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Abstract
Objective: This paper demonstrates a data quality assurance (DQA) process as a means to identify
and handle flaws in data, and hence improve the accuracy of an investigation into the prevalence of
harmful versus non-harmful/near-miss incident reports in a single NHS acute provider.
Methods: The three-step DQA process consists of an initial univariate data quality analysis,
followed by a bivariate missingness analysis, and concluding with the design of appropriate multiple
imputation techniques. With data quality established, the acuity and incident data were aggregated
and aligned to the Ward-Month level for the period August 2015 to December 2020 inclusive. The
final analysis was performed using binary regression, pooling results via Reuben’s Rule.
Results: The application of our three-step quality assurance process was able to detect and correct
for common data quality issues. The resulting analysis identified aWard dependency for the effect of
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Covid-19 lockdownmeasures on incident reporting culture which would have been missed without
the applied imputation strategy.
Conclusions: Our approach outlines a replicable methodology for understanding and fixing data
quality issues in operational data. As daily operational decisions are being guided by data, it is
important to leverage appropriate imputation techniques and ensure an optimal decision is reached.
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data quality, missing data, routinely collected data

Introduction

Data-driven decision-making has steadily gained pace over the past two decades as electronic
storage has become increasingly more affordable, and suites of big data tools have matured to the
point of feasibility.1 Health informatics systems collect vast amounts of data across multiple
platforms, much of which is not utilised.2 To utilise these data, attention must be paid to data quality
in order to determine and guarantee the reliability of findings or intelligence generated. Data quality
(DQ) is important to any project that will infer knowledge and is a multi-dimensional construct.3

The importance of DQ in the analysis of large-volume data has been apparent since the 1990s.4 It is
crucial to establish DQ for data-driven decision-making, and enact strategies to address any po-
tential bias that might be created.

Designing metrics to measure data quality is a nuanced task, as what represents quality and value
in one scenario, may be inappropriate in another. A commonly used approach was devised by Pipino
et al., taking the form of a checklist comprising sixteen data-quality dimensions3 (see Table 1). Of
the sixteen, several are dependent on the skill set, and perspective of the data handler; namely
‘accessibility’, ‘ease of manipulation’, ‘concise’, ‘interpretability’, ‘security’ and ‘understand-
ability’. Of the remaining dimensions, others are dependent on the intended use case; ‘amount of
data’, ‘relevancy’ and ‘timeliness’, or are subjective in nature (if we are absent a gold standard to
compare with); ‘believability’, ‘free-of-error’, ‘objectivity’, and ‘reputation’. Hence, we are left
with three which we can most readily approach with objective measures:

1. Completeness – is data missing, and for what reasons?
2. Consistency – are data and variables represented consistently across the system?
3. Value-added –can the data be reliably used for analysis?

When working with predominantly retrospective operational data consistency cannot be altered,
and value added are use case dependent. Completeness offers an opportunity to augment historical
data sets. When carrying out analysis, a complete case analysis is resorted to, as most techniques
have no mechanism to allow for missing observations.5 Ignoring missingness can bias the con-
clusions drawn depending on the underlying ‘mechanism of missingness’, i.e., the reason why the
data went unobserved.5,6

Statistical literature features three terms for describing missing values: ‘missing completely at
random’ (MCAR), ‘missing not at random’ (MNAR) and ‘missing at random’ (MAR).5 MCAR
refers to a scenario in which any single value within a column of the data set has the same chance to
be missing and a complete case analysis is unbiased. MNAR occurs if there is a reason for data being
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missing but we have not observed the reason why (e.g., if non-English speakers refrained from
answering a free text question, but the study doesn’t measure language aptitude). The removal of
answers by a subgroup can bias the statistical inference.5 MAR occurs when data is missing due to
observed parameters, e.g., if people over 60 are less likely to report mental wellbeing scores but age
data was collected and is complete. Where the mechanism of missingness is ‘MAR’, imputation
techniques can be employed to handle the censoring, resulting in less bias and suitably broad error
inferences from a regression analysis.6

