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Abstract. Forest fires have become a ravaging threat with incidents growing rapidly across the 17 

globe. Several approaches for forest fire detection have been presented over the years, however, the 18 

need remains for an effective, computationally efficient, and unified vision-based solution, which 19 

can easily be deployable on edge devices for real-world applications. To this end, we present a 20 

lightweight model based on a distilled vision transformer (D-ViT) to classify forest imagery into 21 

fire, smoke and normal scenarios. We used ResNet50 as a teacher model trained on the target dataset 22 

and a compressed D-ViT as a student model trained using the knowledge distillation (KD) 23 

approach. Unlike existing approaches, the proposed D-ViT framework is computationally efficient 24 

with fewer trainable parameters and is unified in terms of detecting both fire and smoke (whichever 25 

is dominant) at longer ranges with visible imagery in the scene. For experimental validation, we 26 

deployed the model on Jetson Nano board, and performed an extensive evaluation and analysis of 27 

the proposed framework on data collected from public online sources, which we have made 28 
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available on request for use by the research community. The proposed D-ViT model achieves an 29 

encouraging performance with a processing speed of 18.84 frames per second (FPS) and accuracy 30 

of 94% using soft distillation, thus demonstrating a performance improvement over the 90% 31 

accuracy obtained with the ViT (without distillation). A comparison with several other standard 32 

deep classification models also shows encouraging results, with a better trade-off between accuracy 33 

and computational efficiency.  34 

Keywords: Forest fire detection, vision transformers, knowledge distillation, lightweight model, visual 35 

imaging, early warning system. 36 

1. Introduction 37 

Forests not only provide animal habitat and human livelihoods but also provide natural protection from 38 

watersheds, prevent soil erosion, and mitigate climate change. Forest fires are unavoidable natural 39 

phenomena that have detrimental environmental impacts, adversely affecting the property, human life, 40 

and ecosystem [1], [2], [3]. According to the global forest watch [4], a total of 119 Mha tree cover was 41 

lost from fires globally from 2001 to 2021. The most tree cover loss (equal to 9.61 Mha) occurred in the 42 

year 2016. Indeed, several such incidents have been routinely reported worldwide, causing significant 43 

damage to life and ecology [5]. Specifically, in Pakistan, 5.46 Kha of tree cover has been lost between 44 

2001 and 2021 due to fires [4]. There is indeed a dire need to develop a capability, particularly in a 45 

developing country like Pakistan, to enable early forest fire detection in real-world conditions to preserve 46 

the natural resources of the forests [6]. 47 

Previously, several approaches [7] have been proposed to address the challenge under consideration. 48 

Approaches exist that utilize aerial drones to patrol and monitor forest areas for fire detection [8], [9], but 49 

have limitations in terms of simultaneous area coverage, slower response time, costs and maintenance 50 

associated with keeping a fleet of drones, and the need for trained manpower to pilot them. Other 51 

approaches have been presented that rely on a network of sensor nodes [10], [11] deployed locally across 52 

forest areas at tree heights, measuring parameters such as temperature, smoke, barometric pressure, and 53 

humidity for early detection of fire. However, the performance of such systems might suffer due to high 54 

false alarms caused by varying environmental conditions, plus the deployment, maintenance, and 55 

communication costs of the sensor nodes might be quite challenging. The vision-based approaches used 56 

a network of fixed cameras to perform forest fire detection. It is here relevant to mention that relying on 57 

traditional appearance-based image features may not be desirable [12], as such approaches could fail under 58 
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varying illumination settings. Therefore, the use of discriminative features, as employed in deep learning-59 

based approaches [13], [14], [15], [16], [17], [18] would be preferable. For instance, YOLOv5 [17] has 60 

been demonstrated to provide high-performance accuracy to detect forest fires. However, this model may 61 

not be the best choice to deploy in a real-time application on a smart edge device due to enhanced network 62 

complexity and computational cost. It would therefore be important to explore and test other lightweight 63 

network architectures to ensure effective deployment as well as real-time performance that is inevitably 64 

important for the application at hand [16], [19], [20]. There exist lightweight solutions that are based on 65 

different network architectures; however, they demonstrated the effectiveness of methods at shorter 66 

ranges [13], [14], [18] or were generally trained to detect either smoke or fire [1], [2], [3], [14], [16], [18], 67 

[21]. It would instead be desirable to have a unified trained network capable of detecting both smoke and 68 

fire at longer ranges (of the order of a few kilometers), deployable in real-world forest scenes, to allow 69 

early detection and a timely response by government authorities. 70 

Vision Transformers (ViT) have reformed image classification by leveraging attention mechanism to 71 

capture long-range dependencies and complex patterns in visual data [22]. Unlike convolutional neural 72 

networks, ViTs treat images as sequences of patches, enabling them to model the global context 73 

effectively. ViTs have proven their strength by showing high performance on benchmark datasets. 74 

