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Abstract 

The internet serves as a vital hub for information exchange, seamlessly intertwining with our 

daily lives. Operating on IPv6 and IPv4 protocols, it facilitates connections between sources and 

destinations. However, these protocols harbour vulnerabilities, particularly evident in Internet Control 

Message Protocol version 6 (ICMPv6), making it susceptible to Distributed Denial of Service (DDoS) 

attacks inherent in IPv6 design. Despite ongoing advancements in Artificial Intelligence/Machine Learning 

(AI/ML) driven research, such attacks persist, inflicting significant losses on organizations. In response, 

this study introduces two distinct architectures within a Deep Neural Network (DNN) model. Model 1 

integrates Convolutional Neural Networks (CNN) with Long Short-Term Memory (LSTM), inspired by 

Ahmed Issa’s work. Meanwhile, Model 2 proposes an integration of Recurrent Neural Networks (RNN) 

with Gated Recurrent Units (GRU). The models were evaluated following Ahmed Issa’s architecture using 

NSL-KDD, Sain Malaysian and Mendeley datasets, resulting in accuracies of 80%, 97.01%, 95.06%, 

72.89%, and 64.94%, respectively. Notably, NSL-KDD and Mendeley datasets are IPv4-based, whereas 

the Sain Malaysian data is IPv6-based. These results were compared with those obtained using the NSL-

KDD benchmark datasets. These results demonstrated that such combinations are effective for detecting 

ICMP DDoS attacks.   

Further experiments were performed on the proposed model's architecture, and it was 

deployed using the Sain Malaysian datasets (IPv6-based). As a result, both models exhibited promising 

performance, achieving accuracies of up to 83.95% and 83.83%, respectively. Further ML techniques 

were also deployed using the proposed model. Three combinations were derived using the stacking 

technique for comparison: (1) CNN with LSTM + RNN with GRU, (2) various ML techniques, and (3) a 

combination of both (1) and (2) treated as ALL. The optimistic results obtained were 84.14%, 86.16%, and 

86.19%, respectively.  Additionally, two sets of ICMPv6 datasets are generated in two distinct 

environments, which helps to prove our research model is robust.  The experiments continued to evaluate 

the robustness of the proposed model using Feature engineering from the physical and data link layers of 

the network to, windowing, Time Series split, Cross validation, ADASYN, LIME, SHAP, and AAD, 

measuring the model performance by metrics like Recall, F1 measure, Precision, ROC and AUC achieving 

promising results focusing more on Accuracy results. The results ranged from 81.56% to 99.998%, and in 

some cases reached 100%. The AAD and the inferences indicated that the Proposed model at base 

classifiers are not suitable for real-time implementation but recommended for Ensemble Stacking in real-

time deployments.  

Further, an Ensemble stacking technique is deployed on the proposed Model 1 and Model 2 as 

base classifiers along with the ADASYN technique, achieving outstanding results of accuracies of 99.89% 

and 99.97%, respectively.  A critical evaluation based on datasets, features, and state-of-the-art research 

results validates our proposed model as a promising solution with a superior score for the detection and 

prediction of ICMPv6 DDoS attacks, particularly for Echo reply and request packets.                                                     

Keywords: DoS/ DDoS attacks, ML, AI, DNN (CNN, LSTM, RNN, GRU), Ensemble Stacking, 

ADASYN, ICMPv6, IPv4, IPv6 and Datasets.   
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 1 INTRODUCTION 

In recent years, Artificial Intelligence, like Deep Neural Networks (DNNs), has 

emerged as a significant application in various domains, delivering promising results. 

Concurrently, cyber threats such as DDoS attacks happen to be deadly threats to 

stable and secure network infrastructures. These attacks overwhelm targeted 

systems with massive amounts of traffic, rendering them inoperable and causing 

substantial economic and operational damage to organizations. By leveraging the 

advanced techniques and learning capabilities of DNNs, this research aims to 

develop robust, scalable, and adaptive solutions to effectively counteract the dynamic 

characteristics of modern DDoS attacks. This chapter introduces the thesis by 

explaining its evolution into a comprehensive research project, outlining the research 

hypothesis, and highlighting the contributions as inputs to this field of study. It also 

presents the research topics supported by relevant statistical evidence and describes 

the selected methodology in a structured format. 

1.1 Background 

With the proliferation of cutting-edge technologies in computing domains like Cloud 

Computing and the Internet of Things, the incidence of DDoS attacks has surged 

significantly. This escalating frequency poses a substantial threat, rendering DDoS 

attacks among the most formidable challenges in the realm of cybersecurity (H. 

Aydın, Orman, and M. A. Aydın 2022). This technology also opens up extensive 

avenues for various network attacks, specifically targeting critical services and 

causing system malfunctions, whether in servers or enterprise networks. Such 

disruptions lead to business paralysis, manifesting as downtime and resulting in 

significant financial losses. A denial-of-service (DoS) attack inundates a server with 

traffic, rendering a website or resource inaccessible. For a DDoS attack, multiple 

computers or machines collaborate to flood a specific target with overwhelming 

traffic, exacerbating the impact of the attack (Gaurav, Gupta, and Panigrahi 2022). 

This happens when attackers meticulously investigate unprotected entry points, such 

as vulnerabilities in software or system configurations, and skilfully exploit them. 

ICMPv6-based DDoS attacks, akin to their ICMPv4 counterparts, capitalize on 

vulnerabilities inherent in IPv6. Detection of such attacks traditionally relies on 
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signature-based Intrusion Detection Systems (IDS). Nevertheless, researchers have 

introduced an adaptive intrusion detection system, leveraging machine learning 

(ML), which surpasses the efficacy of traditional signature-based IDS (Alghuraibawi 

et al. 2021). 

Despite the implementation of sophisticated firewalls and IDS, DDoS attacks persist, 

as evidenced by recent statistics. In 2018, GitHub suffered a massive 1.3 Tbps DDoS 

attack. However, Imperva, a cybersecurity company, reported an even larger attack 

the same year, involving 500 million packets targeting an unnamed client and lasting 

13 days. These attacks not only jeopardize security but also result in significant 

financial losses. According to the 2019 Annual Cyber Security Report by Bulletproof, 

a single DDoS attack could cost a small business 120,000 USD, with even greater 

financial impacts on larger enterprises (Dahiya and Gupta 2021). In February 2020, 

the largest DDoS attack on record occurred, peaking at 2.3 Tbps. This attack targeted 

CLDAP (Connectionless Lightweight Directory Access Protocol) web servers, 

surpassing the previous record of 1.3 Tbps set by the GitHub attack, which delivered 

126.9 million packets per second (Alghazzawi et al. 2021). Similarly, one year after 

in February 2021, the cryptocurrency exchange EXMO experienced a surge in traffic, 

reaching 30 gigabits per second, rendering it inaccessible for 2 hours (Mittal, K. 

Kumar, and Behal 2023a). In 2022, Microsoft Corporation disclosed that it had been 

subjected to a DDoS attack, during which the network experienced an unprecedented 

traffic volume peaking at 3.47 terabits per second (Neira, Kantarci, and Nogueira 

2023). According to Cloudflare’s Q2 2024 report, Domain Name System (DNS) based 

DDoS attacks have become the most prominent attack vector, with their share among 

all network-layer attacks continuing to grow. It is clear that the share of DNS-based 

DDoS attacks increases up to 33.9%. Despite this surge, and due to the overall 

increase in all types of DDoS attacks, L3/4 attacks still account for 30% of the total. 

ICMP amplification attacks occupy 2.3%, alongside other types of attacks such as 

ACK, UDP, RST, etc. floods. Figure 1 shows the statistical view of the attack vectors 

from Cloudflare Q2 report (Cloudflare 2024).  
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Figure 1: DDoS attack vector statistics (Cloudflare 2024) 

 

1.1.1 Network Layers 

Information transmission between systems involves multiple layers and protocols, 

transforming the data format during transit based on the OSI model and restoring it 

to its original form at the destination. The OSI model encompasses seven layers, and 

an overview of their functions can be summarised as follows. 

1. The physical layer: Transmits information in a raw bit’s stream format over a 

physical medium. 

2. Data link layer: It specifies the format related to frames in the network.  It is 

divided into 2 layers, the Media Access Control (MAC), which controls device 

interaction, and the Logical Link Control (LLC), which focuses on addressing 

and multiplexing. 

3. Network layer: Determines the shortest path for packets to be routed in the 

network and concentrates on the IP protocol. 
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4. Transmission layer: This layer manages to ensures that the segments are in 

sequence with error-free. This includes port numbering and the use of TCP 

and UDP. 

5. Session Layer: Manages sessions related to setup, authentication, 

connection, re-connection, and termination. 

6. Presentation Layer: It is responsible for managing translating, encoding, 

decoding, encryption, and decryption information as required by an 

application. 

7. Application Layer: This layer manages the information in user-readable format 

by accessing the services of the previous layer (Tanenbaum and J Wetherall 

2010).  

 

 

 

Figure 2: OSI 7 layers in Networking (Steingartner, Galinec, and Kozina 

2021) 

 

This research focuses on layer three, concentrating on the Internet Control Message 

Protocol version 6 (ICMPv6) concerning DDoS attacks using Deep neural networks 

to successfully detect and predict attacks. The scope of the feature selection is 

confined to the first three layers of information parameters that help to identify the 

ICMPv6 DDoS attacks that are based on Echo and Reply. 
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1.1.2 DDoS Classification of Attacks 

Figure 3 illustrates the DDoS classification attacks. Some of the attacks used by 

threat attackers to launch ICMPv6 DDoS attacks are categorized under ICMPv6 

DDoS attacks: 

 

 

Figure 3: DDoS -ICMPv6 attack Classification (adapted from Bdair et al. 

2020) 

 

1. Manual ICMPv6 Packet Generation: Threat attackers can manually 

generate ICMPv6 packets using tools like hping or Scapy code. These tools 

enable attackers to create custom ICMPv6 packets with specific 

characteristics, such as source addresses, payload content, and packet size. 

By sending a high volume of these tailored packets to a target, threat attackers 

can overwhelm its resources and disrupt normal operations. 

2. Scripted ICMPv6 Packet Generation: Threat attackers can develop scripts 

or leverage pre-existing tools to automate the generation and transmission of 

ICMPv6 packets. Automated attacks using scripts can achieve significantly 

higher volumes and sustained rates of packet transmission compared to 

manual methods. 

3. Botnet-based Attacks: Threat attackers can exploit botnet networks of 

compromised computers under their control to launch ICMPv6 volumetric 
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attacks. By controlling a large number of compromised devices, threat 

attackers significantly expand the high volume of ICMPv6 traffic regulated at 

the target. These botnets are managed via command-and-control (C&C), 

enabling attackers to orchestrate coordinated and large-scale attacks. 

4. Reflective/Amplification Attacks: In reflective or amplification attacks, 

Threat attackers spoof the source IP address of their ICMPv6 packets to make 

them believe as if they are genuine. They send these spoofed packets to 

misconfigured or vulnerable servers on the internet, which then respond with 

larger ICMPv6 packets. These amplified responses are directed back to the 

target, significantly increasing the volume of traffic, and maximizing the impact 

of the attack. 

5. Fragmentation Attacks: Threat attackers can exploit fragmentation 

mechanisms in IPv6 to split ICMPv6 packets into smaller fragments. By 

sending a high volume of these fragmented ICMPv6 packets to the target, 

threat attackers can overwhelm the target’s resources, as it must reassemble 

the fragments before processing the packets. 

6. Randomized Source Address Spoofing: Threat attackers often resort to 

randomized source address spoofing techniques to thwart mitigation efforts 

aimed at filtering out malicious traffic. By continually altering the source 

addresses of their ICMPv6 packets, attackers can elude detection and bypass 

mitigation techniques that hinge on IP blacklisting or rate limiting. 

(A. Alharbi and Alsubhi 2021). 

 

Bdair emphasized the classification of DDoS attacks, broadly categorizing them into 

Application layer and Network layer attacks. SIP flood, HTTP flood, Distributed 

Reflection, and DNS amplification are some of the attacks present in the Application 

layer. On the other hand, Network layer attacks encompass SYN flood and ICMPv6 

flood. Furthermore, ICMPv6 DDoS attacks are categorized into ICMPv6 

Volumetric/Amplification attacks, which include Smurf Flood, and ICMPv6 

Exploration, which encompasses Reflection, Routing Discovery, and Neighbour 

Discovery. (Bdair et al. 2020). 
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Besides hping and Scapy, there exist various tools that threat actors use to launch 

DDoS attacks. Some of the tools are listed in Table 1. 

Table 1: Some of the tools used in DDoS attacks 

Tool Name Brief description 

LetDown DDoS 

tool 

It is effective for launching a TCP DDoS flood. 

Hyenae tool It is an effective tool to forge packet generators 

to launch ICMP, UDP, and TCP DDoS attacks 

The Tribe Flood 

Network tool 

It is an effective tool that contains client and 

daemon programs to deploy across the network. 

The nodes are usually located globally. This tool 

can launch ICMP, UDP, and SYN flood attacks 

besides Smurf and Blowfish to encrypt the list of 

IP addresses that are present in the process of 

attack. 

Stacheldraht tool It is very efficient in crashing the target devices 

using different transport and network layer 

packets. This tool uses Zombie architecture and 

handles encryption of clients while launching 

attacks related to TCP, UDP and ICMP DDoS 

attacks. 

Trace6 It supports ICMPv6 echo request and TCP-SYN 

Thc-ipv6 It is capable of multiple attacks that include DoS, 

DDoS, evasion of attack, etc. 

Hping3 It is a tool based on Scapy to support IPv6 

development and testing. 

Scapy Scapy is a program treated as a module in 

Python that gives users sophisticated options to 

develop scripts related to Networking  

 

This research used a simple Scapy script to launch DDoS attacks while collecting or 

generating the datasets. The reason why this was selected is that Scapy is a well-
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equipped and powerful interactive packet manipulation program with numerous 

benefits for networking. Its ability to craft, manipulate, and analyse packets, 

combined with extensive protocol support and flexibility, makes it highly versatile. 

Scapy allows users to create custom packets, test network devices, and analyse 

network responses. It supports a wide range of protocols, making it suitable for 

various tasks, including security testing, penetration testing, and network diagnostics. 

Written in Python, Scapy is flexible and can be easily extended, integrated into 

automation scripts, and used for educational and research purposes. Its cross-

platform compatibility and strong community support, coupled with extensive 

documentation, make Scapy an invaluable tool (Biondi 2008-2024). 

 

1.1.3 DDoS Attack 

A DoS attack inundates a server with traffic, rendering a website or resource 

inaccessible. In the case of a DDoS attack, multiple computers or machines 

collaborate to flood a specific target with overwhelming traffic, exacerbating the 

impact of the attack (Gaurav, Gupta, and Panigrahi 2022). Attackers meticulously 

investigate unprotected entry points, such as vulnerabilities in software or system 

configurations, and skilfully exploit them. Leveraging these entry points, they attempt 

to compromise the system by depleting its resources, thereby denying access to 

legitimate users. In alternative attack scenarios, malicious bots are deployed to 

inundate the target system with an overwhelming number of packets, ultimately 

leading to a server crash (A. Alharbi and Alsubhi 2021). Figure 4 outlines the steps 

involved in a Threat attacker’s launching of a DDoS attack. The attacker begins by 

exploring methods like phishing to infiltrate a system and install malware. Once 

control of a compromised machine is secured, the attacker distributes bots to other 

systems through lateral movement. With control over these systems, the attacker 

deploys command and control, using scripts to command PowerShell to unleash a 

flood of ICMP packets at the target server. This flood overwhelms the server’s 

resources, causing DDoS conditions, and preventing genuine users from 

establishing connections due to resource depletion. (Mateen and Shahzad 2021) 
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Figure 4: DDoS attack Implementation of DDoS attack 

 
Based on the incidents quoted and Figure 1, Cloudflare statistics 2024, DDoS attacks 

underscore their growing intensity, indicating a significant need for further research 

in this field. One specific area of concern is the use of the ICMPv6 protocol, which is 

vulnerable, and is usually used to diagnose the connection establishment or status 

of the destination system in the network. In this initial phase, threat attackers can 

launch attacks by exploiting the vulnerabilities in the network protocol, as they 

observe the mechanism of the traffic flow of the enterprise in and out to have a better 

understanding of the security settings. Addressing this gap is essential for enhancing 

network security and mitigating the impact of such sophisticated attacks. 

 

1.2 Research Gap 

Despite extensive research and various proposed solutions from previous 

researchers, DDoS attacks highlight their increasing intensity and frequency, 
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presenting a significant opportunity for further research. Addressing this gap, 

particularly based on ICMPv6 protocol vulnerabilities, involves highlighting points 

considered to be good support for a more effective approach to enhance the 

possibility of detection of ICMPv6 DDoS attacks. These approaches, which are 

briefed in this section, are anticipated to achieve close to 100% accuracy. 

The rapid proliferation of contemporary technology extends into various domains like 

IoT, autonomous vehicles, drones, and more, harnessing the internet and 

sophisticated intelligence scaling to support a myriad of smart devices equipped with 

Tiny Machine Learning at the hardware level, providing good security from threat 

attackers. However, despite these strides, significant gaps persist, contributing to 

diverse cyberattacks, and such vulnerabilities stem from the dynamic evolution of 

technologies or gaps in effectively implementing and securing them (Mishra and 

Pandya 2021). ICMPv6 falls within the Network layer, which is a connectionless 

protocol, and its essential purpose is for IP operations and network diagnostics. The 

stateless auto-configuration process relies on the Neighbour Discovery Protocol 

(NDP), which assists nodes in locating addresses and discovering other nodes. 

However, in the absence of IPsec security, ICMPv6 vulnerabilities emerge, creating 

opportunities for various attacks like DoS or DDoS defined at the beginning of this 

section. Malicious nodes can exploit these vulnerabilities to disrupt nodes in other 

network segments, crafting attacks to their advantage. By generating numerous 

ICMPv6 packets, attackers can significantly degrade network performance, 

especially by targeting nodes connected to the victim’s network segment (Mohmand 

et al. 2022). The ICMPv6 Ping of Death poses a significant challenge in combating 

DDoS attacks due to its capacity to overwhelm servers without depending on specific 

vulnerabilities. This type of attack exhausts the server’s processing capabilities by 

inundating a target with diverse ICMPv6 traffic, including ping requests, leading to a 

denial of service. Attackers exploit variations in IPv6 support and system 

configurations, such as differences in handling extension headers and time-to-live 

values, to evade detection. This scenario highlights the risk of malicious actors 

leveraging ICMPv6 to disruptive DDoS attacks, whether through sophisticated packet 

manipulation or straightforward methods like ICMPv6 information messages. The 

impact of such attacks is measured in Mbps /Tbps (bandwidth) and PPS (packets per 
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second), underscoring their disruptive potential (Tajdini 2018). The threat actor 

employs covert intrusion techniques to operate discreetly. In the initial stages, they 

focus on crafting distinctive attack patterns devoid of identifiable signatures or 

exploiting vulnerabilities within network protocols and enterprise networks, eventually 

compromising the target server. For instance, they may manipulate out-of-order 

fragments, intentionally altering fragment values to deceive scanning systems, 

rendering the manipulated fragments seemingly genuine and thereby evading 

detection (Tan et al. 2022). 

Despite the presence of various intelligent Intrusion Detection Systems (IDS), they 

often fall short in detecting such attacks due to the cunning approach of threat actors. 

When packets are scrambled with flag values lacking sequential order, IDS struggles 

to identify them, allowing attackers to evade detection more effectively (Tajdini 2018). 

Threat actors often leverage ICMPv6 packets in the initial stages to establish 

connections with systems or enterprises once they have the IP addresses. 

Subsequently, various vulnerabilities present a wide scope for launching attacks and 

some of the following are discussed very briefly: 

• “ICMP messages can be manipulated to deceive the receiver into believing 

they originated from a different source than the actual originator. 

• ICMP messages can be manipulated to redirect either the message or its reply 

to a destination other than intended by the message originator. 

• ICMP messages are susceptible to alterations in message fields or payload. 

• ICMP messages may be exploited in attempts to execute denial-of-service 

attacks by sending consecutive erroneous IP packets”. 

(Deering and Conta 1998) 

 

Given the identified gap, prudent to devise a contemporary strategy employing 

cutting-edge techniques, with the selection of AI Deep Neural Networks combination 

approach standing out as a promising solution. The subsequent chapter’s literature 

review underscores the significance of Neural Network methodologies explored by 

previous researchers, along with their inherent limitations. This research endeavours 
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to transcend these limitations and make every effort to achieve a 100% accuracy rate 

in detecting and predicting ICMPv6 DDoS attacks.  

1.3 Aim 

This research aims to develop an advanced ICMPv6 DDoS attack detection method 

by leveraging feature engineering from the first two networking layers and 

interpreting feature contributions using SHAP, LIME, and permutation importance. To 

enhance detection accuracy, the study employs an ensemble stacking strategy that 

integrates CNN-LSTM and RNN-GRU deep learning architectures. 

1.4 Hypothesis 

Can these two combinations i.e. CNN with LSTM and RNN with GRU be successfully 

fused for the detection of ICMPv6 DDoS attacks with superior accuracy scores? 

1.5 Related Questions  

 

• Is there any similar kind of combination from existing researchers 

that supports the proposed model?  

• Does Ensemble stacking enhance the accuracy metric in the context 

of a combination of DNN methods approach for predicting ICMPv6 

DDoS attacks? 

 

1.6 Objectives 

1. Conduct a comprehensive literature review on ICMPv6 DDoS attacks, 

focusing on key methodologies relevant to the project. This includes deep 

learning models such as CNN-LSTM and RNN-GRU, ensemble techniques 

like stacking, and traditional machine learning approaches such as SVM.  

Additionally, the study of feature importance analysis using feature 

engineering, SHAP, LIME, windowing, Time series split, Train test split, 

ADASYN, etc. methods to enhance interpretability and model performance.  

2. Designing a hybrid solution for the proposed model. 
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3. Use at least one benchmark dataset to deploy the proposed model and 

compare the results with other datasets. 

4. Find specific ICMPv6 DDoS attack datasets from previous researchers and 

compare them with benchmark datasets (2&3). 

5. Generating new ICMPv6 DDoS attack data sets using different network 

environments. 

6. Validating the proposed techniques using performance measuring in terms of 

accuracy, precision, recall, and f-measure, comparing each technique based 

on the accuracy metric as well as their combination. 

7. Evaluate the proposed method against the contemporary DDoS detection 

methods. 

1.7 Contribution 

1. Development of a Novel Deep Learning-Based Detection Model: 

Designed and implemented a hybrid deep neural network architecture that 

combines CNN-LSTM and RNN-GRU models using ensemble stacking, 

specifically tailored for detecting ICMPv6 DDoS attacks. 

2. Generation of Realistic ICMPv6 DDoS Datasets: 

Created two original ICMPv6 DDoS datasets in distinct network environments, 

each capturing unique attack patterns, to support robust model training and 

evaluation. 

3. Feature Engineering and Interpretability Analysis: 

Applied feature extraction from the first two layers of the network stack and 

utilized SHAP, LIME, and permutation importance to assess feature 

contributions at both global and local levels. 

4. Comprehensive Model Evaluation Against Benchmarks: 

Evaluated the proposed model using both benchmark datasets (NSL-KDD, 

Mendeley, Sain Malaysian) and the newly generated primary datasets. The 

model achieved state-of-the-art performance, with accuracy scores reaching 

up to 99.97%. 

5. Scholarly Dissemination: 

Published multiple research papers in peer-reviewed international 
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conferences, including a paper accepted and presented at an IEEE 

conference. 

1.8        Research Methodology 

This research method was proposed by Saunders, who explains that research 

methodology is always a challenge for a systematic approach to achieve the desired 

aim. Various methodologies exist, such as quantitative, qualitative, experimental, and 

applied research. Careful selection and adherence to a suitable technique are crucial 

for justifying the research design, following a scientific model, and ensuring coherent 

development. Research strategy is a method that defines the approach of research 

and the steps involved to follow. It provides strong beliefs, theories, and philosophical 

assumptions that create a shape to understand the research questions and select a 

procedure to use righteous methods. Research methodology is an integral part of a 

thesis, which helps to ensure the consistency between selected tools, techniques, 

models, and underlying theories (Goundar 2012). 

 

1.8.1    Onion Method 

 

In the quantitative phase, the research involves collecting and analysing existing 

techniques, and assessing their merits, demerits, and gaps concerning the current 

industry standards. This process includes conducting surveys to identify specific 

challenges that address and justify the research purpose. (Apuke 2017). 

 

Figure 5 illustrates each layer with its unique guidance options, offering researchers 

the flexibility to make the best selection. This approach helps researchers progress 

toward achieving positive results while maintaining good consistency in their 

research design. The first four layers outline the guiding steps to transform research 

questions or hypotheses into a prospective project. The fifth layer involves project 

testing, which is essential for validating the hypotheses and obtaining robust 

evidence to support the project’s objectives. The final layer focuses on framing the 

thesis with supporting test results, demonstrating that the technique used is superior 

and effectively achieves the project’s aim (Alturki 2021) 
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Figure 5: Onion research methodology with 6 layers (Alturki 2021) 

1.8.2      Applying Onion Research Methodology. 

This Onion research Methodology consists of 6 layers employed in the proposed 

research to the Hypothesis, Objectives, and contributions. The same is briefed in 

tabular form and is also given at the end of this section. 

1. Philosophy: In this research, the positivist approach is adopted as the 

foundational layer of the Onion method. This approach is particularly suited 

for the study, which aims to scan packets and detect attacks using a Deep 

Neural Network (DNN) model designed to identify and mitigate DDoS attack 

packets, thereby safeguarding the network system. The following steps 

outline the nature of the idea, its development into a proposal, the scope of 

proving the proposal through simulation or a development framework, the 

strategic procedure, and the validation of the proposal (Mardiana 2020). 

2. Approach to theory development: In the Onion method for designing Deep 

Neural Network (DNN) combinations, an inductive approach from the second 

layer was used. The literature review revealed DDoS attack detection at the 

Network layer using various DNN techniques. However, no research has 

combined RNN with GRU for monitoring and detecting ICMPv6 DDoS attacks 

at the enterprise Edge Router. This gap led to the development of a theory 

proposing DDoS detection using a DNN combination based on ICMPv6 
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echo/reply attributes. The objectives and hypotheses form a constructive base 

to identify packet features for detecting DDoS attacks at the Network layer 

(Melnikovas 2018). 

3. Methodological choice: The Mono Method approach is utilized at the third 

layer of the Onion method, focusing on quantitative techniques. This approach 

involves conducting multiple experiments, tests, and assessments based on 

selected Deep Neural Network (DNN) techniques. The goal is to achieve 

outstanding performance measuring in terms of accuracy, precision, F1 

measure, and recall (Apuke 2017). 

4. Strategy: The Survey Experiment approach is used to develop solutions 

either by analysing collected datasets or by creating real-time virtual 

environments to gather datasets based on specific scenarios. Literature 

reviews suggest that for detecting DDoS attacks, packet header features for 

ICMPv6, in addition to essential frame features, should be collected at the 

Network layer. These features are then processed in the development of code 

designed to detect DDoS attacks on the first 3 layers in the OSI (Alturki 2021). 

5. Time Horizons: This layer is about the cross-sectional or short-term of 

studying and focusing mainly on the collection, processing, analysing, etc. of 

data. Collecting data and understanding the insights of the data, like the 

context of attack, to data sets existing parameters or data extracted from the 

virtual platform of the DDoS attack scenario. Suitable parameters and frame 

features are extracted for analysis to check how they can fit into the technique. 

A systematic design and development of code is to be prepared to evaluate 

the tests and find the metrics (Melnikovas 2018). 

6. Techniques and Procedures: The technical approach involves designing 

and developing a concrete solution using the Python programming language 

on the Google Colab platform. This entails utilizing specific repositories/ 

modules like Tensorflow, Sckit learn, Keras, Pandas numpy, etc. to implement 

a combination of Deep Neural Networks (DNNs), focusing on analysing 

features extracted from the ICMPv6 packet headers. The goal is to assess the 

efficiency of the developed code using accuracy, precision, F-measure, etc., 

to demonstrate the effectiveness of DDoS detection at the network layer. The 



28 

obtained results will serve to substantiate and defend the thesis, thereby 

achieving the objectives outlined in this proposal (Mardiana 2020). 

 

1.8.3        Research Objectives Based on Onion Methodology 

 

Table 2 provides an example of Research Methods for the Onion Methodology 

framework to ensure a thorough and robust investigation. It allows for precise 

experimentation, rigorous evaluation, and clear demonstration of the proposed 

model’s effectiveness, providing compelling evidence of its superiority with 

impressive performance metrics. 

 

Table 2: Research Objectives w.r.t Onion Methodology 

Serial 

No. 
Objective 

Methodological 

Approach 
Description 

1 

To investigate literature 

review on existing 

techniques, Gap and 

Solution analysis, 

related to ICMPv6 

DDoS attacks detection 

(Systematic Literature 

Review (SLR), Rapid 

Review(RR) 

Quantitative technique 

based on SLR. 

SLR, RR streamline 

approach for 

producing evidence, 

typically for informing 

emergent decisions. 

2 

To study the ICMPv6 

DDoS attacks, 

detection 

methodologies and 

DNN-related models. 

Quantitative technique 

based on SLR. 

SLR, RR. Identify 

gaps and solutions. 

3 

To investigate the 

application of DNN 

aiding in ICMPv6 DDoS 

detection. 

Quantitative technique 

based on SLR. 

SLR, RR. Identify 

gap-filling measures. 
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4 

To propose and design 

a novel approach with a 

combination technique 

of DNN using the 

selected datasets. 

Quantitative technique 

based on SLR. 

Design the solution, 

plan and fill up the 

measures. 

5 

Develop test, 

implementation of a 

new framework   based 

on the DNN model 

Quantitative 

techniques, 

experiments, lab 

environments, 

virtualization of results 

in graphs and metric 

measures. 

Laboratory 

experiments by 

simulation of 

datasets, benchmark 

datasets, verifying 

hypothesis theory, 

fine-tuning, feature 

selection, applying 

ADASYN, etc., for 

yielding high metric 

accuracy results. 

6 

Critical evaluation of 

the proposed model. 

Submission of the 

thesis with achieved 

results 

SWOT(Strength, 

Weakness, 

Opportunities and 

Threats) analysis. 

Comparative Analysis. 

Statistical Analysis 

and Paper Publication 

The proposed Novel 

approach of 

combination of DNN 

is proved by 

suppressing start of 

the art results 

 

1.9 Implementation Method  

This section brief about the implementation of the proposed research work in 6 

phases:         

• Research and Analysis: The research began with a systematic literature 

review of existing DNN techniques and their applications in addressing 

ICMPv6 DDoS attacks. This review identified the limitations, gaps, 

proposals, solutions, and achievements of various researchers. 

Additionally, the study encompassed a comprehensive analysis of the 
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evolution from IPv4 to IPv6, including their relationships and associations 

with ICMPv6. The investigation also covered ML, AI, and DNN techniques, 

evaluating their merits and demerits. 

• Planning: An effective research plan was devised, incorporating periodic 

schedules and milestones to ensure the set deadline in due course of the 

study. 

• Design and Configuration: Effective model combinations were designed, 

utilizing CNN with LSTM and RNN with GRU employing ensemble 

techniques. Key datasets identified for this phase included NSL-KDD and 

Mendeley and Sain-Malaysian. During the research on ICMPv6, it was 

noted that ICMPv6 datasets were not openly available. This challenge was 

addressed by obtaining datasets from a secondary researcher who had 

conducted similar research. 

• Implementation and Deployment: Additional ICMPv6 datasets were 

generated, and the model was developed using Python on the Google 

platform. Experiments were conducted to test the model. 

• Validation and Critical Evaluation: High accuracy scores were targeted, 

and efforts were made to achieve these using ensemble stacking 

techniques. The model's performance was evaluated based on 

comparisons of scores across different datasets and against other 

researchers' achievements in similar research areas. 

• Conclusion and Thesis Preparation: Upon successfully achieving the 

required results, a conclusion was drawn affirming the robustness of the 

proposed model in detecting ICMPv6 DDoS attacks. A thesis was prepared 

detailing the research process from inception to completion and was 

subsequently submitted. 

1.10 Organization of Proposal Transforming into Thesis 

The thesis is structured in the following Chapters format: 

Chapter 1 provides the Introduction, Background, Research Gap, Aim, Hypothesis, 

Objectives, Contribution, and Research Methodology. 
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Chapter 2 provides a comprehensive literature review of research to provide a good 

understanding of the earlier researchers' work and their merits and limitations. A 

similar technique can help to support this research. 

