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Abstract  

Breast cancer is a significant worldwide health concern, with high incidence and 

fatality rates. Early identification is critical to improving patient outcomes and 

reducing the overall burden of the disease. This thesis contributes to knowledge by 

developing five novel systems for multi-class classification of Digital Breast 

Tomosynthesis (DBT) scans as normal, benign, or malignant. 

This thesis presents unique methodologies and combines them to create five 

systems. The first system, DeepEval System (DE System), compares six cutting-

edge DL models for feature extraction prior to classification using a Support Vector 

Machine (SVM), serving as a benchmarking tool.  

The Mod_AlexNet System (MA System) is presented thereafter. It is a novel system 

that modifies the traditional AlexNet by incorporating max-pooling layers and batch 

normalisation layers. These modifications are designed to improve the classification 

performance. Various optimizers were tested and compared while training 

Mod_AlexNet with different batch sizes to optimize the performance. In the Feature 

Fusion and Selection with Ensemble Classifier (FFS-EC) System, feature fusion is 

integrated, followed by several feature selection models and a majority voting 

ensemble classification model.  

The Multi-Head Mod_AlexNet Attention (MHMA) system introduces a novel attention 

model to the previously developed Mod_AlexNet. This attention framework focuses 

on the most relevant parts of the input images, improving the ability of the system to 

represent important features and thereby enhancing the overall classification 

performance. Finally, the Hybrid Multi-Head Self-Attention Model with Feature 

Fusion, Selection, and IVECM for Enhanced DBT Classification (HMSA-FFS-IVECM) 

System integrates Mod_AlexNet with the attention model, feature fusion, and 

selection models, as well as a newly developed Integrated Voting Ensemble 

Classification Model, IVECM, that incorporates class and classifier weights. This 

comprehensive integration maximizes the classification performance, particularly for 

the abnormal classes, benign and malignant, which are minorities in the dataset. 
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The systems were tested using a publicly available dataset, called Breast Cancer 

Screening – Digital Breast Tomosynthesis (BCS-DBT) dataset (Buda et al., 2020). 

The HMSA-IVECM System achieved a remarkable specificity of 62.20%, significantly 

outperforming: DE System (21.43%), MA System (23.91%), FFS-EC (43.07%), and 

MHMA System (51.99%). The proposed HMSA-IVECM system consistently 

outperforms existing methods across all scenarios. For benign versus malignant 

classification, it achieved the highest accuracy of 91.24% and 91.09% in both 

scenarios, surpassing the closest competitor (Farangis Sajadi Moghadam and 

Rashidi, 2023) by over 2.5% and Hassan et al. (2024) by over 6%. For normal 

versus abnormal and cancerous versus non-cancerous cases, HMSA-IVECM 

demonstrated superior accuracy (94.53% and 93.81%, respectively), showing 

substantial improvement in sensitivity, precision, and F1-score compared to prior 

models. These systems contribute to the development of automated breast cancer 

classification technologies, which promises to greatly enhance the early diagnosis 

and classification of breast abnormalities. 
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Chapter 1 Introduction 
 
1.1 Overview and Motivation 
Worldwide, breast cancer is the most common cancer to be diagnosed, and in the 

last few years, its incidence has increased. In 2022, breast cancer represented the 

highest incidence rate among cancers affecting women globally, according to 

statistics from the World Health Organization (WHO), IARC statistics (Bray et al., 

2024). It accounted for 23.8% of all new cancer diagnosis cases in women, with 

approximately 2.3 million cases. In contrast, lung cancer, the second most prevalent 

cancer among women, represented only 9% of new cases. Furthermore, breast 

cancer also led in cancer-related mortality, responsible for 670,000 deaths, 

representing 15% of all female cancer-related deaths in 2022. This surpasses lung 

cancer, which accounted for 580,000 deaths, or 13% of cancer mortalities in women 

for the same year (Bray et al., 2024). 

From 1975 to 1989, the breast cancer-related mortality rate increased by 0.4% 

yearly; however, from 1989 to 2020, it decreased by 43%. The notable decline in 

breast cancer mortality has been attributed to advances in early identification by 

screening mammography, breast scans and improvements in personalised therapy 

(Giaquinto et al., 2022). Early detection and treatment dramatically improve the odds 

of survival for those with breast cancer. Depending on the stage of the cancer, there 

are significant differences in the survival rates; earlier diagnosis leads to more 

effective therapy.  

Digital Breast Tomosynthesis (DBT) is an advanced imaging technique that 

generates three-dimensional (3D) images of the breast using low-dose X-rays. 

Unlike traditional mammography, which produces two-dimensional images, DBT 

captures multiple angles of the breast and reconstructs them into a detailed 3D 

image. This allows for better visualisation of breast tissue, improving the detection of 

small abnormalities and reducing false positives and recall rates. DBT scans have 

become an essential tool in modern breast cancer diagnosis, helping to detect 

malignancies more accurately, especially in women with dense breast tissue. 

Breast calcifications, or tiny calcium deposits, can occur in women as they age. 

Although common, calcifications can be early signs of abnormal cell growth. The 
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size, shape, and distribution of calcifications can provide information on whether 

more testing is required to rule out malignancy (Logullo et al., 2022). 

Artificial intelligence (AI) is a vital tool in modern life, both for improving and 

protecting people. Computer models known as Medical Computer-Aided Diagnosis 

(CAD) Systems improve the precision of medical image identification, diagnosis, and 

interpretation. Cutting-edge medical CAD algorithms make significant improvements 

to imaging medicine by helping doctors diagnose and treat patients quickly and 

effectively. CAD medical systems are used in surgical procedures like laparoscopy, 

to help radiologists identify anomalies in medical images, and to help interpret blood 

sample abnormalities and diseases (Guo et al., 2022). In the following section, the 

motivation for the thesis and the formulation of the problem statement will be 

addressed. 

1.2 Problem Statement 
Breast cancer is a widespread worldwide health concern that affects people 

worldwide. The reason for its widespread incidence is that it is one of the most 

common cancers in the world, with breast cells being the source of its origin. Early 

identification of breast cancer is a crucial aspect of healthcare that requires ongoing 

developments and research. 

Breast lesion classification into benign, malignant, and normal classes is still a 

difficult task, even with the improved diagnostic capabilities provided by 

tomosynthesis scans. The existing diagnostic approaches have difficulty reaching 

high accuracy, particularly in multi-class classification across benign, malignant, and 

normal classes. Accurate classification is significantly limited by the small differences 

in size, shape, and texture found in abnormal cases, which make it much more 

difficult to distinguish between benign and malignant cases. The existing gap in the 

literature makes this issue further significant since earlier research mostly 

concentrated on binary classifications, such as normal vs. abnormal, benign vs. 

malignant, or cancerous vs. non-cancerous, ignoring the importance of developing 

multi-class classification systems. Such systems are crucial for differentiating 

between multiple types of abnormalities, enabling the classification of images not 

only as normal or abnormal but also distinguishing between benign and malignant 

abnormalities. 
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Accurately diagnosing breast cancer is severely restricted by the fundamental 

variability in breast structure. Individual differences exist in the size and density of 

breasts, which complicates the interpretation of images. These variations complicate 

the multi-class classification and challenge the development of effective multi-class 

CAD systems. 

The challenges faced in the process of developing the contributions to knowledge, 

including the systems, reported in this thesis, are outlined in the following section, 

along with brief explanations of each challenge. 

1.3 Challenges 
Developing automated algorithms for tomosynthesis scan assessment is 

challenged by numerous factors. These challenges could result in a misdiagnosis 

that causes further unnecessary testing and x-ray exposure, or they could cause a 

failure to identify an existing abnormality that, if undetected, could have serious 

consequences for the patient. To successfully implement an intelligent computer-

aided system for accurate classification of tomosynthesis scans, several challenges 

must be overcome. The key challenges and gaps include: 

1. Multi-class classification accuracy 

Previously developed systems faced difficulties in effectively differentiating between 

benign, normal, and malignant classes, often resulting in low accuracy that is 

insufficient for reliable clinical application. Misclassification rate has challenged the 

development of a robust diagnostic system. The limitation of low classification 

accuracy of these systems highlights the urgent need for novel strategies to improve 

the accuracy and reliability of breast cancer diagnosis. 

 

2. Varying breast density and size 

The presence of different breast sizes and densities adds another degree of 

complication, making distinguishing between benign, normal, and malignant cases 

challenging. Breast structure varies widely, which adds to the varied looks on scans 

and makes the classification task more complex. This challenge highlights the 

various aspects of breast cancer diagnosis, demanding enhanced techniques 

capable of efficiently going through the diverse characteristics offered by varying 

breast sizes and densities to make more accurate and reliable classifications. 
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3. Benign vs malignant classification 

The challenge of distinguishing between benign and malignant abnormalities is 

further complicated by the sophisticated characteristics of these variations, making 

the accurate discrimination between these two classes hard. In order to enhance 

precision and reliability in identifying breast lesions, sophisticated models capable of 

identifying small differences are required due to the complexities of abnormalities, 

which are characterised by small variations in size, shape, and texture. 

The subsequent section provides a detailed explanation of the aims and objectives 

of the thesis. These objectives act as an organised framework that guides the 

research studies and adds to the overall methodology and structure of the study. 

1.4 Aims and Objectives 
The research aims to create an intelligent three-class CAD system that accurately 

classifies breast tomosynthesis scans into normal, benign, or malignant categories. It 

aims to identify salient features of the image that can best discriminate between the 

three classes, regardless of breast density and size, while also extracting robust and 

compact features from the images to reliably distinguish between the classes. 

Additionally, the research aims to develop a classification model that maximises the 

between-class variance, and minimises the overlap in class distributions, to enhance 

the ability to differentiate between the classes. The parameters of the classification 

model will be optimised to maximise performance. The performance of the model will 

be evaluated on tomosynthesis scans to test its accuracy and reliability. The 

research aims to a clinical impact by improving breast cancer classification precision 

and reducing False Positive (FP) and False Negative (FN) rates. 

The objectives of the thesis are to: 

• Perform a comprehensive analysis of current machine learning and deep learning 

techniques, as well as state-of-the-art breast cancer classification models for 

breast scans. 

• Examine cutting-edge feature extraction methods and their impact on a three-

class classification model. 

• Explore and utilise feature fusion and selection models to address challenges in 

multi-class classification. 
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• Develop an optimal classification model that is capable of handling non-linearity of 

class boundaries, and in which the classes are sufficiently distinct to allow for 

better separation among the three classes. 

• Analyse the optimal classification approach for increasing classification 

performance across all metrics. 

• Evaluate the performance of the CAD systems through experiments, comparing 

and validating the results with the findings from the literature review using 

appropriate performance metrics. 

• Contribute to the academic field through the publication and sharing of research 

findings 

1.5 Contributions to Knowledge 
In order to distinguish between normal, benign, and malignant tomosynthesis scans, 

this thesis presents and explores five systems for the classification of breast 

tomosynthesis scans: one benchmarking system (DeepEval System – DE System) 

and four novel Deep Convolutional Neural Network (DCNN)-based systems. The 

following is a summary of the main contributions of the thesis: 

1. The proposed Mod_AlexNet System, referred to as the MA System, 

represents a significant advancement in breast tomosynthesis classification.. 

The Mod_AlexNet architecture is specifically designed to extract and classify 

features from tomosynthesis scans. Mod_AlexNet modified the traditional 

AlexNet. To optimise performance, the model is thoroughly trained using a 

range of optimisers and batch sizes. A comparative evaluation is conducted to 

assess the performance of Mod_AlexNet against that of AlexNet, considering 

varying optimisers and batch sizes during training. The main goal of this 

architectural modification is to maximise the classification performance of the 

traditional AlexNet. Detailed insights into this system are elaborated upon in 

Chapter 7. 

2. In the Feature Fusion and Selection with Ensemble Classifier System, named 

FFS-EC, an enhanced system for the classification of DBT data through the 

integration of DL models with feature fusion, selection and classification 

ensemble models is introduced. The system extracts features from both the 

deep learning models and the Histogram of Oriented Gradients (HOG) to 
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extract more prominent features. After extracting features, a series of fusion 

and selection processes are applied sequentially. The selected features are 

subsequently classified using several classifiers. The final model in this 

system, an ensemble classifier, combines the predictions of multiple 

classifiers. For training using the DBT dataset, Feature Fusion and Selection 

with Ensemble Classifier (FFS-EC), uses two pre-trained models, ResNet-50 

and SqueezeNet, in addition to the previously developed Mod_AlexNet deep 

learning model. The integration of feature fusion, selection, and ensemble 

classifier reduces dimensionality and combines diverse predictive strengths to 

select the most significant features, which can effectively discriminate 

between different classes, resulting in improved classification performance 

across different measured performance measures. Chapter 8 provides 

detailed insights into the methodologies employed in FFS-EC. 

3. One novel contribution of this thesis is the construction of a three-layer Multi-

Head Mod_AlexNet Attention (MHMA) model that utilises the final pooling 

outputs of Mod_AlexNet. Specifically designed to tackle issues caused by 

differences in breast sizes in DBT data, this model combines Fully Connected 

(FC) layers and SA techniques. The adaptability of the model is improved by 

training it with SGDM, Adam, and RMSProp optimisers over a range of batch 

sizes. The model enhances adaptability and addresses challenges caused by 

differences in breast sizes, resulting in improved diagnostic accuracy, 

especially in the abnormal classes. In Chapter 9, the methodical processes 

used in the MHMA System are described in depth, emphasising how this 

novel approach greatly enhances classification performance by effectively 

addressing complexities related to varying breast sizes in 

tomosynthesis images. 

4. The most significant contribution of this thesis comes from the Hybrid Multi-

head Self-Attention with Integrated Voting Ensemble Classification Model 

(HMSA-IVECM) System, which is thoroughly explored in Chapter 10, and 

serves as an integrated solution addressing the challenges encountered in 

tomosynthesis classification. Developing an innovative ensemble classifier, 

IVECM, represents a key contribution of this thesis, with the objective of 

resolving the critical issue of class imbalance in the data set being utilised is a 

crucial component of this thesis. Weights for each classifier are assigned 
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carefully, with the weighted average F1-score and specificity for each 

classifier being considered when determining the classifier weights. 

Furthermore, class weights are generated and integrated with the classifier 

weights, guaranteeing an intelligent and efficient ensemble model. The HOG 

descriptors and features extracted from the Mod_AlexNet Self-attention (SA) 

module were carefully combined through concatenation, and several feature 

selection algorithms are utilised. The final forecast is then obtained by feeding 

the selected features from each selection model into the IVECM. This system 

integrates individual contributions and effectively addresses the challenges 

posed by the class imbalance in the dataset, resulting in more accurate and 

reliable diagnostic results. Chapter 10 provides details of structures of the 

HMSA-IVECM System and how crucial it is to overcome these challenges. 

1.6 Thesis Organisation 
There are eleven chapters in this thesis. A review of the medical background on 

breast structure is provided in Chapter 2, which also discusses the imaging 

modalities employed for breast cancer screening and presents a variety of findings 

from breast scans. Chapter 3 explores CAD systems and provides a thorough 

summary of the approaches utilised in the systems developed during this thesis. A 

thorough overview of the literature is provided in Chapter 4, which includes studies 

on tomosynthesis scans using various private datasets, and the dataset utilised in 

the work presented in this thesis. Chapter 5 outlines the employed dataset, 

experimental framework, and performance metrics for evaluating system efficacy. 

Chapters 6-10 emphasise the five developed systems, explaining their methodology, 

experimental setting, and presentation of the results. 

Chapter 6 introduces a comparative evaluation system for feature extraction, which 

investigates six state-of-the art deep learning models and employs them as feature 

extraction models before classifying the features using an SVM. In Chapter 7, the 

MA System is introduced. Mod_AlexNet, the first contribution, an improved version of 

optimal deep learning model of the DE System, is compared to classic AlexNet in 

terms of performance across various optimizers and batch sizes. An enhanced 

system with feature fusion and selection integrating a majority voting ensemble 

classification model is detailed in Chapter 8. The system integrates feature 
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extraction, fusion, and selection techniques within a voting ensemble model. Despite 

improvements in abnormality class discrimination, further modifications were 

considered for enhanced performance. Chapter 9 introduces a three-layer Multi-

Head Self-Attention model, which includes a novel self-attention model, MHMA 

model, designed to address challenges associated with variable breast size and 

density. Optimisation on various parameters was conducted, and results were 

analysed to assess the significance of the contribution to improvement. 

A hybrid Multi-Head self-attention model with feature fusion, feature selection, and a 

novel ensemble classification model is introduced in Chapter 10, and it incorporates 

all previous contributions into an integrated ensemble classifier. The final 

contribution involves developing an ensemble classifier, IVECM, allocating weights 

to each class, and considering several weights from each classifier. The thesis 

wraps up in Chapter 11 with conclusion, including key findings and 

recommendations for further research.  
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Chapter 2 Background Medical Domain Knowledge 

 
2.1 Introduction 
A full description of the medical background will be given in this chapter. Initially, a 

thorough anatomy of the breast will be discussed, detailing the nuances of its 

structure. This will cover the description of various tissue types that comprise the 

breast in addition to a close examination of the characteristics of the breast tissue. 

Following that, a thorough explanation of the many types of breast abnormalities will 

be provided, along with the unique traits associated with each abnormality. In a later 

subsection, the many forms of breast calcifications, their signs, and how they appear 

on various imaging modalities will all be reviewed. 

A detailed explanation of the concepts, uses, and advantages of breast 

tomosynthesis—a sophisticated imaging method—will be given, along with a review 

of the available imaging modalities for assessing the breast. This structured 

discussion aims to provide a comprehensive foundation for the analysis and 

discussions that will come in this dissertation. 

2.2 Breast Structure 
The mammary gland, an essential component of the female anatomy, is the tissue 

that covers the pectoral muscles in the chest area. Women's breasts are made up of 

specialised glandular tissue that produces milk and fat tissue that controls the size of 

the breast. In addition to providing appropriate support, ligaments and connective 

tissue contribute to structural integrity and form. Neural innervation provides sensory 

perception to the breast (Bistoni and Farhadi, 2015). In addition, the vascular 

network of the breast is made up of linked lymph nodes, blood arteries, and lymph 

vessels, as shown in Figure 2.1. This is a brief description of the unique 

physiological characteristics of the breast.  

Different ratios of glandular and fat tissue account for a considerable deal of diversity 

in the size and appearance of female breasts. It is important to note that breast size 

is rarely constant. The breasts of women and men are pretty similar when compared 

anatomically. However, one distinctive feature of male breast tissue is the absence 
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of specific lobules, which is related to the absence of a physiological need to 

produce milk (Bistoni and Farhadi, 2015). 

 

 

 

 

 

 

2.3 Breast Lumps 
A breast lump is a small area of internal swelling, elevation, or bulging that feels 

distinct from the surrounding breast tissue or from the same spot in the other breast. 

Breast lumps can be classified as benign (non-cancerous) or malignant (cancerous) 

tumours. Most breast lumps are benign and can have a variety of causes, such as 

cyst formation, fibroadenoma, trauma, infection, or fibrocystic disorders of the breast 

(Daly, C., Puckett, Y., 2020). 

2.3.1 Benign Lumps 
a. Hyperplasia 

Hyperplasia is the abundance of cell growth that usually occurs in the breast ducts or 

lobules, increasing the risk of breast cancer. A growing range of screening and risk-

reduction techniques are among the suggested strategies (Paepke et al., 2018). 

 

b. Cysts 
A sac filled with fluid that resembles a bump or sore area. These cysts are frequent 

in premenopausal women and do not raise the risk of breast cancer. Unless it 

causes pain, it usually doesn't need to be removed (Paepke et al., 2018). 

 

 

 

Figure 2.1 Breast Structure (WebMD, 2022) 
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c. Fibroadenoma 
A firm, smooth, or rubbery mass within the breast tissue that is movable. The chance 

of developing breast cancer is not increased by this kind of lump. Most often found in 

females between the ages of 15 and 35, it is not removed unless it causes pain 

(Paepke et al., 2018). 

 

d. Papillomas 
Limited growths that may result in nipple discharges that are in the breast ducts. The 

presence of abnormal cells may raise the chance of breast cancer. Most women who 

have this benign lump removed surgically are between the ages of 35 and 55 

(Paepke et al., 2018). 

 

2.3.2 Malignant Lumps 
Uncontrolled cell proliferation within the breast tissue is a hallmark of breast cancer, 

a malignant disorder. This disease is highly heterogeneous at the genetic level, with 

several subgroups exhibiting unique biological traits. It is currently the most common 

cancer in women worldwide. One important component of managing breast cancer 

concerns early-stage patients, for which curative therapies have success rates 

between 70% and 80% (Harbeck et al., 2019). 

These tumours show in a variety of ways clinically; they might be characterised by a 

tender, soft, spherical mass or by an indurated, painless mass with uneven borders. 

The complexity of breast cancer cause is highlighted by this clinical diversity, 

underscoring the need for sophisticated diagnostic and treatment approaches (The 

American Cancer Society, 2019). 

2.4 Calcification and Breast Density 
2.4.1 Breast Calcification 
Breast calcifications are little white spots visible on medical scans that indicate the 

presence of calcium deposits in the breast tissue. The presence of calcifications is a 

concerning sign that calls for a comprehensive assessment by medical experts. 

Although most breast calcifications are benign, certain irregularly shaped clusters 

detected on imaging scans may indicate the possibility of a malignant tumour 
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(Loizidou et al., 2020). Calcifications seen by breast imaging scans are divided into 

two groups: 

a. Microcalcification 
These tiny white spots are harmless and might appear in groups. When they arise in 

specific combinations, it may be a symptom of underlying breast cancer and require 

further investigation (Demetri-Lewis, Slanetz, and Eisenberg, 2012). 

 

b. Macrocalcification 
Macro-calcifications are larger, spherical, white patches that are mostly 

noncancerous in nature. Generally, there is no need for further testing or follow-ups 

when macro-calcifications are observed (Demetri-Lewis, Slanetz, and Eisenberg, 

2012). Breast scans with various findings are visually represented in Figure 2.2 

(National Cancer Institute, 2018). 

 

 

 

 

2.4.2 Breast Density 
Breast density, or the thickness of the breast tissue, is a characteristic that needs to 

be assessed by breast scans rather than being felt. There are four classifications for 

breast density, ranging from primarily fatty to very dense breasts. The four 

categories are “almost all fatty”, “dense glandular”, “heterogeneously dense” and 

“extremely dense” (Saffari et al., 2020). Visual depictions of these several types of 

breast density are shown in Figure 2.3 (mycdiadmin, 2016). 

 

 

 

Figure 2.2 Mammogram with different findings (National Cancer Institute, 2018) 
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Breast density is important because it plays a part in identifying breast cancer. Those 

who have dense breast tissue have a higher risk of breast cancer than those whose 

breasts are less dense (mostly fatty). In addition, radiologists have difficulties 

identifying malignant abnormalities when breast tissue is dense. Dense tissues, like 

the one seen in Figure 2.3, show up as white on breast scans, thus any 

abnormalities, like possible tumours, also show up as white patches. This feature 

makes it more difficult to find anomalies, which emphasises how crucial it is to take 

breast density into account when making a diagnosis (Saffari et al., 2020). 

2.5 Evaluation of Breast Lumps 
A variety of modalities are utilised in breast screening with the goal of identifying 

breast abnormalities early on and facilitating prompt action and enhanced outcomes. 

Mammography is an essential tool that creates finely detailed images of the breast 

tissue by using low-dose X-rays. DBT, which produces three-dimensional images 

and provides a more comprehensive view and improves identification of minor 

abnormalities, enhances its proven function in screening (Iranmakani et al., 2020). 

Using sound waves to provide real-time images, Ultrasound (US) is a useful addition 

to mammography. It is especially good at differentiating between cysts and solid 

masses, which helps characterise lesions that have been discovered. Magnetic 

resonance imaging, or MRI, is commonly used in situations that require a more 

thorough evaluation, such as in high-risk patients or to investigate unclear results 

 

Figure 2.3 Different breast densities (mycdiadmin, 2016) 
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from other modalities, due to its ability to produce multi-dimensional images using 

strong magnets and radio waves (Iranmakani et al., 2020). 

A new technique called elastography evaluates tissue stiffness to find possible 

tumours. Elastography, which measures the flexibility of breast tissue, improves 

diagnosis accuracy by offering more details about the type of lesions seen. However, 

biopsies are usually the final decision regarding the existence of a breast concern 

because they require the removal of tissue samples for microscopic analysis. Core 

needle biopsy and fine needle aspiration are typical biopsy procedures that help in 

accurate diagnosis and treatment recommendations, depending on the pathology of 

the abnormalities discovered. Combining different biopsy modalities and procedures 

results in a comprehensive approach to breast screening that enables more nuanced 

understanding of breast health and individualised patient management (Iranmakani 

et al., 2020). 

2.5.1 MRI 
Breast magnetic resonance imaging (MRI) is useful for both comprehensive 

visualisation and diagnosis of breast tissue. Unlike mammography and US, which 

rely on sound waves and X-rays, respectively, this diagnostic technique uses radio 

waves and magnetic fields to produce extremely detailed internal breast structure 

images. According to Iranmakani et al. (2020), MRI breast imaging has advantages 

in certain clinical circumstances since it can provide information that other imaging 

technologies cannot readily supply. 

In addition, breast MRI is widely used in breast cancer treatment for preoperative 

planning. It facilitates the assessment of disease severity, tumour location and size, 

and surrounding tissue involvement. Using this data, surgeons may carefully design 

effective surgical operations, which helps patients with breast cancer receive the 

best possible care (Iranmakani et al., 2020). 
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Breast MRI is a useful diagnostic test for breast abnormalities, but because it cannot 

identify calcifications suggestive of breast cancer, it is rarely used as a screening 

procedure. Furthermore, false-positive results from MRIs often require additional 

testing or biopsies (Radhakrishna et al., 2018). A sample MRI scan is shown in 

Figure 2.4. 

 

 

 

 

 

2.5.2 Ultrasound 
Breast ultrasound is a non-invasive imaging technique that uses high-frequency 

sound waves to create incredibly detailed images of the breast. It is frequently 

employed in response to alarming results from a clinical breast exam or as a follow-

up to an abnormal finding from a mammography. Sound waves are emitted by the 

probe of the US scanner and reflect off the tissues in the breast. A computer records 

the echo and uses the sound waves to create an image on the screen. 

The ability of breast US to differentiate between solid and fluid-filled lumps is one of 

its primary benefits. This distinction can be important in the diagnosis of benign 

fibroadenomas and cysts. It is very helpful for ladies who have dense breasts 

(Hooley, Scoutt and Philpotts, 2013). 

A mammography scan reveals several cancerous tumours and breast calcifications 

that are invisible on an US scan. Furthermore, biopsies are typically advised 

because an US scan is insufficient to identify whether the suspected anomaly is 

cancer (Hooley, Scoutt and Philpotts, 2013).  

 

Figure 2.4 Example of an MRI scan (Mayo Clinic) 
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2.5.3 Elastography 
A more recent development in sonographic imaging is breast elastography, which 

provides important information on breast diseases and anomalies. Through elasticity 

tests, this novel method provides vital information regarding tissue deformability and 

is a non-invasive way to assess the stiffness of lesions (Goddi, Bonardi, and Alessi, 

2012). Even while it offers a promising path for diagnostic applications, putting it into 

practise has several difficulties. A significant obstacle in breast elastography is the 

disparity in elasticity between certain benign and malignant tumours. Due to this 

variance in tissue elasticity, it can be challenging to classify lesions appropriately 

based alone on the features of their stiffness. Another challenge is the 

unpredictability of transducer pressure during imaging procedures. Pressure 

variations can affect the quality of elastrograms and cause stiffness values of the 

benign and malignant tissues to overlap. According to Faruk et al. (2015), this 

overlap may therefore lead to increased rates of FPs and FNs during the diagnostic 

procedure. 

Notwithstanding these obstacles, efforts are being made to improve the accuracy 

and overcome these limitations of breast elastography by continued study and 

technical improvements. It is possible to increase the usefulness of elastography in 

clinical settings by pursuing better imaging approaches and standardising 

procedures. This will give physicians more accurate information for the accurate 

characterisation of breast lesions. 

2.5.4 Mammography 
Mammography is an X-ray method that is very useful for finding breast lumps, which 

could be a sign of breast cancer. It is not always possible to determine with certainty 

if breast cancer is present or absent with a mammography scan. It enables qualified 

experts to determine whether the breasts have any abnormalities. To determine the 

most accurate diagnosis, a physical examination (looking at the breast) and further 

tests must be performed in addition to the mammography analysis (Hela et al., 

2013). 
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Mammograms capture the differences in X-ray absorption between the various 

breast tissue constituents. Variations in the quantity of radiation absorbed by 

different tissues aid in the examination and differentiation of the details and 

characteristics of the tissues. Every breast is crushed on a level surface, and then an 

electronic device or film from an above perspective records the X-ray radiation that 

passes through the breast (Bandyopadhyay, 2010). The process of a mammography 

scan is depicted in Figure 2.5 (Riggs, 2017). 

Mammograms need to have high contrast, low radiation exposure, and high 

resolution. High contrast mammography can be used to distinguish densities 

between diseased structures and normal breast tissues. To differentiate between 

breast calcification and soft tissues (like masses), a mammography scan needs to 

have high resolution. Lastly, as women typically get mammograms scanned, it is 

critical to have as little radiation exposure as possible during the process (IARC 

Working, 2016). 

2.5.5 Breast Tomosynthesis 
Digital Breast Tomosynthesis (DBT), also known as 3D mammography, is a modern 

imaging technique that makes it easier to detect breast abnormalities and cancer (Ali 

and Adel, 2019). Unlike the traditional 2D mammogram, which takes just one flat 

image of the breast, DBT captures multiple low-dose X-ray images from different 

angles. These images are then combined to create a detailed three-dimensional 

model of the breast, providing a clearer and more accurate view of the tissue (Helvie, 

2010). 

 

 

Figure 2.5 Mammogram Scan (Riggs, 2017) 
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The process feels familiar to anyone who’s had a mammogram. The breast is gently 

compressed and positioned, but instead of capturing one image, the X-ray tube 

moves in an arc over the breast, taking multiple pictures. These are processed using 

advanced algorithms to create a 3D model that helps doctors make more precise 

diagnoses (Helvie, 2010). 

DBT became widely available in the U.S. on February 11, 2011, when the FDA 

approved the first DBT unit for clinical use, marking a major milestone in breast 

imaging technology (Fda.gov, 2018). One of the unique aspects of DBT is that the 

number of image slices taken during the scan adjusts based on the thickness of the 

breast, ensuring the imaging is tailored to each patient (Conant, 2014). 

This breakthrough technology offers a significant step forward in breast health, giving 

doctors better tools to detect potential issues early. A typical DBT scan provides a 

much clearer picture, as illustrated in Figure 2.6 (Themes, 2016). 

One significant advantage of DBT is the improved visibility of breast lesions. DBT 

lessens the superimposition of overlapping breast tissues by taking images in a 

sequence of slices, making it easier to see small abnormalities such as masses and 

calcifications. By allowing radiologists to examine the breast tissue in greater depth 

and making a more accurate distinction between benign and malignant tumours, this 

three-dimensional method helps to improve diagnostic accuracy. 

 

 

 

 

 

 

 

Figure 2.6 Digital Breast Tomosynthesis scan (Themes, 2016) 
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Compared to conventional mammography, DBT has shown promise in lowering 

recall rates. Layered examination of the breast reduces the need for invasive 

procedures or additional imaging investigations by enabling a more comprehensive 

evaluation of observed abnormalities. This feature lessens patient anxiety related to 

needless follow-up exams and helps to facilitate a more effective diagnostic process 

(Magni et al., 2023). 

Moreover, the restricted accessibility and related expenses provide obstacles to the 

broad use of DBT. Some medical facilities may not have included DBT in their 

screening programmes, which could limit the access of the patient to the advantages 

of this cutting-edge imaging technique. Furthermore, radiologists must receive 

specialised training in interpreting DBT images because the distinct features of 

three-dimensional reconstructions necessitate a sophisticated comprehension for 

precise diagnosis (Williams and Drew, 2019). 

To sum up, DBT has a lot to offer in terms of better lesion visibility and diagnostic 

precision for breast cancer screening. Moreover, DBT detects more breast cancer 

cases than traditional mammograms. As a result, it is considered a promising 

method to enhance both the sensitivity and specificity of mammograms  (Rosenqvist, 

Brännmark and Dustler, 2024). 

2.6 Summary 
In this chapter, a comprehensive medical overview of breast anatomy was 

presented, outlining the composition of the breast. Next came a detailed study of 

breast tumours, defining their physical characteristics and encompassing a variety of 

forms. An examination of the various types of calcifications and the spectrum of 

breast densities—from very fatty to highly dense—were covered in the chapter. It 

was highlighted how crucial calcium deposits are to the detection of anomalies in 

scans and how they aid in diagnostic processes. The chapter also included a 

thorough examination of a variety of breast imaging modalities, outlining the 

advantages and disadvantages of each modality in order to diagnose breast issues. 

The detailed discussion focused on the complexity of detecting anomalies and 

supporting accurate diagnosis by paying close attention to breast density and 

calcifications in imaging studies.  
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CAD Systems is explored in the next chapter, which offers a smooth transition from 

conventional diagnostic methods to state-of-the-art technology applications. 

Illustrative cases demonstrate the vital role that CAD systems perform in the medical 

domain. Some instances of how these technologies help radiologists identify 

anomalies and work together to improve diagnosis results are described. This study 

highlights CAD systems as critical components in the development of intelligent 

medical imaging and breast diagnostic systems. 
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Chapter 3 AI in Medical Applications and Methodologies 

3.1 Introduction 
Medical applications have been transformed by CAD Systems, which are now 

essential diagnostic tools for medical professionals. These technologies carefully 

examine medical images using complex algorithms and artificial intelligence (AI) to 

help identify and understand possible abnormalities. When it comes to breast scans, 

CAD Systems have emerged as a key component in the early identification of breast 

cancer, significantly enhancing both patient outcomes and diagnostic accuracy 

(Yeasmin, 2023). 

AI encompasses machine learning and deep learning, which use a variety of 

statistical, probabilistic, and optimisation techniques to interpret data and improve 

performance. These methods are quite effective, particularly when handling large 

and complex datasets. A subset of machine learning called deep learning models 

are very efficient at identifying complex patterns and extracting subtle features. 

These sophisticated models demonstrate their competence in medical image 

analysis not only by differentiating between normal and abnormal medical scans, but 

also by identifying minute characteristics that contribute to improved diagnostic 

precision. Deep learning models are important for expanding the possibilities of AI 

applications in the healthcare industry because of the degree of comprehension they 

are able to accomplish (Sarker, 2021). 

The following sections offer a brief overview of the role of CAD systems in medical 

applications, with a specific focus on breast scans. Subsequently, the methodologies 

applied in the development and integration of the five systems will be presented in 

detail. 

3.2 Computer-Aided Diagnosis Systems in Medical applications 
CAD System implementation in breast scans requires an integrated approach. These 

devices analyse mammograms using pattern recognition algorithms to spot minute 

abnormalities that could be signs of breast cancer in its early stages. CAD Systems 

function as a powerful second opinion, helping radiologists identify lesions or 

microcalcifications that could be missed in a manual inspection and raising the 

overall sensitivity of breast cancer screenings (Chan, Samala and Hadjiiski, 2020). 
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The accurate diagnosis of breast cancer is enhanced by the diagnostic process that 

is produced by combining human expertise and technology (Yeasmin, 2023). 

The ability of CAD Systems to provide statistical assessments is one of its main 

advantages for breast scans. These algorithms can do more than just identify 

possible abnormalities; they can also provide statistical measurements of lesion 

attributes including size, shape, and texture. Radiologists can improve their analysis 

and make better judgements on the type of abnormalities they find with the help of 

this extra layer of data (S. Arun Kumar and S. Sasikala, 2023). Furthermore, by 

lowering FPs and FNs, CAD Systems help to reduce the possibility of incorrect 

diagnosis and needless medical procedures. 

CAD Systems are useful not just for initial diagnosis but also for therapy evaluation 

and long-term tracking. These systems demonstrate the ability to track changes in 

lesions over time during follow-up scans, which helps medical practitioners assess 

treatment outcomes and modify approaches to intervention as necessary. This long-

term study makes personalised medicine more feasible by customising treatment 

plans to meet the demands of each patient (Petrick et al., 2013). Essentially, CAD 

Systems are crucial for early detection of breast cancer as well as for the continuous 

supervision and tracking of the condition, both of which greatly enhance the quality 

of patient treatment. 

Based on the findings of the literature study, CAD Systems in breast scans have 

several applications besides their main functions of tumour classification and 

detection. The categorisation of breast density, a critical component affecting cancer 

risk and screening results, is one significant application. Healthcare practitioners can 

better adjust screening strategies based on individual breast structure by using CAD 

Systems to precisely classify breast tissue density. These devices also do a great 

job of detecting both micro and macro calcifications, which can reveal important 

information about possible breast cancer beginnings. In addition, CAD Systems aid 

in the classification of results according to the Breast Imaging Reporting and Data 

System (BI-RADS), improving reporting accuracy. This multifunctional approach 

expands the application of CAD Systems and demonstrates their adaptability to 

several aspects of breast health in addition to the main goal of tumour identification 

and classification. 
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In conclusion, CAD Systems have developed into important technologies in the field 

of medicine, especially for breast scanning. Their ability to improve the precision of 

diagnosis, offer evaluations, and enable complete patient care highlights their 

importance in the advancement of breast health. As technology develops, the 

incorporation of CAD Systems into standard clinical practice signifies an important 

shift towards more accurate, effective, and customised healthcare treatments 

concerning the diagnosis and treatment of breast cancer. 

The methodologies employed in the integrated models in CAD systems are covered 

in the section that follows. This part offers a thorough overview and in-depth 

explanation of the different methodologies applied in each of the five developed 

systems this thesis covers. Every methodology is examined to provide an in-depth 

understanding of how it is applied and how it contributes to the overall efficiency of 

the systems. The purpose of this thorough analysis is to provide an in-depth 

knowledge of the specifics of the employed approaches, clarifying their purposes 

and importance within the framework of the thesis. 

3.3 Methodologies implemented in Integrated Models in Computer-
Aided Systems 

 
A multimodal strategy encompassing multiple critical steps is essential for attaining 

reliable and precise results in CAD Systems for medical image classification. 

Augmentation is usually the first step in the workflow, where the dataset can be 

diversified to increase model robustness by exposing it to a wider range of changes. 

After the augmentation stage, the pre-processing model usually follows. In this 

model, the raw medical images are enhanced, normalised, and noise-reduced to 

prepare the data for further analysis. Subsequently, the feature extraction stage 

involves identifying and capturing relevant patterns and structures from the 

enhanced augmented data. Since deep learning models are so effective at 

automatically learning hierarchical features, this stage is frequently carried out using 

convolutional neural networks (CNNs) or DCNNs. Feature selection approaches can 

be utilised after feature extraction to improve model efficiency and lower 

dimensionality by keeping the most useful features. Finally, a classification model, 

which may be ranging from complex deep learning architectures to more 

conventional machine learning methods like SVM, is fed the features that have been 
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selected: pre-processing, augmentation, feature extraction, feature selection, and 

classification are all iterative processes that together enable CAD Systems to 

produce precise and complex medical image classifications, promoting better patient 

care and diagnostics. 

3.3.1 Data Augmentation 
Data augmentation is a technique for enhancing the amount and complexity of 

current data on purpose. Data augmentation has become a major study issue in the 

field of deep learning in recent years. Deep learning requires many training samples, 

yet available datasets in the medical field have limited resources. A data 

augmentation phase is necessary to increase the variety of the original dataset 

(Perez et al., 2017). The most well-known data augmentation techniques are: 

• Flipping: creates a mirror copy of the original image.  

• Rotation: the process of rotating an image around its centre pixel. 

• Noise addition: adds noise to an image. 

In the developed research, a series of image augmentation techniques were 

strategically applied to enhance the robustness of the training dataset. Flipping once 

vertically and once horizontally was the first augmentation technique. After the image 

was flipped, random brightness level adjustments were applied between -0.3 and -

0.1. The augmentation technique was utilised to replicate different lighting 

circumstances, which is an essential component in real-life situations. The model 

performs better in a variety of lighting conditions as a result of the brightness 

reduction since it enhances the generalisation ability of the model across various 

brightness levels.  

3.3.2 Pre-processing 
Before raw medical imaging data enters the deep learning model, it undergoes a 

series of techniques known as pre-processing in the framework of tomosynthesis 

classification. A key component of pre-processing is image enhancement, which 

involves performing a number of enhancements to image quality, and clarity in order 

to improve medical imaging. These methods including noise reduction, histogram 

equalisation, and contrast enhancement. The main advantage of employing pre-

processing in tomosynthesis classification is its ability to tackle challenges with 
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medical imaging data, including variations in brightness and noise. Pre-processing, 

thus, serves as an essential model in the enhancement of noisy tomosynthesis 

images, creating the framework for improved efficiency and diagnostic precision in 

classification models. The essential role of pre-processing is guarantying that the 

next phases of the deep learning process are more capable of extracting significant 

features from the complex tomosynthesis datasets, hence improving the accuracy of 

medical image classification. Different pre-processing techniques were applied to the 

five systems developed in the context of this thesis. Different enhancement 

techniques and colour mapping models were applied in every system. The 

techniques employed, along with their corresponding explanations, are detailed 

below. 

3.3.2.1 Enhancement techniques 
Within the area of tomosynthesis image analysis, the application of diverse image 

enhancement techniques is essential for optimising image quality, which in turn 

boosts classification model performance. 

i. Contrast Limited Adaptive Histogram Equalisation (CLAHE)  

An effective method for tomosynthesis classification, demonstrating its effectiveness 

through an advanced approach for image enhancement. Based on local features in 

the image, CLAHE dynamically adjusts the intensity distribution to dynamically 

address fluctuations in pixel intensity. This process is based on the adaptive 

histogram equalisation principle. This adaptable quality is especially helpful in 

reducing problems caused by irregular intensity distributions, which are a common 

problem in tomosynthesis images. To improve local contrast without boosting noise, 

CLAHE operates by segmenting the image into smaller areas, determining the 

histogram for each region, and then locally performing contrast enhancement (Singh, 

Mukundan and De Ryke, 2019). When it comes to tomosynthesis, the ability of 

CLAHE to adaptively improve histogram adjustment locally is essential for 

highlighting small and structural details, which enhances the visibility of features that 

are essential for precise classification. CLAHE is an important model for improving 

image quality and raising the precision of classification models in medical imaging 

due to its ability to adjust to the specific characteristics of medical images and how 

well it fits with the complexity of tomosynthesis data (Alshamrani et al., 2022). 
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ii. Adaptive filtering  

A complex technique for feature enhancement which operates by dynamically 

altering filter parameters in response to local image features. This method is 

especially useful in the field of tomosynthesis since it can adjust to different areas of 

an image. Through the use of adaptive filtering for distinct areas, the enhancing 

procedure is carefully customised to the unique properties of different tissue 

configurations. This adaptability guarantees a precisely adjusted strategy, enabling 

the algorithm to concentrate on and highlight specific areas of interest. Especially 

when it comes to tomosynthesis images, where there are many small variations in 

tissue density and structure, adaptive filtering greatly improves the ability of the 

model to discriminate. The ability of the technique to distinguish tiny differences in 

different regions of the tomosynthesis images plays a crucial role in increasing the 

overall diagnostic accuracy of the classification model, making it an essential part of 

the image enhancement process (Kikinis and Knutsson, 2000). Gaussian and 

Weiner adaptive filters are applied in the context of tomosynthesis classification as a 

method for addressing different image enhancement challenges. The Gaussian 

adaptive filter plays a crucial role in efficiently reducing noise while maintaining 

important image details. It does this by employing a kernel with adaptable weights 

based on local image attributes. The Weiner adaptive filter reduces additive noise 

according to the local signal-to-noise ratio while simultaneously adjusting its 

parameters according to the local features of the image. Combining these filters 

results in a thorough enhancing approach for tomosynthesis images that focuses 

on noise reduction. This dual-filter strategy attempts to maximise image quality, 

consequently offering a better and more detailed representation of anatomical 

features and abnormalities (Kikinis and Knutsson, 2000). 

3.3.2.2 Colour Mapping 
Hue, Saturation, and Value (HSV) colour mapping is an approach to express colours 

in a colour space. The HSV colour model divides colour information into three 

distinct components: hue, saturation, and value. This is in contrast to the RGB colour 

model, which expresses colours as combinations of red, green, and blue. Moreover, 

it proved to be a crucial component of image processing; image enhancement and 

categorising are two areas in which it is very useful.  
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Hue is a visual characteristic of colour that has values between 0 and 360 degrees. 

This component is symbolically represented by the colour wheel, which assigns 0 

and 360 degrees to red, 120 degrees to green, and 240 degrees to blue. The unique 

colour identity is defined by the assignment of particular hues within this spectrum. 

Saturation is a percentage that ranges from 0% (grayscale or absence of colour) to 

100% (highest intensity), and it impacts the dominancy or intensity of colour. A finer 

control over the colour spectrum can be achieved by adjusting the saturation 

component, which affects the colour intensity (Fleyeh, 2008). Value is expressed as 

a percentage and describes the hue or intensity of a colour. The value component 

controls the overall luminance of the colour, with 0% indicating black (lowest 

brightness) and 100% indicating maximum brightness. This parameter can be varied 

to change the brightness characteristics (Mmed, 2023). Figure 3.1 displays the HSV 

colour space. 

 

Figure 3.1 HSV colour space (Erdogan and Yilmaz, 2014) 

 
Figure 3.1 shows the cylindrical architecture of the HSV colour space. This 

architecture is well-suited for simple understanding and use in a variety of image 

processing applications. Additionally, adjustments are made easier by separating 

colour information (Hue and Saturation) from intensity (Value). Because of this 

distinction, brightness may be independently adjusted, offering a useful tool for 

improving images without sacrificing colour details. This feature is especially helpful 
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for accurate intensity representation, including tissue separation in medical images. 

The accurate handling of colour information within the HSV colour space is another 

benefit.  

HSV provides a significant advantage over the RGB model in handling lighting 

variations. In the RGB model, brightness and colour are interdependent, which 

means that adjusting brightness affects the colour balance, and changing colour 

intensity impacts brightness. This coupling makes it difficult to perform precise 

brightness and contrast adjustments without distorting colour information. In contrast, 

HSV separates brightness (value) from colour (hue and saturation), allowing 

independent adjustments to brightness without compromising colour accuracy. This 

ensures that hue and saturation remain stable under different lighting conditions, 

which guarantees more consistent colour representation and improves classification 

accuracy. 

The RGB model is also limited in its ability to represent complex colour variations 

accurately in medical imaging. In tomosynthesis scans, for example, subtle 

differences in tissue density and brightness are critical for distinguishing between 

normal, benign, and malignant cases. The HSV model’s separation of brightness and 

colour information allows for more refined control over contrast and feature 

extraction, enhancing the accuracy of classification. Unlike RGB, where changes in 

brightness can distort colour interpretation, HSV preserves the original colour 

integrity, ensuring that classification remains consistent even when lighting 

conditions vary. 

This adaptability gives HSV a significant advantage in tomosynthesis-based breast 

cancer classification, where variations in tissue density and brightness often 

complicate accurate diagnosis. The ability to independently adjust brightness while 

preserving colour integrity makes HSV a powerful tool for improving classification 

accuracy and overall diagnostic performance. HSV’s combination of brightness 

control and colour stability makes it particularly well suited for complex medical 

imaging tasks where colour accuracy and contrast are essential. 
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3.3.3 Feature Extraction 
The feature extraction step is the process by which a large set of raw data is reduced 

to smaller groupings for simpler processing. In order to gather beneficial 

characteristics that differentiate between different classes and produce a more 

accurate classification, feature extraction is a crucial step. It is possible to extract 

features using both linear and non-linear techniques. Low-level features like edges, 

textures, and colour histograms are examples of linear features. Conventional 

computer vision methods like edge detection, texture analysis, and colour histogram 

analysis can be used to extract these features (Ghojogh et al., 2019). On the other 

hand, non-linear features are higher level features including shapes, objects, and 

patterns. More sophisticated machine learning methods, such as, CNNs can be used 

to extract these features. These features are more complex and usually require more 

time and computing resources to extract but can provide more powerful features for 

image classification tasks (Chen et al., 2016).  

The primary difference between linear and nonlinear features is their identification 

and accuracy. When comparing linear versus non-linear features, linear features are 

typically easier to identify and provide more accurate results. This is explained by the 

fact that linear features are easier to understand and use because they are 

expressed as a weighted sum of input variables. Conversely, compared to linear 

features, non-linear features might provide more detailed information about an 

image. As a result, non-linear features are useful for identifying deeper features of an 

image that linear features could miss. This research involved the extraction of many 

linear and non-linear features, including linear features derived from HOG 

descriptors and non-linear features derived from deep learning models. 

