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Abstract: Background: The electroencephalogram (EEG) is essential for diagnosing and
classifying brain disorders, enabling early medical intervention. Its ability to identify brain
abnormalities has increased its clinical use in assessing changes in brain activity. Recent
advancements in deep learning have introduced effective methods for interpreting EEG
signals, utilizing large datasets for enhanced accuracy. Objective: This study presents a
deep learning-based model designed to classify EEG data with better accuracy compared to
existing approaches. Methods: The model consists of three key components: data selection,
feature extraction, and classification. Data selection employs a windowing technique, while
the feature extraction and classification stages use a deep learning framework combining a
convolutional neural network (CNN) and a Long Short-Term Memory (LSTM) network.
The resulting architecture includes up to 18 layers. The model was evaluated using the
Temple University Hospital (TUH) dataset, comprising data from 2785 patients, ensur-
ing its applicability to real-world scenarios. Results: Comparative performance analysis
shows that this approach surpasses existing methods in accuracy, sensitivity, and speci-
ficity. Conclusions: This study highlights the potential of deep learning in enhancing EEG
signal interpretation, offering a pathway to more accurate and efficient diagnoses of brain
disorders for clinical applications.
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1. Introduction
Electroencephalograms (EEGs) are analyzed by medical professionals at hospitals to

identify brain illnesses. The great temporal resolution of EEG recordings, non-invasiveness,
and relatively inexpensive equipment all add to the popularity of EEG data among medical
professionals. However, manual analysis of EEG data is a time-consuming, resource-
intensive, and expensive process, due to the rather large volume of data, the relatively high
rate at which new data are produced, and the need for specialist expertise to analyze these
data [1]. On the other hand, automated analysis has the potential to enhance patient care
by speeding up the diagnosis process, minimizing human error, minimizing diagnostic
variability caused by physician subjectivity, and automatically spotting potentially life-
threatening conditions [2]. Recent work on the automated classification of brain disorders
has highlighted the pivotal role of Artificial Intelligence (AI) [3,4], particularly machine
learning [5] and deep learning [6], in extracting and processing relevant data to categorize
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brain illnesses. Deep learning architectures, such as Long Short-Term Memory (LSTM)
networks [7], utilize a type of Recurrent Neural Network (RNN) particularly adept at
handling sequential data. LSTM models are widely used for EEG signal classification
tasks, such as seizure detection [7], motor imagery [8], and emotion recognition [9], due to
their ability to capture temporal dependencies in brain activity patterns. Hybrid models
combining LSTM with other techniques, like Convolutional Neural Networks (CNNs) [10]
or Support Vector Machines (SVM), have also been explored to enhance classification
accuracy by leveraging both spatial and temporal features of EEG signals. These AI
techniques enable the interpretation of EEG data in discerning normal or abnormal brain
function, facilitating the diagnosis of neurological disorders. For instance, deep learning
models can analyze EEG wave patterns to detect specific conditions, while machine learning
algorithms can refine the classification process by identifying key features in EEG signals.
In [11], deep learning was used to develop an end-to-end automatic brain disorder detection
system, which did not necessitate feature engineering or intensive EEG data preprocessing.
CNN was employed in [8,12] to predict seizures, with minimum feature engineering. In
addition, a method was proposed in the aforementioned work to convert raw EEG data
into a format that could be applied to CNN. The criteria that were employed to create
visualizations of brain activity included the phase-locking value, entropy, and energy,
with the CNN serving as the primary emphasis [12]. A new method for diagnosing
epilepsy using EEG signals is presented in the study by Dişli and Gedikpınar [13], which
makes use of a Depthwise Convolutional Neural Network model based on Continuous
Wavelet Transform (CWT). By efficiently extracting time–frequency information from
EEG data, the suggested technique improves the detection accuracy of epilepsy. With
encouraging results in differentiating between normal brain signals and epileptic activity,
the study shows the model’s potential as a trustworthy diagnostic tool. The authors
of [14] offer a novel method for precisely identifying patients’ interictal epileptiform
discharges using transformer-based deep learning. This approach shows great promise
for improving self-limited epilepsy diagnostic skills and offering a more effective and
dependable substitute for conventional detection methods. According to the results, the
transformer model can analyze EEG data efficiently, enhancing automated analysis and
overall epilepsy care. Due to the skewed structure of data pertaining to seizure detection,
the authors of [15] proposed an enhanced transformer network called Inresformer for
seizure detection, which combines Inception and Residual networks to extract multi-
scale features from electroencephalography (EEG) signals, thereby improving feature
representation. To improve the model’s nonlinear representation, the architecture uses two
half-step Feedforward layers instead of typical Feedforward layers. Furthermore, it uses
the discrete wavelet transform (DWT) to decompose EEG signals, selects three sub-bands
for reconstruction, and uses the Co-Mix-up method to address data imbalance before
processing the signals through the Inresformer network for effective seizure recognition,
resulting in a discriminant fusion of the three EEG sub-signals [15]. Although various
researchers have demonstrated the potential of deep neural networks approaches in offering
a significant potential for improving the automated analysis of EEG signals, there remain
many research challenges which need to be overcome before these networks can be widely
adopted for use in clinical settings [16]. Among these challenges are the high variability
between samples of the utilized data set, due to variations in the patients whose EEG
data were under analysis, or in the physicians who performed the analysis, and the high
dimensionality of the data, which is composed of multiple EEG electrodes, each carrying
time series information. These factors result in several significant implications, which make
classification more complicated [11].
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The first of these implications is the high dimensionality of the data. A short EEG
recording of a few seconds, using a single electrode, might contain up to 30,000 points.
These samples are the source data from which discriminative features might be extracted
and used for classification and diagnosis. Usually, recordings are longer than a few seconds
and there might be multiple recordings per subject, using multiple electrodes. As a result
of a large number of subjects, a large number of electrodes, multiple recordings per subject,
and a fairly long-time span, the dimensionality curse arises and often presents a real
problem [4]. The nature of the data itself, as a time series, is yet another problem. This
implies that the value at a given point in the signal is not as significant as the temporal
pattern of values sampled along the given signal. In addition, the information is distributed
over multiple electrodes. The important information to distinguish between classes might
not only lie in the patterns contained in one electrode, but also in the joint patterns of
activity over multiple electrodes [10].