Chapter 3 provides the concept and design of the Model. Architecture, a 

Comprehensive review of DNNs used in the model, advantages, and applications. 

Chapter 4 provides brief background information related to ICMPv6 Echo request / 

reply header parameters and a Comprehensive Review of Primary and Secondary 

Data sets.  

Chapter 5 provides the evaluation of the results obtained and the state of the art that 

determines the best performance of the designed model based on metrics like 

accuracy, precision, F-measure, etc. It also provides discussions on the outstanding 

results of the model performance and the feature contributions that impact the model 

with different datasets that have different backgrounds. 

Chapter 6 provides a summary of the entire project with the conclusion of 

successfully achieving the hypothesis mentioned and correlating to the first chapter 

i.e., aim, objectives, and contributions in the detection of DDoS using DNN, including 

the impact, limitations, and future research. 
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 2 LITERATURE REVIEW 

This chapter reviews previous research on solutions to DDoS attacks, ranging from 

traditional IDS methods to modern AI approaches. This review supports the current 

research, which aims to improve detection and prediction efficiency by incorporating 

a combination of Deep Neural Networks. 

 

There are many attacks in the network targeting some important services and 

systems to break/crash resulting in the freezing of business thus causing great 

financial loss. The most targeted service is DoS, and DDoS is among them. There 

are many preventive techniques to mitigate DDoS, yet the attackers can succeed 

due to the change of approaches based on the vulnerabilities present in the victim’s 

network, applications, protocols, and infrastructure. Most of the earlier researchers 

have come up with anomaly detection which is to find a pattern of a certain problem 

that is based on behaviour at the Network layer. Such patterns are often referred to 

as anomalies, outliers, discordant observations, etc. (Yang et al. 2022). Network 

management is maintained based on a rule-based system, for example, a 

Supervisory Control and Data Acquisition (SCADA) network is used for maintaining 

or troubleshooting (Saad, Anbar, and Manickam 2018). With the rapid advancements 

in emerging computing technologies, including Cloud computing and IoTs, DDoS 

attacks have a substantial surge in frequency. This escalating trend poses a 

significant and pervasive threat, establishing DDoS attacks as one of the most 

formidable challenges in the realm of cyber security. The widespread acceptance of 

cloud-based infrastructures and the interconnected nature of IoT devices contribute 

to the amplification of these attacks, underscoring the pressing need for robust 

cybersecurity measures to mitigate and counteract the escalating risks on the 

Internet (Mishra and Pandya 2021).  

2.1 Related work 

In the realm of DDoS Attacks using Malware, two primary methodologies exist, 

Signature-based detection and Anomaly-based detection. While Signature-based 

detection has historically been effective, it falters when confronting malicious scripts 
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or bots due to their continual mutation. As these methods evolve, so do their 

signatures, rendering traditional detection methods ineffective against new variants. 

In contrast, Anomaly-based detection techniques, which operate on the premise that 

malicious behaviour deviates from normal traffic patterns, have gained prominence 

for their adaptability to detect emerging new variations in real-world scenarios due to 

which current IDS detections failed (Mishra and Pandya 2021b).  

 

IPv6, known as Internet Protocol Version 6 is the latest version of the Internet 

protocol. The transition from the Internet Version 4 (IPv4) to IPv6 encountered new 

problems, and the most crucial one is vulnerabilities. Some of these vulnerabilities 

are Evasion attacks, DDoS, and Fragmentation attacks. As per RFC (Request for 

Comment) recommendations, there are potential attacks launched by threat attackers 

irrespective of any Operating System (OS). Due to different architecture and 

technology platforms between Operating Systems and their different behaviour, it can 

lead to evasions from IDS, Firewall evasion, OS fingerprinting, Network Mapping, 

DoS/DDoS attacks, Remote script execution, and command and control code 

execution attacks (Tajdini 2018).  

 

Advanced Persistent Threat (APT) attacks represent a distinct form of network 

intrusion, leveraging coordinated human actions rather than automated scripts. APT 

attacks entail persistent monitoring and engagement with a target entity until specific 

objectives are met. In contrast, DDoS attacks seek to disrupt network functionality by 

overwhelming resources, often lacking further strategic goals. The Mirai botnet, a 

notable instance of a DDoS attack, incapacitated numerous websites like Twitter, 

Netflix, Reddit, and GitHub, for several hours in October 2016. Presently, Mirai 

variants are still present posing ongoing threats capable of inflicting substantial harm 

to networks (N. Wang et al. 2022). 

 

2.2 Traditional IDS 

In rule-based detection, the system monitors network traffic to identify potential 

vulnerabilities and detect abnormal events by comparing incoming traffic against a 

predefined set of rules that outline common attack patterns. This method involves 
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continuous monitoring to spot deviations from normal traffic, raising alarms when 

such anomalies are detected. While effective for systematic attacks, it struggles with 

abrupt network behaviour changes and conditions beyond preset parameters. Their 

reliance on Boolean association rules for detecting irregularities can also slow down 

the process as the number of attributes increases, complicating rule management 

(Kaur, M. Kumar, and Bhandari 2017).  

 

Bdair presented a concise examination of DDoS attacks, shedding light on the 

vulnerabilities of intrusion detection systems in the context of IPv6. Various detection 

mechanisms, such as anomaly, signature, and hybrid approaches, were outlined. An 

emphasis was placed on the growing interest in anomaly-based detection, utilizing 

rule-based methodologies. Additionally, he also pointed out the susceptibility of 

unsecured messages within the ICMPv6 protocol. Moreover, he hinted at proposing 

an Optimization Algorithm technique, aiming to enhance the intrusion detection 

system either through adoption or hybridization with a meta-heuristic algorithm, thus 

increasing its capability to detect DDoS attacks (Bdair et al. 2020). 

   

Bahashwan provided an overview of IPv6 DDoS attack detection, emphasizing 

signature, anomaly, Rule, Entropy, Machine Learning and Deep learning-based 

mechanisms and techniques. It also brief about the approach to determine, 

distinguish, and reduce the attacks related to IPv6 and efficiently brief their merits 

and demerits (Bahashwan, Anbar, and Hanshi 2020). Figure 6 depicts the logical 

approach to capture the anomaly behaviour by an IDS without any ML or any AI 

employed. 
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Figure 6: Logical approach of Rule base anomaly 

 

• “Rule 1: One-way connection density in IPv6 networks which is inbound link 

utilization (bytes/s). The ICMPv6 packets that are sent without a 

corresponding response packet create a one-way connection (OC). ICMPv6 

OC is the ratio of OC packets to all packets in a sampling time interval T. If this 

exceeds the predetermined value, then it implies, an abnormal behaviour is 

detected. 

• Rule 2: Generally, in ICMPv6 flow, a packet set with the same five-component 

group (IPv6 source, IPv6 destination, source port, destination port and 

protocol), is used in the network analysis. The number of packets that belong 

to a certain ICMPv6 flow is called the length of the ICMPv6 flow. This rule is 

to detect the anomaly behaviour if the average length of ICMPv6 flow exceeds 

the given threshold. 

• Rule 3: The ratio between inbound and outbound packets is usually steady. 

However, in an ICMPv6 anomalous behaviour attack, the ratio of this traffic 

increases rapidly. This rule is to determine as an attack if the anomaly 

behaviour that exceeds the given threshold value. 

• Rule 4: The ratio of ICMPv6 echo request packet is the rate of set of ICMPv6 

packet arrival to that of length of time interval (T1, T2, T3 ,..Tn). This rule is to 

detect the anomaly behaviour if the rate of ICMPv6 packet echo request 
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arrivals from a network to the set at the same length of time interval exceeds 

a threshold value Count. 

• Rule 5: In this rule the count is used to determine the same number of sources 

IPv6 and the destination IP address. This rule is to detect the anomaly 

behaviour, if the number of packets has the same IPsrcont address source 

and IPdscont address destination exceeds the threshold value “ 

(Saad, Anbar, and Manickam 2018). 

 

Rajat Tandon introduced AMON-SENSS, an open-source solution engineered to 

address the demands of scalable and precise DDoS detection, along with signature 

generation within expansive networks. AMON-SENSS adopts a hash-based binning 

strategy featuring multiple bin layers to ensure scalability, while simultaneously 

leveraging traffic analysis at various granularity. Additionally, it implements advanced 

techniques such as traffic volume and traffic asymmetry change-point detection to 

effectively pinpoint malicious activities. Consequently, their findings demonstrate 

AMON-SENSS’s outperformance in accuracy, latency, and network signature quality 

compared to existing commercial alternatives (Tandon et al. 2022). Abnormal 

activities exceeding or deviating the threshold are concluded as an attack. The 

ICMPv6 has emerged based on the limitation of address space in the IPv4. However, 

IPv6 was developed with neighbour discovery protocol i.e. NDP which has 

vulnerabilities that can be exploited by attackers to launch an attack in the form of 

ICMPv6 which includes the lack of exchange of message authentication of NDP. 

Some of the attacks related to ICMPv6 are network reconnaissance attacks, routing 

headers, fragment headers and multi-casting. (Holkovic, Rysavy, and Dudek 2019). 

 

The above discussion outlines the utilization of rule-based mechanisms for detecting 

and mitigating DDoS attacks, particularly focusing on ICMPv6 packets. However, as 

technology evolves, new attack vectors emerge, posing challenges at both hardware 

and application levels. As technology progresses, attackers become more 

sophisticated, adapting their methods to circumvent traditional defences. This 

evolution has spurred the adoption of automation, leading to the integration of 

machine learning (ML), artificial intelligence (AI), and deep neural networks (DNN) to 
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enhance defence mechanisms against these evolving threats. Additionally, it seeks 

to identify novel approaches or methodologies that offer promising results while 

acknowledging their inherent limitations. 

 

2.3  A Research Review on ML. 

In the previous section, we discussed how IDS are designed using basic threshold 

and comparison mechanisms. These systems often fail to detect attack methods 

because they rely on predefined patterns and thresholds, making them ineffective 

against novel or sophisticated attacks that don’t match existing signatures. 

Additionally, attackers can easily bypass these systems by slightly modifying their 

techniques to fall below the detection thresholds. This section provides a 

comprehensive overview of ML techniques employed by various researchers, 

exploring their efficacy in addressing DDoS attacks. 

 

Ojugo conducted a study comparing machine learning methods for DDoS detection. 

They contrasted the Hidden Markov Model with an Experimental Hybrid (Memetic) 

Genetic Algorithm Trained Neural Network, which was based on a Rule-Generated 

and Fitness Function Model. Their evaluation utilized IDS datasets CIDDS-2017, 

comprising supervised network flow data for traffic based on the anomaly. They 

allocated 70% of the dataset for training and 30% for testing, achieving a fitness 

range between 0.8 and 0.865. Their results indicated an estimated 80% classification 

accuracy for detection (Ojugo and Eboka 2020). Liang Xiaoyu conducted a thorough 

realistic assessment of ML-based DDoS detection methods, with a primary focus on 

addressing the class imbalance problem. They underscored the importance of 

feature selection, advocating for a model-oriented approach. Their evaluation, 

employing datasets from CAIDA and DARPA, utilized the correlation coefficient 

across various algorithms including Decision Trees (DT), Support Vector Machines 

(SVM), Radial Basis Function SVM (RBF-SVM), Polynomial SVM (Poly-SVM), K-

Nearest Neighbours (KNN), K-Means (KM), Naive Bayes (NB), Artificial Neural 

Networks (ANN), and D-Ward. Remarkably, their approach achieved a D-Ward score 

of 77.03%, outperforming other algorithms in the evaluation (Liang and Znati 2019). 

Yasser Alharbi developed an improved KNN algorithm, termed GR-AD-KNN, to 
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enhance the detection of ICMPv6 DoS attacks. This algorithm utilizes the information 

gain rate to assign weights to different features, allowing them to have varying 

degrees of influence on the classification process. By integrating the concept of offset 

increment average distance, the measurement of the target point is refined, 

enhancing the algorithm’s stability. This refinement specifically addresses the varying 

impact of lengthy and small distance samples to determine, leading to more reliable 

detection outcomes (Y. Alharbi et al. 2021). Zewdie has developed an evaluation 

framework utilizing machine learning techniques to detect DoS and DDoS intrusions. 

By applying algorithms such as K-Nearest Neighbours, Decision Trees, and Random 

Forests, she conducted experiments using the CIC-IDS2017 dataset. The results 

revealed impressive precision metrics, with accuracies ranging from 92.19% to 

99.66% (Zewdie and Girma 2022). Manjula implemented three classifiers K-Nearest 

Neighbours (KNN), Random Forest, and Naive Bayes on datasets generated using 

Wireshark besides applying the LOIC attack tool. Among these, the Random Forest 

classifier achieved the highest accuracy of 96.75%, demonstrating the model’s 

effectiveness in detecting ICMP, TCP, and UDP flood attacks (Manjula and Mangla 

2023). Researchers with similar research work on DDoS attacks using ML are 

provided in Table 3. In summary, ML offers a more automated, scalable, and 

adaptable approach to DDoS detection compared to traditional IDS methods. They 

are particularly effective in managing the quick detection of network traffic attack 

anomalies. However, lack of performance ability, scalability, complexity and 

adaptability in large networks.  
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Table 3: ML summary review 

 

SERIAL 
NO. 

OBJECTIVE ALGORITHM DATASET 
FS -

APPROACH 
CLASSIFICATION 

TYPE 
IDS 

DOMAIN 
PAPER REF. 

ATTACK 
LAYER 

LIMITATION 

1 DDoS 
Attack(TCP-SYN 
& ICMP Flood) 

detection in SON-
enabled ISP 

Netwo 

KNN, XG Boos CAIDA20 Based on the 
Time window 

monitoring 
and entropy 
calculation 

Binary 
classification 

Normal & DDoS 

Flow-based N. N. Tuan, P. H. Hung, 
N. D.Nghia, N. Van 

Tho, T. Van Phan, and 
N. H. Thanh, A DDoS 

attack mitigation 
scheme in IP networks 
using machine learning 

based on SON," 
Electron., vol. 9, no. , 

pp. 1-19, 2020. 

Transport 
layer 

SDN-based 
networks and 

No 
Combination / 
Integration of 

algorithm 
Primary 
Datasets 

2 The DDoS attack 
detection through 
machine learning 

and statistical 
methods in SDN 

J48, Bayes Net, Random 
Tree, REP Tree, NB, LR. 

UNB-ISCX, 
CTU 13, ISOT 

Manual 
Selection 
based on 

neighboring 
nodes. 

Binary 
Classification:   

Normal and DDoS. 

Flow-based A. Banttalebi Dehkordi, 
M. R. Soltanaghaei, 
and F. Z. Boroujeni, 
"The DDoS attacks 
detection through 

machine learning and 
statistical methods in 

SON," J. 
Supercomput., vol. 77, 

no.3, pp.2383-2415 
,2020 

Network 
layer 

SDN-based 
networks and 

No 
Combination / 
Integration of 

algorithm 

3 Low-rate DDoS 
attack detection 

using ONOS 
controller and ML 

methods 

J48, REP Tree,RF Random 
Tree, SVM, MLP 

CIC-DDoS-
2019 

Manual 
selection 

Binary 
Classification:  

Normal and DDoS 

Flow-based Perez-Diaz, J.A., 
Valdovinos, I.A., Choo, 

K.K.R. and Zhu, D., 
2020. A flexible SDN-
based architecture for 

identifying and 
mitigating low-rate 

DDoS attacks using 
machine learning. IEEE 
Access, 8, pp.155859-

155872. 

Application 
layer 

Https-based 
attacks and 

No 
Combination / 
Integration of 

algorithm 

4 SVM 
incorporated with 

selective IP 
traceback-based 

SVM NSL-KDD Manual 
Selection 

Binary 
Classification:  

Normal and  attack 

Flow-based P. Hadem, 0. K. Saikia, 
and S.Moulik, "An 

SON-based Intrusion 
Detection System using   

Application 
layer 

Https-based 
attacks and 

No 
Combination / 
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IDS mechanism 
for SON 

SVM   with Selective 
Logging for IP 

Traceback ," Computer. 
Networks, vol. 191, no. 
September  2020, p. 

108015,2021 

Integration of 
algorithm 

5 DDoS attack 
detection using 

feature selection 
and ML-based 

techniques  

SVM,ANN, KNN,NB Self-Generated 
Simulated Data 

Filter, 
Wrapper and 
Embedded 

based 
method 

Multiclassification 
Normal, TCP, 

ICMP, and UDP 

Flow-based H. Polat and 0. Polat, 
"Detecting DDoS 

Attacks in Software 
Defined Networks   
Through Feature 

Selection Methods and 
Machine Learning 

Models," Sustainability, 
vol. 12, no. 

3,1035,2020 

Network 
Layer 

SDN 
controller 

DDoS attack 
and No 

Combination / 
Integration of 

algorithm 

6 DDoS attack 
detection using 
Hierarchical  ML 

and 
Hyperparameter 

optimization 

XGboost, LGBM, CatBoost, 
Random Forest (RF), and 

Decision Tree (DT) 

CICIDS 2017  LASSO 
approach 

was used for 
feature 

selection 

Decision Tree 
classification 

Flow-based Dasari, S. and Kalari, 
R., 2024. An effective 
classification of DDoS 
attacks in a distributed 
network by adopting 
hierarchical machine 

learning and 
hyperparameters 

optimization 
techniques. IEEE 

Access. 

Network 
layer 

No 
Combination / 
Integration of 

algorithm 

7 Detecting DDoS 
Threats Using 

Supervised 
Machine 

Learning for 
Traffic 

Classification in 
Software Defined 

Networking 

 logistic regression, support 
vector machine, random 

forest, K-nearest neighbor, 
and XGBoost, 

CICDDoS2019 --- Traffic class 
distribution based 

on Benign and 
attack  

Flow-based Hirsi, A., Audah, L., 
Salh, A., Alhartomi, 

M.A. and Ahmed, S., 
2024. Detecting DDoS 

Threats Using 
Supervised Machine 
Learning for Traffic 

Classification in 
Software Defined 
Networking. IEEE 

Access. 

Network 
layer 

No 
Combination / 
Integration of 

algorithm 

8 Online Network 
DoS/DDoS 
Detection: 
Sampling, 

Change Point 
Detection, and 

SVM,DT,KNN.RFLDA,QDA 
and CPD 

Multiple 
datasets NSL-

KDD, CIC-
IDS2017, and 

CSE-
CICIDS2018  

PCA  Classification 
based on attack 
instances normal 

instances 

Multiple 
sampling 

like IP flow-
based, 

Systematic, 
stratified, or 

Owusu, E., Rahouti, M., 
Jagatheesaperumal, 

S.K., Xiong, K., Xin, Y., 
Lu, L. and Hsu, D.F., 
2024. Online Network 
DoS/DDoS Detection: 

Network 
layer 

No 
Combination / 
Integration of 

algorithm 
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Machine 
Learning 
Methods 

random 
sampling… 

Sampling, Change 
Point Detection, and 
Machine Learning 

Methods. IEEE 
Communications 

Surveys & Tutorials. 

9 Federated 
Learning Based 
DDoS Attacks 
Detection in 
Large-Scale 

Software-Defined 
Network 

Federated Learning, 
XGBoost algorithm, 

gradient-boosted decision 
tree  

InSDN, 
CICDDoS2019, 

and 
CICDoS2017 

Manual 
Selection 

DDoS attacks or 
normal  

Flow-based   Fotse, Y.S.N., Tchendji, 
V.K. and Velempini, M., 

2024. Federated 
learning-based DDoS 
attacks detection in 

large-scale software-
defined network. IEEE 

Transactions on 
Computers. 

Network 
layer 

No 
Combination / 
Integration of 

algorithm 

10 A Genetic 
Algorithm- and t-

Test-Based 
System for DDoS 
Attack Detection 
in IoT Networks 

Random Forest (RF), 
ExtraTree (ET), and 
Adaptive Boosting 

(AdaBoost) 

ToN-IoT and 
HL-IoT binary 

datasets 

PCC and 
novel 

‘‘GAStats’’ 

Flood and low  time-series  Saiyed, M.F. and Al-
Anbagi, I., 2024. A 

Genetic Algorithm-and-
T-Test-Based System 

for DDoS Attack 
Detection in IoT 
Networks. IEEE 

Access, 12, pp.25623-
25641. 

Network 
layer 

No 
Combination / 
Integration of 

algorithm 
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2.4        A Research Review on DNN  

 

Kumar and his team conducted a comparative analysis of various Deep Learning 

techniques, including LSTM, Bidirectional LSTM, Stacked LSTM, and GRU. They 

structured the unstructured dataset CI-CDDoS2019, provided in CSV format, and 

pre-processing was performed by eliminating values such as NaN and infinity. 

Numerical values underwent standardization, while class values were encoded 

using label encoders. The pre-processed data was then fed into the model of Deep 

Learning techniques, allocating 80% for training and 20% for evaluation from the 

CSV file. Among these techniques, Stacked LSTM emerged as the most effective, 

achieving a remarkable accuracy of 99.55% compared to others (K. Kumar, Behal, 

et al. 2021). M. Asad and his team introduced a Deep Neural Network model 

employing a feed-forward back-propagation architecture, comprising seven layers 

to classify network flows and discern between attacks and normal traffic. The 

architecture includes three layers: input, hidden, and output. The input layer 

accommodates 66 features along with a bias factor, while the hidden layer initializes 

synaptic weights and connections to aid in classification computations. The output 

layer offers probabilities of benign traffic or a DDoS attack. They evaluated their 

model using the CIDC IDS 2017 dataset, achieving 98% accuracy (Asad et al. 

2020).  

 

Assis introduced a defence system focused on analysing records on a single IP flow, 

employing the GRU deep learning method to find DDoS and intrusion attacks. The 

model was assessed against various machine learning approaches using the 

CICDDoS 2019 and CICIDS 2018 datasets. An approach with a lightweight ability of 

mitigation was proposed and rated, with performance tests conducted on real 

network flow packets related to large-scale networks. The results obtained were 

outstanding in detection rates, achieving an accuracy of 97.1% (Assis et al. 2021).  

Cil developed a DNN model with three hidden layers, each consisting of 50 neurons 

and utilizing sigmoid activation functions. This model was designed to detect DDoS 

attacks with the CICDDoS2019 dataset, achieving an impressive accuracy of 97.1% 
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(Cil, Yildiz, and Buldu 2021). Christian Callegari aimed at a deep learning-based 

method for network attack identification utilizing RNN, CNN, LSTM, and GRU. This 

approach was tested using datasets of traffic traces collected from the MAWI Lab 

archive, achieving an accuracy of 89.99% (Callegari, Giordano, and Pagano 2024). 

Researchers with similar research work on DDoS attacks using DNN are provided in 

Table 4.  
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Table 4:DNN Summary Review. 

SERIAL 
NO. 

PAPER TITLE MODEL USED NATURE OF 
LEARNING 

DATASET DETECTION 
OF 

ATTACKS  

ATTACK 
LAYER 

LIMITATION CHARACTERISTICS REF 

1 A deep-learning 
model for 
detecting 

network attacks 

RNN with 
autoencoder 

Unsupervised CICDDOS2019 SYN Flood, 
UDP, flood 

attacks, web 
DDoS 
attacks 

Transport 
and 

application 
layer 

No Combination / 
Integration of algorithm and 
no primary datasets used  

Highest evaluation of 
metric -Recall, 

Fscore, Accuracy 
precision. Feature 

dimensionality 
reduction  

Elsayed, M.S., Le-Khac, N.A., 
Dev, S. and Jurcut, A.D., 
2020, August. Ddosnet: A 
deep-learning model for 

detecting network attacks. 
In 2020 IEEE 21st 

International Symposium on" 
A World of Wireless, Mobile 

and Multimedia 
Networks"(WoWMoM) (pp. 

391-396). IEEE. 

2 CNN- Based 
Network 
Intrusion 
Detection 

against Denial-
of- Service 

Attacks. 

CNN Supervised KDDCUP 
99 and CSE-
CIC-IDS 2018 

DoS-Hulk, 
DoS Slow 

HTTP Test. 
DoS-Golden 
Eye, DDoS-
LOIC-HTTP 

DDoS- 
HOIC. 

Neptune 
Attack. 

Smurf Attack 

Network 
layer 

No Combination / 
Integration of algorithm and 
no primary datasets used   

Hyper-parameter 
tuning for designing 
an optimal model 

Kim. J.. Kim, J„ Kim. H.. 
Shim. M. Choi, E. CNN- 
Based Network Intrusion 

Detection against Denial-of- 
Service Attacks. Electronics. 
2020. 9(6). 916. https://doi. 

org/10.3390/electronics9060 

 

https://doi/
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3 An Effective 
Convolutional 
Neural Network 
based on 
SMOTE and 
Gaussian 
Mixture Model 
for Intrusion 
Detection in 
Imbalanced 
Dataset. 

SGM-CNN 
(SGM- 
combination of 
Synthetic 
Minority Over-
Sampling 
Technique 
(SMOTE) and 
under-sampling 
for clustering 
based on 
Gaussian Mixture 
Model (GMM)) 

Supervised UNSW- 
NB15and 
CICIDS2017 

DoS-Hulk. 
DoS Slow 
HTTP Test 
DoS-Golden 
Eye. DoS- 
Slowloris. 
DDoS-LOIC-
HTTP 
DDoS-HOIC, 
Bot Net 
attacks. 
general DoS 
attacks 
(UDP.TCP) 

Application, 
Transport, 
and 
Network 
layer 

No Combination / 
Integration of algorithm and 
no primary datasets used  

Ability to address 
class imbalance 
problem. 

Zhang. H.. Huang. L.. Wu, C. 
a, Li. Z. An Effective 
Convolutional Neural Network 
based on SMOTE and 
Gaussian Mixture Model for 
Intrusion Detection in 
Imbalanced Dataset. 
Computer Networks. 2020, 
177, 107315. https://d0i.0rg/l 
0.1016/j.com 
net.2020.107315 

4 Detection of 
DDOS Attack 
using Deep 
Learning Model 
in Cloud 
Storage 
Application 

Feature 
Selection-Based 
Whale 
Optimization 
DNN 

Supervised CICIDS2017 DoS 
Slowloris. 
DoS Slow 
HTTP Test. 
DoS Hulk 
and DoS 
Golden 

Network 
layer 

No Combination / 
Integration of algorithm and 
no primary datasets used  

Storing the non-
attacked data in cloud 
to provide security 
and avoiding the 
entry of DDOS 
attacks 

Agarwal, A., Khari, M., Singh, 
R. Detection of DDOS Attack 
using Deep Learning Model in 
Cloud Storage Application. 
Wireless Personal 
Communications. 2021, 1-21. 
https://doi.Org/10.1007/S1127 
7-021-08271-z 

5 A Multi-
Classifier for 
DDoS Attacks 
Using Stacking 
Ensemble Deep 
Neural Network 

 CNN,  LSTM, 
GRU and 
stacking 
ensemble 

Supervised CIC-
DDoS2019 

DDoS Network 
layer 

Combination / Integration of 
algorithm used but no 
primary datasets used 

Ability to determine 
the various 
classifications of 
DDoS attacks and 
lack to identify similar 
categories. 

M. I. Sayed, I. M. Sayem, S. 
Saha and A. Haque, "A Multi-
Classifier for DDoS Attacks 
Using Stacking Ensemble 
Deep Neural Network," 2022 
International Wireless 
Communications and Mobile 
Computing (IWCMC), 
Dubrovnik, Croatia, 2022, pp. 
1125-1130 

6 Detection and 
Characterization 
of DDoS Attacks 
Using Time-
Based Features 

GNB, DNN and 
SVM 

Supervised CICDDoS2019 DDoS, 
MSSQL, 
SSDP, SYN 
Flood, 
PORTMAP, 
DNS, LDAP, 
NETBIOS, 

Network 
layer 

No Combination / 
Integration of algorithm and 
no primary datasets used 

Ability to identify and 
perform well on time-
based features 

J. Halladay et al., "Detection 
and Characterization of DDoS 
Attacks Using Time-Based 
Features," in IEEE Access, 
vol. 10, pp. 49794-49807, 
2022,  

https://doi.org/10.1007/S1127
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SNMP, 
TFTP, NTP, 
UDP Flood, 
or UDP-Lag 

7 An Efficient 
Hybrid DNN for 
DDoS Detection 
and 
Classification in 
Software-
Defined IIoT 
Networks 

(CNN-LSTM) & 
XGBoost 

Supervised CICDDoS2019 DDoS Network 
layer 

Combination / Integration of 
algorithm used but no 
primary datasets used 

Ability to determine 
feature selection  

A. Zainudin, L. A. C. 
Ahakonye, R. Akter, D. -S. 
Kim and J. -M. Lee, "An 
Efficient Hybrid-DNN for 
DDoS Detection and 
Classification in Software-
Defined IIoT Networks," 
in IEEE Internet of Things 
Journal, vol. 10, no. 10, pp. 
8491-8504, 15 May15, 2023 

8 An 
Autoencoder-
Based 
Approach for 
DDoS Attack 
Detection Using 
Semi-
Supervised 
Learning 

Autoencoder 
(AE) and Support 
Vector Machine 
(SVM) 

supervised 
and semi-
supervised 

CICDDoS2019 DDoS Network 
layer 

No Combination / 
Integration of algorithm and 
no primary datasets used  

Ability to perform well 
on unbalanced 
datasets 

T. Fardusy, S. Afrin, I. J. 
Sraboni and U. K. Dey, "An 
Autoencoder-Based Approach 
for DDoS Attack Detection 
Using Semi-Supervised 
Learning," 2023 International 
Conference on Next-
Generation Computing, IoT 
and Machine Learning 
(NCIM), Gazipur, Bangladesh, 
2023, pp. 1-7 

9 Lightweight 
Deep Learning 
Method based 
on Group 
Convolution: 
Detecting DDoS 
Attacks in IoT 
Environments 

Autoencoders 
and CNN 

supervised  CICIoT2023 DDoS Network 
layer 

No Combination / 
Integration of algorithm and 
no primary datasets used  

The DGConv-IDS 
model has the ability 
to lower 
computational costs 
and provide better 
detection 
performance to 
improve security 
protection capabilities 
against DDoS attacks 

S. Yan, H. Han, X. Dong and 
Z. Xu, "Lightweight Deep 
Learning Method based on 
Group Convolution: Detecting 
DDoS Attacks in IoT 
Environments," 2024 10th 
International Symposium on 
System Security, Safety, and 
Reliability (ISSSR), Xiamen, 
China, 2024, 
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10 Enhanced 
DDoS Attack 
Detection Using 
Advanced Deep 
Learning 
Techniques 

LSTM, 
GRU,RNN,DCAE 
and CNN 

supervised  CICDDoS2019 DDoS Network 
layer 

Combination/amalgamation 
of CNN - LSTM used and 
no primary datasets used  

Ability to detect 
diverse DDoS attack 
patterns  

C. Abdelkarim, M. Merouane 
and B. Lina, "Enhanced DDoS 
Attack Detection Using 
Advanced Deep Learning 
Techniques," 2024 
International Conference on 
Advances in Electrical and 
Communication Technologies 
(ICAECOT), Setif, Algeria, 
2024, pp. 1-4 
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This section summarizes about DNNs that are used mainly for their automated, adaptive 

and high-accuracy detection capabilities in the following areas:  

1. Complexity Handling: Easily fit in for typical model complex, non-linear 

relationships due to their deep architecture and multiple layers. 

2. Performance and Accuracy: They typically offer higher accuracy and better 

performance on large and complex datasets due to their ability to capture 

intricate patterns. 

1. Scalability: It is devised to manage high-scale data effectively, yielding it for 

more appropriate real-time detection of DDoS attacks. 

2. Adaptability: More easily retrained with new data to adapt to evolving attack 

patterns, offering better adaptability to changing threat landscapes.  

3. End-to-end Learning: Support end-to-end learning, directly mapping raw input 

data to output predictions in a streamlined manner. 

4. Feature Engineering: Automatically discover and capture attributes from raw 

data, reducing the need for manual intervention  

(Mittal, K. Kumar, and Behal 2023). 

Sections 2.2 to 2.4 of the literature review, including the ML-tables and DNN table, 

provide the mechanisms behind DDoS attacks and highlight various research efforts 

aimed at mitigating these attacks. These efforts have employed rule-based systems, 

ML, and DNN. The review delves into the limitations of these approaches and explores 

how researchers have innovatively adapted their methods over time to address these 

challenges. 

