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ABSTRACT

Background: Breast cancer (BC) is a major global health concern with rising incidence and mortality rates in many developing
countries. Effective BC risk assessment models are crucial for prevention and early detection. While the Gail model, a traditional
logistic regression-based model, has been broadly used, its predictive performance may be limited by its linear assumptions. With
the rapid advancement of artificial intelligence (AI) in medical sciences, various complex machine learning algorithms have
been developed for risk prediction, including for BC.

Aims: This study aims to compare the quality of AI-based models with the traditional Gail model in assessing BC risk using a
population dataset. It also evaluates the performance of these models in predicting BC risk.

Methods and Results: This study involved 942 newly diagnosed BC patients and 975 healthy controls at the Cancer Institute
in IKH hospital Complex, Tehran. Ten classification algorithms were applied to the dataset. The accuracy, sensitivity, precision,
and feature importance in the machine learning algorithms were assessed and compared to previous studies for evaluation. The
study found that AT algorithms alone did not significantly improve predictability compared to the Gail model. However, the im-
portance of variables varied significantly among the AT algorithms. Understanding feature importance and interactions is crucial
in AI modeling in order to enhance accuracy and identify critical risk factors.

Conclusion: This study concluded that, in BC risk prediction, incorporating specific risk factors, such as genetic and image-
related variables, may be necessary to further enhance accuracy in BC risk prediction models. Furthermore, it is crucial to ad-
dress modeling issues in models with a restricted number of features for future research.

Abbreviations: BC, breast cancer; BCRAT, breast cancer risk assessment tool; DT, decision tree; IARC, International Agency for Research on Cancer; KNN, k-nearest neighbor; LR, logistic
regression; ML, machine learning; RF, random forest; SVM, support vector machine.
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1 | Introduction

Estimates from the International Agency for Research on
Cancer (IARC) in GLOBOCAN 2020 suggest that breast can-
cer (BC) is the most common cancer globally, with over 2 mil-
lion new cases annually [1]. In developing countries such as
Iran, the incidence and mortality of BC are increasing. Iran
reported approximately 17000 new cases and over 4800 deaths
in GLOBOCAN 2020, showing an increase from 13000 new
cases in 2018 [2]. Given the high prevalence and the burden
on healthcare systems, the importance of BC prevention has
become even more significant. The Gail model, a well-known
BC risk assessment tool (BCRAT), is a comprehensive logistic
regression-based model developed in 1989 to assess BC risk in
over 28000 American women [3]. Based on this model, six fac-
tors—age, number of breast biopsies, age at first birth, num-
ber of first-degree relatives with BC, race/ethnicity, and age at
menarche—influence the risk of BC.

Logistic regression is a classification model that utilizes max-
imum likelihood functions to estimate the probabilities of
various outcomes. It is traditionally employed to analyze right-
censored data [4]. The primary advantages of logistic regres-
sions are their clarity, interpretability, and lack of assumptions
about the distribution of the explanatory data [5]. However,
logistic regressions are constrained by their lack of statistical
complexity, as they presuppose a linear relationship between
the input variables and the log odds of the outcome [6]. Over
the past few years, due to the rapid advancement of artificial
intelligence (AI) in medical sciences, various complex modern
algorithms, including different machine learning (ML) and
deep learning methods, have been developed for breast can-
cer risk prediction [7-10]. Despite previous efforts to construct
BC prediction models using ML algorithms [7, 8, 11-14], there
are currently limitations in the predictive performance of
traditional and ML-based risk prediction models. This study
is aimed at evaluating the accuracy of 10 ML-based models
compared to traditional models for predicting BC using pa-
rameters from the Gail model. It used the Iranian population
dataset from the Rostami et al. study [15].

2 | Material and Methods
2.1 | Study Design

This study used data from a hospital-based, case-control in-
vestigation conducted at the Cancer Institute in IKH hospital
Complex, Tehran, from September 23, 2011, to May 16, 2016.
The recruitment of cases and controls and the study design were
detailed in a previous publication [16]. In total, there were 942
newly diagnosed patients with In situ or invasive BC as inci-
dent cases. The 975 healthy controls were frequency-matched
to the cases by 5-year age categories and residential locations.
Participants in both the case and control groups were inter-
viewed utilizing a structured questionnaire designed to gather
comprehensive data on various sociodemographic characteris-
tics, anthropometric measurements, menstrual and reproduc-
tive history, age at menarche, parity, family history of BC, age at
first pregnancy, and duration of breastfeeding. These interviews
were conducted at the hospital by trained interviewers who

