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A B S T R A C T

Objective: Metabolic syndrome (MetS) is predictive of increased risk of type 2 diabetes (T2D) and cardiovascular 
conditions (CVC). Lipoprotein lipase gene (LPL) single nucleotide polymorphisms (SNPs) may be of importance 
to the eventual diagnosis of T2D and CVC. This study aimed to predict the diagnosis of T2D and CVC amongst 
individuals with LPL SNPs rs268, rs11542065, rs116403115, rs118204057, rs118204061, rs144466625, and 
rs547644955.
Methods: This is a retrospective study using the UK Biobank data. Variables associated with MetS, T2D and CVC 
were selected from the data set. The total number of subjects in the cohort was 12,872 (mean age 56 years ± 8.1, 
90.0 % were of British ethnicity, and 53.9 % were females). Logistic regression was used to assess whether the 
T2D and CVC can be predicted based on the presence of LPL SNPs and some of the clinical measures.
Results: Prediction models using clinical parameters showed good area under the curve (AUC) for prediction of 
T2D and CVC diagnosis (in receiver operating characteristic (ROC) analysis, area under the curve (AUC) = 0.959 
for T2D, AUC = 0.772 for CVC). The addition of Polygenic Risk Scores (PRS/s) showed an improvement for 
diagnosis of both (AUC = 0.961 and 0.790 for TD and CVC, respectively). Further addition of SNPs showed more 
increase in AUC (AUC = 0.965 and 0.837 for T2D and CVC, respectively). The additive effect of the PRSs and LPL 
SNPs was more pronounced in the CVC than in the T2D model. The variant that had major significance for both 
T2D and CVC diagnoses was rs547644955 (AUC 1.0 and 0.910, respectively). The SNPs rs116403115 and 
rs118204057 both had an AUC of 1.0 for T2D diagnosis.
Conclusion: The prediction of T2D and CVC diagnoses with the use of clinically available factors may be enhanced 
with the addition of PRSs and SNPs, including LPL SNPs, which may have implications for stratified or per
sonalised approaches for disease prevention or treatment.

1. Introduction

Metabolic syndrome (MetS) is a current global health concern and is 
predictive of increased risk of type 2 diabetes (T2D) and cardiovascular 
conditions (CVC).1 Central to the cause of MetS and pathogenesis of T2D 
and CVC is obesity, particularly abdominal obesity, along with insulin 
resistance (IR), hyperglycemia, hypertension and dyslipidemia. There is 
a burgeoning rise of these inter-related diseases, and it has been esti
mated that about a quarter of the world's population, that is over a 
billion people, is affected by MetS.2,3 The definition of MetS varies based 
on several criteria from various health authorities including World 

Health Organization (WHO; 1998), European Group of Insulin Resis
tance (EGIR; 1999), National Cholesterol Education Program Adult 
Treatment Panel III (NCEP:ATPIII; 2001), American Association of 
Clinical Endocrinologists (AACE; 2003), International Diabetes Federa
tion (IDF; 2005), American Heart Association/National Heart, Lung, and 
Blood Institute (AHA/NHLBI; 2004) and a consensus definition incor
porating AHA/NHLBI and IDF definitions (AHA/NHLBI/IDF; 2009).4,5

Although the different criteria are all linked and in many aspects similar, 
evidently, there is a lack of universal MetS definition.

The individual components of MetS have been well-investigated with 
numerous reports on studies in IR, T2D, and CVC, for example. However, 
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publications in MetS as an entity are not at par in terms of quantity,6 and 
more so on genetic studies although the heritability of MetS has been 
reported to be considerable at around 27 %.7 Nevertheless, many studies 
are in agreement that IR is at the core in the pathogenesis of MetS, given 
the anabolic role of insulin to transport glucose in cells including adi
pocytes.8,9 Increased free fatty acids (FFAs) levels arise when adipose 
tissues develop IR, promoting gluconeogenesis and very low-density li
poproteins (VLDLs) production.10–13 The resulting impairment of lipo
protein homeostasis may be indicative of the role of lipoproteins in the 
development of obesity and MetS as well as the associated chronic 
diseases.8

The lipoprotein lipase (LPL), an enzyme which breaks down tri
glycerides (TG), is made by the instructions of the lipoprotein lipase 
gene (LPL).14 CVC may arise from stored TG in fatty tissues which 
harden over time, and several reports also indicate that LPL variations 
may cause IR changes therefore, potentially resulting to obesity, MetS, 
and T2D.4,14–16 When there is an irregularity with LPL function (i.e. an 
aberration of LPL gene in the form of SNP or mutation), this causes 
dysregulation of lipid metabolism and homeostasis which may lead to 
dyslipidemia. As an enzyme, when LPL hydrolyzes triglycerides, non- 
festered fatty acids (NEFA) and 2-monoacylglycerols are provided for 
many tissues- in the adipose tissue, NEFA is stored as triacylglycerol 
(TAG) via re-esterification; while in the muscles, NEFA is the major 
energy source, suggesting that LPL gene is the candidate gene for dys
lipidemia.17 Dyslipidemia may then lead to insulin resistance and/or 
pancreatic Beta cell apoptosis. Hence, LPL polymorphisms, including 
single nucleotide polymorphisms (SNPs) which are single nucleotide 
substitutions at a specific genomic locus location, may be of importance 
to the development of obesity and MetS. This may have repercussion in 
the eventual diagnosis of T2D and CVC, particularly amongst individuals 
with MetS.

