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ABSTRACT This paper develops analytical expressions to describe the behavior of harmonic components
in rectifier circuits. It examines how harmonic content in the supply voltage influences the harmonic
currents drawn by energy-efficient loads. By analyzing these interactions, the study provides insights
into circuits integrating single-phase AC/DC converters, such as LED lamps. The findings emphasize the
interdependence between harmonic phase angles and their impact on load current harmonics, which is
essential for understanding supply voltage distortions and their effects on electrical loads. The assumptions
established in this study support the development of more accurate models for characterizing load harmonic
currents, enhancing the predictive capabilities of harmonic estimation methods. Furthermore, the proposed
computational approach determines key rectifier performance parameters, including peak voltage across
the bulk capacitor and the peak time relationship with harmonic components of the voltage waveform.
These insights provide a deeper understanding of rectifier circuit behavior under distorted supply conditions,
demonstrating the quantifiable impact of harmonic phase angles on rectifier capacitor dynamics offering
practical implications for harmonic analysis, and performance optimization. The analytical framework
developed here enables a more precise characterization of peak voltage timing and magnitude, which is
critical for evaluating rectifier operation under various harmonic conditions.

INDEX TERMS Harmonic modeling, rectifier circuits, ac/dc converters.

I. INTRODUCTION
In electrical supply systems, the presence of harmonics can
lead to an elevation in peak voltage levels [1]. In order to
comprehensively grasp this issue, it is essential to first inves-
tigate the impact of harmonics on voltage waveforms. [2],
[3], [4]. Harmonics are typically produced by nonlinear loads,
including devices like switch mode power supplies, variable
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speed drives, and other electronics that draw non-sinusoidal
current from the power source [5], [6], [7], [8], [9]. These
loads cause a distortion in the current waveforms they draw,
resulting in an alteration of peak voltage characteristics [10],
[11]. This distortion manifests when the voltage waveform
peaks exceed those of an ideal sinusoidal waveform, resulting
from harmonic currents generated by nonlinear loads [12],
[13], [14]. The supply voltage waveform can be described
as:

uLVAC (t) = u1(t) + u2(t) + u3(t) + . . . + un(t) (1)
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uLVAC (t) = U1M ·sin (ω1t + ϕ1) + U2M · sin (ω2t + ϕ2) + . . .

+ UNM ·sin (ωN t + ϕN ) (2)

Here u1(t) is the fundamental voltage component having
magnitudeU1M , frequency ω1 and phase angle ϕ1, alsoUNM ,
ωN and ϕN , are magnitude, frequency and phase angle of the
nth voltage harmonic in supply uLVAC (t).
Ideally, the series expression in equation (1) includes all

harmonics, but in practice, the odd-order harmonics dominate
the waveform [15]. The dominance of odd harmonic con-
tent can be attributed to the repetitive characteristics of the
waveform. Notably, even-order harmonics gain significance
primarily in the presence of variations in waveform shape
that occur from one cycle to the next [16]. Accordingly,
in this study, only odd-order harmonics will be taken into
consideration, while even-order harmonics are presumed to
possess a magnitude of zero.

The peak time (tPeak ) of a voltagewaveform depends on the
amplitude and phase angle of the voltage harmonics [1], [16],
[17], [18]. This tPeak corresponds to the end-of-conduction
moment of the rectifier’s current [19], [20]. Consequently,
the harmonics present in the load current are also influenced
by the resulting delay in the peak voltage. References [8]
and [21] provides a performance comparison of different
models under non-sinusoidal supply conditions.

In an ideal sinusoidal signal, the expected peak typically
occurs at an angle of 90 degrees. However, the presence of
voltage harmonics within the supply can lead to an alteration
of this peak, causing it to deviate from its anticipated position
at 90 degrees [22]. The type and amount of load connected to
the network changes continuously, which impacts the voltage
at the point of common connection (PCC). As a result, the
supply voltage may contain multiple harmonics with varying
magnitudes and phase angles [23]. FIGURE 1 illustrates the
resultant flat and pointed top waveforms commonly observed
as supply voltage in low-voltage (LV) networks. In both cases,
the available top voltage for charging the rectifier’s capacitor
will vary, causing differences in the progression and the end
of the conduction cycle [24].

Existing studies on rectifier circuits predominantly empha-
size harmonic magnitudes, often neglecting the significant
influence of harmonic phase angles on peak voltage tim-
ing and load current behavior. Most models are based on
ideal sinusoidal conditions or rely on computational simula-
tions, which inherently constrain their accuracy concerning
real-world applications, such as LED drivers. These limita-
tions hinder the reliable prediction of rectifier performance
under distorted supply voltages, which is critical for the
design of energy-efficient devices. This study confronts these
challenges by proposing a phase-angle-dependent analytical
framework for rectifier circuits. In contrast to prior research
that has mainly concentrated on harmonic magnitudes, the
proposed methodology will assess the combined effects of
harmonic magnitudes and phase angles on peak voltage
timing and capacitor charging dynamics. Analytical expres-
sions for essential parameters will be systematically derived,

providing a more precise characterization of rectifier behav-
ior under voltage distortion. Additionally, this research will
integrate experimental validation to validate theoretical find-
ings, illustrating how specific harmonic phase shifts can
significantly influence rectifier operational characteristics.