3.3.3.1 Deep learning models 
Deep learning models have gained prominence in image classification and 

identification, and academics are working to enhance performance by constructing 

deeper learning models. Several state-of-the-art deep learning models were 

employed in this thesis to enhance the feature extraction process. The utilised deep 

learning models encompassed AlexNet, ResNet-18, GoogleNet, MobileNetV2, 

DenseNet-201, VGG-16, SqueezeNet, and ResNet-50. The sections that follow offer 

a thorough explanation of these models. 
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i. AlexNet 

AlexNet is an 8-layer CNN built in 2012 by Alex et al. (Krizhevsky, Sutskever and 

Hinton, 2012), it took part in the ImageNet Large Scale Visual Recognition Challenge 

(ILSVRC) in 2012 and achieved a top five error rate (Krizhevsky, Sutskever and 

Hinton, 2012). AlexNet outperformed all standard machine learning and computer 

vision algorithms in terms of recognition accuracy. It was a milestone event in the 

history of machine learning and computer vision for visual identification and 

classification tasks, and it signalled the beginning of a spike in interest in deep 

learning (Alom et al., 2018).  

The network is composed of up of eight layers: five convolutional layers, followed by 

max-pooling layers, and three FC layers. It is significant for using the Rectified Linear 

Unit (ReLU) activation function, which accelerates training convergence and assists 

in reducing the vanishing gradient issue. Figure 3.2 displays the architecture of 

AlexNet. 

 
Figure 3.2 AlexNet architecture (Khvostikov et al., 2018) 

 

To help extract high-level features, the first convolutional layer of AlexNet has a 

kernel size of 11x11 with a stride of 4. Subsequent convolutional layers with ReLU 

activations contribute to the nonlinearity of the model, enabling it to learn more 

complex patterns. The max-pooling layers that follow these convolutional layers 

down sample the spatial dimensions of the feature maps, allowing the network to 

efficiently collect both local and global features. A distinctive feature of AlexNet is the 

addition of Local Response Normalisation (LRN) after the first and second 

convolutional layers. LRN normalises the responses between neighbouring neurons, 
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which encourages the discovery of invariant features and improves the network’s 

generalisation ability. This enhances the model’s discrimination capability by 

increasing the sensitivity of neurons to locally important features while suppressing 

less informative activations, ultimately improving classification performance 

(Krizhevsky, Sutskever and Hinton, 2012). 

The FC layers at the final stage of the network generate the hierarchical features 

extracted by the convolutional layers. These FC layers are subjected to dropout 

regularisation, which helps to avoid overfitting during training. This regularisation 

approach includes randomly "dropping out" neurons during training, causing the 

network to learn more robust features. ReLU activations, LRN, and dropout 

regularisation are three strategies that work together to reduce the vanishing 

gradient issue and speed up training convergence (Krizhevsky, Sutskever and 

Hinton, 2012). Being one of the first large-scale CNNs, AlexNet introduced a 

significant number of parameters, which contributed to its success. 

AlexNet is able to capture complex hierarchical information using its deep 

architecture, which allows it to be effective at image classification tasks. The mix of 

convolutional layers, nonlinear activations, normalisation approaches, and 

regularisation algorithms has since served as an inspiration for succeeding CNN 

architectures. AlexNet left an eternal mark by laying the groundwork for the creation 

of more complex and deep neural networks. Moreover, it has been frequently 

adopted due to its simple network construction and shallow depth (Yan, Jing, and 

Wang, 2021). 

ii. ResNets 

ResNet, also known as deep residual network, is an Artificial Neural Network (ANN) 

model developed in 2016 by Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian 

Sun (He et al., 2016). The introduction of residual blocks, also known as residual 

units, which enable the network to learn residual functions, constitutes the main 

novelty of ResNet. These blocks have skip connections, sometimes referred to as 

identity shortcuts, which allow information to move directly from one network layer to 

a subsequent layer. Instead of learning the complete transformation, the objective is 

to learn the residual mapping, which is defined mathematically as the difference 
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between the input and output of a layer. By addressing the vanishing gradient issue, 

this method makes it easier to train deeper networks (He et al., 2016). 

In ResNet-18, the residual block usually consists of two convolutional layers that are 

sequentially followed by ReLU activation and batch normalisation. By skipping these 

convolutional layers, the skip connection adds the input straight to the output of the 

residual block. This facilitates the convergence of the network by enabling the model 

to learn the residual rather than the complete transformation. The architecture and 

layers parameters of ResNet-18 are demonstrated in Figure 3.3 and Table 3.1. 

 

Figure 3.3 ResNet-18 architecture (Ramzan et al., 2019) 

 

As shown in Figure 3.3, the network consists of 18 layers in total: a fully-connected 

layer, an additional softmax layer used for the classification task, and 17 

convolutional layers. The network is constructed so that layers with the same output 

feature map size have an equal number of filters, and the convolutional layers use 3 

× 3 filters. On the other hand, the number of filters in the layers doubles when the 

output feature map is cut in half. The down sampling is done using convolutional 

layers with a stride of 2. An average-pooling layer, a fully-connected layer, and a 

softmax layer for classification are located towards the final layers of the 

architecture.  
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Table 3.1 ResNet-18 architecture and layers parameters (Bui Hai Phong, Thang Manh 
Hoang and Le, 2020) 

 

 

Residual shortcut connections are integrated between layers across the whole 

network. There are two kinds of these linkages. The first kind, shown by solid lines, 

is applied in cases where the size of the input and output are the same. When the 

dimensions rise, the second type—shown by dotted lines—is used. This connection 

maintains identity mapping in spite of the increased dimensions; however, it uses a 

stride of 2 and zero padding for the higher dimensions (Ramzan et al., 2019). 

The two variations of the ResNet (Residual Network) design, ResNet-18 and 

ResNet-50, differ primarily in their number of layers and depths. With only 18 layers, 

ResNet-18 is a shallower network than ResNet-50. It is made to leverage the 

advantages of residual connections while offering a lighter option. Each fundamental 

building pieces of the architecture consists of batch normalisation, shortcut 

connections, and convolutional layers. On the other hand, ResNet-50 offers more 

representational capacity because it is a deeper network with 50 layers. ResNet-50 

can extract more intricate features and hierarchies from the data at this depth. The 

architecture allows the network to learn complex patterns and representations by 

including residual blocks with several convolutional layers. ResNet-50 is frequently 

used in applications like image classification on huge datasets because it performs 

well on tasks demanding a better comprehension of visual data (Sarwinda et al., 

2021). 
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When compared to other architectural models, the ResNet model has the distinction 

of retaining performance even as the design grows to be more complicated. One of 

the benefits of ResNet-18 is its capacity to train extremely deep networks efficiently. 

The learning of identity mappings is made possible by the addition of residual blocks, 

which speeds training and lets the network benefit from greater depth. It has been 

demonstrated that this architectural layout lowers the possibility of vanishing 

gradients, facilitates optimisation, and eventually boosts deep network performance 

(Sarwinda et al., 2021). The ResNet model beats other models in image 

classification, implying that the image characteristics were efficiently recovered by 

ResNet (He et al., 2016).  

iii. GoogleNet 

GoogleNet is a 22-layer DCNN built by Google researchers (Szegedy et al., 2014) as 

a version of the inception network, and the input layer of the GoogleNet architecture 

processes a 224X224 image. The GoogleNet architecture was designed to be a 

computing powerhouse that outperformed some of its predecessors or comparable 

networks at the time. The first convolutional layers of the complex architecture are 

where basic features like edges and textures are captured using 3x3 filters. 

However, the distinguishing innovation is found in the inception modules. (Alsharman 

and Jawarneh, 2020). The structure of GoogleNet is illustrated in Figure 3.4, 

accompanied by an elaborate description of the layer parameters provided in Table 

3.2. 

 

Figure 3.4 Architecture of GoogleNet, where all convolutional layers and inception 
modules have a depth of two (Pawara et al., 2017) 
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Basic components of GoogleNet, called inception modules, combine multiple-sized 

filters (1x1, 3x3, 5x5) with a max-pooling layer to transform feature extraction. By 

using this innovative method, the network is able to effectively capture spatial 

hierarchies, which promotes multi-scale feature representation and computational 

efficiency. The 1x1 convolutions, also known as bottleneck layers, optimise 

computational resources by limiting the number of input channels prior to more 

complex convolutions, a design choice that considerably improves the overall 

efficiency.  

Table 3.2 GoogleNet Layer Architecture information (Szegedy et al., 2014) 

 
 

To address training challenges associated with very deep networks, GoogleNet 

introduces auxiliary classifiers at intermediate layers during training. By connecting 

auxiliary classifiers to these intermediate layers, they aimed to encourage 

discriminating in the lower levels of the classifier, improve the gradient signal that is 

propagated back, and give further regularisation. Smaller convolutional networks are 

placed upon the output of the Inception (4a) and (4d) modules to create these 

classifiers (Szegedy et al., 2014). Their loss is added, during training, to the overall 

loss of the network with a discount weight. These auxiliary networks are dropped at 

inference time. By offering more oversight, these classifiers facilitate gradient flow 

and minimise the impact of the problem of vanishing gradients. This thoughtful 

inclusion strengthens the training process, allowing for more effective acquisition of 

hierarchical features (Pawara et al., 2017). 
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Finally, a softmax activation for classification and FC layers finalise the design. The 

ability of the network to accurately classify images is aided by both the auxiliary 

classifiers and the main classifier. In addition to being exceptionally accurate, 

architecture of GoogleNet takes into account the processing requirements of deep 

networks, increasing its viability for practical implementation. One of the strengths of 

GoogleNet is that, in comparison to other deep architectures, it requires a lot less 

parameters to attain comparable performance on image classification tasks. The 

multi-scale feature extraction of the inception modules demonstrates the ability of the 

model to effectively capture complex patterns (Szegedy et al., 2014). 

iv. MobileNet V2 

MobileNetV2 is an important CNN architecture that is optimised for efficient image 

classification. Developed by Google researchers under the direction of Menglong 

Zhu, Andrew Howard, and Mark Sandler (Sandler et al., 2018), MobileNetV2 offers a 

number of enhancements to maximise model accuracy, size, and computing 

performance. Inverted residual blocks, a key component of the architecture of 

MobileNetV2, are essential to striking a balance between model complexity and 

efficiency. Each inverted residual block has three major components: a lightweight 

depth wise separable convolution, a linear bottleneck, and a shortcut link. By 

factorising the convolution operation into depth wise and pointwise convolutions, the 

depth wise separable convolution lowers the computational cost and parameter 

count. 

As shown in Figure 3.5, the initial layer of MobileNetV2, known as depth wise 

convolution, performs lightweight filtering by applying a single convolutional filter to 

each input channel. The second layer consists of a 1 × 1 convolution, also known as 

a pointwise convolution, which computes linear combinations of the input channels to 

produce new features. The backbone of the network is made up of several inverted 

residual blocks that come after the first layer. These building blocks are in charge of 

extracting hierarchical features at various scales, which makes it easier to represent 

complex patterns in the input data. The inverted residual blocks include linear 

bottlenecks, which allow the network to capture and propagate critical information 

more efficiently (Sandler et al., 2018). 
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Figure 3.5 MobileNet V2 Architecture (Antonios Tragoudaras et al., 2022) 

In order to promote faster convergence during training and computing efficiency, the 

linear bottleneck decreases the dimensionality of the input before applying non-linear 

activation. Through the use of a linear bottleneck and a 1x1 convolutional layer to 

compress the input channels, this dimensionality reduction is accomplished. To 

restore the feature space to its initial size, a depth-wise separable convolution and a 

further 1x1 convolution are performed after this. The bottleneck layer has two 

purposes; in the first place, it drastically lowers the computing cost of the depth wise 

separable convolution and other related processes. While maintaining the necessary 

information for precise classification, the computations become more efficient due to 

the decrease in the number of input channels. Second, by first compressing and then 

expanding the feature space, the bottleneck layer aids in preserving a balance 

between computational efficiency and the ability of the network to capture 

complicated information. Understanding parameters of each layer in MobileNetV2 is 

essential to figuring out how effective it is. The behaviour of each depth wise 

separable convolutions of inverted residual block, pointwise convolutions, and linear 

bottlenecks is controlled by particular parameters. The filter size, stride, input and 
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output channels, and the linear expansion factor of bottleneck are some of these 

characteristics (Sandler et al., 2018). 

Compared to standard architectures, MobileNetV2 can achieve competitive accuracy 

on image classification tasks with substantially less parameters. Because of this, it is 

especially appropriate for systems with limited resources. The emphasis on linear 

bottlenecks and depth wise separable convolutions in the architecture makes it 

suitable for real-time applications and computationally efficient. 

v. DenseNet-201 

Modern CNN architecture DenseNet-201 is distinguished by its densely connected 

architecture, which encourages feature reuse and lessens the effects of the 

vanishing gradient issue. DenseNet-201, created by Gao Huang, Zhuang Liu, and 

Laurens van der Maaten (Huang, Liu and Weinberger, Kilian Q, 2016), expands on 

the features of DenseNet to provide better feature representation by adding 

additional layers.  

 

Figure 3.6 DenseNet-201 Architecture (Attallah, 2021) 

 
Design of DenseNet-201 is distinguished by its dense blocks, as shown in Figure 

3.6, each of which contains densely connected layers. Every layer in a dense block 

gets information from every layer that came before it, resulting in a high density of 

interlayer connections. Because of this design choice, the network is better able to 



 

 
 

39 

capture complex patterns and hierarchies by encouraging feature reuse. In order to 

regulate the expansion of feature maps and lower computational complexity, 

transition layers—which include batch normalisation, 1x1 convolutions, and average 

pooling—connect consecutive dense blocks (Huang, Liu and Weinberger, Kilian Q, 

2016). 

DenseNet-201 is composed of four dense blocks and transition layers, resulting in a 

densely layered network. The capacity of the model to capture complex features is 

influenced by the growth rate parameter, which determines how many feature maps 

are added in each layer inside the dense block. In addition to improving feature 

propagation, the densely linked architecture resolves the vanishing gradient problem, 

which makes training deeper networks easier (Huang, Liu and Weinberger, Kilian Q, 

2016). 

Table 3.3 illustrates the differences in the designs of the DenseNet models, which 

include DenseNet-121, DenseNet-169, DenseNet-201, and DenseNet-264. Although 

they utilise inter-layer connections for feature reuse and have a basic densely 

connected structure, their differences are primarily in the number of layers, growth 

rates, and total depths of the networks. For example, DenseNet-201 has more layers 

than DenseNet-121, which results in a higher level of model complexity and possibly 

stronger representational capability. 

Table 3.3 The sizes of the different layers in the DenseNet DCNN (Huang, Liu and 
Weinberger, Kilian Q, 2016) 
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Layer parameters of DenseNet-201 include details like the quantity of filters in the 

convolutional layers, the growth rate that determines how many feature maps are 

added in each dense block layer, and the compression factor that determines how 

many output feature maps are added in the transition layers (Attallah, 2021). The 

complicated parameter combinations and connectivity patterns work together to 

enable DenseNet-201 to capture hierarchical features with efficiency. 

Compared to other DCNN, DenseNet-201 offers enhanced accuracy with fewer 

parameters since it maximises parameter efficiency and feature reuse. The network 

can better represent data because of its densely connected structure, which makes it 

possible to take advantage of shared information between layers. DenseNet-201 

excels at image classification tasks, particularly on large datasets, where its dense 

connections contribute significantly to robust feature learning. 

vi. VGGs 

Karen Simonyan and Andrew Zisserman from the Visual Geometry Group Lab at 

Oxford University (Simonyan and Zisserman, 2015) suggested VGG-16 and VGG-19 

in 2014. VGG-19 is a 19-layer model with many weight parameters, and VGG-16 is a 

16-layer model. Figure 3.7 displays the architecture of VGG-16 DCNN and the 

parameters of each layer is shown in Table 3.4. 

 

Figure 3.7 Traditional VGG-16 Architecture (Ferguson et al., 2017) 
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As shown in Figure 3.7 and Table 3.4, Max-pooling layers are arranged after 

convolutional layer blocks in the VGG architecture. Small 3x3 convolutional filters are 

used throughout the network to preserve a consistent receptive field, which is a 

crucial feature. VGG can be easily implemented and is highly interpretable due to its 

homogeneous structure and simplicity. Every VGG block has a max-pooling layer 

after a number of convolutional layers. The network can learn hierarchical features of 

increasing complexity thanks to this repeating structure. The benefit is that the 

receptive fields and filters are uniform, which encourages feature learning in an 

organised way (Simonyan and Zisserman, 2015). The enormous number of 

parameters of the VGG architecture, however, makes it frequently computationally 

costly. 

Variants of the original VGG architecture with 16 and 19 layers, respectively, are 

called VGG-16 and VGG-19. These variations differ in terms of network depth but 

have the same block structure. With additional parameters, deeper architectures like 

VGG-19 are able to learn features in a more expressive way, although at the 

expense of greater processing power. On the other hand, VGG-16 achieves a 

balance between efficiency and complexity. 

 
Table 3.4 VGG-16 network layers parameters (Zakir Ullah et al., 2021) 

 
 
 

The convolutional layers of the network, which consistently apply tiny 3x3 filters, aid 

in the methodical learning of features. The ability of the network to recognise 

complex structures is largely determined by the settings of each layer. Simplicity, 
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interpretability, and efficiency of VGG in capturing complex features are among its 

benefits. The primary disadvantage, nevertheless, is the computational expense 

incurred by its high number of parameters. The ability of VGG to learn hierarchical 

representations has allowed it to demonstrate success in image classification. 

vii. SqueezeNet 

Researchers at DeepScale and Stanford University (Iandola et al., 2016) have 

created a unique CNN architecture called SqueezeNet, which offers novel 

techniques for model compression without sacrificing performance. SqueezeNet is 

built around the concept of "fire modules," which feature squeeze and expand layers 

that use 1x1 convolutions to minimise parameters while maintaining expressive 

capability. 

The first step in the fire module is the squeeze layer, which uses 1x1 convolutions to 

efficiently reduce the number of input channels. The parameter count of the model is 

reduced in a significant way because to this compression step. After the squeeze 

layer, the expand layer increases representational capacity by combining 1x1 and 

3x3 convolutions (Iandola et al., 2016). The Fire Module is presented in Figure 3.8, 

demonstrating the squeeze and expand layers. 

 

Figure 3.8 Fire Module Architecture (Iandola et al., 2016) 

The 1x1 convolutions in the expand layer assist to restore expressive depth to the 

feature maps, whereas the 3x3 convolutions capture spatial hierarchies. By 

integrating these layers, the network may capture a variety of patterns in a small 

parameter space by making it easier to extract complex features. During the training 
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phase, skip connections in the fire module facilitate effective gradient flow and 

feature propagation in both forward and backward passes (Iandola et al., 2016). 

 

Figure 3.9 SqueezeNet Architecture (Pothos et al., 2016) 

 
The number of filters in the squeeze and expand layers, among other fire module 

parameters, is an important consideration in determining the expressive power and 

efficiency of the model. The squeeze layer parameter known as the compression 

factor controls how many input channels are reduced. A careful balance is struck 

when configuring these parameters to guarantee that the fire module performs 

efficient compression without sacrificing the variety of features necessary for 

accurate prediction. The structure of SqueezeNet, along with the layer parameters, is 

illustrated in Figure 3.9, and detailed information is presented in Table 3.5. 

Multiple fire modules are organised in a sequential manner within the larger structure 

of SqueezeNet, with max-pooling layers inserted for spatial down sampling in 

between. It is possible to extract hierarchical features systematically across 

abstraction layers because to this modular framework. With its strategic 1x1 

convolutions, the fire module combination greatly enhances the performance of 

SqueezeNet in image classification tasks, allowing for higher accuracy at lower 

model sizes. 
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Table 3.5 SqueezeNet layers parameters (Iandola et al., 2016) 

 
 
CNNs, like SqueezeNet, have several noteworthy benefits. Its main goal is to 

compress the model using 1x1 convolutions, which lowers parameters and makes 

the design more memory efficient. This benefit is essential for systems with limited 

resources. SqueezeNet strikes a balance between model simplicity and predictive 

performance, displaying competitive accuracy in image classification tasks despite 

its efficiency. 

3.3.3.2 HOG 
A common feature descriptor in computer vision for image classification is the HOG. 

By capturing local intensity gradients and their orientations in an image, the HOG 

approach seeks to produce a reliable representation of the textures and forms of 

objects. Since its first proposal in 2005 by Navneet Dalal and Bill Triggs (Dalal et al., 

2005), its efficacy has led to its widespread adoption in a variety of applications, 

including the classification of tomosynthesis images. 

There are several crucial phases involved in the extraction of HOG features. The 

input image is first split up into tiny, overlapping cells. Gradient information is 

generated within each cell by applying convolutional operators in both the horizontal 

and vertical directions, such as Sobel filters. Next, for every pixel in the cell, the 

magnitude of the gradient and orientation are determined. These gradient values are 

then combined to create gradient orientation histograms, where the bins in the 
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histogram correspond to various orientation ranges. The final feature vector is 

created by concatenating the histograms from each cell (Dalal et al., 2005). 

Capturing local shape and texture information while being reasonably invariant to 

variations in light and contrast is one of the primary features of HOG features. HOG 

may concentrate on edges and boundaries, which are essential for differentiating 

between various objects or structures in an image, due to the utilisation of gradient 

information. The orientation histograms provide an accurate representation of the 

dominating gradient directions, enabling the discovery of patterns regardless of 

where they are located in the image (Dalal et al., 2005). 

Compared to more complicated descriptors, HOG descriptors are less prone to 

overfitting due to their simplicity and computational efficiency. HOG can identify 

elements with varying sizes and orientations within an image since it is resistant to 

scale and rotation changes. Using local histograms enhances the discriminative 

power of HOG by enabling it to detect crucial features in particular areas of an image 

(Fleyeh and Roch, 2013). 

Regarding the classification of tomosynthesis images, HOG characteristics are 

essential for obtaining relevant information from the 3D reconstructed slices. HOG 

features can be extracted from each slice to describe the distinct patterns connected 

to particular abnormalities or structures. Because HOG is resistant to changes in 

depth and orientation, it is especially useful for tomosynthesis to reliably capture 

texture and shape information across several slices. The method takes advantage of 

the fact that structures or objects of interest frequently display unique patterns in the 

orientations and intensities of their gradients. HOG offers a clear and informative 

feature vector that may be utilised for classifier training or for immediately comparing 

and recognising patterns in previously unknown data by expressing these patterns 

as histograms of gradients (Vo et al., 2013). HOG features help with the precise and 

effective identification of anomalies in the tomosynthesis scans.  

3.3.4 Feature Fusion 
Improving the overall performance of a system through feature fusion involves 

integrating several features from various sources or representations. For feature 
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fusion, there are numerous accessible methods ,each with a unique strategy and 

benefits. 

Early fusion is a popular technique in which features from many modalities or 

sources are integrated at the input level prior to any additional processing. For 

instance, in multimodal image classification, a single feature vector is created by 

concatenating features from several image modalities. Early fusion provides the 

model with a uniform representation, which makes subsequent processing easier. 

That might, however, result in a higher-dimensional feature space and possibly 

include redundant or unnecessary data (Yao et al., 2021). 

Another common strategy is called "late fusion," which combines features at a higher 

level of abstraction, usually after individual processing steps. Late fusion is the 

process of fusing features that have been independently retrieved from various 

sources or representations using techniques like weighted summation, 

concatenation, or averaging. More flexibility is possible with this method, which may 

also gather supporting data from many sources. On the other hand, late fusion could 

be sensitive to the quality of individual features and might need more complex 

processing for combining features correctly (Maciej Pawłowski, Wróblewska and 

Sylwia Sysko–Romańczuk, 2023). 

Intermediate fusion is a different kind of feature fusion that involves combining 

features at different phases of processing. Using this method, features that were 

extracted at various layers of a deep neural network or processing pipeline are 

combined. By utilising the hierarchical structure of features acquired by deep 

models, intermediate fusion facilitates the combination of both high-level and low-

level representations. This method can produce more resilient and discriminative 

feature representations by capturing both semantic information and fine-grained 

features (Lu et al., 2022). 

This thesis implements the late fusion feature fusion, and this is achieved by 

concatenating features that are generated from the HOG descriptors and deep 

learning models, thereby combining their respective advantages. In order to capture 

both local texture and form attributes from HOG descriptors and high-level semantic 

details from deep learning models, the feature vectors obtained from each source 
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are combined into a single feature vector during the concatenation step. Through the 

integration of these features, the applied technique improves the adaptability and 

discriminative capability of feature representation, which improves performance in 

the classification of the tomosynthesis scans. The thesis improves by demonstrating 

the effectiveness of late feature fusion for generating richer and more complete 

feature representations using this fusion mechanism. 

3.3.5 Feature Selection 
A feature selection strategy is a vital technique used that seeks to pick out and keep 

the most informative and relevant features, while removing any redundant or 

unnecessary ones. This procedure is essential for improving understanding, cutting 

down on computational complexity, and optimising model performance. After feature 

fusion—the process of combining features from various sources to create a single, 

unified representation—feature selection is essential for enhancing this combined 

feature set, making sure that only the most informative and discriminative features 

are kept for further examination or training of the model for better discrimination of 

different classes (Tang et al., 2014). 

Feature selection enhances the efficiency by choosing a collection of features that 

together capture the crucial attributes of the input. Furthermore, it improves the 

interpretability of models by concentrating on the most significant features for each 

class, which makes it easier to recognise the underlying correlations and patterns in 

the data. 

The following section will examine a number of feature selection methods. These 

methods include chi-square, statistical tests, and minimum Redundancy Maximum 

Relevance (mRMR). These techniques are essential for improving the 

performance and fine-tuning the feature space after feature fusion. 

3.3.5.1 mRMR 
A powerful approach used for selecting a subset of important and non-redundant 

features is the Minimum Redundancy Maximum Relevance feature selection 

approach. Maximising the relevance of selected features to the target class while 

minimising their redundancy is how mRMR functions. By eliminating information 

duplication within the feature set, this dual goal guarantees that the features that are 
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selected capture the most important data (Hanchuan Peng, Fuhui Long and Ding, 

2005). 

Relevance and redundancy are the two primary factors that the mRMR approach 

determines for each feature. A measure of relationship between each attribute and 

the target class, such as mutual information or the correlation coefficient, is 

commonly used to quantify relevance. A feature that has a higher relevance score 

has more information about the target class in it. Redundancy, on the other hand, 

calculates the correlation or similarity between two sets of features. When combined, 

features with a high degree of redundancy may contain overlapping information and 

provide less information (Hanchuan Peng, Fuhui Long and Ding, 2005). 

mRMR uses a heuristic method that iteratively selects features based on their 

relevance and redundancy scores in order to determine the optimal subset of 

features. The algorithm chooses the feature with the highest relevance score at each 

iteration, making sure the chosen feature is as minimally redundant as possible with 

the features that have already been selected. This method keeps on until either a 

predetermined stopping criterion is satisfied, or the required number of features is 

chosen (Hanchuan Peng, Fuhui Long and Ding, 2005). 

When it comes to multi-class image classification, the mRMR approach has many 

benefits. First off, mRMR reduces overfitting and the curse of dimensionality by 

selecting features that are both relevant to the target classes and non-redundant with 

one another. This is especially helpful in high-dimensional feature spaces that are 

typical of image data. Second, by making it easier to find discriminative features that 

capture the distinctive qualities of each class, mRMR enhances the robustness and 

accuracy of the classification model (Hanchuan Peng, Fuhui Long and Ding, 2005). 

3.3.5.2 Chi-square test 
To find the most relevant features for classification tasks, researchers frequently 

employ the Chi-square feature selection technique. Usually applied to categorical 

data, it functions by assessing the degree of independence between each feature 

and the target class. Evaluating whether the observed frequency distribution from the 

predicted distribution under the null hypothesis of independence between the feature 

and target variable, is the basic idea behind the Chi-square test (Mindrila et al., 

2013). 
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For every feature, the Chi-square statistic (also known as χ²) is computed using the 

contingency table that is created from the frequencies of feature-value pairings and 

class labels and is shown in equation 1 (Li et al., 2017). Assuming independence, 

the contingency table computes predicted frequencies by cross-tabulating the 

occurrences of each feature value with the appropriate class labels. Next, after 

normalising by the predicted frequencies, the Chi-square statistic is calculated as the 

sum of squared differences between the observed and expected frequencies 

(Riffenburgh, 2006). 

The mathematical formula for calculating the Chi-square statistic for a given feature 

is: 

χ! =  ∑ (#!"$%!")#

%!"
     (3.1) 

Where: 

• 𝑂'(  indicates the feature value 𝑖  observed frequency of I  in class 𝑗 

• 𝐸'( represents the predicted frequency of feature 𝑖 value in class 𝑗, as 

determined by the independence assumption. 

• The summation is performed over all feature values and class labels. 

Under the null hypothesis of independence, the Chi-square statistic has a Chi-square 

distribution, and the number of feature values and class labels determines the 

degrees of freedom. A feature may be more informative for classification if there is a 

larger correlation between it and the target variable, as shown by a higher Chi-

square value (Li et al., 2017). 

The Chi-square feature selection method has several benefits when used in multi-

class image classification. First, it offers a methodical and statistically valid way to 

assess the relevance of a feature through an examination at how it relates to a class 

label. Second, Chi-square feature selection enables the identification of 

discriminative features across several classes. Furthermore, the computational 

efficiency of the Chi-square test makes it adaptable to high-dimensional feature 

spaces, allowing for effective feature selection with minimal computational overhead. 

In multi-class image classification applications, the Chi-square feature selection 
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technique is a useful tool for improving the discriminative power and interpretability 

of classification models (Sumaiya Thaseen and Aswani Kumar, 2017). 

3.3.5.3 F-test 
The Analysis of Variance (ANOVA) F-test, usually referred to as the F-test feature 

selection methodology, is a statistical approach that is used to determine which 

features are most relevant for classification tasks. In order to choose features that 

show a significant difference in mean values between the classes, this technique 

evaluates the relevance of the variance in feature values across distinct classes 

(Omer Fadl Elssied, Ibrahim and Hamza Osman, 2014). 

The F-test evaluates the F-statistic, which is the ratio of the variation between class 

means to the variance within each class. The F-statistic measures the proportion of 

feature value variation that can be assigned to class differences as opposed to 

random fluctuation within classes. Greater discriminating across classes and, 

consequently, a stronger relationship between the feature and the target class are 

indicated by higher F-statistics (Pathan et al., 2022).  

Mathematically, the F-statistic (Nasiri and Alavi, 2022) for a given feature is 

calculated as follows: 

F =  )*+
)*,

      (3.2) 

Where: 

• MSB represents the mean square between classes, computed as the 

variance of the feature values across classes weighted by the number of 

samples in each class. 

• MSW denotes the mean square within classes, calculated as the average 

variance of the feature values within each class. 

Under the null hypothesis, which states that there is no significant variation in the 

mean values of the feature across classes, the F-statistic follows an F-distribution. 

The total number of samples and the number of classes determine the degrees of 

freedom for the F-distribution (Nasiri and Alavi, 2022). 
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The F-test feature selection method has many benefits when used in multi-class 

image classification. First of all, it offers a statistically valid method for assessing the 

ability of a feature to discriminate between classes based on those variations. 

Second, the F-test may be used to identify features with significant differences in 

mean values across many classes, making it useful. The F-test is robust to outliers 

and non-normality in the data. The F-test feature selection technique is a useful tool 

for improving the discriminatory power and interpretability of classification models. 

3.3.6 Classification Model 
The classification stage is a crucial phase in many machine learning and data 

analysis workflows. Its main job is to categorise or label incoming data according to 

the features that are extracted from the images. This phase usually follows the 

feature selection procedure, in which informative features are selected to suitably 

represent the data. In order to predict the class or label associated with the input, 

several algorithms analyse and process the input feature vector, which consists of 

the selected features. These algorithms can be more complex deep learning models 

like CNNs, Recurrent Neural Networks (RNNs), or Transformer-based architectures, 

or they can be more conventional machine learning classifiers like SVM, Naive 

Bayes (NB), K-Nearest Neighbours (KNN), and Decision Trees (DT). 

Each classifier has unique strengths and weaknesses, making it appropriate for a 

variety of data types and classification tasks. For instance, SVMs work well in high-

dimensional situations and are especially helpful when handling complex decision 

boundaries. Large datasets can benefit from the simplicity and speed of NB 

classifiers. KNN classifiers perform well with non-linear data and rely on neighbour 

closeness for classification. DT offer models that are easy to understand and are 

resistant to abnormalities and redundant features. On the other hand, deep learning 

models have become increasingly common due to their capacity to automatically 

learn hierarchical data representations; with sufficient data, these models may be 

able to achieve higher accuracy for more complicated tasks. In the subsequent 

sections, an outline of the classifiers utilised in the research conducted within this 

thesis across all systems is presented. 
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3.3.6.1 SVM 
The Support Vector Machine classifier is a sophisticated machine learning algorithm 

that is widely used for classification problems, such as multi-class image 

classification. In order to divide the feature space into discrete classes and maximise 

the margin between them, as shown in Figure 3.10, SVM finds the best hyperplane. 

A selection of training samples called support vectors—which are closest to the 

decision boundary—determine this hyperplane (Foody et al., 2004). 

The primary goal of SVM is to locate the decision boundary that maximises the 

difference between the support vectors of various classes. The margin denotes the 

separation between the nearest training samples from each class and the decision 

border. By maximising this margin, SVM creates a strong classification model that 

generalises well to new data (Foody et al., 2004). 

  

 

 

 

 
 
 
 

Figure 3.10 SVM Model (Kumar, 2022) 

 

The kernel function, regularisation parameter (C), and perhaps additional kernel-

specific parameters, like gamma for Radial Basis Function (RBF) kernels, are the 

parameters of an SVM classifier. The mapping of input features into a higher-

dimensional space, where a linear decision boundary can be located, is defined by 

the kernel function. Sigmoid, polynomial, linear, and RBF are examples of common 

kernel functions (Van Gestel et al., 2004). 

The trade-off between maximising the margin and minimising the classification error 

on the training data is managed by the regularisation parameter (C). While a larger 

value of C prioritises the proper classification of training samples but may result in a 
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narrower margin, a smaller value of C produces a wider margin but may cause 

misclassification of training data. For RBF kernels in particular, the gamma 

parameter controls how much each training sample affects the decision border (Van 

Gestel et al., 2004). A decision boundary with a smaller gamma value is smoother, 

but one with a larger gamma value is more flexible and complex and may be more 

prone to overfitting (Van Gestel et al., 2004). 

There are various advantages to using SVM for multi-class image classification. First 

of all, SVM works well with image data that has a lot of features since it performs 

well in high-dimensional feature spaces. Second, by utilising kernel functions, SVM 

can manage non-linear decision boundaries, enabling flexible modelling of complex 

connections in image data. Thirdly, compared to certain other machine learning 

methods, SVM is less prone to overfitting and has a strong theoretical base. Lastly, it 

has been demonstrated that SVM performs well even with relatively small training 

datasets, making it useful in situations with a shortage of labelled data. In general, 

SVM is a reliable and adaptable option with good performance and generalisation 

abilities for multi-class image classification applications (Foody et al., 2004). 

3.3.6.2 NB 
The Naive Bayes classifier is a commonly employed machine learning algorithm for 

classification applications, such as multi-class image classification. Its foundation is 

the Bayes theorem, which states that the probability of a hypothesis is determined by 

its observed evidence. When it comes to classification, the NB classifier determines 

which class has the highest probability of being the predicted class label by 

calculating the probability of each class given the input data (Lutfi et al., 2022). 

The primary hypothesis of NB classifier is that, given the class label, the features are 

conditionally independent (Shi et al., 2003). This assumption simplifies the 

calculation of class probabilities by breaking down the combined probability 

distribution of the features into a product of individual conditional probabilities. This 

assumption frequently holds up well in practice, making the NB classifier extensible 

to high-dimensional feature fields and computationally practical. 

Parameters of NB classifier include the prior probabilities of each class as well as the 

conditional probability distributions of features within each class. The prior 
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probabilities, which can be calculated using the training data, show the chance of 

each class happening in the absence of any observable features. The likelihood of 

detecting each feature value given the class label is described by the conditional 

probability distributions, which are usually modelled using probability density 

functions like Gaussian distributions (Lutfi et al., 2022). 

Parameters of NB classifiers are commonly determined from the training data 

through the application of maximum likelihood estimation or other probabilistic 

techniques. If one were to fit parametric models to the observed feature values within 

each class, one could estimate the conditional probability distributions, whilst the 

prior probabilities might be estimated by counting the relative frequencies of each 

class in the training data (Lowd and Domingos, 2005). 

The NB classifier has several advantages when used for multi-class image 

classification. First of all, NB is a good choice for image classification problems 

involving a large number of features since it is computationally efficient and can 

handle huge datasets with high-dimensional feature spaces. Second, NB minimises 

the chance of overfitting, particularly in situations with an absence of training data, by 

requiring the estimation of comparatively few parameters from the training set. 

Thirdly, because NB relies on the conditional independence assumption, it is 

resistant to duplicated or irrelevant features. This is because it basically ignores 

feature correlations. In multi-class image classification applications, NB offers 

probabilistic predictions that facilitate uncertainty estimation and model 

interpretability. 

3.3.6.3 DT 
For classification problems, such as multi-class image classification, the Decision 

Tree classifier is a popular machine learning method. Recursively dividing the 

feature space into regions, each linked to a certain class. With the help of a set of 

decision rules based on the values of the input features, this partitioning method 

enables the creation of a structure resembling a tree, with each internal node 

representing a decision based on a feature and each leaf node representing a class 

label (Van den and van Wijk, 2011). 



 

 
 

55 

The Decision Tree algorithm divides the training data into distinct groups by 

choosing the feature that best fits each phase of the partitioning process. Information 

gain, Gini impurity is a criterion that is commonly used to pick features. This criterion 

measures the degree of homogeneity or purity of the final partitions. Greater 

information gain indicates stronger discriminating power. Information gain is a 

measure of the reduction in impurity obtained by separating the data based on a 

specific attribute. The concept of Gini impurity evaluates the degree of uncertainty or 

disorder in the class distribution and seeks to reduce it by feature-based partitioning 

(Van den and van Wijk, 2011). 

Parameters of DT classifiers consist of the maximum depth of the tree, the minimum 

quantity of samples needed to split a node, and additional hyperparameters that 

regulate the growth and pruning of the tree. The maximum depth sets a limit on the 

depth of the tree and helps avoid overfitting. The threshold for node splitting is based 

on the minimal number of samples per node; if the number of samples is less than 

this threshold, no more partitioning can occur. The splitting criterion and the 

maximum number of leaf nodes are two additional hyperparameters that affect the 

structure and behaviour of DT classifiers (Leiva et al., 2019). 

Decision Trees are capable of learning decision boundaries and accommodating 

interactions between many features, in contrast to linear models, which assume a 

linear relationship between input features and the target class. As a result of their 

adaptability, Decision Trees may describe complex data patterns and relationships, 

making them ideal for applications involving non-linear or heterogeneous data 

distributions. 

3.3.6.4 KNN 
The K-Nearest Neighbours (KNN) performs according to the similarity principle, 

which states that class label of a data point is decided by the majority class of its 

closest neighbours in the feature space. The KNN technique maintains all training 

samples in memory and generates predictions based on how similar the query 

instance and the training examples are, rather than explicitly learning a model from 

the training data (Rashidi et al., 2023). 
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The primary method of the KNN algorithm is to calculate the distances in the feature 

space between each training instance and the query instance. The Euclidean 

distance is the most widely used distance metric (Wang, 2019). After calculating the 

distances, the KNN algorithm uses these values to determine which K query 

instance neighbours are the closest, with K being a user-defined hyperparameter 

(Rashidi et al., 2023). 

The class label of the query instance is then chosen by a majority vote among its 

KNN, with the vote weighted of each neighbour by its closeness to the query 

instance. When it comes to multi-class classification, there are a number of ways 

that may be employed to separate ties. For example, one strategy is to use a 

distance-weighted voting scheme or to assign the class label with the highest overall 

frequency among the KNN (Rashidi et al., 2023). 

The number of neighbours taken into account while generating predictions is 

controlled by the value of K, which is the primary parameter of the KNN classifier. A 

more specific decision boundary is produced by a smaller value of K, which may 

increase variance and vulnerability to data noise (Radwan Qasrawi et al., 2023). On 

the other hand, a higher value of K results in a smoother decision boundary and 

might increase adaptability against outliers, but it also increases the risk of bias 

introduction due to over-smoothing (Leung, 2007). 

The KNN classifier has many benefits when used for multi-class image classification 

tasks. First of all, KNN is an easy-to-understand algorithm that works well for a 

variety of classification problems since it makes few assumptions about the 

distribution of the underlying data. Second, because KNN is memory-based and non-

parametric, it can accommodate any data distributions and model complex decision 

boundaries in a flexible manner (Rashidi et al., 2023). Thirdly, KNN can efficiently 

handle high-dimensional feature spaces that are frequently encountered in image 

classification problems and is resilient to noisy or irrelevant features (Nimish Ukey et 

al., 2023). 

3.3.6.5 FDA 
The Fisher Discriminant Analysis (FDA) classifier is a well-known technique for 

supervised dimensionality reduction and classification applications, such as multi-
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class image classification. It works by identifying the linear feature combination that 

minimises within-class variance and maximises between-class distribution. Basically, 

FDA aims to locate the projection of the data onto a lower-dimensional subspace 

with well-separated classes, allowing for effective classification (Lu et al., 2010). 

FDA principally computes the within-class scatter matrix (Sw) and the between-class 

scatter matrix (Sb), which are the scatter matrices of the data. Whereas the 

between-class scatter matrix quantifies the distance between class centroids, the 

within-class scatter matrix gauges the distribution of data points within each class. 

Finding the linear transformation, sometimes referred to as the discriminant, that 

maximises Fisher's criterion—the ratio of between-class scatter to within-class 

scatter—is the main objective of the FDA (Lu et al., 2010). 

Fisher's criterion mathematically aims to maximise the Fisher discriminant function, 

which is denoted by (Guo et al., 2022): 

𝐽(𝑤) = 	 -
$∗	*%∗	-

-$∗	*&∗	-
     (3.3) 

 

Where: 

• 𝑤 is the discriminant vector (or weight vector) representing the linear 

combination of features. 

• 𝑆0 is the between-class scatter matrix. 

• 𝑆- is the within-class scatter matrix. 

The discriminant vector 𝑤 is calculated by solving the generalised eigenvalue 

problem: 

𝑆0𝑤 = 𝜆 ∗	𝑆- ∗ 𝑤    (3.4) 

Where 𝜆 denotes the eigenvalue associated with the discriminant vector. 

The FDA classifier has significant advantages in multi-class image classification 

tasks. Firstly, by determining the most discriminative features that divide various 

classes, FDA offers a useful method of dimensionality reduction. In addition to 
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improving computing performance, this dimensionality reduction helps lessen the 

negative effects of overfitting and the dimensionality curse. Second, FDA 

automatically takes class separability into account when extracting features, 

producing a feature space that best discriminates between various classes. This trait 

makes FDA ideal for jobs involving complex or non-linear class boundaries. FDA can 

also efficiently handle high-dimensional feature spaces, which are frequently 

encountered in image classification problems, and is resilient to noisy or irrelevant 

features. 

3.3.7 Ensemble Models 
A set of machine learning methods known as ensemble classifiers combines the 

predictions of several basic classifiers to enhance overall performance, including 

robustness, accuracy, and generalisation. Based on the principles of diversity and 

aggregation, these methods make use of the capabilities of individual classifiers to 

generate predictions that are more dependable and accurate. Several ensemble 

methods are frequently applied in multi-class image classification applications, 

including Boosting, Stacking, and Bagging (Ganaie et al., 2022). Figure 3.11 

presents the different available ensemble models. 

 

Figure 3.11 Ensemble methods. A) Bagging. B) Boosting. C) Stacking (Peterson, 2018) 
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Bagging, which is another name for bootstrap aggregating, is a common method 

used to create ensemble-based algorithms. Bagging is used to improve the 

performance of an ensemble classifier. Creating a series of independent 

observations with the same size and distribution as the original data is the 

fundamental concept behind bagging. Create an ensemble predictor based on the 

observations that outperforms the single predictor created from the original data. In 

the original models, bagging involves two steps: first, creating bagging samples and 

feeding each bag of samples to the basic models; second, developing a plan for 

fusing the predictions from several predictors. The combined output of the base 

predictors may differ because regression problems employ the averaging approach 

to get the ensemble result, whereas majority voting is typically used for classification 

issues. By training each base classifier on a different random subset of the training 

data, bagging creates several base classifiers. The ultimate prediction is obtained by 

adding together the individual forecasts, frequently by means of majority vote. Each 

base classifier is trained to predict the class label on its own. By averaging out the 

noise and errors in individual predictions, bagging contributes to a more robust and 

stable classifier by reducing variance and overfitting. (Ganaie et al., 2022).  

Sophisticated ensemble learning methods like stacking offer a strong way to improve 

the robustness and accuracy of multi-class image classification systems. A meta-

classifier is used in stacking to combine the predicted outputs of various base 

classifiers and combine these varied predictions into a final judgement. By utilising 

the combined intelligence of several classifiers, this method provides a 

comprehensive way to address the inherent difficulties of image data and enhance 

classification performance.  

The stacking ensemble model typically consists of two main stages: the base stage 

and the meta-stage. Several base classifiers are trained separately on the image 

data in the base stage, and they all produce predictions for the target class labels. 

For further analysis, these predictions function as new features, or meta-features. To 

determine the final classification in the meta-stage, a meta-classifier is trained using 

both the original image features and the meta-features. By utilising the different 

viewpoints of the underlying classifiers, this meta-classifier gains the ability to 

efficiently aggregate their predictions and improve classification accuracy. A key 
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component of the effectiveness of the stacking ensemble model is the careful 

structure and selection of the basic classifiers. To ensure variation in their 

predictions, these base classifiers should have strengths and weaknesses that 

complement one another. In multi-class image classification, DT, SVM, neural 

networks, and CNNs are often used as base classifiers. By providing distinct skills to 

capture various facets of the complex image data, each base classifier allows the 

stacking ensemble model to take advantage of a wide range of information for 

classification. The stacking ensemble model has numerous benefits when it comes 

to multi-class image classification. First off, stacking improves the robustness of the 

classification model and capacity for generalisation by combining the predictions of 

several base classifiers. This is especially helpful in situations where noisy or unclear 

image data could make it difficult for individual classifiers to perform well. Second, 

stacking improves the ability of the model to classify images across a variety of 

classes by allowing it to manage complicated decision boundaries and non-linear 

relationships in the image data. Lastly, stacking provides scalability and flexibility, 

enabling the ensemble model to be adjusted to different image datasets and 

classification tasks, as well as the integration of several base classifiers (Mohammed 

and Kora, 2023). 

Boosting is a well-known ensemble learning method that is essential for improving 

the robustness and accuracy of multi-class image classification systems. Based on 

the sequential training concept, boosting builds an ensemble of weak learners 

iteratively, with each member concentrating on the incorrectly classified samples 

from the previous ones. Through the iterative process of highlighting difficult cases 

and fine-tuning the ensemble model, the overall classification performance is 

gradually improved. Typically, the boosting ensemble model is made up of a series 

of basic classifiers, also known as weak learners or base models. These foundation 

classifiers are trained in a sequential fashion, with each new classifier concentrating 

on the cases that the previous ones misclassified. Boosting can efficiently manage 

complex data distributions and enhance classification performance with this adaptive 

training technique, especially in situations where individual classifiers may struggle 

with noisy or imbalanced data. Weighted training examples, in which incorrectly 

categorised instances are given higher weights to prioritise their correct classification 

in later iterations, are the fundamental building block of boosting. By focusing on 
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difficult cases, boosting helps to progressively lower classification errors and 

enhance overall performance of the ensemble model. Furthermore, the weighted 

predictions of all base classifiers are usually combined to produce the final 

prediction; the weights are established by analysing performance during training of 

each classifier. When it comes to multi-class image classification, boosting has many 

benefits. First off, boosting improves the ability of the ensemble model to reliably 

categorise images over a range of classes by iteratively fine-tuning it to 

accommodate complicated data distributions and non-linear relationships within the 

image data. Secondly, because boosting concentrates on the hard-to-classify cases, 

it is resistant to overfitting and can manage noisy or unbalanced data with ease. 

Furthermore, boosting is adaptable and compatible with a range of base classifiers 

and loss functions (Ferreira et al., 2012). 