were unaware of the study's hypotheses. Interviewers visited
the surgery and chemotherapy wards to identify patients who
were admitted for treatment at the Cancer Institute. Patients
were explained the study and asked to sign a written informed
consent form before participating in the interview. Patients' per-
sonal information was numerically coded to protect their pri-
vacy. Eligible patients included those with a histopathologically
confirmed diagnosis of either In situ or invasive BC, who were
at least 18years of age, had no history of concurrent cancer in
other organs, and had been newly diagnosed with cancer within
the 12 months preceding the interview. Patient recruitment
was limited to those who were hospitalized for treatment in the
surgery and oncology wards and occurred 3days a week due to
logistic issues. For each case, a control individual was chosen
among healthy female acquaintances of patients admitted to
Imam Khomeini Hospital Complex for non-cancer-related ill-
nesses. The controls were selected to be frequency-matched by
age (within 5-year intervals), place of residence (Tehran or other
provinces), and recruited around the same period as the cases.
The control group was evaluated based on the absence of any BC
diagnosis or related conditions in the preceding 12 months. BC
patients were prompted to disclose their exposure status during
the year leading up to their diagnosis. These controls were not
associated with the cancer patients. Out of the 1324 eligible con-
trols invited, 967 (73%) participated in the study, while 357 (27%)
declined to participate. The details of the study design and estab-
lishment of this case-control have been previously described in
Maleki et al. [15, 16]. This study was approved by the National
Research Ethics Committee, Ministry of Health and Medical
Education (code number: IR TUMS.IKHC.REC.1399.454, Date:
December 2020), and the authors accessed the data on January
15,2021.

2.2 | Data Pre-Processing

Gail variables needed to be extracted from the dataset. They
were used for training and validating the algorithms. The data-
set was divided into 80% for training and 20% for validation.

2.3 | Model Development

In this study, a total of 10 classification algorithms were sys-
tematically applied to a dataset aimed at BC risk assessment.
The algorithms utilized in this analysis included decision
tree (DT), bagging decision tree (Bagging-DT), random forest
(RF), logistic regression (LR), support vector machine (SVM),
bagging support vector machine (Bagging-SVM), gradient
boosting, AdaBoost, XGBoost, k-nearest neighbor (KNN),
and statistically inspired modification of partial least squares
(SMPLS). The evaluation process was structured around both
training and validation datasets, with the validation cohort
consisting of 384 subjects. This subset was generated through
an automated random sampling technique, representing 20%
of the total population of 1917 participants. The prediction
models were constructed using all variables. To quantify the
performance and reliability of each classification model, sev-
eral statistical metrics were calculated, including accuracy,
precision, and sensitivity. These metrics are critical for assess-
ing the effectiveness of predictive models and were derived
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through cross-validation (CV) methodologies. Specifically,
the leave-one-out CV procedure was employed in the SIMPLS
analysis to derive Q? (goodness of prediction) and R?Y (good-
ness of variation) values. The optimal prediction model was
determined based on the maximum values of accuracy and
Q?, ensuring that these metrics did not show a decline, which
would indicate potential overfitting. Furthermore, it was es-
sential that R?Y exceeded Q?, as this relationship serves as a
safeguard against overfitting, thereby enhancing the model's
generalizability. Grid search was used to fine-tune hyperpa-
rameters for all methods. In this study, the grid search hy-
perparameter tuning algorithm was employed for several key
reasons: (1) Exhaustiveness: Grid search examines every pos-
sible combination of hyperparameters, ensuring the identifica-
tion of an optimal solution. (2) Simplicity and clarity: The grid
search method is straightforward and easy to implement. As
a comprehensive exploratory algorithm, grid search evaluates
the performance of hyperparameters across all potential con-
figurations. It systematically tests each unique combination
within the search space to identify the one that yields the best
performance [17]. In the context of DTs, several key hyperpa-
rameters are critical for model performance that were used
in this study. These include the maximum tree depth (max_
depth), the minimum number of samples required to split an
internal node (min_sample_split), and the minimum number
of samples necessary to be at a leaf node (min_samples_leaf).
In the KNN model, the hyperparameter k (the number of near-
est neighbors) is utilized for optimization through grid search.
Grid search also optimizes the parameters of SVM, specifically
C, 7, and degree using a CV technique as a performance metric
to identify optimal hyperparameters. This study primarily fo-
cuses on two parameters of the RF classifier. The grid search
incorporates the maximum tree depth, the minimum number
of samples, max_features (which denotes the maximum num-
ber of variables used in individual trees), and n_estimators
(which indicates the total number of trees to be constructed
in the forest). In the gradient boosting method, max_depth,
min_sample_split, and min_samples_leaf are considered as
hyperparameters that are tuned using grid search. AdaBoost
can sometimes be challenging to tune due to its numerous hy-
perparameters. In this instance, we will perform grid search
on two key hyperparameters for AdaBoost: the number of
trees used in the ensemble and the learning rate. We will em-
ploy a range of well-performing values for each hyperparam-
eter. Additionally, we will define a grid of hyperparameters,
including max_depth, learning_rate, and n_estimators in the
XGBoost model, and subsequently conduct grid search.

