
1

Detection of Volumetric ICMPv6 DDoS attack

using Ensemble Stacking on Deep Neural
Network

Om Vasu Prakash Salamkayala

A thesis submitted in fulfilment of the Doctorate of

Philosophy in the School of Digital, Technology, Innovation and
Business at the University of Staffordshire.

 29 May 2025

2

Abstract

The internet serves as a vital hub for information exchange, seamlessly intertwining with our

daily lives. Operating on IPv6 and IPv4 protocols, it facilitates connections between sources and

destinations. However, these protocols harbour vulnerabilities, particularly evident in Internet Control

Message Protocol version 6 (ICMPv6), making it susceptible to Distributed Denial of Service (DDoS)

attacks inherent in IPv6 design. Despite ongoing advancements in Artificial Intelligence/Machine Learning

(AI/ML) driven research, such attacks persist, inflicting significant losses on organizations. In response,

this study introduces two distinct architectures within a Deep Neural Network (DNN) model. Model 1

integrates Convolutional Neural Networks (CNN) with Long Short-Term Memory (LSTM), inspired by

Ahmed Issa’s work. Meanwhile, Model 2 proposes an integration of Recurrent Neural Networks (RNN)

with Gated Recurrent Units (GRU). The models were evaluated following Ahmed Issa’s architecture using

NSL-KDD, Sain Malaysian and Mendeley datasets, resulting in accuracies of 80%, 97.01%, 95.06%,

72.89%, and 64.94%, respectively. Notably, NSL-KDD and Mendeley datasets are IPv4-based, whereas

the Sain Malaysian data is IPv6-based. These results were compared with those obtained using the NSL-

KDD benchmark datasets. These results demonstrated that such combinations are effective for detecting

ICMP DDoS attacks.

Further experiments were performed on the proposed model's architecture, and it was

deployed using the Sain Malaysian datasets (IPv6-based). As a result, both models exhibited promising

performance, achieving accuracies of up to 83.95% and 83.83%, respectively. Further ML techniques

were also deployed using the proposed model. Three combinations were derived using the stacking

technique for comparison: (1) CNN with LSTM + RNN with GRU, (2) various ML techniques, and (3) a

combination of both (1) and (2) treated as ALL. The optimistic results obtained were 84.14%, 86.16%, and

86.19%, respectively. Additionally, two sets of ICMPv6 datasets are generated in two distinct

environments, which helps to prove our research model is robust. The experiments continued to evaluate

the robustness of the proposed model using Feature engineering from the physical and data link layers of

the network to, windowing, Time Series split, Cross validation, ADASYN, LIME, SHAP, and AAD,

measuring the model performance by metrics like Recall, F1 measure, Precision, ROC and AUC achieving

promising results focusing more on Accuracy results. The results ranged from 81.56% to 99.998%, and in

some cases reached 100%. The AAD and the inferences indicated that the Proposed model at base

classifiers are not suitable for real-time implementation but recommended for Ensemble Stacking in real-

time deployments.

Further, an Ensemble stacking technique is deployed on the proposed Model 1 and Model 2 as

base classifiers along with the ADASYN technique, achieving outstanding results of accuracies of 99.89%

and 99.97%, respectively. A critical evaluation based on datasets, features, and state-of-the-art research

results validates our proposed model as a promising solution with a superior score for the detection and

prediction of ICMPv6 DDoS attacks, particularly for Echo reply and request packets.

Keywords: DoS/ DDoS attacks, ML, AI, DNN (CNN, LSTM, RNN, GRU), Ensemble Stacking,

ADASYN, ICMPv6, IPv4, IPv6 and Datasets.