While the previous sections have explored each deep learning and classification 

method in detail, Table 3.6 below provides a clear and concise summary of their key 

advantages, limitations, and the existing gaps in knowledge. This comparative view 

not only supports the rationale behind selecting and combining these techniques but 

also underscores why further development was necessary, particularly in addressing 

the challenges of medical image classification in breast tomosynthesis. 
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Table 3.6 Comparative Analysis of Deep Learning and Classification Methods 

Model/Method Advantages Limitations 

AlexNet 
• Pioneered deep CNNs in image 

classification 
• Simple and efficient architecture 
• ReLU accelerates convergence 

• Shallow compared to newer 
architectures 

ResNet-18 / 50 

• Residual blocks prevent vanishing 
gradient 

• Enables deeper networks 
• Strong performance on image 

classification 

• ResNet-18 may be too shallow 
• ResNet-50 computationally expensive 

GoogleNet 

• Efficient multi-scale feature 
extraction 

• Inception modules balance accuracy 
& speed 

• Fewer parameters than 
VGG/ResNet 

• Complex architecture 
• Requires manual tuning of module 

parameters 

DenseNet-201 
• Dense connectivity promotes feature 

reuse 
• Reduces vanishing gradient 
• Strong hierarchical learning 

• High computational cost 
• Requires significant memory 

 

MobileNetV2 
• Lightweight and efficient 
• Inverted residuals improve 

performance with low latency 

• Lower capacity for complex feature 
learning 

• Sensitive to hyperparameter settings 

VGG-16 • Simple and uniform architecture 
• Effective hierarchical representation 

• Very high number of parameters 
• High memory and computational cost 

SqueezeNet • Extremely compact 
• Maintains reasonable accuracy 

• Lower performance compared to 
deeper networks 

• Reduced expressive power 

HOG Descriptor 
• Captures edge, texture, and shape 
• Robust to lighting variations 
• Lightweight and interpretable 

• Limited to local features 
• Lacks high-level semantic 

understanding 

SVM 
• Strong for high-dimensional data 
• Good generalization 
• Works well with small datasets 

• Sensitive to parameter tuning 
• Less effective on imbalanced dataset 
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Naive Bayes (NB) 
• Fast and simple 
• Good for high-dimensional data 
• Requires small training sets 

• Strong independence assumption 
• Poor with correlated features 

Decision Tree (DT) 
• Interpretable and fast 
• Handles non-linear patterns 
• Works well with categorical data 

• Prone to overfitting 
• Unstable with small changes in data 

KNN • Non-parametric and simple 
• Effective with small-scale datasets 

• Computationally expensive at 
prediction time 

• Sensitive to K and feature scaling 

FDA • Maximizes class separation 
• Suitable for multi-class problems 

• Assumes linear boundaries 
• Sensitive to noise and class 

imbalance 
 

 

Ensemble Models 
(Bagging, Boosting, 

Stacking) 

• Improves accuracy and robustness 
• Reduces overfitting and variance 
• Combines strengths of individual 

models 

• Complexity in interpretation and 
implementation 

• Higher computational cost 

 

3.4 Summary 
This chapter explores the innovative effects of CAD Systems for breast cancer. CAD 

Systems use sophisticated learning algorithms and AI to analyse mammograms 

closely, helping medical professionals identify subtle early-stage abnormalities. 

These systems are an important additional evaluation tool that improves diagnosis 

accuracy and consequently promotes the well-being of patients. Furthermore, the 

benefits of CAD go beyond simple identification. It gives radiologists evidence-based 

counsel by giving statistical evaluations of lesions; at the same time, it can reduce 

FPs and FNs, hence reducing the need for needless medical procedures. Moreover, 

CAD makes it easier to track lesion changes over an extended period, allowing for 

more personalised treatments and better therapeutic evaluation. The adaptability of 

CAD systems to several aspects of breast health is demonstrated by its applications, 

which go beyond core tumour diagnosis and include microcalcification detection, and 

breast density categorisation. 

The techniques employed in the integrated models in CAD systems were then 

discussed in the part that followed. This section provides a comprehensive overview 

and detailed explanation of the various approaches used in each of the five 

developed systems which this thesis examines. Every approach was evaluated to 
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have a thorough understanding of how it was implemented and how it contributed to 

the overall efficiency of the systems. This in-depth examination was done with the 

intention of giving a comprehensive understanding of the details of the 

methodologies used, emphasising their significance and goals in relation to the 

thesis.  
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Chapter 4 Review of Digital Breast Tomosynthesis 
Research 

 
 
4.1 Introduction 
This chapter explores the DBT research that has been done. A comprehensive 

review of the literature in the field of DBT reveals a heterogeneous research 

environment aimed at improving breast imaging efficacy. A primary research focus is 

on continuously enhancing image quality using cutting-edge methods that address 

artefact reduction, contrast-to-noise ratio, and spatial resolution in DBT scans. 

Researchers like Gao et al. (2020), Gao, Fessler and Chan (2021), Su et al. (2021), 

Siti Noraini Sulaiman et al. (2022), Syafiqah Aqilah Saifudin et al. (2022), Mota, 

Mendes, and Matela (2023), and other academics have made some contributions in 

this area of study. Reducing patient exposure while maintaining diagnostic precision 

is paramount, as demonstrated by the work of eminent experts studying radiation 

dose optimisation, including Tsutomu Gomi et al. (2022) and Ajay Kumar Visvkarma 

et al. (2022). These investigations also thoroughly study the impact of different 

acquisition conditions on the quality of the images. The comparative evaluations of 

the literature assess  clinical performance of the DBT and diagnostic accuracy, 

especially when compared to standard mammography. This helps to clarify the 

efficacy of the technology for a range of breast densities and lesion types. 

Integration with other imaging modalities, such as mammography, appears to be a 

focus of exploration and development by certain researchers, such as Wang et al. 

(2021) and (R V, R and A P, 2021). The goal is to uncover potential benefits that 

could boost overall breast cancer detection rates. The field of 3D image analysis and 

computer-aided detection is also well covered in the literature, which presents the 

creation and assessment of sophisticated algorithms intended for automated lesion 

identification and characterisation in DBT scans. A recurrent feature in the research 

is the integration of AI and machine learning methods with CAD software, 

highlighting a dedication to utilising state-of-the-art technologies to enhance 

diagnostic results. In addition, the literature carefully studies how DBT affects 

radiologist workflow and interpretation time, to find optimisation tactics that would 

improve therapeutic effectiveness. Additionally, research on the cost-effectiveness of 

the DBT, accessibility tactics, and long-term effects on patient quality of life, survival 
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rates, and detection rates of breast cancer are all included in the literature. The 

summary of current research essentially highlights a shared commitment to 

improving DBT, to improve patient care and breast cancer detection. 

Over the course of this doctoral research, a thorough analysis was conducted that 

covered several aspects, such as the previously mentioned improvements in image 

quality, detection methods, and radiation dosage reduction. Notably, the current 

thesis does not provide results or information regarding these domains. Specific 

investigations were conducted to examine various aspects of the research on DBT 

scans. This study primarily focuses on the use of CAD Systems and deep learning 

approaches for the classification of DBT images. 

This segment comprises two distinct subsections. A thorough literature assessment 

of computer-aided detection systems used in DBT scans is presented in the first 

subsection, along with an analysis of deep learning applications designed for 

classification of DBT scans. The subsection that follows offers a thorough analysis of 

the systems that were utilised when combined with the BCS-DBT dataset (Buda et 

al., 2020). Notably, this dataset functioned as a foundational dataset for the research 

carried out within the scope of this PhD study. 

4.2 CAD Systems and deep Learning applications in Digital Breast 
Tomosynthesis 

 
A hierarchical model of latent bilateral feature representation was presented by Kim 

et al. (2016) as an approach of classifying masses according to the asymmetry of the 

left and right breasts. The Samsung Medical Centre provided the researchers with a 

dataset that comprised 160 reconstructed volumes from 40 different individuals. Of 

these volumes, 86 had at least one biopsy-proven malignant tumour, whereas the 

remaining 74 were found to be normal. Volume registration of the DBT main and 

lateral images was the first step in the process. The bilateral feature representation 

was then extracted using a 3D-CNN after the Volume of Interest (VOI) transform. For 

mass classification, the characteristics from the lateral view and main view VOI were 

combined and fed into a fully linked layer. Based on the Area Under the Curve (AUC) 

values of 0.847 and 0.826, respectively, the suggested model outperformed the 

hand-crafted feature classifier. However, the small dataset limits the generalizability 
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of the findings, and the approach focuses solely on bilateral asymmetry without 

accounting for broader lesion variability. Additionally, the model lacks external 

validation, which further restricts its applicability in diverse clinical settings. 

Fotin et al. (2016) compared the identification and classification of two types of 

breast cancer abnormalities from 3D (DBT) images using a DCNN with a 

conventional method. To assess the performance of detection, a unique test set 

including 344 reconstructions from DBT was employed. 328 suspicious and 115 

malignant soft tissue densities, including masses and architectural deformities, were 

included in these reconstructions. They were produced using the GE SenoClaire 3D 

and an iterative reconstruction technique. The traditional method was to manually 

extract features from the Region Of Interest (ROIs) and then apply them to an 

ensemble of boosted DT. The DCNN approach, on the other hand, resizes the ROIs 

to 256×256 and submits them to a DCNN that is nearly identical to that of AlexNet for 

the purpose of abnormality detection and classification. When switching from the 

conventional to the deep learning approach, researchers observed that the 

sensitivity of the ROIs increased from 83.2% to 89.3% for suspicious ROIs and from 

85.2% to 93% for malignant ROIs. This implies that deep feature learning has 

significant potential for a range of medical image analysis tasks and is very helpful 

for the interpretation of DBT data. However, the ROI resizing process may lead to a 

loss of spatial context, and the study remains limited to the detection of soft tissue 

densities without addressing other abnormality types. Furthermore, the approach 

was not evaluated on diverse datasets, raising concerns about its generalizability. 

Rodriguez-Ruiz et al. (2017) utilised a CNN model to classify calcification by utilising 

reconstructed images with different DBT reconstruction algorithms, filtered back 

projection (FBP), and FBP with iterative optimisations (EMPIRE). The model used a 

dataset that includes 2,071 patient studies of DBT performed at the institution of the 

author between December 2014 and December 2015 during standard clinical 

examinations in accordance with established protocols. This collection includes 30 

instances that were biopsy-confirmed as benign, 40 cases that were confirmed as 

malignant, and 30 more cases that were identified as normal. The model was 

inspired by OxfordNet and included one batch normalisation layer, four convolutional 

layers, one maxpooling layer, and three FC layers, with input dimensions of 29 ×29 
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×3 . The AUC of the model trained with images reconstructed using the FBP 

algorithm was 0.857, and the AUC of the model trained with images reconstructed 

using the EMPIRE algorithm was 0.880. To sum up, the EMPIRE reconstruction 

algorithm has been shown to have superior contrast and image quality, fewer 

artifacts, and improved visibility of calcifications as judged by human observers, as 

well as improved detection capability in deep-learning systems when compared to 

FBP. This could lead to improved clinical performance of radiologists and more 

accurate computer detection systems using deep learning. However, the 

comparative analysis was limited to only FBP and EMPIRE algorithms, with a 

relatively small number of malignant cases in the dataset. Moreover, the lack of 

validation set limits the generalizability of the findings. 

In Zhang et al. (2018), the authors created a range of CNN models, including 

AlexNet and ResNet50, to classify 2D mammograms and 3D tomosynthesis scans. 

The dataset they used was composed of 3018 negative and 272 positive exams. 

They implemented data augmentation and transfer learning techniques in their 

research. Out of the proposed models for 2D mammograms, 2D-T2-Alex achieved 

the highest auROC of 0.73. This model extracted features from a pre-trained AlexNet 

and then employed a shallow CNN to classify the exams as either positive or 

negative. The shallow CNN had one convolutional layer with a kernel size of 1×1 and 

256 depth of the filter, followed by two 1024 FC layers. For 3D tomosynthesis 

classification, 3D-T2-Alex had the best performance, with an auROC of 0.6632; 

similarly, to the 2D mammogram images, transfer learning using AlexNet was able to 

improve the performance of the 3D tomosynthesis classification models. However, 

the 3D DBT models demonstrated relatively low AUC values, indicating weak 

performance in generalizing from 2D to 3D. Additionally, the transfer learning 

approach was not fully optimized for the unique characteristics of DBT data. 

The suggested model for identifying DBT images as abnormal or normal by Samala 

et al. (2018) employed two steps of transfer learning. The pre-trained AlexNet model 

was initially adjusted with FFDM images after being trained with ImageNet. 

Afterwards, the model was trained using DBT z-Stack images using the previously 

trained weights from FFDM images, and the CNN was used to extract features. A 

feature selection method was then utilised, followed by a random forest classifier. 
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AlexNet was originally fine-tuned using 19632 augmented ROI patches from 2454 

mass lesions. 9120 ROI patches from 228 mass lesions from DBT z-Stack images 

were employed in the second round of training the model. To assess the 

performance of the proposed model, they changed the parameter sizes of the model 

and calculated the AUC. They employed network pruning, which resulted in a 

reduction of 87.2% in trainable neurons, 34.4% in trainable parameters, and 95.5% 

in multiplications and additions, in order to further simplify the model. Findings from 

the research indicate that the pruned CNN can attain an AUC of 0.90, similar or 

surpassing the AUC of 0.88 of the non-pruned CNN. The outcomes demonstrated 

that, although having fewer parameters, the pruned DCNN outperformed the original 

DCNN in terms of accuracy, indicating that evolutionary pruning may be a helpful 

technique for enhancing the performance of pre-trained DCNNs for medical image 

analysis. However, the patch-based approach may lose global lesion context, the 

diversity of data augmentation was limited, and the model remained dependent on 

manually annotated ROI patches. 

A detailed comparison of two different frameworks that both focused on supervised 

classifier architectures was carried out by Bevilacqua et al. (2019). Using hand-

crafted morphological and textural features extracted from each ROI, the original 

architecture used a feature-based technique to feed optimised Artificial Neural 

Network (ANN) classifiers. The second framework, on the other hand, extracted 

different feature sets using different CNN models to evaluate classification 

performance using non-neural classifiers that used automatically generated features. 

The research employed a private dataset that included 39 DBT exams. 

Morphological and textural features were extracted after input image processing and 

segmentation in the ANNs framework. The activation of the final layer of each CNN 

model was utilised as an input for a different learner when it came to feature 

extraction in the second framework. A variety of CNN models that had been trained 

beforehand as well as non-neural classifiers (VGGG-F, VGG-M, and VGGS) were 

evaluated. These models performed better when combined with the KNN classifier. 

The results showed that the second framework, which employed features 

automatically extracted by CNN architectures, performed better in the final 

evaluations than first framework in terms of accuracy, specificity, and sensitivity. 

With VGG-S and KNN, the second framework achieved an accuracy of 93.26%. 
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However, the study was based on a very small dataset, used outdated hand-crafted 

feature comparisons, and lacked testing on any external benchmark datasets. 

By investigating techniques to integrate the 2D slice images in the reconstructions, 

Zhang et al. (2019) expanded on their previous work and investigated different 

methods to incorporate complete DBT volumes into pre-trained models created for 

2D data. They specifically suggested a model that had two stages of fusion, early 

and late. Two classification strategies have been investigated in the early stages of 

fusion. The feature extractor creates a single pseudo-2D mammography by 

averaging all the z-slices. The classifier then uses the feature map as its only input 

and outputs the expected label. The second method involves fusing the series of 

images using dynamic image networks, which input z-slices and produce a dynamic 

image. Features are initially retrieved for late fusion, and then a single feature map is 

created by pooling those features. On DBT, three different pooling types—minimum, 

average, and maximum—were investigated. The authors of this study compared the 

early fusion stage and late fusion stage performances to their Three-Dimensional 

AlexNet (3D-AlexNet) model that they had previously developed in a prior study. 

Additionally, they examined the outcomes of the late fusion stage while employing 

various feature pooling techniques. Using max pooling and AlexNet transfer learning, 

the late fusion stage achieved the best performance. Their proposed approach 

generates an auROC of 0.854, a 28.80% improvement of auROC of 0.663 over their 

previous model. However, the study reported that space-to-channel encoding using 

adjacent z-slices reduced performance, and early fusion methods underperformed 

overall. Additionally, the pre-trained models used may not effectively capture DBT-

specific spatial patterns, and end-to-end retraining to improve this was 

computationally infeasible. 

Mendel et al. (2019) investigated how various breast cancer screening techniques 

affected performance when deep learning methodology with transfer learning 

strategy was used. Using pre-trained DCNN VGG-19 and SVM, they separately 

retrieved and categorised the features of 78 mammography lesions from a total of 76 

patients. Biopsy results for the 78 lesions revealed 48 to be either high risk or 

benign, and 30 to be malignant. They investigated the feasibility of employing feature 

extraction to train pre-trained CNNs for the classification of malignant from benign 



 

 
 

71 

breast lesions on FFDM, synthetic 2D images, and DBT key slice images. For each 

of these modalities, features were taken out of the max pooling layer of the VGG19 

convolutional network and passed via an average pool layer to minimise the number 

of features. Initial feature extraction was followed by feature dimension reduction. 

After feature extraction and reduction, a non-redundant collection of useful features 

was found using a leave-one-out stepwise feature selection process. One training 

example was excluded from each cycle of stepwise feature selection to identify such 

a feature set over the training data. For each breast imaging modality (FFDM, 

Synthesised 2D, and DBT) and each view (CC, MLO and merged CC and MLO), the 

AUC was calculated for the categorisation of malignant and benign lesions. In the 

task of lesion characterisation, the synthesised 2D image performed best in both the 

CC view and the MLO view (AUC=0.81, SE=0.05, and AUC=0.88, SE=0.04, 

respectively). Soft voting was used to combine the CC and MLO data for each 

lesion, and the DBT key slice image performed the best (AUC=0.89, SE=0.04). 

Based on their research, it is stated that, as compared to conventional Full-Field 

Digital Mammography (FFDM), DBT excelled at enabling pre-trained CNNs to 

maximise their strength as feature extractors. However, their work is limited by a 

small dataset of 78 lesions and lacks end-to-end model training, relying instead on 

static feature extraction from pre-trained VGG-19. Additionally, the study does not 

include multi-site validation or account for clinical variability, which may impact the 

generalizability of its findings. 

Using radiomics for a thorough examination of radiological images, (Sakai et al., 

2019) developed an automated classification system for diagnosing breast lesions in 

DBT images. The University Pierre and Marie CURIE (UPMC) Breast Tomography 

and Aoyama Hospital in Japan provided the tomosynthesis dataset used in this 

study, which included 20 cases of benign lesions and 31 cases of malignant lesions. 

The authors computed 70 radiomic characteristics, including lesion morphology, 

spicula presence, and textural information, and defined an analysis area centred on 

the lesion. By feeding the generated radiomic characteristics into four classifiers—

SVM, RF, NB, and MLP—accuracy was evaluated. SVM obtained an accuracy of 

55% in detecting benign tumours and 84% in detecting malignant tumours. 
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To classify benign and malignant mammograms, Liang et al. (2020) used a hybrid 

CNN that integrates both 2D and 3D CNNs and depends on both FFDM and 3D 

DBT. By combining pretrained deep learning models as the basis for feature 

extraction before feeding the results into their 2D and 3D convolutional layers, the 

authors employ this 2D-3D ensemble technique. First, they utilised data pre-

processing, which involves reconstructing 2D dynamic images from DBT slices. 

Next, for feature extraction, the recovered 2D dynamic images and FFDM images 

are fed into four deep learning models (AlexNet, ResNet, DenseNet, and 

SqueezeNet). Afterward, three classifiers retrieve the extracted features (DM 

Classifier, DBT Classifier, and DM-DBT Classifier, which uses DM only, DBT only, 

and DM and DBT data, respectively). The new multimodal model, fuses extracted 

features by weight-sharing and obtains an AUC of 0.97 when both mammographic 

images are ensembled. When trained on independent modalities, the model 

achieves 0.87 and 0.72 AUC on DM and DBT, respectively. However, their system 

relied on a limited dataset of just 51 cases, which restricts the robustness and 

generalizability of the results. Additionally, the study used traditional radiomic 

features without incorporating deep learning approaches or validating across diverse 

external datasets. 

Zheng and Mo (2020) developed an End-to-End multi-scale multi-level features 

fusion Network (EMMFFN) model for DBT mass classification. The private dataset of 

the study, which included 471 masses from 441 patients and 927 views, was 

collected in Marlborough, Massachusetts, in the United States. Three distinct images 

of the breast mass were taken from ROIs: the gross mass, overview, and mass 

background. Subsequently, these representations were concurrently input into the 

EMMFFN model, producing three sets of feature maps. The EMMFFN model, which 

is composed of up of three sub-models that have been improved by DensNet-121, 

combines these three feature maps at the feature level to provide the final prediction. 

The results showed that in terms of breast mass classification, the EMMFFN model 

achieved an AUC of 85.09%. However, the performance of their system was only 

validated on a private dataset, limiting generalizability. Moreover, the study lacked 

comparison with other state-of-the-art fusion architectures and did not explore 

clinical interpretability or external validation. 
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The authors of Singh et al. (2020) suggested a technique that focuses on how to 

incorporate DL models created for FFDM examinations to DBT exams. Initially, 

during training, images were augmented with random horizontal and vertical flipping. 

After using FFDM images to train a 29-layer ResNet-based model, the model was 

subsequently trained with 2D maximum intensity projections (MIP) of DBT images. 

To better match the FFDM images that were initially used to train the algorithm, MIP 

images of DBT are transformed using Histogram Matching (HM). To fine-tune the 

base model trained on FFDM images for usage with the original or histogram-

matched MIP images, two techniques were applied. Only the  last completely linked 

layer was retrained in the first strategy. This is known as the traditional fine-tuning 

approach. A variant of the SpotTune method, which determines the best layer to 

fine-tune for each occurrence of target data, was used for the second approach. 

When evaluated on image patches derived around reported observations, their 

method achieved AUCs of 0.9 for FFDM and 0.85 for MIP images, compared to 0.75 

when tested directly on MIP images. Their system primarily relied on 2D Maximum 

Intensity Projections (MIP) from DBT, which may not fully preserve the 3D contextual 

information necessary for accurate diagnosis.  

Li et al. (2020) investigated the efficacy of DCNNs embedded with different transfer 

learning algorithms for mass categorisation utilising DBT and FFDM in a study. They 

investigated a total of 1854 2D/3D ROIs (FFDM or DBT) in the dataset, including 927 

mass ROIs (665 benign and 262 malignant) and 927 normal ROIs. To evaluate the 

capabilities of DBT and FFDM in mass classification inside the DCNN framework 

equipped with transfer learning and to investigate a viable combination approach of 

DBT and FFDM in improving classification performance, three investigations were 

undertaken. The purpose of this mass classification model was to classify images as 

cancerous, benign, or normal. The first study assessed the classification 

performance of VGG-16-based Two-Dimensional Deep Convolutional Neural 

Networks (2D-DCNNs) models trained by DBT and FFDM with or without transfer 

learning using the natural image database ImageNet. In the second study, 

researchers investigated several ways for merging DBT and FFDM (where both 

modalities are provided for each patient) in training a VGG-16-based 2D-DCNN. The 

2D-DCNN can be integrated with either a Single Transfer Learning (STL) or a double 

transfer learning (DTL), or a mix transfer learning (MIX) of the DBT&FFDM. The 
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classification performance of an 11-layer 2D-DCNN and an 11-layer Three-

Dimensional Deep Convolutional Neural Networks (3D-DCNN) trained from scratch 

using DBT was also assessed in the third investigation. The most successful model, 

DTL DBT, achieved mean AUC (Standard Deviation) values of 0.910 (0.012) for 

malignant tumours, 0.954 (0.003) for benign tumours, and 0.984 (0.004) for normal 

tissues. According to the experimental findings, transfer learning improved model 

performance for both DBT and FFDM, and when using transfer learning, the DBT-

based model generally surpassed the FFDM-based model. Additionally, 

classification accuracy can be effectively increased by incorporating the two picture 

modalities DBT and FFDM during model training. Their system faced limitations due 

to the use of relatively small and imbalanced datasets, which can affect the model's 

generalisability and robustness. Moreover, while multiple transfer learning strategies 

were explored, the study lacked external validation on multi-institutional datasets and 

did not assess real-world clinical applicability. 

Fan et al. (2020) introduced a Three-Dimensional Mask (3D-Mask) RCNN-based 

breast mass segmentation model that utilised a ResNet-Feature Pyramid Network 

(ResNet-FPN) for extracting multiple feature pyramid scales. Top-down and bottom-

up features were infused in different scales by FPN. To create candidate bounding 

boxes from the input image, a region proposal network (RPN) was then employed. 

With the use of a classifier network and bounding-box regression, the detection 

branch carried out mass detection for each proposed ROI to determine the location 

for the boxes. To predict a segmentation mask from each ROI using a Fully 

Connected Network (FCN), the mask branch used location of the data from the 

feature maps. Comparisons between the proposed 3D-Mask RCNN, 2DMask RCNN, 

and Faster RCNN were undertaken. The 3D-Mask RCNN delivered a sensitivity of 

90% for breast-based mass detection at 0.83 FPs/breast, outperforming the 2D-

Mask RCNN and Faster RCNN, which delivered a sensitivity of 90% with 1.24 and 

2.38 FPs/breast, respectively. The findings imply that both the entire dataset and 

subsets with various attributes benefit from the 3D-Mask RCNN CAD framework 

over 2D-based mass detection models. Their system presented a 3D-Mask R-CNN 

framework for DBT mass detection, but the study's main limitation lies in its reliance 

on a relatively limited dataset, which may affect the model's generalizability. 
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Additionally, the comparison with 2D-based methods lacked extensive statistical 

analysis and validation across diverse imaging conditions and institutions. 

A two-level framework for breast cancer categorisation was implemented by Aswiga 

et al. (2021). To train and categorise the target DBT dataset, the first level 

constructed a simple Multi-Level Transfer Learning (MLTL) framework utilising the 

information gained from generic non-medical image datasets (ImageNet) and the 

mammography dataset (MIAS Dataset). The target, intermediate, and source 

domains contribute their MLTL framework. The intermediate domain, which consists 

of the mammography dataset, receives the essential common features from the 

source domain, which is a widely accessible non-medical images dataset. The DBT 

dataset is then classified once the features of the mammography dataset are 

transferred to the target domain. The performance of the MLTL framework is 

enhanced by the suggested second-level framework, Feature Extraction-based 

Transfer Learning (FETL), employing the following feature extraction approaches. 

The CNCF fusion algorithm is the first approach used to merge the high-level and 

low-level features of the target domain images. The second approach extracts a 

collection of texture features from the target domain images using Gray-Level Co-

Occurrence Matrix (GLCM). The third approach employs a multi-input perceptron 

algorithm to extract features from both the target domain images and the patient 

reports. The first framework achieved an auROC of 0.81, whereas the second 

framework achieved auROC curves of 0.89,0.88, and 0.89 when employing CNCF 

fusion approach, GLCM-based feature extraction algorithm, and MIP algorithm, 

respectively. Their system proposed a two-level transfer learning framework for DBT 

classification, yet the study is limited by the small dataset size and lack of external 

validation, which constrains the model’s generalizability. Furthermore, while the 

feature extraction methods improved performance, their integration increased model 

complexity, which may hinder real-time clinical applicability. 

An automatic detection approach was developed in the Ricciardi et al. (2021) study 

to categorise the existence or lack of mass lesions in DBT. Three distinct DCNN 

architectures functioning at the image level (DBT slice) were evaluated: two 

advanced pre-trained DCNN architectures (AlexNet and VGG19), one customised by 

transfer learning, and one developed from the ground up (DBT-DCNN). Two 
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separate datasets from various hospital radiology departments were used to assess 

the performance of these DCNN-based algorithms. The DBT slice images received 

data augmentation and normalisation as part of the pre-processing steps. The 

accuracy, sensitivity, and AUC values were assessed on both datasets using 

receiver operating characteristic curves. Moreover, the location of the lesion in the 

DBT slice was displayed using the Grad-CAM technique. AUC, sensitivity, and 

accuracy values obtained from the analysed DCNN are in line with the most widely 

reported outcomes in the field. To be more precise, the DBT-DCNN network had an 

AUC of 0.89 ± 0.04, accuracy of 90% ± 4%, sensitivity of 96% ± 3%, and the F1-

score of 0.93 ± 0.03. Based on the Grad-CAM output, it is concluded that using this 

method could be an efficient method for locating ROI on slides that would be used to 

train the DCNN and enhances the localization process of masses. Their developed 

DCNN architectures lacked a thorough comparison with newer state-of-the-art deep 

learning methods and did not explore the integration of 3D contextual information 

across slices. 

4.3 State-of-the-Art Systems Utilising BCS-DBT for Breast Imaging 
An innovative technique to combine detection possibilities from many models with 

the fewest possible FPs was put forth by Shoshan et al. in (2021). FPN and ResNet 

backbone architecture were deployed to build RetinaNet-based object detectors. For 

training and testing, a dataset from DBTex (DBTex Challenge) and one in-house 

dataset were both used. Predictions for bounding boxes in this model were subjected 

to numerous phases for a particular 3D mammography volume, including the 

collection of the top three prediction boxes from each slice across all detector 

models for a given volume. From there, all scores were normalised linearly according 

to each model. Afterwards, slice classifier weighting (CLS), which was trained 

without complete localisation information, adds the classifier model, and computes a 

score per slice. Thereafter, bounding boxes were size-filtered and boxes with a 

diagonal larger than 800 pixels were removed. The results of several detector model 

predictions were then represented by a heat map. The top 6 bonding boxes were 

then picked for evaluation using Non-Maximal Suppression and Rank Based Score 

Modification (RBSM). Finally, 3D prediction boxes are generated. Two performance 

metrics were calculated in their results. The primary metric, which only includes 

views with a biopsied discovery, is the average sensitivity for 1, 2, 3, and 4 FPs per 
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DBT view. The average sensitivity for two FPs across all views becomes the 

secondary metric. In the DBTex challenge, they came in second place with a model 

that recorded a primary metric of 0.910 and a secondary metric of 0.904, while the 

highest model recorded a primary metric of 0.912 and a secondary metric of 0.912, 

and the third-place model recorded a primary metric of 0.853 and a secondary metric 

of 0.868. Their sophisticated multi-model ensemble detection approach for DBT, but 

the method involved complex post-processing steps that may hinder scalability and 

real-time application. Furthermore, the reliance on slice-level classifiers without full 

3D lesion context limits interpretability and may reduce sensitivity in challenging 

diagnostic cases. 

To classify DBT volumes, Tardy and Mateus (2021) developed and evaluated a 

novel slab-based classification system. The slabbing technique is used in 

conjunction with a Multiple Instance Learning (MIL) classifier in this approach, which 

depends on local summarisation of DBT slices and only requires volume-wise labels 

for training. The authors showed that the approach can maintain mammography 

knowledge while optimising performance on DBT data through transfer learning 

trials. This unique attribute allows the classifier to be trained simultaneously on DBT 

slabs and mammograms, removing the requirement for modality-specific fine-tuning. 

The BCS-DBT dataset (Buda et al., 2020) and a Proprietary Multi-Vendor 

Mammography dataset (called PMV-MG) served in the trials for performance 

consistency evaluations and network pretraining. On the BCS-DBT test set, the 

model achieved an AUC of 0.73. To summarise, the slabbing strategy minimises the 

computing complexity of the classifier. However, their system introduced a slab-

based classification framework using Multiple Instance Learning (MIL), which 

reduced computational complexity but oversimplified 3D spatial information by 

summarizing slices.  

CNNs were trained on the BCS-DBT dataset (Buda et al., 2020) by Fogleman, 

Otsap, and Cho (2021), which allowed the CNN to discriminate between two classes: 

normal and abnormal (benign or malignant). There were two different approaches 

used by the researchers. Two deep learning models, VGG-16 and InceptionV3, were 

used in the first method, which involved transfer learning. Prior to and after the 

application of image augmentation techniques, the VGG-16 model was trained using 
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Adam optimisers and Stochastic Gradient Descent (SGD). With 8192, 2048, 512, 

and 128 nodes, the authors then added four dense layers. The second approach 

utilised the InceptionV3 model and introduced a dense layer with 128 nodes and 

cutting layers. The first model achieved an optimal accuracy of 64%, while the 

second model demonstrated the highest accuracy of 94.9% in binary classification. 

Nogay, Akinci, and Yilmaz, (2021) classified DBT data using five traditional 

pretrained DCNN, which are ResNet-18, AlexNet, GoogleNet, and ShuffleNet. Using 

transfer learning techniques, several layers of pre-trained DCNN models were 

modified to comply with the aims of the study. This allowed the models to adjust to 

their new context. To enable quicker adaptation to the changing DCNN models, new 

weights were assigned to the newly developed layers in the five pre-trained DCNN 

models, while the weights of the existing layers stayed the same. The BCS-DBT 

dataset (Buda et al., 2020) provided the dataset used in this study, which was 

divided into two subsets for the classification. The first subset facilitated binary 

classification (Cancer+Actionable and Benign+Normal), while the second subset 

enabled quadruple classification (Cancer, Actionable, Benign, and Normal). Each 

convolution layer in every DCNN was associated with the ReLU activation function. 

In the test findings, accuracy rates varied between 65% and 75% for the first subset 

and between 66% and 86% for the second subset. According to the results, AlexNet 

demonstrated the maximum accuracy at 75% for quadruple classification using the 

second subset, while ResNet-18 earned the highest accuracy at 86% for binary 

classification using the first subset. Their work was limited by modest classification 

accuracy and reliance on shallow architectures without domain-specific optimization.  

For detecting biopsy-proven breast lesions on DBT, Hossain et al. (2022) suggested 

a multi-depth level convolutional model utilising non-biopsied samples. They used 

the dataset from the DBTex challenge stated above (DBTex Challenge). First, they 

generated 2D slices from DBT volumes including benign lesions and breast lesions 

that had not yet undergone biopsy. The slices were then joined with slices that were 

immediately adjacent to the lesion to create 2.5-dimensional (2.5D) images of the 

lesion by allocating them to the RGB colour channels. To boost the amount of 

training samples, they augmented the 2.5D images of slices that were immediately 

next to the lesion centre. They employed the YOLOv5 algorithm as their basis 
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network for lesion detection. To find actionable FPs in non-biopsied images, they 

trained a baseline algorithm (medium-depth level) using biopsied samples. The 

baseline model was then adjusted using the augmented image set (actionable FPs 

added). The DBT volume was processed slice-by-slice to estimate bounding boxes 

in each slice, and they integrated the bounding boxes by linking them along the 

depth using volumetric morphological closing for lesion inferencing. They repeated 

the technique above to train a second model (big) with deeper-depth levels. Finally, 

they combined the medium and large detection models to create an ensemble 

method. They assessed their techniques using the free-response operating 

characteristic curve. They only calculated mean sensitivity per FPs per DBT volume 

for views that were biopsied; for all views, they calculated sensitivity at 2 FPs per 

Image (FPI). Their ensemble model achieved a mean sensitivity of 0.786 FPs per 

DBT volume (the primary metric from the study above) and a sensitivity of 0.743 at 

2FPI (the secondary metric from the study above) on the DBTex independent test 

set. Their multi-depth convolutional model leveraging non-biopsied samples, but the 

reliance on false positives for model tuning could introduce bias and limit robustness. 

Moreover, the use of 2.5D representations may inadequately capture volumetric 

context, and the ensemble model was not benchmarked against other state-of-the-

art 3D detectors. 

A unique deep neural network capable of learning from and making predictions from 

high-resolution 3D medical images was proposed by Park et al. (2022) and is known 

as the Three-Dimensional Globally Aware Multiple Instance Classifier (3D-GMIC). By 

first identifying the regions of interest with a low-capacity sub-network and then 

selectively applying a high-capacity sub-network to the regions of interest while 

avoiding processing duplicate information from nearby slices, 3D-GMIC effectively 

concentrates its computation to the small subset of important regions. This study 

considered two datasets, the first of which is the internal dataset, which includes 

99,862 tests from DBT, FFDM, and synthetic 2D scans. The second dataset comes 

from Duke University Hospital (Buda et al., 2020) and is a subset of it that was made 

available as the training dataset for the DBTex challenge1 (DBTex Challenge). The 

global module and the local module are the two subnetworks that make up their 

suggested design, known as 3D-GMIC. The proposed global module expands GMIC 

to 3D data. CNNs are employed within the low-capacity global network to handle 2D 
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input images. The global network is parameterised as ResNet-22, much like in the 

original GMIC. Each slice of a 3D image is subjected to a distinct parallel application 

of the global network by 3D-GMIC. The global network initially extracts the hidden 

representation for each slice in the input 3D image. A semantic segmentation layer is 

then used to convert the hidden representation into saliency maps. According to the 

saliency maps, they chose the most crucial areas for the 3D-GMIC local module. 

They specifically choose square patches that match the high saliency map values. 

To create the final class predictions, they average the predictions from the global 

and local modules of 3D-GMIC. By minimising binary cross entropy (BCE) losses for 

the predictions from the two stages, the loss function employed in the training of the 

3D-GMIC is trained end-to-end. Their model classified DBT images with malignant 

findings to the external dataset from Duke University Hospital with an image-wise 

AUC of 0.848 (95% CI: 0.798-0.896) and classified DBT images with benign findings 

with an AUC of 0.741 (95% CI: 0.697-0.785). They introduced the 3D-GMIC model, 

which effectively localized key regions in high-resolution 3D DBT images, but the 

reliance of the model on patch-level inference may miss global contextual 

information.  

Bai et al. (2022) developed a GCN model to construct a novel model for more exact 

identification of malignant 3D mammography images. Two datasets were utilised in 

this work to develop and assess the effectiveness of the suggested model. The first 

dataset, the BCS-DBT dataset (Buda et al., 2020), is available to the public, and the 

second dataset is a private dataset. To train and evaluate the suggested model, they 

merged both datasets and employed 402 3D mammograms (169 cancer and 233 

normal) z-Stacks in total. Multi-scale Graph Convolution Network (MGCN), a 

suggested DBT classification GCN model, combines two techniques: spatial-based 

self-attention pooling Graph Convolution Network (GCN) and graph representation. 

The underlying features between slices and the features of the slices themselves 

were quickly learned using the MGCN model. During their trials, they compared the 

accuracy, sensitivity, precision, F1 and AUC of their model to that of baseline models 

such as 3D ResNet, ResNet-Vote, Two-stream, and Spatial ResNet. With scores of 

0.84, 0.86, 0.84, 0.83, and 0.87, respectively, the results demonstrate that their 

suggested model outperforms all baseline models in terms of accuracy, precision, 

sensitivity, F1, and AUC. GCNs exhibit interesting results with the right architecture, 
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even though there are currently no standards for representing images as graphs. 

Their system demonstrated strong performance but relied on graph-based 

representations that are not yet standardised in medical imaging. Moreover, the 

fusion of private and public datasets without detailed harmonisation procedures 

could limit reproducibility and generalisation of the findings. 

In collaboration with a SVM classifier for a DBT dataset, Hassan et al. (2022) 

suggested a breast tumour classification approach based on examining and 

comparing the effectiveness of diverse and the most cutting-edge deep learning 

classification models. They focused on the capacity to classify cancers in unseen 

DBT medical images using transfer learning from non-medical images by employing 

the fine-tuning technique to increase classification accuracy. Tumour patch cropping 

and data augmentation are the two processes that make up the data preparation 

step in this study. They utilised the DBTex challenge (DBTex Challenge), a DBT 

images dataset that is openly accessible. In terms of ROI selection for the tumour 

patch cropping stage, tumours are centre cropped and extracted from the annotated 

DBT images. To accommodate the input of deep learning networks during the 

feature extraction stage, all the identified ROIs are subsequently scaled to the same 

dimensions of 224x224. There have been two stages to the radiomics extraction 

procedure. In the first stage, a transfer learning strategy is utilised to directly extract 

features from the medical DBT images and train one of the classifiers in the 

classification heads. These CNN models were previously trained on non-medical 

images. The training set of 246 DBT images is used to fine-tune classification CNN 

models that have been pre-trained on non-medical images in the second stage. They 

examined the effectiveness of many of the most cutting-edge deep learning models, 

including AlexNet, VGG, ResNet, WideResNet, SqueezeNet, and EfficientNet, for 

feature extraction stages. Two classification scenarios, the first utilising end-to-end 

deep learning classification using a FC layer and the second using an SVM 

classifier, were applied to classify the generated tumour radiomics from the feature 

extraction step. Their tests revealed that employing end-to-end deep learning and 

SVM to categorise radiomics obtained from the fine-tuned AlexNet model provided 

the best classification accuracy of 80.43% and a 71.74%, respectively. Their system 

relied heavily on transfer learning from non-medical image datasets, which may not 
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capture domain-specific features relevant to DBT images. Additionally, the dataset 

used was relatively small. 

A CNN of three Convolutional layers, three Pooling layers, one Flatten layer, and two 

Dense layers was designed by Adhikesaven et al. (2022). The first convolutional 

layer, called Conv2D, included 16 filters, each measuring 3 by 3. The rectified linear 

activation function (ReLU), a piecewise linear function, was applied by this 

convolutional layer, which required that the input images have size of 300 x 300 

pixels. The number of filters in the CNN was systematically increased throughout 

layers by the researchers to improve the abilities of the network to extract 

information from image input as it passed through the layers. A total of 250 images 

were obtained by randomly selecting 125 scans that were malignant and 125 scans 

that were non-cancerous from the BCS-DBT dataset (Buda et al., 2020). It was 

decided that this sample size would be adequate for building a reliable training and 

testing dataset. Using a split ratio of 60/20/20, the data were divided into three 

subsets: training, validation, and testing. In binary classification, the model showed a 

remarkable 97.25% accuracy. However, their system used a small and imbalanced 

dataset (250 images), which limits the statistical robustness and generalisability of 

their findings. Furthermore, the model architecture was relatively simple and lacked 

comparison with more advanced deep learning approaches, leaving its competitive 

performance uncertain. 

A model consisting of two identical parallel CNNs with shared weights, known as 

twin networks, and a distance learning network was presented by Bai et al. (2022). 

This model of shared weight twin networks, often known as the Siamese model or 

FFS-CNN, was created with the explicit objective of obtaining intra-image feature 

representation from two images that were viewed in the current and prior years. After 

extracting inter-image attributes from the matched images, the model uses a 

distance learning network to forecast how similar breast tissues will be. The authors 

conducted comparative analyses against several baseline models, including feature 

fusion models like a vanilla Siamese network, a Longitudinal LSTM model (LLSTM), 

and well-known deep learning models like VGG and ResNet, to evaluate the 

performance of their proposed model, FFS-CNN. Four datasets were utilised in the 

study, three of which were for training and one for testing. Included in these datasets 
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were the Chinese Mammography Database (CMMD) (Cui et al., 2021), the Digital 

Database for Screening Mammography (DDSM) (Clark et al., 2013), BCS-DBT 

(Buda et al., 2020), and a proprietary dataset from the Radiology Department at the 

University of Connecticut Health Centre (UCHC). Performance-wise, their proposed 

model outperformed the baseline models, attaining notable measures such as 92% 

accuracy, 93% sensitivity, 91% precision, 91% specificity, 92% F1 score, and 0.95 

AUC. However, their reliance on matched longitudinal data limits its applicability in 

real-world settings where such data may be unavailable. Additionally, while 

performance was strong, generalisability across diverse datasets and imaging 

conditions was not fully evaluated. 

A deep learning model specifically designed for the classification of lesions into 

benign or malignant categories was developed by Mendes et al. (2023). The model 

was built using a foundational framework based on previous research by Muduli et 

al. (2021), incorporating minor modifications to the FC layers architecture and 

regularisation technique. A total of 77 volumes from DBT—of which 38 were 

malignant and 39 were benign—were carefully chosen from the BCS-DBT dataset 

(Buda et al., 2020). Nine slices total from each volume were included, four before 

and four after the lesion-slice, one of which showed the lesion at its most visible 

stage. Three systematic applications of well-established data augmentation 

techniques (rotation, translation, and mirroring) to the original images were 

performed to increase the total amount of data. Following training on a total of 2772 

images, data augmentation techniques were applied twice, once for validation and 

once for testing. The CNN architecture of Mendes et al. consisted of four blocks: 

convolution, batch normalisation, ReLU, and max pooling. After these blocks, the 

network concluded with two FC layers, representing the two classes in the dataset: 

one with 128 units and another with 2 units. A softmax layer was then mapped to the 

outputs of the last layer. The Adam Optimizer was applied for the learning process, 

and its learning rate was set at 0.001. A 93.2% accuracy was achieved by the model 

on the testing set, with noteworthy results for sensitivity (92%), specificity (94%), 

precision (94%), F1-score (94%), and Cohen's kappa (0.86). However, their model 

was trained on a relatively small dataset (only 77 volumes), which limits 

generalizability. Moreover, their approach relies on selecting the most visible lesion 

slice, potentially overlooking valuable contextual information from adjacent slices. 
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In 2024, Du et al. (2024) addressed the class imbalance challenge in DBT, where 

abnormal cases occupy a small fraction of the imaging volume. The authors 

proposed SIFT-DBT, a method combining self-supervised contrastive learning and 

patch-level-MIL model to improve the classification accuracy and to maintain high 

spatial resolution. The DBT data were used by the self-supervised learning model to 

form robust pairs, treating different slices from the same volume and views as 

positive pairs, enabling the model to focus on structural and semantic information 

within the images. A local multi-patch strategy was introduced for fine-tuning to 

maintain high resolution and optimize the computational efficiency. Their model was 

evaluated on the BCS-DBT dataset, classifying images into normal and abnormal 

(including benign and malignant classes). They achieved an AUC of 92.69%, a 

specificity of 84.15%, and a sensitivity of 84.62%. Their system primarily focuses on 

volume-level labels without exploring fine-grained lesion annotations. Additionally, 

while effective in boosting performance, the approach’s reliance on multiple training 

stages and local patch selection may hinder scalability and clinical implementation. 

Farangis Sajadi Moghadam and Rashidi (2024) developed a novel feature extraction 

model based of Discrete Cosine-based Stockwell Transform (DCT-DOST) and 

radiomic features to classify DBT images into benign and malignant. Their study 

methodology involved four key stages: image processing, tumour segmentation, 

feature extraction, and classification. 713 radiomic features and 3304 DCT-DOST 

features were extracted from the ROI. Synthetic Minority Oversampling Technique 

(SMOTE) was implemented for feature selection. Classification was performed using 

RF, KNN, and SVM algorithms. The best results from their system were achieved 

when employing RF classifier, with an accuracy of 78.51%, AUC of 87.80%, 

sensitivity of 82.78%, and specificity of 75.19%. These results demonstrate that 

integrating DCT-DOST and radiomic features enhance the classification of tumours. 

However, their reliance on handcrafted features and classical machine learning 

classifiers may limit adaptability to complex patterns in DBT data. Furthermore, the 

dataset used was relatively small and lacked external validation, raising concerns 

about generalizability to broader clinical settings. 

Research by Farangis et al. (2023) focuses on the classification of benign and 

malignant tumours in DBT images using Radiomic-based methods. Their research 
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leverages BCS-DBT dataset and applies advanced Radiomic feature extraction 

techniques to classify breast tumours. The central slice of the DBT image, containing 

key anatomical details, is used for feature extraction, and the study evaluates 

various machine learning algorithms, including Random Forest and Quadratic 

Discriminant Analysis (QDA). Among these, QDA achieved the best results with an 

AUC of 88.56%, accuracy of 88.67%, and sensitivity of 77.12%. Their system relied 

on handcrafted feature extraction, which may not capture the full complexity of 

tumour heterogeneity. Additionally, the study lacked cross-dataset validation, limiting 

confidence in the model’s generalizability across different clinical environments. 

Hassan et al. (2024) introduced a novel deep learning framework for classifying 

breast tumours in DBT images by combining image quality-aware features and 

tumour texture descriptors. Unlike most existing methods, this approach considers 

the image quality degradation caused by artifacts like patient movement and low 

radiation doses, which can affect the accuracy of automated classification systems. 

The framework employs a two-branch model, where one branch extracts tumour 

texture descriptors using a CNN, while the other, named TomoQA, focuses on 

assessing the overall image quality. By integrating both texture and quality-aware 

features, the model significantly improves classification performance, achieving an 

accuracy of 78.26% and a precision of 88.24%. The study shows that incorporating 

image quality assessment into the classification process enhances the ability of the 

model to distinguish between benign and malignant tumours. However, the 

performance of the model may be affected by limited external validation, and the 

reliance on quality assessment modules could introduce variability due to differences 

in acquisition. 

4.4 Summary 
The literature study explores thoroughly the classification of DBT scans, focusing on 

the application of deep learning models and CAD Systems. Numerous studies using 

state-of-the-art technology are conducted in this field of study with the goal of 

improving the accuracy of breast cancer classification. The chapter starts with a 

thorough analysis of CAD Systems in relation to DBT scans and then moves on to 

the development and assessment of complex systems meant to automatically 

classify lesions in DBT images. Next, a detailed review of the studies that used the 



 

 
 

86 

BCS-DBT dataset (Buda et al., 2020) is conducted. This dataset provided the data 

used in the development of the systems produced in this PhD study.  

In the reviewed literature, the study conducted by Nogay, Akinci, and Yilmaz (2021) 

was the only study that tackled the challenge of multi-class classification of DBT 

images. Pre-trained DCNN models were used and classified the images into normal, 

benign, or malignant. AlexNet achieved highest accuracy of 75%, but only accuracy 

statistics were reported, without including additional performance measures such as 

specificity, sensitivity, or other relevant metrics. Without specificity and sensitivity, it 

is unclear how effectively their system identifies true abnormal cases (benign or 

malignant) or avoids misclassifying normal cases as abnormal. 

The remaining studies focused on binary classification, either differentiating between 

normal and abnormal cases(where “abnormal” includes both benign and malignant 

cases) or between cancerous and non-cancerous cases (where “non-cancerous” 

includes both benign and normal cases), or between benign and malignant cases. 

While some studies achieved high accuracy rates, they lack the ability to provide a 

more detailed classification of DBT scans, a distinction crucial for decision making. 

This highlights a clear gap in the field, where multi-class classification is more 

clinically significant. 