A brief comparison with estimation models and techniques
from the literature is provided in table 1.

TABLE 1. Brief comparison of harmonic estimation techniques.

FIGURE 1. Voltage pure-sine flat-top(FT) & pointed-top(PT) waveforms
(maximum charge on capacitor for flat and pointed top waveforms).

The novelties of this work are as follows:
1. This study presents a phase-angle-dependent method-

ology for the analysis of rectifier circuits, redirecting
attention from mere harmonic magnitudes to the interac-
tive impact of both magnitude and phase shifts. Through
a thorough evaluation of how voltage harmonics affect the
timing of conduction, this research significantly improves
the modeling of rectifier behavior in response to distorted
supply conditions.

2. A novel analytical framework has been developed to ascer-
tain peak voltage timing in rectifier circuits functioning
under non-ideal supply voltages, accommodating non-
linear harmonic interactions that play a critical role in
capacitor charging and the timing of conduction cut-off
points.

3. Furthermore, this investigation incorporates comprehen-
sive experimental validation to assess harmonic sensitivity
in energy-efficient loads. The results indicate that certain
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harmonic phase angles exert an influence on rectifier func-
tionality, resulting in notable alterations in peak voltage
and the duration of conduction.

The paper is structured as follows: Section II outlines
the role of the capacitor in rectifier operation. Section III
details the algorithm used to generate various waveforms and
describes the measurement setup. Section IV presents the
analytical expressions for key characteristic points of the sup-
ply waveform, which are critical for load current harmonics.
Finally, Section V discusses and verifies the results.

II. RECTIFIER OPERATION
To optimize energy conversion using the natural conduction
properties of diodes, a full-wave rectifier is the preferred
option [32]. This rectifier is commonly built using a bridge
connection of four diodes. FIGURE 2 and FIGURE 3 illus-
trate a typical bridge rectifier setup along with its input and
output voltage waveforms. The output maintains a consistent
DC current polarity throughout the AC cycle. For each half-
cycle, two diodes are responsible for conducting the current
[33].

However, during portions of the AC cycle with low instan-
taneous voltage, challenges arise. These sections result in
reduced DC output power [34]. To ensure a steady DC power
supply to the load during these intervals, it is common prac-
tice to include an energy storage element [35]. A bulk storage
capacitor, denoted as CB, is often placed in parallel with the
load for this purpose, as shown in FIGURE 2.
FIGURE 4 and FIGURE 5 illustrate the general trends and

equations governing the capacitor’s charging and discharging
processes [36]. When the rectifier’s output voltage decreases
after reaching its peak (at T/4 or 3T/4, where T is the time
period of the input waveform, with T= 20 ms for a 50 Hz AC
supply), the capacitor’s voltage uCB(t) momentarily exceeds
the instantaneous AC supply voltage uLVAC (t).’

FIGURE 2. Ideal bridge (full wave) rectifier with capacitor.

At this point, all diodes stop conducting, and the capacitor
begins supplying current to the load. This marks the start of a
voltage drop in uCB(t). Once the absolute instantaneous value
of the AC supply voltage surpasses the capacitor voltage,
diodes D2 and D3 conduct during the negative half-cycle,
recharging the capacitor. The capacitor’s voltage then follows
the AC voltage and reaches the peak output level Upeak

FIGURE 3. Input and output of full wave rectifier circuit.

FIGURE 4. Capacitor discharging trend. Figure 2.10.

FIGURE 5. Characteristic waveforms for capacitor-equipped full-bridge
rectifier.

again [37]. This process is depicted graphically in FIGURE 3
and FIGURE 5.

The conduction period of the diodes occurs between the
initiation (φinit ) and termination (φterm) phases of the capaci-
tor’s charging. The duration of this charging phase is defined
as:

1ϕcharge = ϕterm − ϕinit (3)

The capacitor’s voltage variation, or ripple (1Uripple),
is expressed as

1Uripple = UCBmax − UCBmin (4)

For a full-bridge rectifier circuit, the capacitor voltage
peaks every T/2. After the termination of conduction at φterm,
the voltage decay is determined by the time τLOADRC = RDCL ·
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CB, where RDCL is the resistance of the load connected to
the capacitor (DC output) [38]. The charging behavior of the
capacitor CB is defined by (5).

uCB(t) = UCBinit + (UCBmax − UCBinit)
(
1 − e−

t−tterm
τLOADRC

)
(5)

Here, t represents the time value greater than the ter-
mination of conduction (tterm) but less than the initiation
of conduction in the next cycle (tinit ). For the condition
where τLOADRC ≫ {T /2 – 1ϕcharge( or 1tcharge)}, the
capacitor’s discharging can be approximated as a straight
line, where its voltage decreases from UCBmax to UCBmin
[39]. This is shown as the blue line in FIGURE 4. All
in all, in full-wave bridge rectifier circuits, the ripple and
capacitor’s charging behaviour is determined by load resis-
tance and capacitor value, as shown in equations (3)-(5) and
FIGURE 5.

III. SUPPLY VOLTAGE WAVEFORM CONTROL AND
CURRENT OUTPUT RESPONSE
To simulate various distorted supply voltage scenarios, a test
platform was designed to generate supply voltage waveforms
based on a specified table of parameters. The voltage control
system was aimed at achieving precise adjustment of volt-
age harmonics, including their amplitude and injection phase
angle.