3

Contents

Abstract-- 2

Declaration --- 9

Acknowledgments -- 10

List of Publications -- 11

1 INTRODUCTION -- 12

1.1 Background -- 12

1.1.1 Network Layers -- 14

1.1.2 DDoS Classification of Attacks -- 16

1.1.3 DDoS Attack -- 19

1.2 Research Gap -- 20

1.3 Aim -- 23

1.4 Hypothesis --- 23

1.5 Related Questions --- 23

1.6 Objectives -- 23

1.7 Contribution -- 24

1.8 Research Methodology -- 25

1.8.1 Onion Method --- 25

1.8.2 Applying Onion Research Methodology. -- 26

1.8.3 Research Objectives Based on Onion Methodology --- 28

1.9 Implementation Method -- 29

1.10 Organization of Proposal Transforming into Thesis -- 30

2 LITERATURE REVIEW -- 32

2.1 Related work -- 32

2.2 Traditional IDS -- 33

2.3 A Research Review on ML. --- 37

2.4 A Research Review on DNN -- 42

2.5 A Research Review on ICMP -- 48

2.6 DDoS scope level -- 56

2.7 IPv4 Protocol -- 56

2.8 IPv6 57

2.8.1 Identifying the IPv6 address based on Type and notation. --------------------------------------- 58

2.8.2 A brief comparison of IPV4 vs IPv6 is shown in Table 6: --- 62

2.9 IPv6 Header --- 63

2.9.1 Internet Control Message Protocol Version 6 (ICMPv6) -- 66

2.9.2 ICMPv6 vulnerabilities --- 67

3 DESIGN OF ARTIFACT --- 70

3.1 Attack Scenario --- 70

4

3.2 Logical flow of a proposed model -- 73

3.2.1 Convolution Neural Networks(CNN) --- 73

3.2.1.a Merits of CNN -- 76

3.2.2 Long Short-Term Memory -- 78

3.2.3 Recurrent Neural Networks -- 79

3.2.3.a Merits of RNN -- 80

3.2.4 Gated Recurrent Unit (GRU) -- 81

3.2.5 Ensemble Stacking -- 82

3.2.4.a Merits of Stacking --- 84

3.3 Model-1 and Model-2 --- 85

3.4 Models Learning -- 88

3.5 ES-Model Architecture --- 88

3.5.1 Reason for selection of LSTM : --- 92

3.6 Algorithms -- 93

3.7 Implementation Specifications: --- 99

3.8 Handling New and Unseen Networks: ---100

3.9 Responding to Attacks Not Seen During Training: --100

3.10 Handling Concept Drift: --101

4 DATASETS --102

4.1 Secondary Datasets --106

4.1.1 Sain Malaysian Dataset --106

4.1.2 Mendeley Dataset ---108

4.1.3 NSL-KDD (Benchmark dataset) ---109

4.2 Primary Datasets --109

4.2.1 Collection of Primary Dataset 1 -- 110

4.2.2 Collection of Primary Dataset 2 -- 111

4.2.3 Primary Dataset Validations --- 113

5 EXPERIMENTS --123

5.1 Introduction: --123

5.2. A summary of the dataset's background and the context scenarios: ----------------------------------123

5.3 Comparative Evaluation with Baseline Models: ---134

5.3.1 Comparative Summary of Model Performance (Based on Accuracy): -----------------------135

5.3.2 Base Line Model 1, model 2, and Stacked Model Results Evaluation:-----------------------137

5.3.3 Conclusion on Best Model Performance: --143

5.3.4 Summary: ---144

5.4 Evaluation of the Model: ---144

5.4.1 Feature Engineering: ---144

5.4.2 Time Series Split: --146

5.4.3 Rolling window: --146

5.4.4 Accuracy & Training validations: --146

5.4.5 ROC_AUC --148

5.5. Sample Size Sensitivity: --151

5.6 Cross-Validation Folds --152

5.7 ADASYN --153

5

5.7.1 Confusion Matrix: --154

5.7.2 Confusion Matrix after ADASYN --154

5.8 Extended Analysis: --155

5.8.1 Rolling Window Analysis: --155

5.8.2 Inclusion of Physical Layer Features: --158

5.9 Model Explainability and Interpretation --160

5.9.1 LIME: ---160

5.9.2 SHAP: --163

5.9.3 Efficiency Metrics: --165

5.10 Summary of Experiments: ---167

5.10.1 Overall comparison. ---168

5.10.2 Trade-offs observed across setups: ---170

5.10.3 Impact of Added Physical Features: --172

5.10.4 Windowing: --172

5.10.5 Impact of Interpretability: ---173

5.11 Critical Evaluation ---173

6 CONCLUSIONS --178

6.1 Introduction ---178

6.2 Summary of the thesis: --178

6.3 Contribution --179

6.4 Critical validation of the proposed Model based on comparison to state-of-the-art

Researcher’s --180

6.5 Challenges --181

6.6 Learning Outcomes and Takeaways ---182

6.7 Extension of Proposed Research ---183

7 REFERENCES --185

8 APPENDICES ---194

Appendix A: Implementation Code on Primary Datasets with highest score ------------------------------194