Several LPL SNPs are of particular interest. In this study, those which 
were reported with conflicting findings (e.g. some reports indicate 
pathogenicity, others do not) for MetS or MetS-associated conditions in 
the National Institutes of Health (NIH) National Library Medicine, a 

web-based database, were used. These include rs268, rs11542065, 
rs116403115, rs118204057, rs118204061, rs144466625, and 
rs547644955 (seven SNPs). LPL SNPs have been evaluated to possibly 
aid in MetS diagnosis,18 hence further studies on these SNPs in a large 
population may provide important additional information. These find
ings may help elucidate their role in the development of MetS as well as 
the diagnosis of T2D and CVC which can be of importance in the pre
vention and treatment of these diseases.

In this light, this study aims to predict the development of T2D or 
CVC as confirmed by definitive diagnosis amongst individuals with the 
afore-mentioned MetS-associated LPL SNPs.

2. Material and methods

The UK Biobank (UKB) data was solely used for this study (UKB 
reference for Research Ethics Committee (REC) approval 16/NW/0274). 
The UKB is a large-scale (involving approximately 500,000 individuals), 
long-term biobank in the United Kingdom that stores biospecimen and 
healthcare data, which are made available globally to advance scientific 
research. An online platform managed by DNANexus called the UKB 
Research Analysis Platform (RAP) was accessed from October–De
cember 2023. The cohort of interest and variables associated with MetS, 
T2D, and CVC (sex, age, weight, BMI, waist circumference (WC), 
smoking and alcohol drinking status, physical activity, diet variation, 
blood pressure, cholesterol levels, HbA1c and glucose levels) as well as 
applicable parameters (diagnosis of T2D and CVC and relevant standard 
polygenic risk scores (PRS) – for T2D, cardiovascular disease (CVD), 
body mass index (BMI), glycated haemoglobin, coronary artery disease 
(CAD), atrial fibrillation (AF), high density lipoprotein (HDL), low 
density lipoprotein (LDL), and hypertension) were downloaded. Data 
were analysed using SPSS ver. 29.

CVC is defined for this study as any or combination of heart attack, 
angina, stroke, and high blood pressure; in the UKB data, this was 
collectively presented as presence of heart or vascular problems as 
diagnosed by a doctor. CVC is used as a surrogate marker of cardio
vascular disease (CVD) in this study. T2D was identified in participants 
with ICD-10 diagnosis code E11. The predicted outcomes (dependent 
variables) are the diagnosis of T2D or CVC amongst individuals with the 
LPL SNPs of interest.

Average and standard deviation were calculated for each group for 
the selected parameters. No participant was excluded in the study due to 
participation withdrawal as per UKB's notice to UKB researchers. Par
ticipants with cancer (N = 1355) and those with other serious non- 
cancer medical condition or disability diagnosed by a doctor at base
line were excluded in the study. In the UKB, the latter was collectively 
presented in the UKB data based on a binary Yes/No information.

Direct logistic regression was performed to assess the impact of a set 
of predictor variables on the odds that the participants have been 
diagnosed with T2D or CVC at the time of recruitment. A total of four 
models have been assessed for both T2D and CVC diagnoses as outlined 
in the subheadings of the following sections.

2.1. Prediction of T2D diagnosis

2.1.1. Prediction of T2D diagnosis by clinical parameters
The model contained 15 independent variables normally accessible 

in clinical settings (age, sex, weight, height, BMI, waist circumference 
(WC), hip circumference HC), systolic BP, diastolic BP, number of days 
per week of moderate physical activity, diet variation, smoking status, 
alcohol drinking status, random blood glucose, HbA1c.

2.1.2. Prediction of T2D diagnosis by clinical parameters and T2D- 
associated Polygenic Risk Scores (PRS): Model A2

The model contained a total of 18 independent T2D-relevant vari
ables including the above-stated clinical parameters (i.e. 15 variables) 
plus three T2D-relevant PRSs (PRS for T2D, BMI, and glycated 

Table 1 
Baseline information of the participants A. SNPs fre
quency distribution. B. Baseline characteristics. SNPs- 
single nucleotide polymorphisms, 2 SNPs- 
rs144466625; rs547644955 (n = 1), rs11542065; 
rs547644955 (n = 6), rs11542065; rs268 (n = 1), 
rs118204057; rs268 (n = 8), rs118204057; 
rs547644955 (n = 1), rs547644955; rs268 (n = 1). SD- 
standard deviation, BMI- body mass index, BP- blood 
pressure, HbA1c- glycated haemoglobin.