To simulate various distorted supply voltage scenar-
ios, a test platform was developed to generate voltage
waveforms based on predefined parameter tables. The
voltage control system precisely adjusts harmonic com-
ponents, including their amplitude and injection phase
angle.

Accurate measurement of current harmonic sensitiv-
ity requires accounting for small proportional variations.
To ensure reliable sensitivity analysis, voltage supply condi-
tions must remain highly stable. Thus, the regulation system
must maintain a consistent output voltage regardless of fluc-
tuations in the laboratory supply network or load variations.
One method to achieve this stability is software-generated
waveforms, where discrete momentary values are computed
and transmitted to a digital-to-analog (DA) converter. A har-
monic sensitivity identification system, designed to ensure
voltage stability.

For comprehensive frequency response characterization,
the measurement and waveform generation systems establish
a platform for harmonic sensitivity evaluation. The phasor
approach is used to analyze harmonic current sensitivity,
with voltage waveforms defined by adjustable magnitude and
phase angle.

A scanning procedure introduces a voltage harmonic com-
ponent with a fixed magnitude into the supply voltage while
varying its phase angle incrementally across 360 degrees. For
each generated voltage condition, the load current Iload is
measured.

A. MEASUREMENT SETUP
A test bench has been designed to facilitate the measurement
of load devices, with the capability to support up to 16 loads
simultaneously. The outputs from these loads are connected
to a central distribution bus-bar, which is managed via relays
for controlled operation. A general-purpose data acquisition
system (DAQ) is employed to provide an analog reference
signal for controlling the power supply.

FIGURE 6. Test/measurement setup [41].

To achieve the required voltage waveform, a pro-
grammable power supply, Omicron-C356, is utilized. The
power supply operates under the control of the reference sig-
nal, which is generated and transmitted by the DAQ system.
This configuration enables precise control and monitoring of
the voltage supply for the test bench.

The magnitude and phase angles of each odd harmonic are
used to generate the reference signal for the programmable
power supply. The equation provided below calculates utest (t)
based on the amplitude and phase angles of the fundamental
frequency and odd harmonics up to the 19th harmonic.

utest (t) =

n∑
y=1

√
2Uh sin (2π fht + ϕUh) (6)

Uh represents the RMS value of a specific harmonic, while
φUh denotes the phase angle of that harmonic. The har-
monic frequency is indicated by fh. The measurement setup
is designed to comply with the guidelines outlined in the IEC
61000-4-30 standard [40]. FIGURE 6 illustrates the block
diagram of the measurement setup.

During the load characteristic scan, small but consistent
and repeatable variations in the phase and magnitude of the
harmonic current components were observed. These varia-
tions were verified by applying a discrete Fourier transform
(DFT) to the current waveform recorded by the measurement
instrument.
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B. MEASUREMENT OUTCOME AND INITIAL
OBSERVATIONS
The selection of LEDs was tested to establish the harmonic
sensitivity fine-scale dataset. The focus was on the circuit
type A lamps. In essence, the current waveforms of all the
tested LEDs indicated similar type variation response char-
acteristics to voltage harmonics added to the input voltage.

Time-domain observation of the scan outcome is presented
FIGURE 7 as it compares the current waveform of an LED
lamp when powered by a pure sinewave supply against when
the supply voltage has an additional distinct harmonic voltage
component at a specific magnitude and phased relative to
the fundamental harmonic. It illustrates a scan result of the
current waveforms outcome, when the 5th voltage harmonic
was introduced in supply with a fixed magnitude level, and
the harmonic injection phase angle changed in 15-degree
steps. The synchronization of measured current waveforms
was with respect to the zero-phase instant of the voltage
waveform’s fundamental harmonic.

A distinguishing parameter of the load current waveform
is the instant of rectifier conduction initiation time instant
tinit . At this time instant or very near to it, the load current
provides the highest slope and achieves its peak value soon
after this. Such rectifiers’ current instantaneous peaks provide
a characteristic quantity for the rectifier’s current magnitude.

To put this all together, the deveoped test plateform with
programable power supply and DAQ generates supply volt-
age waveform with controlled harmonic amplitudes for load
testing, defined by (6). LED current waveforms show vari-
ation in peak value and conduction time with added voltage
harmonic in supply.

IV. TRIANGLE EXPRESSIONS OF TIME DOMAIN
RESPONSE OF RECTIFIER CIRCUIT IN COMMON LOAD
This section presents an analytical approach to deriving a
generalized expression for rectifier circuit operation. The
derivation establishes a framework for determining the peak
voltage timing (linked to rectifier diode conduction cut-off)
and peak voltage level (corresponding to bulk capacitor volt-
age at conduction cut-off). This analysis forms the basis
for modeling AC load current harmonics in rectifier-based
devices under distorted supply conditions.

Most energy-efficient devices available in the market
include rectifier circuits. FIGURE 8 illustrates the rectifier
circuit commonly found in energy-efficient LED lamps. The
operation of rectification depends on the shape of the sup-
ply voltage waveform. When the rectified voltage across
the capacitor terminals reaches its peak value, the current
conduction stops [42], [43], [44], [45]. The time at which
conduction ends varies according to the peak voltage instant
of the supply voltage waveform [46], [47]. The influence of
different supply voltage harmonics on rectifier circuit oper-
ation has been empirically analyzed in [11], [13], and [48].
This study focuses on an A-type waveform, representative of
low-cost LED lamps.