2.5 A  Research Review on ICMP  

 

Based on our aim the research was narrowed down to DDoS attacks related to ICMP, 

TCP, and UDP attacks using ML and DNN by various researchers. Mohammad Tayyab 

reviewed DoS and DDoS attack detection in ICMPv6 using ML techniques, discussing 

single classifiers (e.g., SVM, KNN, Decision Trees, NB) and hybrid classifiers. They 

detailed how classifiers, trained on DARPA 1999 and generic datasets, achieved 
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detection rates of 94.47% and 96.55%, respectively with performance, scalability, 

efficiency, benchmarks, imbalance, and evaluation metrics addressed. Additionally, 

Blockchain applicability for detecting ICMPv6 DDoS attacks was proposed as a new 

research direction (Tayyab, Belaton, and Anbar 2020). Ren-Hung presented a model 

that can learn unsupervised data using CNNs for the detection of traffic anomalies in 

the network at an early stage. This model automatically profiles traffic features from raw 

patterns, focusing on the first few packets in a flow to learn features and determine non-

linear relationships, achieving partial end-to-end learning. Trained on raw data, it builds 

a classifier to differentiate benign traffic and detect anomalies accurately. Using the 

277.1 GB Mirai-based DDoS dataset from Robert Gordon University, their evaluation 

with PyTorch and TensorFlow achieved nearly 100% accuracy, with less than 1% false 

alarms and false negatives, from just two packets and 80 bytes (Hwang et al. 2020).  

 

Ahmed Issa introduced an innovative deep-learning classification approach by 

combining two widely used algorithms, CNN and LSTM. The model was designed with 

a 7-layer deep neural network consisting of a 1D CNN layer with kernel and stride 

parameters, followed by a MaxPooling 1D layer, using ReLU activation function, and 

SoftMax for the output layers. The model was assessed using the NSL-KDD dataset, 

which contains 40 features and includes various types of attacks. The model achieved 

an impressive accuracy rate of 99.20% (Issa and Albayrak 2023). Omar Elejla 

introduced an innovative method for identifying ICMPv6 flooding DDoS attacks in IPv6 

networks. This approach leverages deep learning and incorporates an ensemble 

feature selection technique, utilizing chi-square and information gain ratio methods to 

identify crucial features for accurate attack detection. The model employs LSTM 

network trained on the selected features, resulting in impressive detection accuracy 

rates: 87.1% for RNN, 99.4% for LSTM, and 99.11% for a GRU (Elejla et al. 2019). 

Hasan provided good insight into ML and DL techniques focusing on ICMPv6 DDoS 

attacks and their usage to detect and mitigate. He also provided the differences 

between both and a review of the adaption of ML and DL techniques in AIDS for 

detecting IPv4 and IPv6 attacks, such as DoS and DDoS flooding attacks (Hasan Kabla 

et al. 2023). Researchers with similar work on ICMP DDoS attacks using ML and DNN 
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are provided in Table 5. The literature review highlights the evolution from traditional 

IDS detection methods to the use of ML and AI, specifically deep neural networks 

(DNNs), in detecting DDoS attacks, noting their limitations and merits. It reveals that 

attackers are increasingly using sophisticated covert techniques to evade detection and 

successfully launch DDoS attacks across networks of all sizes. Despite many proposed 

techniques and approaches, existing methods face limitations that emphasize the need 

for advanced techniques like DNNs. 

 

Selecting LSTM in the combination:  

Sections 2.4 and 2.5 highlight that several researchers have utilized LSTM-based 

models for DDoS attack detection due to their effectiveness in handling sequential data. 

Kumar employed LSTM, Bidirectional LSTM, Stacked LSTM, and GRU models, 

achieving a remarkable accuracy of 99.55% in detecting DDoS attacks. Christian 

Callegari used a combination of RNN, CNN, LSTM, and GRU models for network attack 

identification, achieving an accuracy of 89.99%. Ahmed Issa integrated CNN and LSTM 

to detect various types of attacks, reaching an accuracy of 99.20%. Omar Elejla trained 

RNN, LSTM, and GRU models on selected features to detect ICMPv6 flooding DDoS 

attacks in IPv6 networks, with resulting accuracies of 87.1% for RNN, 99.4% for LSTM, 

and 99.11% for GRU. Similarly, Sayed applied CNN, LSTM, GRU, and a stacking 

ensemble approach for DDoS detection. A. Zainudin proposed a hybrid deep neural 

network using CNN-LSTM and XGBoost for DDoS detection and classification in 

Software-Defined Networks (SDNs). C. Abdelkarim employed a combination of LSTM, 

GRU, RNN, DCAE, and CNN to detect enhanced DDoS attacks. 

Based on these studies, the LSTM technique is selected due to its superior performance 

across the following parameters: 

 

Temporal patterns: 

DDoS attacks typically involve bursts of traffic over time. They exhibit 

sequential behavior, such as rapid increases in packet rate or abnormal 

flow durations. 

 

  



51 

Table 5: ICMP summary review 

SERIAL 
NO. 

PAPER TITLE MODEL USED NATURE OF 
LEARNING 

DATASET DETECTION 
OF ATTACKS  

ATTACK 
LAYER 

LIMITATION CHARACTERISTICS REF 

1. LUCID: A 
practical, 

lightweight 
deep learning 

solution for 
DDoS attack 

detection 

CNN Supervised ISCX2012, 
CIC2017 and 
CSECIC2018 

DoS Slowloris, 

DDoS (TCP, 
ICMP) 

Network 
layer 

No 
Combination 
/ Integration 
of algorithm  

Reduction in 
execution and saving 
of processing power 

Doriguzzi-Corin, R., 
Millar, S., Scott-

Hayward, S., 
Martinez-del-Rincon, 
J. and Siracusa, D., 

2020. LUCID: A 
practical, lightweight 

deep learning 
solution for DDoS 

attack 
detection. IEEE 
Transactions on 

Network and Service 
Management, 17(2), 

pp.876-889. 

2. A deep 
learning 

approach with 
Bayesian 

optimization 
and ensemble 
classifiers for 

detecting 
denial of 

service attacks 

Ensemble models 
and AE-based 
deep learning 

classifiers 

Unsupervised Digiturk and 
Labris 

SYN ack DDoS 
attacks, ICMP 
DDoS, HTTP 

Flooding 

Network 
and 

application 
layer 

No 
Combination 
/ Integration 
of algorithm  

Hyper Parampara 
uses Bayesian 
optimization to 

reduce and select 
optimal values for 
hyperparameters 

Gormez, Y., Aydin, 
Z., Karademir, R. 
and Gungor, V.C., 

2020. A deep 
learning approach 

with Bayesian 
optimization and 

ensemble classifiers 
for detecting denial 

of service 
attacks. International 

Journal of 
Communication 

Systems, 33(11), 
p.e4401. 

3. A 
comprehensive 
study of DDoS 

attack 

GRU-BWFA Supervised SNMP-M IB 
dataset 

TCP-SYN, UDP 
flood, ICMP-
echo, HTTP 
flood, Slow 

Application, 
Transport, 

and 

No 
Combination 
/ Integration 
of algorithm 

To identify several 
attacks from the 

SNMP-MIB dataset 
and restore the 

Gangula, R. Mohan. 
V.M. and Kumar. R., 

2022. A 
comprehence study 
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detecting 
algorithm using 

GRU-8WFA 
classifier 

Loris. Slow 
Post a 

Network 
Layer 

and no 
primary 
dataset 
used 

System in the 
shortest possible 

time. 

of DOoS attack 
detecting algorithm 
using GRU- BWFA 

classifier 
Measurement: 
Sensors. 24. 

p.100570. 

4. Attack 
detection 

analysis in 
software-
defined 

networks using 
various 

machine 
learning 
method 

KNN, SVM, XGB 
,ANN and 

Renyi joint entropy 

Supervised Generated in 
SDN environment 

ICMP.TCP.UDP Network 
and 

Transport 
layers 

No 
Combination 
/ Integration 
of algorithm  

Efficacy and 
efficiency of ANOVA 

using the ML and 
ANN techniques 

Wang. Y.. Wang. X, 
Ariffin, MM. 

Abotfathi, M , 
Alqhatani, A. and 
Almutairi, U 2023. 
Attack detection 

analysis in software-
defined networks 

using various 
machine learning 

method. Computers 
and Electrical 

Engineering. 108. p 
108655. 

5. Modified 
Flower 

Pollination 
Algorithm 

(MFPA) for 
ICMPv6-Based 
DOoS Attacks 

Anomaly 
Detection 

MFPA Supervised Generated ICMPv6 Network 
layer 

No 
Combination 
/ Integration 
of algorithms 

To select the most 
relevant features 
from the ICMPv6 
dataset to detect 
ICMPv6 DDoS 

attacks using MFPA 

Alghuraibawi. AH8. 
Manickam. S.. 
Abdullah. R„ 

Alyasseri. Z.A.A, 
Jasim, H.M. and 
Sant N.S.. 2023. 
Modified Flower 

Pollination Algorithm 
for ICMPv6- Based 

DDoS Attacks 
Anomaly Detection. 
Procedia Computer 

Science. 220. 
pp.776-781. 

6 An approach 
to on-stream 
DDoS blitz 

detection using 
machine 

Naive Bayes. KNN 
and Random 

Forest 

Supervised 
Data set 

generated using 
Loic attacking tool 

ICMP. TCP. or 
UDP 

Network & 
Transport 

layer 

No 
Combination 
/ Integration 
of algorithm 

To detect attacks 
related to any traffic 

protocols 

Manjula. H.T and 
Mangia. N. 2023. An 

approach to on 
stream DDoS blitz 

detection using 

https://www.sciencedirect.com/topics/engineering/joints-structural-components
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learning 
algorithms 

machine learning 
algorithms. Materials 
Today: Proceedings. 

80. pp 3492-3499 

7 Zone-based 
stable and 

secure 
clustering 

technique for 
VANETs 

K-means Supervised Data sets 
generated using 

network simulator. 
NS2.35 

ICMP Network 
layer 

No 
Combination 
/ Integration 
of algorithm 

To monitor mode of 
RSU for the 

detection and 
mitigation of 

impersonation 
attacks in VANETs 

Sharma. S. and 
Awasthi, S.K., 2024. 
Zone- based stable 

and secure 
clustering technique 

for VANETs. 
Simulation Modelling 
Practice and Theory. 

130, p102863 

8 A Real Time 
Deep Learning 

Based 
Approach for 

Detecting 
Network 
Attacks 

MLP. RNN. CNN. 
LSTM and GRU 

Supervised MAW1 Data sets HTTP, ICMP, 
TCP & UDP 

Application, 
Network & 
Transport 

layer 

No 
Combination 
/ Integration 
of algorithm 

and No 
primary 
datasets 

used 

To detect anomaly 
attacks using Deep 
learning techniques 

Callegari. C„ 
Giordano. S. and 

Pagano. M . 2024 A 
Real Time Deep 
Learning based 

Approach for 
Detecting Network 

9 Detection of 
ICMPV6 

DDOS Attacks 
Using 

Ensemble 
Stacking of 

Hybrid Model-1 
(CNN-LSTM) 
and Model-2 
(RNN-GRU) 

 

CNN with LSTM, 
RNN with GRU 

Supervised NSL-KDD, Sain 
Malaysian 

Mendeley, two 
distinct primary 

datasets. 

ICMPv6 Network 
Layer 

Combination 
/ Integration 
of algorithm 
and primary 

datasets 
used 

To detect ICMPv6 
DDoS attacks 

O. V. P. 
Salamkayala, S. S. 

Ghidary, C. Howard, 
R. Campion and J. 

Banerjee, "Detection 
of ICMPV6 DDOS 

Attacks Using 
Ensemble Stacking 
of Hybrid Model-1 
(CNN-LSTM) and 
Model-2 (RNN-
GRU)," 2024 
International 

Conference on 
Machine Learning 
and Cybernetics 

(ICMLC), Miyazaki, 
Japan, 2024, pp. 58-

64, 
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10 Detection and 
Mitigation of 

DDOS Attack 
in SDN Using 
Feature Based 

RF & MLP 
Approach 

 

Genetic Algorithm 
and Chimp 

Optimization 
Algorithm 

Supervised SDN_DDoS_2020 TCP, UDP, and 
ICMP 

Transport 
and 

Network 
layer 

No 
Combination 
/ Integration 
of algorithm 

and No 
primary 
datasets 

Optimal feature 
selection methods to 
identify ICMP, TCP, 

and UDP attack 
traffic  

S. K, S. M, A. M. R, 
G. N and S. 
Tamilselvi, 

"Detection and 
Mitigation of DDOS 
Attack in SDN Using 
Feature Based RF & 

MLP 
Approach," 2025 3rd 

International 
Conference on 
Intelligent Data 
Communication 

Technologies and 
Internet of Things 

(IDCIoT), Bengaluru, 
India, 2025, pp. 457-

461 
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Traditional models may fail to detect such time-based anomalies, but LSTM is 
explicitly designed to handle time series data. 
 

Memory Capability: 

 

LSTM networks are a type of Recurrent Neural Network (RNN) with gated 

memory units that can remember long-term dependencies. 

 

• Detecting slow-evolving attacks. 

• Capturing traffic trends leading up to the attack. 

 

Anomaly Detection: 

 

• In DDoS detection, it's crucial to identify subtle deviations in traffic over 

time. 

• LSTMs can learn normal network behavior and detect when the 

sequence of events deviates significantly, suggesting an attack. 

 

High-Dimensional Sequential Data: 

 

• Network traffic can include many features: packet size, flow count, 

protocol type, etc. 

• LSTMs can process multivariate time series data, allowing more 

holistic analysis than traditional static classifiers. 

 

Performance: 

• Early detection 

• Reduced false positives 

• Adaptability to new attack patterns 
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2.6 DDoS scope level 

Threat attackers can launch DDoS attacks at various levels. This section briefly 

explains the different scopes of such attacks.  

 

1. Application Level: In this level, the threat attacker aims to disrupt an 

application by exhausting its resources, such as the maximum number of 

processes or simultaneous connections it can handle. These kinds of DDoS 

attacks are mostly found in web applications, blocking user access through 

repeated invalid login attempts, etc (Velauthapillai 2014). 

2. Operating System level:  Operating system DDoS attacks are like 

application DDoS attacks. Example: SYN flooding attack using TCP, where 

the threat attacker floods TCP SYN packets to the victim without completing 

the 3-way TCP handshake, exhausting the target system's connection state 

memory (Tajdini 2018). 

3. Hardware level: Attackers flood the hardware device with a high volume of 

traffic or requests, consuming its available resources such as CPU cycles, 

memory, or bandwidth. This can lead to device slowdown or complete 

unresponsiveness (Velauthapillai 2014). 

4. Network Layer Attacks: This layer can be considered as a communication 

layer at a core level for packet transmission. ICMPv6 DDoS attacks primarily 

target the network layer. They can involve flooding a network with ICMPv6 

packets, such as ICMPv6 Echo Request (ping) floods, ICMPv6 Router 

Advertisement floods, or ICMPv6 Neighbour Discovery floods. This results in 

overwhelming network bandwidth or consuming network resources, impacting 

the availability of network services  (Droms 2014). 

This research focuses on Network layer attacks, especially on ICMPv6 Echo-Reply 

attacks and the rest are out of scope. 

 

2.7 IPv4 Protocol  

The origins of IPv4 are traced back to the ARPANET, which was an experimental 

network funded by the U.S. Department of Defence’s Advanced Research Projects 
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Agency (ARPA). ARPANET was designed to explore packet-switching technology 

developed as part of the research and development efforts in computer networking 

that began in the late 1960s and early 1970s. As different networks began to emerge, 

there was a growing need for a standardized protocol that could enable 

communication between diverse systems. The development of a common protocol 

was necessary to ensure interoperability and the seamless exchange of data (Vint 

and Kahn 1974).  As a result, IPv4 was born, and its improvisation was documented 

through a series of RFC documents. RFCs are a set of technical and organizational 

notes about the Internet, issued by the Internet Engineering Task Force (IETF). The 

initial proposal for the Internet Protocol was outlined in RFC 791, published in 

September 1981 by Jon Postel. This document defined the basic structure and 

functionality of IPv4, and Jon Postel was  A key person in the development of IPv4, 

responsible for editing and publishing many of the early RFCs that defined the 

protocol (Internet Control Message Protocol 1981). IPv4 known as Internet Protocol 

version four, is widely used to identify devices on a network through an addressing 

system. The adoption of IPv4 facilitated the development of the World Wide Web, 

email, and other critical internet services. 

Some of the key points of Ipv4 are: 

1. Address Format: IPv4 is of a 32-bit address size,  extending to a total of 

addresses (approximately 4.3 billion addresses). 

2. Address Representation: Typically represented in dot-decimal format (e.g., 

192.168.0.1). 

3. Header Size: The header of an IPv4 packet is 20-60 bytes long. 

4. Address Exhaustion: Due to the rapid expansion of the internet and the 

scaling of devices, IPv4 addresses are nearly drained. 

(CISCO 2006). 

 

2.8 IPv6  

As the internet continued to grow and scale drastically, it was becoming difficult to 

cope with the 32-bit address space of IPv4 because of the shortage of IPs that are 

unable to meet the needs of an increasingly connected system in the digital world. 

This led to the development of IPv6 which was meant for larger address space. The 
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transition to IPv6 was deployed officially in 2018, with both protocols coexisting and 

being used in parallel during the transition period. 

Table 6: IPv6 address scheme 

 

 

 

 

 

 

 

 

IPv6 uses a 128-bit address scheme, which allows for approximately  unique 

addresses. This vast address space is a significant improvement over IPv4 which 

was supporting about 4.3 billion addresses. IPv6 addresses are written in 

hexadecimal format and distinguished by colons 

(e.g.,2001:0db8:85a3:0000:0000:8a2e:0370:7334). For easier format, leading zeros 

can be skipped, and such sections of zeros can be replaced with a pair of colon (::) 

and (2001:0db8:85a3:::8a2e:0370:7334 or 001:0db8:85a3:0:0:8a2e:0370:7334).The 

IPv6 address format is in a hexadecimal number system, it starts from 0 to 9 as 

numbers and from 10 to 15 its notation is represented as A to F (CISCO 2006).  

 

2.8.1 Identifying the IPv6 address based on Type and notation. 

It is based on higher-order bits that are shown briefly with the necessary format and 

notations. 

(Deering and Hinden 2006) 

 

There are roughly 6 categories of IPv6 addresses that are briefed below: 

 

1. Unicast: This address is mainly used for one interface. A packet that has a 

unicast address is transported to that specific interface which is recognised by 

that address. Further, it has 6 kinds that are used at different nodes at their 

Address Type Binary prefix IPv6 Notation 

Unspecified 00…0 (128 bits) ::/128 

Loopback 00…1 (128 bits) ::1/128 

Multicast 11111111 FF00::/8 

Link-Local unicast 1111111010 FE80::/10 

Global Unicast (everything else) -- 
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designated levels and sometimes with the combination of IPv4. IPv4 

compatible IPv6 address (nearly deprecated). The remaining are listed below: 

 

a. Global unicast address  

b. Site-local unicast address  

c. Link-local unicast address  

d. IPv4 mapped with IPv6 address.  

e. Special IPv6 Address 

 

Interface identifiers in IPv6 unicast addresses are used on a link and are 

unique within a subnet prefix. It is advised that the same identifier is avoided 

while assigning to different nodes of a link, though they are unique on a wider 

scope. An interface identifier can be determined from its link-layer address and 

should be used on multiple interfaces of a single node provided in different 

subnets. For instance, a Global Unicast address can be applied to a local 

scope identifier, and a Link-Local address can be applied to a universal scope 

identifier 

(Tajdini 2018). 

 

2. Multicast: It is an IPv6 address type that is used for multiple identifiers for a 

group of interfaces in the network. In a multicast address, there exist 4 flags 

consisting of 0, R, P and T are used to restrict the possibility of the multicast 

group. The higher order flag is reserved and assigned to “0”.  The values are 

interpreted as  

• “R = 1 indicates a multicast address that embeds the address on the 

RP.  Then P must be set to 1, and consequently T must be set to  1, 

• R = 0 indicates a multicast address that does not embed the address 

of the RP  

• P = 0 indicates a multicast address that is not assigned based on the 

network prefix    

• P = 1 indicates a multicast address that is assigned based on the 

network prefix. 



60 

• T = 0 indicates a permanently assigned  

• T = 1 indicates a non-permanent 

Further, multicast is based on the scope of the 4-bit value of groups that 

are listed as: 

• reserved 

• Interface-Local scope: Its scope is limited to a single interface on a 

node and is only useful for loopback transmission of multicast. 

• Link-Local scope: Its scope covers the same topological region as 

the corresponding unicast scope. 

• reserved 

• Admin-Local scope: Its scope is the smallest scope that requires 

administrative configuration, as it is not automatically derived from 

physical connectivity or other non-multicast-related configurations. 

• Site-Local scope: Its scope is limited to a single site. 

• (unassigned) 

• (unassigned) 

• Organization-Local scope: Its scope is designed to span multiple 

sites within a single organization. 

• (unassigned) 

• A  (unassigned) 

• B  (unassigned) 

• C  (unassigned) 

• D  (unassigned) 

• E  Global scope: It does not have any boundary. 

• F  reserved 

• Unassigned scopes are available for administrators to define 

additional multicast regions”. 

(Deering and Hinden 2006) 

Within the reserved multicast address range from FF00:: to FF0F:: the following 

addresses represent the scope of the nodes: 
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• “FF01::1—All Nodes within the node-local scope (its only for that 

host)   

• FF02::1—All Nodes on the local link (link-local scope).  

• FF01::2—All Routers within the node-local scope  

• FF02::2—All Routers on the link-local scope  

• FF05::2—All Routers in the site (site-local scope)  

• FF02::1:FFXX:XXXX—Solicited-Node (where XX:XXXX represents 

the final 24 bits in the IPv6 address of a node)” 

(Droms 2014).  

 

3. Anycast: An address that typically represents a set of interfaces that belong 

to various nodes. Anycast addresses are not syntactically distinguishable from 

unicast addresses. An exception in the Anycast scope is that Multiple 

interfaces can have a single unicast address assigned to them when they are 

used for load sharing over multiple physical interfaces. The same is true when 

multiple physical interfaces are treated as a single interface at the Internet 

layer. Routers using unnumbered interfaces on point-to-point links are not 

assigned IPv6 addresses, because the interfaces do not function as a source 

or destination for IP datagrams  (Deering and Hinden 2006). 

 

4. Global unicast address: IPv6 Global Unicast Addresses are akin to IPv4 

public addresses and serve as the IPv6 addresses used on the internet. They 

are unique and routable, essential for global connectivity and crucial in the 

realm of IoT. Assigned by IANA, these addresses encompass the entire range 

of available IPv6 devices. The prefix for IPv6 Global Unicast Addresses is 

2000::/3, where the high-level 3 bits are fixed as 001, allowing addresses 

starting with hex digits 2 or 3 depending on the fourth-bit value (0010.. for 

2000::/3 and 0011.. for 3000::/3) (Tajdini 2018). 

 

5. Site-local unicast address: These addresses were originally intended for 

intra-site addressing without requiring a global prefix. However, new 

implementations must now treat this prefix as Global Unicast and should not 
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support its original special behaviour. Existing implementations and 

deployments are allowed to continue using this prefix as they have been 

(Deering and Hinden 2006). 

 

6. Link-Local IPv6 Unicast Addresses: These addresses are intended for 

addressing within a single link and are used primarily for tasks like automatic 

address configuration and neighbour discovery, especially in the absence of 

routers. Routers are prohibited from forwarding any packets with Link-Local 

source or destination addresses to other links (Tajdini 2018). 

 

2.8.2 A brief comparison of IPV4 vs IPv6 is shown in Table 6: 

Table 7: IPv4 vs IPv6 

Serial 

No 

Parameters Internet Protocol 

Four 

Internet Protocol Six 

1 Version IPv4 IPv6 

2 Address size 32 bits or 2 32 128 bits or 2 128 

3 Notation Integer IP address 

format. Four lots of 

three-digit numbers, 

separated by full 

stops. Ex: 

192.168.0.1 

Hexadecimal format. Eight lots 

of four-characters hexadecimal 

numbers, separated by colons. 

Ex: 2600:1600:5b3::4bd3 

4 Loopback 

address 

127.0.0.1 ::1 

5 Requires 

address 

translation  

Network Address 

Translation (NAT). 

No 

6 Packet 

addressing 

Unicast, Broadcast, 

Multicast. 

Unicast, Anycast, Multicast. 
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7 Address 

configuration 

Manual DHCP 

Configuration 

Default Autoconfiguration is 

stateless. It also supports 

stateful DHCPv6 Configuration 

8 Header size Variable: 20 bytes and 

can be increased up 

to 60 bytes when 

optional fields and 

flags are added. 

Fixed 40 bytes: The size of 

separate extension headers 

varies. 

9 Header 

Checksum 

Yes No 

10 Optional Extras Limited support for 

options controls 

Numerous extension headers 

are available to enhance 

routing, fragmenting, quality of 

service, etc. 

11 Privacy IP address masking to 

hide the last eight bits 

of an address 

IP privacy extensions are used 

for temporary addresses  

12 Fragmentation  Controlled by routers Controlled by the originator 

13 Routing 

efficiency 

Controlled in headers Controlled in routing tables 

14 Mobile support Manual assignment Default 

 

2.9 IPv6 Header 

Figure 7 provides a pictorial view of the IPv6 head structure comprises 8 

fundamental fields essential for routing and delivering packets across networks. 

These fields include the version, source and destination addresses, traffic class, 

flow label, payload length, hop limit, and next header. Understanding the IPv6 field 

format is crucial for managing and troubleshooting modern IP networks. 

1. Version: It provides the Protocol version which is always IPv6 and its size is 

4 bits with the 0110 binary sequence. 



64 

2. The Traffic Class: This field in IPv6 is 8 bits and indicates the priority of the 

packet, aiding routers in traffic management. During congestion, routers 

discard packets that have values indicating the lowest priority. Currently, only 

4 bits are in use and corresponding values are from 0 to 7 meant for 

controlling congestion traffic and likewise for values from 8 to 15 for 

uncontrolled traffic like video or audio streaming. Initially, the source node 

does the setting of priorities; however, in transmission, the routers can 

change them (Tajdini 2018).  

3. Flow Label: This field is of size 20 bits and used by the source to label packets 

for handling special instances like non-default quality of service or real-time 

service by intermediate IPv6 routers. Routers differentiate flows using the source 

address, destination address, and flow label. Multiple flows can exist between a 

source and a destination due to concurrent processes. For routers or hosts that do 

not support flow label functionality, this field is set to 0. The source must also 

specify the flow's lifetime when setting the flow label (CISCO 2006).  

 

 

Figure 7: IPv6 header with optional Extension headers chain(CISCO 2006) 

 

4. Payload Length: This 16-bit field is an unsigned integer informing routers 

about the packet's payload size that includes upper-layer packet and 

extension headers. The field is set to zero in case the payload exceeds the 
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size of 65,535 bytes, and the Hop-by-Hop options extension header in case 

of the jumbo payload (Gont and LIU 2022). 

5. Next Header: This 8-bit field is for the type and indication of the presence of 

a forward extension header after the IPv6 header. In some cases, TCP or 

UDP is specified as the protocol within upper-layer packets. (Tajdini 2018). 

6. Hop Limit: It is like Time To Live (TTL) in the IPv4 version, determining the 

number of intermediate nodes an IPv6 version packet can travel. Each 

forwarding node decrements its value by one, and the packet is discarded if 

it reaches 0. This mechanism prevents packets from getting stuck in an 

infinite loop due to routing errors (CISCO 2006). 

7. Source address: This field indicates the source of the packet that contains 

a 128-bit IPv6 address  (Gont and LIU 2022). 

8. Destination address: This field indicates the original destination of the 

packet that contains a 128-bit IPv6 address. All the nodes carried by this 

packet go through this field to route the packet to the destination (Tajdini 

2018). 

9. Extension Headers: This field acts as a chain of next extension headers 

associated with the packet, overcoming the limitations of the IPv4 option field. 

It plays a significant role in the IPv6 architecture (CISCO 2006). 

A sample packet that contains one or more extension headers should maintain the 

recommended order and sometimes it can also contain zero headers which is given 

below. 

Table 8:IPv6 Header 

1 Basic IPv6 Header - 

2 Hop by Hop options 0 

3 
Destination options with routing information 

60 

4    Routing header 43 

5 Fragmentation header 44 

6   Authentication header   51 

7 
Encapsulation security payload header 

50 

8 Destination options 60 

9 Mobility header  135 

  No next header  59 
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Upper Layer         
TCP   

6 

Upper Layer         
TCP  UDP  

17 

Upper Layer         
TCP ICMPv6  

58 

 

2.9.1 Internet Control Message Protocol Version 6 (ICMPv6) 

ICMPv6 serves a crucial role in network testing and diagnostics, enabling functions 

like ping and traceroute to verify end-to-end connectivity and identify node errors 

within the network. While ICMP can be disabled in IPv4 for security reasons, doing 

so in IPv6 can severely impact network diagnostics and packet transmission 

consistency (Deering and Conta 1998). Therefore, disabling ICMPv6 could lead to 

significant network issues and disrupt the reliable flow of packet data. Threat 

attackers take this service or utility as an advantage and exploit it to launch a deadly 

attack by deploying command and control or by a simple script (Salih 2017). Error 

messages and Information messages are the two categories present in ICMPv6 

messages with their Type codes. 

 

1. Error Message: 

a. Destination unreachable -1 

b. Packet too big-2 

c. Time out-3 

d. Parameter problem-4 

e. Private experimentation-100 

f. Private experimentation-101 

g. Reserved for expansion of ICMPv6 message-127 

2. Information message: 

a. echo request-128 

b. echo reply-129 

(Davies and Mohacsi 2007). 

As per RFC4890, ICMPv6 messages function differently on Firewalls and Routers, 

and some of them are briefed below: 
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a. IPv4 consists of an address resolution protocol that converts a MAC address 

to an IP address and a reverse resolution protocol that is quite the opposite, 

i.e converts an IP address to a MAC address. This is not the same in IPv6, 

and for such a similar kind of functionality, we have i.e. Neighbour Discovery 

Protocol (NDP), Neighbour Advertisement (NA), and Neighbour Solicitation 

(NS). 

b. To determine node information, network prefix, default gateway, etc. in the 

LAN Router Advertisement(RA) and  Router Solicitation (RS). 

c. Ping6 utility provides an Echo request and Echo reply. 

d. Path Maximum Transmission Unit Discovery (PMTUD) provides the 

information related to MTU size for communication. 

e. IP multicast presence and absence can be determined through Multicast 

Listener Discovery (MLD)  

f. To find multicasting in routers, Multicast Router Discovery (MRD) is used.  

g. Information about nodes among them is obtained using Node Information 

Query (NIQ).  

h. Secure Neighbour Discovery (SEND) provides secure communication 

between neighbour devices like routers. 

(Davies and Mohacsi 2007), (Deering and Conta 1998). 

 

2.9.2 ICMPv6 vulnerabilities 

Internet Control Message Protocol version 6 (ICMPv6) is an essential part of the IPv6 

protocol suite, responsible for error messages and operational queries. Despite its 

critical role in network operations, ICMPv6 is susceptible to various vulnerabilities that 

can be exploited by attackers and some of them are provided below: 

 

The Internet Assigned Numbers Authority (IANA) has established ICMPv6 

parameters, categorizing ICMPv6 type numbers into two groups: error messages (0-

127) and informational messages (128-255) as provided in the 2.9.1 section. Each 

type number is further defined with a sub-section of type code fields, as defined in 

RFC 4443, and the parameters can be useful references for interpreting ICMPv6 

anomalies (Davies and Mohácsi 2007).  RFC 4443 reinforces the use of multicast 
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addressing (MA) and Multicast Listener Discovery (MLD), which are employed by 

IPv6 devices like routers and switches to track IPv6 multicast listening nodes on the 

link-local network. Similarly, Protocol Independent Multicast (PIM) is used by switches 

to send multicast packets. Although IPv6 multicast messages are limited to the local 

network prefix with a hop limit of 1, vulnerabilities exist where an attacker connected 

to the local network could send spoofed packets to multicast groups, potentially 

exploiting these groups to launch further attacks (Droms 2014), (M. Gupta and Conta 

2006). Additionally, ICMPv6 error responses, such as "destination unreachable," are 

not limited to the local network, posing a challenge for filtering malicious ICMPv6 

attacks (Li et al. 2022). 

