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ABSTRACT
Background: Breast cancer (BC) is a major global health concern with rising incidence and mortality rates in many developing 
countries. Effective BC risk assessment models are crucial for prevention and early detection. While the Gail model, a traditional 
logistic regression-based model, has been broadly used, its predictive performance may be limited by its linear assumptions. With 
the rapid advancement of artificial intelligence (AI) in medical sciences, various complex machine learning algorithms have 
been developed for risk prediction, including for BC.
Aims: This study aims to compare the quality of AI-based models with the traditional Gail model in assessing BC risk using a 
population dataset. It also evaluates the performance of these models in predicting BC risk.
Methods and Results: This study involved 942 newly diagnosed BC patients and 975 healthy controls at the Cancer Institute 
in IKH hospital Complex, Tehran. Ten classification algorithms were applied to the dataset. The accuracy, sensitivity, precision, 
and feature importance in the machine learning algorithms were assessed and compared to previous studies for evaluation. The 
study found that AI algorithms alone did not significantly improve predictability compared to the Gail model. However, the im-
portance of variables varied significantly among the AI algorithms. Understanding feature importance and interactions is crucial 
in AI modeling in order to enhance accuracy and identify critical risk factors.
Conclusion: This study concluded that, in BC risk prediction, incorporating specific risk factors, such as genetic and image-
related variables, may be necessary to further enhance accuracy in BC risk prediction models. Furthermore, it is crucial to ad-
dress modeling issues in models with a restricted number of features for future research.
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1   |   Introduction

Estimates from the International Agency for Research on 
Cancer (IARC) in GLOBOCAN 2020 suggest that breast can-
cer (BC) is the most common cancer globally, with over 2 mil-
lion new cases annually [1]. In developing countries such as 
Iran, the incidence and mortality of BC are increasing. Iran 
reported approximately 17 000 new cases and over 4800 deaths 
in GLOBOCAN 2020, showing an increase from 13 000 new 
cases in 2018 [2]. Given the high prevalence and the burden 
on healthcare systems, the importance of BC prevention has 
become even more significant. The Gail model, a well-known 
BC risk assessment tool (BCRAT), is a comprehensive logistic 
regression-based model developed in 1989 to assess BC risk in 
over 28 000 American women [3]. Based on this model, six fac-
tors—age, number of breast biopsies, age at first birth, num-
ber of first-degree relatives with BC, race/ethnicity, and age at 
menarche—influence the risk of BC.

Logistic regression is a classification model that utilizes max-
imum likelihood functions to estimate the probabilities of 
various outcomes. It is traditionally employed to analyze right-
censored data [4]. The primary advantages of logistic regres-
sions are their clarity, interpretability, and lack of assumptions 
about the distribution of the explanatory data  [5]. However, 
logistic regressions are constrained by their lack of statistical 
complexity, as they presuppose a linear relationship between 
the input variables and the log odds of the outcome [6]. Over 
the past few years, due to the rapid advancement of artificial 
intelligence (AI) in medical sciences, various complex modern 
algorithms, including different machine learning (ML) and 
deep learning methods, have been developed for breast can-
cer risk prediction [7–10]. Despite previous efforts to construct 
BC prediction models using ML algorithms [7, 8, 11–14], there 
are currently limitations in the predictive performance of 
traditional and ML-based risk prediction models. This study 
is aimed at evaluating the accuracy of 10 ML-based models 
compared to traditional models for predicting BC using pa-
rameters from the Gail model. It used the Iranian population 
dataset from the Rostami et al. study [15].

2   |   Material and Methods

2.1   |   Study Design

This study used data from a hospital-based, case–control in-
vestigation conducted at the Cancer Institute in IKH hospital 
Complex, Tehran, from September 23, 2011, to May 16, 2016. 
The recruitment of cases and controls and the study design were 
detailed in a previous publication [16]. In total, there were 942 
newly diagnosed patients with In  situ or invasive BC as inci-
dent cases. The 975 healthy controls were frequency-matched 
to the cases by 5-year age categories and residential locations. 
Participants in both the case and control groups were inter-
viewed utilizing a structured questionnaire designed to gather 
comprehensive data on various sociodemographic characteris-
tics, anthropometric measurements, menstrual and reproduc-
tive history, age at menarche, parity, family history of BC, age at 
first pregnancy, and duration of breastfeeding. These interviews 
were conducted at the hospital by trained interviewers who 