FIGURE 7. Current waveform initiation time and peak values affected by
the 5th-order voltage harmonic phase angle in supply. Supply waveforms
(dashed lines) and load current waveforms (continuous lines).

Triangular waveforms are widely used in signal process-
ing due to their simple harmonic structure. Constructed by
summing odd harmonics of a sine wave, their harmonic
amplitudes decrease proportionally to the square of the
harmonic number. This predictable pattern aids in various
analytical applications. The linear rise and fall of triangular
waves make them effective approximations for signals with
sharp transitions, facilitating nonlinear system analysis.

To derive an analytical expression, it is crucial to recognize
that harmonic components originate from the time-domain
representation of the waveform. Variations in load current
harmonics result from changes in the time-domain current
waveform. Thus, the analytical formulation of harmonic
components is based on time-domain current behavior, par-
ticularly for LED lamp AC loads, which operate through
rectifiers.

The rectification process is influenced by the supply volt-
age waveform, as demonstrated through circuit analysis and
experimental observations. An LED lamp typically includes
a rectifier, a bulk capacitor CB (FIGURE 8), and a driver
circuit. While previous studies have extensively analyzed
rectifier behavior, this discussion assumes an idealized cir-
cuit model to focus on the analytical structure of harmonic
currents. A more detailed circuit model would offer minimal
improvements in accuracy at this stage. Comprehensive cir-
cuit analysis will be addressed in future research.

To simplify the analytical observations, certain assump-
tions are made, and the current waveform is analyzed using a
basic framework:
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1. The LED load current waveform is assumed to have a tri-
angular shape. The slope of the load current is considered
a linear function that changes with time (as shown by the
dotted black line in FIGURE 9).

2. The time points tinit and ti,peak are assumed to be nearly
identical, effectively occurring at the same moment, tinit .

3. The three vertices of the triangular waveform are used to
define the load current function (dotted black line). This
function is derived by calculating the slope between two
points,, ({tinit , iL,peak} and {tpeak , 0}), using the slope
formula based on these points.

t − tinit
tpeak − tinit

=
iLoad (t) − ILoad,peak

0 − ILaod,peak
(7)

iLoad (t) =
− (t − tinit) ILaod,peak

tpeak − tinit
+ ILoad,peak (8)

where iL,peak represents the peak value of load current.
4. The time points tterm and tpeak are assumed to be very

close, effectively occurring at the same moment, tpeak .
5. It is assumed that UCBmax is reached when ULVAC hits its

peak value. The conduction of the rectifier is considered
to stop immediately after this peak.

The specifications of the resulting triangular waveform are
shown in FIGURE 10.

FIGURE 8. Rectifier circuit in LED lamp [49].

FIGURE 9. Close-up of conduction half-cycle of a rectifier current.

Empirical results from Section III indicate that the tinit
and Ipeak values directly influence the harmonic characteris-
tics. Therefore, the model waveform shown in FIGURE 10
is based on these same variables. The current waveform,
iLoad (t), does not exhibit odd or even symmetry but follows

FIGURE 10. Triangular shape assumption of the load current,
characteristic points/limits for Fourier equations.

half-wave symmetry. This aligns with the half-wave symme-
try principle of the Fourier series.

f
(
t −

T
2

)
= −f (t) (9)

And the Fourier coefficients for half-wave symmetry
become

a0 = 0

an =


4
T

∫ T/2

0
f (t) cos (nt)dt for n odd

0 for n even

bn =


4
T

∫ T/2

0
f (t) sin (nt)dt for n odd

0 for n even

Using Equations (7) and (8), the Fourier coefficients for
the load current (aniL and bniL) can now be determined

anI =
4
T

∫ T/2

0
iLoad (t) cos(nω1t)dt (10)

Since the current is present only between tinit and tpeak , the
limits of the definite integral are set accordingly

aniL =
4
T

tpeak∫
tinit

iLoad (t) cos(nω1t)dt (11)

After solving the integral and placing the limits in (11)
Similarly solving bn
The Fourier series of the current waveform can be deter-

mined using (12) or (14), as shown at the bottom of the next
page, once the values of tinit , tpeak , and ILoad,peak are known.

The derivation of the variables in (12) and (14) can proceed
as follows:
1. tpeak , which corresponds to the instant when ULVAC,max =

Upeak , will be defined. This is the most definitive point of
the supply waveform.

2. Upeak will be calculated using the value of tpeak .
3. Uinit , the value at which current conduction begins, will

be determined.
4. UsingUinit , the corresponding value of tinitwill be found.
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5. With tinit known, the value of ILoad,peak will be
determined.
In the scope of this article, only the first two expressions,

tpeak and Upeak , will be examined. FIGURE 11 presents the
scope of this article.

To summarise this section, a mathematical approach is pro-
posed to model the load current in rectifier circuit operation
for LED lamps, focusing on peak voltage timing and current
waveform shape (Figure 8-10, and equations (7)–(14)). The
triangular load current model links tinit , tpeak , and ILoad,peak
to Fourier equations to define load current.

FIGURE 11. Scope of the paper for characteristic points.