In the following chapter, the dataset considered in this PhD study will be introduced, 

providing details on the composition of the dataset, the volume of available data, and 

the classification criteria applied to the dataset. Furthermore, the experimental 

configuration will be described, providing a thorough account of the performance 

metrics utilised to evaluate the work and the systems developed throughout this 

investigation. 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Chapter 5 Dataset and Experimental Framework 

5.1 Introduction 
The dataset, experimental setup, and performance metrics utilised within the 

research are introduced in this section. This first subsection provides a detailed 

explanation of the structure of the dataset, including a list of the cases that have 

been included and a description of their distribution across different classes. The 

subsequent subsection then elaborates on the experimental setup and clarifies the 

subsets that were selected for each system. Finally, the final section clarifies the 

performance measures employed to assess the performance of the system, 

providing the corresponding formulas and outlining the methodological approach for 

their calculation. 

5.2 Dataset Description 
This study utilized data from the Breast Cancer Screening - Digital Breast 

Tomosynthesis (BCS-DBT) collection, which is available through The Cancer 

Imaging Archive and was detailed by Buda et al. (2020). Although digital breast 

tomosynthesis is a widely researched area within AI medical imaging, the progress 

and testing of algorithms in this field are often limited by a shortage of large, well-

annotated datasets that are publicly accessible (Buda et al., 2021; Mota et al., 2022). 

The BCS-DBT dataset was selected for this research due to its widespread 

recognition as one of the leading options for breast cancer detection and 

classification using tomosynthesis. The high-resolution 3D images provide a 

significant advantage, enabling the detection of subtle signs that might be missed by 

traditional 2D mammography, thus enhancing classification accuracy. As the BCS-

DBT dataset continues to be adopted by an increasing number of researchers, it is 

becoming a standard reference in the field, aiding in the validation of new methods 

and contributing to advancements in breast cancer classification and detection. The 

DBT volumes originated specifically from Duke University Hospital and Duke 

University in Durham, North Carolina, USA. According to the research by Buda et al. 

(2020), a total of 16,802 DBT examinations performed between August 26, 2014, 

and January 29, 2018, were received from Duke Health System for the purposes of 

this diagnostic investigation. The entire dataset consists of 22,032 breast 

tomosynthesis scans that were collected from 5,060 patients in total. According to 
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Buda et al. (2020), the dataset is divided into four different case categories: normal, 

actionable, benign, and malignant. The three categories of normal, benign, and 

malignant tissue—all of which had undergone biopsy procedures—were the only 

subject of this research. The number of patients and scans in each partition is shown 

in Table 5.1 and Table 5.2. 

Table 5.1 The number of patients in each category from the (BCS-DBT) dataset (Buda et 
al., 2020) 

Sets Normal Benign Malignant 
 

Actionable 

Training 4,109 62 39 178 

Validation 200 20 20 40 

Testing 300 30 30 60 

Total 4,609 112 89 278 

 

According to Buda et al. 2020, the Table 5.1 provides an overview of the patient 

distribution across several categories using DBT scans data from the BCS-DBT 

dataset. Four separate categories—Normal, Benign, Malignant, and Actionable—are 

used to group the dataset. The figures show how many patients were in each 

category during the testing, validation, and training stages. There were 4,388 

patients in the training set, comprising 4,109 normal cases, 62 benign cases, 39 

malignant cases, and 178 actionable instances. There were 200 normal cases, 20 

benign cases, 20 malignant cases, and 40 actionable cases total—a total of 280 

patients—in the validation set. The testing set included 420 patients in total: 300 

normal cases, 30 benign cases, 30 malignant cases, and 60 actionable instances. 

The dataset as a whole consists of 278 actionable instances, 89 malignant cases, 

112 benign cases, and 4,609 normal cases. 

As stated by Buda et al. in 2020, Table 5.2 shows the distribution of scans 

throughout the various segments of the BCS-DBT dataset. The number of scans in 

each segment is shown in the table as a proportion of the entire dataset size as 

well as raw counts. Of all the datasets, 87% are found in the training segment, 

comprising 19,148 scans. 1,163 scans comprise the validation partition, or 5% of the 

whole dataset. The testing segment encompasses 1,721 scans, contributing 8% to 
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the total dataset. Summing up the training, validation and testing segments, the 

dataset encompasses a total of 22,032 scans. The number of slices required by 

breast tomosynthesis patients might vary depending on several specific criteria, most 

notably the distinctive features of each breast scan. This variance is caused by 

various factors, including overall structure, density, and size of the breasts. When 

breast density is higher, more image slicing could be required during the 

tomosynthesis scan in order to guarantee a comprehensive and in-depth analysis.  

During a typical DBT exam, patients generally have two scans per breast—one from 

the top (craniocaudal or CC view) and one from the side (mediolateral oblique or 

MLO view), totalling four scans. Since each scan can produce between 40 to 100 

images, a patient might end up with anywhere from 160 to 400 images from the 

entire exam. 

 Table 5.2 The number of scans in each partition from the (BCS-DBT) dataset (Buda et al., 
2020). 

Sets 
 

Number of scans 

Training 
 

19,148 (87%) 

Validation 
 

1,163 (5%) 

Testing 
 

1,721 (8%) 

Total 
 

22,032 

 

5.3 Experimental Setup 
Three distinct subsets were used in the development of the models devised in this 

dissertation, due to the massive number of cases and the enormous dataset size 

(1.526 TB). The information and patient count for each subset are provided in Table 

5.3. Several measures were used to compare the performance of each system on 

each subset. In this study, 80% of the data was used for model training and cross-

validation. This 80% subset was subjected to 10-fold cross-validation. The remaining 

20% of the data was held out as a separate test set, entirely isolated from the 

training and cross-validation process. The proposed systems were developed using 
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MATLAB R2021a. The run-time hardware platform was a computer fitted with a 2.8 

GHz Quad-Core, Intel Core i7, 16 GB RAM, 1 TB Storage, and an Intel Iris Plus 

Graphics 655 (1536 MB). Several performance metrics were considered in this 

research, including accuracy, and the weighted average sensitivity, specificity, 

precision, and the run time. 

An overview of the patient distribution across several subsets used in the analysis of 

the developed systems is shown in Table 5.3. The subsets—Normal, Benign, and 

Malignant—are grouped according to the findings of the diagnostic process. There 

are 200 patients in Subset 1 overall, of which 99 have normal findings, 62 are 

benign, and 39 are malignant. Subset 2 includes 199 patients with normal results, 62 

cases of benign, and 39 cases of malignancy, for a total of 300 patients. Subset 3 

comprises a total of 600 patients, of which 499 have normal findings, 62 are benign, 

and 39 are malignant. 

To ensure the integrity and validity of the system, the entire case of each patient (all 

related scans) was assigned to a single group-either training, validation, or testing. 

This approach prevents any overlap of scans from the same patient across multiple 

groups, thereby preventing potential bias that could arise from correlated images. To 

ensure that the system learns general patterns rather than patient-specific features, 

scans from the same patient are kept in one group. 

Table 5.3 Number of patients in each data subset used in the investigation of the 
developed systems. 

 

 

Subset 1 

 

Subset 2 

 

Subset 3 

Normal 99 199 499 

Benign 62 62 62 

Malignant 39 39 39 

Total 200 300 600 
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5.4 Performance Indicators 
To evaluate the effectiveness of the developed systems, various performance 

metrics were taken into consideration. Evaluating the performance of the systems 

mainly depends on building the confusion matrix. The confusion matrix for a two-

class classification model is shown in Table 5.4. 

When evaluating a classification model in the context of binary classification, which 

entails classifying instances into one of two classes (typically represented as positive 

and negative), the terms True Positive (TP), False Positive (FP), True Negative (TN), 

and False Negative (FN) are utilised. 

                  Table 5.4 Two-class confusion matrix 

  
Predicted 

Positive Negative 

Actual 
Positive True Positive False Negative 

Negative False 
Positive True Negative 

 

• True Positive (TP):   
o Real positive instances that the model accurately classifies as 

positive. 

o Example: A genuine positive in a diagnostic imaging test for 

abnormalities would be an image displaying an abnormality that the 

diagnostic model accurately identifies as such. 

• False Positive (FP): 
o When an instance does not show any abnormalities, but the model 

classifies it wrongly as having abnormalities. 

o Example: A FP in a diagnostic imaging test for abnormalities would be 

an image that shows no abnormalities but is mistakenly classified as 

having an abnormality by the diagnostic model. 

• True Negative (TN): 
o Those instances where the model accurately classifies them as 

normal despite the absence of anomalies. 
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o Example: A TN in a diagnostic imaging test for abnormalities would be 

an image that the diagnostic model accurately classified as normal yet 

contains no abnormalities. 

• False Negative (FN): 
o Observations that the model mistakenly classifies as normal but in 

fact show anomalies. 

o Example: A FN in a diagnostic imaging test for abnormalities would be 

an image displaying an abnormality that the diagnostic model 

misidentifies as normal. 

An explanation of the significance of each metric is presented below (Grandini et al., 

2020): 

1. Accuracy 
Considers both true positives and true negatives to assess the overall accuracy of 

the classification. 

Significance: Offers a broad summary of the effectiveness of the model in every 

class. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 12314
12314352354

    (5.1) 

 

2. Sensitivity / Recall 
Calculates the percentage of real positives that are appropriately recognised. 

Significance: Very important when false negatives come at a great cost. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 12
12354

   (5.2) 

 

3. Precision (PPV - Positive Predictive Value): 
Shows the percentage of positive forecasts that were accurate out of all the positive 

predictions. 

Significance: Relevant in situations where the expense of false positives is 

substantial. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 12
12352

  (5.3) 
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4. Specificity 
Calculates the percentage of real negatives that are appropriately recognised. 

Significance: Considerable when considering the expense of false positive results. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 14
14352

  (5.4) 

 

5. F1-score 
Harmonic mean of precision and sensitivity, providing a balanced metric. 

Significance: Useful when there is an imbalance between classes. 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = !∗2678'9':;∗*7;9'<'='<>
2678'9':;3*7;9'<'='<>

  (5.5) 

 

The formulas that were previously presented were generated for the purpose of 

assessing a two-class classification model. These metrics have been calculated 

separately for every class in the framework of the three-class classification model.  

The following formulas are used to calculate the Weighted Average Precision, 

Recall, F1 score, and Specificity (Grandini et al., 2020) in this multi-class 

classification model to thoroughly evaluate the whole system: 

 

1. Weighted Average Sensitivity 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑	𝐴𝑣𝑔. 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = ∑ -!∗*7;9'<'='<>
'
!()

∑ -!'
!()

  (5.6) 

2. Weighted Average Precision 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑	𝐴𝑣𝑔. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = ∑ -!∗2678'9':;
'
!()

∑ -!'
!()

  (5.7) 

3. Weighted Average Specificity 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑	𝐴𝑣𝑔. 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = ∑ -!∗*@78'A'8'<>
'
!()

∑ -!'
!()

  (5.8) 

4. Weighted Average F1-Score 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑	𝐴𝑣𝑔. 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = ∑ -!∗5B$*8:67
'
!()

∑ -!'
!()

  (5.9) 

 

Where: 

• C : The number of classes 

• 𝒘𝒊 : Weight of class i 
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These formulas incorporate weights for each class in the calculation of the weighted 

averages, providing a comprehensive evaluation of the multi-class classification 

model. 

In several fields, evaluating the relative significance of improvements made to one 

system over another or from an earlier version is an essential component. This 

assessment aids in evaluating the effectiveness of system modifications and offers 

information on whether those changes result in significant improvements. For 

assessing significance, Cohen's d and the t-test were employed using multiple 

performance metrics, including accuracy, sensitivity, specificity, precision, and F1 

score. This multidimensional evaluation approach ensures that the observed 

improvements reflect genuine diagnostic capability rather than just improvements in 

accuracy. 

1. Cohen’s d 
A statistical metric named Cohen's d is employed to evaluate the impact magnitude 

of the distinction between two groups or scenarios. Cohen's d is a useful metric for 

assessing the significance of improvement between two systems. It is utilised to 

assess the degree to which important performance parameters such as accuracy, 

sensitivity, specificity, F1 score, and precision have improved. This statistical 

measure provides insight into the practical importance of observed improvements by 

providing a standard expression for the size of the difference between the mean 

values of the two groups. Comparing the means of the two groups and normalising 

the difference by the pooled standard deviation is the process of calculating Cohen's 

d (Nakagawa and Cuthill, 2007).  

When considering within-group variability, Cohen's d measures how much the mean 

performance of one model differs from another on several performance metrices. A 

larger effect size, which denotes a more noticeable and practically significant gain in 

performance, is indicated by a higher Cohen's d value. The mathematical expression 

for Cohen's d is as follows: 

𝑑 = D)EEEE$D#EEEE	
**++,-.

       (5.10) 
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Where: 

• 𝑋BIII	𝑎𝑛𝑑	𝑋!III are means of the two groups (Performance measures for the 

systems). 

• 𝑆@::F7G is the pooled standard deviation, calculated as: 

𝑆@::F7G = J(;)$B)	∗	9)
#3(;#$B).9##	

;)3;#$!
         (5.11) 

Where: 

• 𝑛B and 𝑛! represent the sample size of the two groups. 

• 𝑠B and 𝑠! are their respective standard deviations. 

An example of this kind of effect size index is Cohen's term d. Effect sizes were 

categorised by Cohen as small (d = 0.2), medium (d = 0.5), and large (d > 0.8). A 

small effect size indicates slight variation with few practical implications. A large 

effect size denotes a considerable and practically meaningful difference between the 

means, whereas a medium effect size implies a perceptible but mild difference. 

Tomosynthesis classification models that use Cohen's d allow for a more thorough 

evaluation of the importance of improvements in performance measures. Beyond 

conventional measures of statistical significance, the measure provides a 

standardised metric to assess the practical relevance of modifications, enabling a 

comprehensive analysis of the observed differences. 

2. t-test 
A prominent statistical technique for determining if the mean difference between two 

groups or conditions is statistically significant is the t-test. When evaluating the 

effectiveness of two systems, it is particularly beneficial. The ratio of the difference 

between the means to the standard error of the difference is represented by the t-

statistic, which is computed by the t-test. The following is the t-statistic formula: 

𝑡 = D)EEEE$D#EEEE	

I/)
#

0)
3	/#

#

0#

                  (5.12) 
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Where: 

• 𝑋BIII	𝑎𝑛𝑑	𝑋!III are means of the two groups (Performance measures for the 

systems).  

• 𝑛B and 𝑛! represent the sample size of the two groups. 

• 𝑠B! and 𝑠!! are their respective variance. 

The p-value, which the t-test calculated, represents the probability to observe a 

difference between the two groups in the event that there isn't one. When a p-value 

is minimal, usually less than 0.05, it indicates that the observed difference cannot be 

explained by chance, which means the null hypothesis—that there is no significant 

difference—is rejected. The degrees of freedom (df) and the t-statistic form the basis 

of the p-value formula. 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑃(𝑇 ≥ |𝑡|).	    (5.13) 

Where: 

• T follows a t-distribution with df = 𝑛B + 𝑛! − 2. 

Both the Cohen's d and the t-test are statistical techniques used for many types of 

data analysis, especially when determining how significant differences are between 

two groups. Cohen's d offers a standardised measure of effect size, clarifying the 

practical relevance of observed differences, whereas the t-test concentrates on 

evaluating if the means of two groups are significantly different. Analysing the 

significance of the mean difference between two groups can be done simply with the 

t-test. Because it is sensitive to changes in sample size and gives a precise p-value, 

it helps calculating the likelihood that the observed difference was the result of pure 

chance. The shortcomings of the t-test, however, include its sensitivity to 

assumptions about normality and variance homogeneity, which may compromise its 

validity in specific circumstances. 

However, Cohen's d, which expresses the size of the observed difference in 

standard deviation units, offers a measure of effect size. This makes it possible to 

assess the practical significance of the differences in addition to its statistical 

significance. Cohen's d, which offers a standardised metric, is useful for 
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comparing with different metrics. The t-test provides the advantages of being 

straightforward, simple to comprehend, and able to clearly show statistical 

significance. It is especially beneficial if there is a substantial difference between two 

groups. On the other hand, Cohen's d is useful for making comparisons between 

various studies and metrics when the focus is on comprehending the practical 

significance of the observed difference. 

To avoid misleading conclusions, the evaluation was not limited to accuracy alone. 

Improvements in accuracy were considered alongside sensitivity, specificity, 

precision, and F1 score to ensure a more balanced and accurate assessment of the 

model's performance. By evaluating multiple performance metrics, a more 

comprehensive understanding of the model’s diagnostic capability was obtained. 

Using both Cohen's d and the t-test provided a complete evaluation of model 

improvements. While the t-test confirmed statistical significance, Cohen's d 

highlighted the practical relevance of the observed improvements. This combined 

approach ensured that performance gains were both statistically and practically 

meaningful. 

5.5 Summary 
This chapter presented a thorough explanation of the dataset used in 

this dissertation research, including information on the experimental setup, subsets, 

along with the respective case quantities within each class. A discussion of the 

performance metrics used to assess the developed systems was then provided, 

along with an explanation of each statistic and the methodology for their calculation. 

Furthermore, the critical evaluation of the impact of improvements between systems, 

whether in comparison or across iterations, was emphasised in this chapter. This 

assessment was helpful in determining the efficacy of the system changes and 

provided information on the magnitude of the improvements that were reported. 

Metrics like Cohen's d and the t-test were emphasised in this chapter as essential 

instruments frequently used to determine the statistical significance of differences, 

providing useful measurements for carrying out in-depth evaluations of system 

performance and modifications. 
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The developed systems will be presented in the following chapters, which will start 

with an explanation and system diagram for each, followed by an in-depth 

description of the corresponding applied models. The full disclosure of all results 

across performance indicators will be provided next. Further exploration of the 

connections and a thorough explanation of the rationale for the development of each 

system will be provided in later chapters.  
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Chapter 6 Comparative Evaluation System for Deep-
Learning Models for Feature Extraction  

 
 
6.1 Introduction 
In this chapter, a comparative evaluation system for deep-learning models for feature 

extraction is introduced. This primary focus of this system was to evaluate the 

performance of state-of-the-art deep learning models in terms of feature extraction 

from DBT images. This comprehensive system included DBT augmentation, image 

enhancement techniques, and colour feature mapping for tissue separation. Utilising 

six state-of-the-art deep learning models, namely ResNet-18, AlexNet, GoogleNet, 

MobileNetV2, VGG-16, and DenseNet-201, the system aimed to extract 

discriminative features from DBT slices. The combination of these models was 

strategically chosen to capitalise on their diverse architectures and strengths. 

Subsequently, the extracted features were employed in a SVM classifier to 

effectively classify DBT slices. 

6.2 Methodology 
As stated in Chapter 3, CAD Systems consist of sequential modules. The system 

introduced in this chapter includes data augmentation for images followed by images 

enhancement in the pre-processing stage. After enhancing the augmented images, 

images are input to a colour feature map stage to separate image intensities. 

Features are then extracted and input to a classifier for a multi-class classification of 

DBT images. A comparison was conducted to evaluate the effectiveness of the six 

deep-learning models, with Figure 6.1 illustrating the CAD System employed for the 

assessment. 

 

Figure 6.1 Developed DE System 
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Data augmentation was applied to raw input images in the first phase of this system 

by flipping, rotating, and applying random values for brightness, saturation, and hue. 

For this experiment, four images were generated from each tomosynthesis slice. 

Interestingly, out of the three subsets that were used, two of the images were flipped 

while the other two were not. A total of 41,632 slices across all classes were 

retrieved from Subset 1, which included 39 patients with malignant abnormalities, 62 

patients with benign findings, and 99 normal cases. The first stage in getting slices 

ready for the ensuing training, validation, and test sets was the augmentation 

procedure. The total number of slices in Subset 1 after augmentation was 166,528. 

Similarly, Subset 2 included 65,050 slices from all classes, including 199 normal 

cases, 62 patients with benign findings, and 39 patients with malignant 

abnormalities. After augmentation, The total number of slices in Subset 2 increased 

to 260,200. Finally, Subset 3 consisted of 499 normal cases, 62 patients with benign 

findings, and 39 patients with malignant abnormalities, resulting in a cumulative total 

of 147,632 slices across all classes. Post-augmentation, the total number of slices in 

Subset 3 amounted to 590,528. The augmentation procedure was applied to all 

systems developed in this thesis and will be presented in the upcoming chapters. 

The augmented images were enhanced during the pre-processing step following the 

augmentation phase. By redistributing pixel intensities, histogram equalisation for 

contrast enhancement was implemented to improve the visibility of subtle features in 

DBT images. Additionally, to reduce undesired artefacts and improve the overall 

quality of the images, a noise reduction technique such as Gaussian smoothing, 

using a Gaussian filter with a 0.5 standard deviation, was applied to reduce noise 

while preserving details. These subtle smoothing averages pixel values with 

neighbours, minimizing noise without significantly blurring edges or masses or 

calcifications. Samples of normal, benign, and malignant cases are shown in Figure 

6.2 after applying the pre-processing techniques. 
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HSV colour feature map has been utilised after the pre-processing stage to aid the 

classifiers in better differentiating between various tissue types in the scan. HSV 

feature maps in this colour feature map draw attention to dominating colours, 

vividness, and brightness, respectively. Through the application of the HSV feature 

maps, the image classification model gains access to rich colour data in its input, 

improves the ability of the model to distinguish between various breast tissues. 

Samples of normal, benign, and malignant cases are shown in Figure 6.3 after 

applying the colour feature map. 

 

                           
 

                           
 

    (a)                                              (b)                                            (c) 

Figure 6.2  Samples of (a) Benign cases (b) Malignant cases (c) Normal cases after pre-
processing 
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Six cutting-edge deep learning models, including AlexNet, ResNet-18, GoogleNet, 

MobileNetV2, VGG-16, and DenseNet-201, were used to extract features after the 

colour map model was applied. More specifically, the final convolutional layer of 

each deep learning model, also known as the deep or high-level layer, provided the 

features. This layer is very useful for improving the accuracy of differentiating 

between the various classes in the tomosynthesis classification because it is 

proficient at capturing complex and abstract representations of the input images 

(Yasaka et al., 2018) (Mostafa and Wu, 2021). A more thorough representation of 

the entire content and context of the images is provided by the features that were 

extracted out of the final convolutional layer. This strong representation helps to 

accurately classify breast tomosynthesis images by helping to discern between the 

normal, benign, and malignant classes. The decreased vulnerability to noise and 

local variations in the final convolutional layer, helps to provide a more robust 

representation of the underlying structures in the breast tomosynthesis images, 

further supports the decision to extract features from this layer. The closeness of the 

final convolutional layer to the classification layer is a key element supporting this 

decision. Conceptually complex features that hold information crucial to the final 

 

                           
 

                           
 

    (a)                                              (b)                                            (c) 

Figure 6.3 Samples of (a) Benign cases (b) Malignant cases (c) Normal cases after the 
colour mapping technique 
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image classification task are extracted from this layer. By utilising these high-level 

features as input to subsequent FC layers or the classification models, the 

classification process benefits from a more discriminative and informative 

representation. This approach improves decision-making in the process of 

classifying DBT images, which in turn improves the ability of the model to correctly 

classify images into benign, malignant, and normal classes. 

The SVM classification model is the final model that is applied in the classification 

process. The SVM classifier plays a crucial role in classifying DBT images into three 

categories: malignant, benign, and normal. SVMs are ideally suited for this 

application due to their ability to handle multi-class classification challenges and 

learn complicated patterns within high-dimensional feature spaces (Foody and 

Mathur, 2004). The advantages of using SVM for DBT image classification include 

robust performance, even when there is a lack of training data, and the ability to 

manage non-linear connections in the features of the image (Guido et al., 2024). The 

SVM classifies the features, ultimately resulting in the final classification of normal, 

benign, and malignant classes. Chapter 3 provides a comprehensive explanation of 

all the models employed by this system. Results are presented and discussed in the 

following subsection. 

6.3 Results and Discussion 
Evaluating the effectiveness of state-of-the-art deep learning models for feature 

extraction from DBT images was the primary objective of the first developed system. 

This all-inclusive strategy comprised colour feature mapping, DBT augmentation, 

and image enhancing techniques to enhance tissue classification. The approach 

aims to extract distinctive features from DBT slices by incorporating six well-known 

deep learning models: ResNet-18, AlexNet, GoogleNet, MobileNetV2, VGG-16, and 

DenseNet-201. These models have been meticulously considered, making use of 

their distinctive features and varied structures. The extracted features are utilised as 

input into a SVM classifier, to effectively categorise DBT slices after feature 

extraction. Metrics including accuracy with 95% confidence intervals (CIs), 

sensitivity, specificity, F1-score, and precision were used to assess the performance 

of the system and provide an in-depth understanding of how beneficial it is in the 

classification of DBT scans. 
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Three separate data subsets were generated and utilised in the developed systems, 

as described in the Experimental Setup section of Chapter 5. The results of DE 

System utilising these three subsets are shown in Tables 6.1, 6.2, and 6.3. 

An in-depth analysis of the performance of the DE System, as presented in Table 

6.1, reveals unique patterns among the applied deep learning models when 

evaluated on Subset 1. AlexNet is the best performer, with the highest F1-Score 

55.66% and accuracy 56.86% (±6.86%). As evidenced by its balanced sensitivity 

56.86% and specificity 72.34%, this model demonstrates an excellent balance 

between precision and recall. The high specificity reflects proficiency of AlexNet in 

reliably recognising normal cases. On the other hand, DenseNet-201 exhibits the 

lowest F1-Score 46.59% and accuracy 46.11% (±6.91%), suggesting possible limits 

in its capacity to correctly classify cases within Subset 1. Effective capture of genuine 

positives is hampered by the lower sensitivity 46.11% and higher misclassification 

rate 53.89%. Despite being competitive at 68.95%, specificity of this model cannot 

make up for its overall inferior accuracy. ResNet-18, GoogleNet, VGG-16, and 

MobileNetV2 fall within a moderate performance range, with accuracies ranging from 

47.60% (±6.92%) to 51.53% (±6.93%). Although VGG-16 has a slightly higher 

specificity 70.28%, the competitive F1-Score of 50.71% of MobileNetV2 can be 

attributed to its balanced sensitivity and accuracy. All performance metrics show 

comparable results between ResNet-18 and GoogleNet. 

Table 6.1 The performance of CAD DE System using different deep learning models for 
feature extraction, assessed on Subset 1 

Deep Learning Model 

Performance Measures for DE System on Subset 1 

Accuracy Sensitivity Precision Specificity F1-Score 

ResNet-18 48.65% 48.65% 48.32% 68.72% 48.45% 

AlexNet 56.86% 56.86% 55.21% 72.34% 55.66% 

GoogleNet 47.60% 47.60% 47.46% 68.05% 47.41% 

VGG-16 50.67% 50.67% 50.68% 70.28% 50.67% 

MobileNetV2 51.53% 51.53% 50.11% 68.75% 50.71% 

DenseNet-201 46.11% 46.11% 47.46% 68.95% 46.59% 
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In conclusion, complex insights of this comparison emphasise how important it is to 

consider a variety of indicators to fully evaluate model performance. Applied to 

Subset 1, AlexNet is the best-performing deep learning model, indicating its potential 

applicability for breast cancer classification in CAD DE System. On the other hand, 

DenseNet-201 could need to undergo careful evaluation and possible improvement 

to improve its precision and diagnostic usefulness. 

Following an analysis of the performance of the DE System on Subset 2 as given in 

Table 6.2, AlexNet achieves a maximum accuracy of 77.80% (±4.70%) in 

differentiating itself, indicating its exceptional ability to precisely identify occurrences 

in Subset 2. Additionally, it obtains a remarkable F1-score of 75.46%, indicating a 

decent trade-off between recall and precision. Nonetheless, ResNet-18 and VGG-16 

show competitive results with 67.43% (±5.30%) and 68.89% (±5.24%) percent 

accuracy, respectively. In comparison to ResNet-18, VGG-16 exhibits better 

specificity and precision, demonstrating its ability to reduce FPs. Accuracy values in 

the low 60s have been demonstrated by both GoogleNet and MobileNetV2, with 

GoogleNet marginally beating MobileNetV2. Despite having an average accuracy of 

65.40%, DenseNet-201 stands out among the models with the highest specificity 

51.80%, indicating that it is effective at correctly identifying negative cases. 

 

Table 6.2 The performance of CAD DE System using different deep learning models for 
feature extraction, assessed on Subset 2 

Deep Learning Model 

Performance Measures for DE System on Subset 2 

Accuracy Sensitivity/Recall Precision Specificity F1-Score 

ResNet-18 67.43% 67.43% 70.28% 44.20% 68.76% 

AlexNet 77.80% 77.80% 73.44% 43.55% 75.46% 

GoogleNet 63.08% 63.08% 69.18% 44.53% 65.61% 

VGG-16 68.89% 68.89% 70.53% 43.91% 69.63% 

MobileNetV2 68.42% 68.42% 70.02% 41.32% 69.17% 

DenseNet-201 65.40% 65.40% 71.94% 51.80% 68.18% 

 

In assessing model performance, the comparison emphasises how crucial it is to 

consider a variety of measures. Accuracy is an important metric, but in medical 

diagnostic settings, specificity and the balance between precision and recall are 
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crucial. The unique goals of the CAD System and specifications, such as the need to 

reduce FPs or negatives, should be taken into consideration while selecting a deep 

learning model. A detailed understanding of the advantages and disadvantages of 

each model is made possible by this thorough study, which aids in making well-

informed decisions on the implementation of CAD DE System. 

 

Table 6.3 The performance of CAD DE System using different deep learning models for 
feature extraction, assessed on Subset 3 

Deep Learning 
Model 

Performance Measures for DE System on Subset 3 

Accuracy Sensitivity/Recall Precision Specificity F1-Score 

ResNet-18 87.91% 87.91% 86.47% 18.88% 87.14% 

AlexNet 89.60% 89.60% 87.17% 21.43% 88.34% 

GoogleNet 83.47% 83.47% 86.14% 20.86% 84.76% 

VGG-16 88.00% 88.00% 86.72% 20.97% 87.35% 

MobileNetV2 84.47% 84.47% 86.30% 19.68% 85.36% 

DenseNet-201 84.81% 84.81% 86.62% 20.68% 85.69% 

 

Table 6.3 provides an in-depth assessment of the performance of CAD DE System 

on Subset 3. Compared to Subset 2, this Subset presents a distinct set of difficulties 

and traits, providing important information about the resilience of the models. With a 

high accuracy of 89.60% (±2.44%), AlexNet outperforms all other models, making it 

the undisputed top performer. With an F1-score of 88.34%, the model demonstrates 

its capacity to keep recall and precision in check. Both ResNet-18 and VGG-16 also 

exhibit excellent outcomes, with accuracies of 87.91% (±2.61%) and 88.00% 

(±2.60%), respectively. These models demonstrate a high degree of precision, 

demonstrating their ability to reduce FPs. Nonetheless, the specificity values of these 

models are rather low, indicating difficulties in accurately identifying negative 

situations. Conversely, GoogleNet and MobileNetV2 demonstrate consistent 

performance across many subsets, with accuracies in the mid-80s. DenseNet-201 

exhibits balanced precision and recall, with an accuracy of 84.81% (±2.87%), as 

demonstrated by its 85.69% F1-score. Although higher than some models, the 

specificity value of 20.68% suggests that there is still space for growth in terms of 

accurately identifying negatives. 
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The comparison across Subset 3 confirms how crucial it is to test models on a 

variety of datasets to gauge how well they generalise. High accuracy achieved by 

AlexNet indicates that it can adjust to different features. The observed trade-offs 

between specificity and sensitivity emphasise how crucial it is to consider both the 

clinical setting and the unique requirements of the CAD System when choosing a 

model. This in-depth examination of Subset 3 performance indicators offers 

developers and physicians insightful information to help them decide how best to 

implement CAD DE System. 

The differences in how the deep learning models performed come down to their 

design and how well they handle the specific details of DBT images. AlexNet stood 

out because of its relatively simple structure and how effectively it extracts important 

features from the images. Its use of ReLU activation helps the model learn faster, 

and the overlapping max-pooling improves how well it retains spatial details, both of 

which make it particularly good at spotting subtle patterns in DBT slices. Another 

reason AlexNet works so well is that it has fewer parameters than deeper models, 

which lowers the risk of overfitting.  

DenseNet-201, on the other hand, struggled more, which makes sense considering 

its more complex design. Its dense connectivity, while theoretically helpful for 

passing information through the network, seems to create too much redundancy and 

make the model more sensitive to noise. This complexity likely causes overfitting, 

especially with smaller, more specialized datasets like DBT. ResNet-18 delivered 

more balanced results because its residual connections help solve the problem of 

vanishing gradients, but its shallow structure may limit how well it can pick up on 

more detailed patterns in breast tissue. Models like GoogleNet and MobileNetV2, 

which are designed to be more complex and flexible, performed consistently but 

didn’t stand out, suggesting that deeper and more sophisticated models do not 

necessarily outperform simpler ones when working with DBT images. 

6.4 Summary 
In this chapter, the primary objective was to evaluate the effectiveness of state-of-

the-art deep learning models for feature extraction from DBT images. To improve 

tissue classification, a complete approach was applied by the developed systems, 

which included colour feature mapping, DBT augmentation, and image enhancing 
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techniques. Metrics including accuracy, sensitivity, specificity, F1-score, and 

precision were employed to evaluate the performance of six top-performing deep 

learning models: ResNet-18, AlexNet, GoogleNet, MobileNetV2, VGG-16, and 

DenseNet-201. These models were integrated for feature extraction and classified 

using SVM classifier. The system generates and uses three subsets, the results of 

which have been shown in Tables 1, 2, and 3. AlexNet was the top performer in 

Subset 1, with the highest accuracy and F1-Score. DenseNet-201 demonstrated 

inefficiencies indicating a need for more consideration and possible development. 

The results of Subset 2 demonstrated that AlexNet has remarkable accuracy and F1-

score. Subset 3 demonstrated that AlexNet outperforms the other models across all 

performance metrics, while ResNet-18 and VGG-16 provided great precision. 

Specificity values, however, point to difficulties in precisely recognising both benign 

and malignant cases for these models. The comparison exhibited the significance of 

considering a variety of metrics in medical diagnostic settings and the necessity of 

matching model selection to the objectives and specifications of the CAD System. 

The results provided useful information for decision-making when CAD DE System 

was implemented, considering variables like minimising FPs or negatives, and 

adjusting to various datasets. 

Specificity values across the three subsets in DE System highlighted challenges in 

accurately identifying benign and malignant cases, prompting consideration for the 

development of the next system. Furthermore, the comparative system 

demonstrated that AlexNet outperformed the other five state-of-the-art deep learning 

models in extracting informative features that more effectively discriminated between 

classes. 

The subsequent chapter introduces the second developed system, MA System, 

which includes the introduction of Mod_AlexNet. Mod_AlexNet aimed to enhance 

performance of AlexNet in terms of accuracy and specificity, while also exploring 

improvements for better detection of abnormal cases. Mod_AlexNet is developed 

and compared with the traditional AlexNet to assess performance differences and 

evaluate the enhancements implemented into the modified model.  
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Chapter 7 Mod_AlexNet for Enhanced Diagnosis of Digital 
Breast Tomosynthesis 

 
 
7.1 Introduction 
In the preceding chapter,  state-of-the-art deep learning models were examined. The 

investigation revealed noteworthy findings, indicating that AlexNet outperformed its 

counterparts, consistently achieving superior performance across all dataset 

subsets. Furthermore, the findings revealed a relationship between higher overall 

accuracy and an increase in the number of cases in the training set. But along with 

this increase in accuracy came an overall reduction in specificity and abnormality 

detection capabilities. 

The novelty of this chapter lies in the introduction of a modified deep learning model, 

referred to as Mod_AlexNet, designed to enhance detection accuracy and elevate 

the classification of abnormal cases, to be able to better discriminate between 

benign and malignant cases. 

7.2 Methodology 
In this system, to ensure an equitable comparison, the augmentation, pre-

processing, and colour mapping models were incorporated using identical 

techniques as those applied in the previous system discussed in Chapter 6. 

However, the deep learning model was modified. Figure 7.1 shows the CAD System, 

Mod_AlexNet System (MA System), used for the assessment. Initially, images 

underwent augmentation and enhancement, and after the enhancement, colour 

mapping was implemented to enhance the differentiation between various findings in 

the DBT scans. 

The first contribution performed during this research was to modify the traditional 

AlexNet model, resulting in the development of Mod_AlexNet, marking a seminal 

contribution to the field. The aim of this architectural development was to maximise 

the conventional classification performance of AlexNet. Figure 7.1 highlights the new 

layers that have been added to develop the Mod_AlexNet. There are eight learnable 

layers in the AlexNet. ReLu activation is used in each of the five levels of the model, 

except for the output layer, which uses max pooling followed by three FC layers. Six 
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additional layers were added by Mod AlexNet, including 2 max-pooling layers and 4 

batch normalisation levels. According to Figure 7.1, the max-pooling layers were 

added to the third and fourth convolution layers, after the batch normalisation layers 

were added after the first four convolution layers. 

 

 

Additional layers of Mod_AlexNet are positioned strategically, as shown in Figure 

7.2, to maximise classification performance, as supported by their individual benefits. 

By reducing internal covariate shift, the addition of batch normalisation layers 

following the first four convolution layers promotes a more stable training procedure 

(Awais, Iqbal and Bae, 2020). By preserving a steady distribution of inputs, this 

normalisation promotes adaptability in the model and speeds up convergence during 

training (Awais, Iqbal and Bae, 2020). Moreover, the feature maps are down 

sampled by adding max-pooling layers after the third and fourth convolution layers, 

which encourages spatial hierarchy and abstraction. By removing unnecessary data 

and capturing important properties, this down sampling technique helps the model 

become more abstract and less prone to overfitting (Zafar et al., 2022). The 

Figure 7.1 Mod_AlexNet System (MA System) 
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justification for these modifications is based on a thorough comprehension of the 

difficulties that deep learning models provide, and the effective resolution of these 

difficulties depends on the thoughtful arrangement of these layers. 

 

Figure 7.2 Mod_AlexNet Architecture 

 

The ability of the network to identify spatial hierarchies in the input data is greatly 

improved by the addition of max-pooling layers after the third and fourth 

convolutional stages. By positioning these layers at this point, the model can 

gradually pick up on and understand complex patterns, which will help to produce a 

more discriminative and subtle feature representation. This hierarchical feature 

extraction helps the network recognise progressively complex structures in the data, 

which improves classification accuracy. Furthermore, the down sampling impact of 

max-pooling promotes a more robust and generalised model by reducing the 

likelihood of overfitting. 

Internal covariate shift is tackled concurrently by integrating batch normalisation 

layers after the first four convolutional layers. At this point, normalising the inputs 

encourages a steady distribution of features across the network, which makes 

learning reliable and effective. This holds special significance for networks such as 

AlexNet, since it becomes more difficult to maintain stable training dynamics as the 

network gets deeper. By facilitating the efficient acquisition of discriminative features, 

faster convergence of the batch normalisation improves training efficiency and adds 

to the specificity of the model. The optimisation of training dynamics is strongly 

associated to the specific decision of positioning batch normalisation layers after the 
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first four convolutional layers. Early normalisation creates a solid basis for feature 

learning by guaranteeing that inputs to later layers have a consistent distribution. By 

placing the object strategically, problems like vanishing or exploding gradients are 

lessened, allowing information to move across layers more successfully. This makes 

the network less sensitive to changes in the input data, which enhances specificity 

and improves generalisation in classification tasks. 

Within this system, an in-depth examination was conducted between the pre-

trained AlexNet and its modified version, Mod_AlexNet. The main goal of this study 

was to determine how well these models classified enhanced images into classes 

that were benign, malignant, and normal. A detailed examination of model 

performance under various training optimisers and batch sizes was required for the 

comparative evaluation. This comprehensive approach was developed to identify 

and validate the higher classification powers that are inherent to each system. Adam, 

Stochastic Gradient Descent with Momentum (SGDM), and Root Mean Square 

Propagation (RMSProp) were the optimisers that were considered for this 

assessment. A variety of batch sizes were utilised for performance testing to fully 

evaluate the robustness of the models. The subsequent section provides an in-depth 

presentation of results along with a thorough discussion that examines the findings 

and evaluates the influence of varying optimiser configurations in conjunction with 

batch size. 

7.3 Results and Discussion 
To evaluate and compare the efficacy of the developed Mod_AlexNet with the 

traditional pre-trained AlexNet, a thorough examination involving multiple 

performance measures was carried out. The assessment included metrics like the 

F1 score, sensitivity, specificity, precision, and accuracy along with the 

corresponding CIs. To assess the statistical significance of improvement, Cohen's d 

was computed, along with a t-test, to compare Mod_AlexNet to pre-trained AlexNet. 

Additionally, the investigation involved a comparison of the output of Mod_AlexNet in 

the MA System to the optimal outcomes obtained from the DE System, which is 

presented in Chapter 6, aiming to compute the significance of improvement.  
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Table 7.1 Performance Measures for the implementation of AlexNet using Subset 3 in 

MA System 

Optimizer Batch Size Accuracy Sensitivity/Recall Precision Specificity F1-Score 

SGDM 

32 88.74%  88.74% 86.78% 17.40% 87.69% 
64 88.53%  88.53% 87.42% 19.87% 87.96% 
128 89.41%  89.41% 86.03% 19.28% 87.54% 
256 89.79%  89.79% 86.70% 18.76% 88.06% 
512 90.32%  90.32% 87.59% 18.42% 88.80% 

Adam 

32 92.26%  92.26% NA 7.74% 88.55% 
64 92.26%  92.26% NA 7.74% 88.55% 
128 92.26%  92.26% NA 7.74% 88.55% 
256 92.26%  92.26% NA 7.74% 88.55% 
512 92.26%  92.26% NA 7.74% 88.55% 

RMSProp 

32 92.26%  92.26% NA 7.74% 88.55% 
64 92.13%  92.13% NA 7.73% 88.48% 
128 92.26%  92.26% NA 7.74% 88.55% 
256 92.26%  92.26% NA 7.74% 88.55% 
512 92.26%  92.26% NA 7.74% 88.55% 

 

Table 7.1 illustrates the performance of AlexNet using Subset 3 in MA System under 

the SGDM optimiser with varied batch sizes which provides an improved 

comprehension of the effectiveness of the model in terms of several metrics. 

Surprisingly the accuracy increases steadily, peaking at 90.32% for a batch size of 

512. When it comes to sensitivity or recall, the model shows an increase as batch 

sizes increase, going from 88.74% to 90.32%. This implies a higher degree of 

precision in detecting instances that are positive, which is suggestive of a positive 

relationship between batch size and the capacity of the model to identify real 

positives. On the other hand, precision, which measures the accuracy of positive 

predictions, slightly decreases as batch sizes increase, from 86.03% to 87.59%, 

indicating an implied compromise between sensitivity and precision. Specificity, a 

crucial indicator of how well the model detects negative occurrences, shows a 

complex pattern at various batch sizes. The values show a little drop with increasing 

batch size, ranging from 17.40% to 18.42%. This implies a possible trade-off; 

wherein higher batch sizes may result in a little rise in FNs. The inverse relationship 

between specificity and sensitivity emphasises how important it is to carefully assess 

the ability of the model to categorise negative cases accurately, especially in 

situations where reducing FNs is crucial. Simultaneously, the F1-Score, which offers 

a thorough evaluation of the balance between sensitivity and precision, shows a 

general improvement from 87.69% to 88.80%. This increasing trend implies that the 
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model finds a finely tuned balance between precisely detecting positive cases and 

reducing FPs and FNs as batch sizes increase. The growing F1-Score suggests that 

the general robustness of the model increases with higher batch sizes, even in the 

face of any potential limitations in specificity. 

Moreover, Table 7.1 offers a thorough summary of the performance metrics for the 

use of Subset 3 in MA System for the deployment of AlexNet with the Adam and 

RMSProp optimisers, with different batch sizes. Interestingly, the accuracy statistic 

shows stable and high levels of accuracy, staying at 92.26% for all batch sizes. The 

sensitivity/recall values are stable at 92.26%, demonstrating the strong capacity of 

the system to detect positive cases. This implies that the Adam optimiser maintains a 

constant sensitivity/recall performance independent of batch size. Concurrently, 

precision values stay at 0.00% for all batch sizes, which means all cases were 

classified as Normal. This highlights a possible shortcoming of the model in 

accurately detecting abnormal cases within its predictions. 

In conclusion, the findings imply that although Adam and RMSProp optimisers 

continuously produce excellent levels of sensitivity and accuracy, there is no 

precision for all batch sizes. The model may not be able to balance out the reduction 

of FPs and FNs, as evidenced by the low specificity and constant F1-Score. These 

insights are essential for improving the performance of the system and identifying 

areas that need to be optimised, especially for increasing specificity and precision to 

produce predictions that are more reliable. 

Table 7.2 describes the performance metrics for Mod_AlexNet with Subset 3 in MA 

System, emphasising the use of various batch sizes for the SGDM optimiser. Key 

performance indicators such as accuracy, sensitivity/recall, precision, specificity, and 

F1-Score are included in the evaluation to provide insight into the performance 

utilising different optimisers on different batch sizes. The accuracy percentages, 

which range from 90.48% to 91.61%, show a steady and excellent performance. 

The accuracy estimations are highly confident due to the low CIs (2.22% to 2.35%), 

which highlight the ability of the system to consistently provide accurate predictions 

across a range of batch sizes. This precision constancy is an indication of the 

reliability of the system. Consistently high, sensitivity ranges from 90.48% to 91.61%. 
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This indicates that the model is sensitive to the existence of positive examples in the 

dataset and consistently intercepts TPs across different batch sizes. Precision, which 

gauges how well positive predictions turn out, shows stability with values between 

87.71% and 88.16%. Although there is a small fluctuation, the model constantly 

reduces FPs, which helps to support strong precision of Mod_AlexNet. Specificity 

reveals values in the range of 23.91% to 21.12%. This implies a moderately 

consistent ability to classify negative examples appropriately. The F1-Score, which 

balances sensitivity and precision, stays constant from 88.96% to 89.57%. This 

suggests a stable balance between minimising FPs and accurately detecting positive 

events. The ability of the system to maintain balance between sensitivity and 

precision is stable for a range of batch sizes. 

Table 7.2 Performance Measures for the implementabon of Mod_AlexNet using Subset 
3 in MA System 

 
Optimizer Batch Size Accuracy Sensitivity/Recall Precision Specificity F1-Score 

SGDM 

32 91.61%  91.61% 88.16% 23.91% 89.57% 
64 90.63%  90.63% 88.08% 21.12% 89.18% 
128 90.50%  90.50% 87.78% 22.09% 88.99% 
256 90.48%  90.48% 87.74% 22.09% 88.96% 
512 90.70%  90.70% 87.71% 22.10% 89.07% 

Adam 

32 92.26%  92.26% 85.12% 7.74% 88.55% 
64 89.45%  89.45% 86.87% 17.03% 88.05% 
128 90.16%  90.16% 87.27% 22.63% 88.57% 
256 90.23%  90.23% 87.18% 23.84% 88.67% 
512 90.36%  90.36% 87.29% 23.84% 88.79% 

RMSProp 

32 87.28%  87.28% 86.36% 20.52% 86.81% 
64 90.32%  90.32% 86.68% 17.03% 88.39% 
128 91.23%  91.23% 86.05% 17.90% 88.29% 
256 91.48%  91.48% 86.43% 18.02% 88.65% 
512 91.60%  91.60% 86.22% 14.56% 88.69% 

 

The performance analysis of Mod_AlexNet using Subset 3 in MA System under the 

Adam optimiser with different batch sizes reveals complex dynamics in several 

important measures. The accuracy exhibits significant fluctuation, with the best 

accuracy recorded at a batch size of 32. The accuracy ranges from 89.45% to 

92.26%. The accompanying uncertainty is highlighted by the CIs (2.14% to 2.46%), 

which highlight how sensitive the system is to batch size variations. The 

sensitivity/recall, ranging from 89.45% to 92.26%, is consistently high, demonstrating 

its ability to accurately detect positive events. At a batch size of 32, the highest 

sensitivity and maximum accuracy coincide, suggesting a strong performance in 
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identifying genuine positive cases but no predictions for abnormal cases. The range 

of precision is from 85.12% to 87.29%. Although steady, a minor decrease at bigger 

batch sizes points to a more complex conflict as the system seeks to minimise FPs 

while balancing precision. Specificity steadily rises with increasing batch sizes, from 

7.74% to 23.84%. This suggests that the ability of the system to accurately 

categorise negative cases has improved, continuing the upward trend in precision 

that has been noted. In terms of accuracy and sensitivity, the F1-Score remains very 

stable between 88.05% and 88.79%. 

Employing the RMSProp optimisers, the accuracy shows a noteworthy upward trend, 

rising from 87.28% at a batch size of 32 to 91.60% with a batch size of 512. This 

steady improvement suggests that higher batch sizes have a beneficial effect on the 

overall prediction accuracy. The specificity, shows a little decline with increasing 

batch size, going from 20.52% to 14.56%. The compromise between sensitivity and 

specificity is highlighted by the preference for capturing TPs, which suggests a little 

rise in FNs. Similar to precision, the F1-Score measure balances sensitivity and 

precision; it ranges from 86.81% to 88.69% and improves with increasing batch 

sizes. 

