-art multiple model es-
timation in the synthetic data, while it significantly 
out performs state-of-the-art in the real X-rays 
equences. It also achieves correct localization of 
the model end points, which is a crucial aspect in 
the context of the clinical application

RANSAC framework

21 [132] 2014 Ridge Regression Machine learn-
ing methods

Illustrate the limits of cubic parametric  
regressions

WTPC models

22 [133] 2014 Curvature Scale 
Space

Classical  
mathematical  
approaches

Actual wind turbine status monitoring, the 
operational efficiency, reliability, and economic 
feasibility can be maximized since failures in 
a wind turbine’s overall system can be rapidly 
recognized and handled

Power curve limit calculation algorithm
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23 [134] 2014 B-Spline  
Interpolation

Classical 
mathematical 
approaches

Accuracy and computational performance Simulated Range Image, Linear Regression, 
Orthogonal Polynomials

24 [135] 2015 Hybrid Hybrid Faster, more accurate and robust to noise and 
outliers

Mobile laser scanning 3D point cloud data

25 [136] 2015 Hybrid Hybrid Able to accurately steer a flexible needle in  
multi-layer phantoms and biological tissues

Experiments in gelatin phantoms and biological 
tissues (chicken breast tissues)

26 [137] 2015 non-Linear  
Regression

Machine learn-
ing methods

Reduce false alarms and take into account driver 
corrections

Lane departure warning system

27 [138] 2015 Height Function Classical 
mathematical 
approaches

The embedded height-function technique outper-
forms contemporary methods and its accuracy 
approaches the accuracy that the traditional 
height-function technique exemplifies on uniform 
cartesian meshes

28 [139] 2015 K-NN Machine 
Learning 
methods

The algorithm presented in this paper has 
successfully been applied for the detection of 
straight and curved curbs

The dataset is publicly available at www.isislab.
es

29 [140] 2015 Total curvature Classical 
mathematical 
approaches

The proposed early vision framework is  
sufficiently general 

Range of 2D and 3D examples and it can be 
used in many higher-level applications

30 [141] 2015 Polynomial  
regression

Machine 
Learning 
methods

Experimental results demonstrate that the 
approach achiever a promising performance in 
comparison with three representative corner 
detectors based on discrete curvature estimation 
and two other state-of-the-art methods

23 512*512 gray-scale images
Includes artificial and real-world images
Some images named “Block”, “Lena”, “Leaf”, 
“House”, and “Lab”
Collected from standard databases:
http://www.petitcolas.net/fabien/watermark-
ing/image_database/index.html
http://sipi.usc.edu/database/
Available at USC-SIPI

31 [142] 2015 Algebraic equation Classical 
mathematical 
approaches

The simple algebraic technique provides an  
acceptable estimation of the road curvature

The proposed observation strategy is imple-
mented with real data obtained by a scenario 
realized in the track of Versailles (France)

32 [143] 2015 Hybrid Hybrid Clear, intuitive 3D model display
Easy process
Quick, satisfying results
Superior to related methods

3D Models

33 [144] 2015 Mean curvature Classical 
mathematical 
approaches

The results obtained from the first experiment 
showed that the combination of the conformal 
parameterization and mean curvature yields bet-
ter performance than the original 3D coordinates 
when using circular segmentation

New algorithm for 3D face recognition. scans of 
30 subjects of the CASIA database and 30 of 
the Gavab database

34 [145] 2015 Algebraic equation Classical 
mathematical 
approaches

Reflected-spot method (RSM) system provides a 
non-invasive, rapid, portable, low-cost solution to 
the difficulties involved in measuring the radius of 
curvature (ROC)

Industrial applications
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35 [146] 2015 Polynomial  
Regression 

Machine  
learning 
methods

The presented techniques offer promise for suc-
cessfully predicting, tracking, and controlling CDM 
configuration during surgery

Data collected for two experiments:
Free bending (n=149 images)
External load on manipulator (n=9 images)
Free bending data collection described in R.J. 
Murphy et al. (2014)
Two image datasets collected

36 [147] 2015 B-Spline  
Interpolation

Classical 
mathematical 
approaches

37 [148] 2015 Algebraic  
Equation

Classical 
mathematical 
approaches

Flow curve-based reference point detection
Robust to noise
Effective on low-quality fingerprint images
Detects arch class fingerprints
Proven accuracy in experiments