V. ANALYTICAL EXPRESSION FOR PEAK VOLTAGE
INSTANTS
A. VOLTAGE WAVEFORM NUMERICAL ANALYSIS
In discussing the impact of harmonics on peak voltage, it is
important to account for how the phase angle of the harmonic
voltage affects the supply waveform. One significant factor is
the shift in the peak voltage moment (1φpeak ) caused by the
harmonic voltage’s phase shift, as shown in FIGURE 12. The
resulting symmetrical patterns, depicted in FIGURE 13 and
FIGURE 14, illustrate how a single voltage harmonic with

varying amplitudes influences the shift in the peak voltage
moment.

For the analysis, assume the supply voltage waveform
in equation TABLE 2 includes two components: the main
harmonic with a magnitude U1 and a harmonic of order y
with a magnitude Uy. The peak voltage at any instant can be
calculated using the general sine wave expression as:

UPeak = U1·sin
(
ω1·tpeak

)
+ Uy·sin

(
y·ω1·tpeak + ϕy

)
(15)

or expressed in terms of the phase relative to the main har-
monic (zero phase) as

UPeak = U1·sin (ϕPeak) + Uy·sin
(
y·ϕPeak + ϕy

)
(16)

Here, the main harmonic starts at zero phase (t = 0),
ϕy is the phase angle of the harmonic voltage component
Uy relative to the main harmonic, and Uy represents the
magnitude of the harmonic voltage component.

Analytically, the peak voltage instant (tpeak ), correspond-
ing to the end of the capacitor conduction, can be determined
by finding where the derivative of the voltage approaches
zero.

max {uLVAC (t)} ⇒
duLVAC (t)

dt
= 0 (17)

At this peak instant, the voltage across the capacitor (UCB)
in the rectifier circuit reaches its maximum value.

UCBMAX = max {uLVAC (t)} /T50Hz (18)

Numerically, the peak voltage value can be calculated
for any given Uy and φy using finite time-step calculations
with (15).

A broader analytical approach is required to derive uni-
versally applicable expressions for peak voltage value and
timing. Since harmonic voltage components can have any
phase angle or magnitude, purely numerical descriptions may
lack generality. The complexity of peak timing determination
is evident in FIGURE 13 and FIGURE 14, which illustrate
variations in peak phase range due to harmonics. These
results reveal an eccentric periodic function, akin to those in
Kepler’s equations, which cannot be solved geometrically.

The peak voltage expressions are derived by analyzing the
dynamics of the supply voltage’s sinewave components. For

aniL =
4
T

[
iLoad,peak

{
nω1

(
tpeak − tinit

)
sin (nω1tiinit) − cos (nω1tinit) + cos

(
nω1tpeak

)}
n2ω2

1 (tinit − tpeak )

]
(12)

bniL =
4
T

tpeak∫
tinit

iLoad (t) sin(nω1t)dt (13)

bniL =
4
T

[
iLoad,peak

{
nω1

(
tinit − tpeak

)
cos (nω1tinit) − sin (nω1tinit) + sin

(
nω1tpeak

)}
n2ω2

1 (tinit − tpeak )

]
(14)
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the peak timing instant (tpeak ), the first-order derivatives of
the fundamental and harmonic components must be equal in
magnitude:

d
dt
u1
(
tpeak

)
= −

d
dt
uy
(
tpeak

)
(19)

U1·ω1·cos(ω1tpeak ) = − Uy·ω1·y·cos(yω1tpeak + ϕy) (20)

Simplified into

U1·cos(ω1tpeak ) = − Uy·y·cos(yω1tpeak + ϕy) (21)

FIGURE 12. Peak instant response to harmonic phase angle.

FIGURE 13. Variation in peak instant depending on harmonic phase angle.

FIGURE 14. Variation in peak depending on harmonic phase angle.

Figures 12–14 demonstrate how the peak instant and value
change with harmonic phase angle variations. Numerical
results for φpeak and Upeak reveal a periodic function that
repeats every 360◦ phase rotation of φy. This periodicity
allows the function to be expressed analytically as:
2) The function is basically a (co)sinusoidal form, where the

argument is a function of Uy and ϕy.

Upeak = U1peak + Upeak,M ·sin
(
γUpeak

)
(22)

ϕpeak = ϕ1peak + ϕpeak,M ·sin
(
γϕpeak

)
(23)

Here,UPeak,M represents themaximum difference between
U1Peak and the resultant peak voltage, and φPeak,M is the
maximum difference between φ1Peak and the resultant peak
timing. γUPeak and γφPeak are functions of the harmonic volt-
age level and phase angle.

Key points for these functions are described as
3) Case 1: At Upeak = U1,peak ± Upeak,M , the argument in

equation (22) equals 90◦ or 270◦.
4) Case 2: At tpeak = t1,peak ± 1tpeak,M , the argument in

equation (23) equals 90◦ or 270◦.
5) Case 3: At Upeak = U1peak , the argument in

equation (22) equals 0◦ or 180◦.
6) In the final case, the peak timing points (tpeak = t1,peak )

coincide with the main harmonic’s 90◦ or 270◦ phase
instants (23).