Applying a valid correction for missing data depends on the data available. Classically, the first
consideration is to use a point estimate imputation. For example, a mean or median imputation,
which while often resulting in accurate point estimates of coefficients, can lead to overly narrow
confidence intervals and an inflation of type II error.7,8 The modern solution is to rely on the
stochastic approach of multiple imputation (MI) in which instead of working with a single data set,
multiple parallel analyses are performed using distinct data sets with values filled in via sampling
from a learnt distribution.5 The final model then pools each parallel models’ estimates via Rubin’s
rules,9 to produce coefficient estimates. Performing MI and pooling the resulting models has
computational complexities but are well addressed by the range of imputation packages developed
in R (see MICE,10 AMELIA II,11 missForest,12 Hmisc,13 and mi14). The theoretical underpinnings
of each model are discussed in greater details elsewhere15,16 as well as current proposals on best
practices when using multiple imputation.8,17

To illustrate how DQ techniques shape how we select an imputation technique and its role in
analysing data, this paper poses a problem where each technique is necessary to achieve a valid
model. This paper demonstrates the application of a three-stage DQ assurance process to routinely
collected data from a single NHS acute healthcare provider. The overall aim of the analysis was to
investigate the prevalence of harmful versus non-harmful/near miss incident reports.

Table 1. The sixteen dimensions of data quality, adapted from Pipino et al.3

Dimension Definition - “the extent to which….”

Accessibility ...data is available or retrievable
Appropriate amount of
data

...the volume of data is appropriate for a given use case

Believability ...data is regarded as True and credible
Completeness ...data is not missing and covers the intended analysis space (e.g., all wards/ time

periods)
Concise representation ...data is compactly represented
Consistent representation ...data is presented in the same format
Ease of manipulation ...data is easy to manipulate and apply to tasks
Free-of-error ...data is correct and reliable
Interpretability …data is in an appropriate language with clear definitions
Objectivity …data is unbiased, unprejudiced and impartial
Relevancy …data is useful to the intended use case
Reputation …data is regarded in terms of data source and context
Security …access to data is appropriately restricted
Timeliness …data is sufficiently up to date
Understandability …data is easily comprehended
Value-added …data is beneficial in answering the intended use case
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Data sets

Two data warehouses were identified within an NHS Trust as sources of routinely collected data: the
Allocate SafeCare and Ulysses Risk Management systems. These platforms collate staffing, patient
acuity and incident reporting data. From the former, patient acuity data were extracted in quarterly
segments via the ‘Patient Data’ report built into SafeCare for the period 2015/08/01 to 2020/12/31.
The ‘Patient Data’ report consists of ward-shift level acuity data, detailing the frequency of acuity
flags present on the ward at a given time period. The Allocate acuity data was filtered to only
consider the patient ‘Level of Care’ (LoC) frequencies, using descriptors:

· Level 0 - “patient requires hospitalisation”
· Level 1A - “acutely ill patients requiring intervention or those who are unstable with a greater

potential to deteriorate.”
· Level 1B - “patients who are in a stable condition but are dependent on nursing care to meet

most or all of the activities of daily living.”
· Level 2 - “may be managed within clearly identified, designated beds, resources with the

required expertise and staffing level OR may require transfer to a dedicated level 2 facility/
unit”

· Level 3 - “patients needing advanced respiratory support and/or therapeutic support of
multiple organs.”

Hence – an entry of “Level 1A” as four would indicate four patients present on the ward at
LoC 1A.

For the Ulysses data, a bespoke report was constructed with the aid of Ulysses (a software
solution company) to extract the reported incident data set. The incident data consists of rectangular
data with each row representing a single incident with an associated level of harm. Possible values
for “level of harm” were: “Near miss”, “No harm”, “Minor”, “Moderate”, “Major”, “Severe”.