Fingerprint images in FVC2004 DB1 and 
FVC2002 DB2 datasets

38 [149] 2015 Polynomial  
Regression 

Machine  
learning 
methods

The simulation experiment  
shows that the trajectory planning method can 
ensure that the angular velocity of robot is high 
order continuous at the same time, and effec-
tively avoiding the control disturbance and burden 
of control system caused by the mutations of 
command speed, acceleration and jerk

The algorithm can be also used in the trajectory 
planning of unmanned plane, mobile robot and 
medical needles

39 [150] 2015 Classical 
mathematical 
approaches

The none-local curvature used, for example, for 
non-local diffusion, shows promising results in 
edge detection and identification, and in segmen-
tation of textures. The concept of non-local cur-
vature, using and extending Menger’s curvature, 
can be extended for a curvature measure and 
thereby afford representation of an image as a 
metric measure space

Natural and textural images

40 [151] 2016 Hybrid Hybrid Methods based on geometric reconstruction (TR 
and LSQR), can reach a significantly higher ac-
curacy than approaches that are based on finite-
difference approximations. Reconstruction-based 
methods significantly reduce the magnitude of 
spurious currents. The LSQR approach shows a 
second-order rate of convergence with respect to 
grid spacing, which could not be achieved with 
the other two approaches

Our results indicate that lack of con-
vergence is caused by the simplified 
advection of the indicator function that 
does not take into account any geometry 
information. In particular, the advection 
scheme fails to converge in a simple 
uniform advection test, indicating a 
lower order of accuracy than previously 
reported for simple [151] reconstruction 
based on schemes

The standard benchmark for surface tension 
models is a static equilibrium bubble

41 [152] 2016 KD technique Classical 
mathematical 
approaches

KD curvature has obvious advantages in compu-
tational complexity. The proposed method outper-
forms existing detectors in both computational 
efficiency and flexibility of corner detection

Image datasets both artificial image Block and 
natural images Lena, Leaf, House and Lab

42 [153] 2016 Algebraic Equation Classical 
mathematical 
approaches

From the experimental results, the HMGD-MBP 
processing naturally enhances the contrast of im-
age, and so the edges of image become clarified 
and detailed. Also, we understand that the color 
of HMGD-MBP processed image tends to become 
more moderate than original image. As a conclu-
sion, we consider that the HMGD-MBP processing 
method is more useful than HMGD

Processing method for multiple-brightness 
peak image
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43 [154] 2016 Classical 
Mathematical 
approaches

Using the proposed method single fruits can be 
separated and recognized effectively with an 
overall accuracy rate of about 90.6 percent

For the identification of single fruits from 
overlapped apples

44 [155] 2016 Hybrid Hybrid Meta-estimator, despite its simplicity, provides 
considerably more robust results than any  
existing approach

Triangle meshes of varying properties

45 [156] 2016 Fourier spectral 
method

Classical 
mathematical 
approaches

Spectral calculations for spatial derivatives are 
implemented in global space
Noise can be suppressed due to global space 
implementation
The k-domain generated in algorithm provides 
space for spatial filtering
Trigonometric interpolation in spectral method 
aids in precise estimation of modal curvatures
Modal curvatures are calculated based on fast 
Fourier transform in proposed method
Efficiency of method is ensured due to use of fast 
Fourier transform

Proposed method modifies classical MC 
method, retains essential terms
DFT-MC2D results not as clear as some 
advanced technologies
Good damage indices based on MC via 
numerical differentiation
Proposed work promising modification to 
remove noise influence
Proposed method detects only boundary 
of area damage
Line and area damage undistinguishable 
to some extent
Main disadvantage is inability to 
distinguish line and area damage in 
application

Plates damage detection

46 [157] 2016 Hybrid Hybrid Three mechanisms for choosing a curvature es-
timator: Estimation range, Noise and irregularity, 
Practical properties
No single estimator outperforms others in all 
aspects
Our modification to 6th method is faster, easier to 
implement, and has higher locality and accuracy 
on larger ranges
Modified method may miss some details due to 
increased range, but performs better than 2nd 
method on meshes without noise

Polyhedral mesh

47 [158] 2016 Monte Carlo 
Simulation

Classical 
mathematical 
approaches

Our analysis has significantly improved the preci-
sion of estimations of spatial curvature
Our results are more precise than estimations 
based on geometric optics
Improved precision can help break degeneracies 
between curvature and other important problems
Examples of such problems include the evolution 
of the universe and the nature of dark energy