Appendix B: A sample of Dataset ---202

Appendix C: Certificates related to Paper Presentation in Conferences -----------------------------------203

6

LIST OF FIGURES

Figure 1: DDoS attack vector statistics -- 14

Figure 2: OSI 7 layers in Networking --- 15

Figure 3: DDoS -ICMPv6 attack Classification -- 16

Figure 4: DDoS attack Implementation of DDoS attack --- 20

Figure 5: Onion research methodology with 6 layers -- 26

Figure 6: Logical approach of Rule base anomaly -- 35

Figure 7: IPv6 header with optional Extension headers chain --- 65

Figure 8 (a): Attack Scenario Network --- 72

Figure 8 (b) Solution Model for ASN --- 73

Figure 9: Logical diagram of the proposed Model -- 74

Figure 10: Illustrates a Simple CNN block -- 75

Figure 11: LSTM Architecture -- 79

Figure 12: Recurrent Neural Network (RNN) --- 80

Figure 13: GRU Architecture --- 82

Figure 14: Pictorial block diagram of Stacking --- 85

Figure 15-(a) Model-1 Block diagram -- 87

Figure 15-(b) Model 2 Block diagram -- 87

Figure 16: ES-Model Architecture --890

Figure 17: Omar Elejila’s Network Topology --108

Figure 18: DDoS attack Scenario in University Lab --- 113

Figure 19: Primary Datasets validation based on packet flow and in the form of a waveform. ------- 115

Figure 20: Primary Datasets validation-based features and values --- 115

Figure 21: ICMPv6 packet details correlating the features listed in Table 11 ----------------------------- 119

Figure 22: SAIN MALAYSIAN Feature contribution.---127

Figure 23: Mendeley Feature contribution. --127

Figure 24 NSL-KDD Feature contribution. ---129

Figure 25 LTVM Feature contribution ---131

Figure 26 Lab Feature contribution --133

Figure 27 Accuracy vs Validation (CNN_LSTM & RNN_GRU) ---146

Figure 28 Train vs Validation (CNN_LSTM & RNN_GRU)---147

Figure 29 CL Model ROC curve ---148

Figure 30 RG Model ROC curve --149

Figure 31 Comparison of CL and RG Models based on AUC---150

Figure 32 ADASYN - Sample Size Sensitivity --152

Figure 33 ADASYN - Balancing Normal and Attack ---153

Figure 34: Confusion Matrix before ADASYN and AFTER ADASYN CNN_ LSTM ----------------------154

Figure 35: Confusion Matrix before ADASYN and AFTER ADASYN RNN_ GRU------------------------156

Figure 36 Rolling Windows Analysis --156

7

Figure 37 Comparison of features with and without physical layer Features -----------------------------159

Figure 38 Lime --162

Figure 39 SHAP --164

Figure 40 AAD --166

8

List of Tables

Table 1: Some of the tools used in DDoS attacks.--188

Table 2: Research Objectives w.r.t Onion Methodology---288

Table 3: ML summary review---39

Table 4: DNN Summary Review--
444

Table 5: ICMP summary review--51

Table 6: IPv6 address scheme---58

Table 7: IPv4 vs IPv6--62

Table 8:IPv6 Header ---65

Table 9: Review of Datasets Summary---
Error! Bookmark not defined.5

Table 10 Feature list of Sain Malaysian University datasets---106

Table 11: 25 features from the Mendeley dataset--
109Error! Bookmark not defined.