were unaware of the study's hypotheses. Interviewers visited 
the surgery and chemotherapy wards to identify patients who 
were admitted for treatment at the Cancer Institute. Patients 
were explained the study and asked to sign a written informed 
consent form before participating in the interview. Patients' per-
sonal information was numerically coded to protect their pri-
vacy. Eligible patients included those with a histopathologically 
confirmed diagnosis of either In situ or invasive BC, who were 
at least 18 years of age, had no history of concurrent cancer in 
other organs, and had been newly diagnosed with cancer within 
the 12 months preceding the interview. Patient recruitment 
was limited to those who were hospitalized for treatment in the 
surgery and oncology wards and occurred 3 days a week due to 
logistic issues. For each case, a control individual was chosen 
among healthy female acquaintances of patients admitted to 
Imam Khomeini Hospital Complex for non-cancer-related ill-
nesses. The controls were selected to be frequency-matched by 
age (within 5-year intervals), place of residence (Tehran or other 
provinces), and recruited around the same period as the cases. 
The control group was evaluated based on the absence of any BC 
diagnosis or related conditions in the preceding 12 months. BC 
patients were prompted to disclose their exposure status during 
the year leading up to their diagnosis. These controls were not 
associated with the cancer patients. Out of the 1324 eligible con-
trols invited, 967 (73%) participated in the study, while 357 (27%) 
declined to participate. The details of the study design and estab-
lishment of this case–control have been previously described in 
Maleki et al. [15, 16]. This study was approved by the National 
Research Ethics Committee, Ministry of Health and Medical 
Education (code number: IR.TUMS.IKHC.REC.1399.454, Date: 
December 2020), and the authors accessed the data on January 
15, 2021.

2.2   |   Data Pre-Processing

Gail variables needed to be extracted from the dataset. They 
were used for training and validating the algorithms. The data-
set was divided into 80% for training and 20% for validation.

2.3   |   Model Development

In this study, a total of 10 classification algorithms were sys-
tematically applied to a dataset aimed at BC risk assessment. 
The algorithms utilized in this analysis included decision 
tree (DT), bagging decision tree (Bagging-DT), random forest 
(RF), logistic regression (LR), support vector machine (SVM), 
bagging support vector machine (Bagging-SVM), gradient 
boosting, AdaBoost, XGBoost, k-nearest neighbor (KNN), 
and statistically inspired modification of partial least squares 
(SMPLS). The evaluation process was structured around both 
training and validation datasets, with the validation cohort 
consisting of 384 subjects. This subset was generated through 
an automated random sampling technique, representing 20% 
of the total population of 1917 participants. The prediction 
models were constructed using all variables. To quantify the 
performance and reliability of each classification model, sev-
eral statistical metrics were calculated, including accuracy, 
precision, and sensitivity. These metrics are critical for assess-
ing the effectiveness of predictive models and were derived 
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through cross-validation (CV) methodologies. Specifically, 
the leave-one-out CV procedure was employed in the SIMPLS 
analysis to derive Q2 (goodness of prediction) and R2Y (good-
ness of variation) values. The optimal prediction model was 
determined based on the maximum values of accuracy and 
Q2, ensuring that these metrics did not show a decline, which 
would indicate potential overfitting. Furthermore, it was es-
sential that R2Y exceeded Q2, as this relationship serves as a 
safeguard against overfitting, thereby enhancing the model's 
generalizability. Grid search was used to fine-tune hyperpa-
rameters for all methods. In this study, the grid search hy-
perparameter tuning algorithm was employed for several key 
reasons: (1) Exhaustiveness: Grid search examines every pos-
sible combination of hyperparameters, ensuring the identifica-
tion of an optimal solution. (2) Simplicity and clarity: The grid 
search method is straightforward and easy to implement. As 
a comprehensive exploratory algorithm, grid search evaluates 
the performance of hyperparameters across all potential con-
figurations. It systematically tests each unique combination 
within the search space to identify the one that yields the best 
performance [17]. In the context of DTs, several key hyperpa-
rameters are critical for model performance that were used 
in this study. These include the maximum tree depth (max_
depth), the minimum number of samples required to split an 
internal node (min_sample_split), and the minimum number 
of samples necessary to be at a leaf node (min_samples_leaf ). 
In the KNN model, the hyperparameter k (the number of near-
est neighbors) is utilized for optimization through grid search. 
Grid search also optimizes the parameters of SVM, specifically 
C, γ, and degree using a CV technique as a performance metric 
to identify optimal hyperparameters. This study primarily fo-
cuses on two parameters of the RF classifier. The grid search 
incorporates the maximum tree depth, the minimum number 
of samples, max_features (which denotes the maximum num-
ber of variables used in individual trees), and n_estimators 
(which indicates the total number of trees to be constructed 
in the forest). In the gradient boosting method, max_depth, 
min_sample_split, and min_samples_leaf are considered as 
hyperparameters that are tuned using grid search. AdaBoost 
can sometimes be challenging to tune due to its numerous hy-
perparameters. In this instance, we will perform grid search 
on two key hyperparameters for AdaBoost: the number of 
trees used in the ensemble and the learning rate. We will em-
ploy a range of well-performing values for each hyperparam-
eter. Additionally, we will define a grid of hyperparameters, 
including max_depth, learning_rate, and n_estimators in the 
XGBoost model, and subsequently conduct grid search.