B. DYNAMIC EXPRESSIONS FOR PEAK VOLTAGE INSTANT
With the addition of a single voltage harmonic, the dynamic
variation of the peak voltage and its timing is shown in
FIGURE 15. The characteristic cases for peak voltage obser-
vations are outlined below:
Case 1: Expressions for Maximum and Minimum Peak

Voltage Magnitudes.
The maximum possible value of the peak voltage is

observed when both u1(tpeak ) and uy(tpeak ) components
reach their maximum values. In this case, the sum of their
magnitudes determines Upeak . This happens when the sine
components both yield a value of ‘‘1,’’ corresponding to a sine
argument of π /2:

Upeak,max = U1· sin
(π

2

)
+ Uy·sin

(π

2

)
(24)

Given that the harmonic phase angle is y times higher
than the main harmonic, the harmonic component’s angle that
aligns with π /2 at the peak of U1 is:

ϕy,peak,max = y· π/2 (25)

For odd harmonics, a system with only a 3rd harmonic
added will peak when φU3 = −90◦, while a 5th harmonic
will result in a maximum peak voltage when φU5 =90◦.
Similarly, theminimummagnitudes occur when the harmonic
phase angles are offset by 180◦.
Case 2: Maximum Shift in Peak Time from Fundamental

Component Peak Time (90◦ or π /2)
The maximum time shift of the peak time instant,

tpeak,1φmax , happens when the first derivative of the harmonic
component is at its maximum. This can be expressed as:{

d
dt
uy
(
tpeak, 1ϕmax

)}
max

= Uy·y·ω1 (26)

Assuming equation (24), this occurs when (y·ω·

tpeak +φUy) equals zero. Thus, the peak phase shift for the
harmonic occurs when

ϕUy = y· ω1·tpeak (27)
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FIGURE 15. Variation in peak time instant depending on harmonic phase
angle.

From (26)

cos
(
ω1tpeak, 1ϕmax

)
=
Uy
U1

y (28)

and replacing

A =
U1

Uy
(29)

The expression will be:

tpeak, 1ϕMAX =
1
ω1

cos−1
( y
A

)
(30)

Case 3: Instant When Peak Voltage of Combined Waveform
Equals Fundamental Harmonic Peak.

This case corresponds to the point where the peak voltage
of the combined waveform (U1 + Uy ) equals the peak
magnitude of the fundamental harmonic (U1):

U1 = U1 sin(ω1·t) + Ux sin(yω1t + ϕy) (31)

Here, U1 is the magnitude of the fundamental component,
which for 230 V RMS is approximately 325 V. Uy represents
the amplitude of the supply voltage harmonic component, and
φy is the phase angle of the voltage harmonic.
The crossing point of the harmonic (Uy) near 90◦ of the

fundamental harmonic can be calculated as:

tcross,y =
T1
y

(
1
4

(y+ 1) −
ϕy

2π

)
(32)

ϕcross,y = 2π
tcross,y
T1

(33)

where y is the harmonic order and T1 =0.02s is the time
period of the fundamental harmonic. Transforming Equa-
tions (15) and (16) into the phase angle domain

U1 = U1 sin
(
90◦

− ϕpeak
)
+ Uy sinϕy,c (34)

U1 cos
(
90◦

+ ϕpeak
)

= −y·Uy· cosϕy,c (35)

Here φpeak is the phase distance between the peak of the
fundamental component (i.e. 90o or π /2) and the peak of
uLVAC (t) expressed in degrees on the fundamental harmonic

scale and φy,c is the distance between the peak of uLVAC (t) and
the zero crossing instant of the voltage harmonic component.

From (34)

sinϕy,c =
U1

Uy
−

U1

Uy
sin
(
90◦

− ϕpeak
)

(36)

sinϕy,c = A [1 − cosϕpeak ] (37)

From (35)

U1

Uy·y
cos

(
90◦

+ ϕpeak
)

= − cosϕy,c (38)

As cos is an even function

A
y
cos

(
90◦

+ ϕpeak
)

= cosϕy,c (39)

A
y
cos

(
90◦

+ ϕpeak
)

= 1 − [sinϕy,c]2 (40)

sinϕy,c =

√
1−

[
A
y
cos

(
90◦ + ϕpeak

)]2
(41)

Equating (37) and (41) provides

A2
[
1 − cos

(
ϕpeak

)]2
= 1−

[
A
y
cos

(
90◦

+ ϕpeak
)]2

(42)

and this can be developed into[
A2 −

A2

x2

]
(cosϕpeak )2 − 2A2 cosϕpeak+ +A2+

A2

y2
−1=0

(43)

Substituting Q= cos(φpeak )[
1 −

1
y2

]
·Q2

− 2·Q+ 1 +
1
y2

−
1
A2

= 0 (44)

Coefficients of quadratic equations are

a =

(
1 −

1
y2

)
, b = −2 and c = 1 +

1
y2

−
1
A2

where Q=cos(φpeak ). Solving this quadratic equation yields
the values for φpeak , while similar expressions for φy,c can be
derived using equations (34) and (35).

sin
(
90◦

− ϕpeak
)

= 1 +
Uy
U1

sinϕy,c (45)

And

cosϕpeak = 1 +
sinϕy,c

A
(46)

Now (35) becomes

cos
(
90◦

+ ϕpeak
)

= −
Uy
U1

·y· cosϕy,c (47)

−sinϕpeak = −
y· cosϕy,c

A
(48)
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Squaring and adding (46) and (48)(y· cosϕy,c
A

)2
+

(
1 +

sinϕy,c

A

)2

= 1 (49)(
1 − y2

) (
sinϕy,c

)2
− 2A sinϕy,c + y2 = 0 (50)

Coefficients of quadratic equations are

a =

(
1 − y2

)
, b = −2A and c = y2.