The algorithms, training, and validation processes were all de-
veloped and implemented using the Python programming lan-
guage. version 3.8.3 and Scikit-learn library version 0.23.2 and
the class GridSearchCV available in Scikit Learn is used for
this study.

2.4 | DT

DTs are a popular supervised learning algorithm used for
both classification and regression tasks. They work by recur-
sively partitioning the input space based on the feature that
provides the maximum information gain at each step. This

results in a tree-like structure where internal nodes represent
decision rules and leaf nodes represent the final predictions.
DTs are known for their interpretability, ability to handle both
numerical and categorical data, and robustness to outliers.
However, they can be prone to overfitting, especially on com-
plex datasets [18].

2.5 | Bagging-DT

Bagging, short for Bootstrap Aggregating, is an ensemble learn-
ing technique that can be applied to DTs to improve their sta-
bility and accuracy. In Bagging-DT, multiple DT models are
trained on random subsets of the training data, and their predic-
tions are combined through majority voting (for classification)
or averaging (for regression) to make the final prediction. This
helps reduce the variance of the individual DTs and improve the
overall model performance [19].

2.6 | RF

RF is another ensemble learning method that is built on the
concept of DTs. It creates a collection of DTs, each trained on
a random subset of the features. The final prediction is made
by aggregating the predictions of the individual trees. This ap-
proach helps to reduce the overfitting problem associated with
individual DTs and thus improves the model’s generalization
ability. RF is widely used for both classification and regression
tasks and is known for its robustness to noise and outliers [20].

2.7 | LR

LR is a supervised learning algorithm primarily used for binary
classification problems. It models the probability of a binary out-
come as afunction of the input features by using a logistic sigmoid
function. LR is simple to implement, interpretable, and performs
well on linearly separable datasets. Nevertheless, it may struggle
with non-linear relationships and high-dimensional data [21].

2.8 | SVM

SVMs are a class of supervised learning algorithms that can be
used for both classification and regression tasks. SVMs work by
finding the optimal hyperplane that separates the classes with
the maximum margin. They are particularly effective in high-
dimensional feature spaces and can handle non-linear relation-
ships using kernel functions. SVMs are known for their strong
generalization performance, but they can be sensitive to the
choice of hyperparameters [22].

2.9 | Bagging-SVM

Similar to Bagging-DT, Bagging can also be applied to SVMs
to create an ensemble model called Bagging-SVM. In this ap-
proach, multiple SVM models are trained on random subsets of
the training data, and their predictions are combined to make
the final prediction. Bagging-SVM can improve the stability and
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accuracy of individual SVM models, especially on complex or
noisy datasets [23].

2.10 | Gradient Boosting

Gradient Boosting is an ensemble learning technique that com-
bines multiple weak learners, often DTs, to eventually create a
strong predictive model. It works by iteratively adding new mod-
els to the ensemble, where each new model is trained to correct
the errors made by the previous models. Gradient Boosting is
known for its high performance on a wide range of tasks and its
ability to handle various types of data [24].

211 | AdaBoost

AdaBoost, short for Adaptive Boosting, is another ensemble learn-
ing algorithm that combines multiple weak learners, typically de-
cision stumps, to create a strong classifier. It works by iteratively
adjusting the weights of the training examples, focusing more on
the misclassified instances in each iteration. AdaBoost is known
for its ability to improve the performance of weak learners and its
robustness to overfitting [25] and is well described in the term of
cancer prediction in the study of Kumar et al. [26].