The data taken from the warehouses was supplemented with the ’Ward Stay’ report from the
Trusts ‘Patient Administration System’ (PAS). The report detailed instances of patients being
admitted to, and discharged from a Ward and was converted to a ward-day time series of ‘Total
patient stay’, i.e., the summation of patient hours for a given ward over a 24 hour period, and used as
an indicator of Wards closures.

Methods

This paper presents the application of the proposed three step data quality process, and the analysis
of ‘harmful’ incident prevalence via binomial logistic regression. The next two subsections explain
each process in detail.

Data quality assurance

The Ulysses incident and Allocate acuity data sets were explored and adjusted via a three step data
quality assurance (DQA) process. The process consisted of:

1. Univariate statistics to characterise the completeness and consistency
2. Bivariate analysis to characterise MAR behaviours
3. Imputation techniques to handle any MAR behaviour
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Step 1 of the DQA implemented six summary statistics (see SI 3 for more details):

· Variable missing prevalence (percentage coded as a non-value)
· Variable cardinality (number of unique values)
· Variable entropy (how well distributed the variable is across possible values)
· Variable entropy ratio (percentage of maximum entropy achieved - where maximum entropy

depends on cardinality)
· Variable modal size (the extent to which the largest group dominates the variable).
· Variable modal value

These metrics serve as point estimates to evaluate completeness and consistency of the data sets.
The prevalence of missing values quantifies variable completeness, while the combination of
cardinality, entropy, and modal size help to estimate variable consistency. For a variable to be of
optimal use in analysis, we would aim for a lowmodal size, and a high entropy, that is, the variable is
uniform across the possible values. The optimal scenario with respect to analytical power would be
the maximum possible entropy for the given cardinality, i.e., an entropy ratio of 1, which occurs
when each possible value of the variable has the same prevalence (e.g., for 100 observations of a
variable with 5 values, each is observed 20 times).

Step 2 of the DQA process investigated variables with high missing prevalence for bias. The data
was coded for missing variables, representing a missing value as 1 and an observed value as 0, and
relationships between a variable being missing and other variables in the data set were explored via
mutual information.18,19 Mutual information is a bivariate technique that expresses if one random
variable can be explained by another. Each variable has a level of entropy which is maximised when
its values are equally divided between its possible states (e.g., 50:50 for a binary variable). Mutual
information expresses how much of this entropy is explained by a second variable.

Step 3 of the DQA process implemented an imputation method for the LoC data. To aid the
reader we follow the ‘Basic Reporting Standards’ checklist laid out by Woods et al.17 for reporting
multiple imputation analyses. The AMELIA II imputation algorithm was selected, and the im-
plementation in the AMELIA II package11 used. To ensure temporarily is adequately included in the
auxiliary variable space, an ‘observation time’ feature was constructed by combining the obser-
vation date with an approximate time stamp for each census period (for instance, early at 7 a.m., day
at midday, late at 7 p.m. and night at 9 p.m.). Due to the rare usage of the highest patient LoC
frequencies (‘Level 2’ and ‘Level 3’) they were summed to create a ‘High Needs’ LoC frequency.

The LoC frequencies are discrete counts, while joint modelling multiple imputation techniques
assume a multi-variate normal distribution. Hence, to allow for the discrete nature of the LoC
variables (‘Level 0’ through ‘Level [High Acuity]’) each was transformed prior to imputation to
ensure pseudo-normality via:

Zi ¼ log

�
Xi þ 0:5

D

�

Where Xi, and Zi are the untransformed and transformed variables, respectively, for each LoC
frequency, and D is the total patient stay on the given day. The imputation was performed with the
ward as a cross-sectional variable, the ‘observation time’ as a time stamp, and the day of week as a
nominal variable to capture any weekly periodicity. Due to the risk of long tails from the discrete
nature of the LoC frequencies, 10 data sets were imputed as opposed to the software default 5 to
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check for acute shifts in coefficients. Prior to regression analysis the variables were inversely
transformed to restore their discrete nature.