From the value of sin(φy,c) by quadratic solution, φy,c can be
determined.

Collectively, these expressions indicate, The harmonic
voltage phase angle shifts both the timing and value of the
supply voltage peak, as shown in equations (15)-(23) and
Figures 12–14. These peak changes follow a periodic pattern
with harmonic phase variation.

VI. RESULTS AND VERIFICATION
From (44) and (50)

ϕpeak

= cos−1


−(−2) ±

√
(−2)2 − 4

(
1 −

1
y2

) (
1 +

1
y2

−
1
A2

)
2
(
1 −

1
y2

)


(51)

ϕy,c

= sin−1

−(−2A) ±

√
(−2A)2 − 4

(
1 − y2

)
y2

2
(
1 − y2

)
 (52)

Mathematically, every quadratic equation has two possible
solutions. Depending on the coefficient values, one or both
of these solutions may yield a complex result. Equation (24)
determines the distance between the zero crossing of the
harmonic component and the modified peak of the resultant
waveform. Out of the two solutions, only the positive-real
solution is used as the argument for the inverse sine function
(sin−1) in equation (24). For UyRMS =10V and U1RMS =

230V, the value of A is 23, and y = 5 for the 5th harmonic.
The quadratic solutions in this case are 0.442 and –2.36. Since
the argument for the inverse sine function must be within the
range [−1,1][-1, 1][−1,1], only one solution is valid:

ϕy,c = sin−1 (0.442) =

{
26.3◦

−26.3◦

It should be noted that φy,c is scaled by y on the fundamen-
tal harmonic scale, which corresponds to 5.3o. Furthermore,
φy,c represents the exact instant where the u1(t) and uLVAC (t)
waveforms intersect (see FIGURE 16). Similarly, φpeak can
be calculated using the inverse cosine (cos−1) function
applied to the quadratic solution in (44). For the given har-
monic amplitudes and voltage harmonic order, the cos−1

argument values are 1.103 and 0.981. Like the sine function,

the cosine argument must also lie within the range [−1,1][-1,
1][−1,1]. Therefore:

ϕpeak = cos−1 (0.981) = 78.8o

Hereby, the peak shift for the fundamental component
timing will be

ϕ1peak =
∣∣90◦

− 78.8◦
∣∣ = 11.2o

The results align closely with empirical values, as shown
in FIGURE 17 and Tables 2 and 3, confirming the accu-
racy of the developed equations. The calculated values for
φUpeak, 1φpeak , and φy,c exhibit strong consistency with the
measured values presented in FIGURE 17 and Table 3. The
shift in peak phase instant, 1φUpeak , can be expressed in
terms of an equivalent time, tpeak,1U=0. FIGURE 17 illus-
trates the measured phase angle values corresponding to these
calculations.
Table 3 provides the calculated values for the maximum

shift in peak phase instant (1ϕpeak,max) and the maxi-
mum shift in peak time instant (tpeak,1φ,max) under Case 1,
as derived from equation (30). Notably, an increase in the
amplitude of higher-order harmonics (e.g., the 7th harmonic)
can result in multiple or equal peak values in the voltage
waveform. In such instances, the calculation identifies only
the dominant peak value among the possible alternatives.

Further, Table 3 compares measured and calculated values
for the peak phase instant and the zero-crossing instants of
the harmonic component, based on equations (50) and (51)
under Case 2. The high level of agreement between these
values validates the precision of the developed equations.
This accuracy is further reinforced through comparisons with
recordedmeasurements for specific harmonic amplitudes and
phase angles, as demonstrated in Table 4.

Figure 17 presents the 1Upeak and 1ϕpeak values for
uLVAC (t) incorporating the 3rd harmonic voltage. The figure
illustrates variations in the 3rd harmonic voltage phase angle
(ϕU3) over a full cycle (0◦ to 360◦), encompassing all dis-
cussed cases. Additionally, Table 2 compares experimental
and analytical results across different harmonic conditions,
revealing minor deviations in peak voltage timing and mag-
nitude. While these discrepancies highlight the limitations
of the current analytical framework under higher-order har-
monic influences, the quantitative comparison underscores
the robustness of the proposed model across a range of prac-
tical scenarios.

The determination of these characteristic points is
essential, as they define the maximum, minimum, and
zero-crossing points of the periodic variation in 1φpeak and
peak magnitude. However, as observed in FIGURE 17, these
periodic variations do not exhibit a purely sinusoidal nature,
as suggested by Equations (22) and (23), but rather resemble
the behavior described by Kepler’s equation.

An approximate (series) solution can be employed to
accurately calculate or model the peak instant time and
peak magnitude when a voltage harmonic is introduced at a
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TABLE 2. Modeled/calculated value of maximum peak stretch on the
time axis for any level of influencer harmonic.

FIGURE 16. Distance calculation of zero crossing for influencer harmonic
and fundamental components peak toward peak instant of uLVAC (t).