However, the high computational cost and large model size pose challenges to their deployment for real-75 

world applications on smart embedded systems, which require lightweight and efficient models [23].  76 

Therefore, the appropriate network choice needs to be made considering factors such as reduced network 77 

complexity, a better trade-off between accuracy and computational cost, and the ability to learn 78 

discriminative features at longer ranges. To address this requirement, the knowledge distillation 79 

framework [24], [25] presents a solution by distilling the knowledge from a large deep pre-trained teacher 80 

model into a smaller student model, through this we can significantly reduce the student model's 81 

complexity while maintaining its performance [26]. This distillation process involves training the student 82 

model to mimic the teacher's outputs while preserving its performance advantages in a compact form, 83 

suitable for embedded applications.  84 

In this paper, we present a framework based on a unified, lightweight D-ViT model designed to accurately 85 

differentiate between fire, smoke, and normal scenes in video streams captured by camera nodes deployed 86 

in actual forest sites. Unlike complex architectures, our model is compact and trained via knowledge 87 

distillation (KD) for improved performance and specifically targeted for low-power edge devices. The 88 

system incorporates a camera, embedded hardware platform, communication setup, and GUI-based 89 

application for the entire process. We demonstrate an extensive performance evaluation and comparison 90 
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of the trained model on real public data collected from online sources with other related models in terms 91 

of several performance measures as well as the computational cost by means of deployment on an 92 

embedded platform (Jetson Nano – Maxwell GPU, Quad-Core ARM Cortex-A57 Processor, 4GB 93 

Memory) to assess the suitability for real-world applications. Overall, the results are very encouraging in 94 

terms of both performance accuracy and computational cost. We also make the collected data available on 95 

request here to facilitate its use by the community for reproducibility and comparisons. 96 

This paper is organized as follows. Section 2 presents the proposed framework in detail. Section 3 97 

provides the experimental validation by describing datasets (Sec. 3.1) and a detailed analysis of the results 98 

(Sec. 3.2). This is followed by conclusions in Sec. 4. 99 

 100 

2. Proposed Forest Fire And Smoke Detection Framework 101 

2.1 Overview 102 

The proposed system aims to address the limitations discussed in the previous section and offer a 103 

lightweight end-to-end framework for the early detection of forest fire and smoke based on the analysis 104 

of visual imagery coming from camera node(s) mounted on accessible high structures and covering longer 105 

ranges and areas. Here, we present a proof of concept for a single camera node, but the concept is scalable 106 

to a network of camera nodes deployed at multiple locations in a forest. A camera node outputs 2D images 107 

that are pre-processed before feeding them into the trained D-ViT network at the sensor edge for the 108 

detection of fire and smoke. We performed response-based KD with ResNet50 [27] a deep CNN as a 109 

teacher model trained on a target dataset (Fire, Smoke and Normal Images), and compressed distillable 110 

ViT as a student model for the main classification task (details in Sec. 2.2). 111 

We used the Jetson Nano developer kit as the embedded platform, which is reliable and widely used in 112 

applications involving image processing and deep learning tasks [28] (Sec. 2.3). A graphical user 113 

interface-based application is designed to enable an operator in the control room to monitor and access 114 

live video stream(s) from multiple node(s) simultaneously (Sec. 2.4). On detection of fire and/or smoke, 115 

an early warning is generated, and the information is relayed back to relevant authorities through IoT 116 

infrastructure to act in an effective and timely manner. 117 

 118 

2.2 Proposed Framework 119 

Knowledge distillation is the transfer of knowledge to a smaller model known as the student typically with 120 

less complexity and fewer trainable parameters from a large teacher model. Researchers have utilized 121 

different types of KD to leverage the information from the teacher model to guide the learning of the student 122 

https://forms.gle/j1oLAHG3tNZ4wJFUA
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model, enabling the student to achieve the desired performance with reduced complexity. These include 123 

response-based KD [29], [30] in which the student model is trained to mimic the soft labels (probability 124 

distribution over target classes) for each input from the teacher model output. Feature-based KD [31], [32], 125 

[33] in which the student model is trained to match the activations of particular hidden layers inside the 126 

teacher network. Relation-based KD [34], [35], [36] in which student model can be trained using 127 

information that captures the relationship between feature maps in addition to the knowledge contained in 128 

the output and intermediate layers of a teacher network. In the proposed framework, training of the D-ViT 129 

model through response-based KD aims to replicate the performance of the ResNet50 model while keeping 130 

the computational complexity of the D-ViT model to the minimum.  131 

 132 

2.2.1 ResNet50 as Teacher Model  133 

ResNet, short for "Residual Network," is a type of convolutional neural network (CNN) developed by 134 