In MA System, AlexNet performed less effectively when using the Adam and 

RMSProp optimisers; abnormality classes were not identified, and all cases were 

classified as normal. Alternatively, AlexNet achieved optimal performance with an 

accuracy of 90.32%, but with a specificity of 18.42% at a batch size of 512, or an 

accuracy of 89.41% with a specificity of 19.28%. Mod_AlexNet, on the other hand, 

performed more effectively, especially when applying the SGDM optimiser with a 

batch size of 32. It achieved the highest specificity of 23.91%, accuracy of 91.61%, 

and precision of 88.16%. These results validate the claim that Mod_AlexNet 

surpasses the pre-trained AlexNet in terms of accuracy, precision, specificity, and F1-

score. 

Tables 7.1 and 7.2 present the outcomes derived from the implementation of AlexNet 

and Mod_AlexNet using Subset 3 within MA System. A comprehensive assessment 

of the enhancements achieved by both the modified system and Mod_AlexNet 

involved the computation of statistical measures, namely Cohen’s d and the t-test. 

These analyses were employed to determine the significance between the optimal 
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outcomes in DE System and the highest-performing result in MA System, which was 

observed during the deployment of Mod_AlexNet optimised using SGDM with a 

batch size of 32. Furthermore, a comparative evaluation was conducted for all 

results obtained in MA System, emphasising the superior performance of 

Mod_AlexNet optimised using SGDM with a batch size of 32. These analyses are 

shown in Table 7.3. 

Table 7.3 provides a comprehensive study using T-test and Cohen's d significance 

measures to compare the results of different models in MA System and the 

performance of AlexNet in DE System to assess the optimal performance of 

Mod_AlexNet in MA System. The statistical evaluation of model performance using 

Cohen's d and t-tests was conducted based on the methodology outlined in Chapter 

5. This approach ensures consistency in performance evaluation across all systems. 

Cohen's d was used to measure the practical significance of observed differences, 

while t-tests were employed to determine the statistical significance of the results. 

The use of multiple performance metrics, including accuracy, sensitivity, specificity, 

and F1-score, provides a balanced evaluation of the model's effectiveness and helps 

to avoid misleading conclusions that might arise from focusing on a single metric. 

This multidimensional evaluation approach ensures that improvements in one metric 

do not come at the expense of another critical diagnostic factor. 

Performance variances that are hardly noticeable are revealed by Cohen's d, a 

measure of effect magnitude. For example, the impact sizes are small (0.06127 to 

0.10120) when employing AlexNet with SGDM in MA System, indicating limited 

practical significance. Nonetheless, the T-test significance values show that the 

observed improvements are statistically significant, except for a batch size of 512. 

In contrast, large Cohen's d values (0.52267) of MA System suggest significant 

variations when using the Adam and RMSProp optimisers. Nevertheless, the T-test 

significance values (0.29129) imply that these variations are not statistically 

significant, suggesting that performance of AlexNet using these optimisers is 

comparable. Promoting the interpretation of Cohen's d becomes necessary when 

faced with this situation where Cohen's d shows a significant effect size, yet the T-

test is unable to demonstrate statistical significance. Relying simply on the T-test 

may result in the overlooking of potentially relevant differences in such 
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circumstances, when a large effect size suggests practical significance, but the 

sample size may not be sufficient for the T-test to identify statistical significance. 

Table 7.3 Comparabve Stabsbcal Analysis using Cohen's d and T-test Significance for 
Evaluabng Mod_AlexNet Opbmal Performance in MA System against the Best 
Performance in DE System and All Results Obtained by Various Models in MA 
System. 

 
System/Model Cohen's d: T-test (p) 

System Model Optimizer Batch 
Size Measure Significance Measure Significance 

MA System 

AlexNet 

SGDM 

32 0.10120 Small 0.02610 Significant 

64 0.08335 Small 0.01302 Significant 

128 0.08718 Small 0.00614 Significant 

256 0.07715 Small 0.02875 Significant 

512 0.06127 Small 0.10833 Not Significant 

Adam 

32 0.52267 Large 0.29129 Not Significant 

64 0.52267 Large 0.29129 Not Significant 

128 0.52267 Large 0.29129 Not Significant 

256 0.52267 Large 0.29129 Not Significant 

512 0.52267 Large 0.29129 Not Significant 

RMSProp 

32 0.52267 Large 0.29129 Not Significant 

64 0.52484 Large 0.28944 Not Significant 

128 0.52267 Large 0.29129 Not Significant 

256 0.52267 Large 0.29129 Not Significant 

512 0.52267 Large 0.29129 Not Significant 

Mod_AlexNet 

SGDM 

64 0.03459 Small 0.09038 Not Significant 

128 0.03342 Small 0.01629 Significant 

256 0.03416 Small 0.01385 Significant 

512 0.03059 Small 0.01984 Significant 

Adam 

32 0.11340 Small 0.29828 Not Significant 

64 0.09083 Small 0.05355 Not Significant 

128 0.04086 Small 0.00046 Significant 

256 0.03199 Small 0.01706 Significant 

512 0.02863 Small 0.01744 Significant 

RMSProp 

32 0.11185 Small 0.00234 Significant 

64 0.07827 Small 0.09539 Not Significant 

128 0.06587 Small 0.12382 Not Significant 

256 0.05697 Small 0.17667 Not Significant 

512 0.07688 Small 0.23913 Not Significant 

DE System AlexNet 0.058337 Small 0.00318. Significant 
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The emphasis on Cohen's d in these instances is warranted because it quantifies the 

magnitude of observed differences, providing insight into the practical relevance of 

the findings. A large Cohen's d suggests that the observed effect is significant in 

actual terms even though statistical significance was not reached. This emphasises 

how crucial it is to take the larger picture into account and realise that the practical 

impact of an effect may still exist even in the absence of statistical significance. 

Using different optimisers and batch sizes, the analysis is extended to Mod_AlexNet 

in MA System. Although T-test significance scores show both significant and non-

significant differences, Cohen's d values are notably typically small. Mod_AlexNet, 

for instance, shows a notable improvement with the Adam optimiser and a batch size 

of 128. This highlights the subtle effects of the optimiser and batch size selections. 

Using the SGDM optimiser and focusing on Mod_AlexNet, a dependable pattern 

appears. Cohen's d values are consistently small, ranging from 0.03059 to 0.03459, 

across various batch sizes (64, 128, 256, and 512), indicating subtle effect sizes. 

The T-test significance results, however, differ. Significantly, the p-values for batch 

sizes 128 through 512 are 0.01629, 0.01385, and 0.01984, respectively, indicating 

statistical significance. This indicates that Mod_AlexNet with SGDM shows slight but 

significant performance gains, particularly at higher batch sizes. 

When switching to Adam optimiser, Cohen's d values show moderate impact sizes 

since they are consistently small across batch sizes. The T-test significant values, 

however, present a more complex scene. With a remarkably modest p-value of 

0.00046, which indicates high statistical significance, a batch size of 128 stands out. 

This suggests that Mod_AlexNet attains a performance level that differs noticeably 

from the baseline when using Adam and a batch size of 128. Other batch sizes, on 

the other hand, do not exhibit any statistical significance, highlighting the sensitivity 

of the results to certain structures. 

A similar tendency is revealed by the examination of Mod_AlexNet with RMSProp in 

MA System. Whereas the T-test significance values show significance for smaller 

batch sizes (32) but not for larger ones (64, 128, 256, 512), Cohen's d values are 

constantly small, showing minor effect sizes. This emphasises how crucial it is to 

consider how batch size and optimizer interact to affect the performance variations 

that are observed. 
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Finally, to compare the benchmark performance in DE System—more precisely, 

using AlexNet—against the ideal performance of Mod_AlexNet in MA System. A 

slight but noticeable variation in performance is suggested by the Cohen's d value of 

0.05834, which shows a small effect size. Concurrently, a statistically significant T-

test significance value of 0.00318 is indicated. This suggests that the observed 

performance gap between Mod_AlexNet in MA System and top-performing model in 

the DE System, AlexNet, is not only statistically significant but also practically 

significant. 

Table 7.4 Comparabve Analysis of MA System Mod_AlexNet using an SGDM Opbmizer 
(batch size: 32) and DE System AlexNet using a Variety of Metrics 

System Model Accuracy Sensitivity/Recall Precision Specificity F1-Score 

MA System Mod_AlexNet 91.61% 91.61% 88.16% 23.91% 89.57% 

DE System AlexNet 89.60% 89.60% 87.17% 21.43% 88.34% 

Percentage of improvement 2.24% 2.24% 1.14% 11.59% 1.39% 

 

An analysis of the performance of Mod_AlexNet in MA System compared to AlexNet, 

in DE System, using several metrics, such as F1-Score, accuracy, sensitivity/recall, 

precision, and specificity is shown in Table 7.4. Mod_AlexNet performs better than 

the baseline AlexNet in DE System in every statistic. Mod_AlexNet outperforms 

AlexNet by 2.24% in accuracy, which is a significant improvement. Both the precision 

and sensitivity/recall indicators demonstrate a 2.24% improvement, which is 

consistent with this improvement. These enhancements imply that, in comparison to 

AlexNet in DE System, Mod_AlexNet in MA System is much better at accurately 

classifying both positive cases (sensitivity) and minimising FPs (precision). The 

specificity statistic demonstrates an impressive 11.59% improvement in the benefit of 

Mod_AlexNet. This suggests that, as compared to AlexNet in DE System, 

Mod_AlexNet is especially good at correctly identifying negative instances, lowering 

the rate of FNs. This is a major gain, particularly in this situation, when accurately 

identifying the negatives is critical. 

Additionally, Mod_AlexNet shows a minor improvement of 1.39% in the F1-Score, 

which is a balanced measure of precision and recall. This suggests that 
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Mod_AlexNet achieves a more balanced performance in terms of FPs and FNs by 

achieving a better balance between precision and recall. To summarise, the 

percentage of improvement values show that Mod_AlexNet in MA System 

outperforms AlexNet in DE System in all performance criteria consistently. These 

enhancements indicate that the changes made to Mod_AlexNet are effective and 

that it performs better in the given tasks. This thorough performance analysis can 

direct future MA System optimisation efforts and helps to appreciate the subtle 

strengths of Mod_AlexNet. 

Based on Figure 7.3, utilising SGDM optimiser, it is concluded that for a batch size of 

32, AlexNet achieved a training accuracy of 98.50% and a training loss value of 0.05, 

whereas Mod_AlexNet achieved a lower training accuracy of 97.67% and a training 

loss of 0.08. Moreover, AlexNet obtained 97.94% training accuracy with a training 

loss of 0.07, whereas Mod_AlexNet achieved 96.74% training accuracy with a 

training loss of 0.11 for a batch size of 64. Finally, for a batch size of 512, AlexNet 

obtained 93.33% training accuracy with a training loss value of 0.2, whereas 

Mod_AlexNet achieved 91% training accuracy with a training loss of 0.26.  

Figure 7.4 shows that utilising Adam optimiser, for a batch size of 32, Mod_AlexNet 

achieved a training accuracy of 89.94% and a training loss value of 0.39, while 

AlexNet achieved a lower training accuracy of 89.52% and a training loss of 0.4. 

Moreover, for a batch size of 64, Mod_AlexNet obtained a 94.01% training accuracy 

with a training loss of 0.18 for a batch size of 64, while AlexNet achieved an 89.50% 

training accuracy with a training loss of 0.4. Finally, for a batch size of 512, 

Mod_AlexNet obtained 90.09% training accuracy and a training loss of 0.28, 

whereas AlexNet achieved 86.70% training accuracy and a loss of 0.48. 

Mod_AlexNet outperformed AlexNet for a batch size of 32, with training accuracies of 

93.18% and 87.21% and training loss values of 0.25 and 0.72, respectively, based 

on Figure 7.5 using RMSProp optimiser. Furthermore, at a batch size of 64, 

Mod_AlexNet achieved a 93.49% training accuracy with a training loss of 0.25, while 

AlexNet achieved 87.20% training accuracy with a training loss of 0.69. Finally, with 

512 batch size, AlexNet had an improved training accuracy of 86.69% and a training 

loss of 0.5, but Mod_AlexNet achieved a lower training accuracy of 84.17% and a 

training loss of 0.52. 
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Figure 7.3 For SGDM optimizer (a) Training Accuracy on Batch size: 32, (b) Training Loss 
on Batch size: 32, (c) Training Accuracy on Batch size: 64, (d) Training Loss on 
Batch size: 64, (e) Training Accuracy on Batch size: 512, (f) Training Loss on 
Batchsize:512 
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Figure 7.4 For Adam optimizer (a) Training Accuracy on Batch size: 32, (b) Training Loss on 
Batch size: 32, (c) Training Accuracy on Batch size: 64, (d) Training Loss on Batch size: 
64, (e) Training Accuracy on Batch size: 512, (f) Training Loss on Batchsize:512 
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 Figure 7.5 For RMSProp (a) Training Accuracy on Batch size: 32, (b) Training Loss on Batch 

size: 32, (c) Training Accuracy on Batch size: 64, (d) Training Loss on Batch size: 64, 
(e) Training Accuracy on Batch size: 512, (f) Training Loss on Batch size: 512. 
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While the Mod_AlexNet model demonstrated improvements in accuracy and 

sensitivity, the consistently low specificity values, particularly when using the Adam 

and RMSProp optimizers, highlight an important challenge. The tendency of these 

optimizers to favour sensitivity over specificity may stem from their adaptive learning 

nature, which adjusts learning rates dynamically and increases the focus on normal 

cases. The stable but low specificity suggests that the model is more confident in 

identifying normal cases but struggles with accurately ruling out abnormal cases. 

7.4 Summary 
In this chapter, MA System was introduced and examined. This builds on the 

outcomes of the previous chapter, which examined how well cutting-edge deep 

learning models performed in the classification of DBT images. This chapter presents 

Mod_AlexNet, a modified deep learning network. The architectural modifications of 

Mod_AlexNet are essential for addressing the challenges caused by different breast 

densities and sizes, as well as for accurately differentiating between benign and 

malignant abnormalities in the identification of breast cancer.  

Mod_AlexNet deliberately handles the problem of different breast sizes and densities 

by adding batch normalisation layers after the first four convolutional layers. These 

layers guarantee a stable training process by reducing internal covariate shift. Given 

the variety of structures present in varying breast sizes, internal covariate shift is 

especially relevant when discussing the diagnosis of breast cancer. Batch 

normalisation ensures that features are distributed uniformly throughout the network, 

which promotes reliable learning. This stability is essential for effective training, 

especially in deep networks such as AlexNet where stability is increasingly difficult to 

maintain. Early normalisation reduces sensitivity to changes in input data and 

improves the specificity and generalisation of the model in identifying instances with 

different breast densities by ensuring that inputs to later layers have a constant 

distribution. Furthermore, the difficulties in differentiating between benign and 

malignant abnormalities are addressed by the positioning of max-pooling layers after 

the third and fourth convolutional stages in Mod_AlexNet. The detection of spatial 

hierarchies in the incoming data is aided by these layers. Located at these pivotal 

layers, the model gradually catches and understands complex patterns, leading to a 

deeper and more selective feature representation. The extraction of hierarchical 
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features is essential for identifying increasingly complex patterns in the data, which 

in response improves classification accuracy. Moreover, by lowering the chance of 

overfitting, a critical factor in handling the complex properties of benign and 

malignant abnormalities, the down sampling effect of the max-pooling strengthens 

the model. 

In the results and discussion section, the effectiveness of Mod_AlexNet in MA 

System is thoroughly analysed in comparison to the conventional AlexNet. A variety 

of optimisers (SGDM, Adam, RMSProp) and batch sizes are evaluated, considering 

measures like F1-Score, accuracy, sensitivity, precision, and specificity. The results 

draw attention to important compromises, such as how batch size affects specificity, 

sensitivity, and precision. Significantly, Mod_AlexNet performs better, particularly 

when using the SGDM optimiser and a batch size of 32. The chapter uses statistical 

tools to evaluate the significance of the observed improvements, such as T-tests and 

Cohen's d. The findings highlight the practical relevance of performance disparities 

and stress the need to take impact sizes into account in addition to statistical 

significance. Additionally, a comparison with the most effective outcomes of the DE 

System is provided, demonstrating the outperformance of Mod_AlexNet. The chapter 

ends with a thorough analysis of the performance metrics, highlighting the system-

wide improvements it continually achieves over AlexNet. 

Analysing the performance of AlexNet in both DE System and MA System revealed 

that using AlexNet for feature extraction and then classifying the extracted features 

using an SVM classifier achieved more effective outcomes than using AlexNet for 

feature extraction and classification alone. While the Mod_AlexNet model achieved 

improved performance across all metrics, specificity remained a challenge. This 

system laid the groundwork for addressing the challenges caused by varying breast 

densities and the difficulty in differentiation between benign and malignant tumours 

but highlighted the need for more advanced methods to further enhance specificity. 

FFS-EC is developed in response to this observation. Enhancing specificity, and 

addressing the fundamental challenges in classifying cases of abnormalities, were 

the main motivations behind the development of FFS-EC. The following chapter 

describes the development and improvements made to FFS-EC. 
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Chapter 8 Feature Fusion and Selection with Ensemble 
Classifier (FFS-EC) System 

 
 
8.1 Introduction 
In the previous chapter, a system comprising Mod_AlexNet model is explored, which 

was built on the findings of the initial comparative evaluation system. The system 

introduced in Chapter 6 investigated the classification performance of state-of-the-art 

deep learning models utilising DBT images. A modified deep learning network 

named Mod_AlexNet was presented in Chapter 7, with the goal of improving 

detection accuracy and optimising the identification of abnormal cases. The AlexNet 

architecture has been modified with more layers, such as max-pooling and batch 

normalisation, to improve feature extraction, stability, and training effectiveness. 

While Mod_AlexNet yielded improved outcomes, the primary motivation for 

establishing this system was to improve specificity and address basic issues 

involved with the classification of abnormal cases. 

To address the previously outlined challenge of correctly classifying abnormal cases, 

FFS-EC System was developed. The goal of this system was to provide an 

enhanced framework for the classification of DBT data through the integration of 

deep learning models with feature fusion, selection and classification ensemble 

models. To enhance the extraction of prominent features, the suggested system 

combines the HOG with the HSV colour scheme. The dual application of feature 

fusion and selection models improves DBT scan breast lesion discrimination. For 

training the DBT dataset, FFS-EC uses two pre-trained models, ResNet-50 and 

SqueezeNet, in addition to the previously developed Mod_AlexNet deep learning 

model. After extracting features from the deep learning models, a series of fusion 

and selection processes are applied one after the other. The features that were 

selected are subsequently classified using several classifiers. The final model in this 

system, an ensemble classifier, combines the predictions of multiple classifiers, 

attempting to improve classification performance across different measured 

performance measures.  
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8.2 Methodology 
Within this system, features were extracted once from the pre-trained models 

ResNet-50 and SqueezeNet, as well as the previously developed Mod_AlexNet. 

Then, for each scenario, these extracted features were fused with HOG descriptors. 

HOG creates histograms of gradient orientations for each of the small cells it divides 

from the image, after which it computes the gradients (directional intensity changes) 

within each cell. The distribution of edge directions is captured by these histograms, 

which offer a unique depiction of the local structure and texture in the image. The 

ability of HOG descriptors to accurately describe object shape and structure while 

remaining invariant to variations in illumination and contrast is one of the main 

benefits of extracting them in this system. Concerning the classification of DBT 

scans, HOG descriptors provide obvious advantages in accurately representing the 

shape and structure of breast tissue. Their ability to accurately represent the 

complex spatial details of breast tumours and structures yields a distinct and stable 

representation that is essential for detecting abnormalities in DBT images.  

A variety of models, including Mod_AlexNet, SqueezeNet, and ResNet-50, were 

implemented after the HSV colour space model was integrated to extract image 

features. These models were used in conjunction with the use of HOG descriptors. 

The goal of this multimodal approach was to utilise the advantage of unique 

capabilities of each model in creating a more complete and complex representation 

of the data that is found within the images.  

The system diagram for this system, the second contribution, is illustrated in Figure 

8.1. In Chapter 3, Section 2, an in-depth exposition of the methodologies employed 

within this system is presented. 
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Figure 8.1 Third Proposed System: An Enhanced System with Feature Fusion and Selection 
Integrating a Majority Voting Ensemble Classification Model 

 
Mod_AlexNet, an improved version based on the original AlexNet model, performed 

well, showing increased effectiveness over the traditional AlexNet. The modifications 

introduced in Mod_AlexNet, including the addition of max-pooling and batch 

normalization layers, were carefully designed to enhance training stability and 

improve feature extraction efficiency. The batch normalization layers address internal 

covariate shift by ensuring consistent input distributions across layers, thereby 

facilitating improved gradient flow and accelerating convergence during training. The 

max-pooling layers contribute to reducing overfitting by down-sampling feature 

maps, which enhances the model's ability to generalize and effectively capture 

spatial hierarchies in breast tissue patterns. The increased complexity resulting from 

these modifications is justified by the observed improvements in classification 

accuracy and model stability demonstrated through comparative evaluations. 

This advantage was most noticeable when it came to the careful classification of 

DBT images, especially those that belonged to abnormal classes. As a result, 

features were extracted from the "fc7" layer of Mod_AlexNet, an intentional choice 

that was required due to this the exceptional ability of the layer to reveal the most 
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discriminative features present in images. The "fc7" layer is well-known for its skill in 

extracting abstract and high-level features, which enhances the depth of data for 

further analysis and interpretation.  

The features were extracted from SqueezeNet, an efficient deep learning network 

that is known for using significantly less parameters than other models to achieve 

competitive classification accuracy. The architecture of SqueezeNet includes unique 

1x1 convolutions and fire-modules that improve the ability of the network to capture 

complex input and increase prediction accuracy (Iandola et al., 2016). In order to 

maximise the significance of the extracted features for further classification tasks, 

special attention was given to the features that came from the "Fire9" layer. This 

layer is recognised for its distinct structure and functionality, which significantly 

increases the ability of the extracted features to discriminate, improving the overall 

performance (Li et al., 2021). 

The concept behind using ResNet-50 in this study is the effective application of 

residual learning, a method that effectively tackles the vanishing gradient issue. This 

breakthrough makes it possible to build deeper neural networks without 

compromising performance. Strategic use of skip connections in ResNet-50 

enhances its capacity to train enormously deep networks and makes it easier to fully 

capture complex features and patterns (He et al., 2016). This addition makes an 

important contribution to the overall improvement in performance. The global 

average pooling (GAP) layer of the ResNet-50 architecture extracted 

significant features that were obtained through the extraction process, providing a 

detailed and complex representation of the images (Zhang et al., 2023). 

Features extracted from the deep learning model were fused with HOG using 

concatenation, to combine the representational abilities of deep neural networks with 

the advantages of conventional approaches. The HOG features have demonstrated 

efficacy in image classification by capturing information about local gradients and 

edge orientations. Integrating these handcrafted features with the high-level and 

abstract features extracted from the deep learning model results in a fusion that 

takes advantage of both low-level and details. Rich contextual information and 

abstract representations are captured by the last layer of the deep learning models, 

which serves as a feature extractor in this fusion technique. A key component of this 
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system are the deep learning models implemented, including ResNet, SqueezeNet 

and Mod_AlexNet, each of which has a unique capacity to recognise complex 

patterns. Concatenation of these diverse feature sets results in a hybrid feature 

representation. This combination makes it easier to understand the visual content in 

the images more comprehensively and improves the robustness of the model, 

discriminative ability, and generalisation. A comprehensive feature space is 

generated by integrating HOG features with those derived from deep learning. This 

approach improves the overall performance metrics through the generation of more 

accurate predictions. 

Following the concatenation of features, feature selection techniques were employed 

to reduce the number of features assigned as input for classifiers. By maintaining 

relevant and informative features and removing redundant or less discriminative 

ones, this model can be used to reduce the influence of dimensionality and improve 

model efficiency. This process reduces the computational burden of the model and 

improves its capacity to handle a variety of input features, which in turn increases the 

overall efficacy of the classifiers. mRMR, the chi-square test, and the f-test were the 

three different feature reduction techniques applied. 

A crucial step in fine-tuning the integrated feature set after feature fusion is the 

addition of mRMR. The goal of the mRMR goal is to carefully pick a subset of 

features that balance high relevance to the target variable with low inter-feature 

redundancy. To determine which features are most relevant to the classification task, 

the algorithm starts by giving relevance scores to each individual feature depending 

on its relationship with the target variable. In order to quantify the information 

overlap, mRMR simultaneously computes redundancy measures between pairs of 

features. Next, the algorithm ranks features iteratively, choosing at each stage those 

with the highest relevance and the least amount of repetition. In addition to 

eliminating redundancy, which might limit model interpretability and generalisation, 

this method guarantees the inclusion of features essential for precise classification. 

The algorithm then chooses a collection of features with the lowest redundancy and 

maximum relevance. This will ensure that the selected features are non-redundant 

and informative, hence improving the accuracy and efficiency of subsequent 

classification. 
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One statistical technique used to evaluate the degree of independence between 

individual features and the target class is the chi-square test for feature selection. 

This test examined whether there is a significant correlation between each attribute 

and the class labels using categorical data. The test determined the difference 

between the observed and predicted frequencies of feature-class pairings by 

computing a chi-square statistic. A stronger link is shown by a greater chi-square 

score. Evaluating the relevance of the fused features to the target variable is part of 

integrating the chi-square test after the feature fusion stage. This approach assisted 

in choosing the most useful features for further classification tasks by highlighting 

features that show strong correlations with class labels. The chi-square test can 

identify features that greatly increase the discriminative capability of the model and 

improve its predictability and interpretability in situations where feature fusion has 

been implemented. 

One of the most significant developments in this system has been the addition of an 

ensemble classifier. This allows us to combine the predictive power of several 

different algorithms, including DT, NB, and SVM. Using an ensemble methodology is 

driven by the differences between these classifiers, as each has distinct advantages 

and disadvantages. The system aimed to overcome the constraints of individual 

algorithms and produce a more reliable and accurate prediction system by 

combining their outputs. The SVM, NB, and DT classifiers were carefully configured 

as part of our ensemble architecture to guarantee the best possible integration. The 

fusion methodology utilised the benefits of the voting process, an ensemble 

approach that reduces overfitting risk and improves the performance.  

Utilising the combined power of SVM, DT, and NB when trained on the same 

dataset, the Voting Ensemble classification method is a robust technique. SVM, DT, 

and NB are the three basis classifiers that each train separately on the training data 

to identify different patterns within the same overall dataset. The efficacy of the 

Voting Ensemble is derived from the fusion of predictions produced by every 

classifier. The Voting Ensemble operates by combining predictions from the base 

classifiers to arrive at a final prediction. The outputs of SVM, DT, and NB are 

merged, aligning their different viewpoints, via an ensemble voting process. The 

class that gets the most votes among the base classifiers is selected as the final 
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prediction in a hard voting process. By doing this, the danger of overfitting is 

reduced, and the individual advantages of each classifier are used to improve overall 

prediction performance. Together, the ability of SVM to create high-dimensional 

separations of feature space, the capability of DT in capturing complex decision 

structures, and the probabilistic reasoning of NB result in a more accurate and robust 

model that skilfully handles the complexities seen in the training dataset across the 

classes. During the training and testing phases, the ensemble classifier performed 

better than the individual classifiers on a number of metrics, such as accuracy, 

precision, and recall. Findings for FFS-EC will be outlined and examined in the 

subsequent subsection. 

8.3 Results and Discussion 
This system includes three different scenarios established, each using a different 

deep learning model for feature extraction. To evaluate and compare the 

performance of state-of-the-art models, a variety of deep learning models were used. 

This section explains the use of three deep learning models—Mod_AlexNet, 

SqueezeNet, and ResNet-50—particular to the feature extraction phase in the 

corresponding scenarios. Extracted features from each deep learning model were 

concatenated together with HOG descriptors and then reduced using three different 

feature selection methods. The final phase involved feeding the selected features 

into the classifiers and aggregating them using the voting ensemble model.  

To mitigate the risk of overfitting associated with ensemble models, cross-validation 

was used to evaluate the model's ability to generalize to unseen data. Additionally, 

feature reduction techniques, including mRMR, chi-square, and f-test, were applied 

to eliminate irrelevant or redundant features, improving model efficiency and 

reducing the likelihood of overfitting. This approach helped maintain consistent 

performance across both training and validation sets, enhancing the model’s overall 

robustness. 

8.3.1 SqueezeNet 
In this scenario, "Fire9" layer features were extracted and concatenated with HOG 

descriptors. Feature selection methods (namely: mRMR, chi-square test, and f-test) 

were then utilised to select robust features and reduce the dimensionality of the 

feature vector. The selected features were then fed into three different classifiers 
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(SVM, NB, and DT), and the final prediction was obtained through integrating the 

outputs of each classifier with a voting ensemble classification model. An analysis of 

the results and the calculation of different performance indicators were computed. 

The results are displayed in Table 8.1 for the first scenario. 

A comprehensive overview of the performance metrics of SqueezeNet classifier over 

a range of integrated instances, including different classifiers and feature selection 

techniques, is given in Table 8.1. A thorough examination of the effects of many 

factors on the performance is made possible by the ability to represent each row as 

a distinct configuration. In the initial instance employing only SqueezeNet features, 

the SVM classifier attained an accuracy of 82.68%. Despite a high sensitivity of 

82.68%, precision was 86.72%, indicating a significant percentage of FPs. The NB 

classifier had lower accuracy (46.73%), but greater precision (85.62%). With an 

accuracy of 83.23%, DT fared well, exhibiting a balance between sensitivity, 

precision, and F1-Score. 

Table 8.1 The performance of SqueezeNet-based system with different integrated 
subphases. 

Different integrated contexts Classifier 
Performance Measures 

Accuracy Sensitivity Precision Specificity F1-Score 

SqueezeNet only 

SVM 82.68% 82.68% 86.72% 28.60% 84.55% 

NB 46.73% 46.73% 85.62% 54.69% 59.83% 

DT 83.23% 83.23% 86.80% 29.27% 84.92% 

SqueezeNet and Feature Fusion 

SVM 82.34% 82.34% 86.85% 30.86% 84.42% 

NB 47.24% 47.24% 85.92% 56.21% 60.02% 

DT 83.33% 83.33% 86.92% 30.17% 85.02% 

SqueezeNet, Feature Fusion, and mRMR 

SVM 92.27% 92.27% 91.07% 32.32% 91.12% 

NB 48.73% 48.73% 86.34% 57.78% 61.25% 

DT 84.11% 84.11% 87.35% 32.01% 85.64% 

SqueezeNet, Feature Fusion, and chi-square test 

SVM 90.12% 90.12% 88.23% 26.14% 89.09% 
NB 48.56% 48.56% 86.23% 57.17% 61.19% 

DT 83.99% 83.99% 87.22% 31.40% 85.51% 

SqueezeNet, Feature Fusion, and f-test 
SVM 90.38% 90.38% 88.28% 26.15% 89.22% 

NB 48.28% 48.28% 86.11% 56.56% 60.95% 
DT 83.78% 83.78% 87.25% 32.00% 85.42% 

Ensemble for mRMR 92.78% 92.78% 91.58% 35.36% 91.70% 
Ensemble for chi-square test 90.62% 90.62% 89.26% 32.87% 89.87% 

Ensemble for f-test 90.88% 90.88% 89.40% 32.88% 90.05% 
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The SVM classifier demonstrated an impressive accuracy of 82.34% when 

SqueezeNet features and HOG descriptors were integrated. The sensitivity of this 

accuracy reflected the balanced capacity of SVM to accurately recognise positive 

events. The accuracy in detecting positive instances among its predictions was 

demonstrated by its precision of 86.85%. Specificity demonstrated a small capacity 

to correctly identify negative instances, while being low at 30.86%. With an F1-Score 

of 84.42%, SVM demonstrated its overall ability to maintain a balanced ratio of 

sensitivity to precision. The accuracy of the NB classifier was 47.24%, which was 

lower than that of SVM. At 47.24%, sensitivity and accuracy were in line, suggesting 

a moderate capacity for accurately identifying positive events. On the other hand, 

high precision (85.92%) of NB, highlighted its ability to correctly detect positive 

situations. NB stood out for having a high specificity of 56.21%, which means that it 

was quite good at recognising negative cases. With an F1-Score of 60.02%, the 

performance was balanced in terms of sensitivity and precision. With an accuracy of 

83.33%, the DT classifier outperformed both SVM and NB. Accuracy and sensitivity 

matched, suggesting a strong capacity to recognise good examples. With a precision 

of 86.92%, the classifier demonstrated its ability to correctly identify positive cases. 

With a specificity of 30.17%, the capacity to accurately detect negative cases was 

considered to be low. With an F1-Score of 85.02%, the performance was well-

balanced between sensitivity and precision. After the comparative study, the DT 

classifier was found to be the most effective surpassing both SVM and NB in terms 

of accuracy, precision and f1-score. Both DT and SVM outperformed NB in terms of 

precision, suggesting better detection of positive cases. When compared to SVM 

and DT, the significant superiority of NB in specificity indicates a greater capacity to 

accurately identify negative events. With the greatest F1-Score, the DT classifier 

performed exceptionally well, demonstrating a balance between sensitivity and 

precision. 

The investigation of integrating SqueezeNet features with HOG descriptors and then 

selecting mRMR features involves an in-depth examination of three classifiers: DT, 

NB, and SVM. When combined with mRMR feature selection using SqueezeNet and 

HOG descriptors, the SVM classifier achieved an outstanding accuracy of 92.27%. 

The strong ability of SVM to accurately detect positive instances was highlighted by 

the high accuracy that was reflected in the sensitivity. With a precision of 91.07%, 
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the classifier demonstrated its ability in finding positive examples within its 

predictions. Despite a modest specificity of 32.32%, suggesting a limited ability to 

properly detect negative cases, the F1-Score reached an outstanding 91.12%, 

showcasing the general skill of SVM in maintaining a harmonious balance between 

precision and sensitivity. The NB classifier, on the other hand, showed a lower 

accuracy of 48.73%, indicating its limits when compared to SVM. With a notable 

specificity of 57.78%, NB was exceptionally good at correctly detecting negative 

cases. The DT classifier performed better than NB but not quite as well as SVM, with 

a high accuracy of 84.11%. The accuracy in identifying positive cases was 

demonstrated by its precision of 87.35%. With a specificity of 32.01%, the capacity to 

accurately detect negative cases was deemed to be low. To summarise, SVM was 

found to be the most effective classifier, outperforming NB and DT in terms of 

accuracy, precision, and F1-Score. The DT classifier proved to be a competitive 

alternative with an impressive overall performance, especially in precision and F1-

Score. Although accuracy of NB was restricted, its specificity was excellent, making 

it an appropriate choice in some situations. 

In the fusion of SqueezeNet features and HOG descriptors, coupled with chi-square 

feature selection, the performance of three classifiers—SVM, NB, and DT—was 

examined. SVM proved to be effective in accurately identifying situations, as 

evidenced by its exceptional accuracy of 90.12%. In addition, the classifier 

demonstrated good precision (88.23%) and sensitivity (90.12%), demonstrating its 

capacity to correctly identify positive cases while reducing FPs. In contrast, NB 

yielded lower accuracy at 48.56%, but excelled in specificity (57.17%) and attained 

an adequate F1-Score of 61.19%. The DT classifier performed well, achieving 

83.99% accuracy, 83.99% sensitivity, and 87.22% precision. At 31.40%, its 

specificity was, nevertheless, comparatively poor. With a balance between sensitivity 

and precision, SVM yielded the highest F1-Score (89.09%), closely followed by DT 

(85.51%) and NB (61.19%). The SVM is the most efficient classifier in terms of 

accuracy, precision, and f1-score; DT produces results that are competitive, whereas 

NB performs better in terms of specificity. The performance of three classifiers—

SVM, NB, and DT—was assessed in the integration of SqueezeNet features and 

HOG descriptors using f-test feature selection. With an accuracy of 90.38%, SVM 

proved that it could accurately categorise occurrences. In addition, the classifier 
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demonstrated good precision (88.28%) and sensitivity (90.38%), indicating its ability 

to correctly identify positive cases while reducing FPs. In contrast, the accuracy of 

NB was lower at 48.28%, but its specificity was outstanding at 56.56%, and its F1-

Score weighed in at 60.95%. The DT classifier yielded an 83.78% accuracy rate, 

along with noteworthy precision (87.25%) and sensitivity (83.78%). At 32.00%, its 

specificity was, nevertheless, significantly lower. SVM has the highest F1-Score 

(89.22%), closely followed by DT (85.42%) and NB (60.95%).  

Across a range of integrated contexts, the ensemble methods that employ distinct 

feature selection methodologies demonstrated noteworthy performance in identifying 

occurrences. With an accuracy of 92.78%, the mRMR-based ensemble showed the 

highest level of proficiency in accurate classification. Meanwhile, the chi-square and 

f-test ensembles earned accuracies of 90.62% and 90.88%, respectively, displaying 

their competitive capabilities. The mRMR ensemble continuously maintained high 

values at 92.78% and 91.58% when sensitivity and precision were examined, 

demonstrating robust detection of positive cases with minimised FPs. With sensitivity 

and precision values of 90.62% and 89.26% and 90.88% and 89.40%, respectively, 

the chi-square and f-test ensembles demonstrated efficient positive instance 

identification while maintaining precision. 

As compared to the baseline of classifying features extracted from SqueezeNet and 

based on results from Table 8.1, the results offer a comprehensive analysis of the 

percentage improvement in model performance. The given results provide an in-

depth analysis of the percentage gain in model performance over the baseline of 

classifying features that were taken only from SqueezeNet. SVM shows a tiny drop 

of -0.41% in accuracy, sensitivity, and F1-Score in the integration of SqueezeNet 

features with HOG descriptors, with an increase in specificity (7.90%), suggesting 

generally constant performance. Notably, NB shows minor gain in F1-Score (0.32%) 

and accuracy (1.09%), while DT displays slight enhancements. In the SqueezeNet, 

Feature Fusion, and mRMR setup, SVM displays a large improvement of 11.60% 

across all measures, emphasising the importance of mRMR in increasing the overall 

performance of SVM. NB demonstrates significant gains in F1-Score (2.37%), 

sensitivity (4.28%), and accuracy (4.28%), demonstrating the beneficial impact of 

mRMR in capturing important features. DT exhibits moderate advances in accuracy, 
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sensitivity, and F1-Score, highlighting the beneficial effect of mRMR on its 

performance. When SVM switches to SqueezeNet, Feature Fusion, and chi-square 

test, it records significant gains in accuracy (9.00%) and F1-Score (5.37%), 

demonstrating how well chi-square feature selection works to increase performance 

overall. But a drop in specificity (-8.59%) points to a compromise. NB shows 

increase in F1-Score (2.27%) and accuracy (3.91%), indicating a favourable effect 

on sensitivity balance and precision. In this integrated setting, DT demonstrates 

stability with slight improvements. SVM shows notable gains in accuracy (9.31%) 

and F1-Score (5.52%) in SqueezeNet, Feature Fusion, and f-test, suggesting that f-

test feature selection has a beneficial effect on accurate classification, even while 

specificity (-8.56%) decreases. The mild improvements that NB experiences indicate 

that the f-test has a good impact on the performance of NB, as evidenced by the 

balanced increases in F1-Score, accuracy, and sensitivity. In this integrated setting, 

DT exhibits minor improvements, indicating consistent performance. When 

considering the ensemble methods, Ensemble for mRMR shows substantial 

improvements in all measures, especially in specificity (20.79%) and F1-Score 

(7.99%), demonstrating how well mRMR feature selection works when combined 

with ensemble model. The ensemble for the chi-square test shows significant gains 

in F1-Score (5.83%), sensitivity (8.88%), and accuracy (8.88%). The f-test ensemble 

exhibits noteworthy increases in all measures, particularly in specificity (12.33%) and 

F1-Score (6.04%), indicating an important part of f-test feature selection in the ability 

of the ensemble to recognise positive occurrences.  

Two measures were used to evaluate the relevance and importance of the 

enhancements: the t-test and Cohen's measure. In the comparison, the performance 

of the classifiers solely using SqueezeNet features—i.e., without feature fusion, 

selection, or ensemble classification models—is compared to their significance. The 

Cohen d's measure and t-test results for each situation are shown in Table 8.2. 

Using the Cohen's d measure and significant values, the reported findings thoroughly 

assess the improvement in model performance relative to the baseline of classifying 

features that were extracted from SqueezeNet. SVM, NB, and DT produced small 

statistically significant Cohen's d values (0.012965, 0.037966, 0.010737) in the 

feature fusion context with HOG descriptors, indicating relatively minor practical 



 

 
 

139 

significance. After switching to SqueezeNet, Feature Fusion, and mRMR, SVM 

showed a medium Cohen's d value of 0.26277, indicating a statistically significant 

improvement with a moderate practical significance. Though statistically significant, 

the observed Cohen's d values for NB and DT were tiny (0.1173, 0.047448), 

suggesting comparably little practical impact. SVM, NB, and DT showed tiny Cohen's 

d values (varying from 0.038116 to 0.14363) in the SqueezeNet, Feature Fusion, 

and chi-square test and SqueezeNet, Feature Fusion, and f-test, showing minor but 

statistically significant improvements with little practical impact.  

Table 8.2 Comparative Statistical Analysis using Cohen's d and T-test Significance for 
Evaluating Significance of Improvement against the Performance of Classifiers 
when Classifying Features Extracted from SqueezeNet. 

Improvement compared to when classifying 
features extracted from SqueezeNet only Classifier 

Cohen's d: T-test (p) 

Measure Significance Measure Significance 

SqueezeNet and Feature Fusion 

SVM 0.013 Small 0.5569 Not Significant 

NB 0.038 Small 0.0626 Not Significant 

DT 0.011 Small 0.1723 Not Significant 

SqueezeNet, Feature Fusion, and mRMR 

SVM 0.263 Medium 0.0056 Significant 

NB 0.117 Small 0.0091 Significant 

DT 0.047 Small 0.0452 Significant 

SqueezeNet, Feature Fusion, and chi-square test 

SVM 0.139 Small 0.1221 Not Significant 

NB 0.103 Small 0.0063 Significant 

DT 0.038 Small 0.0384 Significant 

SqueezeNet, Feature Fusion, and f-test 

SVM 0.144 Small 0.1192 Not Significant 

NB 0.083 Small 0.0052 Significant 

DT 0.039 Small 0.0968 Not Significant 

Ensemble for mRMR  0.293 Medium 0.0015 Significant 

Ensemble for chi-square test 0.205 Medium 0.0066 Significant 

Ensemble for f-test 0.211 Medium 0.0066 Significant 

 

All three of the ensemble models that included the f-test, chi-square test, and mRMR 

showed medium Cohen's d values (0.20488 to 0.29276). This points to a more 

significant practical significance and significant increases in the performance of the 

model. To illustrate the findings, the ensemble model with mRMR is the most 

significant, with a medium Cohen's d value of 0.29276. This indicates that the 



 

 
 

140 

performance of the model has improved in a statistically and practically significant 

way. The inclusion of mRMR in the ensemble significantly improves F1-Score, 

sensitivity, specificity, accuracy, and precision, demonstrating how well it works to 

maximise TPs while reducing FPs in the ability of the classifier to identify positive 

cases. To sum up, the ensemble model that integrates mRMR proves to be the most 

efficient and holds significant practical value. This emphasises the value of carefully 

choosing features and integrating them, highlighting the applicability of mRMR in 

enhancing overall model performance. 

The results that are shown here focus on evaluating the improvement in comparison 

to the classification of features that are only derived from SqueezeNet. T-test (p) 

values are used in this assessment to determine the importance of each classifier 

and feature integration technique. In the instance of combining SqueezeNet features 

with HOG descriptors, SVM, NB, and DT classifiers exhibit T-test (p) values of 

0.5569, 0.0626, and 0.1723, respectively, indicating that the improvements are not 

statistically significant. The three classifiers—SVM, NB, and DT—show T-test (p) 

values of 0.0056, 0.0091, and 0.0452, respectively, after switching to the 

SqueezeNet, Feature Fusion, and mRMR configuration. The statistical significance 

of the low p-values indicates that the observed improvements are probably the result 

of the feature fusion and selection procedures that were used, rather than being the 

result of chance. NB and DT classifiers consistently demonstrate statistically 

significant improvements with low T-test (p) values for the SqueezeNet, Feature 

Fusion, and chi-square test and SqueezeNet, Feature Fusion, and f-test 

configurations, demonstrating the efficacy of these feature selection techniques. 

Notably, T-test (p) values of 0.0015, 0.0066, and 0.0066, respectively, suggest 

significant improvements in the ensemble methods: Ensemble for mRMR, Ensemble 

for chi-square test, and Ensemble for f-test. The ensemble models add to a 

combined improvement in model performance by integrating the efficacy of individual 

classifiers and feature selection strategies. T-test (p) results, in summary, highlight 

the statistical significance of the observed gains using specific feature integration 

techniques, especially when considering mRMR and ensemble models. These 

results offer important new information on which strategies work best for improving 

the performance. 
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8.3.2 ResNet-50 
In this scenario, HOG descriptors were concatenated with features recovered from 

the ResNet-50 "GAP" layer. Afterwards, a number of feature selection methods were 

utilised to select robust features and reduce the dimensionality of the feature vector, 

such as mRMR, chi-square test, and f-test. The final prediction was obtained by 

combining the outputs of each classifier using a voting ensemble classification 

model. The selected features were then fed into three different classifiers (SVM, NB, 

and DT). For the second scenario, the outcomes of the evaluation process and the 

computation of various performance indicators are shown in Tables 8.3 and 8.4. 

Table 8.3 The performance of ResNetNet-50-based developed system with different 
integrated subphases. 

Different integrated contexts Classifier 
Performance Measures 

Accuracy Sensitivity Precision Specificity F1-Score 

ResNet-50 only 

SVM 85.35% 85.35% 86.38% 22.22% 85.84% 

NB 45.98% 45.98% 86.49% 60.91% 58.84% 

DT 84.19% 84.19% 86.51% 24.89% 85.30% 

ResNet-50 and Feature Fusion 

SVM 89.49% 89.49% 87.74% 22.91% 88.46% 

NB 48.81% 48.81% 87.16% 62.85% 61.30% 

DT 84.20% 84.20% 87.12% 31.03% 85.59% 

ResNet-50, Feature Fusion, and 
mRMR 

SVM 90.65% 90.65% 88.82% 27.06% 89.61% 

NB 50.37% 50.37% 86.61% 57.98% 62.60% 

DT 84.09% 84.09% 86.81% 28.47% 85.35% 

ResNet-50, Feature Fusion, and chi-
square test 

SVM 88.91% 88.91% 87.88% 26.40% 88.37% 

NB 51.11% 51.11% 87.35% 62.51% 63.10% 

DT 83.66% 83.66% 86.81% 28.75% 85.12% 

ResNet-50, Feature Fusion, and f-test 

SVM 89.39% 89.39% 87.97% 25.51% 88.63% 

NB 51.31% 51.31% 87.29% 61.92% 63.28% 

DT 82.04% 82.04% 86.31% 26.59% 84.06% 

Ensemble for mRMR  87.14% 87.14% 89.07% 32.64% 87.77% 

Ensemble for chi-square test 86.61% 86.61% 88.16% 29.61% 87.16% 

Ensemble for f-test 85.54% 85.54% 87.49% 28.97% 86.40% 

 

The output of the system, which was obtained by extracting ResNet-50 features and 

feeding them into several classifiers, shows unique performance traits in various 

integrated scenarios, as shown in Table 8.3. The SVM classifier had the highest 
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accuracy at 85.35%, proving that the extracted ResNet-50 features were effectively 

utilised by SVM for classification. Nevertheless, a significant disadvantage is 

apparent in the specificity, which is only 22.22%. The SVM classifier performed well 

in detecting positive cases but had difficulty correctly identifying negative examples, 

as suggested by the high sensitivity and precision. 

The accuracy of the NB classifier, on the other hand, was noticeably lower at 

45.98%. The inability to handle the complexity of the ResNet-50 features is the 

reason for the lower accuracy. Although the precision rate of 86.49% of NB is rather 

good, its sensitivity and specificity are degraded, suggesting that it may not be able 

to categorise both positive and negative cases with sufficient accuracy. With an 

accuracy of 84.19%, the DT classifier demonstrated competitive performance by 

balancing sensitivity and precision. But just like SVM, DT has trouble reaching a high 

enough specificity, illustrating how difficult it is to recognise negative cases in the 

context of classifying features extracted from ResNet-50. The common challenge in 

utilising deep features for classification is shown by the observed limitations in 

specificity across classifiers in the ResNet-50 alone scenario. Although the extraction 

of features from ResNet-50 can be advantageous in some classification scenarios, it 

may present inherent complications that classifiers must deal with. Even though the 

SVM classifier has the highest accuracy, it has trouble distinguishing negative cases, 

which may mean that the way ResNet-50 features are handled needs to be 

improved. 

Upon system evaluation, significant performance characteristics are revealed. 