Popular Union2.1 observations of Type Ia 
supernovae  
(SNe Ia)

48 [159] 2016 Algebraic Equation Classical 
mathematical 
approaches

Closest Point algorithm with co-linearity criterion 
and re-interpolation improves curvature estimate
Fourth-order precision closest point approxima-
tion yields fourth-order precision for curvature 
error and standard deviation, and second-order 
precision for normal error
Algorithm is easy to implement and less compu-
tationally costly than Height Function methods in 
VOF framework and later works
Straightforward to extend to three dimensions
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49 [160] 2016 Hybrid Hybrid Outperforms current GPU approaches
Easily added to existing rendering pipelines
Computes curvature from triangle mesh, not just 
screen space

Technique has limitations similar to 
other screen-space algorithms
Possible problems with surface discon-
tinuities
Estimated curvature depends on mesh 
distance from camera
Small details smoothed if camera is far 
from surface

50 [161] 2017 Neural Network 
Regression

Machine learn-
ing methods

Better performance and more accurate Robotic context in the form of a segmentation 
example as a qualitative demonstration

51 [162] 2017 Fitting a parabolic 
surface

Classical 
mathematical 
approaches

This work presents a fast method of robustly com-
puting accurate metric principal curvature values 
from noisy point clouds which was implemented 
on GPU

Applications:
Normal field calculation
Correspondence estimation
Object shape matching
Inferring object characteristics

52 [163] 2017 Discrete volume 
fractions

Classical 
mathematical 
approaches

Numerical experiments show VOF method con-
verges with mesh refinement
Same accuracy as height-function method on 
structured and unstructured meshes
Errors on unstructured meshes comparable to 
Cartesian grids with similar resolution
This level of convergence on unstructured 
meshes is a new development
This opens up possibilities for VOF simulation of 
interfacial flows in complex geometries

53 [164] 2017 Algebraic Equation Classical 
mathematical 
approaches

This method can estimate the road curvature and 
width in advance to help a vehicle pass the curve 
in a reasonable speed and a proper turning angle

self-driving vehicles

54 [165] 2017 Hybrid Hybrid The model performs well in reducing the time lag, 
especially in periods where the gradient changes 
rapidly

Estimation of the road curvature

55 [166] 2017 Principal Curvature Classical 
mathematical 
approaches

This method is robust to moderate facial expres-
sion variations. the proposed method is also 
robust to varies head pose variations and external 
occlusions, especially for extreme poses, e.g. left 
or right profiles

3D Face Recognition

56 [167] 2018 Algebraic Equation Classical 
mathematical 
approaches

Proposed strategy yields highly accurate 
reference point localization in digital fingerprint 
images
Strategy is based on friction ridge curvature 
determination
It’s simpler than other commonly used methods
Robust to geometric transformations such as 
rotation and translation
Faster reference point determination compared to 
other approaches

For the detection of a fingerprint’s reference 
point image processing
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57 [168] 2018 Circle Fitting 
Method

Classical 
mathematical 
approaches

Paper proposes method without image process-
ing or ML
Simplifies estimation process and reduces 
computation
More powerful and efficient than conventional 
methods.

Algorithms don’t consider the physical 
environment of experiments
Car movement affects circle fitting 
accuracy
Algorithms can wrongly determine radius 
vector and circle center placement, 
especially in straight line targets
Need to add vital input information to 
correct output parameters based on 
physical conditions of experiments

58 [169] 2018 Algebraic Equation Classical 
mathematical 
approaches

Accurate estimate
Directly derived from observations
No derivatives or extrapolations used
Model independent
Purely geometric

Cosmic spatial curvature

59 [170] 2018 Mean curvature Classical 
mathematical 
approaches

Accurate and robust curvature estimate
Better localization
Geometrically consistent local groupings (curvels)
Yield edge topology
Accurate local estimate of curvature

Popular edge detectors

60 [171] 2018 Algebraic Equation Classical 
mathematical 
approaches

Study shows Doppler LIDAR can replace track 
geometry measurement systems
Potentially lower cost and more accurate instru-
ments
Results indicate feasibility of using Doppler LIDAR 
velocimetry systems