Microsoft Research in 2015. It uses residual connections between layers to learn residual errors not 135 

captured by previous layers, improving learning and performance in deep networks. This helps to reduce 136 

the vanishing gradient problem [37], which is a common issue in deep learning where the error gradients 137 

become very small as they are back-propagated through the network, making it difficult for the network 138 

to learn.  139 

The ResNet50 architecture consists of three main parts: the stem block, the sequential block, and the 140 

classification head (Figure 1). The stem block is the initial part of the network that is responsible for 141 

extracting features from the input images. It typically includes several layers, such as convolutional layers, 142 

pooling layers, and activation layers, which are designed to process the input data and extract useful 143 

features. The sequential block is the middle part of the network and is composed of multiple sequential 144 

layers. These layers take the output of the stem block as their input and further process the extracted 145 

features to produce more abstract and higher-level representations of input data. The classification head 146 

is the final part of the network and is responsible for making predictions based on the features extracted 147 

by the stem and sequential blocks. It typically includes one or more fully connected layers and a final 148 

output layer that produces the predicted class probabilities.  149 

ResNet50 has been widely used in various computer vision tasks and has achieved state-of-the-art 150 

performance in many cases. For example, it has been demonstrated to achieve better accuracy, when fine-151 

tuned with the pre-trained weights of the ImageNet dataset and modified its fully connected layer 152 

accordingly [38], [39]. 153 
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The architecture of ResNet50 [27] is similar to the traditional CNN’s with additional skip connections in its 154 

residual blocks (Figure 1). The skip connection in the residual network connects the activation output of the 155 

previous layer of the network to the next layers by just skipping the layer between two blocks. The residual 156 

connection directly adds the input value to the end of the block [40]. This residual connection does not go 157 

through the activation functions, thus avoiding the squashing of derivatives and resulting in a higher overall 158 

derivative of the block. The identity block is used when the input and the output activations have the same 159 

dimension for addition, whereas the convolutional block is utilized when the input and output do not have 160 

the same dimensions. 161 

 162 

 163 

Figure 1 Architecture of the ResNet50 (Teacher) model showing stem, sequential, and classification head blocks (left), a 164 

single residual block with skip connection (middle), and the identity block with skip connection (right). 165 

 166 

To pre-train the teacher model on the target dataset for a downstream task the fully connected layer of our 167 

ResNet50 has been modified and it contains a layer with 2,048 input features and 128 output features. Then, 168 

the ReLU rectified linear activation function is applied and the output of this layer is passed to the layer 169 
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with 128 input features and 3 output features, i.e. the number of classes under consideration. This is followed 170 

by applying Softmax activation for a prediction that gives the probability of each class label. We used the 171 

cross entropy loss function to measure the error between predicted and target values while training the 172 

network. We empirically set the learning rate to 0.0005 and epochs to 30. The choices of hyper-parameters 173 

are discussed in Sec. 3. 174 

 175 

2.2.2  D-ViT as Student Model  176 

A distillable vision transformer is a variant of the standard vision transformer (ViT) designed to replicate 177 

performance through KD from a particular teacher model known for its deep architecture and high 178 

performance capabilities [41], [42], [33]. 179 

In the proposed D-ViT framework, the input image is first divided into fixed-size patches, which are then 180 

linearly embedded into a sequence of vectors. Alongside these patch embeddings, two special tokens are 181 

added, the classification token and the distillation token. The classification token is used for the main 182 

classification task, while the distillation token is specifically used to learn from the ResNet50 during the 183 

distillation process. The distillation token enables the D-ViT to learn additional information from the 184 

ResNet50 outputs, helping it to better mimic the teacher's response and to improve its performance. Similar 185 

to the classification token, the distillation token interacts with the patch embeddings and the classification 186 

token through the self-attention mechanism in each transformer layer [43]. This allows the distillation token 187 

to capture information from all parts of the input image and the classification token. The sequence of patch 188 

embeddings, along with the classification and distillation token, is passed through multiple layers of the 189 

transformer encoder of D-ViT. Each encoder layer comprises multi-head self-attention mechanisms and 190 

feed-forward neural networks (MLPs), allowing the model to capture complex patterns and dependencies 191 

in the data (Figure 2). During training, the D-ViT is supervised not only by the actual labels but also by the 192 

targets provided by the ResNet50 model. In the soft distillation process, soft targets are the output 193 

probabilities of the teacher model, which holds information about the data distribution and class 194 

relationships. Whereas in hard distillation, the student model is trained using the hard labels from the teacher 195 

model, which are the class predictions (the final output class) rather than the probabilities of each class. The 196 

training objective combines the standard classification loss with the distillation loss, which measures the 197 

divergence between the D-ViT and ResNet50 output distributions. This dual supervision ensures that the D-198 