Table 12: 40 features from NSL-KDD dataset---110

Table 13:18 Features Primary Datasets--116

Table 14: Common Features--116

TABLE 15: Feature Engineering--121

Table 16: Comparison with state-of-the-art ML and the proposed model.-----------------------------134

Table 17: Results of 3 IPv6 datasets using Feature Engineering:---------------------------------------137

Table 18: 5 datasets extended to Ensemble stacking---139

Table 19: Cross-Validation Folds for Base MLP and Stacked Model------------------------------------152

Table 20: Summary of the experiments and comparison---169

Table 21: ES results of Issa and the Proposed model statistics using generated datasets with
features and ADASYN.--174

Table 22: Results of Issa and Proposed model statistics using all 4 datasets------------------------175

Table 23: Comparison of the proposed model with other researchers, with results -----------------176

9

Declaration

I declare that, except where specific reference is made to the work of others or

explicitly mentioned, the contents of this thesis are original and have not been

submitted, either in whole or in part, for consideration for any other degree or

qualification at this or any other university. This thesis is the result of my own work

and includes no collaborative work.

Om Vasu Prakash Salamkayala

10

Acknowledgments

I am grateful to my Supervisor Dr. Saeed Shiry Ghidary. It is difficult to express the

inspiration and the knowledge sharing I gained from him from the moment he was

assigned and accepted to act as my supervisor. His interactions, guidance, valuable

suggestions and advice motivated me to sustain my motivation throughout my

course. I am fortunate to have his patience, understanding and support over the past

3+ years. I could not imagine the completion of this thesis without his exceptional

mentorship. I feel very lucky to have such a great collaboration with him. My gratitude

extends to my Second supervisor Mr. Christopher Howard, who has also supported

me in this journey by providing his valuable suggestions and advice. His strong

technical support, providing the required infrastructure to accomplish generating

Datasets, made a great turning point that helped me to prove my proposed research

work. I am once again fortunate to have such exceptional mentorship.

Further, I extend my gratitude to the Head of the Department Dr. Russell, Professor.

Peter Kevern and Dr. Jane Wellens, who have supported me when I was going

through hardship due to my father’s serious illness from a kidney Tumour. I am also

grateful to my fellow mate, Mr. Joideep, who has provided me with great moral

support and valuable guidance in times when I needed it. The Income department

and Graduate School’s patience and understanding are evident in considering my

critical situation and extending time for payment of fees.

I am indebted to my fellow research colleagues within the PhD lab. I am thankful to

senior colleagues, especially Mr. Bob Hobs, Dr. Mostafa Tajdini and Mr. Stephen

Cahill, who provided their valuable guidance and knowledge sharing.

I dedicate this work to my parents and family. Their overwhelming moral and financial

support, from admission to the end of the course, has made this journey successful.

11

List of Publications

Papers:

Paper 1: Salamkayala, O.V.P., Ghidary, S.S. and Howard, C., 2024, July. Review of

IDS, ML and Deep Neural Network Techniques in DDoS Attacks. In CS & IT

Conference Proceedings (Vol. 14, No. 14). CS & IT Conference Proceedings.

https://csitcp.net/abstract/14/1414csit24.

Paper 2: Salamkayala, O.V.P., Ghidary, S.S. and Howard, C., 2024, July. Detection

of ICMPv6 DDoS Attacks using Hybridization of RNN and GRU. In CS & IT

Conference Proceedings (Vol. 14, No. 14). CS & IT Conference Proceedings.

https://csitcp.org/abstract/14/1414csit23.

Paper 3: Om Salamkayala, Saeed S.G, Chris. H, Russell. C, Joideep. B, 2024.

Detection of ICMPv6 DDoS attacks using Ensemble stacking of hybrid Model-1

(CNN-LSTM) and Model-2 (RNN-GRU). Virtually presented the paper at the ICMLC

conference in Japan. Published in IEEE.

 https://ieeexplore.ieee.org/abstract/document/10935151.

Primary Datasets:

Dataset 1: Salamkayala. Om (2024) “DDoS-Datasets”, GitHub Data repository,

https://github.com/omvasu/DDoS-Datasets.git. (Om Salamkayala 18 June 2024)

Dataset 2: Salamkayala. Om (2024), “ICMPv6 DDOS - Dataset”, Mendeley Data, V1,

doi: 10.17632/g583tzgv5s.1

 https://data.mendeley.com/datasets/g583tzgv5s/1.(Salamkayala 20 June 2024)

https://csitcp.net/abstract/14/1414csit24
https://csitcp.org/abstract/14/1414csit23
https://ieeexplore.ieee.org/abstract/document/10935151
https://github.com/omvasu/DDoS-Datasets
https://github.com/omvasu/DDoS-Datasets.git
https://data.mendeley.com/datasets/g583tzgv5s/1

12

 1 INTRODUCTION

In recent years, Artificial Intelligence, like Deep Neural Networks (DNNs), has

emerged as a significant application in various domains, delivering promising results.