Rail irregularity monitoring

61 [172] 2018 B-Spline Interpola-
tion

Classical 
mathematical 
approaches

Proposed method balances machining efficiency, 
precision, and complexity
Local fine pre-processing improves critical point 
positioning without increasing computation time
Interpolation terminal error is compensated while 
maintaining feedrate smoothness
Parameter compensation method reduces fee-
drate fluctuation for better precision and machine 
protection
Sliding window-based lookahead scheduling 
generates successful feedrate profile with limited 
reference trajectory

62 [173] 2018 Hybrid Hybrid Mesh-based methods allowed for more accurate 
estimations methods working on triangle meshes 
were faster when geometries had a small surface 
density. For geometries with larger surface densi-
ties, the runtimes for both representations were 
similar

Volume images and triangle meshes

63 [174] 2019 Local quadric 
surface fitting

Classical 
mathematical 
approach

Robustness towards point density variation. Bet-
ter handling non uniform distribution and noise 
in point cloud data, and is more robust towards 
point density variation

Simulated point cloud and scanned point cloud 
obtained by a LDI Surveyor WS3040 3D laser 
scanner
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64 [175] 2019 Least Square 
Method

Machine learn-
ing methods

Automatic obtain Gaussian curvature from the 
Weingarten map more robustness towards noisy 
data

Manifolds embedded in Euclidean 
spaces with codimension greater than 1

Real brain cortical surface data (noisy and no 
information about the true curvature of the 
surface)

65 [176] 2019 Principal Compo-
nent Analysis

Classical 
mathematical 
approaches

Can correct outliers caused by the addition of 
large sparse noise

Simulated Swiss roll, the MNIST dataset, 
biological data

66 [177] 2019 Neural Network 
Regression

Machine 
Learning 
methods

Using machine learning to generate the  
relationship is a viable approach that results in 
reasonably accurate predictions.

no explicit order that guarantees conver-
gence under grid refinement

Volume of Fluid (VOF)

67 [178] 2019 The Color-Gradient 
Two-Phase Lattice 
Boltzmann Method

Machine  
learning 
methods

Can be used to study the pore-by-pore variation Three-dimensional X-ray micro-CT images

68 [179] 2019 Differential 
Geometry-based 
Geometric  
Learning

Machine 
Learning

Descriptive and predictive powers for large, 
diverse, and complex molecular and bimolecular 
datasets

Predictions of drug discovery-related  
protein-ligand binding affinity, drug toxicity, and 
molecular solvation free energy

69 [180] 2019 PC-MSDM Classical 
mathematical 
approaches

Outperforms its counterparts in terms of cor-
relation with mean opinion scores, if the surface 
information is lost, it attains the performance 
of MSDM2 while having the benefit of being 
applicable directly on point clouds, without mesh 
reconstruction process counterparts in terms 
of correlation with mean opinion scores, if the 
surface information is lost, it attains the perfor-
mance of MSDM2 while having the benefit of 
being applicable directly on point clouds, without 
mesh reconstruction process

An open subjective dataset of point clouds 
compressed by octree pruning

70 [181] 2019 Principal Compo-
nent Analysis

Classical 
mathematical 
approaches

A good tool for outcome evaluation, auditing, and 
benchmarking

Breast Shape Analysis for Cosmetic and  
Reconstructive Breast Surgery

71 [182] 2019 Local Regression 
(LOESS)

Machine learn-
ing methods

Individual tree species classification based on 
terrestrial laser scanning 

72 [183] 2019 B-spline (Kappa) Classical 
mathematical 
approaches

Better with higher SNR, smaller pixel sizes, and 
especially PSFs equivalent to super-resolution 
microscopy data

Biological image data

73 [184] 2020 MLP Deep Learning 
techniques

Robustness to noise, outliers and density varia-
tions, and show its application on noise removal

PCPNet shape dataset

74 [185] 2020 Exponential Curva-
ture Estimation

Classical 
mathematical 
approaches

More accuracy and generality (overall accuracy 
of 0.820, and 0.734, 0.881 for sensitivity and 
specificity, respectively)

Corneal nerve and retinal vessel images: CCM-
A, CCM-B and RET-TORT

75 [186] 2020 Neural Network 
Regression

Machine learn-
ing methods

For certain curves, the use of particular rational 
bases provides better results

Different curvature

76 [187] 2020 Support vector 
regression

Machine learn-
ing methods

Performed well in fitting the cumulative cases Poor fitting is observed in case of daily 
number of cases.