Aggregation and analysis

The Ulysses incident data was aggregated by month and ward, and the harm associated with adverse
events was dichotomised into “No Harm” events (those labelled as no harm or near miss) and
“Harmful” events (all other labels).

Ward-monthly average LoC across all shifts were calculated for each LoC level individually. To
make LoC levels more comparable between wards, the previous annual average LoC was subtracted
from each monthly average LoC. Subtracting the previous annual average serves the purpose of
correcting for between-ward variations in needs due to the typical case load, as well as gradual
changes in ward roles. The two data sets were aligned at the month and ward level. This process is
outlined in Figure 1.

The ratio of harmful and non-harmful events in the aggregated data set was analysed via binomial
logistic regression in R using the standard generalised linear model functions of the statistics
package. The analysis initially considered only a main effects model of three covariates:

· Ward
· Pre or during the Covid-19 initial lockdown (defined as pre or post 1st March 2020)
· Monthly average patient LoC frequencies (PreviousWard-specific annual average subtracted)

This was subsequently followed by models with interaction terms to investigate if the effect of
Ward or variation in LoC changes either side of the initial lockdown measures introduced in
England in March 2020. The interaction term models were compared to the main effect models via
ANOVA of nested models analysis, using a chi-squared test on deviance residuals. Based on the
ANOVA results, an optimal model was selected and summarised via 95% confidence intervals for
the relevant coefficients.

Results

DQA step 1

Table 2 presents the DQ summary statistics for the subset of Allocate acuity and Ulysses incident
variables used in the binary logistic regression presented later. Of the Allocate acuity variables, five
show full completion (‘Ward’, ‘Date’, ‘Census period’, ‘Day of week’ and ‘Status’), with all of the
Ulysses incident variables fully completed. Six of the fully completed variables show very high
entropy (‘Ward’, ‘Date’, ‘Census Period’ and ‘Day of week’, ‘Department’ and ‘Incident Date’)
demonstrating each possible value is well represented in the data. The ‘Status’ variable shows a low
entropy, due to the dominance of the ‘Actual’ value, which in this scenario is useful as it dem-
onstrates the majority of LoC observations were made temporally close to the census time. The LoC
scores show a mixture of completion percentages, with the Level 0 and Level 1B being most often
completed, with the higher LoC scores (Level 2 and 3) often left blank. It is possible that this
missingness represents two mechanisms - omission of zeros and missed observations. The ‘Actual
Impact’ variable shows a reasonable entropy – dominated by the “1 - No Harm” value (∼68% of
entries) but with some evidence of events resulting in a level of harm.
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During investigating the data, there appear to be two patterns to missing observations; entries
where ‘Status’ is either ‘Actual’ or ‘Predicted’ where one or two values were missing, and entries
where the ‘Status’ was ‘No Data Entered’ and all five observations were missing. When the data
were filtered (excluding ‘Status’ of ‘No Data Entered’) the proportion missing of each patient LoC
were correlated with the mean score, with the highest mean score representing the least missing data
(highest being Level 1B; mean = 11.9, missing % = 10.7% vs lower being Level 3; mean = 0.06,
missing % = 94.9%). It is possible that this missingness represents two mechanisms - omission of
zeros and missed observations.

Figure 1. Breakdown of data sources through alignment process. ‘Ward-Month’ refers to the aggregated data
and indicates 958 unique pairings of ward and month.
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DQA step 2

Initial inspection of the missing information between missingness of LoC scores and other variables
in the acuity data set reveals a relationship with the ‘Status’ variable. The ‘Status’ indicates if, and
when observations were made relative to the predetermined census period. If the observations are
not entered, the variable takes the value ‘No Data Entered’ whereas if the observations are entered,
the value is ‘Actual’ if observations are entered within the 2-h window of the census period, and
‘Predicted’ otherwise. The presence of ‘No Data Entered’ shows up with a clear lack of observed
LoC scores, with 100% of patient LoC scores missing. Missing LoC scores due to ‘No Data
Entered’ made up 37.8% of missing values. Where the status was either ‘Actual’ or ‘Predicted’, it
was more common for a single patient LoC frequency to be missing rather than all five, and may not
be missing, but shorthand for zero.