Variant ID n

rs118204061 10
rs144466625 19
rs116403115 69
rs11542065 276
rs118204057 311
rs547644955 224
rs268 11,945
2 SNPs 18
N 12,872
A. SNPs frequency distribution

N Mean SD

Weight (kg) 12,693 77.8 15.5
BMI (kg/m2) 12,843 27.3 4.6
Waist circumference (cm) 12,856 89.9 13.2
Systolic BP (mmHg) 12,051 139.6 19.5
Diastolic BP (mmHg) 12,052 82.3 10.7
Glucose (mmol/L) 11,199 5.1 1.2
HbA1c (mmol/mol) 12,224 36 6.7
B. Baseline characteristics
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haemoglobin).

2.1.3. Prediction of T2D diagnosis by clinical parameters, T2D-associated 
PRS and SNPs: full model for T2D

Direct logistic regression was performed with the addition of the LPL 
SNP groups as a parameter to the above model (i.e. total 19 variables).

2.1.4. Prediction of T2D diagnosis by SNPs using Model A2
LPL SNP groups were filtered or selected as separate cases (i.e. Model 

A2 was used for individuals with rs268 only, and so on using other SNPs) 
and direct logistic regression was performed.

2.2. Prediction of CVC diagnosis

2.2.1. Prediction of CVC diagnosis by clinical parameters
The model contained 15 independent variables normally accessible 

in clinical settings, as with A.1.

2.2.2. Prediction of CVC diagnosis by clinical parameters and CVC- 
associated PRS: Model B2

The model contained a total of 22 independent CVC-relevant vari
ables including the above-stated clinical parameters (i.e. 15 variables) 
plus seven CVC-relevant PRSs (PRS for BMI, CVD, atrial fibrillation, 
coronary artery disease (CAD), hypertension, LDL, HDL).

Fig. 1. Diagnosis of outcomes amongst individuals with the SNPs for: A. T2D, B. CVC showing percentage of diagnosed versus not diagnosed individuals. 
T2D- Type 2 diabetes, CVC- cardiovascular conditions, SNPs- single nucleotide polymorphisms, 2 SNPs- presence of 2 SNPs as defined in Table 1.
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2.2.3. Prediction of CVC diagnosis by clinical parameters, CVC-associated 
PRS and SNPs: full model for CVC

Direct logistic regression was performed with the addition of the LPL 
SNP groups as a parameter to the above model (i.e. total 23 variables).

2.2.4. Prediction of CVC diagnosis by SNPs using Model B2
LPL SNP groups were filtered or selected as separate cases and direct 

logistic was performed using Model B2.

3. Results

Normal distribution was found on test of data normality for all 
continuous variables. The total number of individuals in the UK Biobank 
for the seven specified SNPs was 17,386 when filtered individually, and 
17,364 when filtered together, wherein the difference is attributed to 
participants having at least two SNPs. The total number of participants 
included in the study was 12,872; baseline information is presented in 
Table 1.

The highest number of frequency was for rs268 (n = 11,945). All 18 
participants with multiple SNPs had 2 SNPs each, which were hetero
zygous for both SNPs. The majority in the cohort had heterozygous 
variations, and a small total of one hundred eleven (0.86 %) participants 
had homozygous variations involving rs116403115, rs11542065, and 
rs268 (1, 1, and 109 individuals, respectively). The percent of partici
pants diagnosed with T2D or CVC per SNP groups are shown in Fig. 1.

Mean age of participants was 56 years ± 8.1; 53.9 % were females. 

90.0 % were of British ethnicity. Mean weight and BMI at baseline were 
77.8 ± 15.5 kg and 27.3 ± 4.6 kg/m2, respectively.

Four hundred seventy-four (3.7 %) participants had T2D, and 3651 
(28.4 %) had CVC. Most of the participants (93.3 %) were alcohol 
drinkers and majority (59.0 %) had history of smoking on study enrol
ment. Moderate exercise of at least 10 min for 5.4 ± 1.9 days per week 
was reported by most of the participants (n = 12,681). Variation in diet 
was recorded to be mostly sometimes (56.9 %) and never/rarely (34.8 
%).