Predict the number of total number of deaths, 
recovered cases, cumulative number of 
confirmed cases and number of daily cases for 
COVID19 case in India (data collected for the 
time period of 1st March, 2020 to 30th April, 
2020 (61 Days))
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77 [188] 2020 Non-Linear Regres-
sion

Machine learn-
ing methods

Provides a simple and cost-effective way of  
estimating reservoir properties

Datasets from four wells (Wells 1, 2, 3 and 
4) from three different fields within the Niger 
Delta operated by Shell Petroleum Develop-
ment Company (SPDC) of Nigeria 

78 [189] 2020 Sigmoidal Curve 
Fitting

Classical 
mathematical 
approaches

Accurately capture the feld size of the preconfg-
ured RD and the measured FFF photon beam 
data for the Halcyon system

Photon beam of the Halcyon to determine the 
feld size for beam commissioning and quality 
assurance

79 [190] 2020 Fuzzy C-Means 
and the ANFIS and 
Extreme Learning 
ANFIS

Machine  
learning 
methods

Depending on the data distribution, ANFIS and 
Extreme Learning ANFIS may provide great sur-
faces when in combination with Fuzzy C-Means 
clustering

Hydraulic turbine efficiency curve

80 [191] 2020 Neural Network 
Regression

Machine  
learning 
methods

The results have shown that ANN can efficiently 
forecast the future cases of COVID 19 outbreak 
of any country

Covid-19 number of rising cases and death 
cases in India, USA, France, and UK, consider-
ing the progressive trends of China and South 
Korea

81 [192] 2020 Sigmoidal Curve 
Fitting

Classical 
mathematical 
approaches

The curve-fitting approach is the most promis-
ing in terms of scalability and computational 
complexity

Publicly available dataset of streamed game 
videos for real-time Reduced-Reference (RR) 
quality assessment

82 [193] 2021 B-Spline Interpola-
tion

Classical 
mathematical 
approaches

This method has lower energy and better continu-
ity and smoothness and could be used for evalu-
ation of train drivers’ performance and energy 
consumption of train operation diagram

Finding interrelation between running time 
and energy consumption (Guangzhou Metro’s 
actual operation data)

83 [194] 2021 Convolutional 
Neural Networks 
(CNNs)

Deep Learning 
techniques

It predicts a continuous parametric representa-
tion of the outline of biological objects

Biomedical images (Kaggle 2018 Data Science 
Bowl dataset composed of a varied collection 
of images of cell nuclei.)

84 [195] 2021 Polynomial and 
Circular (spherical) 
Fitting

Machine  
learning 
methods

It is highly associated with its profile Young’s modulus determines how easily a 
material can stretch and deform.
It’s defined as the ratio of tensile stress (σ) to 
tensile strain (ε)

85 [196] 2021 Neural Network 
Regression

Machine  
learning 
methods

It is suitable for both explicit polynomial fitting 
and implicit polynomial fitting. The algorithm is 
relatively simple, practical, easy to calculate, and 
can efficiently achieve the fitting goal. At the same 
time, the computational complexity is relatively 
low, which has certain application value

Polynomials (a variety of nonlinear functions)

86 [197] 2021 Weingarten map Machine  
learning 
methods

It is general for point clouds in any dimension, 
and is efficient to implement due to low complex-
ity and yields better results than the quadratic 
fitting in both MSE and robustness

87 [198] 2021 Ratio of Parallelo-
gram Diagonals 
(RPD)

Classical 
mathematical 
approaches

The main advantage of RPD detector is that 
only once square root operation is required to 
calculate the curvature value at each point on a 
contour while maintaining good noise robustness 

Corner detection

88 [199] 2021 Geometric Least 
Square Curve 
Fitting Method 
for Localization 
(GLSCFL)

Classical 
mathematical 
approaches

It provides better localization accuracy than other 
geometric schemes

Localization of wireless sensor network
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89 [200] 2021 Quadratic  
Polynomials and 
Least Squares

Machine  
learning 
methods

Proposed method can complete the identification 
of mobile specific emitter sources in the unsuper-
vised state with more than 95% identification rate

Specific emitter identification (SEI)

90 [201] 2022 Neural Network 
Regression

Machine  
learning 
methods

Capable of creating a function that can even be 
used to predict curvatures of complex interfaces 
arising from fluid simulations