ResNet-50 features were extracted and fused with HOG descriptors using 

concatenation, followed by classification utilising several classifiers. With an 

accuracy of 89.49%, the SVM classifier emerges as the best performer. Given its 

high accuracy, it can be inferred that the SVM model successfully combined the 

characteristics of ResNet-50 and HOG to achieve correct classification. Significantly, 

SVM showed high sensitivity and precision, demonstrating its ability to accurately 

detect positive instances. On the other hand, an important disadvantage is the poor 

specificity of 22.91%, indicating difficulties in precisely detecting negative cases. In 

comparison, the NB classifier displayed a lower accuracy of 48.81%, demonstrating 

difficulty in efficiently using the concatenated features for classification. Although the 
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precision rate was high (87.16%) of NB, its sensitivity and specificity were 

weakened, indicating that it may not be able to distinguish positive and negative 

cases with equal accuracy. With an accuracy of 84.20%, the DT classifier 

demonstrated competitive performance. DT showed balanced precision and 

sensitivity, much like SVM. At 31.03%, the specificity continues to have challenges 

even if it is greater than SVM. The observed differences in classifier performance 

illustrate how the feature fusion approach affects classification results. SVM was the 

most effective in employing the fused features to achieve high accuracy, while NB 

had some limitations, especially with regard to sensitivity and overall accuracy. DT 

performed competitively, but issues with specificity still exist, highlighting how difficult 

it is to identify negative instances in the fused feature set. To sum up, concatenating 

ResNet-50 features with HOG descriptors presents an interesting possibility for 

improving classification results. Classifier performance variances indicate that 

classifier selection for fused feature sets should be carefully considered. The high 

accuracy of SVM shows the effectiveness of this method, but the sensitivity, 

specificity, and precision trade-offs that have been observed highlight the 

significance of a balanced assessment of performance metrics when determining the 

overall effectiveness of the system. 

The system analysis, in which ResNet-50 features were extracted and fused with 

HOG descriptors via concatenation, followed by mRMR feature selection and 

classification by various classifiers, provides an in-depth understanding of the impact 

of these processes on different performance measures. Starting with the SVM 

classifier, it attained a commendable 90.65% accuracy. This high accuracy indicates 

that the ability of SVM to create accurate predictions was largely influenced by the 

combination of ResNet-50 and HOG features, followed by mRMR feature selection. 

At 90.65% and 88.82%, respectively, the sensitivity and precision values show a 

balanced performance in accurately identifying positive situations. With a specificity 

of only 27.06%, there are still significant challenges in correctly recognising negative 

situations. The F1-Score, which analyses the balance between precision and recall, 

is exceptionally high at 89.61%, emphasising the effectiveness of the classifier in 

reaching an equilibrium between FPs and FNs. The accuracy is significantly lower 

for the NB classifier, at 50.37%. This shows that NB has difficulties correctly 

identifying cases even with feature fusion and mRMR feature selection. With a 
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precision of 86.61%, NB is likely to be correct when it offers a positive forecast. But 

the sensitivity and specificity numbers, which are 50.37% and 57.98%, respectively, 

show how challenging it was for NB to accurately identify both positive and negative 

situations. The trade-off between recall and precision for NB is highlighted by the F1-

Score of 62.60%. With regard to the DT classifier, 84.09% accuracy is attained. 

Though the specificity of 28.47% still presents a challenge, this shows competitive 

performance. The balanced precision and sensitivity values of 86.81% and 84.09%, 

respectively, demonstrate the ability of DT to produce precise positive predictions. 

Considering the trade-off between precision and recall, the overall performance is 

boosted by its F1-Score of 85.35%. In conclusion, the SVM classifier performs well 

overall, especially in terms of accuracy, sensitivity, and precision, but it has 

challenges with specificity. While the DT classifier performs competitively, the NB 

classifier struggles with sensitivity and accuracy. The overall accuracy and specificity 

seem to be positively impacted by the mRMR feature selection method, highlighting 

the significance of feature selection in fine-tuning the classification results. 

This analysis of the system, in which ResNet-50 features were extracted, 

concatenated with HOG descriptors to fuse them, and then selected chi-square 

features before being classified by different classifiers, offers an in-depth 

understanding of the impact of chi-square feature selection model on different 

performance metrics. The SVM classifier achieved an accuracy of 88.91%, 

demonstrating strong overall performance. It demonstrated great sensitivity and 

precision, demonstrating competence in accurately detecting positive cases while 

preserving prediction accuracy. On the other hand, the issue in specificity, at 

26.40%, indicates possible challenges in correctly identifying negative situations. 

The F1-Score of 88.37% emphasises the ability of the classifier in balancing FPs and 

FNs. With an accuracy of 51.11%, the NB classifier demonstrated moderate 

success, especially in precision. Even with a high precision of 87.35%, issues with 

sensitivity and specificity suggest that a balanced classification of both positive and 

negative instances may be challenging to achieve. For NB in this context, the 

balance between recall and precision is highlighted by the F1-Score of 63.10%. 

83.66% accuracy was a competitive performance for the DT classifier. It 

demonstrated its accuracy in positive predictions while retaining precision by 

achieving a balance between sensitivity and precision. Nonetheless, difficulties with 
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specificity, at 28.75%, point to difficulties in correctly categorising negative cases. 

The efficacy of the classifier in striking a balance between recall and precision is 

demonstrated by its F1-Score of 85.12%. In summary, the SVM classifier excelled 

with good overall performance, notably in accuracy and sensitivity. The NB classifier 

demonstrated a moderate level of effectiveness, prioritising precision despite 

encountering difficulties with sensitivity and specificity. The DT classifier displayed 

competitive performance but found difficulty in reaching high specificity. 

With an accuracy of 89.39%, the SVM classifier exhibited strong performance when 

the f-test feature selection model was applied. Its ability in precisely and accurately 

recognising positive instances is demonstrated by the high precision and sensitivity 

values (89.39% and 87.97%, respectively). On the other hand, an important 

limitation in specificity—which stands at 25.51%—indicates difficulties in precisely 

recognising negative cases. The overall efficacy of SVM in striking a balance 

between FPs and FNs is highlighted by the F1-Score, which stands at 88.63%. In 

comparison, the NB classifier displayed a lower accuracy of 51.31%, demonstrating 

difficulty in utilising the f-test-selected features for effective classification. Although 

the precision rate of NB was high (87.29%), its sensitivity and specificity were 

impaired (51.31% and 61.92%, respectively), indicating that NB had trouble correctly 

identifying both positive and negative cases. With an accuracy of 82.04%, the DT 

classifier demonstrated competitive performance. Based on the balanced sensitivity 

and precision values of 82.04% and 86.31%, respectively, it can make positive 

predictions with a high degree of accuracy and precision. On the other hand, 

difficulties with specificity (26.59%) suggest that it can be difficult to characterise 

negative situations with accuracy. The overall efficacy of DT classifier in achieving a 

balance between precision and recall is highlighted by its F1-Score of 84.06%. In 

conclusion, despite challenges with specificity, the SVM and DT classifiers stand out 

for their strong overall performance, especially in terms of accuracy, sensitivity, and 

precision. There are limitations with the sensitivity and accuracy of the NB classifier. 

Based on a variety of performance measures, the ensemble classifiers—all of which 

used unique feature selection methods (mRMR, chi-square test, and f-test)—were 

carefully assessed. With the mRMR feature selection model, the ensemble classifier 

showed an overall accuracy of 87.14%. It was noteworthy that it demonstrated great 
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sensitivity (87.14%) and precision (89.07%), demonstrating its capacity to accurately 

detect positive cases while preserving accuracy. But the specificity is much lower at 

32.64%, indicating difficulties in precisely detecting negative cases. With an F1-

Score of 87.77%, recall and precision are harmoniously balanced. The mRMR 

performance of the ensemble demonstrates how good it is at classifying negative 

cases overall, but it also emphasises the trade-off between sensitivity and specificity. 

An accuracy of 86.61% was attained by the ensemble classifier that used the chi-

square test for feature selection. It showed balanced precision (88.16%) and 

sensitivity (86.61%), demonstrating its capacity to make precise positive predictions. 

The specificity, at 29.61%, is rather lower, though, suggesting that it would be 

challenging to correctly identify negative examples. The performance of the chi-

square test ensemble indicates that it is effective in making accurate positive 

predictions, but there are still limitations with correctly classifying negative instances, 

as seen by the lower specificity. Achieving an accuracy of 85.54% was the ensemble 

classifier that used the f-test for feature selection. Accuracy in positive predictions 

was maintained while retaining competitive sensitivity (85.54%) and precision 

(87.49%). The 28.97% specificity indicates challenges with precisely identifying 

negative cases. The performance of the f-test ensemble highlights how well it can 

achieve overall accuracy while taking accurate recall and precision into account, 

however specificity issues still need to be addressed. To summarise, the feature 

selection models based on mRMR, chi-square test, and f-test ensemble classifiers 

have complex performance characteristics. The chi-square test prioritises correct 

positive predictions but has difficulties with specificity, whereas mRMR shows a 

trade-off between sensitivity and specificity. The f-test ensemble achieves 

competitive overall accuracy with a balanced consideration of precision and recall, 

although, like the others, struggles with specificity. 

The evaluation of classification performance improvement rates relative to ResNet-

50-only classification provides a comprehensive insight into the impact of feature 

fusion, selection, and ensemble strategies across different classifiers. Based on 

results from Table 8.3, Slight gains were observed when ResNet-50 features were 

combined with HOG descriptors for SVM, NB, and DT classifiers. Small accuracy 

improvements of 4.85% and 6.15% for SVM and NB, respectively, indicate a 

marginal improvement in accurately detecting cases. The low specificity values, on 
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the other hand, point to possible inconsistencies between the fused features and the 

decision limits of the classifiers and suggest difficulties in accurately categorising 

negative cases. Even though the specificity of the DT significantly improved, its 

precision and F1-Score suffered, suggesting that there may have been 

misclassifications and that the overall efficacy of the feature fusion was restricted. 

Fusing features and applying mRMR feature selection demonstrated a moderate 

enhancement in SVM accuracy (6.21%), precision, and F1-Score. However, NB 

encountered challenges, reflected in a negative specificity, suggesting potential 

misclassifications of negative instances. DT exhibited minor fluctuations, indicating 

that mRMR had limited impact on its overall performance. The feature selection 

process improved the ability of SVM to discriminate positive instances, highlighting 

the compatibility of mRMR-selected features with the decision boundaries of the 

SVM. Fusing and using chi-square feature selection yielded a variety of results. The 

accuracy of the SVM improved little (4.17%), but the accuracy of the NB increased 

significantly (11.15%). The negative specificity for NB, however, raises questions 

about the difficulty of accurately categorising negative cases. The accuracy of the DT 

slightly decreased, suggesting that the choice of chi-square features could not have 

been well-aligned with its decision-making process. These findings highlight how the 

feature selection process affects the performance of the classifier. For both SVM 

(4.73%) and NB (11.59%), feature fusion and f-test feature selection led to minor 

improvements. But DT reported a slight decrease in F1-Score, accuracy, precision, 

and specificity. The negative specificity values for both NB and DT highlight the 

possibility of difficulties in accurately classifying negative instances and highlight how 

the choice of feature selection method and its suitability for the classifiers can have a 

significant impact on the findings. The inclusion of ensemble models with the chosen 

attributes showed inconsistent results. Although certain combinations, such as 

mRMR combined with a voting ensemble, demonstrated outstanding gains in 

specific measures. When comparing ensemble models that use different feature 

selection techniques, mRMR outperformed them. These results show that the 

effectiveness of the ensemble may depend on how well the classifiers and the 

features selected cooperate. 

The t-test and Cohen's measure were the two metrics used to evaluate the 

significance and impact of the improvements. The assessment compares the 
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importance of the performance of the classifiers with that of using only ResNet-

50 features—that is, without feature fusion, selection, or ensemble classification 

models. The results of the t-test and Cohen's d measure are shown in Table 8.4 for 

each case. 

In Table 8.4, small effect sizes were found for SVM (0.089), NB (0.133), and DT 

(0.055) when Cohen's d and t-test were applied. The combination of ResNet-50 

features with HOG descriptors resulted in statistically significant improvements in the 

performance of these classifiers, as evidenced by the t-test, which showed 

substantial gains for SVM (p=0.0213) and NB (p=0.0060). However, despite a small 

effect size, DT did not show significant improvement (p=0.3001). With the statistical 

significance supporting the practical significance for SVM and NB, this difference 

highlights the subtle effects of feature fusion on various classifiers.  

Table 8.4 Comparative Statistical Analysis using Cohen's d and T-test Significance for 
Evaluating Significance of Improvement against the Performance of Classifiers 
when Classifying Features Extracted from ResNet-50. 

Improvement compared to when classifying 
features extracted from ResNet-50 only Classifier 

Cohen's d: T-test (p) 

Measure Significance Measure Significance 

ResNet-50 and Feature Fusion 

SVM 0.089 Small 0.0213 Significant 

NB 0.133 Small 0.0060 Significant 

DT 0.055 Small 0.3001 Not Significant 

ResNet-50, Feature Fusion, and mRMR 

SVM 0.153 Small 0.0014 Significant 

NB 0.123 Small 0.2521 Not Significant 

DT 0.029 Small 0.3540 Not Significant 

ResNet-50, Feature Fusion, and chi-square test 

SVM 0.109 Small 0.0029 Significant 

NB 0.216 Medium 0.0200 Significant 

DT 0.022 Small 0.5219 Not Significant 

ResNet-50, Feature Fusion, and f-test 

SVM 0.111 Small 0.0023 Significant 

NB 0.216 Medium 0.0299 Significant 

DT -0.031 Small 0.3262 Not Significant 

Ensemble for mRMR  0.145 Small 0.0207 Significant 

Ensemble for chi-square test 0.099 Small 0.0088 Significant 

Ensemble for f-test 0.067 Small 0.0381 Significant 
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Small Cohen's d values of 0.153, 0.123, and 0.029 were noted for SVM, NB, and DT, 

respectively. Significant gains were seen for SVM (p=0.0014) but not for NB 

(p=0.2521) or DT (p=0.3540), according to the t-test results. These results highlight 

the classifier-specific effects of the mRMR feature selection, with SVM gaining 

greatly from mRMR feature selection—possibly because these characteristics 

overlap with the decision boundaries of SVM—while NB and DT are barely 

improved.  

Cohen's d values of 0.109 (SVM), 0.216 (NB), and 0.022 (DT) were observed, 

indicating moderate to medium effect sizes. In line with the effect sizes, the t-test 

findings showed substantial improvements for NB (p=0.0200) and SVM (p=0.0029). 

Nevertheless, DT did not show a statistically significant improvement (p=0.5219), 

despite a small effect size. These findings demonstrate the complex effects of 

choosing chi-square feature selection model. 

NB showed a medium effect size (0.216), with small Cohen's d values of 0.111 

(SVM) and -0.031 (DT) noted. The t-test findings suggested substantial 

improvements for SVM (p=0.0023) and NB (p=0.0299), consistent with the effect 

sizes. However, despite a small effect size, DT did not show significant improvement 

(p=0.3262). The fact that the f-test helps SVM and NB but not DT highlights the 

importance of feature selection compatibility with classifiers. 

The application of Cohen's d and t-test for the ensemble models indicated small 

effect sizes (0.145, 0.099, and 0.067) and significant improvements (p=0.0207, 

p=0.0088, and p=0.0381) for mRMR, Chi-square test, and f-test, respectively. These 

findings suggest that the ensemble models, despite their small effect sizes, 

contributed significantly to the overall improvement, highlighting the complementary 

nature of selected features when combined through ensemble strategies. 

8.3.3 Mod_AlexNet 
In Scenario 3, features from the "fc7" layer of Mod_AlexNet were fused with HOG 

descriptors. Afterwards, a number of feature selection models were applied to 

identify robust features and lower the dimensionality of the feature vector, including 

mRMR, chi-square test, and f-test. The features that were selected were then fed 

into three independent classifiers (SVM, NB, and DT). By integrating the results of 
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several classifiers using a voting ensemble classification model, the final prediction 

was computed. Tables 8.5 and 8.6 provide a full breakdown of the evaluation results 

and the performance indicators that were calculated for the third scenario. 

Table 8.5 The performance of Mod_AlexNet-based developed system with different 
integrated subphases. 

Different integrated contexts Classifier 
Performance Measures 

Accuracy Sensitivity Precision Specificity F1-Score 

Mod_AlexNet only 

SVM 93.01% 93.01% 91.45% 29.88% 91.49% 

NB 93.67% 93.67% 92.88% 30.95% 91.98% 

DT 92.08% 92.08% 90.28% 32.48% 90.87% 

Mod_AlexNet and Feature Fusion 

SVM 93.67% 93.67% 92.60% 34.48% 92.26% 

NB 91.65% 91.65% 90.31% 33.80% 90.74% 

DT 92.58% 92.58% 91.12% 35.50% 91.46% 

Mod_AlexNet, Feature Fusion, and mRMR 

SVM 94.27% 94.27% 93.51% 40.42% 93.13% 

NB 94.58% 94.58% 94.36% 38.54% 93.35% 

DT 93.34% 93.34% 92.12% 41.56% 92.41% 

Mod_AlexNet, Feature Fusion, and chi-square 
test 

SVM 91.86% 91.86% 90.63% 37.23% 91.13% 

NB 93.91% 93.91% 93.01% 37.53% 92.63% 

DT 92.33% 92.33% 90.96% 38.50% 91.46% 

Mod_AlexNet, Feature Fusion, and f-test 

SVM 93.43% 93.43% 92.47% 37.48% 92.28% 

NB 92.21% 92.21% 91.07% 36.99% 91.36% 

DT 92.51% 92.51% 91.78% 39.88% 91.74% 

Ensemble for mRMR  94.91% 94.91% 94.90% 43.07% 93.79% 

Ensemble for chi-square test 94.27% 94.27% 94.20% 39.95% 93.10% 

Ensemble for f-test 93.63% 93.63% 92.39% 39.86% 92.35% 

 

Using the features of Mod_AlexNet, the performance evaluation of classifiers in 

many integrated contexts offers an extensive understanding of how feature fusion, 

selection, and ensemble strategies affect various performance metrics and are 

provided in Table 8.5. SVM demonstrates that it can classify the features of 

Mod_AlexNet with a 93.01% accuracy rate. The specificity, at 29.88%, is a little low, 

though, indicating that it would be difficult to correctly identify negative classes. With 

a 91.49% F1-Score, recall and precision are well-balanced. Switching to the NB 

classifier, the overall accuracy is 93.67%, which shows a marginally better capacity 

for accurate instance classification. The sensitivity and precision metrics, at 93.67% 

and 92.88%, respectively, are excellent. Additionally, compared to SVM, the NB 

classifier has a higher specificity of 30.95%, indicating a stronger capacity to 
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recognise negative cases. With an accuracy of 92.08%, the DT classifier performs 

competitively. Metrics such as sensitivity, precision, and F1-Score are all above 

90%, demonstrating the ability of the model to accurately categorise cases while 

striking a solid balance between recall and precision. Although the specificity of 

32.48% is higher than that of SVM, it is still very low, suggesting that there may be 

opportunity for improvement in accurately recognising negative cases. To 

summarise, the first classification scenario with the features of Mod_AlexNet shows 

good performance for SVM, NB, and DT classifiers. SVM leads in accuracy, NB has 

marginally better specificity, and DT maintains a good balance across performance 

metrics.  

In the context of classifying the features of Mod_AlexNet fused with HOG 

descriptors, SVM achieves an impressive 93.67% accuracy, demonstrating a high 

percentage of correct classifications. Impressive metrics of 93.67% and 92.60%, 

respectively, are also found in the sensitivity and precision measurements. This 

implies that the SVM classifier minimises FPs while efficiently identifying cases that 

are positive. The specificity, at 34.48%, is still somewhat poor, suggesting that it 

could be difficult to accurately identify negative examples. The overall accuracy 

drops to 91.65% when comparing this to the NB classifier in the same integrated 

context. Metrics for precision and sensitivity are still high, at 90.31% and 91.65%, 

respectively. Even though it has slightly increased when compared to SVM, the 

specificity—33.80%—remains low. At 90.74%, the F1-Score exhibits a 

commendable trade-off between precision and recall, which is balanced. When it 

comes to accurately identifying instances, NB performs well even though its 

accuracy is lower than that of SVM. In the fused features scenario, the DT classifier 

exhibits robust performance as its accuracy rises to 92.58%. Metrics such as 

sensitivity, precision, and F1-Score are all above 90%, demonstrating the ability of 

the model to accurately categorise cases while maintaining a balance between recall 

and precision. With a specificity of 35.50%, it is better than both SVM and NB, 

indicating a higher capacity to recognise negative cases. To summarise, the 

Mod_AlexNet features fused with HOG descriptors are well-classified by SVM, NB, 

and DT classifiers, whereas SVM outperforms the other classifiers in terms of all 

performance measures. 
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In the integrated context, where the features of Mod_AlexNet are fused with HOG 

descriptors and then selected using the mRMR feature selection model, the SVM 

classifier achieves an incredible 94.27% accuracy. Given its high accuracy, SVM 

appears to be an excellent method for classifying occurrences into the appropriate 

categories. At 94.27%, 93.51%, and 93.13%, respectively, the sensitivity, accuracy, 

and F1-Score measures are also quite high. Nevertheless, the specificity metric is 

comparatively lower at 40.42%, suggesting that it may be difficult to accurately 

detect negative cases. In contrast, with an accuracy of 94.58% in the same 

integrated environment, the NB classifier performs remarkably well. Impressively 

high measures include precision (94.36%), sensitivity (38.54%), and F1-Score 

(93.35%). Even though the specificity is 38.54%, which is slightly less than SVM, it 

still shows a good capacity to recognise negative cases. In the scenario with fused 

and mRMR-selected features, the DT classifier maintains a high accuracy of 

93.34%. With values above 92%, the sensitivity, precision, and F1-Score metrics are 

likewise excellent and demonstrate the ability of the model to accurately identify 

cases. With a specificity score of 41.56%, it is better than both SVM and NB, 

suggesting a higher capacity to accurately detect negative cases. In conclusion, all 

classifiers perform efficiently when the features of Mod_AlexNet are merged with 

HOG descriptors and selected using the mRMR feature selection model. 

Outstanding accuracy, precision, and F1-Score metrics are displayed by SVM and 

NB, demonstrating their effectiveness in classification tasks. Despite having a 

marginally lower accuracy rate, the DT classifier offers competitive overall 

performance and demonstrates how feature fusion and selection can improve 

classification results. 

In the integrated context, the SVM classifier achieves 91.86% accuracy when its 

features are fused with HOG descriptors and subsequently selected using the chi-

square feature selection technique. This implies a high degree of efficiency in 

accurately classifying cases. Significant measures include the F1-Score (91.13%), 

sensitivity (91.86%), and precision (90.63%). The specificity score, at 37.23%, is 

comparatively lower, indicating difficulties in accurately recognising negative cases. 

In comparison, the NB classifier performs remarkably well in the same integrated 

context, with an accuracy of 93.91%. Impressively high measures are the F1-Score, 

sensitivity, and precision, which are 37.53%, 92.63%, and 93.01%, respectively. The 
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specificity, at 37.53%, is marginally lower than SVM, but it still shows a good ability 

to recognise negative cases. Finally, the accuracy of the DT classifier of 92.33% is 

still rather high. Notable metrics include sensitivity, precision, and F1-Score, all of 

which have values above 90% and indicate that the model is effective at properly 

categorising cases. At 38.50%, the specificity score shows a higher capacity to 

accurately identify negative instances than SVM, which is an improvement. 

The SVM classifier exhibits an accuracy of 93.43% when it uses the f-test feature 

selection technique using features that have been fused and selected. Sensitivity 

and Precision, which stand at 93.43% and 92.47%, respectively, indicate how well 

the model can detect positive cases and how accurate positive predictions are. But 

the Specificity, which measures how well the model can detect negative examples, is 

rather low at 37.48%, indicating that this area could use some improvements. The 

accuracy of the NB classifier is 92.21%, which shows that its predictions are highly 

accurate. The model demonstrates its capacity to precisely identify positive 

instances and the accuracy of its positive predictions with sensitivity and precision of 

92.21% and 91.07%, respectively. The specificity measurement, is 36.99%, 

indicating that improvement is needed in the classification of negative cases. The 

accuracy, sensitivity, and precision of the DT classifier are 92.51%, 91.78%, and 

92.51%, respectively. With a specificity measure of 39.88%, it performs better than 

both SVM and NB at appropriately detecting negative cases. When compared, the 

SVM classifier performs exceptionally well due to its high accuracy and F1-Score. 

Even though the NB classifier is less accurate than the SVM, it performs 

competitively, especially in sensitivity and precision. When compared to the other 

classifiers, the DT classifier provides a noticeable improvement in specificity. 

Several integrated scenarios utilising a voting ensemble classification model were 

explored, concentrating on features that were fused, chosen using feature selection 

models such as mRMR, chi-square, and f-test, and then fed into the ensemble 

classifier. The classifiers attained a noteworthy accuracy of 94.91% when features 

merged and selected using the mRMR feature selection model were fed into the 

voting ensemble classification model. At 94.91%, both sensitivity and precision show 

how well the model can detect positive cases and how accurate its positive 

predictions are. The accuracy of identifying negative instances, or specificity, is 
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43.07%, indicating that there is still space for development in this regard. The 

accuracy of features fused selected with aid of the chi-square feature selection 

model, which are then fed into the voting ensemble classification model, is 94.27%, 

indicating a high degree of prediction accuracy in every case. Both sensitivity and 

precision, at 94.27%, show that positive examples can be identified with 

effectiveness and positive predictions can be made with precision. The accuracy of 

detecting negative instances is measured by the Specificity metric, which stands at 

39.95%. This indicates that there may be room for improvement in accurately 

identifying negative occurrences. For the case where features were fused and 

selected using the f-test feature selection model, and then fed into the voting 

ensemble classification model, the accuracy is 93.63%, indicating that overall, the 

predictions were correct; the sensitivity and precision metrics, also 93.63%, show 

that positive instances were correctly identified, and the specificity metric, 39.86%, 

indicates that there is room for improvement in correctly identifying negative 

instances. In comparison, the mRMR-based ensemble model has the highest 

specificity at 43.07%, indicating that it is adept at correctly recognising negative 

events. Nonetheless, the ensemble model based on chi-squares exhibits a balanced 

F1-Score and a little reduced Specificity, signifying its strong overall performance. 

The ensemble model based on the f-test exhibits competitive metrics, highlighting its 

efficacy in various integrated situations. 

An in-depth understanding of how feature fusion, selection, and ensemble 

techniques affect different classifiers is provided by the evaluation of improvement in 

classification performance rates as compared to the limited use of the features 

Mod_AlexNet for classification. This summary provides insight into the 

consequences of using different strategies on the overall classification performance, 

based on the findings shown in Table 8.5. When categorising the features of 

Mod_AlexNet fused with HOG descriptors, the SVM classifier shows a minor 

improvement of 0.71% in terms of accuracy. This suggests a marginal improvement 

in the total number of correctly predicted cases. Conversely, the DT classifier 

exhibits a positive improvement of 0.55%, whilst the NB classifier shows a 

noteworthy decline of -2.16%, indicating a reduction in overall accuracy. These 

differences highlight the complex effects of feature fusion on several classifiers. SVM 

and DT both demonstrate positive gains in sensitivity, of 0.71% and 0.55%, 
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respectively, indicating a marginal rise in the accurate detection of positive cases. 

On the other hand, NB sees a decline of -2.16%, suggesting a drop in sensitivity. 

This indicates that feature fusion can affect the ability of classifiers to accurately 

detect positive occurrences, with NB showing a decrease in sensitivity and SVM and 

DT showing positive impact. The accuracy in identifying positive occurrences is 

demonstrated by the precision findings; SVM achieved an increase of 1.25%, 

demonstrating increased precision. In contrast, negative rates of -2.76% and 0.93% 

for NB and DT, respectively, indicate a decline in precision. The specificity metric 

exhibits a variety of patterns, indicating the capacity of the classifier to accurately 

recognise negative instances. SVM shows a notable 15.39% gain, demonstrating 

better specificity. On the other hand, the positive rates for NB and DT are lower, at 

9.21% and 9.32%, respectively. 

When the features of Mod_AlexNet are fused with HOG descriptors and selected 

using the mRMR feature selection model, SVM shows a positive improvement rate of 

1.36% in accuracy. This represents a slight improvement in the total accuracy of the 

categorisation predictions. By comparison, the improvement rates for NB and DT are 

marginally higher at 0.96% and 1.37%, respectively. Slight variations are revealed by 

precision, the positive improvement rate for SVM is 2.25%, although the positive 

rates for NB and DT are less, at 1.59% and 2.04%, respectively. Specificity 

yielded negative improvement rate of -1.23% for SVM raises the possibility of a 

specificity compromise. Conversely, NB and DT show somewhat higher positive 

rates, suggesting marginal gains in accurately identifying negative cases.  

The feature selection models f-test and chi-square are explored next. The chi-square 

feature selection model results in a negative improvement rate in accuracy (-1.23%) 

and F1-Score (-0.39%) for SVM when HOG descriptors are fused and selected. On 

the other hand, NB and DT show positive rates for all metrics. SVM shows positive 

rates of improvement in accuracy (0.45%), sensitivity (0.45%), precision (1.12%), 

and F1-Score (0.87%) when applied to the f-test feature selection model. This 

suggests that there has been a positive effect on categorisation performance overall. 

On the other hand, the majority of measures show negative rates for NB, which 

suggests that the f-test feature selection technique may have brought trade-offs. 
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Positive improvement rates are shown by DT, indicating an improvement in F1-Score 

and precision.  

The ensemble model that integrates features fused and selected by the mRMR 

feature selection approach shows the highest improvement rate, at 3.08%, when it 

comes to accuracy. This indicates a significant improvement in overall classification 

accuracy as compared to the use of the features of Mod_AlexNet exclusively. 

Although showing positive improvement rates of 2.39% and 1.69%, respectively, the 

chi-square and f-test feature selection models show somewhat smaller accuracy 

gains. Intriguing patterns can be observed in precision, where the ensemble model 

utilising characteristics selected by mRMR has the highest precision increase rate, at 

5.12%, indicating a notable enhancement in the accuracy of positive predictions. 

Although they demonstrate positive improvement rates of 2.33% and 4.35%, 

respectively, chi-square and f-test feature selection models show slightly lower 

precision gains. The capacity to accurately detect negative instances, or specificity, 

shows significant improvement rates in all three ensemble models. With a voting 

ensemble, the mRMR feature selection model obtains the highest improvement rate 

of 32.63%, demonstrating a significant improvement in accurately recognising 

negative events. Specificity is also positively impacted by the f-test and chi-square 

feature selection models, which demonstrate improvement rates of 22.74% and 

23.02%, respectively. To sum up, the use of ensemble models that incorporate 

several feature selection procedures offers a potential way to enhance the 

performance of image classification. In particular, the mRMR feature selection model 

shows improved rates across multiple metrics when paired with a voting ensemble 

classifier. Positive contributions are also made by the f-test and chi-square feature 

selection models, while their improvement rates are a little bit lower. These findings 

highlight the significance of choosing suitable feature selection models to achieve 

desired increases in accuracy, sensitivity, precision, specificity, and F1-Score and 

offer insightful information. 

The t-test and Cohen's d measure were utilised in the assessment as metrics to 

evaluate the significance and magnitude of the improvements. In this investigation, 

the performance significance of the classifiers is compared to a baseline that solely 

uses Mod_AlexNet features and excludes feature fusion, selection, and ensemble 
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classification models. Table 8.6 displays the results of the Cohen's d measure and 

the t-test for each context. 

Table 8.6 presents a comprehensive and detailed examination of the investigation 

into several integrated contexts for classifying the features of Mod_AlexNet using 

Cohen's d measure and t-test for statistical significance. To find out how feature 

fusion, selection, and ensemble methods affect classification performance, this 

investigation uses a range of classifiers and feature selection methodologies.  

Table 8.6 Comparative Statistical Analysis using Cohen's d and T-test Significance for 
Evaluating Significance of Improvement against the Performance of Classifiers 
when Classifying Features Extracted from Mod_AlexNet. 

Improvement compared to when classifying 
features extracted from Mod_AlexNet only Classifier 

Cohen's d: T-test (p) 

Measure Significance Measure Significance 

Mod_AlexNet and Feature Fusion 

SVM 0.066 Small 0.0367 Significant 

NB -0.037 Small 0.3677 Not Significant 

DT 0.054 Small 0.1079 Not Significant 

Mod_AlexNet, Feature Fusion, and mRMR 

SVM 0.131 Small 0.1147 Not Significant 

NB 0.093 Small 0.1301 Not Significant 

DT 0.122 Small 0.1636 Not Significant 

Mod_AlexNet, Feature Fusion, and chi-
square test 

SVM 0.038 Small 0.5457 Not Significant 

NB 0.059 Small 0.2800 Not Significant 

DT 0.064 Small 0.3058 Not Significant 

Mod_AlexNet, Feature Fusion, and f-test 

SVM 0.078 Small 0.2149 Not Significant 

NB 0.005 Small 0.9306 Not Significant 

DT 0.104 Small 0.1293 Not Significant 

Ensemble for mRMR  0.201 Medium 0.0321 Significant 

Ensemble for chi-square test 0.142 Small 0.0367 Significant 

Ensemble for f-test 0.119 Small 0.0767 Not Significant 

 

The SVM classifier exhibited a small Cohen's d of 0.066, indicating a modest effect 

size, when the features of Mod_AlexNet were fused with HOG descriptors. A 

significant improvement in performance was indicated by the accompanying t-test, 

which had a p-value of 0.0367. The NB classifier, on the other hand, showed a non-

significant p-value of 0.3677 along with a modest negative Cohen's d of -0.037. 
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Likewise, a non-significant p-value of 0.1079 was shown by the DT classifier, which 

had a tiny Cohen's d of 0.054. These findings imply that whereas feature fusion 

greatly improved the SVM classifier, it had no noticeable impact on NB or DT. 

Remarkable discoveries were made when feature selection models were further 

examined following fusion. When features were chosen using mRMR following 

fusion, non-significant p-values (0.1147, 0.1301, and 0.1636, respectively) were 

followed with small Cohen's d values for SVM (0.131), NB (0.093), and DT (0.122). 

This implies that the improvement in classifier performance in this situation was not 

that significant in this context. 

Small Cohen's d values (0.038, 0.059, and 0.064 for SVM, NB, and DT, respectively) 

with non-significant p-values (0.5457, 0.2800, and 0.3058) were obtained by 

applying chi-square feature selection following fusion. Similar to this, small Cohen's d 

values (0.078, 0.005, and 0.104 for SVM, NB, and DT, respectively) with non-

significant p-values (0.2149, 0.9306, and 0.1293) were obtained from f-test feature 

selection following fusion. These results suggest that performance improvements 

following fusion were not significantly influenced by either the chi-square or the f-test 

feature selection models. 

When it comes to ensemble techniques, a voting ensemble classification model 

combined with mRMR-selected features showed a significant p-value of 0.0321 and 

a medium Cohen's d of 0.201, indicating a significant improvement in performance. 

Similarly, applying the ensemble model with features selected with the chi-square 

test produced a significant p-value of 0.0367 and a tiny Cohen's d of 0.142. The 

ensemble whose features were selected based on the f-test, however, showed a 

non-significant p-value of 0.0767 together with a small Cohen's d of 0.119, indicating 

that the f-test had no significant impact on the performance of the ensemble. 

Exhibited in Tables 8.1 to 8.6, The performance utilizing Mod_AlexNet is clearly 

superior to that of SqueezeNet and ResNet-50. The rates of improvement achieved 

with Mod_AlexNet (Scenario 3) in comparison to SqueezeNet (Scenario 1) and 

ResNet-50 (Scenario 2) are thus displayed in Table 8.7. 
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Table 8.7 Comparison of Performance Measures, Cohen's d, and T-test Significance for 
FFS-EC Implementation Across Different Scenarios, Evaluating Improvement 
Rates of Scenario 3 Compared to Scenarios 1 and 2 

Scenario 

Performance Measures Cohen's d: T-test (p) 

Accuracy Sensitivity Precision Specificity F1-Score Measure Significance Measure Significance 

Scenario 
1 2.30% 2.30% 3.63% 21.82% 2.27% 0.1432 Small 0.0003 Significant 

Scenario 
2 8.92% 8.92% 6.55% 31.96% 6.85% 0.3167 Medium 0.0008 Significant 

 

Table 8.7 compares and thoroughly examines the performance of FFS-EC 

implementation in two distinct scenarios (Scenario 1 and Scenario 2), with a focus on 

T-test significance, Cohen's d, and important performance metrics. The main 

objective is to assess how significantly Scenario 3 improved on Scenarios 1 and 2 in 

terms of Accuracy, Sensitivity, Precision, Specificity, and F1-Score. In comparison to 

scenario 1, scenario 3 demonstrates significant improvement of 21.82% in 

Specificity, but only a moderate improvement of 2.30% in Accuracy, Sensitivity, 

Precision, and F1-Score. With a Cohen's d value of 0.1432, there is a slight but 

statistically significant improvement, suggesting a small impact size. The significance 

of the observed improvements is further highlighted by the T-test significance (p = 

0.0003), which confirms that scenario 3 performs significantly better than scenario 1. 

Scenario 3 shows a more noticeable improvement that can be observed across all 

performance measures in comparison to Scenario 2. Along with a major 

improvement in specificity of 31.96%, there are significant improvements of 8.92% in 

the accuracy, sensitivity, precision, and F1-score. In comparison to Scenario 1, the 

moderate impact size shown by the Cohen's d value of 0.3167 indicates a more 

noticeable improvement. Strengthening the statistical validity of the observed 

increases is the T-test significance (p = 0.0008). Comparing Scenario 3 against both 

Scenarios 1 and 2, it is evident that the improvement rates achieved are influenced 

by the specific characteristics of each scenario. The improvements in accuracy, 

sensitivity, precision, specificity, and F1-score in Scenario 3 can be attributed to the 

powerful model of Mod_AlexNet. The effect sizes and statistical significance 

obtained through Cohen's d and T-test provide a comprehensive understanding of 
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the practical significance and reliability of the observed improvements in FFS-EC 

implementation across diverse deep learning models. 

A comprehensive comparison of classifier performance revealed notable trade-offs 

among the models. The SVM classifier demonstrated high sensitivity and accuracy; 

however, it consistently showed lower specificity, indicating a tendency to misclassify 

abnormal cases. In contrast, the NB classifier excelled in specificity but at the 

expense of sensitivity and F1-score, suggesting limitations in detecting positive 

cases. The DT classifier exhibited balanced performance across most metrics but 

struggled with specificity in more complex scenarios. These findings underscore the 

importance of carefully balancing specificity and sensitivity when evaluating model 

performance, particularly in medical diagnostics where both false positives and false 

negatives can have significant clinical consequences. 

8.4 Summary 
In this chapter, the goal of the FFS-EC system was to provide an enhanced 

framework for the classification of DBT data through the integration of deep learning 

models with feature fusion and selection models, followed by an ensemble classifier. 

It addresses three primary challenges: low performance measures in multi-class 

classification scenarios; the complexity of different breast sizes and densities; and 

distinguishing between benign and malignant abnormalities.  

Work in this chapter relies significantly on deep learning models, with ResNet-50, 

SqueezeNet, and the previously developed Mod_AlexNet making distinct 

contributions to the performance of the system. With its deep residual architecture, 

ResNet-50 effectively reduces the vanishing gradient problem and is an excellent 

model for capturing complex characteristics. This is especially important when 

dealing with the challenging task of differentiating between various breast 

classes because the depth of ResNet-50 enables it to collect feature hierarchies, 

which helps identify modest abnormalities across a range of densities and sizes of 

breasts. The compact architecture of the SqueezeNet improves performance without 

compromising feature extraction capabilities. With its carefully chosen layer 

modifications, Mod_AlexNet tackles issues like internal covariate shift and overfitting, 

making learning more accurate, robust, and discriminative. This system also 

incorporates the HOG and the HSV colour scheme to enhance feature extraction, 
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enabling enhanced discrimination between benign and malignant tumours by 

emphasising edges, patterns, and colour information. 

Improving discriminating ability is largely dependent on the feature selection and 

fusion processes. mRMR is employed to measure the relevance and redundancy of 

fused features. It evaluates the mutual information between each feature and the 

target class (relevance) while considering the redundancy between features. The 

chi-square test evaluates the degree of independence between categorical classes 

in the context of DBT data, highlighting features that have strong correlations with 

the target class. Similarly, the f-test contributes significantly to the feature selection 

process. This test helps identify features that significantly contribute to the 

differentiation of benign and malignant abnormalities by assessing the statistical 

significance of mean differences across groups. An advanced integration approach 

called the voting ensemble model, which aggregates predictions from several 

classifiers, is deployed to get a final classification prediction. By using a voting 

mechanism, this ensemble technique combines the advantages of various 

classifiers, such as SVM, NB, and DT. This approach addresses the multi-class 

classification challenge by leveraging the strengths of several classifiers, improving 

accuracy, sensitivity, and specificity.  

The FFS-EC system demonstrated significant improvements in classification 

accuracy and sensitivity, particularly through the integration of feature fusion and 

selection techniques. However, challenges with specificity persist, especially in 

accurately distinguishing between benign and malignant cases. Overfitting risks were 

managed through the implementation of cross-validation and feature reduction 

strategies, ensuring more reliable model performance. The hybrid approach, which 

combined HOG and deep learning-derived features, effectively balanced the 

strengths of low- and high-dimensional feature representations, though some trade-

offs remain in classifier sensitivity and specificity.  

The effectiveness of Mod_AlexNet in this system is thoroughly examined and 

compared to ResNet-50 and SqueezeNet, showing that Mod_AlexNet significantly 

outperforms the others, especially when utilizing mRMR feature selection. While 

Mod_AlexNet provided an important foundation in addressing the challenges of 

varying breast densities, results proved that the ability to accurately classify 
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abnormalities was limited. This highlights the need for more sophisticated models, 

leading to the development of FFS-EC, which incorporated feature fusion and 

selection models to address these challenges. However, despite the improvement 

made by the FFS-EC System, multi-class performance, especially in specificity 

measure, remained a challenge, prompting the development of the next system, 

presented in Chapter 9, to enhance classification performance. 
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Chapter 9 Three-Layer Multi-Head Self-Attention Model for 
Enhanced DBT Classification  

 
 
9.1 Introduction 
Despite notable advancements in specificity, sensitivity, and accuracy presented and 

discussed in Chapter 8, some challenges are yet to be addressed successfully, 

prompting the development of a novel three-layer Multi-Head Self-Attention model, 

as presented in this chapter. While previous systems, such as the FFS-EC System, 

made significant progress, particularly in improving feature fusion and selection, the 

performance of correct abnormal classification across varying breast densities and 

sizes remains a challenge. 

To tackle the challenge of varying breast and tumour sizes, a system is introduced in 

this chapter that integrates a novel self-attention model with a deep learning model 

to improve the ability of the model to identify abnormalities regardless of changes in 

tumour size by enabling the model to selectively focus on relevant regions within the 

breast image. By selecting features that are essential for classification, the attention 

mechanism helps the model overcome the challenges. Furthermore, the self-

attention mechanism improves the  robustness of the model and adaptability by 

dynamically varying the weight assigned to various spatial areas within the breast 

image, which raises the diagnostic accuracy of tomosynthesis imaging overall. 

 
9.2 Methodology 
In this system, a variety of pre-processing procedures were developed to augment 

and enhance the images. To increase model generalisation and enrich the dataset, 

augmentation processes were first applied to the images. Pre-processing methods 

were then used to improve the clarity and quality of the images. Notably, the 

discriminative qualities of the images were further improved by incorporating the 

HSV colour mapping technique. Following the colour mapping, the Mod_AlexNet 

architecture was applied in conjunction with an entirely novel self-attention 

model designed explicitly to address the varying size in the breast and tumour 

challenge. The techniques that were deployed in this system for the augmentation, 

pre-processing, and colour mapping, were explained in depth in Chapter 3. 
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The third contribution is the development of a three-layer Multi-Head Self-Attention 

model, Multi-Head Mod_AlexNet Attention (MHMA), using the final pooling outputs of 

the Mod_AlexNet. This model integrates FC layers and self-attention models, 

developed specifically to address problems caused by variations in breast sizes in 

DBT data and the varied sizes of the tumours. Through the use of SGDM, Adam, 

and RMSProp optimisers during training across a variety of batch sizes, the 

adaptability of the model is increased. The meticulous procedures employed in 

MHMA System resulted in a significant improvement in classification performance 

and will be presented in the following section. The architecture of the developed 

MHMA System is shown in Figure 9.1. 

The dataset used in this study consists of real-world digital breast tomosynthesis 

(DBT) images, which improves the generalizability and clinical relevance of the 

results. While augmentation and preprocessing steps enhance the diversity of the 

training set, careful validation ensured that the augmented images did not introduce 

artifacts or distort real-world patterns. The input images were augmented, and four 

images were generated from a single image. The use of Gaussian smoothing and 

CLAHE enhancement helps maintain the natural characteristics of the breast tissue 

images while reducing noise and improving contrast. The HSV colour scheme was 

utilised for colour mapping after the enhancement. The images were fed into the 

Mod_AlexNet, which was merged with the newly developed self-attention model.  

The development of a self-attention model designed for multi-class tomosynthesis 

classification, with three Multi-Head self-attention layers and the outputs of the final 

three pooling layers from Mod_AlexNet, is an important advancement in medical 

image analysis. This approach uses attention mechanisms to extract complex 

information from tomosynthesis images, resulting in more accurate classification 

across many classes. A key component of this approach is self-attention, which 

makes it easier to examine complex connections within the input data and identify 

patterns in tomosynthesis images that correspond to distinct classes. Through learnt 

linear projections, the model converts input feature representations into queries, 

keys, and values. This process computes attention scores, which enable the model 

to concentrate on significant regions and features within the images.  
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Figure 9.1 Architecture of the Multi-Head Mod_AlexNet Attention (MHMA) System 

 
The initial Multi-Head Self-Attention layer starts the process by detecting various 

correlations and patterns in the tomosynthesis images. The ability of this layer to 

extract discriminative features relevant to the classification task is improved by its 

multiple attention heads, which allow it to attend to different components of the input 

data simultaneously. The learnt representations are further enhanced and refined by 

additional Multi-Head Self-Attention layers, which repeatedly capture hierarchical 

dependencies in the images. Through this iterative process, the model is able to 

extract features that are more abstract and contextually rich, leading to more 

accurate classification across a variety of classifications. The rich feature 

representation that is collected from the tomosynthesis images by the last three 

pooling layers of Mod_AlexNet gives the self-attention model a complete input on 

which to base its classification decisions. By utilising these features, the model is 
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better able to distinguish minute variations between several classes, which enhances 

classification performance. Compared to a self-attention model with only one 

attention layer, the addition of several attention layers improves the ability of the 

model to capture complicated relationships within the input data, allowing it to 

reliably identify tomosynthesis images across various classes. Each layer refines the 

representations learnt in the previous levels, increasing the overall discriminative 

power.  

The attention mechanisms and corresponding maps automatically highlight parts of 

tomosynthesis images that are relevant and distinctive to each of the three classes: 

normal, benign, and malignant. Several attention mechanisms were used in our 

system at different levels of pooling. Initially, just two attention models were used, 

ranging from the initial to the final convolution level. The count of attention 

mechanisms was then raised to three, and then to four. The integration of three 

attention mechanisms from the final pooling layers resulted in optimal performance 

across all metrics, since the deeper layers of the deep learning model provide richer 

information and are better suited to extracting features that aid in identifying the 

three classes under investigation. 

These three attention processes are used to analyse the intermediate feature maps 

generated by Pools 3, 4, and 5. The final feature vector is then created by 

concatenating the resulting feature vectors, which are then concatenated. This final 

feature vector is used as the input for two FC layers. This attention module was 

trained using a variety of optimisers, including Adam, RMSProp, and SGDM, in 

addition to varying batch sizes. 

Multi-Head Self-Attention layers play an important role in deep learning architectures 

for image categorisation because of their capacity to capture complicated linkages 

and contextual information inside feature maps generated by pooling layers. These 

layers simultaneously handle different parts of the input feature map, enabling the 

model to identify significant patterns and connections between features, improving 

classification resilience and accuracy. Multi-Head Self-Attention layers play a major 

role in the ability of the model to extract discriminative features and produce well-

informed classification judgements in the context of image classification. Figure 9.2 

shows the architecture of a Multi-Head Attention module (Vaswani et al., 2017). 
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Figure 9.2 Multi-Head Attention Module presented by (Vaswani et al., 2017). 

 

Multi-Head Self-Attention layers operate via a number of learnt parameters and 

mathematical operations. The layer uses linear transformations to calculate query, 

key, and value matrices—typically denoted as Q, K, and V, respectively—after 

receiving feature mappings from pooling layers (Vaswani et al., 2017). These 

matrices form the basis for evaluating the relative importance of features by 

computing attention scores between pairs of features. The attention score 𝛼'( 

between features 𝑖 and 𝑗 is calculated as follows in equation 1: 

𝛼'( = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥	(	
J!∗	K"

$

LG1
	) (9.1) 

Where 𝑄' and 𝐾( represent the query and key vectors derived from features 𝑖 and 𝑗 , 

respectively, and 𝑑M is the dimensionality of the key vectors (Vaswani et al., 2017). A 

probabilistic definition of attention weights is provided by the softmax function, which 

guarantees that the attention scores across all features add up to 1. Following that, 

the attended representation 𝑦' for feature 𝑖 is calculated as the weighted sum of the 

value vectors 𝑉( for every feature, which is then weighted by the attention scores 𝛼'(. 

𝑦' = ∑ 𝛼'( ∗ 	𝑉(;
(NB 	 (9.2) 

The total number of features in the input feature map is shown by 𝑛 in this case. 

Within the Multi-Head Self-Attention layer, each attention head has a unique set of 
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learnable parameters, such as query, key, and value matrices, which are optimised 

through backpropagation during training. 