With the acuity data filtered by ‘Status’ for ‘Actual’ or ‘Predicted’ observations, the mutual in-
formation between the missingness of each patient LoC and the values of the variables were measured
and are given in Table 3. It appears that the reporting ‘Ward’, and the frequency of ‘Level 3’ LoC have
the greatest influence on when each patient LoC score is missing. Examining the data reveals that
missingness of ‘Level 0’, ‘Level 1A’, ‘Level 1B’ and ‘Level 2’ are greatly dependent on the ward, with
prevalence of reported zeros correlated tomissingness (i.e., wards that reported zeros most often, had the
greatest rate of missing data). Hence, it appears likely that these values could be zero and imputing zero
values over nulls where some observations were made should be fair and hence was done.

DQA step 3

A two-stage imputation process has now been followed; imputing zero’s where cases were partially
complete (under the assumption these are omitted zero values) and then applying multiple im-
putation to handle cases of all LoC scores missing. The variable summaries for LoC variables
having performed the first zero imputation are given in Table 4.

The data set is structured as a time-series-cross-section, with each observed LoC frequency
forming a time series within the cross-sectional units of the Ward. A ward (due to specialisation)

Table 2. Data quality point estimates for variables drawn into the final analysis (all ‘Status’ included). For
statistics for the entire data set see Supplemental Information.

Dataset Variable
Percent
missing Cardinality Entropy

Entropy
ratio

Modal
size (%) Modal value

Acuity Ward 0 15 2.70 1 6.9 Charnwood
Date 0 2637 7.86 1 0.1 21/02/2017
Census
period

0 4 1.27 0.91 43.2 Night

Level 0 27.2 34 2.72 0.77 27.2 NA
Level 1A 47.3 35 2.03 0.57 47.3 NA
Level 1B 21.4 42 3.09 0.83 21.4 NA
Level 2 74.5 28 1.08 0.33 74.5 NA
Level 3 92.8 13 0.27 0.1 92.8 NA

Incident Actual impact 0.00 6 0.87 0.48 68.62 1 - No Harm
Department 0.00 18 2.65 0.92 13.31 Ward 1
Incident date 0.00 2000 7.49 0.99 0.16 12/10/2016
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would be expected to have a greater auto-correlation to previous observations than correlations to
other wards in the Trust. Within cross-section auto-correlations of the LoC frequencies were
checked via mutual information and, for each LoC, the last observation window shows good
evidence of predicting the next value (see SI 4 A for a summary table). Given this behaviour we
selected the AMELIA II imputation algorithm as it is explicitly designed for imputation of time-
series-cross-sectional data sets. Given the structure of the data we include ‘observation time’, and
Ward as key auxiliary variables.

Imputation of each patient LoC frequency (‘Level 0’, ‘Level 1A’, ‘Level 1B’, and ‘High Needs’
[‘Level 2’ + ‘Level 3’]) using the AMELIA II algorithm showed reasonable performance, with
Figure 2 shows an example of an over imputed sample from the ‘Level 1A’ scores (similar plots for
each LoC frequency can be found in SI2). The over imputed results show good linearity and
reasonable breadth of the posterior intervals, suggesting the model will reflect realistic values with
reasonable error to capture the possible breadth of values. Hence, the technique appears to have
made a good estimate of the data with reasonable accuracy for noise and the pooled results should
better reflect uncertainty of the data.

Analysis

The ANOVA of nested models indicated that the ‘Prevalence of Harm’ of adverse events did not
depend on variations in individual LoC frequencies, but only on the variation in patient numbers

Table 4. Data quality point estimates for level of care variables have imputed zero’s on partially complete
rows (i.e., omitted values).