The algorithms, training, and validation processes were all de-
veloped and implemented using the Python programming lan-
guage. version 3.8.3 and Scikit-learn library version 0.23.2 and 
the class GridSearchCV available in Scikit Learn is used for 
this study.

2.4   |   DT

DTs are a popular supervised learning algorithm used for 
both classification and regression tasks. They work by recur-
sively partitioning the input space based on the feature that 
provides the maximum information gain at each step. This 

results in a tree-like structure where internal nodes represent 
decision rules and leaf nodes represent the final predictions. 
DTs are known for their interpretability, ability to handle both 
numerical and categorical data, and robustness to outliers. 
However, they can be prone to overfitting, especially on com-
plex datasets [18].

2.5   |   Bagging-DT

Bagging, short for Bootstrap Aggregating, is an ensemble learn-
ing technique that can be applied to DTs to improve their sta-
bility and accuracy. In Bagging-DT, multiple DT models are 
trained on random subsets of the training data, and their predic-
tions are combined through majority voting (for classification) 
or averaging (for regression) to make the final prediction. This 
helps reduce the variance of the individual DTs and improve the 
overall model performance [19].

2.6   |   RF

RF is another ensemble learning method that is built on the 
concept of DTs. It creates a collection of DTs, each trained on 
a random subset of the features. The final prediction is made 
by aggregating the predictions of the individual trees. This ap-
proach helps to reduce the overfitting problem associated with 
individual DTs and thus improves the model's generalization 
ability. RF is widely used for both classification and regression 
tasks and is known for its robustness to noise and outliers [20].

2.7   |   LR

LR is a supervised learning algorithm primarily used for binary 
classification problems. It models the probability of a binary out-
come as a function of the input features by using a logistic sigmoid 
function. LR is simple to implement, interpretable, and performs 
well on linearly separable datasets. Nevertheless, it may struggle 
with non-linear relationships and high-dimensional data [21].

2.8   |   SVM

SVMs are a class of supervised learning algorithms that can be 
used for both classification and regression tasks. SVMs work by 
finding the optimal hyperplane that separates the classes with 
the maximum margin. They are particularly effective in high-
dimensional feature spaces and can handle non-linear relation-
ships using kernel functions. SVMs are known for their strong 
generalization performance, but they can be sensitive to the 
choice of hyperparameters [22].

2.9   |   Bagging-SVM

Similar to Bagging-DT, Bagging can also be applied to SVMs 
to create an ensemble model called Bagging-SVM. In this ap-
proach, multiple SVM models are trained on random subsets of 
the training data, and their predictions are combined to make 
the final prediction. Bagging-SVM can improve the stability and 
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accuracy of individual SVM models, especially on complex or 
noisy datasets [23].

2.10   |   Gradient Boosting

Gradient Boosting is an ensemble learning technique that com-
bines multiple weak learners, often DTs, to eventually create a 
strong predictive model. It works by iteratively adding new mod-
els to the ensemble, where each new model is trained to correct 
the errors made by the previous models. Gradient Boosting is 
known for its high performance on a wide range of tasks and its 
ability to handle various types of data [24].