Concurrently, cyber threats such as DDoS attacks happen to be deadly threats to

stable and secure network infrastructures. These attacks overwhelm targeted

systems with massive amounts of traffic, rendering them inoperable and causing

substantial economic and operational damage to organizations. By leveraging the

advanced techniques and learning capabilities of DNNs, this research aims to

develop robust, scalable, and adaptive solutions to effectively counteract the dynamic

characteristics of modern DDoS attacks. This chapter introduces the thesis by

explaining its evolution into a comprehensive research project, outlining the research

hypothesis, and highlighting the contributions as inputs to this field of study. It also

presents the research topics supported by relevant statistical evidence and describes

the selected methodology in a structured format.

1.1 Background

With the proliferation of cutting-edge technologies in computing domains like Cloud

Computing and the Internet of Things, the incidence of DDoS attacks has surged

significantly. This escalating frequency poses a substantial threat, rendering DDoS

attacks among the most formidable challenges in the realm of cybersecurity (H.

Aydın, Orman, and M. A. Aydın 2022). This technology also opens up extensive

avenues for various network attacks, specifically targeting critical services and

causing system malfunctions, whether in servers or enterprise networks. Such

disruptions lead to business paralysis, manifesting as downtime and resulting in

significant financial losses. A denial-of-service (DoS) attack inundates a server with

traffic, rendering a website or resource inaccessible. For a DDoS attack, multiple

computers or machines collaborate to flood a specific target with overwhelming

traffic, exacerbating the impact of the attack (Gaurav, Gupta, and Panigrahi 2022).

This happens when attackers meticulously investigate unprotected entry points, such

as vulnerabilities in software or system configurations, and skilfully exploit them.

ICMPv6-based DDoS attacks, akin to their ICMPv4 counterparts, capitalize on

vulnerabilities inherent in IPv6. Detection of such attacks traditionally relies on

13

signature-based Intrusion Detection Systems (IDS). Nevertheless, researchers have

introduced an adaptive intrusion detection system, leveraging machine learning

(ML), which surpasses the efficacy of traditional signature-based IDS (Alghuraibawi

et al. 2021).

Despite the implementation of sophisticated firewalls and IDS, DDoS attacks persist,

as evidenced by recent statistics. In 2018, GitHub suffered a massive 1.3 Tbps DDoS

attack. However, Imperva, a cybersecurity company, reported an even larger attack

the same year, involving 500 million packets targeting an unnamed client and lasting

13 days. These attacks not only jeopardize security but also result in significant

financial losses. According to the 2019 Annual Cyber Security Report by Bulletproof,

a single DDoS attack could cost a small business 120,000 USD, with even greater

financial impacts on larger enterprises (Dahiya and Gupta 2021). In February 2020,

the largest DDoS attack on record occurred, peaking at 2.3 Tbps. This attack targeted

CLDAP (Connectionless Lightweight Directory Access Protocol) web servers,

surpassing the previous record of 1.3 Tbps set by the GitHub attack, which delivered

126.9 million packets per second (Alghazzawi et al. 2021). Similarly, one year after

in February 2021, the cryptocurrency exchange EXMO experienced a surge in traffic,

reaching 30 gigabits per second, rendering it inaccessible for 2 hours (Mittal, K.

Kumar, and Behal 2023a). In 2022, Microsoft Corporation disclosed that it had been

subjected to a DDoS attack, during which the network experienced an unprecedented

traffic volume peaking at 3.47 terabits per second (Neira, Kantarci, and Nogueira

2023). According to Cloudflare’s Q2 2024 report, Domain Name System (DNS) based

DDoS attacks have become the most prominent attack vector, with their share among

all network-layer attacks continuing to grow. It is clear that the share of DNS-based

DDoS attacks increases up to 33.9%. Despite this surge, and due to the overall

increase in all types of DDoS attacks, L3/4 attacks still account for 30% of the total.