 

Duplicate Address Detection(DAD) is used in IPv6 networks when a node is first 

allocated an IPv6 address. The node sends an RS message to the all-routers 

multicast group (ff02::2) to obtain an IPv6 prefix, then an NS message to the all-nodes 

multicast group (ff02::1) to check this address is in use. A threat attacker exploits DAD 

by sending spoofed NA responses to NS requests, falsely indicating the address is in 

use, preventing any IPv6 addresses from being allocated on the network (CISCO- 

2020). Router discovery is a neighbour discovery process where a node sends a RS 

message to all router's multicast groups to obtain a RA response, receiving the 

connected network prefix and other autoconfiguration options necessary for network 

access. A Threat attacker can exploit this by deploying a malicious device to respond 

with spoofing forcing nodes to communicate through a malicious route and potentially 

launch DDoS and man-in-the-middle attacks (CISCO- 2012). 

 

Threat attackers can exploit extension headers to craft new attack methods, using 

ICMPv6 to generate response or error messages that mask these attacks 

successfully evading from firewalls. ICMPv6 includes a parameter of type 137 and 

code 0 to advertise a new IPv6 router address for routing redundancy if a router is 

inaccessible. An attacker could spoof this redirect message, providing a fake gateway 

address for nodes on the link-local network, enabling a man-in-the-middle replay 

attack to capture packets and intercept sensitive information (Li et al. 2022). 

Bahashwan highlights that DoS attacks are the most common cyber-attacks targeting 
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ICMPv6. These attacks often use specific ICMPv6 message numbers and codes, with 

spoofed source addresses to hide the attacker's identity. One common method is 

ICMP flooding, where hosts receive numerous echo requests (type 128, code 0), 

forcing them to respond until network resources are exhausted, degrading 

performance. Amplification can be achieved by sending ICMPv6 echo requests to a 

multicast group address with the target's address spoofed as the source. Additionally, 

IPv6 routing loop vulnerabilities can allow DDoS attacks, detectable using the 'Time 

out' ICMPv6 message (Bahashwan, Anbar, and Hanshi 2020). 

 

 In this chapter, sections 2.6 to 2.9.2 of the literature review offer comprehensive 

insights into IPv6 and ICMPv6, covering their purposes, evolution, development, and 

features that facilitate broader usage. However, alongside their benefits, these 

technologies also exhibit vulnerabilities that can be exploited by attackers. To mitigate 

these risks and maintain a secure environment, a proposed model is presented in the 

next chapter to minimize the attacks especially related to ICMPv6 DDoS Echo-Reply 

attacks. 
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 3 DESIGN OF ARTIFACT 

 

This chapter addresses the design of the artifact aimed at bridging the gap identified 

in Chapter 1, Section 1.2. Initially, it delves into the merits of Deep Neural Networks 

(DNNs), offering a comprehensive understanding of how these networks contribute 

to the proposed solution. Following this, the chapter elaborates on the model 

architecture, and it concludes with a logical algorithm that is used to develop and 

apply to the secondary datasets and primary datasets for expected results. 

 

3.1 Attack Scenario 

 

Assume an attacker from the internet attempts to bypass the firewall to establish a 

connection. The attacker compromises systems in the E43 block of Figure 8(a)-ASN 

and initiates a DDoS attack by deploying Command and Control (C2) servers to flood 

the network with volumetric ICMPv6 packets. This flooding exhausts the server’s 

resources, causing it to crash and malfunction in E42-DMZ. To counter this, a 

Solution Model is proposed as depicted in Figure 8(b), which employs a Deep neural 

network. This model integrates with CNN & LSTM as CNN and RNN &GRU as RNN 

trained to identify and detect malicious packets of a DDoS attack. Genuine packets 

are allowed to enter the enterprise network, while malicious packets identified by the 

Stacking-Regression learning mechanism are dropped and further predict such 

attacks in advance. This proposed model can be deployed in Medium to Large-scale 

Enterprise systems. 
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Figure 8 (a): Attack Scenario Network 
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Figure 8 (b) Solution Model for ASN 
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3.2 Logical flow of a proposed model 

Start
Pre-process 

Datasets

Window

 
Figure 9: Logical diagram of the proposed Model 

 

Figure 9 illustrates a Logical block diagram of the proposed Model. Specifically, 

Models 1 and Model 2 are selected for scrutinizing the processed datasets, with a 

focus on identifying ICMPv6 volumetric DDoS attacks. Following the application of 

these techniques, the outputs from both models are amalgamated and input into a 

regression model to enhance the efficacy of DDoS attack packet detection and 

prediction.  

3.2.1 Convolution Neural Networks(CNN) 

 

The principle behind CNNs is inspired by the human visual system’s ability to process 

and recognize visual patterns. CNNs are part of deep neural networks used for 
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processing and analyse large data like images and videos. They are highly efficient 

for tasks like image recognition, object detection, image segmentation, etc. The key 

principle of CNNs is the use of convolutional layers, which perform convolution 

operations on the input data. Convolution involves sliding a small filter (also called a 

kernel) over the input image and computing dot products between the filter and local 

patches of the image. This operation enables the network to discover and identify 

several features like edges, textures, and more complicated sequences. 

 

A CNN should have at least one layer relating to convolution operations in its 

architecture. CNNs are successful in learning local attributes. CNNs are highly fast 

to run during training and conjecture due to shared kernels. CNNs use one-

dimensional to have minimum computational cost and good performance for simple 

classification challenges (Ma, Zhou, and S. Wang 2019). CNN has a good 

understanding of the sensory neuronal response field and shares weights that 

successfully minimize the parameters of training, besides reducing the complication 

of a network architecture model. The training of CNN mainly uses the forward 

propagation algorithm to learn the connected layer weights, bias, and other 

parameters (J. Chen et al. 2019). The structure of CNN mainly consists of the 

following layers, which are briefly explained in Figure 10 

 

              Figure 10: Illustrates a Simple CNN block  
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a. “Input layer: The CNN needs the network status i.e. a m×m array describing 

the traffic of each link in a network containing m nodes. In addition, the Input 

Layer will combine several network statuses in a time sequence to 

demonstrate a trend of continuous network changes. 

b. Convolution layer: It is a significant part of the entire CNN network layers. 

Each input matrix in the Convolution Layer is the result of the previous output. 

It can be calculated based on the computing formulae:- 

  

Where Ym, n is the eigenvalue calculated by the network traffic matrix via 

Convolution, and f is the ReLU or Ø (Sigmoid) activation function that is 

defined as max(0,x), Xm+i,n+j,t which is newly entered matrix, or the result of 

the last Convolution calculation. Fi,j,t and Br are filters. The learning method 

here uses matrix multiplication and calculates based on each result of the 

previous output to be input into the Convolution Layer. This calculation will 

result in a linear relationship between the output and the input, but practically, 

the occurrence of the attacks is not completely linear. Therefore, to make the 

training model more perfect and accurate, it is necessary to adjust the 

nonlinear excitation function. Based on the activation function, in case the 

input is a positive value, then it is directly output. If the input is not a positive 

value, the output is 0. The activation function is effective in solving the gradient 

explosion and the gradient disappearance problem compared with the 

excitation functions such as Sigmoid and tanh. Complex mathematical 

operations such as indices greatly reduce the computational complexity and 

greatly increase the speed of convergence. 

c. Pooling layer: This layer is to remove the similarity and the excess of 

overfitting. The matrix is divided into several rectangular regions, and in each 

rectangular region, it selects the largest value as the output. The remaining 

smaller values are rounded off, thus reducing the excessive feature 

parameters and increasing the computing efficiency. 
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d. Non-Linearity (Activation): After each convolutional or pooling layer, a non-

linear activation function is applied elementwise to the output. ReLU (Rectified 

Linear Unit) is a commonly used activation function in CNNs. 

e. Fully connect layer: In this layer, after converting the Filter array of the 

Convolution Layer into a one-dimensional matrix, the forward propagation 

approach is used to calculate the relevant error value, update its weight value, 

and output the result to the Output Layer. 

f. Training and Backpropagation: CNNs are trained using backpropagation, 

which involves iteratively adjusting the network’s biases and weights to reduce 

the difference of predicted outputs and basic targets. This is usually 

accomplished using flawless algorithms such as Stochastic Gradient Descent 

(SGD). 

g. Weight Sharing and Local Connectivity: CNNs utilize weight sharing and 

local connectivity to minimize the number of attributes and create a network 

efficient based on the computing. Weight sharing allows a single feature 

detector (filter) to be used at multiple spatial positions, and local connectivity 

ensures that each neuron present in the layer is connected to a modest region 

of the earlier layer. 

h. Hierarchical Representation: CNNs learn to represent features 

hierarchically, starting from low-level features (e.g., edges, corners) and 

gradually progressing to more complex and abstract features (e.g., object 

parts, high-level structures). 

i. Output layer: This layer is the output of a fully connected Layer that 

distinguishes between the probability of attack and the probability of non-

attack based on the selection of the highest probability value in the Output 

Layer thus using the predicted value of the CNN to complete the judgment of 

attack detection”  

(Y.-H. Chen et al. 2020).  

 

3.2.1.a Merits of CNN 

1. ”Spatial Hierarchy: CNNs use convolutional layers to process small, 

localized regions of the input, capturing spatial hierarchies. This is critical for 
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jobs like image identification where local features are important. Convolutional 

layers share weights across different parts of the input, significantly reducing 

the number of parameters and computations required. 

2. Translation Invariance: CNNs are designed to identify particular sequences 

irrespective of their status in the visual field. This process known as translation 

of invariance, is achieved through pooling layers that minimize the spatial 

elements while preserving the significant features. 

3. Feature Extraction: CNNs automatically learn and extract hierarchical 

features from the input data, which are crucial for classification, object 

detection, and other vision tasks. Lower layers might detect edges and 

textures, while higher layers might detect shapes and objects. 

4. Reduction of Parameters: Using convolution and pooling operations, CNNs 

reduce the number of parameters compared to fully connected networks. This 

makes training more efficient and reduces the risk of overfitting. 

5. Handling Large Inputs: CNNs are well-suited for handling large inputs like 

high-resolution images. The hierarchical structure allows them to break down 

the complexity and focus on local patterns, making it computationally feasible 

to process large images. 

6. Strong Performance in Practice: CNNs have demonstrated superior 

efficiency in a wide area of domains and relevant applications, including image 

classification, and segmentation, They have become the de facto standard in 

these domains. 

7. Flexibility and Adaptability: CNN architectures can be adapted and 

extended to various tasks beyond image recognition, such as video analysis, 

natural language processing (with 1D convolutions), and even playing board 

games.  

8. Robustness to Variations: CNNs are robust to variations in the input, such 

as changes in lighting, orientation, and partial occlusions. This robustness is 

a key factor in their success in real-world applications. 

9. End-to-end Learning: CNNs support perfect learning, i.e., they are capable 

of learning to map raw input data directly to the desired output. This simplifies 

the learning process and reduces the need for manual feature engineering. 
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10. Transfer Learning: Prior to training CNN models, they can be fine-tuned on 

fresh tasks with limited data, leveraging the knowledge gained from large 

datasets. This transfer learning capability accelerates training and improves 

performance on related tasks” 

(Mittal, K. Kumar, and Behal 2023). 

Overall, the principle of CNNs is to automatically learn hierarchical and translation 

invariant features from the input data, which makes them highly effective for tasks 

involving huge data. 

 

3.2.2 Long Short-Term Memory  

 

Figure 11: LSTM Architecture (Alguliyev, Aliguliyev, and Abdullayeva 2019) 

 
In Figure 11, there are three gates namely input, output, and forget which are the 

regulatory gates for the information flow that is into and out in a cell which are 

memorized over arbitrary time intervals. The important functionality of the LSTM cell 

is to decide which value of the gate should be deleted or retained. For this, the forget 

gate plays a role in information coming from a prior unknown state (ht-1) from the 

current input (xt). On the combination of these values, it applies the σ function to get 

the values between 0 and 1. Any information value closer to 0 will be dropped 

otherwise it will be forwarded to the next step to process with the earlier cell state (ct-

1). The final result of (ht-1+xt) is passed through another σ and tan h activation 

function respectively (Alshra’a, Farhat, and Seitz 2021). 
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3.2.3 Recurrent Neural Networks 

In RNN, there are two types, one is a Feed-forward propagation, and the other is 

feed-backward propagation or Bidirectional. RNN performs the same action for every 

input data, whereas the output of the current input varies based on the earlier 

calculation. Once it produces the output, it is then fed back into the recurrent network. 

In Feed-forward RNN learns through the previous steps and produces the output as 

an input to the after node in the unseen layer. The memory of nodes stores the 

required information to be used for learning in future time steps. In a Bidirectional 

RNN, it connects two unseen layers to run in opposite directions. This allows the 

unseen layers to have information related to the previous and the next state (Nazih 

et al. 2020). 

 

Figure 12: Recurrent Neural Network (RNN) (Alguliyev, Aliguliyev, and 

Abdullayeva 2019) 

 

In theory, RNN operation can be illustrated as a memory for storing unbounded 

history based on previously processed elements shown in Figure 12. This means that 

at every point in time and instance, the stored history is used to predict the next output 

from the process. For instance, if W indicates the weight of neurons relating unknown 

state S. V indicates the weight of neurons relating to the unknown state S and the 

output O. U indicates the weight of neurons relating the inputs X and the unknown 

state S. Notice that all the 3 weights at any point in the process of the RNN operating 
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will have the same value but the values will be different in the case of Conventional 

Neural Network. Because the same task is processed at each step with different input 

attributes. This reduces the total number of attributes that RNN will learn. To revise 

these weights, Back Propagation Through Time (BPTT) is to be used (Alguliyev, 

Aliguliyev, and Abdullayeva 2019).  

 

Simple example: C0 = John / June, C1 = France / French. These values are assigned 

to C0 and C1.  If  John lived in France for a long time and could speak French fluently. 

Who lived in France?  John;   Similarly, June can also speak French fluently as it is 

her mother tongue. Whose mother tongue is French? June. Assigned values will 

change based on the context, and those need to be retained or discarded 

accordingly. 

 

3.2.3.a Merits of RNN 

RNN is an artificial neural network designed for processing sequential data. 

1. The key principle behind RNNs is their ability to maintain a hidden state that 

captures information about previous elements in a sequence and uses it to 

process the current element. This hidden state acts as a form of memory that 

allows RNNs to collect temporal dependencies and patterns in sequential 

data. 

2. The fundamental operation of an RNN involves iterating over a sequence of 

inputs while updating the hidden state at each step. 

3. This hidden state is passed along from one step to the next, allowing the 

network to maintain information about previous inputs. Mathematically, the 

unknown state at instance time step t is a function of the input at given 

instance step t and the earlier unknown state: ht = f(ht − 1,xt) Where: ht is the 

unknown state at given time step t. ht − 1 is the unknown state at time step t-

1 (earlier hidden state). xt is the input at instance step t. 

4. RNNs can be used for various tasks related to sequential data, like natural 

language processing (NLP), speech identification, music creation, video 

analysis, and more. However, conventional RNNs have weaknesses in 
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capturing extended dependencies because of the vanishing gradient 

problem, which can make them struggle with retaining information from 

distant past time steps. 

5. To address these limitations, more advanced RNN architectures have been 

developed, such as LSTM networks and GRUs. These architectures 

incorporate gating mechanisms that enable the network to control the flow of 

information and gradients, making them better suited for capturing long-term 

dependencies 

(S. Sumathi and Lokesh 2021). 

In summary, the principle underlying RNNs is their ability to process sequential data 

by maintaining an unknown state that encodes information from earlier time steps, 

allowing them to capture temporal patterns and dependencies. 

3.2.4 Gated Recurrent Unit (GRU) 

In RNN, a vanishing Gradient problem occurs when RNN starts with backpropagation 

multiplying a tiny number by the weight values, which results in diminishing. To avoid 

such issues, GRU is used. It has only two gates. Figure 13 illustrates the Architecture 

of GRU. 

 

 

Figure 13: GRU Architecture (I. Ahmad, Z. Wan, and A. Ahmad 2023). 
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The core function of a GRU is to maintain a hidden state vector, which stores 

information about the sequence it has seen so far. The hidden state is updated at the 

instance of the time step based on the present input and the earlier hidden state. 

GRUs incorporate a gating mechanism that helps control the flow of information 

through the network. This gating mechanism consists of two gates: 

a A Reset Gate: Determines which information from the previous state should 

be forgotten or reset. 

b Update Gate: Controls how much of the new state is a blend of the old state 

and the candidate's new state. 

GRU is responsible for deciding which parts of the previous hidden state to forget 

and which parts to update. It does this by considering the current input and the 

earlier unknown state. If the reset gate value is close to 1, it means that the model 

should mostly use the earlier unknown state. If it’s close to 0, it means that most 

of the information should be replaced with the new input. The update gate helps 

the model decide how much of the new candidate state to retain. A value close to 

one implies retaining a lot of new information, while a value close to zero implies 

relying more on the old state. Candidate New State: The candidate's new state is 

computed based on the current input and the earlier unknown state, modified by 

the reset gate. This candidate state is used to update the unknown state  

(Alshra’a, Farhat, and Seitz 2021).  

3.2.5  Ensemble Stacking 

Advanced ensemble techniques enhance predictive performance by amalgamating 

multiple machine-learning models. Stacking elevates ensemble learning by training 

a meta-model, or second-level model, to predict based on the outputs of various base 

models. It’s a versatile method enabling experimentation with different base models 

and meta-models, empowering the construction of robust and highly accurate 

machine learning models (Sayed et al. 2022). 

The reason for opting for stacking in the proposed model is that, from Figure 8 at the 

beginning of this chapter, if the detection accuracy of individual models is close to 
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each other or if any model has a lower score, stacking can be employed as it is a 

powerful ensemble learning technique improves predictive performance by 

combining the strengths of multiple models (S.Sumathi and Lokesh 2021). Wan 

employed the Stacking method in the stock market by integrating TCN, CNN, LSTM, 

and GRU classifiers into a stacked model, creating an ensemble learning approach. 

Their study focused on utilizing CSI300 index stock market datasets with a primary 

objective of minimizing the prediction error, specifically the Mean Absolute Error 

(MAE). Their proposed model achieved an accuracy rate of 86.3% (Wan et al. 2022). 

Sayed introduced a multi-classifier model with stacking ensemble deep neural 

networks to discern different types of DDoS attacks, targeting to tackle prevalent 

challenges in this domain. Their innovative hybrid model consists of CNN, LSTM, 

and GRU architectures. The study demonstrates the effectiveness of the ensemble 

technique in enhancing the performance of the model, particularly when evaluated 

with extensive datasets like CIC-DDoS2019, achieving an impressive accuracy rate 

of 89.4% (Sayed et al. 2022). Ali introduced an innovative ensemble approach based 

on stacking, demonstrating its superior performance over the current contemporary 

Network Intrusion Detection Systems (NIDS). His assessment encompasses diverse 

attack scenarios, on a network topology crafted using the Graphical Network 

Simulator-3 (GNS-3). Leveraging the CIC Flow Meter, they extracted key flow 

features for each attack, subjecting them to comprehensive analysis. By employing 

various machine learning approaches on the extracted traffic dataset features, with 

their respective performances. Notably, his findings reveal that the stacking-based 

ensemble approach emerges as the most promising accuracy score of 98.24% (Ali 

et al. 2023). The stacking mechanism is briefly explained with a pictorial block 

diagram in Figure 14. 
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Figure 14: Pictorial block diagram of Stacking 

 
1. “Train Base Learners: Multiple base learners are trained on the same 

dataset. These can be different types of models (e.g., ML, neural networks, 

both) or the same type of model with different hyperparameters. 

2. Generate Predictions: Once trained, each base learner makes predictions 

on the training data (or on a validation set if using cross-validation). These 

predictions become the input features for the next step. 

3. Train Meta-Learner: The meta-learner is trained taking the output of the base 

learners as its input values treating it as features and the original target 

variable as the target. The meta-learner learns how to conglomerate the 

predictions from the base learners to improve overall performance”. 

(Mohammed and Kora 2023) 

 

3.2.4.a Merits of Stacking 

Stacking is an ensemble learning technique that combines multiple models for better 

predictive performance. Merits of stacking are given below: 
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1. Increased accuracy, model diversity, and handling of heterogeneous data. 

2. Stacking reduces overfitting by combining models with different sources of 

error. 

3. Flexibility in model selection allows experimenting with various algorithms 

based on dataset characteristics. 

4. Stacking adapts well to model changes, enabling continuous improvement 

with new and improved models. 

5. It excels in capturing complex, nonlinear relationships in data, making it 

effective for intricate datasets. 

6. Stacking improves robustness by reducing the impact of outliers or noisy data 

(Zhao et al. 2022).  

 

3.3 Model-1 and Model-2 

 

Issa has proposed a model related to a combination of CNN and LSTM having 7 

layers indicating high quality of detecting DDoS attacks. Initially, he took CNN and 

Maxpooloing repeating twice and placed the LSTM layer deriving to an output layer 

using the SoftMax activation function. He assigned Filter = 10 Kernel size =3 and 

strides = 1 using ReLu as an activation function for the internal layers. He employed 

this combination neural network on NSL-KDD (IPv4 data) and achieved 99.20% 

accuracy. Taking his research work has a good support, in the current research, 

Model-1 was implemented with the same layers with different values and different 

activation functions and received a decent result of up to 80% accuracy using on 

different datasets including NSL-KDD. The combination of this neural network 

retained the same, however, changed the layer position and its values with different 

activation functions. On receiving good results and taking this as a good inspiration 

a similar kind of combination i.e. RNN with GRU is designed and tried using the same 

datasets achieving 84% of accuracy. Figure 15 a and b illustrates Model-1 and 

Model-2. 
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Figure 15-(a) Model-1 Block diagram 

 

Figure 15-(b) Model 2 Block diagram 

Normally in each model Input Layer (IPL) and output layer (OPL) are present. In 

between there exist hidden layers of the model designed by arranging them 

depending upon the chosen algorithms and respective activation function Relu at the 

required layer. The 14 parameters based on the datasets used are the traffic packet 

parameters meant to improvise the model’s output. At any given time, t, the present 



87 

input is a combination of IPL(t) and IPL(t-1). The output at any given time is carried 

back to the network to improvise the output.  

1. The model-1 architecture starts with an initial input layer consisting of 

a CNN with a kernel filter size of 128, using the ReLU activation 

function. Following this, an LSTM layer is employed with 100 filters, 

maintaining sequential order. The third layer comprises a MaxPooling 

layer and a one-dimensional convolutional layer with a pooling size of 

1. Subsequently, repeating these CNN and Maxpooling for the next 3 

times with CNN decreasing to 32, 16 and 8 values at each layer 

reshaping and focusing on the parameter’s filtration, then followed to 

Flatten layer that reshapes the tensor into a vector, facilitating 

seamless transition between connected layers, particularly interfacing   

with two Dense layers paired with two Dropout layers alternatively. 

Dropout regularization is then applied, randomly deactivating 10% of 

neurons in a layer during training to mitigate overfitting. The 3rd Dense 

layer designed for classification tasks act as output layer typically 

undergoes a sigmoid activation function, generating probabilities for 

each class, such as ”Normal” and ”Attack.” 

2. The model-2 architecture starts with an initial input layer consisting of 

a RNN with a kernel filter size of 128, utilizing the ReLU activation 

function. Following this, a GRU layer relates to 64 filters, maintaining 

sequential order. The third layer comprises a MaxPooling layer  with a 

pooling size of 1. Subsequently, 2 flattened layer reshapes the tensor 

into a vector, facilitating a seamless transition between connected 

layers, particularly interfacing with the 4 Dropout layers and 5 Dense 

layers alternatively pairing, deactivating 10% of neurons in a layer 

during training to mitigate overfitting. The final layer is a dense layer 

designed for classification tasks. The output of this dense layer typically 

undergoes a SoftMax activation function, generating probabilities for 

each class, such as ”Normal” and ”Attack.” 
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3.4 Models Learning 

During the training phase, the weights were adjusted using the forward propagation 

in Model 1 and the back-propagation technique in Model 2. This process utilized the 

Sparse Categorical Cross-entropy or Binary Cross-entropy loss function to calculate 

error loss, which was then propagated across the network. All intermediate nodes 

between layers were interconnected, contributing their error values to the forward 

propagation. The entire network was enveloped by both forward and backward 

propagation mechanisms in respective models. For weight updating, the stochastic 

gradient descent optimizer for Adaptive Moment Estimation (ADAM) (Reyad, Sarhan, 

and Arafa 2023) was employed with a learning rate of 0.01, and parameter tuning set 

a minimum delta of 0.000001. To ensure effective training, the networks underwent 

5 epochs, where each epoch involved one pass forward and backward of all data in 

the training set, or a comprehensive training cycle with a batch size of 5000. This 

iterative process enabled the network to gradually refine its weights and improve its 

performance over each epoch. 

 

3.5       ES-Model Architecture 

In this proposed model, Stacking is an ensemble learning technique that uses 

Logistic Regression as the meta-learner that combines predictions from various 

classifier models during the learning process, creating an adaptive mechanism i.e 

uses the predictions of base learners as input and then makes the final prediction. 

 

In the training phase, the 3-fold cross-validation approach is followed so that the base 

learners are trained on 2 folds of training data while the prediction is made on the 3rd 

fold, and this process is iterated to obtain the prediction corresponding to the entire 

training set. This synthesis of classifications from multiple models enhances the 

overall predictive accuracy by leveraging the diverse strengths of individual learners, 

ultimately resulting in more precise predictions. Figure 16 illustrates the Architecture 

of the ES-Model. 
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Figure 16: ES-Model Architecture 

 
1. CNN: A CNN should have at least one of its layers involving convolution  

2. operations. CNN is effective for learning local features. CNN is relatively fast 

to run during training and inference due to shared kernels. Mostly One-

dimensional CNNs are suggested instead of two-dimensional convolution, as 

they have low computational cost and good performance for simple 

classification problems. 

3. LSTM: The primary function of LSTM is to effectively learn from sequences 

by maintaining and updating information over extended periods. It has 3 

gates, an Input gate to decide which values should be updated and added to 

the cell state. Forget gate to controls which information from the cell state 

should be forgotten or removed and the Output gate to determines what part 

of the cell state should be used to produce the output at the current time step. 

4. RNN: It encompasses two key architectures: feedforward and bidirectional 

propagation. RNNs process data inputs iteratively, with outputs relying on past 

computations. In feed-forward RNNs, learning progresses sequentially, with 

each output feeding into the subsequent hidden layer node, retaining essential 
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information for future tasks. Conversely, bidirectional RNNs employ two 

hidden layers operating in opposing directions, accessing both preceding and 

succeeding states, thus enriching hidden layers with contextual information. 

Computational processes involve input vectors guided by equations, 

activation functions, and adjustments to weights via backpropagation. Despite 

their strengths, RNNs face challenges like the vanishing gradient problem, 

stemming from diminishing weight updates over time. 

5. GRU: It stands as a formidable asset in handling sequential data tasks like 

language modelling, speech recognition, and time series prediction. At its 

core, it maintains a hidden state vector that evolves with each time step, 

influenced by both the present input and the preceding state. Key to its 

functionality is two gating mechanisms: the reset gate, which determines what 

to discard from the prior state, and the update gate, regulating the infusion of 

fresh state information. These gates strike a delicate equilibrium between 

assimilating new data and retaining pertinent historical context, effectively 

addressing the challenge of capturing distant dependencies while mitigating 

the vanishing gradient predicament. 

6. MaxPooling Layers: Max pooling and average pooling are common 

techniques used to down-sample the feature maps. This helps reduce 

computational complexity and enhances the model’s ability to recognize 

important features. 

7. Flatten: The flattened vector effectively preserves the relevant features and 

provides a continuous input for the subsequent layers of the neural network. 

8. Dense layers: These are associated with the connections between neurons 

in the fully connected layers. These weights determine the strength of the link 

between neurons and are discovered during training to map input features to 

the output predictions. 

9. Dropout: It is a process of ignoring certain nodes in a layer at random during 

training. A dropout is a regular approach that avoids overfitting by assuring 

that no neurons are co-reliant with one another. 

10. Kernal or Filters: It is a key parameter that is the weight of a small matrix 

employed across the data related to input to extract attributes in each layer or 
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the architecture. Each Kernal learns to detect a specific pattern or feature in 

the input data. 

11. Biases: Each neuron (or feature map) typically has an associated bias term. 

These bias terms are added to the weighted sum of inputs before passing 

through an activation function. 

12. Adam:  It is derived from stochastic gradient descent (SGD) that combines 

ideas from RMSprop (Root Mean Square Propagation) and momentum.  It is 

abbreviated as Adaptive Moment Estimation which is a flawless technique and 

highly known as an optimization technique mostly used in optimizing machine 

learning models, specifically used in ML and deep learning applications.  

13. Rectified Linear Unit (ReLu): It is an activation function defined as 

f(x)=max(0,x) which means it returns “0” for any negative input value and 

returns the self-input value for any positive input. Mathematically, it’s a linear 

function where the output is linear for positive values and “0” for negative 

values. 

14. Sigmoid: It is an activation function, often denoted as σ(x), and represents a 

mathematical notation that derives any real-valued number to a value range 

of zero and one. In the context of artificial intelligence. and neural networks, 

the σ function is commonly used as an activation function. 

 

The two outputs of the base layers in the ES-Model are fed to the Meta learner by a 

stacking technique for better predictive performance. The main advantages of 

stacking are to increase accuracy, model diversity, and handle heterogeneous data. 

It reduces overfitting by combining models with different sources of error. It provides 

flexibility in model selection and allows experimenting with various algorithms based 

on dataset characteristics. Stacking adapts well to model changes, enabling 

continuous improvement with new and improved models. It excels in capturing 

complex, nonlinear relationships in data, making it effective for intricate datasets and 

improving robustness by reducing the impact of outliers or noisy data. 
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3.5.1 Reason for selection of LSTM : 

Rationale Behind Choosing the Model Combination, especially the LSTM (Long 

Short-Term Memory) model, was driven by the fundamental characteristics of the 

dataset and the nature of the research problem, which involves sequential data and 

temporal dependencies. Several factors were taken into consideration. Some of 

them are: 

• Nature of the Data – Temporal and Sequential Patterns: The dataset 

comprises sequence-dependent features, where the order and timing of data 

points are crucial for accurate prediction or classification, a kind of continuous 

flow of packets. Traditional machine learning models, such as Random 

Forests or Support Vector Machines, treat each instance independently and 

fail to capture the underlying temporal correlations that may significantly 

influence outcomes. 

• Model Capability – Handling Long-Term Dependencies: LSTM networks 

are a specialized type of Recurrent Neural Network (RNN) designed to retain 

information over long sequences. Unlike basic RNNs, LSTMs effectively 

mitigate the vanishing gradient problem and are capable of learning long-term 

dependencies through their gating mechanisms. This property aligns well with 

the problem at hand, where past events or feature states can influence future 

behaviour over a span of time. 

• Comparative Evaluation – Justification Over Alternatives: From the 

research study, alternative architectures such as traditional RNNs, GRUs 

(Gated Recurrent Units), and CNNs (Convolutional Neural Networks) were 

considered. While GRUs offered a simplified alternative to LSTMs with 

comparable performance in some tasks, preliminary evaluations showed that 

LSTM slightly outperformed GRU in capturing nuanced temporal 

dependencies in this particular dataset. CNNs, although effective in pattern 

recognition, lacked the sequential memory needed for this task. Based on 

these points a novel combination CNN with LSTM and RNN with GRU 

architecture was designed. 
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• Research Integrity – Theoretical and Empirical Support: The choice of 

LSTM is supported by a substantial body of literature where similar sequence 

modelling tasks have successfully leveraged LSTM networks. Additionally, 

empirical validation through experiments on this dataset confirmed the 

model’s robustness and superior performance compared to non-sequential 

models. 

• Compatibility with Analytical Framework – Interpretability Tools: The 

LSTM model was integrated into a broader interpretability framework using 

SHAP, LIME, and permutation importance. Although neural networks are often 

criticized for their "black-box" nature, the use of these interpretability 

techniques ensured the model remained transparent and aligned with the 

principles of explainable AI, allowing for a clear understanding of which 

features influenced predictions over time. 