2.11   |   AdaBoost

AdaBoost, short for Adaptive Boosting, is another ensemble learn-
ing algorithm that combines multiple weak learners, typically de-
cision stumps, to create a strong classifier. It works by iteratively 
adjusting the weights of the training examples, focusing more on 
the misclassified instances in each iteration. AdaBoost is known 
for its ability to improve the performance of weak learners and its 
robustness to overfitting [25] and is well described in the term of 
cancer prediction in the study of Kumar et al. [26].

2.12   |   XGBoost

XGBoost, or Extreme Gradient Boosting, is a highly efficient and 
scalable implementation of the Gradient Boosting algorithm. It 
incorporates several optimizations, such as regularization, par-
allel processing, and efficient handling of sparse data, making it 
a powerful tool for a wide range of ML tasks, including classifi-
cation, regression, and ranking [27].

2.13   |   KNN

KNN is a non-parametric, instance-based learning algorithm used 
for both classification and regression problems. It works by finding 
the K closest training examples to a new input and using their la-
bels or values to make a prediction. KNN is simple to implement, 
can handle non-linear relationships, and is robust to noisy data. 
However, it can be computationally expensive for large datasets 
and may suffer from the curse of dimensionality [28].

2.14   |   Partial Least Squares

A method for partial least squares (PLS) regression, known as 
the SIMPLS, computes the PLS factors by directly combining the 
original variables in a linear manner. The PLS factors are cho-
sen to optimize a covariance criterion while adhering to specific 
constraints related to orthogonality and normalization [29, 30].

2.15   |   Partition Analysis

To classify the continuous and ordinal data values effectively, a 
partition analysis was conducted by employing a DT algorithm. 

This analysis aimed to partition the data set in a way that would 
identify the optimal cutoff points for variables, taking into con-
sideration the relationship between the outcome and the predic-
tors. By utilizing the DT method, the study sought to determine 
the most appropriate segmentation of the data that would en-
hance the understanding of the predictive power of the variables 
in relation to the outcome variable.

2.16   |   Assessing the Importance of Features in ML 
Algorithms

The effect of each feature on the results was investigated by 
deleting that feature from the input and checking the result 
changes while the data was shuffled for each investigation. All 
the possible permutations of the features were tested using accu-
racy changes as the measure.

3   |   Results

3.1   |   Patients' Characteristic

All participants were selected from a hospital-based, case–con-
trol study conducted in 2016 at the Cancer Institute of Iran, 
Tehran. A total of 1917 women, including 942 cases and 975 con-
trols, were chosen to participate. The gathered data contained 
registry data plus Gail model variables (Table 1).

3.2   |   Models' Characteristics

The outcomes derived from the application of 10 ML algorithms 
are outlined in Table  2. Within the context of this study, the 
focal variable pertained to the patient's condition post 5 years 
subsequent to the prognostication of BC risk from the date of the 
interview. Table 2 exhibits four key metrics—namely, training 
accuracy, validation accuracy, sensitivity, and precision—for the 
various ML techniques employed. Notably, the training datasets 
revealed that the highest accuracies achieved were 70.88% for 
the Bagging-DT and 70.08% for the DT model. In contrast, the 
validation datasets indicated that AdaBoost attained the high-
est accuracy at 64.73%, followed closely by Gradient Boosting 
at 64.52%. Additionally, both Bagging-DT and Bagging-SVM 
exhibited the highest sensitivity rates, recorded at 55.13%. The 
SVM model demonstrated the greatest precision, achieving a 
rate of 74.58%. To visually illustrate the predictive performance 
of these ML methods on the validation set, Receiver Operating 
Characteristic (ROC) curves were generated and are presented 
in Figure 1. Furthermore, the SIMPLS model was assessed using 
quality metrics, yielding a Q2 value of 0.084 and an R2Y value of 
0.068, which serve as indicators of model quality.