2.12 | XGBoost

XGBoost, or Extreme Gradient Boosting, is a highly efficient and
scalable implementation of the Gradient Boosting algorithm. It
incorporates several optimizations, such as regularization, par-
allel processing, and efficient handling of sparse data, making it
a powerful tool for a wide range of ML tasks, including classifi-
cation, regression, and ranking [27].

213 | KNN

KNN is a non-parametric, instance-based learning algorithm used
for both classification and regression problems. It works by finding
the K closest training examples to a new input and using their la-
bels or values to make a prediction. KNN is simple to implement,
can handle non-linear relationships, and is robust to noisy data.
However, it can be computationally expensive for large datasets
and may suffer from the curse of dimensionality [28].

2.14 | Partial Least Squares

A method for partial least squares (PLS) regression, known as
the SIMPLS, computes the PLS factors by directly combining the
original variables in a linear manner. The PLS factors are cho-
sen to optimize a covariance criterion while adhering to specific
constraints related to orthogonality and normalization [29, 30].

2.15 | Partition Analysis

To classify the continuous and ordinal data values effectively, a
partition analysis was conducted by employing a DT algorithm.

This analysis aimed to partition the data set in a way that would
identify the optimal cutoff points for variables, taking into con-
sideration the relationship between the outcome and the predic-
tors. By utilizing the DT method, the study sought to determine
the most appropriate segmentation of the data that would en-
hance the understanding of the predictive power of the variables
in relation to the outcome variable.

2.16 | Assessing the Importance of Features in ML
Algorithms

The effect of each feature on the results was investigated by
deleting that feature from the input and checking the result
changes while the data was shuffled for each investigation. All
the possible permutations of the features were tested using accu-
racy changes as the measure.

3 | Results
3.1 | Patients’ Characteristic

All participants were selected from a hospital-based, case—con-
trol study conducted in 2016 at the Cancer Institute of Iran,
Tehran. A total of 1917 women, including 942 cases and 975 con-
trols, were chosen to participate. The gathered data contained
registry data plus Gail model variables (Table 1).

3.2 | Models' Characteristics

The outcomes derived from the application of 10 ML algorithms
are outlined in Table 2. Within the context of this study, the
focal variable pertained to the patient's condition post 5years
subsequent to the prognostication of BC risk from the date of the
interview. Table 2 exhibits four key metrics—namely, training
accuracy, validation accuracy, sensitivity, and precision—for the
various ML techniques employed. Notably, the training datasets
revealed that the highest accuracies achieved were 70.88% for
the Bagging-DT and 70.08% for the DT model. In contrast, the
validation datasets indicated that AdaBoost attained the high-
est accuracy at 64.73%, followed closely by Gradient Boosting
at 64.52%. Additionally, both Bagging-DT and Bagging-SVM
exhibited the highest sensitivity rates, recorded at 55.13%. The
SVM model demonstrated the greatest precision, achieving a
rate of 74.58%. To visually illustrate the predictive performance
of these ML methods on the validation set, Receiver Operating
Characteristic (ROC) curves were generated and are presented
in Figure 1. Furthermore, the SIMPLS model was assessed using
quality metrics, yielding a Q? value of 0.084 and an R?Y value of
0.068, which serve as indicators of model quality.

3.3 | The Importance of ML Algorithm Features

In Table 3, we present the crucial variables identified by differ-
ent ML algorithms, along with their relative ranks in descend-
ing order. Among the five ML algorithms, namely DT, SVM,
RF, Bagging-SVM, and Gradient Boosting, the variable age at
first live birth (AGEFLB) emerged as the top-ranked risk factor.
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TABLE1 | Patients' characteristics.

Numbers Total mean
Controls Controls

Variables Code Cases (n=942) (n=975) Cases (n=942) (n=975)
Age at diagnosis (AGECAT)

<50 0 579 (61.5%) 638 (65.4%) 47.19 (£10.93) 44.99 (+10.99)

>50 1 363 (38.5%) 337 (34.6%)
Age of menarche (AGEMEN)

>14 0 431 (45.8%) 438 (44.9%) 13.29 (1.69) 13.41 (+1.66)

12-13 1 377 (40%) 435 (44.6%)

<12 2 134 (14.2%) 102 (10.2%)
Number of biopsies (NBIOPS)

0 0 869 (92.2%) 960 (98.5%) 0.95 (+0.45) 0.02 (£0.15)