Another important challenge is methodological in nature, which is tied to insufficient
diversity of EEG data used in research. Researchers who conducted investigations of
deep neural networks in EEG classification used various input formulations and network
designs [6,7]. An important caveat about the findings of the said investigations concerned
the generalizability of their associated performance assessment results. Notably, most of
the reported findings, for classifier performance, were obtained using what was called
“good” EEG data [17], whereby EEG data were collected under controlled experimental
conditions. This typically meant that data were recorded in a laboratory setting where
brain disorders were frequently of the same type or occurred in groups of patients who
were of similar ages [17].

To obtain more reliable and trustful results, it was necessary to find a dataset that
contained more realistic and diverse data. The TUH EEG Corpus [18], being among the
largest publicly accessible databases of clinical EEG data in the world, was deemed to fill
the need, as the data were collected at different clinical conditions, spanning a variety of age
groups, different types of brain disorders, and patient health conditions. Thus, this corpus
offered a better platform for potentially generalizable results. Results demonstrated in [16],
using this database, were given in terms of sensitivity of around 0.292 and specificity of
around 0.667. Using the TUH dataset, a new deep one-dimensional convolutional neural
network (1DCNN) model was created, to differentiate between normal and pathological
behavior [19]. The model categorized the EEG signals as a full end-to-end structure, without
the necessity for handcrafted feature extraction. The developed model achieved a 20.66%
classification error rate, for differentiating between normal and pathological EEG data.
However, there is still a need for more accurate classification techniques, in which more
realistic datasets (such as TUH) are used in order to obtain more generalizable results.