ViT model learns to replicate the ResNet50 performance while optimizing the primary classification task. 199 

During training, the final representation of the distillation token is used to align the student model's outputs 200 
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with the teacher model's outputs. This is typically done by minimizing a distillation loss between the 201 

student’s distillation token output and the teacher’s output.  202 

 203 

 204 

Figure 2 Architecture of the D-ViT model showing image patches along with classification (CLS) and distillation (DST) 205 

token, and Transformer block with Multi-Head Self-Attention and Feedforward neural network.  206 

Overall, a D-ViT utilizes the power of transformer architectures and the efficiency of response-based KD 207 

[44] to create a model that is both high-performing and computationally efficient, making it suitable for 208 

deployment on resource-constrained edge devices while maintaining high accuracy.Mathematically, the 209 

process of distillation is explained as follows. The teacher model logits 𝑇𝑙 are computed using equation 1, 210 

where the 𝑥 denotes the input image batch to the teacher model. 211 

𝑇𝑙 = 𝑡𝑒𝑎𝑐ℎ𝑒𝑟(𝑥)                     Equation 1 212 

𝑇𝑙  teacher logits represent the raw predictions of the teacher model for each class (Fire, Smoke, Normal) 213 

before the softmax function is applied. 214 

(𝑆𝑙 , 𝑑𝑠) = 𝑠𝑡𝑢𝑑𝑒𝑛𝑡(𝑥, 𝑑𝑖𝑠𝑡𝑖𝑙𝑙𝑡𝑜𝑘𝑒𝑛)                                         Equation 2 215 

In equation 2, 𝑆𝑙  are the student model logits, distilltoken is the randomly generated distillation token and 216 

𝑑𝑠 are the distillation tokens from a student model. The distillation token is a learnable parameter initialized 217 
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as a random tensor initially and is adjusted during the training process through backpropagation, just like 218 

any other learnable parameter in a network. 219 

𝐿𝑚𝑙𝑝 = 𝑑𝑖𝑠𝑡𝑖𝑙𝑙 𝑚𝑙𝑝(𝑑𝑠)                             Equation 3 220 

In equation 3, 𝐿𝑚𝑙𝑝 represents the distillation logits produced by the distillation MLP (multi-layer 221 

perceptron)  unit applied to the distillation tokens from the student model. Specifically MLP unit is a simple 222 

fully connected neural network with one or more hidden layers. 223 

𝐿𝑜𝑠𝑠 = 𝐿𝐶𝐸(𝑆𝑙 , 𝑦)                                                              Equation 4 224 

Equation 4 is the standard cross-entropy loss between the student logits 𝑆𝑙 and the actual labels 𝑦. 225 

𝐿𝑑𝑖𝑠𝑡𝑖𝑙𝑙 (𝑠𝑜𝑓𝑡) = 𝑇2 ⋅ 𝐿𝐾𝐿(𝑙𝑜𝑔_𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝐿𝑚𝑙𝑝

𝑇
), 𝑙𝑜𝑔_𝑠𝑜𝑓𝑡𝑚𝑎𝑥(

𝑇𝑙

𝑇
))   Equation 5 226 

Equation 5 computes the Kullback-Leibler divergence between the softened logits of the student and the 227 

teacher, scaled by 𝑇, where 𝑇 is the temperature parameter for soft distillation. When the logits are divided 228 

by the temperature 𝑇 and passed through the softmax function, the resulting probability distribution becomes 229 

more uniform for higher values of 𝑇. Temperature scaling enables the student model to not only focus on 230 

higher probabilities but also on a relative class relationship. 231 

For hard distillation: 232 

𝐿𝑑𝑖𝑠𝑡𝑖𝑙𝑙 (ℎ𝑎𝑟𝑑) = 𝐿𝐶𝐸(𝐿𝑚𝑙𝑝 , 𝑎𝑟𝑔𝑚𝑎𝑥(𝑇𝑙))                                            Equation 6 233 