3.6 Algorithms 

=============================================================== 

Using Deep Learning Neural Network feature list trained and tested for CNN and 

LSTM using MLP :  

Input packets : Packet traffic / flow Output packets : Good Packets Main key process 

of the technique: 

=============================================================== 

CNN and LSTM 

=============================================================== 

1:Load dataset 

2: Split dataset into 80% training and 20% testing 

3: T rain data ← dataset[0 : 80%] 

4: T est data ← dataset[80% :] 

5: Xtrain, Ytrain ← Train data 

6: Xtest, Ytest ← Test data 

7: while Batch = 5000 and Epoch = 5 do 

8:   Conv1D layer 

9:   LSTM layer 

10:   for weights in hidden layers do 

11:    MaxPooling1D 
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12:    Flatten 

13:    Activation function: ReLU 

14:    Dense layer 

15:    Apply Dropout 

16:    if layer is final output layer then 

17:      Activation function: Sigmoid (σ) 

18:    end if 

19:   end for 

20:   Optimization function: Adam 

21:  end while 

22: CNN MLP ← Final output 

  

=============================================================== 

RNN and GRU 

=============================================================== 

1: Split dataset into 80% training and 20% testing 

2: Train data ← dataset[0 : 80%] 

3: Test data ← dataset[80% :] 

4: Xtrain, Ytrain ← T rain data 

5: Xtest, Ytest ← T est data 

6: while Batch = 5000 and Epoch = 5 do 

7:   Apply SimpleRNN layer 

8:   for weights in hidden layers do 

9:    Apply MaxPooling1D 

10:    Apply GRU layer 

11:    Apply Dense layer 

12:    if layer is final output layer then 

13:     Apply Activation function: softmax 

14:    end if 

15:   end for 

16:   Set Optimization function: Adam 

17: end while 

18: RNN MLP ← Final output 

===============================================================  

Stacking 

=============================================================== 

1: Input: CNN-MLP, RNN-MLP 

2: Estimator List ← {(CNN-MLP, classifier), (RNN-MLP, regressor)} 

3: Stack Model ← StackingClassifier(Estimator List) 

4: Logistic regressor = Stackmodel 

5: Prediction: 
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6 : Ytrain pred ← Stack Model (Xtrain) 

=============================================================== 

The above algorithm can be mathematically explained based on the proposed 

architectures and the ensemble stacking approach model. 

 

1. Data Representation: 

Assume the input network traffic data is represented as a sequence of features 

over time. Let X be the input data, where each instance xi∈X is a sequence of T 

time steps, and each time step has F features. Thus, the input data can be 

represented as a 3D tensor of shape (N,T,F), where N is the number of samples. 

2. Model 1: CNN-LSTM 

This model combines Convolutional Neural Networks (CNNs) and Long Short-

Term Memory (LSTM) networks to capture both spatial and temporal patterns in 

the network traffic data.    

• Convolutional Layers: The 1D convolutional layers extract local patterns 

from the input sequence. For a given input sequence  the output of 

a 1D convolutional layer with K filters of size w can be represented as:  

 

where  is the activation of the j-th filter at time step t in the l-th layer,  

are the weights of the i-th element of the j-th filter in the l-th layer,  is the 

bias of the j-th filter in the l-th layer, and σ is the activation function (e.g., 

ReLU). The model has multiple such convolutional layers with varying 

numbers of filters (64, 32, 16, 8) and a fixed kernel size of 2. 

• LSTM Layer: The LSTM layer processes the temporal dependencies in the 

features extracted by the CNN. An LSTM unit at time step t takes the input 

ht (output from the previous layer) and the previous hidden state ct−1 and 

ht−1 to compute the current hidden state ht and cell state ct through a series 

of gates: 
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where W are weight matrices, b are bias vectors, σg is the sigmoid function, 

tanh is the hyperbolic tangent function, and ⊙ denotes element-wise 

multiplication. The model uses an LSTM layer with 100 units. The 

return_sequences=True argument indicates that the LSTM outputs a 

sequence of hidden states for each time step, which is then processed by 

the subsequent MaxPooling layer. 

• MaxPooling Layers: The MaxPooling layers downsample the feature 

maps, reducing dimensionality and providing translational invariance. For a 

1D input sequence s, the output of a MaxPooling layer with pool size p is: 

 

 

The model uses multiple MaxPooling1D layers with a pool size of 1, which 

in practice doesn't perform downsampling but might be used for 

architectural consistency or as a placeholder. 

• Flatten Layer: The Flatten layer transforms the multi-dimensional output of 

the convolutional and pooling layers into a 1D vector. 

• Dense Layers (Fully Connected Layers): These layers perform linear 

transformations followed by a non-linear activation function. For an input 

vector x, a dense layer with m neurons and activation function σ computes 

the output vector  as: . 

• Dropout Layers: Dropout layers randomly set a fraction (e.g., 0.2) of input 

units to 0 during training to prevent overfitting. 

• Output Layer: The final dense layer with a sigmoid activation function 

outputs a probability score between 0 and 1, representing the likelihood of 
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the input traffic being a DDoS attack (1) or normal traffic (0).  

where z is the output of the previous dense layer, w and b are the weights 

and bias of the output layer, and σ is the sigmoid function:  

• Loss Function and Optimizer: The model is compiled with binary cross-

entropy loss, which is suitable for binary classification problems: 

 where y is the true label (0 or 1) and  is the 

predicted probability. The Adam optimizer is used to update the model's 

weights during training to minimize this loss. 

3. Model 2: RNN-GRU 

This model utilizes a combination of SimpleRNN and Gated Recurrent Unit 

(GRU) layers to capture temporal dependencies. 

• SimpleRNN Layer: A SimpleRNN layer computes the hidden state  at 

time step t as:  where xt is the input at time step 

 is the previous hidden state,  are weight matrices,  is the bias 

vector, and  is the activation function (ReLU in this case). The model uses 

a SimpleRNN layer with 128 units. 

• GRU Layer: The GRU is a more sophisticated recurrent unit with update 

and reset gates that help in capturing long-range dependencies more 

effectively than SimpleRNN. The computations within a GRU unit are: 

The model uses a GRU layer with 64 units. 

• The rest of the layers (MaxPooling1D, Flatten, Dropout, Dense with ReLU, 

and the final Dense with sigmoid) function similarly to those in Model 1. The 

model is also compiled with binary cross-entropy loss and the Adam 

optimizer. 
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4. Ensemble Stacking 

Ensemble stacking combines the predictions of multiple base models to improve 

overall performance. In this case, the base models are a CNN-LSTM model 

(represented by the CNN function), an RNN-GRU model (represented by the RNN 

function), and a Logistic Regression classifier. 

• Base Models: Let M1(X), M2(X), and M3(X) represent the prediction 

outputs (probabilities for DDoS attack) of Model 1 (CNN-LSTM), Model 2 

(RNN-GRU), and Model 3 (Logistic Regression) for a given input X. 

• Meta-Learner: The stacking approach involves training a meta-learner (in 

this case, implicitly suggested but not explicitly defined in the provided 

snippet as a separate trainable model) on the predictions of the base 

models. A common approach is to use a simple model like Logistic 

Regression as the meta-learner. 

• Prediction with Stacking: For a new input x, the prediction process 

involves: 

o Obtaining predictions from each base model: 

. 

o Combining these predictions into a new feature vector: 

. 

o Feeding this feature vector z to the meta-learner : 

 If the meta-learner is a Logistic Regression model, 

its prediction would be:   where 

 are the weights and b is the bias learned by the meta-learner 

during training. 

In summary, DDoS detection is achieved through the following 

mathematical processes: 

1. Feature Extraction: CNN layers in Model 1 extract spatial features from 

the time series network traffic data. 
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2. Temporal Dependency Modeling: LSTM layers in Model 1 and RNN/GRU 

layers in Model 2 learn long-range temporal dependencies in the extracted 

features or the raw input data. 

3. Dimensionality Reduction and Abstraction: MaxPooling and Flatten 

layers reduce the dimensionality of the feature maps and prepare them for 

fully connected layers. 

4. Classification: Dense layers learn complex non-linear relationships 

between the extracted features and the target class (DDoS or normal), with 

the final sigmoid activation providing a probability of a DDoS attack. 

5. Regularization: Dropout layers help prevent overfitting by randomly 

dropping out neurons during training. 

6. Ensemble Aggregation: Ensemble stacking combines the predictions of 

multiple diverse models (CNN-LSTM, RNN-GRU, and Logistic Regression) 

using a meta-learner to produce a more robust and accurate final prediction. 

The meta-learner learns the optimal way to weigh or combine the individual 

model predictions. 

The entire process involves learning the optimal weights and biases of all the 

layers in each model through backpropagation and optimization algorithms like 

Adam, based on a labeled training dataset of network traffic. The goal is to train 

models that can accurately map input network traffic patterns to the probability of 

it being a DDoS attack. 

3.7 Implementation Specifications:  

The algorithm developed for the proposed model was implemented using Python on 

an HP laptop with an i7 processor, 64 GB RAM, and primarily using the T4 GPU 

runtime of Google Colab. Key modules such as Scikit-learn, Keras, and TensorFlow 

were applied. Model-1 consisted of a base classifier with 15 layers and an output 

layer, while Model-2 consisted of a base classifier with 14 layers and an output layer, 

where both models used the Adam optimizer. Each model was trained with 5 epochs 

with a batch equal of 5000. The outputs from these models were then used as inputs 

for an ensemble stacking meta-classifier, employing a regression classifier with 

cross-validation up to 3 folds, resulting in promising final predictions. Detailed 
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information about the datasets, experiments, and validation is discussed in the 

following chapters. 

 

3.8 Handling New and Unseen Networks: 

Handling New and Unseen Attacks 

A key challenge in real-world deployment of detection of DDoS attacks is their ability 

to generalize to new or unseen types of attacks. In this context, the proposed 

system's performance on such attacks would depend on several factors, including 

the diversity of the training data, the robustness of the learning algorithm, and the 

system's architecture. 

While the model is primarily trained on known attack categories from the training set, 

it incorporates mechanisms that enhance generalization: 

• Feature-based generalization: The use of high-level abstracted features 

(especially those with high importance across interpretability methods such 

as SHAP, LIME, and permutation importance) increases the likelihood that the 

system can recognize patterns indicative of anomalous behaviour, even if the 

specific attack vector is novel. (The discussion about this point is elaborated 

in Chapter 5 Experiments under Phase 4, which is mainly focused on the 

proposed model behaviour based on the results obtained). 

• Anomaly detection capability: Though the system is primarily a supervised 

classifier, additional mechanisms (e.g., thresholding prediction confidence, 

monitoring rare feature patterns) can be integrated to flag low-confidence or 

unfamiliar inputs as potential anomalies, which can then trigger further 

investigation. This rare feature pattern investigation is outside the scope of 

this research and can be extended for future research. 

3.9 Responding to Attacks Not Seen During Training: 

For attacks that the model has not encountered during training (zero-day or zero-

shot attacks), the system is able to respond appropriately. This research is focused 

mainly on detection of DDoS attack and other attacks is outside the scope of this 

research and can be extended for future research. 
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3.10 Handling Concept Drift: 

In dynamic environments, data distributions may shift due to changes in network 

behaviour, user activity, or emerging attack vectors, this phenomenon is referred to 

as concept drift. The system addresses concept drift through the following strategies: 

• Monitoring model performance over time: By evaluating metrics (e.g., 

precision, recall, F1-score) on recent traffic data in a sliding window, the 

system can detect performance degradation that may indicate concept drift. 

• Incremental or periodic retraining: Using new labelled data or pseudo-

labeled data from high-confidence predictions, the model can be updated 

regularly. This allows it to adapt to evolving patterns in both normal and 

malicious traffic. 

• TimeSeries-aware model validation: The use of TimeSeriesSplit during 

model evaluation and tuning provides better robustness to temporal shifts, 

making the system more resilient to changes in traffic over time, which is 

implemented in Chapter 5, Experiments Phase 4, and justified through results. 

 

Chapter 3 presents the design artifact of the proposed model, detailing each 

component block along with the mathematical formulations used to classify network 

traffic as benign or malicious for DDoS detection. It includes a step-by-step 

representation of the model’s workflow using algorithmic notation and explains the 

rationale behind the deep neural network combination. Additionally, the chapter 

outlines strategies for handling new and previously unseen traffic, ensuring 

adaptability to evolving threat patterns. 
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 4 DATASETS 

This chapter discusses the datasets used in this research, highlighting their 

importance in providing empirical evidence to support hypotheses, validate models, 

and draw conclusions. Datasets, being structured collections of data, are essential 

for analysis and research across various fields. The dataset consists of network traffic 

recordings obtained from previous research endeavours aligned with the objectives 

of this proposal. These datasets, widely disseminated by diverse institutions, 

research groups, and relevant entities, have been made publicly accessible, thereby 

enabling contemporary researchers to incorporate them into ongoing projects. It is 

worth noting that a majority of these datasets are specifically associated with IPv4. 

Organizations and institutes use datasets from real-time attacks for research to find 

mitigating solutions, while others generate datasets to address identified research 

gaps. They extend their services by openly providing these datasets, allowing 

researchers to perform similar experiments, validate their models, and draw 

conclusions based on the results. Below is a list of some of these organizations and 

a summary of their contributions. 

1. The Centre for Applied Internet Data Analysis (CAIDA) was established in 

1997 and administers network research and develops research groups to support 

huge data gathering, maintenance, and data sharing to the scientific research 

groups. It is an independent research group and analysis centre based at San Diego 

Supercomputer Centre, University of California. Its main focus areas are 

Measurement & Infrastructure, Research, Analysis and Data Collection. CAIDA 

Dataset 2007 is mainly used for DDoS and intrusion detection projects that were 

used earlier and hosted for new research projects and the page was updated in 2022. 

Summary CAIDA can be found at (CAIDA 2022). 

2. CIC, based at the University of New Brunswick, is a leading Canadian hub for 

cybersecurity. Focused on innovation, disruptive technology, and groundbreaking 

research, the institute explores diverse domains, including big security data 

analytics, visualization, analysis, risk management, intrusion detection, malware 
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analysis, and more. It has various datasets like CIC-DDoS2019, ISCXIDS2012, NSL-

KDD, CIC-IDS2017, and CIC-IDS2018, addressing different cybersecurity 

challenges such as intrusion detection and DDoS attacks. A summary of CIC can be 

found at (CIC 2021). 

3. MAWI Lab, established and managed by Dr. Kensuke Fukuda, is primarily 

situated in Tokyo, Japan. The lab is dedicated to curating datasets focused on 

Distributed Denial of Service (DDoS) anomalies, specifically those associated with 

packet features. These datasets categorize anomalies into distinct labels, including 

anomalous, suspicious, notice, and benign. The lab diligently and consistently 

gathers data from researchers to contribute to ongoing research efforts in the field. 

A summary of MAWI Lab can be found at (MAWI et al. 2010). 

4. The KDD Cup 1999 Data set, created for the Third International Knowledge 

Discovery and Data Mining Tools Competition, is publicly hosted and archived by the 

University of California, Irvine. Designed in 1999, the dataset aimed to facilitate the 

development of network intrusion detectorspredictive models capable of 

differentiating between malicious intrusions or attacks and normal connections. 

Simulated in a military network environment, the dataset provides a standard set of 

auditable data, featuring a diverse range of intrusions. Since its inception, 

researchers have widely utilized this dataset in various projects to assess and refine 

their proposed techniques (KDDCup October 28, 1999). 

5. The University of MIT’s Lincoln Laboratory R&D openly hosts a diverse array 

of DARPA datasets, featuring a substantial collection of archived data. These 

datasets are made readily available to emerging researchers, enabling them to 

assess and refine their techniques. By utilizing these datasets, researchers can 

effectively evaluate the suitability of their projects related to traffic flow, specifically 

tailored to various attack scenarios. A summary of DARPA can be found at (DARPA 

July 2000). 

Below are some of the researchers who have used the datasets from the above 

Organizations / Institutes for their research. Cheng et al. utilized CAIDA’s ”DDoS 
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Attack 2007” dataset, employing SVM, SMKL, and GMKL to enhance DDoS attack 

detection using a novel method ”Optimized Generalized Multiple Kernel Learning” 

thus achieving 86.2% accuracy in distinguishing attack flow from normal traffic 

(Cheng et al. 2019). Omer Kasim introduced an innovative approach for detecting 

Distributed Denial of Service (DDoS) attacks by leveraging Deep Learning and 

Autoencoder Support Vector Machine (AE SVM) techniques. The evaluation of his 

proposed method involved utilizing the CICIDS and NSL-KDD datasets. His 

approach demonstrated a high accuracy of 99.1% (Omer 2020). Laurens D’hooge 

and his team presented a study titled ”Inter-data Set Generalization Strength of 

Supervised Machine Learning Methods for Intrusion Detection,” which explores the 

assessment of generalization capabilities of inter-dataset using supervised ML 

methods in ID. The study specifically utilizes the CIC-IDS2017 and CSE-CIC-

IDS2018 data sets. The research involved the application of a varied range of 

algorithms, where Support Vector Machine (SVM) yielded 90% accuracy during their 

evaluation (D’hooge et al. 2020). Kurniabudi Stiawan introduced a novel approach 

for Anomaly Detection by employing Data Set Feature Analysis with Information 

Gain, specifically using the CICIDS-2017 dataset. Focusing on substantial features 

within extensive network traffic, their analysis significantly enhances the accuracy of 

anomaly detection They evaluated their experiments using Random Forest, J48 

classifier achieving 99.86 and 99.87 accuracy rates respectively (Stiawan et al. 

2020). Jing has proposed a novel approach for countering DDoS flooding attacks 

through ”Network traffic fusion and analysis” using a Chinese Remainder Theorem-

based Reversible Sketch (CRT-RS) and Modified Multi-chart Cumulative Sum (MM-

CUSUM) applied to the WIDE Internet (MAWI) datasets -2015050, 20150304, and 

CICIDS2017. In their pursuit of heightened accuracy, they conducted additional 

experiments employing Multi-scale Principal Component Analysis (MSPCA) and 

information theory-based detection methods thus resulting in 79.36 percent accuracy 

on comparison (Jing et al. 2019). Ahmed Issa introduced an innovative deep-learning 

classification approach by combining two widely used algorithms, CNN and LSTM. 

The model was evaluated using the NSL-KDD dataset achieving an impressive 

accuracy rate of 99.20% (Issa and Albayrak 2023). Ieracitano introduced an 

innovative intrusion detection approach, combining statistical analysis with Auto-
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encoder (AE) technology. In their study, they conducted a comparative analysis 

against LSTM and RNN techniques. Their experiments were carried out on the NSL-

KDD dataset resulting in 84.21%, 87% accuracy representing binary classification 

and multi-classification respectively (Ieracitano et al. 2020). Wesam introduced a 

novel methodology named Clustering Using Representative (CURE), which 

underwent comprehensive evaluation through comparisons with alternative methods 

such as SVM, Fuzzy Estimator, Fuzzy Logic, Growing Hierarchical SOM (GHSOM), 

and k-means. The assessment utilized DARPA2000, CAIDA2007, and CAIDA2008 

datasets, demonstrating an impressive accuracy rate of 97.25% specifically when 

applied to DARPA2000 datasets (Bhaya and EbadyManaa 2017). Besides the 

discussed datasets, further datasets that were used by different researchers are 

briefly provided in a tabular form shown in Table 7 (Yang et al. 2022). 

Table 9: Review of Datasets Summary (Yang et al. 2022) 

 
 



106 

 

 

4.1 Secondary Datasets 

Initially, secondary datasets, derived from existing literature, were utilized. These 

secondary datasets provided a foundational basis for the research. The details of 

these datasets including their sizes, sources, etc. are provided. 

 

4.1.1 Sain Malaysian Dataset 

Omar Elejila generated ICMPv6 datasets based on the network topology illustrated 

in Figure 16, serving as the foundational framework for his research. The data 

generation process extended over a period of 2 hours, capturing network traffic 

(Figure 17), and resulting in a dataset size of 15.8 MB. 

 

A subset of this traffic, presented as a 2.8 MB Excel sheet, was already present as 

training and testing datasets in the form of .csv files. These files consist of 11 features 

outlined in Table 8 (Elejla et al. 2019), each provided with a description. Both 

Datasets consist same 11 features where the “training.csv” file was utilized as 

an 80:20 train-test split ratio and employed in the experiments. These data sets were 

pre-processed where an additional column titled” Class” was added. This column 

categorizes the network traffic as either” NORMAL” or ”ATTACK,” providing on the 

whole classification aspect of the datasets (Elejla et al. 2019). 

Table 10: Feature list of Sain Malaysian University datasets (Elejla et 
al. 2019) 

Serial no Feature Description Condition of Threshold 

1 ICMPv6T

ype 

Sent packets in 

the traffic flow 

Originally in the flow as a 

key 

2 Packet 

Number 

Number of sent 

packets in the 

traffic flow 

Counting the number of 

packets 
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3 Transferr

ed Bytes 

Number of bytes 

sent from the 

source to the 

destination  

Summation of Packet 

length 

4 Duration Time length of 

the traffic flow 

Last packet time – first 

packet time 

5 Ratio The ratio of 

bytes 

transferring 

during the traffic 

flow duration 

Transferred bytes/duration 

6 Length_SD The variation in 

the length of 

traffic flow 

packets 

The standard deviation of  

packet flow Length 

7 Flowlabel_SD The variation in 

the  traffic flow 

label of packets 

The standard deviation of 

the packet flow label 

8 HopLimit_SD The variation in 

the hop limits of 

traffic flow 

The standard deviation of 

the hop limits 

9 TrafficClass_SD The variation in 

the traffic Class 

of packet flow 

The standard deviation of 

the traffic Class of the 

packet 

10 NextHeader_SD The variation in 

the Next header 

of the traffic 

packet flow 

The standard deviation of 

the Next header packet 

11 Payloadlength_SD The variation in 

payload length 

of traffic packet 

flow 

The standard deviation of 

the packet payload length 
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Figure 17: Omar Elejila’s Network Topology (Elejla et al. 2019) 

 

 

 

4.1.2 Mendeley Dataset 

These datasets comprise IPv4 data generated and utilized by Housman from 

Universitas Muhammadiyah Malang for research purposes. The data encompasses 

DDoS attacks within SDN, encompassing ICMP, TCP, and UDP flood incidents. The 

attacks were simulated in the Mininet Emulator, employing Scapy and TCP Reply. 

(Scapy details are briefed in Chapter 1 section 1.1.2).  The resulting traffic was 

captured as .pcap file format, amounting to a size of 34.7 MB, named TRAIN-DATA 

.pcap. This file was generated through the packet generation process utilizing the 

Scapy library. Each malicious packet contains a randomly generated IP source 

address, targeting H4. The RYU controller was extended to possess the capability of 

storing attack information in a .csv file, with a size of up to 37.9 MB, named TRAIN-

DATA.csv. This process was replicated for TESTDATA. However, only the TRAIN-

DATA.csv file was employed in the experiment as both files share the same 25 

features that are provided in Table 9 (Housman Oxicusa Gugi 2020) in tabular form, 

with an 80:20 train-test split ratio. These data sets were also pre-processed and a 

new column” label” was added to categorize traffic into DDOS-ICMP, DDOS-TCP, 
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DDOS-UDP, NORMAL-ICMP, NORMAL-TCP, and NORMAL-UDP (Housman 

Oxicusa Gugi 2020). 

 

Table 11: 25 features from the Mendeley dataset (Housman Oxicusa 
Gugi 2020) 

 

 

4.1.3    NSL-KDD (Benchmark dataset) 

According to Mahbod Tavallaee, the KDD dataset is essentially a compilation of data 

gathered during the DARPA’98 Intrusion Detection System (IDS) evaluation program. 

The DARPA’98 dataset comprises around a compressed of 4 GB of raw in binary 

TCP dump, reflecting network traffic of 7 weeks. This extensive dataset can be 

transformed into about 5 million connection records, each containing approximately 

100 bytes of information. The testing phase of DARPA’98 spans two weeks and 

generates approximately 2 million connection records. The KDD training dataset 

contains nearly 4,900,000 vectors that are based on a single connection and contain 

40 attributes and is categorized as normal or an attack. The NSL-KDD dataset are 

improvised dataset over the original KDD dataset (DARPA July 2000). The training 

set is free from redundant and duplicate records, encompassing files in both .txt and 

.arff formats. Specifically, the KDDTrain+.txt, sized at 18.2 MB, and KDDTest+, with 

a size of 3.28 MB, were employed in our experiments. The raw traffic data, initially 

captured, was transformed into a .txt format, featuring 40 features provided in Table 

10 (Tavallaee et al. 2009). It was processed where the data points were in binary and 

an additional label was added categorizing the type of attacks. The traffic contains 

multiple attack types. This was again updated by changing attack labels to their 

respective attack class while experimenting. These NSL-KDD data sets were used 

for Model 1 and Model 2. Table 10 provides the list of features (Tavallaee et al. 2009). 

 

4.2 Primary Datasets 

Subsequently, primary datasets were generated specifically for this Proposed 

research. The details including their sizes, sources, and the methods used for their 
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generation, are explained. A network diagram is provided to illustrate the data 

generation process, and further validation is explained based on the feature with 

respect to one of the secondary datasets. 

Table 12: 40 features from NSL-KDD dataset (Tavallaee et al. 2009) 

 
 

4.2.1 Collection of Primary Dataset 1 

Generation of Primary Dataset-1 was produced on a single machine equipped with 

an Intel i7 11th generation 2.30 GHz processor, 64 GB RAM, and a 2 TB hard disk. 

Within a VMware environment, four virtual machines were set up, comprising one 

Linux machine (LVPC), two Windows machines (WVPC-1 and WVPC-2), and one 

Windows server (WVS). These virtual machines were interconnected through 

VMware network adapters on a single NIC card of the host machine with IP version 

6 addresses. To generate traffic in the instance of an attack, an ICMPv6 DDoS attack 

was launched using a Scapy script. The attack is launched from two virtual machines 

(LVPC and WVPC-1), targeting the Windows server (WVS). The ensuing network 

traffic, encompassing both normal activity and the ICMPv6 attack, was captured on 

the Windows server (WVS) using Wireshark, resulting in a dataset size of 18.3 MB 
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(60,000 bytes/sec). Subsequently, the captured traffic was transformed into an Excel 

sheet as scdtsets.csv of size 58.2 MB. The proposed Model was employed on this 

dataset. 

 

4.2.2 Collection of Primary Dataset 2 

Dataset-2 was generated through the implementation of a straightforward network 

design, featuring a Cisco 2901 router, a Cisco 3560 switch, and four Windows 

systems. Within the network, three Linux operating systems (LPC-0, LPC-1, LPC-2) 

were installed using VMware, alongside a Windows server system (WVS). Physical 

connectivity was established through the com 4 port, with individual network adapters 

in VMware tailored to respective individual systems that have individual NIC cards, 

configured within the University of Staffordshire Lab environment using IP version 6 

addresses. Configuration of the router and switch was carried out using PuTTY, 

ensuring seamless network traffic among all devices. To assess network behaviour, 

both under normal conditions and during an ICMPv6 attack, Wireshark was 

employed on the WVS system to capture the traffic running the Scapy script from 

LPC-1 and LPC-2. In the beginning, normal traffic was captured for a while and later 

attack traffic for a duration of 4 hrs 45 min approximately accumulating to 5.12 GB 

was captured (500,000 bytes/sec). This traffic was subsequently transformed into an 

Excel sheet with a size of 183 MB as a sample dataset with the file name 

Labdataset.csv. The proposed Model was employed on this dataset. 
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Figure 18: DDoS attack Scenario in University Lab. 

 

Figure 18 depicts the network architecture utilized to simulate a scenario for 

launching a DDoS attack and capturing the resulting traffic to generate datasets. The 

router is configured with the IPv6 address 2001:db8:acad:10::1 on interface Gigabit 

0/0 (G0/0), which connects to a Windows Server assigned the address 

2001:db8:acad:10::5. Similarly, the other interface of the router, G0/1, is assigned the 

address 2001:db8:1:20::db8 and is linked to a Switch via Fast Ethernet0/0 (Fe0), with 

additional connections to LPC-0, LPC-1, and LPC-2 on ports Fe1, Fe2, and Fe3 

respectively, each assigned an IPv6 address. All devices including the Router, 

Switch, Server, and nodes (LPC-0, LPC-1, LPC-2), are verified to be connected and 

communicating with each other using the ping command and their respective 

assigned IP addresses. Wireshark was installed on the Windows Server to capture 

both normal and attack traffic packets. The DDoS attack is initiated using a Scapy 

script from LPC-1 and LPC-2, targeting the Windows Server with a high volume of 

Echo requests and Echo replies to packets. Periodically, the Windows Server is 

tested by pinging from LPC-0 to ascertain its availability. If the server is determined 

to be down due to the attack, evidenced by response timeouts when pinged from 

LPC-0, the traffic capturing process is halted. 
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4.2.3 Primary Dataset Validations 

Figure 19 illustrates the packet rate validation in both the Network and ICMPv6 attack 

scenarios, highlighting the traffic flow. In the Lab dataset, the packet flow speed was 

6,097,961 packets per 1.013e+04s (10,130 seconds). In the Sain Malaysian dataset, 

the packet flow speed was 15,066 packets per 1.051e+04s (10,510 seconds). In the 

LT Dataset 2, the packet flow speed was 15,604 packets per 0.98e+58s (0.98×1058 

seconds). It is evident from the graph that all three datasets exhibit a high number of 

packets, which serves as a key parameter for validating the datasets based on their 

features. The graph dataset of Lab Dataset 1 consists of predominantly high attack 

traffic and less normal traffic. In contrast, LT Dataset 2 has a higher volume of normal 

traffic and less attack traffic. This intentional variation between the datasets aims to 

evaluate the proposed model's performance under different traffic conditions. These 

distinct scenarios help determine the model's strength and efficiency in accuracy in 

identifying DDoS attacks. The ability of the model to maintain consistent detection 

performance across these varying conditions demonstrates its efficacy as a reliable 

solution for mitigating DDoS attacks. It was ensured that the traffic content was 

consistent in terms of traffic volume, speed, features, and values during an attack 

across both datasets. 

 

To ensure the collected features are sufficient for our model training, we studied 

feature sets from various sources, including the Malaysian dataset, and selected an 

appropriate feature set. Figure 20 illustrates the features captured from packet traffic 

using Wireshark. These features were transformed into an Excel sheet, detailed in 

section 5.3 of Chapter 5, and underwent necessary processing procedures before 

being input into the proposed model for deployment. The cleaning and pre-

processing of datasets are also explained in the same section. 
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Figure 19: Primary Datasets validation based on packet flow and in the form of a waveform

Sain Malaysian Data sets capturing speed LT Data set 2 -Traffic capturing speed Lab Data set 1 -Traffic capturing speed 
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Figure 20: Primary Datasets validation-based features and values 

Sain  Malaysian Data set - Features 

Lab Data set 1 - Features 

LT Data set 2 - Features 
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 On keen observation, the data set features are the same and their values 

are also mostly appropriate meaningful values. However, some features 

may not have any values when scrolled down that would be taken care of 

at the time of the preprocessing step.  

 

Table 13: 18 Features Primary Datasets 

 
 

 

As mentioned in the First Chapter section 1.1.1 the Features listed in Table 11 are 

from the first 3 layers of the OSI Model Physical layer, Data link layer and Network 

layer.  However, the author Omar Elejla from Sain Malaysian University has used only 

11 features confined to traffic (packet) flow.  The validation of the datasets is 

performed based on the features listed in Table 12, highlighting the commonality in 

the description between the two datasets.  

Table 14: Common Features 

Common Features of Sain Malaysian Dataset and Primary Datasets 1 and 2 

Serial 
No. 