ICMP amplification attacks occupy 2.3%, alongside other types of attacks such as

ACK, UDP, RST, etc. floods. Figure 1 shows the statistical view of the attack vectors

from Cloudflare Q2 report (Cloudflare 2024).

14

Figure 1: DDoS attack vector statistics (Cloudflare 2024)

1.1.1 Network Layers

Information transmission between systems involves multiple layers and protocols,

transforming the data format during transit based on the OSI model and restoring it

to its original form at the destination. The OSI model encompasses seven layers, and

an overview of their functions can be summarised as follows.

1. The physical layer: Transmits information in a raw bit’s stream format over a

physical medium.

2. Data link layer: It specifies the format related to frames in the network. It is

divided into 2 layers, the Media Access Control (MAC), which controls device

interaction, and the Logical Link Control (LLC), which focuses on addressing

and multiplexing.

3. Network layer: Determines the shortest path for packets to be routed in the

network and concentrates on the IP protocol.

15

4. Transmission layer: This layer manages to ensures that the segments are in

sequence with error-free. This includes port numbering and the use of TCP

and UDP.

5. Session Layer: Manages sessions related to setup, authentication,

connection, re-connection, and termination.

6. Presentation Layer: It is responsible for managing translating, encoding,

decoding, encryption, and decryption information as required by an

application.

7. Application Layer: This layer manages the information in user-readable format

by accessing the services of the previous layer (Tanenbaum and J Wetherall

2010).

Figure 2: OSI 7 layers in Networking (Steingartner, Galinec, and Kozina

2021)

This research focuses on layer three, concentrating on the Internet Control Message

Protocol version 6 (ICMPv6) concerning DDoS attacks using Deep neural networks

to successfully detect and predict attacks. The scope of the feature selection is

confined to the first three layers of information parameters that help to identify the

ICMPv6 DDoS attacks that are based on Echo and Reply.

16

1.1.2 DDoS Classification of Attacks

Figure 3 illustrates the DDoS classification attacks. Some of the attacks used by

threat attackers to launch ICMPv6 DDoS attacks are categorized under ICMPv6

DDoS attacks:

Figure 3: DDoS -ICMPv6 attack Classification (adapted from Bdair et al.

2020)

1. Manual ICMPv6 Packet Generation: Threat attackers can manually

generate ICMPv6 packets using tools like hping or Scapy code. These tools

enable attackers to create custom ICMPv6 packets with specific

characteristics, such as source addresses, payload content, and packet size.

By sending a high volume of these tailored packets to a target, threat attackers

can overwhelm its resources and disrupt normal operations.

2. Scripted ICMPv6 Packet Generation: Threat attackers can develop scripts

or leverage pre-existing tools to automate the generation and transmission of

ICMPv6 packets. Automated attacks using scripts can achieve significantly

higher volumes and sustained rates of packet transmission compared to

manual methods.

3. Botnet-based Attacks: Threat attackers can exploit botnet networks of

compromised computers under their control to launch ICMPv6 volumetric

17

attacks. By controlling a large number of compromised devices, threat

attackers significantly expand the high volume of ICMPv6 traffic regulated at

the target. These botnets are managed via command-and-control (C&C),

enabling attackers to orchestrate coordinated and large-scale attacks.

4. Reflective/Amplification Attacks: In reflective or amplification attacks,

Threat attackers spoof the source IP address of their ICMPv6 packets to make

them believe as if they are genuine. They send these spoofed packets to

misconfigured or vulnerable servers on the internet, which then respond with

larger ICMPv6 packets. These amplified responses are directed back to the

target, significantly increasing the volume of traffic, and maximizing the impact

of the attack.

5. Fragmentation Attacks: Threat attackers can exploit fragmentation

mechanisms in IPv6 to split ICMPv6 packets into smaller fragments. By

sending a high volume of these fragmented ICMPv6 packets to the target,

threat attackers can overwhelm the target’s resources, as it must reassemble

the fragments before processing the packets.

6. Randomized Source Address Spoofing: Threat attackers often resort to

randomized source address spoofing techniques to thwart mitigation efforts

aimed at filtering out malicious traffic. By continually altering the source

addresses of their ICMPv6 packets, attackers can elude detection and bypass

mitigation techniques that hinge on IP blacklisting or rate limiting.