The aim of this paper is to propose a more accurate EEG signal classification model
for initial screening of brain disorders, as either “normal” or “abnormal”. Such a model
would help in saving medical resources, and aid in faster and more efficient diagnosis
of critical cases. In this respect, a labelling model is adopted which comprises three
sequentially connected modules: the first performs data selection, the second carried out
feature extraction, and the last performs classification, yielding “normal” or “abnormal”
output. The main contributions of this work are as follows:

• Proposing an end-to-end deep learning-based architecture and model for labelling EEG
signals, involving the combination of a data selection module and a deep learning module.

• Incorporating a windowing technique in the architecture for data selection to overcome
the dimensionality curse, using the Morse wavelet transform.

• Designing the deep learning module, comprising a CNN–LSTM combined network,
for feature extraction and classification.
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The rest of this paper is organized as follows. The methodology and architecture of
the proposed model for EEG signal classification is presented in Section 2, with a detailed
discussion of the proposed feature selection, extraction, and classification techniques.
Section 3 presents the evaluation of the proposed model in classifying brain abnormalities.
Finally, Section 4 concludes this article.

2. Methodology
In this paper a model is adopted for brain disorder classification to label EEG signals,

as representing normal or abnormal brain function. The model comprises three building
blocks, which sequentially process EEG signals: a feature selection technique, a feature
extraction technique, and a classification technique, as illustrated in Figure 1 [7].
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Figure 1. The structural layout of the EEG labelling model.

In the work reported herein, EEG brain signals are taken from a number of non-
invasive electrodes on the skull, typically 19 electrodes [20]. These signals are analyzed and
processed using alternative techniques, to select the most suitable. Different combinations of
signal processing techniques and deep learning architectures are tested for feature selection,
extraction and classification. The best combination is selected based on classification results.

2.1. Architecture of the Proposed Model

An architecture is proposed with two main components: one for data selection, and
the other for both feature extraction and classification. In this respect, two approaches are
adopted: introducing a windowing technique and combining CNN with LSTM networks.
First, the windowing technique is applied to each EEG electrode, aiming to select the
best time interval that contains the most significant data, related to distinctive features
of abnormality. The data obtained within the selected window is then fed to a deep
learning model containing a CNN [21] coupled to LSTM [22] network. CNN first extracts
discriminative features from the data, and then it relays these features to the LSTM, to
classify the EEG as “normal” or “abnormal”. CNN is selected for feature extraction because
it extracts features at different scales without the need for hand-picking or manually crafting
features. In addition, an LSTM is selected for the classification task, since it can recall crucial
information over a fairly long period of time, along a temporal sequence of data. Figure 2
illustrates the layout of the proposed architecture.
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This shows how EEG data are processed by the proposed windowing technique,
followed by the proposed deep learning CNN–LSTM model, to give a decision as to
whether the EEG recording for the patient is normal or abnormal.

2.1.1. TUH Data Set

Despite EEG’s crucial role in brain signal acquisition, publicly available datasets are
limited and vary significantly in the number of patients they encompass. For example,
the CHB–MIT database includes recordings from 22 juvenile patients [23]. In contrast, the
Karunya University dataset offers EEG recordings from a wider demographic, spanning
ages 1 to 107 years [24]. The EU database goes further, with EEG records from over
250 epilepsy patients, providing extensive data for in-depth analysis [25]. The NICU dataset
focuses on 79 newborns, contributing critical early-life data to the field [26]. Additionally,
the BONN database, though structured around brief EEG segments, encompasses a variety
of cases [27]. Most notably, the TUH EEG Corpus stands out as a vast resource, compiled
over 14 years and including data from 10,874 unique patients, making it an invaluable
asset for neurological research and diagnostics. This array of datasets highlights the
diverse patient populations involved in EEG studies, underscoring the need for expansive
data to drive advancements in medical science [18]. It offers a broad range of patient
ages, medication, diagnoses, electrode counts, and sampling rates. In this paper, the
data of 2300 patients from the TUH dataset corpus are taken, including 1150 normal and
1150 abnormal cases. Each participant data consists of 300,500 readings for a maximum of
22 EEG electrodes [18] and a minimum of 19 electrodes. Table 1 shows the distribution of
cases between normal and abnormal categories in both training and testing datasets, along
with gender percentages.