Sain 
Malaysian 

dataset 
Features  

Description 
Primary 
Dataset 

Features 
Description 
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In this research experiment, generated data set features are taken for the ICMPv6 

header fields and followed the same aspect of distinguishing the packets as Normal 

1 
ICMPv6 Type Type of sent packet Type Type code of 

Echo request 
and Echo reply 

2 
Packet Number Number of sent packets 

within the flow 
Frame Number Sequence number 

of the 
frame/packet 

3 

Transferred 
Bytes 

Number of bytes sent 
from the source to 

destination 

Sequence Number to aid in 
matching Echo 
replies to Echo 

request 

4 
Duration Time length of flow Time Time reference 

from frame/packet 

5 

Ratio Ratio of bytes 
transferring during the 

flow  

Identifier To aid in matching 
echo reply to 

respective Echo 
request 

6 
Length The variation in the 

lengths of flow's 
packets 

Length 
frame/packet 

Capture length 
from the 

frame/packet size 

7 
Flow label The variation in the 

Flow Label of flow's 
packets 

Data Arbitrary data  

8 
Hope Limit The variation in the 

Hope Limit 
Hope Limit Time to live 

9 

Traffic Class The variation in the 
traffic class of flow's 

Checksum To detect data 
corruption in 

messages and 
parts of the 

header  

10 
Next Header The variation in the next 

header 
Next Header Info related to 

next header in 
packet 

11 
Payload Length The variation in the next 

payload length 
Payload 
Length 

Size/length of the 
packet. 
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and Attack under Class Column (Label). The “info” feature is the summary of the 

packet. Figure 21 depicts a sample of an ICMPv6 packet, correlating with the 

features listed in Table 11. It shows that the highlighted parameters are mostly 

consistent across all three datasets, with appropriate values. Some of the header 

fields, like ICMPv6 header fields, including source and destination addresses, 

payload length, protocol type, and embedded message, etc., are explained below: 
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Figure 21: ICMPv6 packet details correlating the features listed in Table 11 
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1) Frame Number: 

• Value: 637487 

• Explanation: This is the sequential number of the captured packet in the 
pcap file. 

2) Timestamp: 

• Value: 7299.646740 

• Explanation: Time in seconds since the first captured packet, helping 
determine when the packet was seen. 

3) Frame Length 

• Value: 129 bytes 

• Explanation: Total length of the packet captured on the wire, including 
headers and payload. 

4) Protocol 

• Value: ICMPv6 

• Explanation: Identifies the protocol in use, which is Internet Control 
Message Protocol for IPv6. 

5)  IPv6 Addresses 

• Source: 2001:db8:acad:10::5 

• Destination: 2001:db8:1:20::abe 

• Explanation: These are the source and destination IPv6 addresses of 
the devices involved in communication. 

6) Payload Length 

• Value: 75 

• Explanation: Indicates the length of the payload in the IPv6 packet (i.e., 
data excluding the IPv6 header). 

7) Next Header 

• Value: ICMPv6 (58) 

• Explanation: Specifies the type of header immediately following the IPv6 
header (here, ICMPv6). 

8) Hop Limit 

• Value: 64 

• Explanation: Works like the TTL (Time to Live) in IPv4, determining how 
many hops the packet can take before being discarded. 
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9) ICMPv6 Details 

• Type: 129 (Echo Reply) 

• Code: 0 

• Checksum: Correct 

• ID: 0x00f0 

• Sequence Number: 2 

• Explanation: This is an Echo Reply message in ICMPv6, often used in 
ping operations to test connectivity. 

10)  Data Content 

• Payload: ASCII-encoded string visible on the right: 
"Hello from A-Atkr" 

• Explanation: The actual message data is sent back in the Echo Reply 
packet. 

 
 Feature Engineering: 

From the aim in Chapter 1, the feature engineering from the first two layers are 
processed and mainly included along with the above-mentioned features in phase 4 
experiments that are given in the following: 

Table 15: Feature Engineering 

Serial 

No 
Feature Significance in DDoS Detection 

1 Error Type 

Count 

Detects malformed packets, indicative of protocol 

abuse/flooding 

2 Inter-Frame 

Delay 
Identifies high-rate/automated traffic 

3 Packet Rate Measures traffic intensity; high rates suggest DDoS 

4 Total Frame 

Size 

Flags volume-based attacks through payload size 

patterns 

5 LLC Indicator Detects protocol misuse or spoofing 
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Chapter 4 provides a comprehensive overview of the datasets used in this 

research. It explains how each dataset was generated, detailing its structure, size, 

key features, and relevance to the study. The chapter also illustrates the nature of 

the captured traffic and highlights the significance of specific feature values in 

representing real-world network behaviour. 
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5  EXPERIMENTS 

5.1 Introduction: 

This chapter delves into the experiments conducted and the results obtained. Building 

on the discussion of the DDoS attack mechanism in Section 4.2.2 of the previous 

chapter.   It outlines the metrics employed to measure the results, comparing them 

based on the datasets used. The chapter presents the promising experimental results 

in graphical form and validates them in tabular form, concluding with a summary. 

Before discussing the experiments, let's try to summarise the research gap in the 1.2 

section, that despite the development of intelligent Intrusion Detection Systems (IDS), 

the increasing intensity and sophistication of ICMPv6-based DDoS attacks exploiting 

protocol vulnerabilities, such as fragment manipulation and header evasion, continue 

to elude detection. Existing systems often fail to identify these attacks due to their lack 

of identifiable signatures and the complexity of ICMPv6 traffic. With the widespread 

adoption of IPv6 and the growing attack surface across smart technologies, there is a 

critical research gap in effectively detecting such covert threats. This study addresses 

this gap by exploring advanced AI techniques, particularly deep neural networks, to 

enhance the detection and prediction of ICMPv6 DDoS attacks with the aim of 

achieving near-perfect accuracy.  

5.2. A summary of the dataset's background and the context scenarios:   

In this section, the basic information of each dataset and the feature contribution 

towards the model are provided. Further, the model performance is briefed with 

respect to Table 16, focusing on the metrics used. 

Sain Malaysian datasets: This is an ICMPv6 network traffic dataset using a 

predefined network topology over a 2-hour capture period, resulting in a 15.8 MB 

dataset. A 2.8 MB subset, formatted as .csv files,  containing 11 features. The data was 

pre-processed to include a "Class" column labelling each entry as either "NORMAL" 

or "ATTACK,". Further detailed information about the dataset is given in Chapter 4, 

section 4.1.1. Further, it has IPv6-based headers. Feature engineering from the first 

two layers (physical and datalink layers), windowing, ADASYN, SHAP, and LIME are 

applied. 
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The figure 22 provides brief information about the contribution of features that 

impact the model's performance 

Figure 22  Sain Malaysian Feature contribution. 
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Top Plot Highlights CNN_LSTM:  

• NextHeader_STD is highly important in both Local SHAP and Local 

LIME. 

• TrafficClass_STD, HopLimit_STD, and FlowLabel_STD show 

moderate importance in LIME evaluations. 

• ICMPv6Type has the highest Permutation Importance, indicating 

strong global relevance. 

• Packet Rate and duration show minimal but non-zero importance in  

Bottom Plot Highlights RNN_GRU: 

• ICMPv6Type stands out in Permutation Importance. 

• PacketsNumber, FlowLable_STD, and HopLimit_STD are dominant in 

Local SHAP and Local LIME. 

• TrafficClass_STD and NextHeader_STD also show consistent 

importance in LIME evaluations. 

Significant features from both models: 

• ICMPv6Type is a consistently important feature across both models, 

particularly for Permutation Importance. 

• NextHeader_STD, PacketsNumber, and TrafficClass_STD are 

significant in SHAP and LIME, especially for local interpretations. 

• FlowLable_STD and HopLimit_STD also contribute substantially, 

especially in LIME-based importance. 

These features are likely crucial for the model’s predictive performance, 

particularly in distinguishing specific patterns (possibly anomalies or attack 

types) in the dataset. 

Mendeley datasets: This dataset is generated on SDN environment, 

including. These attacks were simulated using the Mininet emulator with 
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Scapy and TCP Reply, generating traffic stored in a 34.7 MB .pcap file. The 

RYU controller recorded the traffic in a 37.9 MB .csv file, containing 25 

features based on IPv4. The data was pre-processed to include a "label" 

column labeling each entry as either "NORMAL_ICMP" or "DDOS_ICMP". 

Further detailed information about the dataset is given in Chapter 4, section 

4.1.2. Feature engineering from the first two layers (physical and datalink 

layers), windowing, ADASYN, SHAP, and LIME are applied. 

The figure 23 provides brief information about the contribution of features 

that impact the model's performance 

Top Plot Highlights CNN_LSTM: 

• Local SHAP identifies ttl, src_port, and csum_icmp as significant. 

• Permutation Importance highlights ttl, src_port, and dst_port as 

important. 

• LIME (Local) gives the highest importance to features such as Normal, 

version, header_length, and tos. 

Bottom Plot Highlights RNN_GRU: 

• Local LIME again emphasizes Normal, version, header_length, and tos 

as top contributors. 

• Local SHAP highlights rx_bytes_ave, type_icmp, and csum_icmp. 

• Global SHAP assigns modest importance to code_icmp and proto. 

Significant features from both models: 

• Normal, version, header_length, and tos are the most dominant in Local 

LIME, showing very high importance (> 0.4). 

• ttl, src_port, type_icmp, and csum_icmp appear significant in Local 

SHAP and/or Permutation Importance. 

• rx_bytes_ave shows some importance in both SHAP and LIME. 

These features are likely critical for the model's decision-making and potentially 

useful for further feature selection or interpretation in intrusion detection or 

anomaly classification tasks. 
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Figure 23: Mendeley Feature contribution. 

NSL_KDD datasets: The KDD dataset, derived from the DARPA’98 IDS 

evaluation program, includes millions of connection records labelled as 

normal or attack, with 40 features based on IPv4. Its improved version, the 

NSL-KDD dataset, removes duplicates and redundancies and is available 

in .txt and .arff formats. In this study, the KDDTrain+ (18.2 MB) and 
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KDDTest+ (3.28 MB) files were generated. The data was pre-processed to 

include a "label" column labelling each entry as “Attack” and “Normal”. 

Further detailed information about the dataset is given in Chapter 4, section 

4.1.3. Windowing, ADASYN, SHAP, and LIME are applied, however, feature 

engineering is not applied. Figure 24 provides brief information about the 

contribution of features that impact the model's performance. 

Top Plot Highlights CNN_LSTM: 

• High contribution across all methods: flag_S0, count, service_http, 

logged_in, dst_host_same_srv_rate, srv_count, service_private 

• Consistent LIME and SHAP importance: dst_host_srv_count, 

dst_host_count, error_rate, srv_error_rate 

Bottom Plot Highlights RNN_GRU: 

• Dominant Features: count, dst_host_srv_count, srv_count, 

dst_host_count, service_http, logged_in, src_bytes, flag_S0 

Identified prominently by SHAP, LIME, and Permutation) 

Significant features from both models: The most significant features 

contributing to model performance across interpretability methods are: 

• count 

• dst_host_srv_count 

• srv_count 

• service_http 

• logged_in 

• flag_S0 

• src_bytes 
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Figure 24 NSL-KDD Feature contribution. 

These features play a critical role in intrusion detection and are consistent 

across both levels for interpretability techniques. 
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LTVM datasets: This dataset was generated in a VMware environment 

using IPv6, with ICMPv6 DDoS attacks launched from two virtual machines 

targeting a Windows server. Network traffic was captured using Wireshark 

and converted into an Excel file of size 58.2 MB, containing 14 features. The 

data was pre-processed to include a "Class" column labelling each entry as 

“Attack” and “Normal”. Further detailed information about the dataset is 

given in Chapter 4, section 4.2.1. Feature engineering from the first two 

layers (physical and datalink layers), windowing, ADASYN, SHAP, and LIME 

are applied. 

Figure 25  provides brief information about the contribution of features that 

impact the model's performance. 

Top Plot Highlights CNN_LSTM: 

o Total Frame Size — very high local SHAP importance 

o Next Header — strong SHAP contribution 

o ICMPv6srcLnklayerLength, Protocol, Inter-Frame Delay — moderate 

importance across SHAP/LIME 

Bottom Plot Highlights RNN_GRU: 

o Source, Total Frame Size, Protocol, Code — high local SHAP 

contribution 

o Inter-Frame Delay, Frame Number, Next Header — key for global SHAP 
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Figure 25 LTVM Feature contribution 

Significant features from both models: 

The most impactful features identified across SHAP, LIME, and permutation 

importance are: 

1. Total Frame Size 

2. Source 
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3. Protocol 

4. Code 

5. Next Header 

6. Inter-Frame Delay 

7. Time, LLC Indicator 

8. Frame Number and Time 

These features play a dominant role in model decision-making for the LTVM 

dataset, especially with SHAP providing consistent global and local 

importance. 

Lab datasets: This dataset was created in a real lab setup using Cisco 

hardware and multiple virtual machines configured with IPv6. ICMPv6 attack 

traffic was generated from two Linux systems targeting a Windows server, 

with both normal and attack traffic captured over 4 hours and 45 minutes 

using Wireshark. The resulting 5.12 GB of traffic was converted into a 

sample Excel file of size 183 MB, containing 14 features. The data was pre-

processed to include a "Class" column labelling each entry as “Attack” and 

“Normal”. Further detailed information about the dataset is given in Chapter 

4, section 4.2.2. Feature engineering from the first two layers (physical and 

datalink layers), windowing, Time Series Split, ADASYN, SHAP, and LIME 

are applied. 

Figure 26 provides brief information about the contribution of features that 

impact the model's performance. 

Top Plot Highlights CNN_LSTM: 

o Type and Next Header — high global SHAP 

o LLC Indicator, Source, Length — dominant in local LIME 

o Error Type Count and Time — visible across SHAP and permutation 

o Payload Length, Frame Number — lower but consistent presence 
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Figure 26 Lab Feature contribution 

Bottom Plot Highlights RNN_GRU: 

o Payload Length, Total Frame Size, Next Header, Error Type Count 

standout in global SHAP 

o Packet Rate, Protocol, LLC Indicator important in local and global LIME 

o Info, Hop Limit, Destination Address  minor contribution via permutation 
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Significant features from both models: 

1. Next Header – strong SHAP relevance 

2. Payload Length – high SHAP importance 

3. Packet Rate – key LIME-based contribution 

4. LLC Indicator – impactful in local LIME 

5. Protocol – consistently important in both LIME and SHAP 

6. Error Type Count – relevant across multiple methods 

These features are the most influential in driving model performance for the 

Lab dataset based on both global and local interpretability methods. 

5.3 Comparative Evaluation with Baseline Models: 

 

Table 16: Comparison with state-of-the-art ML and the proposed 
model. 

 

 Serial 

No 

Author Model / 

Algorithm  

Detection 

of DDoS/ 

Dos 

Datasets Split 

ratio 

Metric: 

Accuracy 

1 Ojugo and 

Eboka 2020 

Hidden 

Markov 

DDoS CIDDS-

2017 

Train-

test split 

80% 

2. Zewdie and 

Girma 2022 

DT, KNN, 

RF 

DDoS & 

DoS 

CIC-

IDS2017 

Train-

test split 

92.19% to 

99.66% 

3. Manjula and 

Mangla 

2023 

KNN, RF, 

Naïve 

Bayes 

ICMP, 

TCP, and 

UDP flood 

attacks 

Primary 

(self-

generated 

datasets) 

Train-

test split 

96.75% 

4 Dasari and 

Kalari 2024 

XGboost, 

LGBM, 

CatBoost, 

Random 

Forest (RF), 

and 

Decision 

Tree (DT) 

DDoS  CIC-

IDS2017 

Train-

test split 

99.77% 



 

135 
 

5. Liang and 

Znati 2019 

SVM, RBF-

SVM,KNN, 

Kmeans, 

NB, NN 

DDoS CAIDA 

and 

DARPA 

Train-

test split 

77.03% 

Comparison of the proposed model with the results 

 

6. 

Proposed  

model 1 

combination 

CNN_LSTM   DDoS  Primary 

Dataset 

Train-

test split 

99.36% 

7. Proposed 

model 2 

combination 

RNN-GRU DDOS Primary 

dataset 

Train-

test split 

94.48% 

Table 16 presents a comparative overview of various research efforts focused on 

detecting  Distributed Denial of Service (DDoS) attacks using different models and 

algorithms. The primary metric for comparison in this table is Accuracy. 

5.3.1 Comparative Summary of Model Performance (Based on Accuracy): 

• High-Performing Models: Several studies report very high accuracy in 

detecting DoS/DDoS attacks. 

o Dasari and Kalari (2024), using an ensemble of XGBoost, LGBM, 

CatBoost, Random Forest (RF), and Decision Tree (DT) on the CIC-

IDS2017 dataset, achieved a remarkable 99.77% accuracy. This 

suggests that ensemble methods leveraging multiple tree-based 

algorithms can be highly effective for this task on this specific dataset. 

o Proposed model demonstrates strong performance on a Primary 

Dataset using both deep learning models: CNN_LSTM (99.36%) and 

RNN_GRU (94.48%). This highlights the potential of Recurrent Neural 

Networks (RNNs), particularly with Convolutional layers for feature 

extraction, in detecting these types of attacks. 

o Manjula and Mangla (2023) achieved 96.75% accuracy using KNN, RF, 

and Naive Bayes on their self-generated datasets for detecting ICMP, 

TCP, and UDP flood attacks. This indicates that even traditional 

machine learning algorithms can yield high accuracy depending on the 

dataset characteristics and the specific attack types targeted. 
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o Zewdie and Girma (2022) reported a wide accuracy range of 92.19% to 

99.66% using DT, KNN, and RF on the CIC-IDS2017 dataset. This 

broad range likely reflects variations in the specific algorithms or 

configurations used within their study. 

• Lower-Performing Models (Comparatively): While still demonstrating 

reasonable detection capabilities, some models reported lower accuracy 

compared to the top performers. 

o Ojujo and Eboka (2020) obtained 80% accuracy using a Hidden Markov 

Model on the CIDDS-2017 dataset. While HMMs can be useful for 

sequential data analysis, their performance might be less competitive 

compared to more advanced machine learning and deep learning 

techniques for this type of detection task. 

o Liang and Znati (2019) achieved 77.03% accuracy using SVM, RBF-

SVM, KNN, K-means, NB, and NN on the CAIDA and DARPA datasets. 

The lower accuracy here might be attributed to the complexity of these 

specific datasets or the suitability of the algorithms employed. 

General Observations: 

• Dataset Influence: The performance of the models is significantly 

influenced by the dataset used for training and testing. CIC-IDS2017 is 

commonly used benchmark, with some models achieving very high 

accuracy on it. The self-generated and CAIDA/DARPA datasets 

presented different levels of challenges. 

• Model Variety: A wide range of models, from traditional machine 

learning algorithms (like Naive Bayes, KNN, Random Forest, Decision 

Trees, SVM) to deep learning architectures (CNN_LSTM, RNN_GRU, 

Neural Networks) and statistical models (Hidden Markov Model), have 

been applied to DoS/DDoS detection. 

• Ensemble Methods: The highest accuracy reported in this table was 

achieved by an ensemble method, suggesting that combining the 

strengths of multiple models can lead to improved detection 

capabilities. 
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• Deep Learning Potential: The strong performance of CNN_LSTM and 

RNN_GRU indicates the potential of deep learning models to learn 

complex patterns in network traffic for effective DoS/DDoS detection. 

In conclusion, the best performing models in this comparison, based solely on 

accuracy, are the ensemble approach by Dasari and Kalari, and the deep 

learning models (CNN_LSTM and RNN_GRU) from proposed model 

combinations on their respective datasets. 

5.3.2 Base Line Model 1, model 2, and Stacked Model Results 

Evaluation: 

 

Table 17: Results of 3 IPv6 datasets using Feature Engineering: 

Serial 
No. 

Datasets IPv6 
or 

IPv4 

Number of 
Features 

Train 
Test 

Series 

Model 1 and 
Model 2 

Metric: 
Accuracy 

1 Sain 
Malaysian  

Ipv6 Original 11 + 
Feature 

Engineering 5 
= Total 16 

Yes CNN_LSTM 81.56% 

RNN_GRU 82.58% 

2 Primary 
dataset 1 
(LTVM) 

Ipv6 Original 13 + 
Feature 

Engineering 5 
= Total 18 

Yes CNN_LSTM 99.91% 

RNN_GRU 94.45% 

3. Primary 
dataset 2 

(Lab) 

Ipv6 Original 13 + 
Feature 

Engineering 5 
= Total 18 

Yes CNN_LSTM 99.98% 

RNN_GRU 98.69% 

By applying feature engineering from the Data Link Layer (Layer 2) and the Physical 

Layer (Layer 1),   5 additional features were extracted. Initial model evaluation, 

employing a standard 80:20 train-test split, yielded promising accuracy results ranging 

from 81.56% to 99.98%. Notably, the close performance scores of the two primary 

models (CNN_LSTM and RNN_GRU, as seen in the above table) suggested the 

potential for improvement through Ensemble Stacking. 
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To further investigate the proposed model's behaviour, the experiments were extended 

in their scope to include two additional datasets and the implementation of Ensemble 

Stacking (ES).  In this extended evaluation, the data splitting strategy was adapted to 

a Time Series Split, Average Attack Detection Alarm is applied and the ES technique 

is used to get standard results that can also provide prediction accuracy. 

Explanation of each metric with respect to the 5 datasets used : 

Table 16 presents the performance of two models (Model 1 and Model 2), specifically 

CNN_LSTM and RNN_GRU, on five different network intrusion detection datasets 

(Sain Malaysian, Primary dataset (LTVM), Primary dataset (Lab), NSL_KDD, and 

Mendeley).  

The proposed model was evaluated on the above datasets, with varying 

numbers of features and using a time series split validation strategy. The 

key performance metrics reported are Accuracy, Precision, Recall, and F1-

Score, along with the ADASYN application and Ensemble Stacking results. 

The evaluation metrics, Accuracy, Precision, Recall, and F1-Score, are 

critical in assessing the performance of DDoS detection models. Across 

most datasets, particularly the Mendeley (IPv4) and Primary (LTVM and 

Lab, IPv6), both CNN_LSTM and RNN_GRU models demonstrate high 

accuracy (often exceeding 95%, and reaching 100% in some cases), 

indicating strong overall performance. However, accuracy alone can be 

misleading, especially in imbalanced datasets where a model may perform 

well by favouring the majority class. 

To complement this, precision measures how often the model's positive 

predictions (i.e., attack detections) are correct. High precision (often above 

90%) across most datasets confirms that false positives are minimal, 

especially in Mendeley and Ensemble Stacking scenarios. 
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Table 18: 5 datasets extended to Ensemble stacking 

Seria

l No. 

Datasets IPv

6 or 

IPv

4 

Number of 

Features 

Time 

Serie

s 

Split 

ADASYN

: Yes /No 

Model 1 

and Model 

2 

Metric: 

 

AAD Alarm 

Time (ms) 

Ensemble 

Stacking results 

1 Sain 

Malaysian  

IPv6 Original 11 

+ Feature 

Engineering 

5 = Total 16 

Yes Yes CNN_LST

M 

Recall: 91.80% 

Precision:18.46

% 

F1 Measure: 

30.74% 

Accuracy: 

61.55% 

0:00:00.00022

2 

Recall:93.54% 

Precision:20.16

% 

F1 

Measure:33.18% 

Accuracy:64.97

% 

RNN_GRU Recall: 91.94% 

Precision:18.39 

% 

F1 Measure:  

30.66% 

Accuracy: 

61.34% 

0:00:00.00052

7 

2 IPv6 Original 13 

+ Feature 

Yes Yes CNN_LST

M 

Recall: 99.48% 0:00:00.00044

7 

Recall: 99.69% 
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Primary 

dataset 1 

(LTVM) 

Engineering 

5 = Total 18 

Precision:96.32

% 

F1 Measure: 

97.87% 

Accuracy: 

96.30%  

Precision:95.50

% 

F1 Measure: 

97.55 % 

Accuracy: 

95.72% 

RNN_GRU Recall: 100.0% 

Precision:85.63

% 

F1 

Measure:92.26 

% 

Accuracy:  

85.63% 

0:00:00.00019

7 

3. Primary 

dataset 2 

(Lab) 

IPv6 Original 13 

+ Feature 

Engineering 

5 = Total 18 

Yes Yes CNN_LST

M 

Recall: 90.90% 

Precision:100.0

% 

F1 Measure: 

95.23% 

Accuracy: 

99.99% 

0:00:00.00019

5 

Recall: 100.0 % 

Precision:100.0

% 

F1 Measure: 

1.0% Accuracy: 

1.0% 
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RNN_GRU Recall: 90.92% 

Precision:100.0

% 

F1 Measure: 

92.32%  

Accuracy: 

99.98% 

0:00:00.00045

9 

4 NSL_KD

D 

IPv4 Original 44 

+ Feature 

Engineering 

0 = Total 44 

(No Feature 

Engineering

) 

Yes Yes CNN_LST

M 

Recall: 68: 73% 

Precision: 

98.77% 

F1 Measure: 

81.05 % 

Accuracy: 

78.27% 

0:00:00.00026

1 

Recall: 85.65% 

Precision:99.77

% 

F1 Measure: 

92.17% 

Accuracy:90.16

%  

RNN_GRU Recall: 73.72% 

Precision:99.21

% 

F1 Measure: 

84.59 % 

Accuracy: 

81.83% 

0:00:00.00029

7 
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5 Mendeley IPv4 Original 22 

+ Feature 

Engineering 

4 = Total 26  

Yes Yes CNN_LST

M 

Recall: 100.0% 

Precision:1.0% 

F1 Measure: 

100.0%  

Accuracy: 

100.0% 

0:00:00.00039

7 

Recall: 100.0% 

Precision:1.0% 

F1 Measure: 

100.0%  

Accuracy: 

100.0% 

RNN_GRU Recall: 100.0% 

Precision:1.0% 

F1 Measure: 

100.0%  

Accuracy: 

100.0% 

0:00:00.00022

0 
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However, lower precision, such as RNN_GRU’s 30% on the Sain Malaysian 

dataset, reveals cases where the model frequently misclassifies benign traffic as 

attacks. 

Recall, on the other hand, evaluates the model’s ability to detect all actual attack 

instances. Although recall is high in several cases, significant drops (as low as 

6% for both models on the Sain Malaysian dataset) highlight scenarios where 

many attacks go undetected, severely limiting the model's practical security 

effectiveness. 

The F1-Score serves as a balanced indicator by harmonizing precision and recall. 

Consistently high F1-Scores (close to or at 1.0) in the Mendeley and Primary 

datasets underscore effective and reliable detection. In contrast, very low F1-

Scores on challenging datasets like Sain Malaysian (as low as 8–11%) illustrate 

an imbalanced or inconsistent detection capability. 

5.3.3 Conclusion on Best Model Performance: 

• Dataset Dependency: The best-performing model seems to be highly 

dependent on the specific dataset. The Mendeley dataset (IPv4) consistently 

shows perfect or near-perfect performance for both CNN_LSTM and 

RNN_GRU across all metrics. This suggests that this dataset might be 

relatively easier to classify or that the features are highly discriminative for 

the types of attacks present. 

• Model Consistency: While both CNN_LSTM and RNN_GRU show strong 

performance on some datasets, neither model consistently outperforms the 

other across all scenarios. In some cases, CNN_LSTM shows slightly better 

results (e.g., on NSL_KDD), while in others, RNN_GRU performs 

comparably well (e.g., on the Primary datasets). 

• Challenge of Sain Malaysian (IPv6): Both models struggle significantly with 

the Sain Malaysian dataset (IPv6), exhibiting very low recall and 

consequently poor F1-Scores. This suggests that the features or the nature 

of attacks in this dataset might be more complex or require different modelling 

approaches. 
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• Potential of Ensemble Stacking: The Ensemble Stacking results often 

show improved performance, particularly in terms of recall and F1-Score, 

suggesting that combining the predictions of CNN_LSTM and RNN_GRU 

can lead to a more robust and accurate intrusion detection system. 

• NSL_KDD Difficulty: The NSL_KDD dataset (IPv4) appears to be more 

challenging than the Primary datasets and Mendeley for both individual 

models. 

5.3.4 Summary: 

Based on the provided results, it's difficult to definitively declare one model 

as universally "best” i.e. CNN_LSTM or RNN_GRU. 

• For the Mendeley dataset (IPv4), both CNN_LSTM and RNN_GRU 

demonstrate excellent performance with perfect or near-perfect scores 

across all metrics. 

• For the Primary datasets (LTVM and Lab) with IPv6, both models also 

perform very well with high accuracy, precision, recall, and F1-scores. 

• The Sain Malaysian dataset (IPv6) poses a significant challenge for both 

models. 

• The NSL_KDD dataset (IPv4) shows moderate performance, with 

CNN_LSTM generally exhibiting slightly better metrics than RNN_GRU on 

this specific dataset. 

• Ensemble Stacking appears to be a promising approach for improving 

overall performance by leveraging the strengths of both individual models. 

The robustness of the proposed model is discussed in detail in the following 

section, mostly focused on the Primary datasets (Lab Dataset) as it is  

generated in the context of DDoS attack scenario. 

 5.4 Evaluation of the Model:  

The common methods that are applied on all the datasets: 

5.4.1 Feature Engineering:  

5 features were extracted based on the following formulae: 
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• Error Type Count: Count the occurrences of specific error types 

within a defined time interval (Δt). Let Ci(t) be the cumulative count of 

error type i up to time t.  

The error type count for error type i in the interval [t1,t2] is: 

ErrorCounti=Ci(t2)−Ci(t1) .Where Δt=t2−t1. 

• Inter-Frame Delay (IFD): Measure the time difference between the 

arrival of consecutive frames at a network interface. Let Ti be the arrival 

timestamp of the i-th frame. The inter-frame delay between the (i−1)-th 

and i-th frame is: IFDi=Ti−Ti−1.Aggregation over a time window (Δt) and  

Average IFD:  .where N is the number of inter-frame delays 

calculated within Δt 

• Packet Rate:  Measure the number of frames (packets at Layer 2) 

observed on a network interface within a specific time interval. Let N(Δt) 

be the number of frames observed during the time interval Δt=t2−t1. 

The packet rate is: . 

• Total Frame Size:  Measure the size of each Data Link Layer frame 

and aggregate these sizes over a time interval. Let Si be the size (in 

bytes) of the i-th frame. Average Frame Size over Δt (with N frames): 

 and Total Bytes Transferred over Δt: . Rate of Bytes 

Transferred (Throughput)=  

• LLC Indicator: Identify if a Data Link Layer frame uses Logical Link 

Control (LLC) encapsulation (primarily relevant for older Ethernet 

standards like 802.3). For Ethernet II frames, the EtherType field in the 

header directly indicates the next-level protocol. If a frame uses 

802.3/LLC, the EtherType field is typically 0x0000.Header Presence, If 

the EtherType is 0x0000, the following bytes constitute the LLC header 

(Destination SAP, Source SAP, Control field). Binary Indicator: 

 

Feature engineering is not applied to the NSL_KDD datasets and the 

rest 4 datasets were applied. Time Series Split, Rolling windows, and 

ADASYN are applied to all 5 datasets. The NSL dataset can be treated 

as a different scenario, and the results would be highlighted. 
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5.4.2 Time Series Split: The time-series strategy is particularly important when 

working with time-dependent data, such as network traffic, sensor readings, or 

financial data. Its key significance lies in preserving the temporal order of data, with 

standard cross-validation methods. The datasets that were used for experiments 

were related to network traffic, and the primary dataset is generated in the Networking 

lab, created in a scenario of Volumetric DDoS attack. Further, the dataset is steadily 

composed in the initial which is treated as  "Normal" instances, and after sufficient 

time, there is a sudden dramatic surge that significantly indicates an anomaly towards 

the end, categorizing them as  "Attack" instances. This suggests a period of intense 

attack activity concentrated within a specific timeframe. The stark contrast between 

the prolonged periods of normal activity and the sudden attack burst is a key 

characteristic of this dataset. 

5.4.3 Rolling window: This method uses a fixed-size window of recent data for 

both training and testing, which moves forward in time for each split. The choice 

between these methods depends on the characteristics of the time series data and 

the specific forecasting problem. The rolling window focuses on evaluating the 

model on more recent patterns.The Critical evaluation is mainly focused on the 

Primary dataset (Lab), considered as a very good sample, as this dataset is very 

close to the Volumetric DDoS attacks scenario when compared to the remaining 

datasets: 

5.4.4 Accuracy  & Training validations: 

 

 

Figure 27     Accuracy  vs Validation (CNN_LSTM & RNN_GRU) 
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Figure 27 illustrates CNN_LSTM the "Accuracy vs Epoch" graph showing a 

learning curve where the model's accuracy rapidly improves in the early stages 

of training and then quickly reaches a very high level, followed by a plateau with 

slight fluctuations.  Whereas in RNN_ GRU it is constant. This suggests that the 

model learned the training data effectively within the first few epochs in both 

cases, and further training did not provide substantial gains. The near-perfect final 

accuracy in CNN-LSTM and overall high accuracy in RNN_GRU indicate a very 

strong fit to the training data in both combinations. 

 

 The CNN_LSTM diagnostic plot shows that both the training and validation loss 

are very low and decrease in the initial epochs. The validation loss remains 

consistently low and close to the training loss throughout the training period with 

reasonable fluctuations. This suggests that the model is learning reasonably and 

generalizing well to the validation data, with no significant signs of overfitting or 

underfitting. 