Equation 6 represents the cross-entropy loss calculated between the student model's predictions and the hard 234 

labels obtained from the teacher model's highest probability predictions. 235 

Total loss 𝐿𝑡𝑜𝑡𝑎𝑙  is computed using equations either 7 or 8 for the training process based on hard and soft 236 

distillation choice (Figure 3).    237 

𝐿𝑡𝑜𝑡𝑎𝑙 = (1 − 𝛼) ⋅ 𝐿𝑜𝑠𝑠 + 𝛼 ⋅ 𝐿𝑑𝑖𝑠𝑡𝑖𝑙𝑙 (𝑠𝑜𝑓𝑡)                             Equation 7 238 

𝐿𝑡𝑜𝑡𝑎𝑙 = (1 − 𝛼) ⋅ 𝐿𝑜𝑠𝑠 + 𝛼 ⋅ 𝐿𝑑𝑖𝑠𝑡𝑖𝑙𝑙 (ℎ𝑎𝑟𝑑)                                       Equation 8 239 

In the proposed scheme, the student model D-ViT is configured with the following parameters, a patch size 240 

of 16x16 pixels. The model's dimensionality is set to 256, which corresponds to the size of the embedding 241 

vectors for each patch. The model includes six transformer layers, each with five attention heads. The 242 

feedforward network within each transformer layer has an inner dimensionality of 1,024, calculated as four 243 

times the embedding dimension. Dropout rates are set to 0.2 for the dropout within the transformer layers 244 

and 0.1 for the dropout applied to the patch embeddings.  245 

During the distillation process, distillation logits from distillation MLPs are compared against the teacher's 246 

output (Figure 3). The total loss is a weighted combination of the student prediction loss (cross-entropy 247 

between the student's predictions and true labels) and the distillation loss. In the forward pass, the student 248 
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model makes predictions, and the distillation loss compares these predictions with the teacher model's soft 249 

targets or hard labels.  In the backward pass, the student model weights are updated based on this total loss 250 

to improve its performance during training. The soft distillation loss is calculated using Kullback-Leibler 251 

(KL) divergence between the softened (temperature-scaled) logits of the teacher and the student, scaled by 252 

a temperature of 15 and combined with an alpha of 0.6, indicating a trade-off between the main task loss 253 

and the distillation loss. In contrast, for hard distillation cross-entropy is used instead, comparing the 254 

student's distillation logits with the hard labels from the teacher's predictions. 255 

 256 

 257 

Figure 3 Block diagram showing the process of knowledge distillation where a student model (D-ViT) learns from a teacher 258 

model (ResNet50) using either soft or hard distillation loss. 259 

   260 

2.3   Components of Edge Node 261 

We have deployed and evaluated the system on an embedded platform, Nvidia Jetson Nano Maxwell 262 

GPU, Quad-Core ARM Cortex-A57 Processor, 4GB Memory. It has a micro SD slot for a micro SD 263 

Storage card with OS and data storage, 40-pin extension headers, two power input ports, 5V micro USB 264 

and DC barrel jack for 5V power input, four 3.0 USB ports, HDMI output port, Display port connector, 265 

and MIPI-CSI two camera connectors, Ethernet port, and UART headers. A network camera can be 266 

attached to the Jetson Nano board via a USB port and the system can be powered with a solar plate for 267 

battery charging and a supply mechanism for a node to work day and night. A network camera and Wi-268 

Fi communication module are tested with the board for a proof of concept to assess the stability of 269 

communication between the node and the control room, supposedly to be managed by authorities. Each 270 

of the node that is deployed on the forest site can be accessed remotely. This remote accessing capability 271 

is useful to deal with any fault occurring at the node edge while performing scene monitoring.  272 
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 273 

2.4  GUI-based Application 274 

We have developed a desktop application with a graphical user interface (GUI) that allows users to access 275 

and visualize live streams from camera nodes deployed across a forest site. The user interface has address 276 

bars where the user can provide the address (e.g. IP or any other address) to access the corresponding 277 

data. The purpose of the application is an instantaneous visualization of imaging data plus its storage on 278 

a daily basis with the specific date and time stamp information saved for any later use by authorities. 279 

Figure 4 shows the application’s front end and its interface containing several features. The video streams 280 

coming from different camera nodes are simultaneously accessible in different windows. If and when an 281 

incident (fire or smoke) is detected, an alert is accordingly generated in the corresponding node window. 282 

 283 

 284 

Figure 4 GUI of the desktop application. 285 

 286 

3.  Experimental Validation 287 

In this section, we first describe the dataset followed by an analysis of the results. As part of the results, 288 

we describe the model training as well as performance evaluation and comparison with other approaches 289 

along with a discussion on the computational complexity of the network. 290 

 291 
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3.1 Dataset 292 

As for the choice of the dataset, there is an absence of a comprehensive real-world dataset with enough 293 

challenges and complexity for the problem under consideration. We made the best effort to create a 294 

customized dataset by collecting the available data from various public sources, focusing on fire, smoke, 295 

and normal scenes in forests. We carefully excluded any irrelevant samples, like indoor scenes, to keep it 296 

specific to forest environments and to ensure there are enough samples for the three classes under 297 

consideration: fire, smoke, and normal scenarios.  The sources include Forest Fire dataset [45], [46] and 298 