3.1. Prediction of T2D diagnosis

3.1.1. Prediction of T2D diagnosis by clinical parameters
The model containing all predictors (total 15 variables) was statis

tically significant, χ2 (20, N = 9668) = 1399.3, p < .001. The accuracy, 
specificity, and sensitivity for the model were 97.1 %, 99.4 %, 38.5 %, 
respectively. The AUC in ROC analysis was 0.959 (p < .001).

3.1.2. Prediction of T2D diagnosis by clinical parameters and T2D- 
associated Polygenic Risk Scores (PRS): Model A2

The model containing all predictors (total 18 variables) was statis
tically significant, χ2 (23, N = 9623) = 1427.2, p < .001. The model as a 
whole correctly classified 97.1 % of the cases, specificity was 99.4 %, 
sensitivity was 38.0 %. The AUC in ROC analysis was 0.961 (p < .001).

Table 2 
Logistic regression outcome for T2D diagnosis using the full prediction model.

Variables B S.E. Wald df Sig. Exp(B) 95 % C.I. for EXP(B)

Lower Upper

Age at recruitment 0.064 0.012 27.239 1 <0.001 1.066 1.041 1.092
Sex (1) − 0.055 0.265 0.044 1 0.834 0.946 0.563 1.591
Weight (kg) − 0.068 0.044 2.392 1 0.122 0.934 0.856 1.018
Height standing (cm) 0.088 0.048 3.352 1 0.067 1.092 0.994 1.2
BMI (kg/m2) 0.355 0.13 7.491 1 0.006 1.426 1.106 1.84
Waist circumference (cm) 0.034 0.013 6.389 1 0.011 1.035 1.008 1.062
Hip circumference (cm) − 0.061 0.017 12.79 1 <0.001 0.941 0.91 0.973
Ever smoked 0.573 2 0.751
Ever smoked (1) 1.055 1.494 0.498 1 0.48 2.871 0.154 53.695
Ever smoked (2) 1.004 1.492 0.453 1 0.501 2.73 0.147 50.798
Alcohol drinker status 1.787 3 0.618
Alcohol drinker status (1) − 0.399 0.352 1.283 1 0.257 0.671 0.336 1.338
Alcohol drinker status (2) − 17.238 17,612.815 0 1 0.999 0 0
Alcohol drinker status (3) 0.25 0.382 0.43 1 0.512 1.284 0.608 2.714
Systolic BP (mmHg) 0 0.005 0.007 1 0.932 1 0.989 1.01
Diastolic BP (mmHg) − 0.045 0.01 20.983 1 <0.001 0.956 0.938 0.975
Physical activity − 0.036 0.036 0.958 1 0.328 0.965 0.899 1.036
Variation in diet 2.461 3 0.482
Variation in diet (1) − 0.832 0.88 0.894 1 0.344 0.435 0.078 2.441
Variation in diet (2) − 0.488 0.896 0.297 1 0.586 0.614 0.106 3.551
Variation in diet (3) − 0.737 0.874 0.711 1 0.399 0.479 0.086 2.655
Glucose (mmol/L) − 0.003 0.045 0.005 1 0.941 0.997 0.912 1.089
HbA1c (mmol/mol) 0.196 0.011 303.998 1 <0.001 1.216 1.19 1.243
Variant group 8.581 7 0.284
Variant group (1) 1.438 3.692 0.152 1 0.697 4.211 0.003 5848.791
Variant group (2) 0.745 3.595 0.043 1 0.836 2.106 0.002 2416.766
Variant group (3) − 27.199 3198.5 0 1 0.993 0 0 .
Variant group (4) − 0.734 3.582 0.042 1 0.838 0.48 0 536.881
Variant group (5) 1.109 3.551 0.097 1 0.755 3.03 0.003 3194.619
Variant group (6) 0.353 3.527 0.01 1 0.92 1.424 0.001 1431.903
Variant group (7) 1.569 3.723 0.178 1 0.673 4.802 0.003 7087.11
Standard PRS for T2D 0.491 0.084 33.959 1 <0.001 1.634 1.385 1.927
Standard PRS for BMI 0.042 0.081 0.27 1 0.603 1.043 0.89 1.222
Standard PRS for HbA1c − 0.042 0.073 0.333 1 0.564 0.959 0.831 1.106
Constant − 28.068 8.919 9.902 1 0.002 0

T2D- type 2 diabetes, BMI- body mass index, BP-blood pressure, HbA1c- glycated haemoglobin, PRS- polygenic risk score, df- degrees of freedom, Sig.- significance (p 
< .05 bolded to emphasize significance). Physical activity is defined as number of days/week of moderate physical activity 10+ minutes. SPSS coding: Sex- 0 for 
female, 1 for male; Ever smoked- 0 for No, 1 for Yes; Alcohol drinking status- 0 for never, 1 for previous, 2 for current (reference); Variation in diet- 0 for never/rarely, 1 
for sometimes, 2 for often; Variant groups: 1-rs118204061 (reference), 2-rs1444466625, 3- rs116403115, 4- rs11542065, 5-rs118204057, 6- rs547644955, 7- rs268, 8- 
2 SNPs.
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3.1.3. Prediction of T2D diagnosis by clinical parameters, T2D-associated 
PRS and SNPs: full model for T2D

Addition of the SNPs as predictor (total 19 variables; χ2 (30, N =
9623) = 1516.0, p < .001) correctly classified 97.3 % of the cases, 
specificity was the same at 99.4 %, and sensitivity increased to 42.5 %, a 
4.5 % increase.