Table 1. Distribution of Normal and Abnormal Cases in Training and Testing Datasets by Gender.

Training Testing

Normal Abnormal Normal Abnormal

1150 1150 126 148
49.4% Male 43.9% Male 50% Male 43.2% Male

50.6% Female 56.1% Female 50% Female 56.8% Female

2.1.2. Data Selection

Time–frequency analysis is selected as a tool for processing EEG signals. The time–
frequency analysis adopted in the work is based on a continuous wavelet transform [28],
using Generalized Morse Wavelets (GMWs) [29]. GMWs are a family of analytic wavelets
where only the positive real axis is supported for Fourier transformations of complex-valued
wavelets. The analytic wavelets are efficient at the analysis of signals with time-varying am-
plitude and frequency, known as modulated signals. Nonanalytical wavelets are used for
enhancing sharp signal transitions in the time–frequency plane, whereas analytical wavelets
analyze the oscillatory behavior of frequency transients. GMWs overcome problems associ-
ated with non-analytical wavelets, such as the occurrence of interferences and artefacts in
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the time–frequency plane [30–33]. The frequency domain in terms of w representations of
GMWs is given in Equation (1)

Ψβ,γ(ω) = U(ω) aβ,γωβe−ωγ (1)

where Ψβ,γ represents the frequency domain components of GMWs, U is the unit step
function, and aβ,γ is the normalization constant. The wavelet’s time domain decay is
governed by the β parameter, but the frequency domain decay is controlled by γ. The
conditions γ > 0 and α > 0 must be satisfied in order for a GMW to be considered genuine.
Furthermore, with e denoting Euler’s number, the normalization constant is governed
by aβ,γ ≥ 2(eγ/β) β/γ. When γ = 1, GMWs correspond to a solution of the Schrödinger
equation [29]. For γ = 2, GMWs are the same as the Derivative of Gaussian family of
wavelets and the gaussian and symmetric. GMWs are suggested as a good place to start for
general purpose use because of these qualities [29,31].

In this paper, γ is set to 3 and the time-bandwidth product is equal to 60. The
parameters for the Generalized Morse Wavelets were chosen based on both theoretical
considerations and empirical evidence. The value of γ = 3 was selected because it offers a
favorable balance between time and frequency localization, as seen in the Airy wavelet,
which is symmetric in the time domain and nearly symmetric in the frequency domain [31].
This symmetry is beneficial for analyzing oscillatory behaviors in EEG signals.

The time-bandwidth product of 60 was chosen to achieve a high level of spectral
resolution while maintaining computational efficiency. A larger time-bandwidth product
generally enhances frequency resolution but at the cost of reduced time resolution [29,33].
Our preliminary experiments indicated that this value provided the best trade-off for our
specific application, allowing us to effectively capture the frequency components of interest
in the EEG signals. These choices align with established practices in the field, where
similar parameters have been successfully used for analyzing time-varying signals [32].
By selecting these parameters, we aimed to optimize the performance of the GMWs for
our specific task of analyzing EEG signals. Thus, the time-domain data obtained from
each of the electrodes are transformed into the frequency domain. Figure 3 illustrates the
magnitude scalogram for two different electrodes of the same patient, where the frequency
is plotted on a logarithmic scale. The cone of influence [31], showing where edge effects
become significant, is also plotted. Gray regions outside the dashed white line describe
regions where edge effects are significant.
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It is observed that the most significant (or maximum) components lie within nearly
the same time interval for the different EEG signals produced, in parallel, by the electrodes.
This is taken as the basis for selecting the appropriate window size. The maximum value of
the wavelet-transformed signals occurs at the time interval where potentially distinctive
features are present [28,32,34,35].