 

Figure 28      Train vs Validation (CNN_LSTM & RNN_GRU) 

Similarly, Figure 28 show RNN-GRU diagnostic plot shows that both the training 

and validation loss are very low and decrease significantly in the initial epoch. 

The validation loss remains consistently low and close to the training loss 

throughout the training period. This suggests that the model is learning effectively 

and generalizing well to the validation data, with no significant signs of overfitting 

or underfitting. The low loss values on both sets indicate a good model fit. 
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5.4.5 ROC_AUC 

 

Figure 29 CL Model  ROC curve 

Figure 29 illustrates Receiver Operating Characteristic (ROC) curves for a 

"CL_Model" across three different folds from a cross-validation procedure. Each 

curve plots the True Positive Rate (TPR) against the False Positive Rate (FPR) 

at various classification thresholds. The diagonal dashed line represents a 

random classifier (AUC = 0.5). There are three distinct ROC curves, each 

representing the performance of the CL_Model on a different fold of the data. 

Fold 1 (ROC = 0.67) as shown in blue,  Fold 2 (ROC = 1.00) as shown in orange, 

and the third Fold 3 (ROC = 1.00) as shown in green. The graph also provides 

the Area Under the Curve (AUC) for each fold. The AUC is a single scalar value 

that summarizes the classifier's overall performance across all possible 

thresholds. Fold 1 has an AUC of 0.67, Fold 2 has an AUC of 1.00 and Fold 3 has 

an AUC of 1.00. 

• CL Model Evaluation: The model achieves perfect performance on two 

folds but only moderate performance on the other. This indicates variability 

in the model's ability to generalize across different subsets of the data. The 

overall assessment of the CL_Model provides the average or the distribution 

of these AUC scores across all folds. 

• Summary: The image shows that the CL_Model performed perfectly on two 

out of three cross-validation folds (AUC = 1.00), but its performance was 
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considerably lower on the first fold (AUC = 0.67). This indicates that the 

model's effectiveness might depend on the specific data subset it is 

evaluated. 

 

Figure 30 RG Model  ROC curve 

Figure 30 illustrates Receiver Operating Characteristic (ROC) curves for a 

"RG_Model" across three different folds from a cross-validation procedure. The 

plot shows three distinct ROC curves, each corresponding to a different fold of 

the RG_Model. Fold 1 (ROC = 0.81) is shown in blue, Fold 2 (ROC = 0.87) is 

shown in orange, and Fold 3 (ROC = 1.00) is shown in green. The graph also 

provides the AUC value for each fold, which summarizes the overall performance 

of the classifier on that specific fold, where Fold 1 has an AUC of 0.81, Fold 2 has 

an AUC of 0.87, and Fold 3 has a perfect AUC of 1.00. 

• Model Evaluation: The RG_Model shows strong and consistent 

performance across the three folds, with AUC scores ranging from 0.81 to 

1.00. This indicates that the model is generally effective at classification, with 

particularly excellent performance on the data subset corresponding to Fold 

3. The variability in AUC scores indicates that the model's performance might 

be slightly influenced by the specific data it is trained and evaluated. 

• Summary: The ROC curves indicate that the RG_Model is a good classifier, 

achieving high AUC scores across all three cross-validation folds, with one 

fold demonstrating perfect classification. 
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Figure 31 Comparison of CL and RG Models based on AUC 

Figure 31 depicts the comparison of the Area Under the Curve (AUC) scores of 

two models, "CL_Model" and "RG_Model", across three folds of a dataset 

containing 25,000 samples. AUC of CL model is indicated by a blue line, and AUC 

of RG model is indicated by an orange line. Both models show an improvement 

in AUC scores as they move from Fold 1 to Fold 3. By Fold 3, both models achieve 

perfect classification performance on their respective data subsets. 

• Summary: The graph indicates that both the CL_Model and the RG_Model 

show good to excellent performance across the three folds, with both 

achieving perfect AUC scores on the third fold. The RG_Model initially 

performs better on the first fold, but the CL_Model shows a more dramatic 

improvement between Fold 1 and Fold 2. 
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5.5. Sample Size Sensitivity: 

 

Figure 32: Sample Size Sensitivity 

Figure 32 demonstrates that the base and stacked samples are used for size 

sensitivity. Relatively, line and scatter charts are generated, which explain that 

reducing the training dataset size leads to a decrease in the F1 score for both the 

Base and Stacked models. The Stacked Model is more robust to data scarcity, 
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maintaining a higher F1 score than the Base Model when the sample size is small. 

As the sample size increases, the performance gap between the two models tends 

to narrow.  The study uses F1 score as the primary performance metric and visually 

presents the relationship between sample size and F1 score using a line plot and 

a bar chart comparing the models under data scarcity. 

5.6  Cross-Validation Folds 

 Table 19 summarizes the performance of a Base MLP model and a Stacked Model 

using 3-fold, 5-fold, and 10-fold cross-validation.  

Table 19: Cross-Validation Folds for Base MLP and Stacked Model 

Model  CV Folds F1 Score (avg ± std) AUC Score (avg ± std) 

0 Base MLP 3    0.9986 ± 

0.0000 

0.9807 ± 

0.0023 

1 Stacked 

Mode 

 3  0.9986 ± 

0.0000 

0.9813 ± 

0.0024 

2 Base MLP  5  0.9986 ± 

0.0000 

 0.9814 ± 

0.0036 

3 Stacked 

Model  

5  0.9986 ± 

0.0000 

0.9813 ± 

0.0025 

4 Base MLP 10 0.9986 ± 

0.0000 

0.9816 ± 

0.0060 

5 Stacked 

Model  

 10  0.9986 ± 

0.0000 

 0.9817 ± 

0.0061 

For each number of folds, the average and standard deviation of the F1 

score and AUC score are reported. 

• Cross-Validation Runs: The experiment involved running both the Base MLP 

and the Stacked Model with 3-fold, 5-fold, and 10-fold cross-validation. 

• Mean and Standard Deviation: The table explicitly tracks and reports the 

mean (average) and standard deviation (std) of both the F1 score and the 

AUC score for each model and each cross-validation configuration. 

• Performance: The data given in the above table describes the best statistical 

performance of the Model related to number of CV Folds, average and 

standard deviations for both F1 and AUC Scores. 
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• Impact of More Folds on Reliability: Observing the standard deviation of the 

scores, there isn't a consistent or significant decrease in the standard 

deviation as the number of folds increases from 3 to 10 for either model and 

for both metrics (F1 and AUC). The statistics from the given table reveal that 

the standard deviation of the AUC score tends to increase with more folds in 

the case of Base MLP(Classifier).  

Generally, a higher number of folds is expected to provide a more robust 

estimate of the model's generalization performance and potentially lower the 

variance of the estimates. However, in this specific case, the performance of 

both models appears very stable across different folds, resulting in very low 

standard deviations that don't show a clear trend of decreasing with more 

folds. Therefore, based on this data, it's not definitively evident that more folds 

significantly improve the reliability (reduce variance) of the performance 

estimates for these particular models and dataset. The already high and 

consistent performance might be contributing to this lack of substantial 

change in standard deviation. 

 

 5.7 ADASYN 

 

Figure 33 ADASYN - Balancing Normal and Attack 

Figure 33  illustrates the effect of a balancing technique on a time series 

split training dataset. Initially, the dataset was severely imbalanced, with a 

minuscule representation of the "Normal" class compared to the 

overwhelming majority of "Attack" instances. After balancing, the number of 

"Normal" instances has been significantly increased to achieve a more even 

distribution between the two classes. This balancing step is crucial in 

training machine learning models to prevent bias towards the majority class 
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("Attack") and to improve the model's ability to correctly identify instances 

of the minority class ("Normal"). 

5.7.1 Confusion Matrix: 

 

Figure 34: Confusion Matrix before ADASYN and AFTER ADASYN CNN_ LSTM 

Figure 34 depicts the Confusion Matrix (CM) of CNN_LSTM, after applying 

ADASYN, while the "Attack" class performance remains perfect, the "Normal" 

class experiences a slight decrease in precision, leading to 10 false positives. 

The overall accuracy remains at 1.00, but the introduction of false positives for 

the "Normal" class suggests that ADASYN, which aims to balance the class 

distribution by synthesizing new minority class samples, might have introduced 

some complexity that led to misclassification of some "Normal" instances as 

"Attack" in this specific case. 

5.7.2  Confusion Matrix after ADASYN 

Similarly, Figure 35   depicts the Confusion Matrix (CM) of RNN_GRU, without 

ADASYN, the model completely fails to correctly classify any "Normal" 

instances, classifying them all as "Attack". This results in perfect recall for both 

classes but zero precision and F1-score for "Normal". 
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Figure 35 Confusion Matrix before ADASYN and AFTER ADASYN 

RNN_ GRU 

After applying ADASYN, the model's ability to identify "Normal" instances 

dramatically improves, achieving perfect recall for this class. However, this 

comes at the cost of introducing a small number of false negatives for the 

"Attack" class. The overall accuracy remains at 1.00 in both scenarios, but 

the model with ADASYN demonstrates a much better ability to correctly 

identify both classes, even though it introduces a minor error in classifying 

"Attack" instances. ADASYN appears to have effectively addressed the issue 

of the model being unable to predict the minority "Normal" class, likely by 

balancing the class distribution during training. 

 

5.8 Extended  Analysis: 

 

5.8.1 Rolling Window Analysis: 

The information regarding "Window Size" and "Stride" is provided at the bottom 

of the image as part of the "Final Evaluation" section. 
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Figure 36 Rolling Windows Analysis 

Figure 36: Explanation of Window Size, Stride, and Reasoning: 

 

• Window Size: 10: This refers to the length of the temporal window used as 

input to the time-series model. It means that the model processes sequences 

of 10 consecutive data points at a time. The reasoning behind choosing a 

window size of 10 would depend on the underlying temporal dependencies 

in the data. A window too small might not capture relevant patterns, while a 

window too large could include irrelevant information or increase 

computational cost. In this context, a window size of 10 is used throughout 

the experiments. 

• Stride: 5: The stride defines the step size by which the sliding window moves 

across the time series. A stride of 5 means that after processing a window of 

10 data points, the next window starts 5 data points after the beginning of the 

previous window. Using a stride smaller than the window size (in this case, 5 

< 10) results in overlapping windows. The reasons for using a stride of 5 are 

as follows: 

o Increase the number of training samples: Overlapping windows 

generate more data points for training the model. 

o Capture finer-grained temporal patterns: By looking at overlapping 

segments, the model might be better able to learn subtle changes and 

dependencies in the time series. 

• Performance Changes with Temporal Slices: 
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The two graphs in the image illustrate how the model's 

performance (Accuracy and Loss) changes over training epochs. 

Each epoch represents a complete pass through the training 

data, which is implicitly structured into temporal slices due to the 

windowing and striding process. 

• Accuracy Over Epochs (Left Graph): 

o The blue line shows the training accuracy, which generally increases 

over the epochs, indicating that the model is learning to classify the 

training data correctly. 

o The orange line shows the validation accuracy, which also increases 

initially but seems to plateau and even slightly decrease towards the 

later epochs. This suggests that the model might be starting to overfit 

the training data after a certain point, as its performance on unseen 

validation data is no longer improving significantly. The validation 

accuracy reaches a high level, indicating good generalization. 

• Loss Over Epochs (Right Graph): 

o The blue line shows the training loss, which decreases over the epochs, 

as expected during the training process, where the model adjusts its 

weights to minimize the error on the training data. 

o The orange line shows the validation loss, which initially decreases but 

then starts to increase after a few epochs. This is another indicator of 

potential overfitting. While the model continues to reduce loss on the 

training data, its ability to generalize (as measured by the validation 

loss) deteriorates. 

• Graphs to Illustrate Time-Series Model Behaviour: 

The two line plots effectively illustrate the training dynamics of the time-series 

model over epochs. While the x-axis represents epochs (iterations of training), 

each epoch involves processing the time-series data in temporal slices defined 

by the window size and stride. 

• Increasing Training Accuracy and Decreasing Training Loss: These trends 

suggest that the model is successfully learning the patterns within the 

temporal slices of the training data. 

• Plateauing/Decreasing Validation Accuracy and Increasing Validation Loss: 

These trends are crucial for understanding the model's generalization ability 
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on unseen temporal slices (the validation set). The divergence between 

training and validation performance indicates that the model might be 

memorizing the training data rather than learning generalizable features from 

the temporal sequences. 

Summary: 

• F1 Score: 1.0000: This indicates perfect precision and recall on the test set, 

meaning the model correctly identified all positive instances and did not have 

any false positives or false negatives. 

• Accuracy: 0.9999: This shows a very high overall accuracy on the test set, 

meaning the model correctly classified almost all instances. 

The high final evaluation metrics suggest that despite the potential signs of 

slight overfitting observed in the validation curves towards the end of training, 

the model ultimately achieved excellent performance on unseen temporal 

sequences. 

 

5.8.2 Inclusion of Physical Layer Features:  

 Figure 37 illustrates the comparison of features with and without those extracted 

from the first two layers i.e. Data link layer and Physical layer. These were 

discussed in the Feature engineering section.  It shows model evaluation 

using TimeSeriesSplit across 3 folds, focusing solely on the accuracy metric. It 

includes a table and a corresponding bar chart visualizing the accuracy scores of 

different model configurations. The accuracy scores for the two main models are 

based on “Ext. Feat” which means adding the features from the Physical layer and 

Data link layer. 

 Similarly, “No Ext Feat.” No such extra features are added to the dataset. The 

scores with and without features are as follows: 

• CL_Model (Ext. Feat.): CL_Model using External Features. It 

achieved an accuracy of 1.0. 

• CL_Model (No Ext Feat.): CL_Model without using External 

Features. It also achieved an accuracy of 1.0. 

• RG_Model (Ext. Feat.): RG_Model using External Features. It 

achieved an accuracy of 1.0. 
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Figure 37 Comparison of features with and without physical layer Features 

• RG_Model (No Ext Feat.): RG_Model without using External 

Features. It also achieved an accuracy of 1.0. 

Figure 37 also indicates that all four model configurations achieved a perfect 

accuracy score of 1.0 across the 3 time series split folds. The bar chart visually 

confirms the results from the table, showing that all four model variations 

achieved a perfect accuracy score. 

Summary: The evaluation results, based on accuracy using time series split 

across 3 folds, show that both the CL_Model and the RG_Model, regardless 

of whether they use external features or not, achieved a perfect accuracy score 

of 1.0. This suggests that all these model configurations performed 

exceptionally well on the evaluated data, correctly classifying all instances. 

From this, it is clear that the features generated through feature engineering 

do not impact the model performance. However, further we shall deeply 
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analyse features that contribute to the model performance based on LIME and 

SHAP. 

5.9   Model Explainability and Interpretation 

5.9.1 LIME: Figure 38 displays Local Interpretable Model-agnostic Explanations 

(LIME) for five different samples (Sample 0, Sample 1, Sample 2, Sample 3, and 

Sample 4). For each sample, there's a horizontal bar chart showing the contribution 

of different features to the model's prediction for that specific instance. 

• LIME Explanation: Each chart is labelled "LIME Explanation for Sample X (0 

to 4)". 

• Prediction and Ground Truth: Above each chart, it indicates the model's 

"Prediction" and the "Ground Truth" for that sample. In all five cases shown, 

the Prediction is 0 and the Ground Truth is also 0, meaning the model 

correctly classified these samples. 

o Feature Contributions: The horizontal bars represent the contribution of 

each feature to the prediction. Red bars indicate that the feature's value 

pushes the prediction towards the predicted class (in this case, class 0 

(Normal)). The length of the bar signifies the magnitude of the 

contribution. Green bars indicate that the feature's value pushes the 

prediction away from the predicted class (towards the other class, 

presumably class 1 (Attack)). 

• Feature Values and Conditions: Each bar is labeled with the feature name 

and the condition (e.g., "Error Type Count <= 0.91", "Length <= 0.15", "0.39 

< Frame Number <= 0.63"). This indicates the value range of that feature for 

the specific sample being explained. 

Observations of Samples: 

• Error Type Count: This feature consistently has a strong negative contribution 

(red bar) across all five samples, suggesting that when "Error Type Count" is 

low (less than or equal to 0.91), it strongly supports the prediction of class 0. 
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• Length: The "Length" feature (<= 0.15) also shows a negative contribution 

(red bar) in most samples, indicating that shorter lengths tend to favor the 

prediction of class 0. 

• Length_1: Similarly, "Length_1" (<= 0.14) also generally contributes 

negatively (red bar) towards the prediction of class 0. 

• Frame Number: The condition "0.39 < Frame Number <= 0.63" often shows 

a positive contribution (green bar), suggesting that frame numbers within this 

range might push the prediction towards the other class (class 1). 

Other Features: Features like "Payload Length", "Hop Limit", and "Inter-Frame 

Delay" appear in some explanations with relatively smaller contributions (both 

positive and negative) 

Summary: The LIME explanations for these five correctly classified samples (as 

class 0) highlight that low values for "Error Type Count", "Length", and "Length_1" 

are strong indicators supporting this prediction. A "Frame Number" within a 

specific mid-range tends to have the opposite effect, pushing the prediction 

towards the other class. The other features shown have varying and generally 

smaller influences on the individual predictions. This provides insight into which 

feature values were most influential in the model's decision for these specific 

instances. 



 

162 
 

 

Figure 38 Lime 
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5.9.2 SHAP: 

The figure 39 presents an analysis of a classification model's performance and 

feature importance using SHAP (Shapley Additive exPlanations). 

The Left Side of the graph is Cross-Validation and Class Distribution 

• Average Model Performance Across Valid Folds: The model was trained 

and evaluated using 4 valid folds (from a cross-validation procedure). 

The average accuracy across these folds is reported as 1.0000, 

indicating perfect classification performance on the validation sets. It 

also notes that Recall, Precision, and AUC could not be calculated, 

likely because the test sets in some or all folds contained only one class. 

• Class Distribution in Selected Data: The initial class distribution in the 

selected data shows 2000 instances of class 1 and 500 instances of 

class 0. This indicates an imbalanced dataset with significantly more 

instances of class 1. 

• Processing Fold 2 to Fold 5: This section details the class distribution in 

the training data for folds 2 through 5. In each of these folds, class 1 

respectively), while class 0 consistently has 500 instances. The 

accuracy on each of these folds is reported as 1.0000. 

• Right Side: SHAP Analysis on Last Valid Fold - Global Feature 

Importance 

• SHAP Analysis on Last Valid Fold: This indicates that the SHAP analysis 

was performed on the predictions from the last (fourth) valid fold. 

• Global SHAP Feature Importance: The horizontal bar chart displays the 

global feature importance as determined by SHAP values. The length of 

each bar represents the average absolute SHAP value for that feature 

across all instances in the last validation fold. This indicates the overall 

impact of each feature on the model's predictions. 
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Figure 39 SHAP 

• Key Feature Importance:  

o Error Type Count is by far the most important feature, with a 

significantly higher SHAP value compared to others. 

o Frame Number is the second most important feature. 

o Time and Inter-Frame Delay also show relatively high importance. 

o Length and Length_1 have moderate importance. 

o The remaining features (Type, Source, Destination Address, Target 

Address, Protocol, LLC Indicator, Code, Total Frame Size, Payload 

Length, Next Header, Info, Packet Rate, Hop Limit) have 

considerably lower global importance according to the SHAP 

analysis. 

Summary: 
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The model achieved perfect accuracy (1.0000) across all validation folds, 

although standard classification metrics like Recall, Precision, and AUC could 

not be computed due to the nature of the test sets. The SHAP analysis on 

the last validation fold reveals that Error Type Count is the most crucial 

feature influencing the model's predictions globally, followed by Frame 

Number, Time, and Inter-Frame Delay. Other features have a less significant 

overall impact on the model's output. The initial dataset shows an imbalance 

in class distribution. 

5.9.3  Efficiency Metrics: 

Figure 40 depicts  bar chart comparing the inference times of three different 

machine learning models and AAD. 

The table provides evaluation metrics for three models: CNN-LSTM, RNN-

GRU, and Stacking (CL+RG). The metrics reported are: 

• Training Time (s): The time taken to train each model. CNN-LSTM took 

51.77 seconds, RNN-GRU took 52.25 seconds, and Stacking (CL+RG) 

took 29.76 seconds. 

• Inference Time (s): The time taken for each model to make a prediction. 

CNN-LSTM had an inference time of 1.13 seconds, RNN-GRU had 1.32 

seconds, and Stacking (CL+RG) had 0.01 seconds. 

• Accuracy: The classification accuracy of each model. All three 

models achieved a perfect accuracy of 1.0. 

The figure also provides Avg Attack Detection Delay and AAD: 

• This relates to the delay in detecting attacks and whether it's feasible for 

real-time application. 

• For CNN-LSTM (row 0), the average attack detection delay is 0.0 

seconds, and it's marked as "No" for feasibility. 

• For RNN-GRU (row 1), the average attack detection delay is 0.0 seconds, 

and it's marked as "No" for feasibility. 
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• For Stacking (CL+RG) (row 2), the average attack detection delay is NaN 

(Not a Number), and it's marked as "Yes" for feasibility with an AAD of 

0.0 seconds. 

 

Figure 40 AAD 

Inference Time by Model using Time Series Split - 10000 Samples (Bar Chart). 

. The bar chart visually compares the inference times of the three models, 

evaluated on a dataset of 10,000 samples using a time series split strategy. 
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• CNN-LSTM: Has an inference time of approximately 1.13 seconds 

(matching the table). 

• RNN-GRU: Has an inference time of approximately 1.32 seconds 

(matching the table). 

• Stacking (CL+RG): Has a very low inference time, close to 0 seconds 

(matching the table at 0.01 seconds, which is barely visible on this scale). 

Summary: All three models (CNN-LSTM, RNN-GRU, and Stacking 

(CL+RG)) achieved perfect accuracy on the evaluated task. However, they 

differ significantly in their training and inference times. The Stacking 

(CL+RG) model has the lowest training time and a remarkably low inference 

time, making it potentially more suitable for real-time applications despite 

having a NaN value for average attack detection delay in the summary table. 

Both CNN-LSTM and RNN-GRU have considerably higher inference times. 

The feasibility of their attack detection delay for real-time applications is 

marked as "No," while Stacking (CL+RG) is marked as "Yes" despite the 

missing delay value. The bar chart clearly highlights the significant speed 

advantage of the Stacking (CL+RG) model during inference. 

5.10 Summary of Experiments: 

Table 16: The tables presented in the above table provide a comprehensive 

evaluation of various machine learning and deep learning techniques for the 

detection of DoS and DDoS attacks, highlighting the critical factors that influence 

their performance. Table 17 sets the stage by comparing the accuracy of different 

models from existing research, alongside the proposed CNN_LSTM and RNN-

GRU models. This comparison underscores the substantial impact of the dataset 

on model performance. For instance, the CIC-IDS2017 dataset appears to be 

relatively "easier" to classify, with several models achieving high accuracy, while 

the CAIDA and DARPA datasets pose a greater challenge. Ensemble methods, as 

demonstrated by Dasari and Kalari (2024), achieve the highest accuracy in this 

table, indicating the power of combining multiple models. The proposed deep 

learning models also show strong potential. 
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Table 18 delves into the impact of feature engineering and the ADASYN technique 

on the proposed models' performance with IPv6 datasets. Feature engineering, 

which involves extracting additional relevant features from network traffic data, 

generally improves the accuracy of both CNN_LSTM and RNN-GRU. ADASYN is 

employed to address class imbalance, a common issue in network security 

datasets where normal traffic instances far outnumber attack instances. The 

comparable performance of CNN_LSTM and RNN-GRU in this table suggests the 

potential for further improvement through ensemble stacking. Table 18 expands 

the evaluation to five datasets and incorporates time series split validation and 

ensemble stacking. This table provides a more granular view of performance by 

including precision, recall, and F1-score, in addition to accuracy. The results further 

emphasize the dataset dependency, with the Mendeley dataset standing out as 

particularly easy to classify.  

 

5.10.1 Overall comparison. 

The Sain Malaysian dataset, on the other hand, proves to be challenging for both 

CNN_LSTM and RNN-GRU, highlighting the need for robust models capable of 

generalizing across diverse network conditions. Ensemble stacking generally 

leads to performance gains, demonstrating the benefits of combining the 

strengths of different models. Time series split validation is used to evaluate the 

model's ability to detect attacks in a realistic time-evolving scenario.  

Summary: The tabulated results collectively demonstrate that while deep 

learning models like CNN_LSTM and RNN-GRU are effective for DDoS 

detection, their performance is significantly influenced by the characteristics of 

the network traffic data. Techniques like feature engineering, ADASYN, and 

ensemble stacking can further enhance detection capabilities. The choice of 

evaluation metrics and validation strategies, such as time series split, is also 

crucial for obtaining a comprehensive and realistic assessment of the model's 

effectiveness. 
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Table 20: Summary of  the experiments and comparison 

 
 Table 16: Comparison 

with State-of-the-Art 
Table 17: IPv6 Datasets with 

ADASYN & Feature Eng. 
Table 18: Extended 

Evaluation with Stacking 

Focus 
Comparative accuracy of 
various models 

Impact of feature engineering 
and ADASYN 

Detailed performance with 
time series split & stacking 

Key Metric(s) Accuracy Accuracy 
Accuracy, Precision, Recall, 
F1-Score 

Best Performing 
Models/Techniques 

Ensemble (XGBoost, etc.), 
CNN_LSTM  

CNN_LSTM, RNN-GRU (high 
accuracy)  

Ensemble Stacking (often 
improves)  

Challenging Datasets NSL_KDD Sain Malaysian  Sain Malaysian, NSL_KDD 

Impact of the Dataset 
Significant influence on 
performance  

Varies across datasets  
Performance varies 
significantly by dataset 

Feature Engineering N/A Improves performance  
Used in most datasets, the 
impact varies 

ADASYN N/A 
Improves handling of 
imbalance  

Used, impact on 
precision/recall  

Ensemble Stacking N/A Potential for improvement  
Often enhances 
performance  

Time Series Split Train-test split Train-test split 
Time Series Split - Used for 
evaluation  
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5.10.2 Trade-offs observed across setups:  

Trade-offs Observed Across Setups:  

The evaluation of DDoS detection models involves navigating several trade-offs 

that significantly impact their performance, generalization, and practical 

applicability. The above discussions in this chapter highlight these trade-offs 

across various experimental setups, primarily concerning dataset selection, model 

complexity, feature engineering, class imbalance handling, and validation 

strategies. 

i. Dataset Dependency vs. Model Generalization: 

• A prominent trade-off lies in the dataset's influence on model performance. 

Models often achieve high accuracy on specific datasets (e.g., 

NSL_KDD/Mendeley), suggesting that the dataset's characteristics (e.g., 

traffic patterns, attack types, data quality) play a crucial role in a model's 

success. 

• However, this can lead to a trade-off between achieving high accuracy on 

a particular dataset and the model's ability to generalize to unseen or 

diverse network traffic. For example, models performing well on Primary 

Datasets may struggle with Secondary datasets (Sain 

Malaysian/NSL_KDD), indicating a trade-off between dataset-specific 

optimization and broader applicability. 

ii. Model Complexity vs. Performance and Computational Cost: 

• The choice of model complexity presents another trade-off. Ensemble 

methods (e.g., XGBoost, Random Forest) and deep learning models (e.g., 

CNN_LSTM, RNN-GRU) often demonstrate strong performance. 

Ensemble methods, in particular, achieve high accuracy by combining 

multiple models, but this comes at the cost of increased computational 

complexity and training time. 

• Deep learning models, while capable of learning complex patterns, also 

require substantial computational resources and may be harder to interpret 

compared to simpler machine learning algorithms. On the other hand, 
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simpler models like Naïve Bayes or KNN might be computationally efficient 

but may not capture intricate attack patterns, leading to a trade-off between 

computational cost and detection capability. 

iii. Feature Engineering vs. Data Requirements: 

• Feature engineering, the process of extracting relevant features from raw 

data, is shown to improve model performance. However, this introduces a 

trade-off: feature engineering requires domain expertise and can increase 

the complexity of the data preprocessing pipeline. 

• Furthermore, engineered features might be specific to certain network 

environments, limiting the model's portability. The decision to invest in 

feature engineering involves balancing the potential performance gains 

with the added complexity and potential reduction in generalization. 

iv. Class Imbalance Handling vs. Model Bias: 

• Network traffic datasets often suffer from class imbalance, where normal 

traffic instances are far more frequent than attack instances. This 

imbalance can bias models towards the majority class, leading to poor 

detection of rare attacks. 

• Techniques like ADASYN are used to address this by generating synthetic 

samples of the minority class. While ADASYN can improve the detection 

of attacks (increased recall), it might also introduce noise or overlap, 

potentially decreasing precision (increased false positives). Thus, there's 

a trade-off between improving attack detection and maintaining the 

accuracy of normal traffic classification. 

v. Validation Strategy vs. Real-World Applicability: 

• The choice of validation strategy influences how well model performance 

estimates reflect real-world performance. Traditional train-test splits might 

overestimate performance if the test set doesn't represent the temporal 

dynamics of network traffic. 

• Time series split validation is employed to address this, providing a more 

realistic evaluation by respecting the temporal order of data. However, time 

series split validation can be more computationally intensive and might 
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require larger datasets. This represents a trade-off between evaluation 

accuracy and computational feasibility. 

In conclusion, the development of effective DDoS detection systems 

necessitates careful consideration of these trade-offs. The optimal setup 

depends on the specific requirements of the deployment environment, 

including the acceptable level of computational cost, the need for real-time 

detection, the characteristics of the network traffic, and the importance of 

accurately detecting rare attack types. 

5.10.3 Impact of Added Physical Features : 

In the section Feature Engineering and Inclusion of Physical Feature, the utilization 

of specific features in the experiments discussed the results of proposed models 

on IPv6 datasets, incorporating with and without feature engineering. This implies 

that additional features beyond the basic network layer information were included. 

Considering the context of network traffic analysis for attack detection, "physical 

features" potentially refer to characteristics derived from the physical layer or data 

link layer of the network communication. These include features like Inter Frame 

Delay and Packet rate at the physical layer; and Error Type Count & LLC Indicator 

information at the data link layer. The fact that the results in Table 15 show 

promising performance for the proposed models on IPv6 datasets after feature 

engineering suggests that the inclusion of these added physical features 

contributed positively to the accuracy of the DDoS detection. By providing the 

models with information beyond just the network layer headers and protocols, 

these features also contributed to the models to identify subtle anomalies or 

patterns indicative of malicious activity at a lower level of the network stack. For 

instance, a high error type count or unusual patterns in frame sizes or link layer 

control information are strong indicators of an attack. 

5.10.4 Windowing:   

In the Section Window Analysis, it was discussed about the optimum window size 

being 10 and its results, focusing on F1 score and Accuracy. Time series splitting 

inherently involves processing data in temporal windows. The use of time series 

split implies that the models were trained and tested on sequential segments 

(windows) of the network traffic data. 
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The application of a windowing technique is crucial for capturing the temporal 

dependencies inherent in network traffic flows and attack patterns. DDoS attacks 

often manifest as a sustained surge of malicious traffic over a period. By 

processing data in windows, the models can learn to identify these temporal 

patterns and correlations that might be missed by analysing individual packets in 

isolation. For example, the rate of packet arrival, the consistency of inter-packet 

timings, or the persistence of certain header flags over a window of time can be 

significant indicators of an attack. The successful performance (perfect accuracy) 

of the models, as mentioned in the summary, further suggests that this windowing 

approach was effective in enabling the models to learn and detect attack patterns 

within the temporal context of the network traffic. 

5.10.5 Impact of Interpretability:  

Section LIME explains that the five most contributory samples highlight values for 

"Error Type Count", "Length", and "Length_1" are strong indicators supporting the 

predictions. A "Frame Number" within a specific mid-range tends to have the 

opposite effect, pushing the prediction towards the other class. Similarly, the SHAP 

analysis on the last validation fold reveals that Error Type Count is the most crucial 

feature influencing the model's predictions globally, followed by Frame Number, 

Time, and Inter-Frame Delay. The inclusion of feature engineering, ADASYN to 

overcome imbalanced data and the use of time series split (applying windowing) 

have played a significant role in achieving the reported high accuracy in DDoS 

detection. In addition, the AAD and inference results clearly show that the base 

models are not suitable for real-time implementation. The proposed final Ensemble 

Stack Model is being recommended for real-time implementation. 