1 1 67 (7.1%) 13 (1.3%)

>2 2 6 (0.6%) 2(0.2%)
Age at first live birth (AGEFLB)

<20 or null parity 0 424 (45%) 573 (58.8%) 22.39 (+5.36) 20.02 (+4.58)

20-24 1 281 (29.8%) 284 (29.1%)

25-29 2 149 (15.8%) 78 (8%)

>30 3 88 (9.3%) 40 (4.1%)
Number of first-degree relatives 0.09 (+0.36) 0.03 (£0.19)
with breast cancer NUMREL)

0 0 870 (92.4%) 947 (97.1%)

1 1 58 (6.2%) 25 (2.6%)

>2 2 14 (1.5%) 3(0.3%)

TABLE 2 | Performance comparison of various classifiers. Gradient Boosting emerges as the most accurate ML algorithm.

Approach Train accuracy Validation accuracy Sensitivity Precision
Decision tree 0.700801 0.574689 0.478632 0.574359
KNN 0.659840 0.636929 0.491453 0.672515
SVM 0.645592 0.634855 0.376068 0.745763
Random forest 0.695459 0.632780 0.482906 0.668639
Bagging-DT 0.708816 0.628631 0.551282 0.635468
Bagging-SVM 0.642030 0.628631 0.551282 0.635468
Gradient boosting 0.666963 0.645228 0.517094 0.675978
AdaBoost 0.647373 0.647303 0.538462 0.670213
XGBoost 0.706144 0.616183 0.470085 0.643275
Rostami et al. 0.63 — —

This indicates that AGEFLB had the highest importance in
predicting the patient's condition post Syears subsequent to the
prediction of BC risk. Additionally, AGEFLB secured the sec-
ond rank in three other algorithms, SIMPLS, Bagging-DT, and

AdaBoost, further highlighting its significance. However, it is
worth noting that age at diagnosis (AGECAT) and number of bi-
opsies (NBIOPSIS) exhibited variations in their rankings across
the different ML models. This suggests that these variables
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FIGURE1 | ROC curves for all algorithms on the validation set. The highest validation accuracy was related to gradient boosting (AUC =0.65).

had differing levels of importance in predicting the patient's
condition depending on the specific ML algorithm employed.
The variability in rankings underscores the complexity of the
predictive models and the diverse ways in which different al-
gorithms weigh the importance of risk factors. This result gave
insights into the relative importance of variables across various
ML algorithms, enabling them to understand which factors play
a significant role in predicting BC risk and subsequent patient
outcomes.

3.4 | Predictive Partition Analysis

The analysis of BC risk prediction, using partition analysis, re-
vealed two primary branches on either side. These branches in-
dicated that patients with a history of one or more biopsies, an
age at first childbirth of less than 24, and an AGECAT of less
than 26 were linked to the prediction of BC risk, and this combi-
nation of factors could predict the risk with an accuracy of 64%.
This finding suggests that further evaluation with a larger pop-
ulation is necessary to assess the identification of cut points for
risk prediction (Figure 2).

4 | Discussion

We examined if ML algorithms can enhance the accuracy of
the Gail BC prediction model in Rostami et al.'s study [15]. In
this process, we analyzed 10 ML-based algorithms that included
Gail model indicators (age, NBIOPSIS, age at first birth, number
of first-degree relatives with BC, and age at menarche) to assess
their predictive accuracy and quality features like sensitivity
and precision. The average accuracy of ML-based models was
determined to be 0.63, a result consistent with the findings of
Rostami etal., indicating that the AT algorithms alone did not sig-
nificantly improve the predictability of the model. The SIMPLS
model with Q>=0.0.084 also shows the same result. However,
there were notable differences in the importance of variables be-
tween the ML algorithms and traditional models. The model de-
velopment process likely involved various ML-based analytical
approaches, including hyperparameter optimization methods.
Comprehending the importance and interactions of features is
crucial in AI modeling [31]. Giving a higher weight to a specific
feature can significantly improve model accuracy. Conversely,
omitting that feature can lead to a notable decrease in accuracy
and, thus, diminish the model's utility [32]. In this study, the
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Top five key risk factors in descending order for various ML algorithms.

TABLE 3

Rostami et al.