Six independent variables made a unique statistically significant 
contribution to the model, namely age, BMI, HP, diastolic BP, and 
standard PRS for T2D (p < .05; Table 2). The strongest predictor of being 
diagnosed with T2D in the participants with the LPL SNPs investigated in 
this study was the Standard PRS for T2D. This indicated that the odds 
were 1.6 times greater that the participants were diagnosed with T2D 
with per unit increase of PRS score, controlling for other factors in the 
model.

A ROC curve based on the full prediction model is presented in Fig. 2; 
the AUC was 0.965 (p < .001).

3.1.4. Prediction of T2D diagnosis by SNPs using Model A2
There were four SNPs (rs116403115, rs118204057, rs54764495, 

and rs268) with sufficient number of participants for analysis. On 
investigation of these SNPs, three SNPs had 100.0 % sensitivity and 
specificity – rs116403115, rs118204057, and rs54764495. The sensi
tivity for rs268, which had the highest number of N, was 42.5 %.

For the three SNPs with 100.0 % specificity, sensitivity, and accuracy 
(i.e. rs116403115, rs118204057, and rs54764495), the AUCs were 1.0 
as expected (p < .001). The AUC for rs268 was 0.963 (p < .001).

3.2. Prediction of CVC diagnosis

3.2.1. Prediction of CVC diagnosis by clinical parameters
The model containing all predictors (total 15 variables) was statis

tically significant, χ2 (20, N = 9668) = 1852.2, p < .001. The accuracy, 
specificity, and sensitivity for the model were 74.8 %, 91.4 %, 32.1 %, 

respectively. The AUC in ROC analysis was 0.772 (p < .001).

3.2.2. Prediction of CVC diagnosis by clinical parameters and CVC- 
associated PRS: Model B2

The model containing all predictors (total 22 variables) was statis
tically significant, χ2 (27, N = 9623) = 2132.9, p < .001. The model as a 
whole correctly classified 75.8 % of the cases, specificity was 90.9 %, 
sensitivity was 37.1 %. The AUC in ROC analysis was 0.790 (p < .001).

3.2.3. Prediction of CVC diagnosis by clinical parameters, CVC-associated 
PRS and SNPs: full model for CVC

Addition of the SNPs as predictor (total 23 variables; χ2 (34, N =
9623) = 2158.6, p < .001) correctly classified 75.9 % of the cases, 
specificity was the same at 90.9 %, and sensitivity increased to 37.5 %, a 
small 0.4 % increase.

Twelve independent variables made a unique statistically significant 
contribution to the model, namely age, WC, HC, alcohol drinker status, 
systolic BP, diastolic BP, variation in diet, HbA1c, variant group, and 
standard PRS for CVD, BMI, and hypertension (p < .05; Table 3); In 
reference to other SNPs, the odds of being diagnosed with CVC differs. 
Being a current alcohol drinker as well as the PRS for hypertension show 
high odds ration of 1.7 and 1.5, respectively, controlling for other factors 
in the model.

A ROC curve based on the full prediction model for CVC (AUC =
0.837, p < .001) is presented in Fig. 3. The AUC for the full model was 
0.837 (p < .001).

3.2.4. Prediction of CVC diagnosis by SNPs using Model B2
On investigation of individuals per SNP groups with sufficient 

number of participants (four SNPs: rs11542065, rs118204057, 
rs54764495, and rs268), rs547644955 had the highest sensitivity at 
75.9 %, specificity 83.1 %, and accuracy 80.9 % (ROC curve showing 
AUC = 0.910, p < .001, is shown in Fig. 3). The other 3 SNPs 

Fig. 2. ROC curve of the full model for prediction of T2D diagnosis (AUC = 0.965, p < .05). 
ROC- receiver operating characteristic, T2D- type 2 diabetes, AUC- area under the curve.
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(rs11542065, rs118204057, and rs268) had low sensitivity (50.8, 33.8, 
and 36.9, respectively).