3.3   |   The Importance of ML Algorithm Features

In Table 3, we present the crucial variables identified by differ-
ent ML algorithms, along with their relative ranks in descend-
ing order. Among the five ML algorithms, namely DT, SVM, 
RF, Bagging-SVM, and Gradient Boosting, the variable age at 
first live birth (AGEFLB) emerged as the top-ranked risk factor. 
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This indicates that AGEFLB had the highest importance in 
predicting the patient's condition post 5 years subsequent to the 
prediction of BC risk. Additionally, AGEFLB secured the sec-
ond rank in three other algorithms, SIMPLS, Bagging-DT, and 

AdaBoost, further highlighting its significance. However, it is 
worth noting that age at diagnosis (AGECAT) and number of bi-
opsies (NBIOPSIS) exhibited variations in their rankings across 
the different ML models. This suggests that these variables 

TABLE 1    |    Patients' characteristics.

Variables Code

Numbers Total mean

Cases (n = 942)
Controls 
(n = 975) Cases (n = 942)

Controls 
(n = 975)

Age at diagnosis (AGECAT)

< 50 0 579 (61.5%) 638 (65.4%) 47.19 (±10.93) 44.99 (±10.99)

> 50 1 363 (38.5%) 337 (34.6%)

Age of menarche (AGEMEN)

≥ 14 0 431 (45.8%) 438 (44.9%) 13.29 (±1.69) 13.41 (±1.66)

12–13 1 377 (40%) 435 (44.6%)

< 12 2 134 (14.2%) 102 (10.2%)

Number of biopsies (NBIOPS)

0 0 869 (92.2%) 960 (98.5%) 0.95 (±0.45) 0.02 (±0.15)

1 1 67 (7.1%) 13 (1.3%)

≥ 2 2 6 (0.6%) 2 (0.2%)

Age at first live birth (AGEFLB)

< 20 or null parity 0 424 (45%) 573 (58.8%) 22.39 (±5.36) 20.02 (±4.58)

20–24 1 281 (29.8%) 284 (29.1%)

25–29 2 149 (15.8%) 78 (8%)

≥ 30 3 88 (9.3%) 40 (4.1%)

Number of first-degree relatives 
with breast cancer (NUMREL)

0.09 (±0.36) 0.03 (±0.19)

0 0 870 (92.4%) 947 (97.1%)

1 1 58 (6.2%) 25 (2.6%)

≥ 2 2 14 (1.5%) 3 (0.3%)

TABLE 2    |    Performance comparison of various classifiers. Gradient Boosting emerges as the most accurate ML algorithm.

Approach Train accuracy Validation accuracy Sensitivity Precision

Decision tree 0.700801 0.574689 0.478632 0.574359

KNN 0.659840 0.636929 0.491453 0.672515

SVM 0.645592 0.634855 0.376068 0.745763

Random forest 0.695459 0.632780 0.482906 0.668639

Bagging-DT 0.708816 0.628631 0.551282 0.635468

Bagging-SVM 0.642030 0.628631 0.551282 0.635468

Gradient boosting 0.666963 0.645228 0.517094 0.675978

AdaBoost 0.647373 0.647303 0.538462 0.670213

XGBoost 0.706144 0.616183 0.470085 0.643275

Rostami et al. 0.63 — —
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had differing levels of importance in predicting the patient's 
condition depending on the specific ML algorithm employed. 
The variability in rankings underscores the complexity of the 
predictive models and the diverse ways in which different al-
gorithms weigh the importance of risk factors. This result gave 
insights into the relative importance of variables across various 
ML algorithms, enabling them to understand which factors play 
a significant role in predicting BC risk and subsequent patient 
outcomes.

3.4   |   Predictive Partition Analysis

The analysis of BC risk prediction, using partition analysis, re-
vealed two primary branches on either side. These branches in-
dicated that patients with a history of one or more biopsies, an 
age at first childbirth of less than 24, and an AGECAT of less 
than 26 were linked to the prediction of BC risk, and this combi-
nation of factors could predict the risk with an accuracy of 64%. 
This finding suggests that further evaluation with a larger pop-
ulation is necessary to assess the identification of cut points for 
risk prediction (Figure 2).