 Figure 9.3 displays the design of the developed attention model, which represents 

the third key contribution, and Table 9.1 presents the architecture of the integrated 

Mod_AlexNet with the layers parameters of the Multi-Head Self-Attention model. 

Self-attention layers are part of an intentional attempt to improve the capacity of the 

model to extract complex dependencies and relevant features from the input 

sequences. This is particularly evident when considering the relationships between 

the Pool3, Pool4, and Pool 5 levels. With carefully determined parameters, each self-

attention layer is set up to maximise representation learning and feature extraction.  

Starting with Selfattention_2, which is connected to the Pool3 layer, the layer has 8 

heads, 64 key and query channels, 256 value channels, and 256 output channels. 

The selection of these attributes aims to achieve a balance between representational 

capacity and computing efficiency. The inclusion of 8 heads enables the network to 

attend to several sections of the input space at the same time, making it easier to 

extract diverse and discriminative features. The layer effectively computes attention 

scores while maintaining sufficient capacity to capture intricate patterns by assigning 

64 key and query channels. Moreover, the 256 value channels of the layer allow it to 

encode deep contextual information, which strengthens feature representations. 

From Pool 4 onwards, similar parameter selections are noted to preserve 

consistency with the architectural layout and the features of the previous feature 

space in the self-attention layer that follows. By using 8 heads, parallelised 

processing is made possible, improving computational performance without 

sacrificing representational capacity. 
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Figure 9.3 The Innovative Multi-Head Attention Model and the Integrated Mod_AlexNet 
architecture 
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Table 9.1 Layer Parameters for the Innovative Multi-Head Mod_AlexNet Attention 
(MHMA) model 

Layer Number Name Type Activations Learnable 
Properties 

1 Data 227x227x3 images with 'zerocenter' 
normalization 

Image Input 227(S) x 227(S) x 3(C) 
x 1(B) 

— 

 
2 

Convl 
96 11x11 convolutions with stride [4 4] and padding 
[0 0 0 0] 

 2-D 
Convolution 

55(S) x 55(S) x 96(C) 
x 1(B) 

Weights 11 x 11 x 
3 x 96 
Bias 1 x 1 x 96 

3 
Relul 
ReLU 

ReLU 55(S) x 55(S) x 96(C) 
x 1(B) 

— 

4 
Norml 
cross channel normalization with 5 channels per 
element 

Cross 
Channel 
Normalization 

55(S) x 55(S) x 96(C) 
x 1(B) 

— 

5 
Pool1 
3x3 max pooling with stride [2 2] and padding [0 0 
0 0] 

2-D Max 
Pooling 

27(S) x 27(S) x 96(C) 
x 1(B) 

— 

6 

Conv2 
2 groups of 128 5x5 convolutions with stride [1 1] 
and padding [2 2 2 2] 

2-D Grouped 
Convolution 

27(S) x 27(S) x 256(C) 
x 1(B) 

Weights 5 x 5 x 48 
x 128 x 2 
Bias 1 x 1 x 128 x 
2 

7 
Relu2 
ReLU 

ReLU 27(S) x 27(S) x 256(C) 
x 1(B) 

— 

8 
Norm2 
cross channel normalization with 5 channels per 
element 

Cross 
Channel 
Normalization 

27(S) x 27(S) x 256(C) 
x 1(B) 

— 

9 
Pool2 
3x3 max pooling with stride [2 2] and padding [0 0 
0 0] 

2-D Max 
Pooling 

13(5) x 13(5) x 256(C) 
x 1(B) 

— 

10 
Conv3 
384 3x3 convolutions with stride [1 1] and padding 
[1 1 1 1] 

2-D 
Convolution 

13(S) x 13(S) x 384(C) 
x 1(B) 

Weights 3 x 3 x 
256 x 384 
Bias 1 x 1 x 384 

11 
Relu3 
ReLU 

ReLU 13(S) x 13(S) x 384(C) 
x 1(B) 

— 

12 

Conv4 
2 groups of 192 3x3 convolutions with stride [1 1] 
and padding [1 1 1 1] 

2-D Grouped 
Convolution 

13(S) x 13(S) x 384(C) 
x 1(B) 

Weights 3 x 3 x 
192 x 192 x 2 
Bias 1 x 1 x 192 x 
2 

13 
Relu4 
ReLU 

ReLU 13(S) x 13(S) x 384(C) 
x 1(B) 

— 

14 

Conv5 
2 groups of 128 3x3 convolutions with stride [1 1] 
and padding [1 1 1 1] 

2-D Grouped 
Convolution 

13(S) x 13(S) x 256(C) 
x 1(B) 

Weights 3 x 3 x 
192 x 128 x 2 
Bias 1 x 1 x 128 x 
2 

15 
Relu5 
ReLU 

ReLU 13(S) x 13(S) x 256(C) 
x 1(B) 

— 

16 
Maxpool_2 
7x7 max pooling with stride [1 1] and padding 
'same' 

2-D Max 
Pooling 

13(5) x 13(S) x 256(C) 
x 1(B) 

— 

17 
Flatten_2 
Flatten 

Flatten 43264(C) x 1(B) — 
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18 

Selfattention_2 
Self attention layer with 256 output channels, 8 
heads, 64 key and query channels, and 256 value 
channels 

Self Attention 256(C) x 1(B) QueryWeights 64 x 
43264 
KeyWeights 64 x 
43264 
ValueWeights 256 
x 43264 
OutputWeights 256 
x 256 
QueryBias 64 x 1 
KeyBias 64 x 1 
ValueBias 256 x 1 
OutputBias 256 x 1 

19 
Maxpool 
7x7 max pooling with stride [1 1] and padding 
'same' 

2-D Max 
Pooling 

13(S) x 13(S) x 384(C) 
x 1(B) 

— 

20 
Flatten 
Flatten 

Flatten 64896(C) x 1(B) — 

21 

Selfattention 
Self attention layer with 256 output channels, 8 
heads, 64 key and query channels, and 256 value 
channels 

Self Attention 256(C) x 1(B) QueryWeights 64 x 
64896 
KeyWeights 64 x 
64896 
ValueWeights 256 
x 64896 
OutputWeights 256 
x 256 
QueryBias 64 x 1 
KeyBias 64 x 1 
ValueBias 256 x 1 
OutputBias 256 x 1 

22 
Maxpool_1 
7x7 max pooling with stride [1 1] and padding 
'same' 

2-D Max 
Pooling 

13(S) x 13(S) x 384(C) 
x 1(B) 

— 

23 
Flatten_l 
Flatten 

Flatten 64896(C) x 1(B) — 

24 

Selfattention_l 
Self attention layer with 256 output channels, 8 
heads, 64 key and query channels, and 256 value 
channels 

Self Attention 256(C) x 1(B) QueryWeights 64 x 
64896 
KeyWeights 64 x 
64896 
ValueWeights 256 
x 64896 
OutputWeights 256 
x 256 
QueryBias 64 x 1 
KeyBias 64 x 1 
ValueBias 256 x 1 
OutputBias 256 x 1 

25 
Addition 
Element-wise addition of 3 inputs 

Addition 256(C) x 1(B) — 

26 
Fc_1 
1000 fully connected layer 

Fully 
Connected 

1000(C) x 1(B) Weights 1000 x 
256 
Bias 1000  x 1 

27 
Relu_1 
ReLU 

ReLU 1000(C) x 1(B) — 

28 
Fc_2 
1000 fully connected layer 

Fully 
Connected 

1000(C) x 1(B) Weights 1000 x 
1000 
Bias 1000 x 1 

29 
Relu 
ReLU 

ReLU 1000(C) x 1(B) — 

30 Fc 
3 fully connected layer 

Fully 
Connected 

3 (C) x 1(B) Weights 3 x 1000 
Bias 3 x 1 
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31 
Softmax 
Softmax 

Softmax 3(C) x 1(B) — 

32 
classoutput 
crossentropyex 

Classification 
Output 

3 (C) x 1(B) — 

 

Furthermore, the network is able to encode rich contextual information since 64 key 

and query channels and 256 value channels are distributed in a way that balances 

computational complexity and feature richness. Additionally, the Selfattention_1 layer 

connected to the Pool5 layer displays similar parameters that were selected with 

care to match the underlying architecture of the network and the characteristics of 

the input features. The consistency in parameter selection between self-attention 

layers promotes smooth network architecture integration and compatibility. 

Standardised parameter setup improves computational efficiency and strengthens 

the processes of representation learning and feature extraction. 

A crucial step in the architecture is the concatenation of the outputs of the three self-

attention layers. This allows for the integration of various contextual data and feature 

representations. The outputs from the three self-attention layers were added with the 

use of this concatenation operation, called "Addition," which produces a combined 

feature representation. The combined feature representation is then passed through 

a sequence of FC layers, each of which is intended to further refine and abstract the 

features for operations that come after the concatenation operation. The next set of 

ReLU activation functions adds non-linearity, allowing the network to model complex 

connections in the data. To convert the feature representations obtained from earlier 

layers into a format appropriate for the final classification task, the FC layer, 

designated as "Fc_1" with 1000 neurons, is added to the output layer. This addition 

is an essential component of the architecture. Every parameter in Fc_1, such as the 

bias vector and weight matrix, is selected to maximise the ability of the network to 

learn discriminative features and enable precise classification. Similar to this, the 

Fc_1 bias vector has 1000x1 dimensions, giving every output layer neuron an extra 

degree of freedom to control how it is activated. The bias terms allow the network to 

make shifts or offsets in the activation functions, allowing it to learn more flexible 

decision limits and adapt to changing input distributions. The network becomes more 

flexible in recognising subtle patterns and maximising its performance on the 
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classification task by introducing biases into the computation. The last layer 

classifies images into three groups: benign, malignant, or normal. Findings for 

MHMA System will be outlined and examined in the subsequent subsection. 

9.3 Results and Discussion 
In this study, a Multi-Head Mod_AlexNet Attention (MHMA) system was assessed, 

concentrating on its third contribution, the Multi-Head attention model. Training was 

carried out on this model using different optimisers and batch sizes. The next section 

provides a thorough examination of the results obtained from the deployment of 

MHMA System. In order to determine the efficacy of the Multi-Head Attention model 

integration with Mod_AlexNet, a thorough assessment was conducted that included 

a number of performance indicators, such as F1 score, sensitivity, specificity, 

precision, and accuracy.  

The MHMA model was trained and evaluated on a real-world DBT dataset, ensuring 

that the model’s performance reflects real clinical scenarios. The model’s ability to 

generalize was confirmed through 10-fold cross-validation, which showed consistent 

accuracy and sensitivity across different splits of the dataset. The strong 

performance across independent validation sets suggests that the model is capable 

of handling the natural variability present in clinical breast images. 

By comparing the performance of the MHMA System to that of the MA System, 

where Mod_AlexNet was used without the Attention Model integrated, the statistical 

significance of any observed gains was assessed using Cohen's d and a t-test. 

Additionally, the investigation involved comparing the output of the MHMA System to 

the most promising outcomes attained by MA System, with the goal of estimating the 

importance of the improvements noted. Tables 9.2 through 9.10 show the final 

outcomes of the developed Multi-Head Attention model post-integration with 

Mod_AlexNet involving SGDM, RMSProp, and Adam optimizers, considering batch 

sizes of 32, 62, and 128. The first column in every table indicates the Attention 

Model that was applied. The layers from which features were transferred to the 

Attention Model are denoted by the numbers that follow, for example, M1 for the 

Attention Module, which consists of two Multi-Head Attention layers and M2 for the 

Attention Module, which consists of three Multi-Head Attention layers. For example, 

M1_Pool 2,3 indicates that features were transferred from the second and third 
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pooling levels to the two attention layers in order to build Attention Model M1, and 

then their outputs and inputs were concatenated into the FC layers. On the other 

hand, M2_Pool2,3,4 denotes the transfer of features to the three Attention layers 

from the second, third, and fourth pooling layers. This produces Attention Model M2, 

which is then combined with its input and output into the FC layers.  

9.3.1 Batch Size 32 
Table 9.2 presents the performance metrics of MHMA System on Subset 3, which 

involves merging the Attention Model and Mod_AlexNet with the SGDM optimiser. 

The learning rate of 0.0001, 50 epochs, and 32 batch sizes were employed. Each 

row represents a different configuration of the Attention Model, specifically the 

pooling layers from which features were transferred. Examining the M1 setups, it can 

be seen that as the model moves towards deeper pooling layers, all performance 

indicators consistently improve. A sensitivity/recall of 85.35%, accuracy of 85.35%, 

precision of 88.24%, specificity of 37.40%, and F1-score of 86.68% are obtained 

from M1_Pool 1,2. These measures increase to 85.84%, 85.84%, 88.49%, 39.24%, 

and 87.05%, respectively, as the model proceeds to M1_Pool 4,5. As demonstrated 

by the greater precision and specificity values, this pattern shows that incorporating 

information from deeper layers improves the ability of the model to correctly classify 

cases and reduce FPs.  

Table 9.2 Performance metrics evaluated for MHMA System on Subset 3 integrating the 
Attention Model with Mod_AlexNet utilizing the SGDM optimizer at a learning 
rate of 0.0001, 50 epochs, and batch size of 32. 

Model/FC Layer Accuracy Sensitivity/Recall Precision Specificity F1-Score 

M1_Pool 1,2 85.35% 85.35% 88.24% 37.40% 86.68% 

M1_Pool 2,3 85.45% 85.45% 88.35% 38.92% 86.78% 

M1_Pool 3,4 85.58% 85.58% 88.44% 39.04% 86.88% 

M1_Pool 4,5 85.84% 85.84% 88.49% 39.24% 87.05% 

M2_Pool 1,2,3 85.80% 85.80% 88.38% 39.05% 86.99% 

M2_Pool 2,3,4 86.27% 86.27% 88.17% 39.55% 87.18% 

M2_Pool 3,4,5 86.46% 86.46% 88.21% 39.89% 87.30% 

 

Comparably, when investigating M2 deployments, a similar pattern of performance 

metrics enhancing as pooling layers get deeper. In comparison, M2_Pool 3,4,5 

achieves higher values across all metrics, with an accuracy of 86.46%, 



 

 
 

175 

sensitivity/recall of 86.46%, precision of 88.21%, specificity of 39.89%, and an F1-

score of 87.30%. In contrast, M2_Pool 1,2,3 exhibits an accuracy of 85.80%, 

sensitivity/recall of 85.80%, precision of 88.38%, specificity of 39.05%, and an F1-

score of 86.99%. This emphasises how crucial it is to consider a larger variety of 

features from deeper layers to enhance model performance.  

Table 9.3 Performance metrics evaluated for MHMA System on Subset 3 integrating the 
Attention Model with Mod_AlexNet utilizing the Adam optimizer at a learning 
rate of 0.0001, 50 epochs, and batch size of 32. 

Model/FC Layer Accuracy Sensitivity/Recall Precision Specificity F1-Score 

M1_Pool 1,2 84.06% 84.06% 87.48% 37.00% 85.70% 

M1_Pool 2,3 84.74% 84.74% 87.79% 37.60% 86.20% 

M1_Pool 3,4 85.39% 85.39% 88.00% 38.21% 86.64% 

M1_Pool 4,5 86.17% 86.17% 88.12% 38.36% 87.11% 

M2_Pool 1,2,3 85.89% 85.89% 88.04% 37.61% 86.93% 

M2_Pool 2,3,4 85.94% 85.94% 88.47% 38.22% 87.10% 

M2_Pool 3,4,5 86.09% 86.09% 88.54% 38.37% 87.12% 

 

Table 9.3 displays the performance metrics assessed for MHMA System on Subset 

3, where the Attention Model is combined with Mod_AlexNet through the use of the 

Adam optimiser. A batch size of 32 is employed, and a learning rate of 0.0001 is 

applied over a period of 50 epochs. Examining the M1 configurations, it is 

proven that most performance indicators improve as the model goes deeper into the 

pooling layers. The results of M1_Pool 1,2 are as follows: 84.06% accuracy, 84.06% 

sensitivity/recall, 87.48% precision, 37.00% specificity, and 85.70% F1-score. These 

measures increase to 86.17%, 86.17%, 88.12%, 38.36%, and 87.11%, respectively, 

as the model proceeds to M1_Pool 4,5. This pattern suggests that incorporating 

information from deeper layers improves overall performance measures, especially 

precision and specificity, and improves the ability of the model to identify 

abnormal instances reliably. 

Comparably, while looking at the M2 configurations, a comparable pattern of 

performance measures getting better with deeper pooling layers can be seen. In 

comparison, M2_Pool 3,4,5 achieves higher values across all metrics, with an 

accuracy of 86.09%, sensitivity/recall of 86.09%, precision of 88.54%, specificity of 

38.37%, and an F1-score of 87.12%. For example, M2_Pool 1,2,3 exhibits an 
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accuracy of 85.89%, sensitivity/recall of 85.89%, precision of 88.04%, specificity of 

37.61%, and an F1-score of 86.93%. Overall, the findings emphasise the importance 

of employing multi-layered feature representations to improve the predictive 

capabilities of the system, with deeper layers contributing to enhanced performance 

across various evaluation measures. 

Table 9.4 Performance metrics evaluated for MHMA System on Subset 3 integrating the 
Attention Model with Mod_AlexNet utilizing the RMSProp optimizer at a 
learning rate of 0.0001, 50 epochs, and batch size of 32. 

Model/FC Layer Accuracy Sensitivity/Recall Precision Specificity F1-Score 

M1_Pool 1,2 83.94% 83.94% 86.16% 25.24% 85.03% 

M1_Pool 2,3 84.19% 84.19% 86.17% 25.13% 85.16% 

M1_Pool 3,4 84.29% 84.29% 86.14% 26.01% 85.20% 

M1_Pool 4,5 84.35% 84.35% 86.30% 26.03% 85.31% 

M2_Pool 1,2,3 84.31% 84.31% 86.14% 26.04% 85.21% 

M2_Pool 2,3,4 84.38% 84.38% 86.31% 26.03% 85.32% 

M2_Pool 3,4,5 84.40% 84.40% 86.31% 26.03% 85.34% 

 

The performance metrics assessed for MHMA System on Subset 3 are displayed in 

Table 9.4. The system integrates the Attention Model and Mod_AlexNet using the 

RMSProp optimiser, employing a batch size of 32 and a learning rate of 0.0001 

across 50 epochs. Every row in the table shows a different attention model setup, 

indicating the pooling layers that are used to extract features. Analysing the M1 

configurations, most performance indicators improve steadily as the model moves 

towards deeper pooling layers. M1_Pool 1,2, for example, obtains 83.94% accuracy, 

83.94% sensitivity/recall, 86.16% precision, 25.24% specificity, and an F1-score of 

85.03%. With M1_Pool 2,3, there is a slight improvement as the accuracy, 

sensitivity/recall, precision, specificity, and F1-score rise to 84.19%, 86.17%, and 

85.16%, respectively. While for M1_Pool 4,5, there is an improvement across all 

metrics and achieving a 84.35% accuracy, 26.03% specificity and an F1-score of 

85.31%. Analysing the M2 configurations also demonstrates a tendency towards 

parallel performance improvement with deeper pooling layers.  

M2_Pool 1,2,3, for example, obtains 84.31% accuracy, 84.31% sensitivity/recall, 

86.14% precision, 26.04% specificity, and an F1-score of 85.21%. With M2_Pool 

2,3,4, slight enhancements can be observed in the majority of metrics: the F1-score 
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increases to 85.32%, accuracy to 84.38%, sensitivity/recall to 84.38%, precision to 

86.31%, and specificity to 26.03%. With an accuracy of 84.40%, precision of 

86.31%, and an F1-score of 85.34%, M2_Pool 3,4,5 ultimately demonstrated the 

optimal performance. 

Examining the results from Tables 9.2, 9.3, and 9.4 provides interesting new insights 

into how MHMA System operates on Subset 3 with different optimiser configurations. 

Each table displays the integration of the Mod_AlexNet and Attention Model with the 

different optimisers, SGDM, Adam, and RMSProp, respectively. Overall, M2_Pool 

3,4,5 consistently outperforms all three optimiser setups, achieving the greatest 

performance of any configuration analysed in each table. The SGDM optimiser 

demonstrated the highest performance among all the optimisers. M2_Pool 3,4,5 

yielded the optimum results, with an accuracy of 86.46%, a specificity of 39.89%, 

and an F1-score of 87.30%. In comparison to other configurations and different 

optimisers, this configuration demonstrates the highest results across all 

performance metrics. 

9.3.2 Batch Size 64 
Tables 9.5, 9.6, and 9.7 investigate and analyse the outcomes obtained from training 

MHMA System with a learning rate of 0.0001 over 50 epochs and a batch size of 64, 

employing SGDM, Adam, and RMSProp optimisers, respectively. 

Table 9.5 displays the performance metrics that were assessed for MHMA System, 

with different Attention Model and Mod_AlexNet configurations used during training. 

A learning rate of 0.0001 was used, along with 50 epochs and a batch size of 64. 

Every entry in the table represents a specific setup indicated by the pooling layers 

that are used to extract features. As the model move towards deeper pooling layers, 

a constant improvement can be seen in most performance metrics, starting with the 

M1 configurations. M1_Pool 1,2, for example, obtains 89.54% accuracy, 89.54% 

sensitivity/recall, 90.49% precision, 44.42% specificity, and an F1-score of 89.80%. 

A minor improvement in these parameters is seen with M1_Pool 2,3, where the F1-

score rises to 89.74%, accuracy to 89.65%, sensitivity/recall to 89.65%, precision to 

90.23%, and specificity to 44.84%. After that, as the model moves on to M1_Pool 

4,5, the metrics continue to get better: 90.63% accuracy, 90.63% sensitivity/recall, 

91.64% precision, 50.47% specificity, and a 90.92% F1-score imply that 
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incorporating features from deeper layers improves the overall performance of the 

model metrics and its ability to classify abnormal instances accurately. 

Table 9.5 Performance metrics evaluated for MHMA System on Subset 3 integrating the 
Attention Model with Mod_AlexNet utilizing the SGDM optimizer at a learning 
rate of 0.0001, 50 epochs, and batch size of 64. 

Model/FC Layer Accuracy Sensitivity/Recall Precision Specificity F1-Score 

M1_Pool 1,2 89.54% 89.54% 90.49% 44.42% 89.80% 

M1_Pool 2,3 89.65% 89.65% 90.23% 44.84% 89.74% 

M1_Pool 3,4 90.51% 90.51% 91.27% 48.36% 90.64% 

M1_Pool 4,5 90.63% 90.63% 91.64% 50.47% 90.92% 

M2_Pool 1,2,3 90.56% 90.56% 91.57% 50.47% 90.81% 

M2_Pool 2,3,4 90.76% 90.76% 91.68% 50.48% 90.98% 

M2_Pool 3,4,5 90.99% 90.99% 91.98% 51.99% 91.26% 

 

Analysing the M2 configurations also shows that deeper pooling layers tend to 

improve performance in a similar way. M2_Pool 1,2,3, for example, obtains 90.56% 

accuracy, 90.56% sensitivity/recall, 91.57% precision, 50.47% specificity, and 

90.81% F1-score. Moving on to M2_Pool 3,4,5, it can be seen that the greatest 

values of all the metrics: 90.99% accuracy, 90.99% sensitivity/recall, 91.98% 

precision, 51.99% specificity, and 91.26% F1-score. These results highlight how 

crucial it is to take into account a wider variety of variables from deeper layers in 

order to enhance model performance. 

The performance results for MHMA System on Subset 3 are shown in Table 9.6. 

This system integrates the Attention Model and Mod_AlexNet with the Adam 

optimiser, using a batch size of 64 and a learning rate of 0.0001 across 50 epochs. 

When the M1 setups are analysed, deeper pooling layers result in better 

configurations. M1_Pool 1,2, for instance, obtains 86.45% accuracy, 86.45% 

sensitivity/recall, 88.21% precision, 39.89% specificity, and 87.29% F1-score. With 

M1_Pool 4,5, these metrics demonstrate minor gains, with sensitivity/recall, 

precision, specificity, and F1-score reaching 86.49%, 88.26%, 40.08% and 87.34%, 

respectively.  
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Table 9.6 Performance metrics evaluated for MHMA System on Subset 3 integrating the 
Attention Model with Mod_AlexNet utilizing the Adam optimizer at a learning 
rate of 0.0001, 50 epochs, and batch size of 64. 

Model/FC Layer Accuracy Sensitivity/Recall Precision Specificity F1-Score 

M1_Pool 1,2 86.45% 86.45% 88.21% 39.89% 87.29% 

M1_Pool 2,3 86.47% 86.47% 88.23% 39.98% 87.31% 

M1_Pool 3,4 86.48% 86.48% 88.24% 39.99% 87.32% 

M1_Pool 4,5 86.49% 86.49% 88.26% 40.08% 87.34% 

M2_Pool 1,2,3 86.51% 86.51% 88.27% 40.11% 87.35% 

M2_Pool 2,3,4 86.66% 86.66% 88.41% 40.26% 87.50% 

M2_Pool 3,4,5 87.52% 87.52% 88.92% 42.53% 88.13% 

 

Similarly, among the M2 configurations, a clear pattern emerges: models with deeper 

pooling layers consistently outperform those with shallower models. With accuracy of 

87.52%, sensitivity/recall of 87.52%, precision of 88.92%, specificity of 42.53%, and 

an F1-score of 88.13%, M2_Pool 3,4,5, outperforms across all metrics. This 

emphasises how deeper feature representations can capture more complex patterns 

in the data, leading to better classification robustness and accuracy. 

Table 9.7 Performance metrics evaluated for MHMA System on Subset 3, integrating 
the Attention Model with Mod_AlexNet utilizing the RMSProp optimizer at a 
learning rate of 0.0001, 50 epochs, and batch size of 64. 

Model/FC Layer Accuracy Sensitivity/Recall Precision Specificity F1-Score 

M1_Pool 1,2 85.64% 85.64% 87.23% 37.22% 86.41% 

M1_Pool 2,3 85.75% 85.75% 87.37% 37.83% 86.53% 

M1_Pool 3,4 86.00% 86.00% 87.39% 37.83% 86.67% 

M1_Pool 4,5 87.13% 87.13% 87.54% 37.96% 87.31% 

M2_Pool 1,2,3 86.12% 86.12% 87.47% 38.02% 86.76% 

M2_Pool 2,3,4 86.18% 86.18% 87.57% 38.56% 86.83% 

M2_Pool 3,4,5 86.25% 86.25% 87.72% 39.47% 86.94% 

 

Table 9.7 presents the performance metrics for MHMA System on Subset 3, 

incorporating the Attention Model and Mod_AlexNet architecture with RMSProp 

optimiser. Across various configurations denoted by M1_Pool and M2_Pool, the 

classification capabilities of the model are evaluated. Performance metrics show 

an improvement with deeper pooling layers, starting with the M1 configurations. The 

model obtains 85.64% accuracy, 85.64% sensitivity/recall, 87.23% precision, 37.22% 
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specificity, and 86.41% F1-score for M1_Pool 1,2. Performance steadily improves 

with increasing pooling depth and peaks in M1_Pool 4,5 with F1-score values of 

87.31%, 87.13%, 87.54%, 37.96%, and accuracy, sensitivity/recall, precision, and 

specificity, respectively. This implies that improved classification accuracy and 

robustness are a result of deeper feature representations. 

Observing the M2 configurations, performance measures improve with increasing 

pooling layer depth. Among all M2 configurations, M2_Pool 3,4,5 notably performs 

most effectively, with F1-score values of 86.94%, 87.72%, 39.47%, and 86.25% for 

accuracy, sensitivity/recall, precision, and specificity, respectively. 

Analysing the data in Tables 9.5, 9.6, and 9.7 offers new perspectives on how 

MHMA System functions on Subset 3 with various optimiser setups. On a batch size 

of 64, each table shows the integration of the Mod_AlexNet and Attention Model with 

the various optimisers, SGDM, Adam, and RMSProp, respectively. All three 

optimiser setups are often surpassed by M2_Pool 3,4,5, which achieves the optimum 

performance of all the configurations examined in each table. Out of all the 

optimisers, the SGDM optimiser performed the best. M2_Pool 3,4,5 produced the 

best results, with an accuracy of 90.99%, specificity of 51.99%, and F1-score of 

91.26%. This configuration shows the best results across all performance measures 

when compared to other configurations and different optimisers. 

9.3.3 Batch Size 128 
Tables 9.8, 9.9, and 9.10 explore and analyse the results acquired by training MHMA 

System using a learning rate of 0.0001 across 50 epochs and a batch size of 128, 

employing SGDM, Adam, and RMSProp optimisers, respectively. 

The performance metrics of MHMA System on Subset 3, which uses the SGDM 

optimiser with a learning rate of 0.0001, 50 epochs, and a batch size of 128 and 

incorporates the Attention Model with Mod_AlexNet, are shown in Table 9.8. 

Consistent improvements can be found in accuracy, sensitivity/recall, precision, 

specificity, and F1-score measures across different pooling layer configurations. The 

model achieves an accuracy of 84.68%, sensitivity/recall of 84.68%, precision of 

87.38%, specificity of 36.91%, and F1-score of 85.95%, starting with M1_Pool 1,2. 

Performance significantly improves as the model moves through the pooling layers, 
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with M1_Pool 4,5 reporting the greatest results (85.07% accuracy, 85.07% 

sensitivity/recall, 87.67% precision, 37.36% specificity, and 86.29% F1-score). 

Table 9.8 Performance metrics evaluated for MHMA System on Subset 3, integrating 
the Attention Model with Mod_AlexNet utilizing the SGDM optimizer at a 
learning rate of 0.0001, 50 epochs, and batch size of 128. 

Model/FC Layer Accuracy Sensitivity/Recall Precision Specificity F1-Score 

M1_Pool 1,2 84.68% 84.68% 87.38% 36.91% 85.95% 

M1_Pool 2,3 85.01% 85.01% 87.60% 36.91% 86.22% 

M1_Pool 3,4 85.02% 85.02% 87.61% 37.06% 86.24% 

M1_Pool 4,5 85.07% 85.07% 87.67% 37.36% 86.29% 

M2_Pool 1,2,3 84.81% 84.81% 87.64% 37.05% 86.14% 

M2_Pool 2,3,4 85.26% 85.26% 87.78% 37.37% 86.44% 

M2_Pool 3,4,5 85.53% 85.53% 88.01% 37.39% 86.68% 

 

As the model moves to the M2 models, there are further gains in performance in 

every metric when compared to the M1 models. M2_Pool 1,2,3, for example, exhibits 

a small improvement over the related M1 model with accuracy of 84.81%, 

sensitivity/recall of 84.81%, precision of 87.64%, specificity of 37.05%, and F1-score 

of 86.14%. A similar 85.53% accuracy, 85.53% sensitivity/recall, 88.01% precision, 

37.39% specificity, and 86.68% F1-score are recorded by M2_Pool 3,4,5. 

Table 9.9 Performance metrics evaluated for MHMA System on Subset 3, integrating 
the Attention Model with Mod_AlexNet utilizing the Adam optimizer at a 
learning rate of 0.0001, 50 epochs, and batch size of 128. 

Model/FC Layer Accuracy Sensitivity/Recall Precision Specificity F1-Score 

M1_Pool 1,2 83.07% 83.07% 87.31% 32.83% 85.10% 

M1_Pool 2,3 83.15% 83.15% 87.33% 33.95% 85.15% 

M1_Pool 3,4 83.17% 83.17% 87.35% 34.15% 85.17% 

M1_Pool 4,5 82.94% 82.94% 87.37% 34.57% 85.05% 

M2_Pool 1,2,3 82.92% 82.92% 87.33% 34.56% 85.03% 

M2_Pool 2,3,4 83.32% 83.32% 87.41% 35.03% 85.27% 

M2_Pool 3,4,5 83.80% 83.80% 87.46% 36.25% 85.56% 

 

Table 9.9 presents an evaluation of different models in MHMA System, which 

combines Mod_AlexNet with the Attention Model, and provides noteworthy 

information about their performance measures. All models were evaluated on Subset 
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3 utilising the Adam optimiser, with a learning rate of 0.0001, 50 epochs, and a batch 

size of 128. M2_Pool 3,4,5 leads in overall performance with an accuracy of 83.80% 

and a close second in precision at 87.46%. M1_Pool configurations show a 

compromise between accuracy (83.07% - 83.17%) and precision (87.31% - 87.37%). 

This dynamic is highlighted by the fact that M1_Pool 1,2 has the lowest accuracy but 

the highest precision. With respect to TPs and TNs, M2_Pool 3,4,5 continues to be 

strong with respect to specificity (36.25%), but oddly, it has the lowest 

sensitivity/recall (83.80%). M1_Pool models, on the other hand, exhibit reduced 

specificity but stable sensitivity/recall. They have trouble correctly classifying 

negatives, but they are excellent at spotting actual positives. 

The proportion of correctly identified instances, or the accuracy, shows a progressive 

increase across the configurations. The accuracy of M2_Pool 1,2,3 is 82.92%; 

M2_Pool 2,3,4 is 83.32%; and M2_Pool 3,4,5 is 83.80%. This pattern implies that 

deeper pooling layer configurations could result in predictions from the model that 

are more accurate overall. Consistent developments are revealed by further 

investigation of precision, F1-score, and sensitivity/recall for all pooling layer 

configurations. Sensitivity/recall, which ranges from 82.92% to 83.80%, is 

comparatively constant across configurations. Additionally, precision, which is 

defined as the percentage of accurately detected positive cases among all cases 

classified as positive, varies barely, ranging between 87.33% and 87.46%. This 

suggests that the models continue to accurately detect positive instances 

irrespective of the architecture of the pooling layer. Furthermore, there is a minor 

increase in specificity with deeper pooling layers, indicating the ability of the model to 

accurately identify negative cases. The highest specificity is achieved by M2_Pool 

3,4,5, at 36.25%, while M2_Pool 1,2,3 reaches 34.56%. This means that the ability 

of the model to distinguish between instances that are positive and negative may be 

improved by adding more pooling layers. 

The performance indicators for MHMA System on Subset 3 using the Mod_AlexNet 

architecture and RMSProp optimiser with the Attention Model are shown in Table 

9.10. Seven configurations, identified as M1_Pool 1,2, M1_Pool 2,3, M1_Pool 

3,4, M1_Pool 4,5, M2_Pool 1, 2, 3, M2_Pool 2, 3, 4, and M2_Pool 3, 4, 5 are 

included in the table with different pooling layers.  
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In Table 9.10, for M1 model, across all configurations, accuracy varies from 84.08% 

to 84.20%. This suggests that throughout the various pooling layer thicknesses, 

overall classification accuracy performance is rather stable. The accuracy values are 

notable for being somewhat lower than those achieved with other optimisers, such 

as Adam or SGDM, indicating that RMSProp may not be as useful in this specific 

instance. Sensitivity/recall, with values ranging between 84.08% and 84.20%. 

Precision also shows little fluctuation, with values between 86.02% and 86.08%. 

With scores ranging from 24.27% to 24.64%, specificity, a measure of the accuracy 

of the model in identifying negative instances, remains comparatively low across all 

configurations. This is a possible area for development since it implies that the 

models trained with RMSProp have more difficulty correctly detecting negative cases 

than positive instances. 

Table 9.10 Performance metrics evaluated for MHMA System on Subset 3, integrating 
the Attention Model with Mod_AlexNet utilizing the RMSProp optimizer at a 
learning rate of 0.0001, 50 epochs, and batch size of 128. 

Model/FC Layer Accuracy Sensitivity/Recall Precision Specificity F1-Score 

M1_Pool 1,2 84.08% 84.08% 86.02% 24.27% 85.03% 

M1_Pool 2,3 84.08% 84.08% 86.02% 24.27% 85.03% 

M1_Pool 3,4 84.12% 84.12% 86.04% 24.45% 85.07% 

M1_Pool 4,5 84.20% 84.20% 86.08% 24.64% 85.12% 

M2_Pool 1,2,3 84.15% 84.15% 86.05% 24.46% 85.09% 

M2_Pool 2,3,4 84.21% 84.21% 86.10% 24.70% 85.14% 

M2_Pool 3,4,5 84.26% 84.26% 86.16% 25.12% 85.20% 

 

The accuracy range in Tale 9.10 for the M2 model is 84.15% to 84.26% in all 

configurations, suggesting a consistent performance in terms of overall classification 

accuracy. This implies that the  ability of the model to accurately classify examples is 

mostly unaffected by the combinations of pooling layers. It is important to note that 

these accuracy numbers are marginally lower than those of other optimiser settings, 

which may indicate that RMSProp is less successful in this scenario in terms of 

attaining high overall accuracy. Sensitivity/recall, with values between 84.15% and 

84.26%. This suggests that irrespective of the pooling layer architecture employed, 

the ability of the model to identify positive cases stays consistent. There is little 

variance in precision across configurations, with values ranging from 86.05% to 
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86.16%, indicating the accuracy of the model in identifying positive cases out of all 

instances classified as positive. This implies that the accuracy of the model in 

classifying positive occurrences is not greatly affected by the combinations of pooling 

layers. However, specificity, which measures the ability of the model to properly 

detect negative cases, increases slightly as the number of pooling layers grows. In 

particular, specificity varies from 24.46% to 25.12%, suggesting that models with 

combinations of deeper pooling layers typically outperform models with less pooling 

layers in terms of accurately identifying negative cases. 

Analysing the data from Tables 9.8, 9.9, and 9.10 reveals new insights into the 

performance of the MHMA System on Subset 3 under various optimiser setups. With 

a batch size of 128 in each table, the attention model and Mod_AlexNet are 

integrated with various optimisers, namely SGDM, Adam, and RMSProp. Notably, 

the M2_Pool 3,4,5 arrangement consistently performs better than other setups, as 

evidenced by superior performance metrics across all tables. In particular, M2_Pool 

3,4,5 has the highest accuracy (85.53%), specificity (37.39%), and F1-score 

(86.68%) among all configurations and optimiser combinations, indicating that 

SGDM is the most successful optimiser out of the three.  

9.3.4 Optimal Outcomes Analysis 
Figures 9.4 and 9.5 demonstrate training and validation curves that represent the 

accuracy and loss of attention model M2_Pool3,4,5 with batch size of 64, and over 

50 epochs. Figure 9.4 shows the evolution of training and validation accuracy 

through epochs. Training accuracy rapidly increased from 45% to 99%, eventually 

stabilising at the peak. Additionally, the training accuracy becomes nearly constant 

after the 20th epoch. Validation accuracy, on the other hand, starts at 65% and 

continuously increases until it reaches 93%. Following the 25th epoch, the validation 

accuracy approaches a near-constant state. In Figure 9.5, which displays the training 

and validation losses, the training loss starts at 2.46 and steadily decreased, 

reaching a stable 0.004 by the 20th epoch and remaining particularly constant until 

the 50th epoch. On the other hand, the validation loss starts at 2.16 and gradually 

decreases, reaching a minimal loss of 0.01 by the 20th epoch and remaining rather 

steady until the 50th epoch. 
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A more thorough analysis of the data in Tables 9.2 through 9.10 confirms the 

effectiveness of a batch size of 64 and supports the superiority of SGDM over 

alternative optimisers. Surprisingly, using the SGDM optimiser with a 64-batch batch 

size produces the most optimum results, with 90.99% accuracy, 91.98% precision, 

and 91.26% F1-score. This model stands out for having a significant increase in 

specificity, indicating that it is more capable of identifying negative cases than other 

models. The results highlight how important optimiser choice and batch size are to 

improving the performance of the MHMA System on Subset 3. In addition to 

demonstrating the advantages of the SGDM optimiser, the results highlight the need 

of using an ideal batch size in order to achieve better model performance, especially 

with regard to accuracy, precision, and specificity. 

 

 

Figure 9.4 Self-Attention Training and Validation Accuracy vs Epochs for M2_Pool 3,4,5 
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Figure 9.5 Self-Attention Training and Validation Loss vs Epochs for M2_Pool 3,4,5 
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hand, accuracy and the F1-score indicate a minor improvement. A small effect size 

is indicated by Cohen's d value for accuracy, pointing to a moderate difference 

between the two systems. The T-test significance result, however, indicates that 

there may not be a statistically significant improvement. In contrast, MHMA System 

with a 64-batch size exhibits improved F1-score, accuracy, sensitivity, precision, and 

specificity when compared to MA System. A medium impact size is indicated by 

Cohen's d value for accuracy, pointing to a more significant difference between the 

two systems. Additionally, MHMA System exhibits inconsistent performance in 

comparison to MA System with a batch size of 128. Precision and the F1-score show 

slight improvements, while accuracy, sensitivity, and specificity all decline. A small 

effect size is indicated by Cohen's d value for accuracy, pointing to a marginal 

difference between the two systems. Once more, this difference is not statistically 

significant according to the T-test significance value. 

A detailed comparison of the SGDM, Adam, and RMSProp optimizers was 

conducted across batch sizes of 32, 64, and 128. Results indicated that SGDM 

consistently outperformed Adam and RMSProp in terms of accuracy, F1-score, and 

specificity. This can be attributed to SGDM's ability to better manage learning rate 

adjustments, which reduces the risk of overfitting and allows more stable 

convergence. 

In conclusion, the configuration with a batch size of 64 stands out as the most 

promising among the various batch sizes examined for MHMA System. It 

continuously outperforms MA System in every metric, with significant gains in F1-

score, accuracy, sensitivity, and precision. The major improvement in specificity, 

which shows a significant improvement in correctly identifying negative situations, is 

especially remarkable. This statistically significant increase in specificity points to a 

considerable improvement in performance. Based on these findings, MHMA System 

with a batch size of 64 therefore stands out as a solid candidate for more thought 

and execution, demonstrating its capacity to successfully handle the challenges 

raised by MA System in the classification of abnormal cases. MA System exhibits a 

specificity value of 23.91%, indicating its capability to accurately identify negative 

cases. In contrast, MHMA System, employing a batch size of 64, demonstrates a 

substantial improvement in specificity, reaching a value of 51.99%. This notable 
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increase underscores the enhanced ability of MHMA System to effectively 

distinguish negative cases, reflecting its superior performance compared to MA 

System with an improvement rate of 117% in the specificity measure. 

Table 9.11 Comparative Evaluation of Performance Metrics and Significance of 
Improvement Using Cohen's d and T-test Significance for MHMA System 
Implementation with Different Batch Sizes in Comparison to MA System 
Performance 

System 

Performance Measures Cohen's d: T-test (p) 

Accuracy Sensitivity Precision Specificity F1-
Score Measure Significance Measure Significance 

MA System 91.61% 91.61% 88.16% 23.91% 89.57% - - - - 

MHMA System 
with a Batch 

Size of 32 
86.46% 86.46% 88.21% 39.89% 87.30% 0.0269 Small 0.8693 Not 

Significant 

MHMA System 
with a Batch 

Size of 64 
90.99% 90.99% 91.98% 51.99% 91.26% 0.2651 Medium 0.30203 Not 

Significant 

MHMA System 
with a Batch 
Size of 128 

85.53% 85.53% 88.01% 37.39% 86.68% -0.013172 Small 0.92904 Not 
Significant 

 

While the MHMA model shows strong sensitivity and accuracy, specificity remains a 

challenge, indicating a higher rate of false positives. In clinical practice, false 

positives can result in unnecessary biopsies and patient stress. To improve 

specificity, future work will explore threshold tuning and ensemble strategies to refine 

decision boundaries and reduce misclassifications. 

9.4 Summary 
In this chapter, the use of the developed deep learning model Mod_AlexNet in 

conjunction with an entirely novel Multi-Head Attention model was introduced and 

examined. This combined method addresses the three primary challenges that arise 
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in the detection of breast cancer, namely: poor performance in multi-class 

classification situations, the complexity of different breast sizes and densities, and 

the crucial role of differentiating between benign and malignant abnormalities. Work 

in this chapter heavily depends on the newly developed Multi-Head Attention Model, 

that operates in cooperation with the previous Mod_AlexNet to significantly improve 

its performance, especially in correctly classifying abnormal classes. The Multi-Head 

Attention model has a number of significant advantages. One of these is its ability to 

focus on relevant areas in tomosynthesis images, which helps to reduce the 

complexity caused by differences in breast anatomy. This model efficiently obtains 

discriminative information necessary for accurate classification by giving selective 

attention to key traits, making it easier to distinguish benign from malignant 

abnormalities. The diagnostic efficacy of Mod_AlexNet in breast cancer detection 

tasks is further enhanced by the ability of the Multi-Head attention model to capture 

complex spatial dependencies and correlations among image regions, which allows 

for a deeper informative feature extraction. 

The effectiveness of the MHMA model is carefully examined and compared to the 

performance of Mod_AlexNet in the results and discussion section. A wide range of 

performance indicators are carefully evaluated, such as the F1-Score, accuracy, 

sensitivity, precision, and specificity. The results show significant improvements in 

the performance of the MHMA System compared to Mod_AlexNet, especially when 

the batch size is 64. The statistical significance of these observed benefits is 

determined using statistical analysis utilising techniques like Cohen's d and T-tests, 

highlighting the ways in which the incorporation of the Multi-Head attention model 

enhances the effectiveness of deep learning models. Additionally, the FFS-EC, 

introduced in Chapter 8, highlights the importance and impact of ensemble 

modelling, feature fusion, and selection, which leads to the development of the final 

system. The enhancements from previous systems are incorporated and a new 

contribution to ensemble modelling is developed. The next chapter will explore the 

details of the final system, explaining its design and examining its findings. 
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Chapter 10 Hybrid Multi-Head Attention-Based System with 
Feature Fusion and Ensemble Classification 
Model 

 
 
10.1 Introduction 
The Hybrid Multi-Head Self-Attention Model with Feature Fusion, Selection, and 

IVECM for Enhanced DBT Classification System, HMSA-IVECM System concludes 

with the introduction of an innovative ensemble model. While earlier systems, MA, 

FFS-EC, and MHMA systems, each made a significant contribution in addressing 

challenges related to multi-class classification accuracy, varying breast density and 

size and abnormal classification, limited performance in the abnormal classes 

classification still persists.  

Through the smooth integration of features from FFS-EC System and MHMA 

System, HMSA-IVECM System overcomes the challenges presented by differences 

in breast densities and sizes. This increase is specifically remarkable for multi-class 

classification, where it shows significant improvements, especially in abnormal 

classes. Interestingly, substantial enhancements in the classification performance for 

both benign and malignant classes have been observed, outperforming the 

performance of traditional deep learning models used for the classification of 

tomosynthesis scans. 

10.2 Methodology 
The HMSA-IVECM system starts with image augmentation, followed by image 

enhancement and colour mapping as outlined in previous chapters, with a 

comprehensive explanation provided in Chapter 3. For feature extraction, a 

combination of Mod_AlexNet and the Multi-Head attention model is employed 

alongside HOG descriptors. By concatenating features with HOG descriptors, this 

integrated model acquires and fuses features, enhancing the model with relevant 

and complex features that are recognised for their robustness. This improves inter-

class discrimination by enriching class-specific information. Following feature fusion, 

three powerful feature selection methods (mRMR, chi-square, and f-test) are used to 

identify significant features, utilising the innovations presented by FFS-EC. 
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The selected features are then classified using five high-performing classifiers: SVM, 

NB, DT, FDA, and KNN, inspired by the significant improvements noticed in the 

results of the FFS-EC System. In addition, an ensemble model was employed to 

improve classification performance. Two predictions are generated by the ensemble 

model: classifier weights representing the F1-score weighted average and the 

specificity weighted average. The final multi-class prediction is obtained by 

combining these predictions—which come from applying three feature selection 

techniques—with a maximum voting ensemble model. The architecture of HMSA-

IVECM System is illustrated in Figure 10.1. 

Furthermore, every model in the tomosynthesis classification has distinctive 

advantages that add to its effectiveness. Robust feature extraction capabilities are 

provided by the Mod_AlexNet combined with the Multi-Head attention model, which 

captures complex patterns essential for precise classification. One of the key 

advantages of the self-attention mechanism within the HMSA-IVECM System is its 

ability to improve model interpretability. By generating attention heatmaps, the model 

can visually highlight areas within the tomosynthesis scans that are most influential 

in classification. In addition, HOG descriptors improve feature richness by capturing 

texture and shape information. The ensemble method combines different classifiers 

and takes advantage of the unique capabilities of each classifier to reduce 

weaknesses and improve classification performance. Model efficiency and 

interpretability are improved by feature selection approaches like MRMR, chi-square, 

and f test, which guarantee that only the most discriminative features contribute to 

the classification process. The use of multiple feature selection methods (mRMR, 

chi-square, and f-test) was designed to capture complementary information from the 

fused feature sets. This improves the richness of extracted features and reduces 

complexity of the feature set.  

Additionally, the ensemble model promotes cooperation amongst several 

predictions, utilising collective intelligence to improve the final classification decision 

and boosting the ability of the system to adapt and reliability. 
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Figure 10.1 Architecture of HMSA-IVECM System 



 

 
 

193 

An ensemble model specifically designed to improve the classification of abnormal 

classes—a critical component in the analysis of tomosynthesis scans—is presented 

in this work as a novel contribution. Two essential elements are introduced in this 

attempt by the research: class weights and classifier weights. These weights are 

used to indicate, respectively, the relative relevance of various classes in the 

classification task and the weights given to classifiers in the ensemble. This 

contribution utilises the stacking ensemble approach and analyses its methodology, 

which combines the predictions of several base classifiers. The goal of this 

technique is to overcome the weaknesses of individual classifiers and improve 

overall predicted accuracy and robustness by combining the outputs of different 

classifiers via a meta-classifier. 