4. Discussion

Numerous research worldwide have now taken advantage of 
genome-wide association studies (GWAS) to discover genetic variants 
associated with disease traits, including obesity and related comorbid
ities. GWAS for MetS have been reported for various ethnic populations 
and from multiethnic backgrounds.1,19,20 In 2011, a systematic review 
on the genetic variants associated with MetS has outlined the most 
studied SNPs linked with MetS; LPL was not included in this report.21 A 
recent (2019) publication on MetS GWAS which has used the UK Bio
bank data has been published, which reported 80 novel independent 
loci; LPL SNP rs3844510 was included although not reported as novel.22

The use of larger data sets such as in the latter as well as this study has 
been argued to be of significance particularly for linkage and candidate 
gene studies including MetS.6 Nevertheless, current evidence suggests 
that the genetic risk factors for MetS are strongly connected with the 
components of MetS, including hyperglycemia and dyslipidemia.23

Prediction models have been trialled with the use of various pa
rameters including risk factors to estimate the probability of T2D and/or 
CVD development in multiple studies using logistic regression and 

machine learning approaches.24–26 These models may aid in formulating 
preventive measures for those who may be deemed at risk for developing 
the disease. In this study, the logistic regression model for T2D and CVC 
had high accuracy, specificity, and AUC in ROC analysis. Sensitivity was 
considerably low, except for rs547644955, rs116403115 and 
rs118204057. However, the ROC AUC has been established as the better 
assessment tool for medical diagnostic evaluation due to the arbitrary 
nature of specificity, sensitivity, and accuracy, which is deemed prob
lematic.27,28 The ROC AUC therefore better distinguishes between 
healthy versus diseased population,29 and the models assessed in this 
study may be of value (Figs. 2 and 3), including the addition of SNPs 
particularly for individuals diagnosed with T2D (Results section B). Of 
note, the investigated SNPs may be further correlated with plasma cy
tokines, high-sensitivity C-reactive protein (hs-CRP), lipid profile, LDL 
particle size, and other relevant parameters for probability estimation of 
T2D and/or CVD diagnoses via prediction models in future studies, 
which will aid in better understanding of the multifactorial nature of 
these diseases.

The variant that had major significance for both T2D and CVC was 
rs547644955 (Results sections B and C). The other two variants with 
significance for T2D were rs116403115 and rs118204057 (Results sec
tion B). There appears to be no substantial publications for rs547644955 
and rs116403115, therefore these findings may pave the way for greater 

Table 3 
Logistic regression outcome for CVC diagnosis using the full prediction model.

Variables B S.E. Wald df Sig. Exp(B) 95 % C.I. for EXP(B)

Lower Upper

Age at recruitment 0.07 0.004 311.141 1 <0.001 1.072 1.064 1.081
Sex (1) − 0.103 0.094 1.198 1 0.274 0.902 0.75 1.085
Weight (kg) 0.021 0.018 1.375 1 0.241 1.021 0.986 1.058
Height standing (cm) − 0.02 0.018 1.268 1 0.26 0.98 0.946 1.015
BMI(kg/m2) 0.035 0.053 0.434 1 0.51 1.035 0.934 1.148
Waist circumference (cm) 0.03 0.005 36.574 1 <0.001 1.03 1.02 1.04
Hip circumference (cm) − 0.038 0.007 32.137 1 <0.001 0.962 0.95 0.975
Ever smoked 5.076 2 0.079
Ever smoked (1) 0.247 0.468 0.278 1 0.598 1.28 0.512 3.201
Ever smoked (2) 0.363 0.467 0.604 1 0.437 1.438 0.576 3.59
Alcohol drinker status 12.934 3 0.005
Alcohol drinker status (1) 0.064 0.135 0.225 1 0.635 1.066 0.818 1.39
Alcohol drinker status (2) 0.762 0.952 0.642 1 0.423 2.143 0.332 13.847
Alcohol drinker status (3) 0.518 0.148 12.226 1 <0.001 1.678 1.256 2.244
Systolic BP (mmHg) 0.016 0.002 69.259 1 <0.001 1.016 1.012 1.02
Diastolic BP (mmHg) 0.021 0.003 37.719 1 <0.001 1.021 1.014 1.028
Physical activity − 0.008 0.014 0.319 1 0.572 0.992 0.966 1.019
Variation in diet 22.046 3 <0.001
Variation in diet (1) − 0.015 0.388 0.001 1 0.969 0.985 0.461 2.108
Variation in diet (2) 0.138 0.396 0.122 1 0.727 1.148 0.529 2.493
Variation in diet (3) 0.25 0.387 0.418 1 0.518 1.284 0.602 2.74
Glucose (mmol/L) 0.006 0.026 0.05 1 0.823 1.006 0.957 1.057
HbA1c (mmol/mol) 0.013 0.005 6.4 1 0.011 1.013 1.003 1.024
Variant group 25.564 7 <0.001
Variant group (1) 2.924 1.268 5.314 1 0.021 18.617 1.549 223.696
Variant group (2) 2.238 1.169 3.663 1 0.056 9.377 0.948 92.786
Variant group (3) 1.966 1.134 3.005 1 0.083 7.143 0.773 65.966
Variant group (4) 1.518 1.131 1.803 1 0.179 4.565 0.498 41.865
Variant group (5) 2.276 1.138 3.998 1 0.046 9.734 1.046 90.597
Variant group (6) 1.586 1.12 2.006 1 0.157 4.884 0.544 43.853
Variant group (7) 1.353 1.331 1.034 1 0.309 3.871 0.285 52.593
Standard PRS for CVD 0.103 0.039 7.076 1 0.008 1.108 1.027 1.195
Standard PRS for BMI − 0.059 0.027 4.552 1 0.033 0.943 0.894 0.995
Standard PRS for AF − 0.007 0.029 0.066 1 0.797 0.993 0.938 1.05
Standard PRS for CAD 0.053 0.039 1.807 1 0.179 1.054 0.976 1.138
Standard PRS for hypertension 0.411 0.03 189.265 1 <0.001 1.508 1.422 1.599
Standard PRS for HDL cholesterol − 0.023 0.026 0.782 1 0.376 0.977 0.929 1.028
Standard PRS for LDL cholesterol 0.01 0.025 0.162 1 0.688 1.01 0.961 1.062
Constant − 9.443 3.238 8.507 1 0.004 0