Variable Percent missing Cardinality Entropy Entropy ratio Modal size (%) Modal value

Level 0 15.7 34 2.787903 0.79 17 0
Level 1B 15.7 42 3.210763 0.86 15.7 NA
Level 1A 15.7 35 2.204087 0.62 35.9 0
Level [high acuity] 15.7 28 1.327688 0.4 62.7 0

Table 3. Proportion of entropy of missing data covered by a variable. Columns are the missing variable
considered and rows the valued variable.a

Level 0 Level 1A Level 1B Level 2 Level 3

Ward 0.13 0.24 0.19 0.40 0.15
Date 0.14 0.04 0.09 0.04 0.24
Census period 0.02 0.00 0.00 0.00 0.00
Level 0 1.00 0.22 0.59 0.07 0.00
Level 1A 0.35 1.00 0.56 0.00 0.00
Level 1B 0.44 0.08 1.00 0.00 0.00
Level 2 0.27 0.40 0.93 1.00 0.00
Level 3 0.75 0.80 0.96 0.81 1.00

aThe table is best read considering each column independently. The first column rates the level of predictive power each
variables possessed as to when the ‘Level 0’ variable was not filled in –with “Ward” and “Level 3” showing the highest scores.
This indicates a possible relationship between the Ward/‘Level 3’ score and if the ‘Level 0’ variable is recorded.
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(χ23 ¼ 0:844, p > 0:05) but the rate before and during the initial Covid-19 lockdown measures was
‘Ward’ specific ðχ213 ¼ 37:31, p < 0:001Þ:Hence the reported model features pre- and post-Covid-19
lockdown effects for ward, and the change in patient head count. The 95% CIs are reported for each
ward pre-Covid-19 (baseline), the change during the lockdown period, and the effect of change in
patient head count in Table 5.

In the pre-Covid-19 data it appears that the majority of wards have the same rate of reporting
events of harmful: non-harmful events, with the exception of the ‘Private Ward’ which demon-
strated a far greater ratio of non-harmful and near miss events. Following the introduction of the
initial Covid-19 lockdown response measures, most wards showed a marked increase in the
proportion of adverse events reported being harmful, with the ‘Discharge/Rehab Ward’ and
‘General Medical’ wards showing the largest increase in odds ratio.

Considering the role patient acuity plays on reporting culture, the data showed no significant
evidence that spiking frequencies of individual LoCs had an effect on the proportion of adverse
events reported being harmful. However, increases in patient numbers above average levels do
appear to significantly increase the proportion of adverse events reported being harmful.

In this scenario the ANOVA of nested models indicated that the ‘Prevalence of Harm’ of adverse
events did not depend on variations in individual LoC frequencies, but only on the variation in
patient numbers (χ23 ¼ 5:21, p > 0:05) and the rate before and during the initial Covid-19 lockdown
measures was not ‘Ward’ specific ðχ213 ¼ 19:47, p> 0:05Þ. Hence the reported model features Ward
effects, a systemwide effect for the initial Covid-19 lockdown, and the change in patient head count.

Figure 2. Subsample of over imputation results for the ‘Level 1A’ patient LoC frequency. Each line represents
the oversampled distribution for a complete data point in the study.
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Table 5. Estimated coefficients of binary logistic regression model for proportion of harm where adverse
events have occurred expressed as odds ratios (O.R.).

Type Term
O.R.
estimate 95% CI Interpretationa

Baselineb Cardiac 0.491 [0.414, 0.582] N/A
Discharge/Rehab ward 0.398 [0.262, 0.604] N/A
Elective orthopaedic surgical 0.476 [0.382, 0.593] N/A
Gastro 0.554 [0.483, 0.636] N/A
General medical 0.35 [0.283, 0.433] N/A
Geriatric 0.5 [0.434, 0.576] N/A
Haematology/Oncology 0.371 [0.317, 0.434] N/A
Ortho/Trauma 0.48 [0.42, 0.549] N/A
Private ward 0.255 [0.185, 0.353] N/A
Respiratory A 0.496 [0.417, 0.59] N/A
Respiratory B 0.414 [0.354, 0.485] N/A
Short stay medical unit/Covid-19 0.501 [0.43, 0.584] N/A
Stroke 0.471 [0.417, 0.533] N/A
Surgical A 0.466 [0.387, 0.562] N/A
Surgical B 0.55 [0.444, 0.681] N/A