Hence, the time instants where the maximum value for the resulting transformed
signal of each electrode occurs, is obtained for each patient individually. The average
of these positions in time, across all electrodes, is obtained for each patient, excluding
outliers, which are positions that are more than 3 standard deviations away from the
average position. A time interval around the average position is selected for the patient and
the remaining data are discarded. This time interval represents a portion of the data where
defining features exist in the majority of the electrodes. This step of the windowing process
is illustrated in Figure 4. Narrow, medium and wide window sizes around the average
value are tested to check the accuracy. Three window sizes are tested, containing 500, 2000,
and 8000 samples. The experiments are carried out using the windowing technique on all
19 electrodes for each patient.
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2.1.3. Feature Extraction and Classification

Several designs are taken into consideration to assess the efficiency of CNNs and
LSTMs for this particular problem and to overcome their weaknesses. By looping over time
steps and discovering long-term dependencies between them, an LSTM network analyses
sequence data [21,22]. In initial experiments, LSTM is used without prior data selection or
feature extraction. Performance of the LSTM network was satisfactory on training data, but
unsatisfactory during testing, indicating overfitting [22]. In addition, the long sequence
of features, though shorter than the original data, poses a problem for the LSTM. This
is mainly because LSTMs do not possess a long enough memory span to process long
sequences [22].

Dropout and feature extraction are investigated as potential remedies against over-
fitting. Dropout is used to pick neurons at random and discard them during training;
nonetheless, overfitting persists. A comparison of the model with and without window-
ing shows that the accuracy increased after applying data selection, yet the gap between
training and testing performance is still substantial, indicating significant overfitting.

Hence, convolutional layers are added to extract important features embedded in the
EEG, and then these features are passed to the LSTM. Average pooling and max-pooling
layers are utilized, in the CNN, to focus on the important features after each convolution
step. The CNN–LSTM deep learning model is designed to comprise 18 layers that start
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with a 1D convolutional layer followed by average pooling, then another 1D convolution
layer with average pooling, and these layers are used for feature extraction. After feature
extraction through convolutional layers, LSTM with the fully connected layers is used
for classification. A process of 10-fold cross-validation is employed in all experiments, to
ensure that performance is accurate and generalizable.

3. Performance and Evaluation
3.1. Procedure

All simulations are carried out using MATLAB version 9.12.0.1884302 (R2022a), run-
ning on an Intel I core™ i7-8700 CPU @3.20 GHz with 128 GB of RAM. The data are
originally sampled at a frequency of 250 Hz [19]. The signals are first processed by the win-
dowing technique for data selection, and then the proposed CNN–LSTM feature extraction
and classification model is used to label them into two classes: “normal” and “abnormal”.
The TUH dataset [18] is used to assess the performance of the proposed model. A total of
2574 patient records are used for training and testing. The L2 regularization approach is
employed to reduce overfitting, since it distributes the weights among the features more
evenly [36]. Hyper parameters, optimization and regularization techniques are detailed in
Table 2. Various filters and window sizes were tested to evaluate their impact on accuracy.
The results revealed that using a single filter resulted in 69.67%, while with 5 filters the
accuracy increased to 70.3%, and 7 filters yielded to a lower accuracy of 62.67%. Addition-
ally, tests showed that a window size of 30 provided an accuracy of 70%, a window size of
50 improved accuracy to 74.50%, and a window size of 60 resulted in an accuracy of 70.67%.
These findings highlight the influence of filter selection and window size on performance.
The architecture of the proposed 18-layer CNN–LSTM network is illustrated in Figure 5.
Cross-validation is performed on the data, where each fold comprises 90% of the data for
training, with the remaining 10% being used as hold-out data for validation. The average
and maximum values of sensitivity, specificity [36–38] and accuracy are calculated for
10 folds.

Table 2. Hyper Parameters, Optimization and Regularization of The Proposed Architecture.