Wild fire dataset [47], Dfire dataset [48], and the FESB MLID dataset [49]. Figure 5 shows representative 299 

images for fire, smoke, and normal scenarios from the dataset.  300 

 301 

 302 

Figure 5 Representative image samples for (a) Fire, (b) Smoke, and (c) Normal Scenarios. 303 

 304 

We therefore created an initial dataset using 3,690 images (70% for training, 20% for validation, 10% for 305 

testing): this specifically includes 2,577 training images (859 for each of the three classes), 736 validation 306 

images fire, normal, and smoke in the ratio of (246+245+245), and 368 test images (124+122+122). For 307 

a more thorough evaluation, more unseen test data was added with 1,132 additional images from the 308 
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above-mentioned sources, making the tally for three classes to 1,500 test images: Fire – 500, Normal – 309 

500, Smoke – 500. The dataset has been created keeping in view a diversity of challenges including fire 310 

and smoke, specifically for forest scenarios captured from different ranges, varying illumination settings, 311 

clutter, and different backgrounds.  312 

The dataset for training was pre-processed by transforming and augmenting, including resizing to  313 

224x224, random resize cropping, random horizontal flipping, random rotation with 20 degrees, and 314 

finally normalizing it after converting it to a tensor.  315 

To also test the effectiveness of the framework on temporal data, we collected 30 real-world video 316 

sequences from different public online sources (pexels; istockphoto; pixabay; shutterstock), containing 317 

fire, smoke, and normal scenarios. The sequences are selected keeping in view various challenges such 318 

as varying sequence length, frame resolution, and scene capture from varying ranges. 319 

 320 

3.2  Results and Analysis 321 

We used the well-known open-source machine learning framework, PyTorch, to train ResNet50 teacher 322 

and D-ViT student models on varying combinations of learning rates and optimizers while keeping epochs 323 

fixed to 30 (Table 1, 2). 324 

For training the ResNet50 model, we chose a learning rate of 0.0005 and Adam optimizer as it maximizes 325 

accuracy. The training loss changed from 0.000309 to 0.000232, and validation accuracy changed from 326 

0.91 to 0.93, the teacher model achieved an overall accuracy of 95% on test data.  327 

Similarly, for training a D-ViT with ResNet50 as a teacher, we chose a learning rate of 0.000025 and 328 

Adam optimizer. The training loss changed from 0.37 to 0.12 and validation accuracy changed from 0.69 329 

to 0.90, and the model achieved an overall accuracy of 94% on test data when trained using soft 330 

distillation. Figure 6 shows the training, validation loss and accuracy curves corresponding to the results 331 

of the D-ViT for 30 epochs with a learning rate of 0.000025 and Adam optimizer. 332 

For an objective of detailed performance evaluation of the proposed D-ViT, we used the Precision, Recall, 333 

F1-score, and Accuracy measures. Precision evaluates the performance in terms of true positives and false 334 

positives. Recall assesses the performance based on true positives and false negatives. F1-score computes 335 

the performance as a harmonic mean of Precision and Recall scores. Accuracy calculates the performance 336 

using true positives, false positives, false negatives, and true negatives. 337 

 338 

 339 

 340 

https://www.pexels.com/search/videos/forest%20fire/
https://www.istockphoto.com/en/search/2/image-film?phrase=forest%20fire
https://pixabay.com/images/search/forest%20fire%20videos/
https://www.shutterstock.com/video/search/forest-fire
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Table 1 Choice of hyper-parameters for training the teacher model ResNet50. SGD:  Stochastic gradient descent; Adam: 341 

Adaptive moment estimation 342 

 343 

Table 2 Choice of hyper-parameters for training the student model D-ViT.  344 

 345 

Table 3 shows the performance of the proposed D-ViT model with hard and soft distillation in terms of 346 

the Precision, Recall, F1-score, and Accuracy measures on the test data. For comparison, the table also 347 

lists performance scores of four other state-of-the-art deep networks – including InceptionV3, ResNet18, 348 

ResNet101, VGG16 – all trained and tested on the same dataset.  349 

 350 

     351 

Figure 6 (a) Training and validation loss, (b) Training and validation accuracy, plots corresponding to a learning rate of 352 