Level of care (Loc)c (previous
annual average subtracted)

Number of patients (detrended) 1.016 [1.001, 1.03] *

Covid-19 effectd (Represents
change in O.R. from
baseline since 1st Match
2020)

Cardiac (change during Covid-19) 1.671 [1.295, 2.155] ***
Discharge/Rehab ward (change
during Covid-19)

2.037 [1.291, 3.213] **

Elective orthopaedic surgical
(change during Covid-19)

1.506 [1.099, 2.063] *

Gastro (change during Covid-19) 1.804 [1.489, 2.186] ***
General medical (change during
Covid-19)

2.484 [1.916, 3.221] ***

Geriatric (change during Covid-19) 1.364 [1.11, 1.675] **
Haematology/Oncology (change
during Covid-19)

1.557 [1.208, 2.006] **

Ortho/Trauma (change during
Covid-19)

1.452 [1.188, 1.776] **

Private ward (change during Covid-
19)

1.872 [1.211, 2.895] **

Respiratory A (change during
Covid-19)

1.357 [1.057, 1.743] *

Respiratory B (change during
Covid-19)

1.664 [1.323, 2.092] ***

Short stay medical unit/Covid-19
(change during Covid-19)

1.025 [0.815, 1.288] —

Stroke (change during Covid-19) 1.555 [1.303, 1.855] ***
Surgical A (change during Covid-
19)

1.245 [0.971, 1.596] —

aWhere “—” refers to a p-value of (1, 0.05], “*” refers to a p-value of (0.05, 0.005], “**” refers to a p-value of (0.005, 0.001],
and “***” refers to a p-value of (0.001, 0]. Interpretations for the baseline coefficients are not performed as they would be
comparing to an expected coefficient of zero, i.e., a 50:50 break down of incidents, which has no theoretical underpinning.
bBaseline O.R. are by ward and represent the shift in odds relative to odds 1.
cLoC O.R. represent the multiplicative change in odds per unitary change in LoC relative to the previous annual average.
dCovid-19 Effect O.R. are by ward and represent the change in odds following the introduction of Covid-19 protective
measures in March 2020.
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The 95% CIs are reported for each ward (baseline), the change during the lockdown period, and the
effect of change in patient head count in Table 6.

If we compare the models learned from the data with (Table 5) and without (Table 6) imputation
and correction for DQ issues we see quite the striking difference. Notably, without the imputation
the Covid-19 effects showed no ward dependence; from an operational perspective, if we believe all
wards are equally affected, we would distribute our resources evenly, possibly looking for over-
arching chronic issues, whereas if we follow the imputed analysis it is far easier to identify ‘Hot
Spot’ wards which need individual attention.

Discussion

DQ is a crucial task for leveraging intelligence from routinely collected data, particularly for the
NHS in the UK. With a substantial amount of missing data generated, meaningful analyses for
adverse event reporting and its consequences are highly challenging for ward-level data. The DQ
process illustrated here has focussed on objective measures (Entropy, Cardinality, and Mutual
Information) predominantly due to the repeatability and ease of implementation where data already
exist. Subjective data quality measures (e.g., timeliness, reliability) are not inherently less
valuable – but they do require a greater investment of time and resources where an initial objective
analysis can be beneficial in contextualising DQ decisions.3

Table 6. Estimated coefficients under listwise deletion of binary logistic regression model for proportion of
harm where adverse events have occurred expressed as odds ratios (O.R.).