CVC- cardiovascular conditions, BMI- body mass index, BP-blood pressure, HbA1c- glycated haemoglobin, PRS- polygenic risk score, CVD-cardiovascular disease, AF- 
atrial fibrillation, CAD- coronary artery disease, HDL- high density lipoprotein, LDL- low density lipoprotein, df- degrees of freedom, Sig.- significance (p < .05 bolded 
to emphasize significance). Physical activity is defined as number of days/week of moderate physical activity 10+ minutes. SPSS coding: Sex- 0 for female, 1 for male; 
Ever smoked- 0 for No, 1 for Yes; Alcohol drinking status- 0 for never, 1 for previous, 2 for current (reference); Variation in diet- 0 for never/rarely, 1 for sometimes, 2 
for often; Variant Groups: 1-rs118204061 (reference), 2-rs1444466625, 3- rs116403115, 4- rs11542065, 5-rs118204057, 6- rs547644955, 7- rs268, 8- 2 SNPs.
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understanding and clinical applications for individuals identified with 
these SNPs. There were a few reports directly associated with the variant 
rs118204057, including heritability in ethnic groups.30–32 The variant 
rs268 was the most common in the cohort studied, and previous publi
cations reported MetS-specific resuts.33–35 Nonetheless, as the full model 
for both T2D and CVC diagnosis had good predictability based on the 
ROC analysis, these may be of considerable clinical and research use, 
particularly to obesity studies, overall.

Upon the exclusion of the genetic parameters on both full models, the 
decrease in AUC was marginal (0.959 versus 0.965 for the full model) for 
T2D (Results section B, D), while that for CVC may be considerable 
(0.772 versus 0.837 for the full model; Results section C, D). Although 
the clinical relevance may need further investigation, the availability of 
the fifteen variables may be readily accessible or easily obtainable in 
routine healthcare centres. In addition, it is imperative to note here that 
the parameters which showed statistically significant contribution to the 
full models, both for T2D (Table 2) and CVC (Table 3), would need to be 
examined more closely in succeeding studies for the investigated cohort 
or similar populations. On another note, T2D, although it relates to CVD 
with several similar risk factors, is known be a risk factor itself for the 
development of CVD, but does not seem to be true vice versa.36–38 This 
was the primary consideration for the selection of PRSs for the full 
models in the T2D and CVC diagnosis prediction models. The full model 
for CVC diagnosis was trialled with the addition of PRSs for T2D and 
glycated haemoglobin, however the result of the AUC in ROC analysis 
did not differ (result not presented). The American Heart Association 
(AHA) has recently published (2022) a scientific statement regarding 
PRS for CVD as well as other related conditions such as T2D.39 PRS is 
normally derived from single nucleotide variant effect sizes from GWAS 
then adjusted for linkage disequilibrium, and large biorepositories such 

as the UKB provides these data as what has been used in this study. As 
per summary of the AHA statement, the utility of PRS for CVD and 
associated disorders appears somehow different based on specific dis
ease states as evidenced by various research. In CVD, CAD is the most 
studied form in terms of PRS research and its use is mainly geared to
wards pharmacological management.40–42 In T2D, earlier studies point 
to similar utility of PRS with clinical factors, while more recent evidence 
suggests that PRS may be additive to the latter.43–45 Yet other studies 
suggest unclear significance of T2D high-risk identification.42,46 These 
findings may somehow be in accordance with the results of this research 
in terms of ambiguous usability of PRS addition to the prediction model. 
Although some research suggest that PRS for T2D may be of value for 
assessing response to sulfonylureas47 as well as for glucose manage
ment,48 therefore the clinical applications of PRS use may be worth 
pursuing in this age of advanced genomic evaluations.