0.000025 and Adam optimizer for a D-ViT model. 353 

 354 

Epoch Learning Rate Optimizer Training Loss Validation Accuracy Test Accuracy 

30  0.0001 SGD 0.000427 - 0.000422 0.38-0.49  0.46 

30 0.0005 SGD 0.000437 - 0.000397  0.39-0.78  0.85 

30 0.0001 Adam 0.000370 - 0.000230  0.88-0.93  0.95 

30 0.0005 Adam 0.000309 - 0.000232 0.91-0.93 0.95 

Epoch Learning Rate Optimizer Training Loss Validation Accuracy Test Accuracy 

30 0.000025 SGD 0.57-0.51     0.33-0.30         0.50 

30 0.000025 Adam 0.37-0.12     0.69-0.90         0.94 
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Additionally, (Table 3) also includes the performance of the same ViT (Only) when trained and tested 355 

without the distillation process. It is evident that the proposed D-ViT achieves the overall best 356 

performance in terms of classification accuracy compared to other models and improved performance 357 

when trained using soft distillation from ResNet50. The confusion matrix plot (Figure 7) shows how well 358 

the proposed D-ViT model predicts the correct classes by comparing actual and predicted values and 359 

identifies specific areas of misclassification.  360 

We also computed the cumulative performance in terms of Average Precision, Average Recall, and 361 

Average F1 score (Figure 8). D-ViT consistently shows the best performance based on all measures while 362 

being the least complex model. Figure 9 shows the qualitative results of the proposed framework on 363 

representative test images for the three classes (Fire, Smoke, Normal). 364 

Another important aspect to evaluate for the problem at hand is to assess the computational cost, which 365 

is inevitably important for deployment in a real-time application. Table 4 provides the computational 366 

performance analysis in terms of the resource utilization (CPU RAM usage, GPU usage) and 367 

computational time taken to classify all of the 1,500 test samples by deploying models on the Jetson Nano 368 

board. 369 

 370 

Table 3 Performance evaluation and comparison of the proposed D-ViT with other deep learning models in terms of Precision, 371 

Recall, F1-score, and Accuracy measures. 372 

Model Precision Recall F1- score Test 

Accuracy 

 Fire Smoke Normal Fire Smoke Normal Fire Smoke Normal  

InceptionV3 0.97 0.76 0.97 0.92 0.98 0.73 0.94 0.86 0.84 0.88 

ResNet18 0.92 0.92 0.91 0.98 0.86 0.92 0.95 0.89 0.92 0.92 

ResNet101 0.98 0.87 0.96 0.96 0.96 0.89 0.97 0.92 0.92 0.94 

VGG16 0.97 0.87 0.97 0.98 0.96 0.86 0.98 0.91 0.91 0.93 

ViT (Only) 0.87 0.91 0.93 0.96 0.86 0.88 0.91 0.88 0.90 0.90 

D-ViT (Hard) 0.95 0.92 0.92 0.94 0.89 0.96 0.95 0.91 0.94 0.93 

D-ViT (Soft)  0.95 0.92 0.94 0.97 0.91 0.93 0.96 0.92 0.93 0.94 
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 373 

Figure 7 Confusion matrix plot for test data classification using D-ViT model. 374 

 375 

In terms of complexity analysis, D-ViT is ranked first by obtaining the least computational time to classify 376 

the entire test data and trainable parameters of (79.62 sec) and (5 million) respectively, with the lowest 377 

resource utilization of 1.8GB and 0.3GB for CPU-RAM and GPU respectively, while maintaining the 378 

better performance over other deep CNNs. Therefore, the proposed D-ViT with the application of 379 

response-based KD using soft distillation presents a preferred choice based on the acceptable trade-off 380 

between performance and computational cost (Table 3,4). 381 

  382 

 383 

Figure 8 Cumulative performance in terms of Average Precision, Average Recall, and Average F1-score. 384 
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 385 

 386 

Figure 9 Qualitative results of the proposed framework on representative test samples for each of the three classes (Fire, 387 

Smoke, Normal). 388 

 389 

For a more holistic evaluation of  D-ViT, we further analyzed its performance on 30 real video sequences 390 

containing the 12 Fire, 8 Smoke, and 10 Normal scenarios as already described in Sec. 3.1. The resolution 391 

of video sequences ranges from 640x360 to 3840x2160 and the sequence length vary from 57 to 3,564 392 

frames. For each test video, the entire sequence is labeled as either fire, smoke, or normal as its actual 393 

label, and the predicted labels for each frame are noted. The overall confusion matrix is then calculated 394 

by comparing the predicted and actual labels across all videos, showing the true positives, false positives, 395 

true negatives, and false negatives (Figure 10). The cumulative performance in terms of average Precision, 396 