 

5.11 Critical Evaluation 

The above sections from 5.1 to 5.9 describe and discuss the model's robustness 

and its performance.  Further experiments were done based on the train-test splits 

and applying Ahmet Issa‘s  model architecture and the proposed model architecture 

using ADASYN and without ADSYN besides varying in features from 14 and 18. 
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Using the generated data sets, the “Ahmet Sardar Ahmed Issa” model and the 

proposed model are used with a primary emphasis on accuracy. The evaluation 

revealed that the proposed model outperformed the “Ahmet Sardar Ahmed Issa” 

model in terms of accuracy. Furthermore, additional metrics were assessed for the 

proposed model, showcasing notably high scores across various aspects, except 

for the Recall metric, which indicates room for improvement as it registered a lower 

value. A statistical tabular format for an easy understanding of the outstanding 

results obtained based on the data sets and the combination of Models can be 

viewed in Table 21. 

Table 21: ES results of Issa and the Proposed model statistics using 
generated datasets with features and ADASYN. 

 

 

 

The statistics clearly show that experiments performed with different numbers of 

features and the ADASYN technique yield varied results. When using the Sain 

Malaysian datasets with the proposed model, the accuracy was 0.83%, and 
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Ensemble stacking did not enhance it significantly, resulting in an accuracy of 

0.84%. However, with generated datasets, the results were significantly higher, 

achieving up to 0.94% with very little variation. This led to the decision to use 

Ensemble stacking, as both the Issa model with generated datasets and the 

proposed model with Sain Malaysian datasets showed similar differences in 

performance. 

 

Table 22 illustrates the comparative results of experiments performed with combinations 

of the proposed model and the ”Ahmet Sardar Ahmed Issa” model using all the datasets. 

Table 22: Results of Issa and Proposed model statistics using all 4 
datasets 

 
 

From Table 22 the fusion of Model 1, incorporating the CNN-LSTM architecture 

advocated by author Ahmet Sardar Ahmed Issa, has demonstrated its efficacy and 

robustness in both learning and detecting DDoS attacks. Similarly, the integration of 

Model 2 featuring RNN and GRU has yielded impressive outcomes. However, to 

emphasize the significance of these models and enhance performance metrics in 

DDoS attack detection and prediction, a Stacking ensemble technique has been 

employed, resulting in outstanding scores of up to 99.89% with LTVM datasets 

(primary dataset 1) and 99.97% with LAB datasets (primary dataset 2). This proves 
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that the aim in Chapter 1 section 1.3 is successfully achieved by answering yes to 

the Hypothesis from Section 1.4. 

 

The proposed model showcased its effectiveness in both learning and detecting 

ICMPv6 DDoS attacks by generating real-time datasets. According to the statistics 

presented in Table 18, the proposed model achieved an accuracy of 84.14%, 

surpassing Omar Eleja’s result of 83.20% obtained using the Neural Network (NN) 

algorithm on his ICMPv6 datasets at Sain Malaysian University.  The ”Ahmet Sardar 

Ahmed Issa” Model, combining Convolutional Neural Network (CNN) with Long Short-

Term Memory (LSTM), attained a 99.20% accuracy when trained on NSL-KDD IPv4 

datasets. In comparison, the proposed model demonstrated even higher accuracies 

of 99.89% and 99.97% when trained on generated datasets, specifically ICMPv6. This 

answers the related questions from Chapter 1 section 1.5. 

 

Table 23: Comparison of the proposed model with other researchers, 
with results 

 

 

 

 

 

 

 

 

 

 



 

177 
 

This implementation specifically targeted ICMPv6 DDoS attack datasets. Furthermore, 

section 1.6 contributed a novel approach, leveraging a model that combines CNN with 

LSTM, RNN with GRU, and subsequently stacking both. The efficacy of this approach 

was assessed by comparing and evaluating the remarkable results against benchmark 

datasets such as NSL-KDD and Sain Malaysian, as well as against the model proposed 

by Ahmet Sardar Ahmed Issa. Additionally, an extra 2 contributions were made in section 

1.6 by generating two ICMPv6 datasets in different environmental settings and publishing 

them on GitHub and Mendeley along with 3 papers in two different conferences. Hence, 

the outstanding results of the accuracy score proved that the proposed model is worthy 

of claiming that the Model is robust enough to detect and predict DDoS attacks. 

Chapter 5 presents the experimental evaluation of the proposed model using the selected 

datasets. It discusses the results obtained, comparing key performance metrics to assess 

the model’s effectiveness. The chapter includes a critical comparison with state-of-the-art 

models, highlighting strengths and limitations. It also explores various trade-offs and 

assesses the model’s feasibility for real-world deployment based on requirements.  
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6 CONCLUSIONS 

6.1 Introduction  

This chapter provides the conclusion by summarizing the key reflections of the thesis, the 

results achieved, and how these fulfill the stated objectives, ultimately validating the 

contributions and further future research and some takeaways.  

 

6.2      Summary of the thesis: 

1. Study Aim: This study aims to detect ICMPv6 DDoS attacks using an innovative 

combination of techniques, fusing CNN with LSTM and RNN with GRU, and 

employing ensemble stacking to achieve superior accuracy, enabling early-stage 

mitigation (Chapter 1) 

2. ICMPv6 DDoS Attack Selection: ICMPv6 DDoS echo-reply attacks were chosen 

due to their high vulnerability. The integrated combination approach is novel. A 

review of related academic research confirmed the scarcity of this approach in 

ICMPv6 DDoS attacks, with one author partially proposing a similar combination. 

This supports the validity of the approach for achieving superior accuracy (Chapter 

2. 

3. Learning and Testing DDoS Attacks: DDoS attacks were studied and learned 

through testing and analysing available attack methodologies (Chapter 1). 

4. Approach Analysis: The study analysed traditional mechanisms, machine 

learning (ML), artificial intelligence (AI) methods, and the Onion Methodology to 

understand and counter DDoS attacks (Chapters 1 and 2). 

5. Dataset Analysis: The required datasets, particularly those related to ICMPv6 

DDoS attacks, were analysed due to their limitation of open/easy availability 

(Chapters 2 and 4). 

6. Dataset Creation and Validation: ICMPv6 datasets were built in two distinct 

physical environments and validated to ensure suitability for experimentation 

(Chapter 4). 

7. Attack Scripting: It was observed that scripts in Scapy could easily launch 

customized attacks regardless of infrastructure, demonstrating why Command and 

Control and script-related DDoS attacks are effective and often undetectable.  
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8. Packet Crafting: The study involved learning how to craft ICMPv6 packets, 

including modifying information to evade detection and launch attacks. 

9. Attack Testing: Combined insights from 7 and 8 where successful ICMPv6 DDoS 

attacks were then crafted to achieve high speed without damaging the institute’s 

infrastructure (Chapter 4). 

10.  Model Design and Development: A model was designed and developed using 

Python on the Google Colab platform, and tested with existing secondary datasets 

of IPv4 and ICMPv6 (Chapter 5, sections 5.4 and 5.5). 

11.  Initial Model Testing: The model was initially tested using ICMPv6 datasets, 

yielding decent results. Voting classifiers were tried but did not achieve superior 

accuracy. To enhance performance, ensemble stacking was selected and 

employed on the proposed model, resulting in superior results (Chapter 5, sections 

5.7) 

12. Data Splitting and Model Mechanism: In all testing and implementation 

(Chapters 4 and 5), datasets were split into 80% for training and 20% for testing. 

The model mechanism is outlined below:  

a. Data points were categorized as "1" for attacks and "0" for normal.  

b. Outputs from base models were fed into a meta-model, which rigorously 

classified data points and repeated cross-validation three times. The first 

two times involved training, and the third time tested the model, producing 

the highest accuracy in classifying attacks and normal traffic.  

c. The model successfully captured and dropped attack packets while allowing 

normal packets into the system.  

13. Performance Metrics: Accuracy was the main metric for measuring model 

performance, along with precision, F1 measure, and recall. All metrics showed high 

percentages, except for recall. 

 

6.3      Contribution 

1. From Chapter 1 section 1.7 Literature review was successfully accomplished and 

based on that, a model was proposed i.e., the combination of CNN with LSTM and 

RNN with GRU that determines the attack and predicts based on the Ensemble 

Stacking technique.  
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2. Due to the shortage of ICMPv6 datasets that are not openly available, two 

datasets were generated based on two distinct environments. 

3. The performance of the designed model results was compared and validated with 

state-of-the-art to determine the best fit for the learning and detection of DDoS 

attacks. 

4. 3 papers were published, Two at the CLMA conference in London. One at 

the ICMLC Conference in Japan via virtual presentation. Two primary datasets 

were published one in GitHub and the other in Mendeley. 

 

6.4 Critical validation of the proposed Model based on comparison to state-of-

the-art Researcher’s  

Chapter 5 presents experimental results demonstrating the robustness of the proposed 

model in detecting DDoS attacks, using techniques such as feature engineering, 

windowing, Time Series Split, and ADASYN (to address class imbalance between 

"Attack" and "Normal" instances). Five diverse datasets, each reflecting different traffic 

generation scenarios, were used. The model achieved performance ranging from 81.56% 

to 99.98%, with some cases reaching 100%. 

The average attack detection results indicate that base classifiers alone are not suitable 

for real-time implementation. However, the ensemble stacking approach proves to be 

effective for real-time deployment. Table 19 compares dataset performance, highlighting 

that NSL-KDD and Sain Malaysian datasets posed greater challenges, suggesting 

reduced model performance on previously unseen or more complex data 

Furthermore, compared to other researchers who suggested and implemented the 

Ensemble technique in their studies, this proposed combination of two learning models 

and deploying a meta-model on them has proven to be the best solution, particularly for 

ICMPv6 DDoS Echo request and Echo reply, attacks. This conclusion is based on the 

promising and significantly higher results, as illustrated in Table 20. 

In section 1.4 of the first chapter, the hypothesis is explored, revealing that the integration 

of Multi DNN techniques has resulted in significantly higher scores, particularly 
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emphasizing accuracy metrics, achieving superior scores. Moving on to section 1.5, the 

objectives were successfully accomplished, focusing on designing an efficient model and 

implementing the code in Python within Google Labs. 

Additionally, an extra 2 contributions were made in section 1.6 by generating two ICMPv6 

datasets in different environmental settings and publishing them on GitHub and Mendeley 

along with 3 papers in two different conferences. Hence, the outstanding results of the 

accuracy score proved that the proposed model is worthy to claim that the Model is robust 

enough to detect and predict DDoS attacks. 

In Section 6.4, the contributions of the research are clearly explained, while Section 6.3 

and the beginning of this section demonstrate that the objectives listed in Chapter 1, 

Section 1.6 have been met. This includes a critical evaluation of the proposed model 

against the state-of-the-art, achieving a superior score that is provided in Table 19. The 

Onion Methodology, incorporating both quantitative and qualitative techniques, was 

utilized in this research, as detailed in Chapter 1, Section 1.8.2, with the implementation 

method described in Section 1.9. This methodology proved to be quite successful and 

safe, allowing flexibility in choosing other techniques based on resource availability. 

All studies and experiments were conducted in accordance with the university's policies 

and ethics guidelines. No personal data or related information was used or exploited in 

completing the research work. Utmost care was taken during the experiments to ensure 

the risk and safety of the infrastructure especially configuring and generating datasets. 

6.5 Challenges 

During the course of the program, two main challenges were encountered, particularly 

concerning dataset availability for ICMPv6, as discussed in Section 6.2. Initially, obtaining 

ICMPv6 datasets was not straightforward. We successfully acquired them through a 

request to Sain Malaysian University, which can be considered a qualitative method. To 

further test and validate our proposed model, we reached out to other existing research 

groups in various universities but did not receive fruitful responses. Consequently, we 
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needed additional datasets, prompting us to generate our own primary datasets following 

a quantitative method. 

Another challenge was with the model that initially combined CNN with LSTM and RNN 

with GRU. Both combinations showed similar performance with minor differences. To 

address this, we initially used a voting classifier to select between them based on a voting 

mechanism. However, the voting classifier consistently favoured one combination, 

leading to biased results. To overcome this, further research was conducted on 

enhancing techniques, and the voting classifier was subsequently replaced with the 

Stacking Ensemble technique, which yielded outstanding results without bias. 

6.6 Learning Outcomes and Takeaways 

This research demonstrated that by integrating a novel combination of deep neural 

networks and selected algorithms, ICMPv6 DDoS attacks can be mitigated at an early 

stage. The study explored how necessary datasets can be generated under various 

scenarios and environments. The research methods employed had a significant impact 

on the direction of the study, providing key turning points crucial for accomplishing the 

required tasks. This process has contributed to professional development by fostering the 

ability to generate innovative ideas that can be transformed into research projects. The 

skills developed through this research enable the acceptance of challenges and the 

implementation of similar projects in the future. 

This program also provided an opportunity to learn multiple subjects in networking, AI, 

software development, management, and cybersecurity. Additionally, the experience 

honed the ability to submit papers to conferences, enhancing both communication and 

presentation skills. Teaching similar modules Like Digital Forensics, Mobile Forensics at 

level 7, CyberOps Security (MoD) at level 5, etc., further refined these skills and provided 

an opportunity to pursue related program like PgCHPE Fellow HEA to develop teaching 

capabilities that was funded by the Computer Science Department, University of 

Staffordshire and Managing Leadership  Performance a funded module by EU social fund 

for enhancing leadership skills. The use of various tools for research, teaching, and 
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presentations, such as Overleaf LaTeX, MS Office Word, PowerPoint, and Project, was 

also mastered during this research program. 

6.7 Extension of Proposed Research 

Current Performance Merits: The proposed ensemble stacking model demonstrates 

strong performance across diverse datasets, achieving detection accuracies ranging from 

81.56% to 100%. Time Series Split validation and windowing (optimal size = 10) 

enhanced temporal learning, while feature engineering—especially with added physical 

and data link layer features—contributed to improved DDoS detection in IPv6 

environments. SHAP and LIME interpretations further validated feature relevance. 

Limitations: Despite high accuracy, models such as CNN_LSTM and RNN-GRU show 

reduced generalization on complex or unseen datasets like Sain Malaysian /NSL_KDD, 

indicating possible overfitting or dataset dependency. Recall scores remain relatively 

lower, and base models lack real-time feasibility due to high inference delay or model drift 

across distributions. 

Future Research: In continuation, it should focus on improving generalization across 

unknown traffic patterns, enhancing recall, and exploring lightweight yet interpretable 

models suitable for real-time deployment. Investigating more adaptive feature 

engineering strategies and drift detection mechanisms will also support robust, scalable 

solutions.  

Future it can also be extended to encompass other ICMPv6 attacks, such as DDoS 

attacks based on Neighbour Discovery, spoofing and Man-in-the-Middle attacks, 

alongside conventional IPv6 attack vectors. The existing primary datasets can be 

leveraged for exploring vulnerabilities in home network environments. The proposed 

model can be deployed on non-supervised learning particularly using the captured traffic 

in .pcap format of the DDoS attacks mostly may affect the DDoS attacks detection due to 

the learning aspect. Additionally, it could serve as a preliminary assessment for industrial 

domains like IoT DDoS attacks, Autonomous vehicular DDoS attacks, Drone DDoS 

attacks, etc. provided careful feature selection or similar key attributes aligning with their 
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common values. Similarly, detection of DDoS attacks at a signal level using Amplitude 

shift keying, Frequency shift keying, and Time shift keying can be implied using the 

deployment of the proposed model where appropriate signal-related data sets are to be 

used for effective and efficient promising results. Further, the generated primary datasets 

are available on Mendeley and GitHub where similar kinds of research can be carried 

enabling easy access to the new researchers. 

 

A similar mitigation proposal can be implemented at the edge router to enhance network 

security and protect the enterprise. By integrating the functionalities of an IDS or firewall, 

the solution becomes highly compatible and portable within the router. This 

implementation poses challenges, particularly in terms of physical resources, as it 

requires substantial memory, which can be addressed by using high-capacity DDR5 

memory. Additionally, the computing cost may be high due to the training time of the deep 

neural networks, which necessitates the selection of very high-speed processors to 

mitigate this issue.    
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8              APPENDICES 

 

 Appendix A: Implementation Code on Primary Datasets with highest score  

# install required python repositories 

pip install self 

 

import numpy as np 

import pandas as pd 

from os import path 

 

# importing required libraries for normalizing data 

from sklearn import preprocessing 

from sklearn.preprocessing import (StandardScaler, OrdinalEncoder,LabelEncoder, MinMaxScaler, 

OneHotEncoder) 

from sklearn.preprocessing import Normalizer, MaxAbsScaler , RobustScaler, PowerTransformer 

 

# importing library for plotting 

import matplotlib.pyplot as plt 

import seaborn as sns 

 

from sklearn import metrics 

from sklearn.metrics import accuracy_score # for calculating accuracy of model 

from sklearn.model_selection import train_test_split # for splitting the dataset for training and testing 

from sklearn.metrics import classification_report # for generating a classification report of model 

 

from sklearn.metrics import precision_score 

from sklearn.metrics import recall_score 

from sklearn.metrics import f1_score 

 

from sklearn.metrics import roc_auc_score 

from sklearn.metrics import roc_curve, auc 

 

import tensorflow as tf 

from tensorflow.keras.utils import to_categorical 

from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping, ReduceLROnPlateau 

from keras.layers import Dense, Conv1D, MaxPool1D, Flatten, Dropout # importing dense layer 

from keras.models import Sequential #importing Sequential layer 

from keras.layers import Input 

from keras.models import Model 

# representation of model layers 

import keras.utils 

from keras import utils as np_utils 

import matplotlib.pyplot as plt 

from imblearn.over_sampling import ADASYN 

from collections import Counter 

from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, GRU, Flatten 

from sklearn.preprocessing import MinMaxScaler 

 

# Selection of Datasets 
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df_train ='/content/scdtsets.csv' #Select the path for using Dataset 1 

df_train ='/content/Labdataset.csv' #Select the path for using Dataset 2 

 

train_data=pd.read_csv(df_train) 

train_data.head() 

train_data.info() 

le=LabelEncoder() 

clm=['Time','Source', 'Destination Address','Target 

Address','Protocol','Type','ICMPv6srcLnklayerLength','Next Header','Frame Number','Info'] 

for x in clm: 

    train_data[x]=le.fit_transform(train_data[x]) 

     

train_data.info() 

train_data.describe().T 

Y = train_data["Class"] 

# Drop 'label' column 

X = train_data.drop(labels = ["Class"],axis = 1) 

 

Y = train_data['Class'] ## get output label 

Y_i = Y.map({'Normal' : 0, 'Attack' : 1}) ## convert into label 

 

## get all input data 

X = train_data.drop(columns = 'Class') 

 

X.shape, Y_i.shape 

 

X_train, X_test, y_train, y_test = train_test_split(X, Y_i, test_size=0.2, 

                                                    random_state=12, 

                                                    stratify = Y_i) 

## get shape 

X_train.shape, X_test.shape, y_train.shape, y_test.shape 

 

## plotting the class 

g = sns.barplot(Y_i, palette="icefire") 

plt.title(" Category \n Normal                 Attack ") 

Y_i.value_counts().plot.bar() 

Y_i.value_counts() 

 

## Using ADASYN 

ada=ADASYN(sampling_strategy='minority',random_state=12) 

 

X, Y_i = ada.fit_resample(X_train, y_train) 

 

counter = Counter(Y_i) 

print('After',counter) 

 

g = sns.barplot(Y_i, palette="deep") 

plt.title(" Category \n Normal                Attack") 

Y_i.value_counts().plot.bar() 

Y_i.value_counts() 
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## scaling data 

encoder = MinMaxScaler() 

encoder.fit(X_train) 

 

## transforming data into encoded form 

X_train_enc = encoder.transform(X_train) 

X_test_enc = encoder.transform(X_test) 

 

X_train_enc.shape, X_test_enc.shape 

 

learning_rate=0.00001 

batch_size=5000 

epochs = 5 

 

model_save = ModelCheckpoint('./DDoS_ICMP.h5', 

                             save_best_only = True, 

                             save_weights_only = True, 

                             monitor = 'val_loss', 

                             mode = 'min', verbose = 1) 

early_stop = EarlyStopping(monitor = 'val_loss', min_delta = 0.000001, 

                           patience = 6, mode = 'min', verbose = 10, 

                           restore_best_weights = True) 

reduce_lr = ReduceLROnPlateau(monitor = 'val_loss', factor = 0.1, 

                              patience = 6, min_delta = 0.000001, 

                              mode = 'min', verbose = 1) 

 

## Building CNN with LSTM Neural Network model 

model.add(Conv1D(64,2,input_shape = (X_test.shape[1], 1))) 

model.add(LSTM(100, input_shape=(11, 12), return_sequences=True)) 

model.add(MaxPooling1D(1)) 

model.add(Conv1D(32,2)) 

model.add(MaxPooling1D(1)) 

model.add(Conv1D(16,2)) 

model.add(MaxPooling1D(1)) 

model.add(Conv1D(8,2)) 

model.add(MaxPooling1D(1)) 

model.add(Flatten()) 

model.add(Dense(15, activation='relu')) 

model.add(Dropout(rate=0.2)) 

model.add(Dense(10, activation='relu')) 

model.add(Dropout(rate=0.2)) 

model.add(Dense(1,activation='sigmoid')) 

 

## Model Compilation 

model.compile(loss='binary_focal_crossentropy', optimizer='Adam',metrics=['accuracy']) 

 

 

history = model.fit(X_train, 

                    y_train, 

                    batch_size=batch_size, 

                    steps_per_epoch=X_train.shape[0] // batch_size, 
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                    epochs=epochs, 

                    validation_data=(X_test,y_test), 

                    callbacks = [model_save, early_stop, reduce_lr],) 

   -------------------------------- 

 

## Building RNN with GRU Neural Network model 

model = Sequential() 

model.add(SimpleRNN(128,'relu',return_sequences=True, input_shape=(X.shape[1],1))) 

model.add(GRU(64, return_sequences=True)) 

model.add(MaxPooling1D(1)) 

model.add(Flatten()) 

model.add(Dropout(0.1)) 

model.add(Dense(64,activation='relu')) 

model.add(Dropout(0.1)) 

model.add(Dense(32,activation='relu')) 

model.add(Flatten()) 

model.add(Dense(16, activation='relu')) 

model.add(Dropout(0.1)) 

model.add(Dense(8, activation='softmax')) 

model.add(Dropout(0.1)) 

model.add(Dense(1,activation=LeakyReLU(alpha=1))) 

 

## Model Compilation 

 

model.compile(loss='msle', optimizer='Adam', metrics=['accuracy']) 

 

learning_rate=0.01 

batch_size=5000 

epochs = 5 

 

model_save = ModelCheckpoint('./DDoS_ICMP.h5', 

                             save_best_only = True, 

                             save_weights_only = True, 

                             monitor = 'val_loss', 

                             mode = 'min', verbose = 1) 

early_stop = EarlyStopping(monitor = 'val_loss', min_delta = 0.001, 

                           patience = 6, mode = 'min', verbose = 1, 

                           restore_best_weights = True) 

reduce_lr = ReduceLROnPlateau(monitor = 'val_loss', factor = 0.6, 

                              patience = 6, min_delta = 0.001, 

                              mode = 'min', verbose = 1) 

history = model.fit(X_train, 

                    y_train, 

                    batch_size=batch_size, 

                    steps_per_epoch=X_train.shape[0] // batch_size, 

                    epochs=epochs, 

                    validation_data=(X_test,y_test), 

                    callbacks = [model_save, early_stop, reduce_lr],) 

 

## STACKING 

from sklearn.preprocessing import MinMaxScaler 
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from sklearn.linear_model import Lasso 

from sklearn.feature_selection import SelectFromModel 

from sklearn.neural_network import MLPClassifier 

from sklearn.neural_network import MLPRegressor 

from sklearn.ensemble import StackingClassifier 

from sklearn.linear_model import LogisticRegression 

from sklearn.ensemble import StackingRegressor 

from sklearn.linear_model import LassoCV 

from sklearn.linear_model import RidgeCV 

from sklearn.pipeline import make_pipeline 

from sklearn.preprocessing import OneHotEncoder, StandardScaler 

from sklearn import preprocessing 

from sklearn.metrics import mean_squared_log_error 

from sklearn.metrics import mean_squared_error,r2_score 

from sklearn.metrics import accuracy_score 

from sklearn.metrics import f1_score 

from sklearn.metrics import precision_score 

from sklearn.metrics import recall_score 

import math 

import time 

pd.pandas.set_option('display.max_columns', None) 

import warnings 

warnings.simplefilter(action='ignore') 

from self import self 

from keras.activations import * 

from sklearn.metrics import precision_score, recall_score 

from sklearn.metrics import roc_auc_score 

from statistics import stdev 

from sklearn.model_selection import cross_val_score 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import roc_curve 

from sklearn.metrics import RocCurveDisplay 

 

## CNN FUNCTION (CNN with LSTM) 

def CNN_model(self, batch_size=5000, epochs=5, metrics=['Accuracy']): 

    model = Sequential() 

    model.add(Conv1D(64,2,input_shape = (X_test.shape[1], 1))) 

    model.add(LSTM(100, input_shape=(11, 12), return_sequences=True)) 

    model.add(MaxPooling1D(1)) 

    model.add(Conv1D(32,2)) 

    model.add(MaxPooling1D(1)) 

    model.add(Conv1D(16,2)) 

    model.add(MaxPooling1D(1)) 

    model.add(Conv1D(8,2)) 

    model.add(MaxPooling1D(1)) 

    model.add(Flatten()) 

    model.add(Dense(15, activation='relu')) 

    model.add(Dropout(rate=0.2)) 

    model.add(Dense(10, activation='relu')) 

    model.add(Dropout(rate=0.2)) 

    model.add(Dense(1,activation='sigmoid')) 
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    model.compile(loss='binary_focal_crossentropy', optimizer='Adam',metrics=['accuracy']) 

    return model 

 

## RNN FUNCTION (RNN and GRU) 

def RNN_model(Self, batch_size=5000, epochs=5, metrics=['Accuracy']): 

    model = Sequential() 

    model.add(SimpleRNN(128,'relu',return_sequences=True, input_shape=(X.shape[1],1))) 

    model.add(GRU(64, return_sequences=True)) 

    model.add(MaxPooling1D(1)) 

    model.add(Flatten()) 

    model.add(Dropout(0.1)) 

    model.add(Dense(64,activation='relu')) 

    model.add(Dropout(0.1)) 

    model.add(Dense(32,activation='relu')) 

    model.add(Flatten()) 

    model.add(Dense(16, activation='relu')) 

    model.add(Dropout(0.1)) 

    model.add(Dense(8, activation='softmax')) 

    model.add(Dropout(0.1)) 

    model.add(Dense(1,activation=LeakyReLU(alpha=1))) 

    model.compile(loss='msle', optimizer='Adam', metrics=['accuracy']) 

    return model 

 

MLPClassifier(alpha=1, max_iter=5000) == CNN_model(self) 

 

MLPRegressor(alpha=1, max_iter=5000) == RNN_model(self) 

 

CNN = MLPClassifier() 

RNN = MLPRegressor() 

final_estimator=LogisticRegression() 

 

estimator_list = [('CNN',MLPClassifier()),('RNN',MLPRegressor())] 

 

stacking_regressor = StackingRegressor(cv=3, estimators=estimator_list, 

final_estimator=LogisticRegression()) 

 

StackingRegressor(estimators=estimator_list, final_estimator=LogisticRegression()) 

 

estimator_list = [('CNN',MLPClassifier()),('RNN',MLPRegressor())] 

 

# Build stack model 

stack_model = StackingClassifier(cv=3,estimators=estimator_list, final_estimator=LogisticRegression()) 

 

stack_model.fit(X_train, y_train) 

 

# Make predictions 

y_train_pred = stack_model.predict(X_train) 

y_test_pred = stack_model.predict(X_test) 

 

stack_model_train_accuracy = accuracy_score(y_train, y_train_pred) # Calculate Accuracy 

#stack_model_train_mcc = matthews_corrcoef(y_train, y_train_pred) # Calculate MCC 
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stack_model_train_rec = recall_score(y_train, y_train_pred) # Calculate Recall 

stack_model_train_f1 = f1_score(y_train, y_train_pred, average='weighted') # Calculate F1-score 

stack_model_train_prec = precision_score(y_train, y_train_pred)# Calculate Precision 

 

stack_model_test_accuracy = accuracy_score(y_test, y_test_pred) # Calculate Accuracy 

#stack_model_test_mcc = matthews_corrcoef(y_test, y_test_pred) # Calculate MCC 

stack_model_test_rec = recall_score(y_test, y_test_pred) # Calculate Recall 

stack_model_test_f1 = f1_score(y_test, y_test_pred, average='weighted') # Calculate F1-score 

stack_model_test_prec = precision_score(y_test, y_test_pred)# Calculate Precision 

 

print('Model performance for Training set') 

print('- Accuracy: %s' % stack_model_train_accuracy) 

#print('- MCC: %s' % stack_model_train_mcc) 

print('- Rec Score: %s' % stack_model_train_rec) 

print('- F1 score: %s' % stack_model_train_f1) 

print('- Pre score: %s' % stack_model_train_prec) 

print('----------------------------------') 

print('Model performance for Test set') 

print('- Accuracy: %s' % stack_model_test_accuracy) 

#print('- MCC: %s' % stack_model_test_mcc) 

print('- Rec- Score: %s' % stack_model_test_rec) 

print('- F1 score: %s' % stack_model_test_f1) 

print('- Pre score: %s' % stack_model_test_prec) 

 

# Train Test results of the stacking classifier 

from sklearn.ensemble import StackingClassifier 

SC = StackingClassifier(estimators=estimator_list,final_estimator=LogisticRegression()) 

SC.fit(X_train, y_train) 

y_pred = SC.predict(X_test) 

 

print(f"\nStacking classifier training Accuracy: {SC.score(X_train, y_train):0.2f}") 

print(f"Stacking classifier test Accuracy: {SC.score(X_test, y_test):0.2f}") 

 

SC_Recall = recall_score(y_test, y_pred) 

SC_Precision = precision_score(y_test, y_pred) 

SC_f1 = f1_score(y_test, y_pred) 

SC_accuracy = accuracy_score(y_test, y_pred) 

SC_roc_auc = roc_auc_score(y_test, y_pred) 

 

score = cross_val_score(SC, X_train, y_train, cv=3, scoring='recall', error_score="raise") 

SC_cv_score = score.mean() 

SC_cv_stdev = stdev(score) 

print('Cross Validation Recall scores are: {}'.format(score)) 

print('Average Cross Validation Recall score: ', SC_cv_score) 

print('Cross Validation Recall standard deviation: ', SC_cv_stdev) 

ndf = [(SC_Recall, SC_Precision, SC_f1, SC_accuracy)] 

SC_score = pd.DataFrame(data = ndf, columns=['Recall','Precision','F1 Score', 'Accuracy']) 

SC_score.insert(1, 'Model', 'Stacking') 

SC_score 

#OUT PUT while using Dataset 1 
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#OUT PUT while using Dataset 2 

 
 

#Confusion Matrix 

def confusion_matrix(actual, predicted, title): 

    sns.heatmap(metrics.confusion_matrix(actual, predicted), 

            cbar=False, annot=True, fmt='3g', cmap="Blues", 

            annot_kws={"size": 16}) 

    plt.title("confusion matrix " + str(title), fontsize=25) 

    plt.xlabel('predicted label', fontsize=20) 

    plt.ylabel('true label', fontsize=20) 

    return plt.show() 

y_train_pred = stack_model.predict(X_train) 

y_test_pred = stack_model.predict(X_test) 

confusion_matrix(y_test, y_test_pred, 'cm') 

from sklearn.metrics import confusion_matrix 

cm = confusion_matrix(y_test, y_test_pred) 

print(cm) 

 

# ROC curve 

y_proba = SC.predict_proba(X_test) 

 

def plot_auc_roc_curve(y_test, y_pred): 

    fpr, tpr, _ = roc_curve(y_test, y_pred) 

    roc_display = RocCurveDisplay(fpr=fpr, tpr=tpr).plot() 

    roc_display.figure_.set_size_inches(5,5) 

    plt.plot([0, 1], [0, 1], color = 'g') 

plot_auc_roc_curve(y_test, y_proba[:, 1]) 
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Appendix B: A sample of  Dataset  

 
 

Total 100130 rows in Dataset 1 

Total 1048575 rows in Dataset 2 
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Appendix C: Certificates related to Paper Presentation in Conferences 
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Datasets: 

GitHub : 
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Mendeley: 

 
 