The interface curvature in the context of a 
Front-Tracking framework

91 [202] 2022 Linear Regression Machine learn-
ing methods

The best algorithm is Cfit K-means as it has a 
maximum IoU score value of 95.75

Inferring Agronomical Insights for Wheat 
Canopy

92 [203] 2022 Logarithmic, 
Polynomial and 
Exponential curve 
fitting

Machine  
learning 
methods

High accuracy in prediction of magnitude and 
depth

Experimental analysis of earthquake prediction 
in India

93 [204] 2022 Linear Regression 
(Least square 
regression)

Machine  
learning 
methods

Compared with the existing methods, this method 
can still perform data cleaning well when the 
historical wind turbine data contains many 
abnormal data, and the method is insensitive to 
parameters, simple in the calculation, and easy 
to automate

Abnormal Data Cleaning Method for Wind 
Turbines

94 [205] 2022 Linear regression 
(CurFi)

Machine  
learning 
methods

A great resource for the users having limited 
technical knowledge who will also be able to find 
the best fit regression model for a dataset using 
the developed “CurFi” system

An automated system to find best regression 
analysis

95 [206] 2022 LSTM Deep Learning 
techniques

Accurate and economical at the same time Hydraulic Turbines

96 [207] 2022 Levenberg-Mar-
quardt

Machine  
learning 
methods

It provides a new solution for filling the bathy-
metric gap in very shallow water, which is very 
essential for topobathymetry mapping

Decompose Airborne LiDAR Bathymetric  
Waveform in Very Shallow Waters Combining

97 [208] 2022 Linear regression Machine  
learning 
methods

The correlation coefficient of the ANN model and 
curve-fitting model were 0.9992 and 0.9557, 
respectively. It shows the ANN model’s higher 
accuracy than the curve-fitting model in R-Event 
prediction

Prediction of SARS-CoV-2 in Office Environment

98 [209] 2022 Hybrid Hybrid Both approaches yielded useful results, and 
although the machine learning application out-
comes had a wider range, they typically presented 
around 10% better error metrics overall

Wind Power Curve Modelling

99 [210] 2022 Convolutional 
Neural Networks 
(CNNs)

Deep Learning 
techniques

With a worst-case mean absolute percentage er-
ror of 4.0%, 4.2%, and 3.7% on the training (108 
cells), validation (35 cells), and test (35 cells) 
datasets, respectively

The presented modelling approach pro-
vides a foundation for early-stage battery 
degradation characterization 

Predict the entire battery capacity fade curve 
- a critical indicator of battery performance 
degradation

100 [211] 2022 Hybrid Hybrid The accuracy of proposed method in fitting short-
term trajectories has increased by 49.16% and 
29.89% on average compared with the LSTM and 
BiGRU. The average fitting accuracy of method is 
96 m, and the minimum fitting error is 64 m

Marine vessel Automatic Identification System
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101 [212] 2023 MLP Deep Learning 
techniques

It shows superior performance compared to its 
standard counterpart and has similar accuracy 
and convergence properties with the state [1] 
of-the-art conventional method despite using 
smaller stencil

Estimation of interface curvature in  
surface-tension dominated flows

102 [213] 2023 Hybrid Hybrid It obtains the most accurate WTPCs on four wind 
datasets, showing the superiority of the proposed 
DL approach

Wind turbine power curve modelling

103 [214] 2023 Hybrid Hybrid Much small mean square error (MSE), mean 
absolute error (MAE), and mean absolute  
percentage error (MAPE) than other methods

Curvature Prediction Method of Profile Roll 
Bending

104 [215] 2023 Discrete Gaussian 
Curvature (the 
whole method 
is Curvature 
Weighted Decima-
tion (CWD))

Classical 
mathematical 
approaches

CWD reduces introduced error values over  
Random Decimation when 15 to 50% of the 
points are retained

Improve Lidar Point Decimation of Terrain 
Surfaces

105 [216] 2023 Gaussian Cur-
vature

Classical 
mathematical 
approaches

It opens up a geometric analysis perspective 
on model bias and pay attention to model bias 
on non-long-tailed and even sample balanced 
datasets

Long-Tailed Classification
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Figure 2. Curvature estimation research percentage in different years.

Figure 3. A histogram depicting the research on curvature estimation across various years.

relied on machine learning methods, five used 
deep learning techniques, and the remaining 
13 applied a combination of various cate- 
gories.