Recall and F1-score is calculated to be 0.95, 0.95, and 0.95, respectively, with overall accuracy of 0.95 397 

for all video sequences. The experimentation is performed again on the Jetson Nano board to analyze the 398 

real-time performance. This separate analysis highlights the robustness and efficiency of the D-ViT model 399 

in real-world, diverse video scenarios. While the proposed model achieved an average FPS of 13.25 on 400 

the video sequences, lower than the FPS of 18.84 as obtained on image-based test data (described above). 401 

This difference suggests that while D-ViT is effective in terms of classification accuracy across different 402 

scenarios, its temporal processing performance may slightly decrease in more complex or varied real-403 
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world conditions. In such cases, the use of more powerful edge devices with better processing power 404 

could be preferable to further improve the processing speed.  405 

 406 

 407 

Figure 10 Confusion matrix plot for the temporal data evaluation using D-ViT model. 408 

 409 

Table 4 Computational performance evaluation in terms of resource utilization and computational time taken to classify all of 410 

the test samples, by deploying models on Jetson Nano board. 411 

 412 

 413 

Indeed, the proposed D-ViT is a lightweight student model with 5 million trainable parameters and 3.10 414 

GFLOPs (109, floating point operations), achieving an improved classification accuracy of 94% (with 415 

distillation) as compared to 90% (without distillation). In comparison, the teacher model (ResNet50) has 416 

a much more increased architectural complexity with 24 million parameters and 4.13 GFLOPs, achieving 417 

an accuracy of 95%. Therefore, through effective knowledge distillation, the proposed D-ViT model 418 

Model Parameters 

(Million) 

 CPU RAM Usage (GB) GPU Usage (GB) Computational 

Time (sec) 

FPS 

InceptionV3 24  2.0 1.6 303.38 4.94 

ResNet18 12  2.6 0.9 214.02 7.01 

ResNet101 45  2.2 1.5 223.37 6.72 

VGG 16 138  2.8 1.2 485.91 3.09 

D-ViT 5  1.8 0.3 79.62 18.84 
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reports a comparable performance to the teacher model, while offering a significant (4.8 times) reduction 419 

in parameters and (~1.33 times) reduction in FLOPs. 420 

 421 

4. Conclusion 422 

This paper presented an efficient and unified framework that is aimed at the early detection of forest fire 423 

as well as smoke, deployable in real-world applications for longer ranges. Specifically, the proposed 424 

framework relied on D-ViT for instantaneous classification of the Fire, Smoke, and Normal scenarios 425 

using camera node(s) (equipped with edge computing) for forest sites, and generating an alert if and when 426 

an incident (fire or smoke) is detected. The framework also consists of a GUI-based desktop application 427 

that enables accessibility and visualization of the stream(s) coming from camera node(s), as deployed 428 

across a forest site.  429 

We performed an extensive evaluation of the proposed framework on real datasets collected from various 430 

public online sources based on several measures. The results show that the proposed D-ViT reports the 431 

best trade-off in terms of accuracy and computational cost (when deployed on Jetson Nano) as compared 432 

to four other state-of-the-art networks, making it a more suitable choice for real-world applications. 433 
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Figure Captions: 589 
 590 
Figure 1 Architecture of the ResNet50 (Teacher) model showing stem, sequential, and classification head blocks (left), a single 591 

residual block with skip connection (middle), and the identity block with skip connection (right). 592 

Figure 2 Architecture of the D-ViT model showing image patches along with classification (CLS) and distillation (DST) token, 593 

and Transformer block with Multi-Head Self-Attention and Feedforward neural network.  594 

Figure 3 Block diagram showing the process of knowledge distillation where a student model (D-ViT) learns from a teacher 595 

model (ResNet50) using either soft or hard distillation loss. 596 

Figure 4 GUI of the desktop application. 597 

Figure 5 Representative image samples for (a) Fire, (b) Smoke, and (c) Normal Scenarios. 598 

Figure 6 (a) Training and validation loss, (b) Training and validation accuracy, plots corresponding to a learning rate of 599 

0.000025 and Adam optimizer for a D-ViT model. 600 

Figure 7 Confusion matrix plot for test data classification using D-ViT model. 601 

Figure 8 Cumulative performance in terms of Average Precision, Average Recall, and Average F1-score. 602 

Figure 9 Qualitative results of the proposed framework on representative test samples for each of the three classes (Fire, 603 

Smoke, Normal). 604 

Figure 10 Confusion matrix plot for the temporal data evaluation using D-ViT model. 605 

 606 
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