Title 1 Type Parameter

Architecture

Number of Layers 18
Number of CNN filters 5
Size of each CNN filter 50

Total number of CNN layers 2
Total number of LSTM Layers 2

1st LSTM Hidden Layers 100
2nd LSTM hidden Layers 120

Hyper Parameters

Solver name/Optimizer ADAM
Learning rate 10−4

L2Regularization 0.001
Mini batch algorithm Gradient decent

Input Size 19
Number of Epochs 30
Gradient Threshold 1
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3.2. Experimental Results

An ablation study was conducted with four different models: Model 1 utilized dropout
regularization to prevent overfitting, Model 2 employed an LSTM-only architecture for
sequential data analysis, Model 3 combined CNN and LSTM layers to capture spatial and
temporal features, and Model 4 enhanced the CNN–LSTM framework with an 18-layer
structure and a windowing technique for improved feature extraction and processing. The
study aimed to evaluate the individual contributions of each component to the overall
performance of the brain disorder diagnosis model. The study aimed to compare the
performance of the different models in terms of ROC curve, classification accuracy, F1 score,
recall, and precision, evaluating the individual contributions of each component to the
overall performance of the diagnosis system.

The Area Under the Curve (AUC) of the ROC plot serves as a key metric for assessing
model performance, with an AUC of 1 indicating a flawless classifier and a score of 0.5 sug-
gesting a random classifier. This makes the AUC a reliable indicator for evaluating the
efficacy of score classifiers, as it encapsulates the model’s performance across the entire
range of thresholds. Figure 6 shows the ROC curve for the four different architectures:
Model 1 (50% dropout architecture), Model 2 (LSTM only), Model 3 (CNN and LSTM deep
learning model), and Model 4 (18-layer CNN LSTM deep learning model with windowing
technique); the proposed model with the selected windowing technique (Model 4) demon-
strates a significant distance from the line of no discrimination. This indicates that the
model achieves a good level of class separation performance, suggesting its effectiveness in
distinguishing between positive and negative classes.
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Classification accuracy alone can be a misleading indicator of classification perfor-
mance; for this reason, a confusion matrix is used, since it provides a detailed breakdown of
the model’s predictions against the actual outcomes, offering a clearer picture of what the
model is getting right and what types of errors it is making. Specifically, it helps identify
True Positives (TP), True Negatives (TN), False Positives (FP) and False Negatives (FN).
Figure 7 shows the confusion matrix for different architectures: 50% dropout architecture,
LSTM only, CNN and LSTM, and 18-layer CNN LSTM deep learning model with window-
ing. It is clear that the proposed CNN–LSTM model with windowing achieves the best
results when compared to the different architectures. The confusion matrix of the model
shows comparable accuracies in detecting normal and abnormal cases.

The comparison of classification models reveals distinct performance characteristics.
Model 1 and Model 2 exhibit relatively low precision and recall, with Model 1 achieving
a precision of 0.481 and recall of 0.5, while Model 2 has a precision of 0.463 and recall of
0.492. Both models struggle with accuracy, as evidenced by their low F1 scores of 0.490
and 0.463, respectively. In contrast, Model 3 shows improved performance with a precision
of 0.627 and recall of 0.667, resulting in an F1 score of 0.646. However, the Proposed
Model outperforms all others, boasting a high precision of 0.839 and recall of 0.786, which
translates to an impressive F1 score of 0.812. This suggests that the Proposed Model is
significantly more effective at balancing accuracy and comprehensiveness, making it the
most reliable choice among the options. High recall is crucial to ensure that most patients
with the disease are correctly identified. However, high precision is also important to avoid
unnecessary treatments. The F1 score provides a balanced measure of both, helping to
evaluate the model’s overall performance in this context. Table 3 compares the performance
of the four models by presenting key metrics related to their classification effectiveness.
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Table 3. Comparison of Model Performance with different architectures using Precision, Recall, and
F1 Score.