XGBoost SIMPLS

Random forest Bagging-DT Bagging-SVM  Gradient boosting  AdaBoost

VM

S

Decision tree

NBIOPS NBIOPS

AGECAT

AGEFLB AGECAT

AGEFLB AGEFLB AGECAT AGEFLB

AGEFLB

NUMREL

AGECAT

AGEMEN

AGEFLB NBIOPS NBIOPS AGEFLB

NBIOPS AGECAT

AGECAT

AGEFLB

AGEFLB NUMREL

NUMREL AGEMEN

AGEMEN NUMREL

NBIOPS
AGEMEN
NUMREL

NBIOPS NUMREL

AGEMEN
NUMREL

AGEMEN AGECAT
AGEFLB

NUMREL

NUMREL

AGEMEN

AGEMEN
AGECAT

NBIOPS
NUMREL

AGEMEN
AGECAT

AGEMEN

NBIOPS

NBIOPS

AGECAT

Note: AGEFLB and AGECAT are considered the top two predictors among ML algorithms.

Abbreviations: AGECAT: age at diagnosis; AGEFLB: age at first live birth; AGEMEN: age of menarche; NBIOPS: number of biopsies; NUMREL: number of first-degree relatives with breast cancer.

importance ranking of variables varied significantly across dif-
ferent algorithms, with some assigning a high rank to a feature
while others assigned it a low rank (Table 3). However, the final
accuracy of the models was generally consistent. Consequently,
considering the relationships and correlations between features
in Al modeling can greatly facilitate the identification of crucial
risk factors and enhance model accuracy with better compre-
hension of the modeling process.

BC risk prediction models are typically categorized into two
types based on the statistical analysis used: traditional and AI
models. Traditional models can be categorized into three groups
based on their prediction outcomes. The first group includes
models that predict the risk of BC, stratified by the risk factors
utilized in model development, such as demographic and he-
reditary factors. The second group comprises models that pre-
dict the risk of genetic mutations inheritance, while the third
group incorporates both [33]. AI models are divided into two
major groups, employing genetic and demographic risk factors
for model design. However, certain AI models incorporate his-
topathological and radiological images through deep learning
and convolutional neuronal network (CNN) analysis [34]. In
recent years, there has been a rise in the extensive utilization
of AI models, aimed at increasing the accuracy of the models.
Nevertheless, divergent outcomes have been reported in various
researches in terms of BC risk prediction [35]. Therefore, there
is a probability that the observed increase in accuracy of the
models is not due to the type of algorithms used, but rather it is
related to the features being used. For instance, models consid-
ering indicators such as genetic factors, radiological images, and
other strongly correlated risk factors of BC showed higher accu-
racy in comparison with similar models. In a systematic review
conducted by Gao et al. [36], it has been shown that using image
features and genetic risk factors are able to increase the area
under curve (AUC) from 0.61 to 0.73 and 0.71 to 0.76 respectively
in ML-based BC risk prediction models. This difference is also
presented in the studies of Louro et al. [8] and Cintolo-Gonzalez
et al. [34], which examined and compared traditional models.
On the other hand, the observed high accuracy noted in models
such as Ming et al. [9] (AUC=0.91) and Rajendran et al. [37]
(AUC=0.98) used “Personal history of cancer” and “Previous
breast procedures” as risk factors, respectively, which strongly
correlated with breast neoplasms. As expected, the incorpora-
tion of a greater number of intricate features tends to enhance
the accuracy of predictive models. However, this augmentation
alsoresults in increased model complexity, potentially hindering
the feasibility of utilizing the models for practical applications,
such as patient assessment via online services. Consequently,
this trade-off may ultimately yield models with reduced accu-
racy but with simpler user interfaces. This study is subject to
some limitations, the consideration of patient demographics in
the clinical assessment of an individual's risk may reduce the
generalizability of the study findings [38]. Also, this publica-
tion lacks longitudinal follow-up data for the healthy controls.
In conclusion, by applying and comparing both ML-based and
traditional models, their AUC ranges were close. According to
various research, it has been suggested that enhancing the accu-
racy of the model requires adding special risk factors such as ge-
netic and image-related variables. Altering the algorithms alone
does not appear to be adequate for increasing the accuracy of a
breast risk assessment model. The lack of a special advantage
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FIGURE2 | Prediction partition analysis of breast cancer risk prediction. Red: Cases, blue: Controls.

of Al-based models for predicting the risk of BC in comparison
with traditional models, observed in this study, highlights some
limitations inherent in the AT modeling process, particularly in
models that run with a limited number of features.
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