Using a hierarchical architecture, the stacking ensemble model consists of several 

layers of classifiers cooperating to generate predictions. Using the given training 

dataset, a varied ensemble of base classifiers is trained to begin the process. Each 

base classifier is trained on the same subset of the data. Due to the complex nature 

of tomosynthesis data, where different abnormalities exhibit distinctive properties 

that are well recorded by diverse classifiers, this diversity is especially important for 

tomosynthesis scan classification. The trained base classifiers then produce 

predictions for all cases in the validation set on their own. These predictions serve as 

input features for the meta-classifier, which is tasked with integrating them optimally 

to produce the final prediction 

In this chapter, class and classifier weights are developed and applied to provide a 

new contribution over the traditional ensemble model. By adding more precise 

weight assignments for classifiers and classes, this development attempts to 

increase the efficacy of classification. Specifically, the introduction of class weights 

addresses the common issue of class imbalance in the dataset under consideration. 

Given the unbalanced distribution of normal, benign, and malignant cases, adjusted 

class weights help to correct the imbalance by giving more weight to 

underrepresented classes. By making this strategic change, the discriminative 

abilities of the ensemble classifier are strengthened, and every class is guaranteed 

to have an equal impact on its decision-making process. 
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The corresponding lack or abundance of images within each class is carefully 

considered while determining class weights. Classes that have a few instances are 

given larger weights to make up for their underrepresentation, which guarantees that 

they contribute fairly to the decision-making of the ensemble classifier. By enabling 

the ensemble classifier to adjust to the different class dominance in the dataset, this 

adaptive weighting technique reduces the negative effects of class imbalance and 

promotes more fair and clinically meaningful predictions. A critical step in resolving 

class imbalance in multi-class datasets is the determination of class weights using a 

prescribed formula: 

𝑤' =	
;/

;2∗	;/!
 (10.1) 

Where 𝑤' denotes the weight assigned to each class, with 𝑖 representing the specific 

class. The numerator 𝑛9 denotes the total number of samples in the dataset, 

providing a measure of the overall size of the dataset. Conversely, 𝑛8 indicates the 

total number of unique classes within the target variable, illustrating the diversity of 

classes present in the dataset. Finally, 𝑛9' signifies the total number of instances 

associated with the respective class 𝑖. Based on class frequency in relation to 

dataset size, this formula works by inversely changing weights. The model achieves 

increased sensitivity to the unique features of every class by assigning higher 

weights to classes with fewer instances and lower weights to those with greater 

representation. This promotes a more balanced learning process. 

Following the assignment of class weights to each prediction, these predictions are 

fed into a meta classifier, representing a substantial advancement in multi-class 

classification approaches. This novel method creates a complex mechanism for 

producing weighted results by combining classifier predictions with performance 

measurements like specificity and the F1 score. The F1 score provides a 

comprehensive assessment of classifier performance as a composite of precision 

and recall, while specificity measures the ability to correctly detect TNs. Through the 

integration of these performance indicators into the weighting scheme, the meta 

classifier enhances the predictive accuracy by giving more weight to predictions 

made by classifiers with higher F1 scores and specificity. 
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This innovative contribution has significant implications for the field of multi-class 

classification challenges. Through the combined use of performance indicators and 

classifier predictions, the meta classifier presents a new framework for decision-

making. It enables the combining of weighted predictions from several classifiers for 

each class, therefore utilising the collective intelligence embedded in various 

prediction techniques. Moreover, this methodology has remarkable flexibility and can 

be easily integrated with a wide range of classifiers, which allows the development of 

ensemble models that take use of the various benefits of individual classifiers while 

also efficiently addressing their limitations. 

The final phase of this methodology involves implementing a majority voting 

ensemble model into use, which is a critical step in improving prediction accuracy. 

This method involves adding together the predictions generated by every base 

classifier and feature selection model and then selecting the class label that receives 

the most votes as the final prediction. This ensemble model follows an equal 

decision-making procedure in which every prediction is given the same weight in 

deciding the final classification result. When the ensemble model receives 

predictions, it methodically accumulates the votes for each class label across all 

predictions before selecting the label with the highest vote count as the final 

prediction. Figure 10.2 provides an architectural representation of this newly 

developed Integrated Voting Ensemble Classification Model, IVECM, which is an 

important contribution. 

Figure 10.2 demonstrates the integration process within the classification system. 

Three distinct feature selection models generate classifier outputs that are fed into a 

class weight model, which assigns a weight to each prediction based on its class. 

These weighted predictions are then fed into a meta classifier, which gives each 

classifier output two weights. These weights indicate the f1-score and specificity, 

respectively. Furthermore, each feature selection model provides two predictions: 

one based on the f1-score for each classifier, and another based on the specificity 

score. To get to the final prediction, the output of the meta classifier is fed into a 

maximum voting model. 
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Figure 10.2 Architecture of the IVECM 

The proposed meta classifier has many benefits over traditional stacked ensemble 

models, which mostly use methods like voting or averaging to combine base 

classifier outputs. Most importantly, it makes sure that predictions are carefully 

weighted based on classifier confidence and performance by integrating 

performance measures into the weighting system. This leads to better informed 

decision-making processes. Moreover, having the ability to combine many classifiers 

and performance indicators allows for more precise control over the weighting 

procedure, which results in predictions that are noticeably more accurate and 

consistent. To sum up, the development of this meta classifier is a major 

advancement, providing an improved prediction accuracy. To simplify the ensemble 

model for clinical implementation, a weighted average voting system was employed, 

where classifiers with higher specificity and F1 scores were given greater influence 

in the final prediction. This ensures that the ensemble output reflects the strengths of 

individual classifiers while minimizing inconsistencies. The model can also be pruned 

to reduce complexity by limiting the number of base classifiers without sacrificing 

predictive accuracy. A simplified version of the ensemble could improve adoption in 

clinical settings while maintaining high diagnostic performance. 

The following section outlines the implementation, the results that followed, and their 

discussion regarding HMSA-IVECM System. This section provides a thorough 

explanation of how the system was deployed, describes the outcomes that were 

achieved, and dives deeply into the evaluation and interpretation of these results. 



 

 
 

197 

10.3  Results and Discussion 
In this study, the HMSA-IVECM System is evaluated, with a focus on the concluding 

contribution, the ensemble model. This section includes a thorough examination of 

the results obtained from the deployment of HMSA-IVECM System. A 

comprehensive evaluation was carried out to determine the efficacy of the integration 

of the ensemble model with Mod_AlexNet, the developed Attention Model, feature 

fusion, and feature selection methods. Performance metrics like the F1 score, 

sensitivity, specificity, precision, and accuracy were all included in the analysis. The 

performance of the HMSA-IVECM System was compared to that of MA, FFS-EC and 

MHMA Systems. A t-test and Cohen's d were used to determine the statistical 

significance of any observed improvements. 

The initial stage of this system consisted of integrating the HOG descriptors with 

features extracted from the developed Attention Model, which corresponds to MHMA 

System. Concatenation was used as the integration method in this fusion procedure. 

Table 10.1 Performance Assessment of HMSA-IVECM System fusing Features from 
SelfAttention_ModAlexNet and HOG Descriptors Across Multiple Classifiers 

Different integrated contexts Classifier 
Performance Measure 

Accuracy Sensitivity/Recall Precision Specificity F1-
Score 

SelfAttention_ModAlexNet training on SGDM 90.99% 90.99% 91.98% 51.99% 91.26% 

Feature Fusion with HOG 
descriptors 

NB 90.89% 90.89% 93.55% 53.55% 91.40% 

SVM 90.35% 90.35% 93.64% 55.04% 91.12% 

DT 89.66% 89.66% 92.19% 54.39% 90.58% 

FDA 92.69% 92.69% 92.59% 47.87% 92.41% 

KNN 90.80% 90.80% 93.40% 54.05% 91.40% 

 

The performance evaluation of HMSA-IVECM System is shown in Table 10.1, where 

several classifiers were employed to fuse features extracted from the 

SelfAttention_ModAlexNet with HOG descriptors. With corresponding classifiers and 

performance metrics such as accuracy, sensitivity/recall, precision, specificity, and 

F1-Score, each row represents a unique integrated context. 

When comparing the performance of MHMA System (SelfAttention_ModAlexNet) 

with that of the fusion system that combines features extracted from the MHMA 
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System with HOG descriptors for several classifiers, as can be seen by examining 

Table 10.1, a significant improvement in the specificity measure is seen for all 

classifiers except for the FDA classifier. The FDA classifier, in particular, reported the 

lowest specificity rate of 47.87% and the highest accuracy rate of 92.69%, 

demonstrating that it was more effective in classifying normal cases than abnormal 

ones. Further investigation demonstrated that the performance of the NB, SVM, and 

KNN classifiers followed similar patterns, with minor differences. Remarkably, the 

SVM classifier achieved the greatest precision rate of 93.64% and the highest 

specificity rate of 55.04%, outperforming the NB classifier. On the other hand, the 

F1-Score that the KNN and NB classifiers achieved was 91.40%, which is the 

second highest of all the classifiers. The DT classifier additionally demonstrated the 

lowest accuracy rate of 89.66%, the second-highest specificity rate of 54.39%, the 

precision rate of 92.19%, and an F1-Score of 90.58%. Overall, the results highlight 

the accuracy of the employed classifiers. A comparison with the performance of the 

MHMA System indicates that the fusion model greatly improves measures of 

specificity and precision, allowing for more accurate classification of abnormal cases. 

In order to reduce the feature set and enhance performance, three feature selection 

techniques—MRMR, chi-square test, and f-test—were assessed after the features 

were fused. Tables 10.2, 10.3, and 10.4 in this chapter present the results of the 

comparative analysis of several classifiers. 

Table 10.2 Performance Evaluation of HMSA-IVECM System Employing the MRMR 
Feature Selection Model with Various Classifiers 

Different integrated contexts Classifier Performance Measure 
Accuracy Sensitivity/Recall Precision Specificity F1-Score 

SelfAttention_ModAlexNet training on SGDM 90.99% 90.99% 91.98% 51.99% 91.26% 

Feature Selection (MRMR) 

NB 89.16% 89.16% 91.03% 50.36% 89.94% 

SVM 90.41% 90.41% 93.73% 55.07% 91.16% 

DT 89.23% 89.23% 92.31% 57.15% 90.37% 

FDA 92.99% 92.99% 92.82% 45.17% 92.54% 

KNN 93.10% 93.10% 93.81% 53.88% 92.97% 
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After evaluating the performance metrics for each classifier in Table 10.2, it appears 

that the SVM and KNN classifiers often outperform the others across a variety of 

measures. With a precision of 93.73%, accuracy of 90.41%, sensitivity of 90.41%, 

specificity of 55.07%, and F1-score of 91.16%, the SVM classifier performs 

optimally. Comparably, the KNN classifier performs well on all metrics, with the best 

accuracy of 93.10% and a remarkable F1-score of 92.97%. On the other hand, the 

F1-score values and accuracy of the NB and DT classifiers are relatively lower, 

indicating possible limitations in their classification skills. The DT classifier performs 

worse than SVM and KNN in terms of accuracy (89.23%) and precision (92.31%), 

although having a comparatively high specificity (57.15%). On the other hand, its F1-

score and sensitivity/recall values are similar to those of SVM, suggesting that it can 

accurately recognise both positive and negative examples. In contrast, the accuracy 

(89.16%) and precision (91.03%) of the NB classifier are lower than those of SVM 

and KNN. On the other hand, NB has comparable sensitivity/recall values to SVM, 

suggesting that it can recognise genuine positive cases. In contrast to SVM and 

KNN, NB has a lower specificity (50.36%), which raises the possibility of FPs. The 

FDA classifier, only records 45.17% in terms of specificity, suggesting a larger 

number of FPs, even though it achieves the highest total accuracy of 92.99%.  

The results presented in Table 10.3, which outline the performance evaluation of 

HMSA-IVECM System after implementing the Chi-square test feature selection 

model with various classifiers, show that the performance of each classifier varies 

slightly across different performance measures. 

Table 10.3 Performance Evaluation of HMSA-IVECM System Employing the Chi-Square 
test Feature Selection Model with Various Classifiers 

Different integrated contexts Classifier 
Performance Measure 

Accuracy Sensitivity/Recall Precision Specificity F1-
Score 

SelfAttention_ModAlexNet training on SGDM 90.99% 90.99% 91.98% 51.99% 91.26% 

Feature Selection (Chi-Square test) 

NB 91.12% 91.12% 93.49% 53.19% 91.57% 

SVM 90.44% 90.44% 93.66% 55.43% 91.18% 

DT 89.23% 89.23% 92.31% 57.15% 90.37% 

FDA 92.77% 92.77% 92.51% 47.09% 92.41% 

KNN 91.39% 91.39% 93.41% 53.47% 91.77% 
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Firstly, the accuracy rate of 91.12% for the NB classifier shows a marginal 

improvement over the baseline performance of the HMSA-IVECM System. This is a 

slight improvement in the accurate classification of cases. Furthermore, NB shows a 

higher precision of 93.49%, suggesting a better ability to correctly classify positive 

cases. However, the sensitivity/recall achieved 91.12% along with this improvement 

in accuracy. In addition, the specificity of the NB classifier shows a slight 

improvement to 53.19%, indicating a stronger capacity to accurately detect negative 

instances. With improvements in both precision and specificity. The SVM classifier 

achieves an accuracy of 90.44%. Additionally, the SVM classifier shows a higher 

precision of 93.66%, suggesting an improved capacity to correctly categorise 

positive cases. Furthermore, the specificity of the SVM classifier registers at 55.43%, 

indicating an improvement in its capacity to accurately detect TN cases. The SVM 

classifier performs well overall, showing improvements in specificity and precision 

but a little drop in sensitivity. The DT classifier, and at 89.23%, it performs close to 

baseline accuracy of the HMSA-IVECM System. In spite of this, the DT classifier 

shows a higher precision of 92.31%, suggesting a more advanced capacity to 

correctly categorise positive cases. Furthermore, the highest specificity is achieved 

by the DT classifier at 57.15%, suggesting that it can reliably detect TN cases. On 

the other hand, the accuracy of the FDA classifier has significantly improved to 

92.77%, indicating a minor improvement in accurately identifying cases. Additionally, 

the specificity of the FDA classifier drops to 47.09%, indicating a decreased ability to 

accurately detect real negative cases. The FDA classifier yields mixed results 

overall, increasing accuracy but decreasing specificity. Finally, the KNN classifier 

has a higher precision of 93.41%, demonstrating an improved capacity to correctly 

categorise positive cases. Additionally, the specificity of the KNN classifier shows a 

minor improvement to 53.47%, indicating a stronger capacity to accurately classify 

abnormal cases. Overall, the KNN classifier performs well, with increased 

accuracy, precision, specificity and f1-sccore. 

Table 10.4 presents the results of the evaluation of performance of the HMSA-

IVECM System following the incorporation of the f-test feature selection model with 

various classifiers. The results show that the performance of each classifier varies 

somewhat across several performance indicators. 
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Table 10.4 Performance Evaluation of HMSA-IVECM System Employing the f-test Feature 
Selection Model with Various Classifiers 

Different integrated contexts Classifier Performance Measure 
Accuracy Sensitivity/Recall Precision Specificity F1-Score 

SelfAttention_ModAlexNet training on SGDM 90.99% 90.99% 91.98% 51.99% 91.26% 

Feature Selection (f-test) 

NB 88.62% 88.62% 90.87% 50.19% 89.56% 

SVM 90.38% 90.38% 93.61% 54.40% 91.12% 

DT 88.39% 88.39% 92.87% 57.98% 90.02% 

FDA 92.54% 92.54% 92.66% 48.10% 92.34% 

KNN 93.55% 93.55% 93.87% 53.74% 93.31% 

 

There is a noticeable drop in accuracy from the baseline, starting with the NB 

classifier, dropping from 90.99% to 88.62%. With 90.87% precision after feature 

selection, it is still comparatively high. Significantly, specificity has decreased from 

51.99% to 50.19%, suggesting a possible loss in accurately categorising negative 

cases. The F1-Score holds at 89.56% despite these adjustments. The SVM classifier 

exhibits performance that is essentially in line with the baseline, with the exception of 

a minor drop in accuracy from 90.99% to 90.38%. Precision improves significantly to 

93.61%, indicating enhanced discriminatory power. Furthermore, the specificity has 

improved marginally from the baseline to 54.40%. As a result, at 91.12%, the F1-

Score is comparatively unchanged. With regard to the DT classifier, accuracy is 

comparable to that of NB, indicating a minor decline from the baseline to 88.39%. 

Similar to NB, sensitivity is still at 88.39%. Nevertheless, DT attains 92.87% 

precision after feature selection, which is greater than the baseline model. Most 

remarkably, the specificity of the DT classifier, which rises to 57.98%, improves 

significantly when compared to the baseline and other classifiers. With an accuracy 

of 92.54%, FDA outperforms the baseline model. With a precision of 92.66% and 

sensitivity of 92.54%, the performance is balanced. Specificity, which dropped to 

48.10%, is noticeably lower than that of the baseline and other classifiers. Even yet, 

the F1-Score, at 92.34%, indicating the increase of normal cases classification over 

the classification of abnormal classes. Finally, with a significant improvement to 

93.55%, the KNN classifier attains the greatest accuracy of all the 

classifiers. Furthermore, KNN achieves a high precision of 93.87% in post-feature 

selection. Additionally, specificity increased somewhat from the baseline to 53.74%. 
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As a result, the outstanding overall performance of the KNN classifier is reflected in 

the F1-Score, which is 93.31%. In summary, FDA and KNN demonstrate 

high accuracy and precision, despite the fact that the performance of each classifier 

varies across different criteria. Significant improvements in specificity show that DT 

is useful for accurately classifying negative cases. 

The ensemble model is deployed intentionally following the proposed feature 

selection model, which demonstrates a logical strategy to improving prediction 

precision. As explained in the IVECM, its structure consists of two key phases that 

are highly linked: class weight assignment and classifier weight assignment. This 

phase is crucial because it establishes the relative weights assigned to various 

classes and classifiers, which in turn affects the decision-making process that 

follows. After these steps are carefully carried out, the ensemble model produces 

two important performance metrics, which are calculated meticulously for each 

classifier: the maximal voting F1-score measure and the maximal voting specificity 

measure. To ensure an accurate evaluation of the discriminative abilities of the 

model, the maximal voting specificity metric provides information regarding the ability 

of the model to correctly detect real negatives. Conversely, the maximal voting F1-

score measure provides a thorough assessment of the predictive effectiveness of the 

model by encapsulating both accuracy and recall performance. 

By combining the performance of each classifier with an intelligent combination to 

minimise the limitations of each one, these methods conclude in the development of 

a maximal voting stacking ensemble model. The objective of the ensemble model is 

to outperform any single classifier in terms of prediction by utilising the combined 

knowledge of several classifiers. Notably, the effectiveness of the ensemble model is 

emphasised by the results presented in Table 10.5, which provide conclusive proof 

of its predictive analytics capabilities. 

A thorough examination of the performance of the ensemble model in multiple 

integrated contexts, as shown in Table 5, provides significant insights into how the 

performance of different feature selection techniques affect predictive power. All 

configurations are carefully analysed, considering important performance indicators 

like F1-score, accuracy, precision, sensitivity/recall, and highlight comparative 

analyses.  
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Starting with the ensemble configurations that are integrated with the mRMR feature 

selection approach, accuracy increases slightly to 91.76%, while precision, 

specificity, and F1-score all increase as well. Significantly, the specificity rises to 

53.97%, indicating higher TN detection than the baseline configuration. Comparable 

performances are also shown by ensemble models that use the f-test and Chi-

Square feature selection techniques, with accuracies of 91.69% and 91.12%, 

respectively. These configurations highlight the effectiveness of these feature 

selection strategies in improving the discriminative abilities of the model by 

demonstrating increases in accuracy, specificity, and F1-score. Slight differences 

can be seen when specificity is compared in detail. Chi-

Square achieves higher specificity, at 53.67%, closely followed by the f-test, at 

53.52%. 

Table 10.5 Performance Evaluation of the ensemble model 

Different integrated contexts Performance Measure 
Accuracy Sensitivity/Recall Precision Specificity F1-Score 

SelfAttention_ModAlexNet training on 
SGDM 90.99% 90.99% 91.98% 51.99% 91.26% 

Ensemble for MRMR 
F1 91.76% 91.76% 93.31% 53.42% 92.02% 

Specificity 91.30% 91.30% 93.15% 53.97% 91.72% 

Ensemble for Chi-Square 
F1 91.12% 91.12% 93.35% 53.10% 91.58% 

Specificity 91.07% 91.07% 93.39% 53.67% 91.57% 

Ensemble for f-test 
F1 91.69% 91.69% 93.37% 53.42% 91.99% 

Specificity 91.23% 91.23% 93.39% 53.52% 91.69% 

Final Ensemble 90.13% 90.13% 92.77% 62.20% 91.03% 

 

The combined strength provided by ensemble modelling is further illuminated 

through a thorough comparative study between the 'Final Ensemble' configuration 

and the performance of each classifier using each feature selection method. Even 

though individual configurations might perform better in some metrics—like accuracy 

or precision—the 'Final Ensemble' demonstrates a balanced performance across a 

number of parameters, highlighting its strength and adaptability. For example, the 

'Final Ensemble' achieves an accuracy of 90.13%, whereas the MRMR ensemble 

model achieves a slightly higher accuracy of 91.76%. The 'Final Ensemble' performs 
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significantly better than the MRMR model in terms of specificity, though, with a 

specificity of 62.20% as opposed to 53.97% for the MRMR model. Comparable to 

the "Final Ensemble" in terms of accuracy, the specificity values of the Chi-Square 

and f-test ensemble models are noticeably lower. To be more precise, the f-test 

ensemble model obtains an accuracy of 91.69% and a specificity of 53.52%, 

whereas the Chi-Square ensemble model achieves an accuracy of 91.12% and 

73.67%. The final Ensemble scores 91.03% and 92.77% in precision and recall, 

respectively, indicating a well-balanced performance. This comprehensive 

comparison highlights the thorough methodology of the ‘Final Ensemble’, which 

incorporates learnings from the diverse performance of various classifiers using 

multiple feature selection strategies. As a result, an extensive predictive model with 

exceptional overall predictive performance is generated.  

The final ensemble model is most effective at prediction, especially when it comes to 

how well it performs in terms of specificity compared to the other models at the same 

accuracy level. This differentiation is evidence of the meticulous blending of various 

feature selection methods and classifier performances within the ensemble 

framework. The final ensemble model exhibits a surprising capacity to identify real 

negatives, as indicated by its better specificity measure, even if it achieves similar 

accuracy levels to other models. This resulted in a comprehensive predictive model 

that could provide reliable and precise predictions in a variety of scenarios, 

highlighting the skill of the ensemble model in reducing the shortcomings of 

individual classifiers and feature selection techniques. An achievement like this 

confirms the effectiveness of ensemble modelling and shows how 

it improves prediction precision in scenarios where specificity is crucial. 

Table 10.6 Comparative Analysis of the Performance of the Five Systems 

Systems Performance Measure 
Accuracy Sensitivity/Recall Precision Specificity F1-Score 

DE System 89.60% 89.60% 87.17% 21.43% 88.34% 

MA System 91.61% 91.61% 88.16% 23.91% 89.57% 

FFS-EC 94.91% 94.91% 94.90% 43.07% 93.79% 

MHMA System 90.99% 90.99% 91.98% 51.99% 91.26% 
HMSA-IVECM 

System 90.13% 90.13% 92.77% 62.20% 91.03% 
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The comparative study in Table 10.6 of the performance of the five systems shows 

distinctive patterns regarding a number of performance indicators. It attains an 

accuracy of 89.60%, indicating a balanced sensitivity/recall of 89.60%, starting with 

DE System. Still, at 87.17% and 21.43%, respectively, precision and specificity are 

relatively low. By comparison, MA System has a somewhat greater precision but a 

higher accuracy of 91.61% with comparable sensitivity/recall. Nevertheless, DE 

System and MA System both display noticeably low specificity values, suggesting 

possible limits in accurately detecting real negatives. The accuracy of FFS-EC has 

significantly improved to 94.91%, and its precision, specificity, and sensitivity/recall 

measures are all balanced. This implies that, in comparison to DE and MA Systems, 

FFS-EC System performs more comprehensively. However, the specificity, at 

43.07%, is still somewhat low despite the excellent accuracy and precision. MHMA 

System has a greater precision of 91.98% but an accuracy of 90.99%, close to the 

accuracy of the MA System. Even still, at 51.99%, its specificity is still very low. 

Finally, HMSA-IVECM System achieves the second highest precision of 92.77% and 

an accuracy of 90.13%. Furthermore, it outperforms all other systems in terms of 

specificity, achieving 62.20%. Even though the accuracy of the HMSA-IVECM 

System is marginally lower than that of MA System and MHMA System, it is far 

better at identifying real negatives. 

Table 10.7 Assessment of Performance Metrics and Statistical Significance of 
Enhancement via Cohen's d and T-test: HMSA-IVECM System Compared to DE, 
MA, FFS-EC, and MHMA Systems 

System 
Cohen's d: T-test (p) 

Measure Significance Measure Significance 

DE System 0.4328 Medium 0.2651 No Significance 

MA System 0.3615 Medium 0.3364 No Significance 

FFS-EC System 0.050064 Small 0.84803 No Significance 

MHMA System 0.11726 Small 0.44165 No Significance 

 

A thorough analysis of performance measures and statistical significance related to 

the improvement that HMSA-IVECM System obtained over DE, MA, FFS-EC, and 

MHMA Systems is provided in Table 10.7. The evaluation uses the T-test 
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significance testing and Cohen's d significance measure to measure and validate the 

observed performance variations across different systems.  

In comparison to DE System, HMSA-IVECM System has a notable Cohen's d value 

of 0.4328, indicating a medium impact size. This indicates a significant performance 

difference, but the corresponding T-test produces a p-value of 0.2651, indicating 

statistical insignificance. However, it is important to note that the impact size still 

indicates a significant improvement in HMSA-IVECM System over DE System. In 

comparison to HMSA-IVECM System, MA System shows an acceptable Cohen's d 

value of 0.3615, indicating a medium impact size. Although the impact size is 

significant, the T-test yields a non-significant p-value of 0.3364. Once more, the 

impact size indicates a significant improvement of HMSA-IVECM System over MA 

System. 

In comparison with DE and MA Systems, HMSA-IVECM System exhibits a much 

lower Cohen's d value of 0.050064, suggesting that its improvement impact is 

smaller compared to FFS-EC. As a result, the corresponding T-test yields a high p-

value of 0.84803. This comparison confirms that HMSA-IVECM System is superior to 

FFS-EC even with the small significance effect size. Compared to MHMA System, 

HMSA-IVECM System exhibits a Cohen's d value of 0.11726, indicating a smaller 

impact size. This improvement, nevertheless, the T-test results in a non-significant p-

value of 0.44165. The effect size indicates that HMSA-IVECM System is significantly 

better than MHMA System even though there is no statistical significance.  

In summary, the significant effect sizes consistently show that HMSA-IVECM System 

is superior to DE, MA, FFS-EC, and MHMA Systems even though statistical 

significance may not be reached consistently across comparisons. In conclusion, 

even if the T-test findings for DE, MA, FFS-EC, and MHMA Systems might not all 

reach conventional significance thresholds, each test offers important proof of the 

importance of the improvement of the HMSA-IVECM System over the corresponding 

comparative systems. The reason for superiority of the HMSA-IVECM System in this 

situation is supported by the constant trends of the comparisons towards 

significance. 
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To compare the system with other studies using the same dataset, the system was 

retrained for binary classification, implementing two scenarios: one that classifies 

images as either normal or abnormal, with the abnormal class including both benign 

and malignant cases, and another that classifies images as cancerous or non-

cancerous, with non-cancerous encompassing both benign and normal cases. These 

scenarios were chosen to ensure a fair comparison with other studies, as some 

classify as either normal and abnormal, while others classify them as cancerous and 

non-cancerous. 

The results of the two binary classification scenarios is shown in Table 10.8. In 

scenario 1, images were classified as normal or abnormal, with both benign and 

malignant cases included in the abnormal class, and the system achieved a 

remarkable accuracy of 94.53%. This signifies the ability of the system in the 

classification of images across a range of abnormalities. On the other hand, 

Scenario 2 achieved a lower accuracy of 93.81%, where images were classified as 

cancerous or non-cancerous, with non-cancerous including both benign and normal 

classes. Moreover, Scenario 2 exhibits an impressive precision of 99.60%, while 

Scenario 1 achieves a slightly lower precision of 98.20%. Notably, Scenario 2 also 

achieves a higher specificity of 87.20% compared to Scenario 1.  

The superior performance of Scenario 2 can be attributed to its clear distinction 

between normal/benign and malignant cases. By separating these classes, the 

classification system focuses more precisely on the identification of features specific 

to malignancy, leading to better classification performance. On the other hand, the 

combination of benign and malignant cases into a single class in Scenario 1 may 

have introduced ambiguity and make it more challenging for the classification model. 

Numerous studies have investigated the classification of DBT scans using the BCS-

DBT dataset. However, a common trend among these studies is the integration of 

            
Scenario Accuracy Sensitivity/Recall Precision Specificity F1-Score 

Scenario 1 94.53% 95.83% 98.20% 79.03% 97.00% 

Scenario 2 93.81% 94.01% 99.60% 87.20% 96.72% 

      
 
 

 
 
Table 10.10 Performance Evaluation of Binary Classification Scenarios: Differentiating Normal vs. Abnormal and Cancerous 
vs. Non-Cancerous Images 

 

Table 10.8  Performance Evaluation of Binary Classification Scenarios: Differentiating 
Normal vs. Abnormal (Scenario 1) and Cancerous vs. Non-Cancerous(Scenario 2) 
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selected subsets from the BCS-DBT dataset with private DBT datasets, potentially 

introducing variability in the results. Furthermore, classification strategies varied 

among studies, with some classifying images as benign versus malignant, while 

others distinguished between normal versus abnormal cases, where "abnormal" 

included both benign and malignant classifications. Additional approaches included 

differentiating among normal, benign, and malignant categories, or classifying 

images as cancerous versus non-cancerous, with the non-cancerous category 

encompassing both benign and normal cases.  

 To address this challenge, multiple iterations of the system were conducted to 

ensure a fair comparison. When comparing the results with studies that integrated 

private datasets, the same data subset was used, and the classification approach 

was modified accordingly. The system was executed in three distinct configurations: 

first, for multi-class classification into normal, benign, and malignant categories; 

second, for a binary classification of normal versus abnormal, with "abnormal" 

encompassing both benign and malignant cases; and third, for the classification of 

cancerous versus non-cancerous instances, where "non-cancerous" included both 

benign and normal cases. Our system was tested in three previously mentioned 

configurations, and the results are presented and compared with previous work in 

Tables 10.9, 10.10, and 10.11. 

Author/Year Accuracy Sensitivity/Recall Precision Specificity F1-Score 

Our System (HMSA-IVECM) 90.13% 90.13% 92.77% 62.20% 91.03% 

Nogay, Akinci, and Yilmaz, (2021)  75.00%         

 

Table 10.9 shows that our system outperformed the model by Nogay, Akinci, and 

Yilmaz (2021) in the multi-class classification, achieving 90.13% accuracy compared 

to their 75.00%. This improvement is due to the use of a more advanced 

architecture, specifically the multi-head self-attention mechanism and ensemble 

classification model, which enhanced feature extraction and combined the strengths 

of multiple classifiers. In contrast, Nogay et al. (2021) relied on pre-trained DCNNs 

Table 10.9 Results of Multi-Class Classification for Normal, Benign, and Malignant Classes 
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with transfer learning, which may have been less suited to capturing the complexities 

of DBT images. As a result, our system demonstrated superior performance in multi-

class classification tasks. 

Table 10.10 Results of Classification for Cancerous versus Non-Cancerous Classes 

Author/Year Accuracy Sensitivity/Recall Precision Specificity F1-Score AUC 

Our System (HMSA-IVECM) 93.81% 94.01% 99.60% 87.20% 96.72%  0.91 

Tardy and Mateus (2021)       0.73 

Nogay, Akinci, and Yilmaz, (2021)  86.00%      

Bai et al. (2022)  84.00% 84.00% 86.00%  83.00%  

Adhikesaven et al. (2022)  97.25%      

Bai et al. (2022) 92.00% 93.00% 91.00% 91.00% 92.00%   

 

In comparing the results from Table 10.10 for the classification of cancerous versus 

non-cancerous cases, the performance metrics of various systems reflect different 

strengths. Our system achieved an accuracy of 93.81%, a sensitivity of 94.01%, a 

high precision of 99.60%, and a specificity of 87.20%, with an F1-score of 96.72% 

and an AUC of 0.91. These metrics indicate that our multi-head self-attention and 

ensemble classification model is highly effective, particularly in precision and F1-

score, demonstrating its strength in accurately identifying cancerous cases while 

maintaining a balanced ability to distinguish non-cancerous instances. 

In contrast, the study by Tardy and Mateus (2021) reported an AUC of 0.73. Their 

approach, while novel with a deep multiple-instance-based learning model and 

trainable summarization for DBT, had lower overall performance, likely due to the 

complexity of processing DBT images and their reliance on a private multi-vendor 

dataset, which may have introduced variability in results. 

Nogay, Akinci, and Yilmaz (2021) reported an accuracy of 86.00%. Their use of pre-

trained DCNNs with transfer learning for binary classification proved effective but did 

not reach the precision or specificity levels achieved by our system. Their 

methodology, which leveraged classical DCNN architectures like AlexNet and 

ResNet, lacked the advanced attention mechanisms and feature extraction 

techniques incorporated in our model. 
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Bai et al. (2022) demonstrated accuracies of 84.00% and 92.00%, depending on the 

experiment, with sensitivity reaching 93.00%. Their approach used graph 

convolutional networks, which proved useful but did not match the precision or 

specificity of our system, likely due to differences in how features were integrated 

and selected for final classification. 

In the study by Bai et al. (2022), the feature fusion Siamese network achieved strong 

performance metrics, including an accuracy of 92.00%, sensitivity of 93.00%, 

precision of 91.00%, specificity of 91.00%, and an F1-score of 92.00%. These 

results can be attributed to their innovative approach of comparing both current and 

prior mammogram images, mimicking the workflow of radiologists in detecting subtle 

changes over time. The Siamese network model, combined with their distance 

learning technique, allowed for better feature extraction and comparison between 

images, improving classification. 

Lastly, Adhikesaven et al. (2022) achieved the highest accuracy of 97.25%, using a 

CNN specifically designed for early breast cancer detection. Despite this impressive 

accuracy, the lack of reported precision and specificity makes it difficult to directly 

compare with our model, which balances high precision and specificity while 

maintaining strong overall performance. 

Table 10.11 Results of Classification for Normal versus Abnormal Classes 

Author/Year Accuracy Sensitivity/Recall Precision Specificity F1-Score AUC 

Our System (HMSA-IVECM) 94.53% 95.83% 98.20% 79.03% 97.00% 0.87  

Du et al. (2024)   84.62%  84.15%  0.92 

Fogleman, Otsap, and Cho (2021) 94.90%           

 

In comparing the results from Table 10.11 for the classification of normal versus 

abnormal cases, our system achieved a high accuracy of 94.53%, with a sensitivity 

of 95.83%, precision of 98.20%, specificity of 79.03%, an F1-score of 97.00%, and 

an AUC of 0.87. In contrast, Du et al. (2024) reported an accuracy of 84.62% and an 

AUC of 0.92. While Du et al. employed a novel self-supervised initialization and fine-

tuning strategy (SIFT-DBT) for imbalanced data, their lower accuracy compared to 
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our system may be attributed to the challenges of addressing data imbalance using 

their patch-level multi-instance learning approach. 

Similarly, Fogleman, Otsap, and Cho (2021) achieved an accuracy of 94.90%, which 

is slightly higher than ours. Their system utilized transfer learning with partial 

Inception v3 architecture, which helped achieve strong results. However, the other 

performance metrics of their model, such as specificity and precision, were not 

reported, limiting the depth of comparison. Overall, the balance between precision, 

specificity, and F1-score in our system highlights its robustness in classifying normal 

versus abnormal cases, surpassing the approach of Du et al. while performing 

comparably in terms of accuracy to Fogleman et al. 

Only a limited number of researchers have developed systems utilizing solely the 

BCS-DBT subset without incorporating private datasets. In comparisons with studies 

that exclusively used the BCS-DBT dataset, the same data utilized by those 

researchers was adopted, and the system was adjusted to align with their 

classification models, which primarily focused on distinguishing between benign and 

malignant cases. Several scenarios were considered to ensure that the comparisons 

and validations were conducted fairly. The results are presented in Tables 10.12, 

10.3, and 10.4. 

Table 10.12 Comparison of Classification Results for Benign vs Malignant Cases Using the 
BCS-DBT Dataset only (Scenario 1) 

Author/Year Accuracy Sensitivity/Recall Precision Specificity F1-Score 

Our System (HMSA-IVECM) 91.09% 92.74% 88.49% 89.73% 90.45% 

Hassan et al. (2022)  80.43%     

Hassan et al. (2024)  85.00% 90.00% 84.10%   86.90% 

 

In comparing the results for Table 10.12, our system achieved an accuracy of 

91.09%, with a sensitivity of 92.74%, precision of 88.49%, specificity of 89.73%, and 

an F1-score of 90.45%. These performance metrics indicate that our system 

effectively classified benign and malignant cases, showing a strong balance between 

sensitivity and specificity. In contrast, Hassan et al. (2022) reported a lower accuracy 

of 80.43%. Their approach focused on deep learning-based radiomics with SVM 



 

 
 

212 

classification, which, while effective, was likely limited by the ability of their model to 

extract comprehensive features from the DBT dataset. The reliance on a smaller 

training dataset and the application of traditional machine learning techniques like 

SVM may have restricted the performance of the model. 

In their subsequent work, Hassan et al. (2024) achieved improved accuracy at 

85.00%, with a sensitivity of 90.00%, precision of 84.10%, and an F1-score of 

86.90%. The improvement can be attributed to the introduction of image quality-

aware features and tumour texture descriptors, which enhanced feature extraction 

and classification. However, the system still underperformed compared to ours, likely 

due to the lack of an ensemble model and advanced attention mechanisms that are 

central to the HMSA-IVECM system. Overall, our system outperformed both versions 

of the models by Hassan. 

Table 10.13 Comparison of Classification Results for Benign vs Malignant Cases Using the 
BCS-DBT Dataset only (Scenario 2) 

Author/Year Accuracy Sensitivity/Recall Precision Specificity F1-Score 

Our System (HMSA-IVECM) 91.24% 91.35% 89.69% 91.14% 90.40% 

Farangis Sajadi Moghadam and Rashidi 
(2023)  88.67% 77.12%  75.11%  

Farangis Sajadi Moghadam and Rashidi 
(2024)  78.51% 82.78%   75.19%   

 

In comparing the results for Table 10.13, our system achieved an accuracy of 

91.24%, with a sensitivity of 91.35%, precision of 89.69%, specificity of 91.14%, and 

an F1-score of 90.40%. These strong metrics reflect the robust performance of our 

system, which combines advanced feature extraction and classification techniques to 

effectively distinguish between benign and malignant cases. In contrast, Farangis 

Sajadi Moghadam and Rashidi (2023) achieved a lower accuracy of 88.67%, with a 

sensitivity of 77.12% and specificity of 75.11%. Their method, which utilized 

radiomic-based feature extraction and Quadratic Discriminant Analysis (QDA), was 

effective but fell short in sensitivity and precision. This could be due to the limitations 

in feature extraction and model choice, which may have struggled to capture the full 

complexity of the DBT images. 

In a later study, Farangis Sajadi Moghadam and Rashidi (2024) reported an even 

lower accuracy of 78.51%, with a sensitivity of 82.78% and specificity of 75.19%. 
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Despite introducing a novel feature extraction method based on DCT-DOST 

features, the performance of their model remained limited. The relatively lower 

precision and specificity suggest that their system may have overfitted the training 

data, particularly with the use of smaller sample sizes, which could have led to poor 

generalization on the test data. Overall, our system outperformed both studies by 

Farangis Sajadi Moghadam and Rashidi, particularly in terms of accuracy, sensitivity, 

and specificity. 

Table 10.14 Comparison of Classification Results for Benign vs Malignant Cases Using the 
BCS-DBT Dataset only (Scenario 3) 

Author/Year Accuracy Sensitivity/Recall Precision Specificity F1-Score 

Our System (HMSA-IVECM) 90.34% 88.24% 90.12% 92.02% 89.09% 

J. Mendes et al. (2023) 93.20% 92.00% 94.00% 94.00% 94.00% 

 

In comparing the results from Table 10.14, our system achieved an accuracy of 

90.34%, with a sensitivity of 88.24%, precision of 90.12%, specificity of 92.02%, and 

an F1-score of 89.09%. In contrast, the study by J. Mendes et al. (2023) reported 

higher performance metrics with an accuracy of 93.20%, sensitivity of 92.00%, 

precision of 94.00%, specificity of 94.00%, and an F1-score of 94.00%. The higher 

performance of the model by Mendes et al. can be attributed to their unique 

approach of utilizing single-slice DBT classification. This approach effectively 

addresses the tissue overlap problem found in 2D mammography, allowing their 

model to perform at a higher level. By using nine slices from each DBT volume and 

applying extensive data augmentation techniques, Mendes et al. increased the 

variability and quantity of training data, which likely contributed to the enhanced 

performance of their CNN model. Additionally, the careful extraction of regions of 

interest (ROIs) and preprocessing further boosted the accuracy of the model in 

differentiating between benign and malignant cases. In comparison, while our model 

still performed well, the results suggest that further optimization, perhaps through 

similar ROI selection techniques or slice-based analysis, could narrow the gap 

between the two systems. 
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10.4 Summary 
This chapter was devoted to improving the classification of DBT data using MHMA 

System, which combined Mod_AlexNet with a Multi-Head Attention model. The DBT 

classification issues were successfully handled by this method, which also showed 

enhanced data extraction and performance. HMSA-IVECM System was developed 

in response to observations from FFS-EC that highlighted the value of feature fusion 

and ensemble approaches. Combining improvements from FFS-EC and MHMA 

Systems, HMSA-IVECM System introduces an ensemble model to address 

challenges with different breast densities, sizes and abnormal cases classification. 

Particularly, HMSA-IVECM System outperforms traditional pre-trained DCNN models 

and offers a significant improvement in multi-class classification. Image 

augmentation, feature extraction using Mod_AlexNet and attention models, and 

feature fusion using HOG descriptors are all part of its architecture. HMSA-IVECM 

System incorporates strong feature selection techniques, as well as ensemble 

models and high-performing classifiers, to improve classification. Class and classifier 

weights are introduced in HMSA-IVECM System, which offers improvements over 

conventional models in terms of decision-making and prediction precision, especially 

in a stacking ensemble model. Overall, the development of HMSA-IVECM System 

represents an important advancement in DBT classification techniques, offering 

enhanced efficacy.  
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Chapter 11 Conclusion and Further work 

This chapter provides concluding observations and discusses potential directions for 

future work. The first section summarises the results and key conclusions derived 

from this thesis, while the second section outlines possible directions for future 

research and development. 

11.1  Conclusion 
Breast cancer remains the most prevalent cancer among women worldwide, with the 

highest mortality rate. Early detection significantly improves patient outcomes by 

enabling timely treatment, which increases survival rates. This thesis aimed to 

accurately distinguish between normal, benign, and malignant tomosynthesis scans, 

regardless of variations in breast size, breast density, or tumour size. A key focus of 

the research was enhancing the ability to differentiate between benign and malignant 

tumours, a particularly challenging task due to the small differences in appearance 

within tomosynthesis scans. In this thesis, novel automated DBT multi-class 

classification systems were presented, which integrate both ML and DL techniques 

to classify DBT scans. The BCS-DBT dataset was utilized to evaluate the 

performance of the systems, and several key performance metrics were calculated. 

Five systems were developed and evaluated in this research, as summarised below.  

In Chapter 6, the DE System evaluated the effectiveness of six state-of-the-art deep 

learning models for feature extraction, coupled to a classification stage which used 

an SVM classifier. Among these, AlexNet achieved the highest performance 

compared to the other deep learning models; however, further enhancements were 

required, particularly in specificity, which was limited, with AlexNet achieving the 

highest specificity at only 21.43%. Building on this, the Mod_AlexNet system, 

representing first knowledge contribution of the thesis, was developed as the second 

system in this thesis and was presented in Chapter 7. Mod_AlexNet was designed 

and developed, in Chapter 7, to address the challenge of low specificity and to 

enhance multiclass classification accuracy by extracting features that better 

distinguish between classes, improving class separability regardless of variations in 

breast density, breast size, and tumour size. Mod_AlexNet is a modified version of 

the original AlexNet architecture, with the addition of max-pooling and batch 

normalization layers, which resulted in enhanced performance across all 
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performance measures. When compared to the DE System, presented in Chapter 6, 

Mod_AlexNet achieved a 2.24% improvement in accuracy and 11.59% improvement 

in specificity. 

Despite the improvements, the classification of benign and malignant remained 

challenging. In Chapter 8, building on these findings, feature fusion and selection 

models were explored and utilised to address the multi-class classification challenge. 

By concatenating features from deep learning models and HOG descriptors, feature 

fusion allows system to capture broader spectrum of image features, improving class 

separability. Feature selection further eliminates irrelevant features, which can 

reduce classification performance. The FFS-EC System, the second contribution, 

was developed. This system integrates feature fusion and selection with a majority 

voting ensemble classifier, utilising ResNet-50, SqueezeNet, and Mod_AlexNet for 

feature extraction. The FFS-EC System achieved a 94.91% accuracy, a 5.93% 

improvement rate over the baseline, and a 43.07% specificity, compared to just 

21.43% in the baseline. However, the challenge of accurately classifying the 

abnormal class, as reflected in the specificity measure, persisted.  

In Chapter 9, MHMA System is introduced to address the challenge of accurately 

classifying tumours as benign or malignant due to the small differences between 

them. MHMA System incorporates a novel Multi-Head Self-Attention model with 

Mod_AlexNet, representing the third contribution of this thesis. The attention 

mechanism enhances the ability of the model to focus on relevant image regions, 

improving class discrimination. The MHMA System demonstrated a specificity of 

51.99% and an F1-score of 91.28%, significantly surpassing the 21.43% specificity 

and 88.34% F1-score of the baseline. These results underscore the importance of 

the attention model in enhancing classification performance, especially in benign and 

malignant classification.  

Finally, in Chapter 10, after analysing the results from the FFS-EC and MHMA 

Systems, HMSA-FFS-IVECM System was developed, which integrates the strengths 

of these systems. This final system employs various feature selection techniques 

post MHMA feature extraction and inputs the selected features into the IVECM 

ensemble classifier, which represents the final contribution of this thesis. This 

ensemble classifier, which incorporates class and classifier weights, maximized the 
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classification performance. The system successfully addressed key objectives, such 

as handling the non-linearity of class boundaries, enhancing class separability, and 

reducing effect of class imbalance. The system demonstrated significant 

improvements across all metrics, achieving 90.13% accuracy, 92.77% precision, 

62.20% specificity, and a 91.03% F1-score. These results represent a significant 

enhancement over the baseline, particularly in specificity, which achieved an 

improvement of 40.77% compared to the DE System.  

When comparing to previous work using the same dataset, the HMSA-FFS-IVECM 

System not only outperformed existing multi-class classifiers (normal, benign, and 

malignant classes) but also excelled in binary classification systems (such as 

distinguishing between normal and abnormal, benign and malignant, or cancerous 

and non-cancerous). The system achieved outstanding results, surpassing the 

performance of other methodologies in the field, as demonstrated in Tables 10.9 to 

10.14 in Section 10.3.  

In conclusion, this dissertation made substantial contributions to the development of 

an automated DBT multi-class classification system, which can assist radiologists in 

the diagnosis process, leading to earlier detection and improved patient outcomes. 

As the field of DBT classification continues to evolve, the insights gained from this 

research will serve as a foundational element for future intelligent CAD Systems 

aimed at enhancing the accuracy and reliability of DBT scan classification. 

11.2 Future Work 
The work presented in this dissertation has made significant strides in the 

development of an automated DBT multi-class classification system, aimed at 

reducing errors made by radiologists while diagnosing scans. However, several 

aspects for future research remain open to enhance the classification performance. 

The following future directions are suggested: 

• Extracting additional deep features from the DBT scans and integrate them 

into the current systems to capture more complex information, such as tissue 

density patterns and small texture variations, which can help in better 

discrimination between benign and malignant tumours, which enhances the 

specificity measure.  
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• Fusing multi-modality imaging data for enhancement of performance. The 

fusion of DBT with other imaging modalities, such as MRI or US. MRI offers 

more detailed view of soft tissue and ultrasound is able to differentiate 

between solid and fluid-filled lumps. This multi-modality fusion could provide 

a more detailed diagnostic perspective, thereby improving the discrimination 

between different classes. 

• Investigating the use of Generative Adversarial Networks (GANs) to augment 

the training dataset, especially minority class to overcome class imbalance 

and improve overall classification performance. 

• Building upon the Multi-Head Self-Attention model to enhance the specificity, 

particularly in challenging cases where distinguishing between classes is 

difficult. 
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