TP FN TN FP Precision Recall F1 Score

Model 1 63 63 80 68 0.481 0.5 0.490
Model 2 62 64 76 72 0.463 0.492 0.463
Model 3 84 42 98 50 0.627 0.667 0.646

Proposed
Model 99 19 129 27 0.839 0.786 0.812

The ablation studies conducted demonstrate the effectiveness of various models using
different combinations of feature extraction methods and classification techniques, along
with their respective training and testing accuracies. Model 1, which uses only an LSTM
classifier without any feature extraction, achieved a training accuracy of 65% and a testing
accuracy of 48.90%. Model 2 enhances feature robustness by incorporating a 50% dropout
rate during the extraction phase and using an LSTM for classification. This resulted in
a slight increase in training accuracy to 68%, although the testing accuracy decreased
slightly to 47.87%. Model 3 significantly improved both training and testing accuracy to
98% and 67.06%, respectively, by combining a CNN for feature extraction with an LSTM
classifier. The proposed model introduces a windowing technique for data selection, which,
when combined with CNN-based feature extraction and LSTM classification, substantially
enhances performance. This configuration achieved a perfect training accuracy of 100% and
the highest testing accuracy of 82.68%. This highlights the superiority of the windowing
technique in optimizing model efficacy, underscoring its crucial role in achieving the
best performance metrics among the configurations studied. Table 4 compares various
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modules, making it evident that using the LSTM alone without feature extraction and
feature selection or after incorporating dropout does not resolve overfitting. However, the
results are improved by connecting a CNN upstream to the LSTM. This combined module
produces the best results once the windowing technique is added.

Table 4. Ablation Study of Various Components of the Proposed Architecture.

Title 1 Data Selection Feature
Extraction

Classification
Technique

Training
Accuracy

Testing
Accuracy

Model 1 - - LSTM 65% 48.90%
Model 2 - Dropout 50% LSTM 68% 47.87%
Model 3 - CNN LSTM 98% 67.06%

Proposed Model Windowing Technique CNN LSTM 100% 82.68%

In this paper, the proposed model’s performance is evaluated across various window
lengths using 10-fold cross-validation, with a focus on four key metrics: Average Accuracy,
Maximum Accuracy, Sensitivity (SV), and Specificity (SP). The evaluation is conducted
for window lengths of 500, 2000, and 8000 samples, providing insights into how the
model’s performance scales with increasing data availability. The results demonstrate that
the model’s accuracy improves as the window length increases, highlighting its ability
to leverage larger datasets for enhanced learning and pattern recognition. The Average
Accuracy metric, which represents the mean accuracy across all 10 folds, shows a consistent
upward trend with larger window lengths. Starting at 70.61% for 500 data points, it rises
to 73.40% for 2000 data points and reaches 78.5% for 8000 data points. This improvement
suggests that the proposed model benefits from more samples, as they enable the model to
capture more nuanced patterns. Similarly, Maximum Accuracy shows a notable increase
from 74.78% at 500 data points to 82.68% at 8000 data points, reflecting the highest accuracy
achieved in any single fold, which also increases with larger window lengths, indicating
that the model’s peak performance potential is enhanced with more data. Sensitivity and
Specificity provide further insights into the model’s behavior. Sensitivity measures the
model’s ability to correctly identify positive cases, while Specificity evaluates its ability to
correctly identify negative cases. At 500 data points, the sensitivity (70.77%) and specificity
(70.58%) are nearly balanced, indicating comparable performance for both positive and
negative cases. However, at 8000 data points, specificity (87%), exceeds the sensitivity
(78.5%), suggesting that the model becomes more adept at identifying negative cases when
trained on larger datasets. The use of 10-fold cross-validation is crucial for evaluation,
ensuring a robust and reliable assessment of the model’s performance. This method
involves partitioning the dataset into 10 subsets and iteratively training and testing the
model on each subset. By doing so, it mitigates the risk of overfitting and provides a
more accurate estimate of the model’s generalization ability. Additionally, 10-fold cross-
validation allows for efficient utilization of the data, as every data point is used for both
training and testing across the folds. Moreover, 10-fold cross-validation offers valuable
insights into the stability of the proposed model. By analyzing the variation in accuracy
across folds, such as the difference between the average and maximum accuracy, one
can assess the consistency of the model’s performance. This is particularly crucial in
applications where reliability is paramount, such as medical diagnosis or fraud detection.
The method also plays a vital role in hyperparameter tuning, ensuring that the selected
parameters generalize effectively to unseen data, thereby enhancing the model’s overall
robustness and applicability. The simulation results for 10-fold cross validation, with
different numbers of samples selected using windowing technique, are given in Table 5.
The table includes the length of windows, the average accuracy, the maximum accuracy,
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sensitivity (SV) and specificity (SP). It can be observed that the highest accuracy is observed
when a window size of 8000 samples is used.