FIGURE 17. Results of Upeak and ϕUpeak instant of uLVAC(t).

specific phase angle, expressed by the expression below:

ϕpeak,ss =
π

2
+ (−1)

y+1
2

((
Uy
U1

y
)

−
1
8

(
Uy
U1

)3

y3(3y− 1)

×(3y+ 1)) sin
(
ϕy
)
+
y3

2

(
Uy
U1

)2

sin
(
2ϕy

)
(53)

TABLE 3. Comparison of measured and calculated value of resultant peak
stretch of uLVAC(t), magnitude identical to the fundamental component.

TABLE 4. Measured values at characteristic points of resultant peak
phase stretch of uLVAC(t).

This approach enables the prediction of the expected peak
value and its corresponding time instant for any given phase
angle of the influencing voltage harmonic. However, the
accuracy of the series solution is more reliable for lower
harmonic voltage magnitudes, particularly when the 3rd har-
monic voltage is below 10 V.

Table 5 presents the measured peak voltage and the mea-
sured phase instant of the maximum value of uLVAC (t) when
the phase angle of the added 3rd voltage harmonic is var-
ied over 360 degrees, with a harmonic magnitude of 7 V.
The deviations between the measured and calculated phase
instants of the peak value are minimal.

Table 6 compares the deviations between calculated (using
equation (53)) and measured values for various levels of 3rd

and 5th harmonic voltages. The results indicate that as the
harmonic magnitude increases, the root mean square error
(RMSE) also increases, demonstrating the impact of higher
harmonic levels on deviation accuracy

The presence of harmonics in the voltage supply waveform
can lead to the formation of localized peaks, as illustrated in
FIGURE 18. Various power quality standards define permis-
sible limits for different voltage harmonic orders [50], [51],
[52] including IEC 61000-2-2 (voltage harmonic limits for
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TABLE 5. Measured and calculated values of resultant peak phase stretch
of uLVAC(t), when the magnitude of added third harmonic (U3, rms) is 7V.

low-voltage networks), and IEC 61000-3-2 (harmonic current
limits for equipment ≤16 A).

According to IEC 61000-2-2, the permissible limit for
dominant odd harmonics typically ranges between 5% and
6% of the fundamental component’s magnitude. This limit
varies accordingly with a nominal fundamental voltage of
325V peak (230V RMS). The threshold for multiple peaks
occurring within a half-cycle can be defined by the relation
between the fundamental voltage magnitude and the order of
the influencing harmonic, expressed as U1/y2. For instance,
the onset of multiple peaks in the supply waveform occurs at
25.5V RMS (230/32) for the 3rd harmonic, 9V RMS (230/52)
for the 5th harmonic, and 4.68V RMS (230/72) for the 7th

harmonic. At these threshold levels, the resultant waveform
exhibits a flattening of peak values over time, particularly
for specific phase angles of the harmonic component. This
flattening effect is observed for specific values of harmonic
phase angle, i.e. for 3rd voltage harmonic, this happened on
phase angle 0.

In brief, the Quadratic and trigonometric equations (51)–
(53) determine the peak phase and peak time shifts in uLVAC (t)

TABLE 6. Difference of measured and calculated (series solution) values
of resultant peak phase stretch of uLVAC(t) for various levels of added
harmonic.

FIGURE 18. Multiple local peak in supply voltage.

due to voltage harmonics. Measured and calculated values
for peak shifts and zero crossings show close agreement,
confirming the model’s accuracy across harmonic conditions
(see Figure 17, Tables 2–6).
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VII. CONCLUSION
Analytical expressions for peak voltage levels and timing
have been derived for key points in waveform analysis. The
solutions to these quadratic expressions reveal that peak
voltage and timing phases follow sin−1 or cos−1 functions.
Notably, for small arguments, these functions demonstrate a
response which may seem linear in empirical assessments.
Nevertheless, as the harmonic order increases, even the 7th
harmonic voltage component can introduce nonlinear effects,
thereby disrupting this seemingly linear behaviour.

These expressions highlight the near-elliptical relation-
ship between rectifier circuit harmonic load components on
the complex plane. Nevertheless, these expressions partially
characterize the DC-side behavior of the rectifier, regard-
ing the anticipated load current in the presence of distorted
supply voltages. The analysis operates under an idealized
framework, overlooking certain circuit characteristics that
may result in minor deviations in the actual peak voltage
of the capacitor and its timing. These findings optimize
rectifier-based circuits by improving capacitor sizing and
harmonic filtering, ensuring stability under supply distortions
while enhancing power electronics design.

Future work will focus first on finding the analytical solu-
tion of other characteristic points Uinit , tinit and Iinit and
further extending the analytical framework by incorporat-
ing multiple voltage harmonic components. The inclusion of
voltage harmonics increases the complexity of the Fourier
transform, leading to non-linear functions shaped by geo-
metric interrelations. Although idealized waveforms serve
as the basis for analysis, the derived expressions introduce
difficult-to-integrate mathematical concepts. The complexity
demands efficient reduction techniques, as certain periodic
functions, similar to the Kepler function, remain analytically
unresolved. Consequently, the approach is constrained to
estimating characteristic points rather than obtaining closed-
form solutions. Further refinement of the mathematical
formulations will be a key aspect of future research.
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