Type Term O.R. estimate 95% CI Interpretation¥

Baseline* Cardiac 0.512 [0.45, 0.583] N/A
Charnwood 0.286 [0.229, 0.355] N/A
Discharge/Rehab ward 0.516 [0.432, 0.616] N/A
Elective orthopedic surgical 0.476 [0.405, 0.559] N/A
Gastro 0.611 [0.552, 0.676] N/A
General medical 0.572 [0.488, 0.669] N/A
Geriatric 0.474 [0.425, 0.527] N/A
Hematology/Oncology 0.369 [0.321, 0.424] N/A
Ortho/Trauma 0.472 [0.425, 0.524] N/A
Respiratory A 0.465 [0.406, 0.531] N/A
Respiratory B 0.403 [0.353, 0.458] N/A
Short stay medical unit/Covid-19 0.484 [0.421, 0.554] N/A
Stroke 0.477 [0.434, 0.523] N/A
Surgical A 0.418 [0.367, 0.476] N/A
Surgical B 0.367 [0.293, 0.459] N/A

Level of care (Loc)† Number of patients (detrended) 1.004 [0.991, 1.018] —

Covid-19 effect‡ Covid-19 effect 1.515 [1.415, 1.622] ***

*Baseline O.R. are by ward and represent the shift in odds relative to odds 1.
†LoC O.R. represent the multiplicative change in odds per unitary change in LoC relative to the previous annual average.
‡Covid Effect O.R. are by ward and represent the change in odds following the introduction of Covid19 protective measures
in March 2020.
¥Where “-” refers to a p-value of (1, 0.05], “*” refers to a p-value of (0.05, 0.005], “**” refers to a p-value of (0.005, 0.001],
and “***” refers to a p-value of (0.001, 0]. Interpretations for the baseline coefficients are not performed as they would be
comparing to an expected coefficient of zero, i.e. a 50:50 break down of incidents, which has no theoretical underpinning.

12 Health Informatics Journal



Our approach of breaking down DQ into three distinct steps (univariate, bivariate and impu-
tation) has aided in structuring the analysis, aiding communication to stakeholders, and improving
the transparency of the analysis. While the DQ process identified missing observations as a key
concern, the three-step process could be considered as ‘Inspect’, ‘Explore’ and ‘Improve’. Such a
paradigm can be tailored to whatever challenges prevail, and the tools/skill sets available. The
multiple-step approach is antithetical to a traditional medical statistics approach, as clinical trials
demand a highly pre-considered and planned analysis to ensure the minimal risk of multiplicity. For
operational decisions/health informatics however, adopting our explorative approach can be
beneficial.

The feasibility and necessity of the technique reported here is limited due to the single centre
being studied. The results of the analysis may not readily generalise across the health care system,
and equivalent data sets may not be readily available to perform an equivalent analysis at a new site.
In addition, depending on the scale and mechanism of missingness, it is feasible for a missing-
adjusted analysis to result in equivalent results as a non-adjusted analysis, despite having taken time
and resource to perform. Such an outcome, however, cannot be determined a priori and the extra
expense in time and technical skill accepted.

Conclusions

Handling missing data via techniques such as multiple imputation will remain a controversial issue
within clinical trials, predominantly due to the human-dependent decision making around the choice
of appropriate strategy (much in the same way prior elicitation limits the use of Bayesian
analysis20–22). However, operational decisions within a clinical setting are inherently different to
medical decisions. If a clinical trial is inconclusive, there are existing treatments to rely on. Op-
erationally, decision makers and stakeholders have to make a proactive decision even when studies
are inconclusive. The systems are naturally transient, where what was appropriate 30 years ago may
no longer be true as systems evolve. Decisions made on moderately reliable evidence are superior to
those made on no evidence.

A strong benefit of reliable imputation techniques is the ability to ensure that analysis can be
representative of otherwise under-reported (and possibly under-represented) groups. Underserved
groups have a greater risk of incomplete data by their very nature, but by leveraging appropriate
imputation techniques we can avoid exclusion from analysis. Retaining these individuals in the data
will ensure the appropriate decisions are taken to benefit an inclusive population. While the
discipline of multiple imputation is gradually expanding the challenge will be to upskill informatics
teams23 and bridge the technical gap between what is possible and what teams can deliver.
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