Table 2 displays the research techniques uti-
lized in 105 papers. As per the data presented 
in Table 1, it can be observed that the majority 
of the 105 research papers (equivalent to 15 
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Figure 4. Classification of percentage of curvature estimation research cat-
egories.

papers, accounting for 13.6% of the total) used 
hybrid methods to estimate curvature. The sec-
ond most commonly used method for estimat-
ing curvature was the Algebraic Equation (9 
papers, equivalent to 8.2%). Additionally, the 
Principal Component Analysis method was 
applied in seven papers (equivalent to 6.4%). 
The Neural Network Regression method was 
utilized by the authors of six papers (equivalent 
to 5.5%) for estimating curvature. Curvature 
Scale Space, Multiscale Analysis, and Ridge 
Regression methods were used in five papers 
each, accounting for 4.5% of the total each. The 
remaining methods were used in four papers or 
less.

Table 2 utilizes the colours blue, red, green, 
and black to denote the classical mathematical 
approaches, machine learning methods, deep 
learning techniques, and hybrid methods, 
respectively.

Discussion

The application of curvature estimation in neu-
rodegenerative diseases underscores its value 
not only as a tool for understanding complex 
structural changes but also as a means of 
enhancing diagnostic precision and monitoring 
disease progression. While this systematic 
review provides a comprehensive analysis of 
the state-of-the-art algorithms and methods  
for curvature estimation, there are some limita-

tions that need to be acknowl-
edged. First, the scope of the 
review was limited to papers 
published between 2010 and 
2023. Consequently, earlier 
works that may have influ-
enced the development of cur-
vature estimation methods are 
not included in the analysis. 
Second, the classification of 
methods into four categories 
(classical mathematical app- 
roaches, machine learning 
methods, deep learning tech-
niques, and hybrid methods) 
may not capture the full diver-
sity of approaches in the field. 
Some algorithms may not fit 
neatly into these categories, 
and there may be overlaps 
between them. Third, this re- 

view focused on the number of papers pub-
lished and the methods employed, but it did  
not include an in-depth analysis of the perfor-
mance of these methods on various datasets 
and tasks. As a result, this review cannot pro-
vide a definitive ranking of the most effective 
methods for specific applications. The paper 
offers valuable insights into curvature estima-
tion methods and provides recommendations 
for future research. To further guide upcoming 
studies, it is beneficial to expand on these rec-
ommendations with potential research ques-
tions and challenges in the field. Here are the 
revised suggestions:

1. Exploring the potential of machine learning 
and deep learning: The increasing adoption of 
machine learning and deep learning techniqu- 
es in curvature estimation is evident. However, 
future research should delve deeper into this 
domain by addressing questions such as:

• What specific machine learning architectur- 
es and algorithms are most suitable for differ-
ent curvature estimation tasks?

• How can we effectively train deep learning 
models with limited labeled data for curvature 
estimation?

• Are there transfer learning techniques that 
can enhance the generalization of curvature 
estimation models across different domains 
and datasets?
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Table 2. Curvature estimation research methods
Frequency Percent