4   |   Discussion

We examined if ML algorithms can enhance the accuracy of 
the Gail BC prediction model in Rostami et al.'s study [15]. In 
this process, we analyzed 10 ML-based algorithms that included 
Gail model indicators (age, NBIOPSIS, age at first birth, number 
of first-degree relatives with BC, and age at menarche) to assess 
their predictive accuracy and quality features like sensitivity 
and precision. The average accuracy of ML-based models was 
determined to be 0.63, a result consistent with the findings of 
Rostami et al., indicating that the AI algorithms alone did not sig-
nificantly improve the predictability of the model. The SIMPLS 
model with Q2 = 0.0.084 also shows the same result. However, 
there were notable differences in the importance of variables be-
tween the ML algorithms and traditional models. The model de-
velopment process likely involved various ML-based analytical 
approaches, including hyperparameter optimization methods. 
Comprehending the importance and interactions of features is 
crucial in AI modeling [31]. Giving a higher weight to a specific 
feature can significantly improve model accuracy. Conversely, 
omitting that feature can lead to a notable decrease in accuracy 
and, thus, diminish the model's utility [32]. In this study, the 

FIGURE 1    |    ROC curves for all algorithms on the validation set. The highest validation accuracy was related to gradient boosting (AUC = 0.65).
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importance ranking of variables varied significantly across dif-
ferent algorithms, with some assigning a high rank to a feature 
while others assigned it a low rank (Table 3). However, the final 
accuracy of the models was generally consistent. Consequently, 
considering the relationships and correlations between features 
in AI modeling can greatly facilitate the identification of crucial 
risk factors and enhance model accuracy with better compre-
hension of the modeling process.

BC risk prediction models are typically categorized into two 
types based on the statistical analysis used: traditional and AI 
models. Traditional models can be categorized into three groups 
based on their prediction outcomes. The first group includes 
models that predict the risk of BC, stratified by the risk factors 
utilized in model development, such as demographic and he-
reditary factors. The second group comprises models that pre-
dict the risk of genetic mutations inheritance, while the third 
group incorporates both [33]. AI models are divided into two 
major groups, employing genetic and demographic risk factors 
for model design. However, certain AI models incorporate his-
topathological and radiological images through deep learning 
and convolutional neuronal network (CNN) analysis [34]. In 
recent years, there has been a rise in the extensive utilization 
of AI models, aimed at increasing the accuracy of the models. 
Nevertheless, divergent outcomes have been reported in various 
researches in terms of BC risk prediction [35]. Therefore, there 
is a probability that the observed increase in accuracy of the 
models is not due to the type of algorithms used, but rather it is 
related to the features being used. For instance, models consid-
ering indicators such as genetic factors, radiological images, and 
other strongly correlated risk factors of BC showed higher accu-
racy in comparison with similar models. In a systematic review 
conducted by Gao et al. [36], it has been shown that using image 
features and genetic risk factors are able to increase the area 
under curve (AUC) from 0.61 to 0.73 and 0.71 to 0.76 respectively 
in ML-based BC risk prediction models. This difference is also 
presented in the studies of Louro et al. [8] and Cintolo-Gonzalez 
et  al. [34], which examined and compared traditional models. 
On the other hand, the observed high accuracy noted in models 
such as Ming et  al. [9] (AUC = 0.91) and Rajendran et  al. [37] 
(AUC = 0.98) used “Personal history of cancer” and “Previous 
breast procedures” as risk factors, respectively, which strongly 
correlated with breast neoplasms. As expected, the incorpora-
tion of a greater number of intricate features tends to enhance 
the accuracy of predictive models. However, this augmentation 
also results in increased model complexity, potentially hindering 
the feasibility of utilizing the models for practical applications, 
such as patient assessment via online services. Consequently, 
this trade-off may ultimately yield models with reduced accu-
racy but with simpler user interfaces. This study is subject to 
some limitations, the consideration of patient demographics in 
the clinical assessment of an individual's risk may reduce the 
generalizability of the study findings [38]. Also, this publica-
tion lacks longitudinal follow-up data for the healthy controls. 
In conclusion, by applying and comparing both ML-based and 
traditional models, their AUC ranges were close. According to 
various research, it has been suggested that enhancing the accu-
racy of the model requires adding special risk factors such as ge-
netic and image-related variables. Altering the algorithms alone 
does not appear to be adequate for increasing the accuracy of a 
breast risk assessment model. The lack of a special advantage T
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of AI-based models for predicting the risk of BC in comparison 
with traditional models, observed in this study, highlights some 
limitations inherent in the AI modeling process, particularly in 
models that run with a limited number of features.
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