(A. Alharbi and Alsubhi 2021).

Bdair emphasized the classification of DDoS attacks, broadly categorizing them into

Application layer and Network layer attacks. SIP flood, HTTP flood, Distributed

Reflection, and DNS amplification are some of the attacks present in the Application

layer. On the other hand, Network layer attacks encompass SYN flood and ICMPv6

flood. Furthermore, ICMPv6 DDoS attacks are categorized into ICMPv6

Volumetric/Amplification attacks, which include Smurf Flood, and ICMPv6

Exploration, which encompasses Reflection, Routing Discovery, and Neighbour

Discovery. (Bdair et al. 2020).

18

Besides hping and Scapy, there exist various tools that threat actors use to launch

DDoS attacks. Some of the tools are listed in Table 1.

Table 1: Some of the tools used in DDoS attacks

Tool Name Brief description

LetDown DDoS

tool

It is effective for launching a TCP DDoS flood.

Hyenae tool It is an effective tool to forge packet generators

to launch ICMP, UDP, and TCP DDoS attacks

The Tribe Flood

Network tool

It is an effective tool that contains client and

daemon programs to deploy across the network.

The nodes are usually located globally. This tool

can launch ICMP, UDP, and SYN flood attacks

besides Smurf and Blowfish to encrypt the list of

IP addresses that are present in the process of

attack.

Stacheldraht tool It is very efficient in crashing the target devices

using different transport and network layer

packets. This tool uses Zombie architecture and

handles encryption of clients while launching

attacks related to TCP, UDP and ICMP DDoS

attacks.

Trace6 It supports ICMPv6 echo request and TCP-SYN

Thc-ipv6 It is capable of multiple attacks that include DoS,

DDoS, evasion of attack, etc.

Hping3 It is a tool based on Scapy to support IPv6

development and testing.

Scapy Scapy is a program treated as a module in

Python that gives users sophisticated options to

develop scripts related to Networking

This research used a simple Scapy script to launch DDoS attacks while collecting or

generating the datasets. The reason why this was selected is that Scapy is a well-

19

equipped and powerful interactive packet manipulation program with numerous

benefits for networking. Its ability to craft, manipulate, and analyse packets,

combined with extensive protocol support and flexibility, makes it highly versatile.

Scapy allows users to create custom packets, test network devices, and analyse

network responses. It supports a wide range of protocols, making it suitable for

various tasks, including security testing, penetration testing, and network diagnostics.

Written in Python, Scapy is flexible and can be easily extended, integrated into

automation scripts, and used for educational and research purposes. Its cross-

platform compatibility and strong community support, coupled with extensive

documentation, make Scapy an invaluable tool (Biondi 2008-2024).

1.1.3 DDoS Attack

A DoS attack inundates a server with traffic, rendering a website or resource

inaccessible. In the case of a DDoS attack, multiple computers or machines

collaborate to flood a specific target with overwhelming traffic, exacerbating the

impact of the attack (Gaurav, Gupta, and Panigrahi 2022). Attackers meticulously

investigate unprotected entry points, such as vulnerabilities in software or system

configurations, and skilfully exploit them. Leveraging these entry points, they attempt

to compromise the system by depleting its resources, thereby denying access to

legitimate users. In alternative attack scenarios, malicious bots are deployed to

inundate the target system with an overwhelming number of packets, ultimately

leading to a server crash (A. Alharbi and Alsubhi 2021). Figure 4 outlines the steps

involved in a Threat attacker’s launching of a DDoS attack. The attacker begins by

exploring methods like phishing to infiltrate a system and install malware. Once

control of a compromised machine is secured, the attacker distributes bots to other

systems through lateral movement. With control over these systems, the attacker

deploys command and control, using scripts to command PowerShell to unleash a

flood of ICMP packets at the target server. This flood overwhelms the server’s

resources, causing DDoS conditions, and preventing genuine users from

establishing connections due to resource depletion. (Mateen and Shahzad 2021)

20

Figure 4: DDoS attack Implementation of DDoS attack

Based on the incidents quoted and Figure 1, Cloudflare statistics 2024, DDoS attacks

underscore their growing intensity, indicating a significant need for further research

in this field. One specific area of concern is the use of the ICMPv6 protocol, which is

vulnerable, and is usually used to diagnose the connection establishment or status

of the destination system in the network. In this initial phase, threat attackers can

launch attacks by exploiting the vulnerabilities in the network protocol, as they

observe the mechanism of the traffic flow of the enterprise in and out to have a better

understanding of the security settings. Addressing this gap is essential for enhancing

network security and mitigating the impact of such sophisticated attacks.