Valid 2 1.9
Algebraic Equation 9 8.6
B-spline (Kappa) 1 1.0
B-Spline Interpolation 4 3.8
Circle Fitting Method 1 1.0
Convolutional Neural Networks (CNNs) 2 1.9
Curvature Scale Space 5 4.8
Differential Geometry-based Geometric Learning 1 1.0
Discrete Gaussian Curvature (the whole method is Curvature Weighted Decimation (CWD)) 1 1.0
Discrete Volume Fraction 1 1.0
Environmental Kuznets curve (EKC) 1 1.0
Exponential Curvature Estimation 1 1.0
Fitting a parabolic Surface 1 1.0
Fourier spectral method 1 1.0
Fuzzy C-Means and the ANFIS and Extreme Learning ANFIS 1 1.0
Gaussian Curvature 1 1.0
Geometric Least Square Curve Fitting Method for Localization (GLSCFL) 1 1.0
Height Function 1 1.0
Hybrid 13 12.4
K-NN 1 1.0
KD Technique 1 1.0
Least Square Method 1 1.0
Levenberg-Marquardt 1 1.0
Linear Regression 4 3.8
Local Quadric Surface Fitting 1 1.0
Local Regression (LOESS) 1 1.0
Logarithmic, Polynomial and Exponential Curve Fitting 1 1.0
LSTM 1 1.0
Mean curvature 2 2.0
MLP 2 1.9
Monte Carlo Simulation 1 1.0
Multiscale Analysis 4 3.8
Neural Network Regression 6 5.7
non-Linear Regression 2 1.9
PC-MSDM 1 1.0
Polynomial and Circular (spherical) Fitting 1 1.0
Polynomial Regression 3 2.9
Principal Component Analysis 7 6.7
Principal Curvature 2 1.9
Quadratic Polynomials and Least Squares 1 1.0
Ratio of Parallelogram Diagonals (RPD) 1 1.0
Ridge Regression 4 3.8
Sigmoidal Curve Fitting 2 1.9
Spline Interpolation 1 1.0
Support Vector Regression 1 1.0
The Color-Gradient Two-Phase Lattice Boltzmann Method 1 1.0
Total curvature 2 2.0
Weingarten map 1 1.0
Total 105 100.0
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By addressing these research questions and 
challenges, future studies can contribute to 
advancing the field of curvature estimation and 
provide a clearer roadmap for researchers in 
this domain. The review has identified several 
popular methods within each category, such as 
Neural Network Regression for machine learn-
ing and Deep Multilayer Perceptron (MLP) and 
Convolutional Neural Networks (CNNs) for deep 
learning. Future research could investigate the 
strengths and weaknesses of these methods 
on a variety of datasets and tasks to provide a 
more comprehensive understanding of their 
performance and potential applications.

In addition to summarizing the methods and 
their respective applications, this review under-
scores the growing necessity of integrating 
machine learning and deep learning techni- 
ques into clinical neurodegenerative disease 
research. These methods, particularly hybrid 
approaches, address the complexity of brain 
morphology and its subtle changes over time, 
which are often challenging to capture using 
classical methods alone. For instance, the use 
of deep neural networks has demonstrated  
significant promise in handling high-dimension-
al neuroimaging data, enabling more precise 
and earlier detection of pathological changes. 
The shift toward hybrid methods indicates a 
paradigm where leveraging complementary 
strengths of classical and advanced techniqu- 
es can pave the way for innovative diagnostic 
tools.

Furthermore, this analysis highlights the need 
for developing standardized benchmarks to 
evaluate these methods effectively. The au- 
thors advocate for future research to focus  
on creating large-scale, diverse datasets and 
robust evaluation protocols that bridge the gap 
between algorithmic advancements and their 
practical applicability in clinical settings. By fos-
tering collaborations among computational and 
medical researchers, these advancements can 
be seamlessly translated into tools that directly 
benefit patient care.

This systematic review has provided a com- 
prehensive overview of the state-of-the-art in 
dataset curvature estimation, highlighting the 
diverse range of methods and their evolution 
over the past 14 years. Based on the analysis, 
we can draw several recommendations for 

2. Revisiting the role of classical mathemati- 
cal approaches: While classical mathematical 
approaches have seen a decline in usage, it’s 
essential to reevaluate their relevance in con-
temporary research. Researchers can explore:

• Are there specific scenarios or data types 
where classical mathematical methods still 
outperform modern techniques in curvature 
estimation?

• Can advancements in computational resour- 
ces and algorithms enhance the efficiency and 
accuracy of classical approaches?

• How can classical and modern methods be 
combined to harness their respective streng- 
ths?

3. Innovative integration of methods: The inter-
est in hybrid methods suggests potential ben-
efits in combining various algorithms. Future 
research should address challenges and ques-
tions like:

• What are the most effective strategies for 
combining classical, machine learning, and 
deep learning techniques in curvature esti- 
mation?

• How can these hybrid approaches be adapt-
ed to handle noisy or incomplete data?

• Are there theoretical frameworks for under-
standing the interactions between different 
algorithms in hybrid methods?

4. Benchmark dataset development and evalu-
ation metrics: To facilitate meaningful compari-
sons and assessments in the field, the creation 
of standardized benchmark datasets and eval-
uation metrics is crucial. Researchers should 
consider:

• How can benchmark datasets be designed  
to represent diverse real-world scenarios and 
challenges in curvature estimation?

• What performance metrics are most appro-
priate for quantifying the accuracy, robustness, 
and efficiency of curvature estimation me- 
thods?

• Can collaborative efforts within the resear- 
ch community lead to the establishment of uni-
versally accepted benchmarks and evaluation 
protocols?
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