A minor limitation of the study worth mentioning is the minimum 
age of participants that UKB includes (i.e. from 40 years old). In the 
recent age, more people get confirmed T2D or CVC diagnosis at a 
younger age (i.e. <40 years old). Although data for individual's age of 
diagnosis prior to UKB participation was specified in the database, age of 
diagnosis and modifiable risk factors in addition to genetics may have 
been further explored in longitudinal studies as possible, for instance. 
Nevertheless, research on younger population with the LPL SNPs eval
uated in this study will certainly add value to the findings reported on 
this project.

5. Conclusions

In this study, models for prediction of T2D and CVC diagnosis have 
been explored using logistic regression from the UKB data. The addition 

Fig. 3. ROC curve of the model for prediction of CVC diagnosis (full model, blue curve; AUC = 0.837, p < .001) and in individuals with rs547644955 (red curve; 
AUC = 0.910, p < .001). 
ROC- receiver operating characteristic, CVC- cardiovascular conditions, AUC- area under the curve. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.)
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of genetic contribution enhanced the AUC values therefore the models 
better differentiate diagnosed versus non-diagnosed individuals. The 
additive effect of the LPL SNPs and relevant PRS was more pronounced 
in the CVC than in the T2D model. The variant that had major signifi
cance for both T2D and CVC diagnoses was rs547644955, with an AUC 
of 1.0 and 0.910, respectively. The SNPs rs116403115 and rs118204057 
both had an AUC of 1.0 for T2D diagnosis. Additional research is 
required to further investigate the effects of these LPL SNPs in the 
development of MetS and other obesity-related diseases, which may 
have impact for stratified or personalised approaches for disease pre
vention or treatment.
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15. Goodarzi MO, Guo X, Taylor KD, Quiñones MJ, Saad MF, Yang H, et al. Lipoprotein 
lipase is a gene for insulin resistance in Mexican Americans. Diabetes. 2004;53: 
214–220.

16. Kumari A, Kristensen KK, Ploug M, Winther AL. The importance of lipoprotein lipase 
regulation in atherosclerosis. Biomedicines. 2021;9.

17. Xie C, Wang ZC, Liu XF, Yang MS. The common biological basis for common 
complex diseases: evidence from lipoprotein lipase gene. Eur J Hum Genet. 2010;18: 
3–7.

18. Kang SW, Kim SK, Kim YS, Park MS. Risk prediction of the metabolic syndrome 
using TyG Index and SNPs: a 10-year longitudinal prospective cohort study. Mol Cell 
Biochem. 2023;478:39–45.

19. Moon S, Lee Y, Won S, Lee J. Multiple genotype-phenotype association study reveals 
intronic variant pair on SIDT2 associated with metabolic syndrome in a Korean 
population. Hum Genomics. 2018;12:48.

20. Tekola-Ayele F, Doumatey AP, Shriner D, Bentley AR, Chen G, Zhou J, et al. 
Genome-wide association study identifies African-ancestry specific variants for 
metabolic syndrome. Mol Genet Metab. 2015;116:305–313.

21. Povel CM, Boer JM, Reiling E, Feskens EJ. Genetic variants and the metabolic 
syndrome: a systematic review. Obes Rev. 2011;12:952–967.

22. Lind L. Genome-wide association study of the metabolic syndrome in UK Biobank. 
Metab Syndr Relat Disord. 2019;17:505–511.

23. Taylor JY, Kraja AT, de Las FL, Stanfill AG, Clark A, Cashion A. An overview of the 
genomics of metabolic syndrome. J Nurs Scholarsh. 2013;45:52–59.

24. Dinh A, Miertschin S, Young A, Mohanty SD. A data-driven approach to predicting 
diabetes and cardiovascular disease with machine learning. BMC Med Inform Decis 
Mak. 2019;19:211.

25. Edlitz Y, Segal E. Prediction of type 2 diabetes mellitus onset using logistic 
regression-based scorecards. Elife. 2022:11.

26. Joshi RD, Dhakal CK. Predicting type 2 diabetes using logistic regression and 
machine learning approaches. Int J Environ Res Public Health. 2021;18.

27. Hajian-Tilaki K. Receiver operating characteristic (ROC) curve analysis for medical 
diagnostic test evaluation. Caspian J Intern Med. 2013;4:627–635.

28. Swets JA. Measuring the accuracy of diagnostic systems. Science. 1988;240: 
1285–1293.

29. Metz CE. Basic principles of ROC analysis. Semin Nucl Med. 1978;8:283–298.
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