Table 5. Accuracy of The Proposed Model for Various Window Lengths, using 10-Fold Cross
Validation.

Length of
Sample/Data Points

Average
Accuracy

Maximum
Accuracy SV SP

500 70.61% 74.78% 70.77% 70.58%
2000 73.40% 78.26% 71.54% 75.45%
8000 74.50% 82.68% 78.5% 87.10%

The proposed model introduces a novel windowing technique that significantly en-
hances the accuracy of EEG data analysis compared to existing methods. This innovative
approach, combined with a sophisticated 18-layer deep learning architecture incorporating
both Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM), yields
the highest accuracy of 82.68%. This surpasses the accuracies reported by other studies,
such as Sylvia et al. (78.65%) [39], Tomas et al. (68%) [16], A. Harati et al. (75.4%) [40], and
D. Western et al. (81.88%) [41]. The superiority of the proposed windowing technique lies
in its ability to effectively manage the non-linear and non-stationary nature of EEG signals,
which are prone to noise and distortions [42]. Unlike traditional windowing methods, like
Rectangular, Hamming, and Hann, which may introduce ripples and distortions during
filtering [43], the novel technique optimizes signal processing by potentially reducing such
issues. Additionally, it allows for more flexible time–frequency representation, similar to
wavelet transforms, which can adapt to variable window sizes for better signal analysis [44].
This adaptability and precision in signal processing contribute to the model’s superior
performance in extracting meaningful features and improving classification accuracy. A
comparison between the proposed architecture and others reported in the literature is
given in Table 6. The table includes the data selection modules, classification modules
incorporated in the architecture, and the accuracy achieved. The TUH data set is used
with the same number of patients for comparison to existing architectures in the literature,
in order to unify the comparison grounds. Table 6 shows that the proposed architecture
outperforms existing architectures in the literature in terms of accuracy.

Table 6. Comparison between obtained results and others in the literature.

Data Selection Technique Feature Extraction Classification
Technique Accuracy

Sylvia et al. [39] 1st minute HMM GMM 78.65%
Tomas et al. [16] - PS + PLV + Energy HMM 68%
Harati et al. [40] - PCA CNN 75.4%

Western et al. [41] 2nd minute - CNN 81.88%

Proposed Model Proposed windowing
technique

Proposed 18-layer deep learning CNN +
LSTM 82.68%

4. Conclusions
The deep learning-based architecture presented in this paper can help in the diagnosis

of brain disorders by labeling them as “normal” or “abnormal”. It was designed with
the objective of increasing the accuracy of results, by properly selecting the relevant data
and enhancing the feature extraction and classification processes. A windowing technique
was devised for data selection, whereas a combined CNN–LSTM module is proposed
for feature extraction and classification. Multiple ablation studies were conducted to
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confirm the substantial impact of each element of the proposed architecture. The model
was tested using the TUH data set and the relevant results showed improved accuracy
as compared to other architecture reported in the literature and assessed on the same
dataset. The results also showed that performance is stable for a large number of patients
and generalizes well over different types of patients. This model overcomes previous
biases in previous studies with a much lower number of patients and/or age, gender,
acquisition conditions and disorder biases. The proposed model achieved an accuracy of
82.68% on the TUH EEG dataset. Furthermore, it showed strong true positive and low false
negative rates with high sensitivity (78.5%) and specificity (87.10%) rates. In the future,
we will employ random search as a strategy for hyperparameter tuning to enhance our
model’s performance. Furthermore, we intend to improve the architecture of the proposed
model to support real time analysis of EEG data, which would significantly improve its
practical medical application. This would allow for immediate diagnostic support during
patient assessments.
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