1.2 Research Gap

Despite extensive research and various proposed solutions from previous

researchers, DDoS attacks highlight their increasing intensity and frequency,

21

presenting a significant opportunity for further research. Addressing this gap,

particularly based on ICMPv6 protocol vulnerabilities, involves highlighting points

considered to be good support for a more effective approach to enhance the

possibility of detection of ICMPv6 DDoS attacks. These approaches, which are

briefed in this section, are anticipated to achieve close to 100% accuracy.

The rapid proliferation of contemporary technology extends into various domains like

IoT, autonomous vehicles, drones, and more, harnessing the internet and

sophisticated intelligence scaling to support a myriad of smart devices equipped with

Tiny Machine Learning at the hardware level, providing good security from threat

attackers. However, despite these strides, significant gaps persist, contributing to

diverse cyberattacks, and such vulnerabilities stem from the dynamic evolution of

technologies or gaps in effectively implementing and securing them (Mishra and

Pandya 2021). ICMPv6 falls within the Network layer, which is a connectionless

protocol, and its essential purpose is for IP operations and network diagnostics. The

stateless auto-configuration process relies on the Neighbour Discovery Protocol

(NDP), which assists nodes in locating addresses and discovering other nodes.

However, in the absence of IPsec security, ICMPv6 vulnerabilities emerge, creating

opportunities for various attacks like DoS or DDoS defined at the beginning of this

section. Malicious nodes can exploit these vulnerabilities to disrupt nodes in other

network segments, crafting attacks to their advantage. By generating numerous

ICMPv6 packets, attackers can significantly degrade network performance,

especially by targeting nodes connected to the victim’s network segment (Mohmand

et al. 2022). The ICMPv6 Ping of Death poses a significant challenge in combating

DDoS attacks due to its capacity to overwhelm servers without depending on specific

vulnerabilities. This type of attack exhausts the server’s processing capabilities by

inundating a target with diverse ICMPv6 traffic, including ping requests, leading to a

denial of service. Attackers exploit variations in IPv6 support and system

configurations, such as differences in handling extension headers and time-to-live

values, to evade detection. This scenario highlights the risk of malicious actors

leveraging ICMPv6 to disruptive DDoS attacks, whether through sophisticated packet

manipulation or straightforward methods like ICMPv6 information messages. The

impact of such attacks is measured in Mbps /Tbps (bandwidth) and PPS (packets per

22

second), underscoring their disruptive potential (Tajdini 2018). The threat actor

employs covert intrusion techniques to operate discreetly. In the initial stages, they

focus on crafting distinctive attack patterns devoid of identifiable signatures or

exploiting vulnerabilities within network protocols and enterprise networks, eventually

compromising the target server. For instance, they may manipulate out-of-order

fragments, intentionally altering fragment values to deceive scanning systems,

rendering the manipulated fragments seemingly genuine and thereby evading

detection (Tan et al. 2022).

Despite the presence of various intelligent Intrusion Detection Systems (IDS), they

often fall short in detecting such attacks due to the cunning approach of threat actors.

When packets are scrambled with flag values lacking sequential order, IDS struggles

to identify them, allowing attackers to evade detection more effectively (Tajdini 2018).

Threat actors often leverage ICMPv6 packets in the initial stages to establish

connections with systems or enterprises once they have the IP addresses.

Subsequently, various vulnerabilities present a wide scope for launching attacks and

some of the following are discussed very briefly:

• “ICMP messages can be manipulated to deceive the receiver into believing

they originated from a different source than the actual originator.

• ICMP messages can be manipulated to redirect either the message or its reply

to a destination other than intended by the message originator.

• ICMP messages are susceptible to alterations in message fields or payload.

• ICMP messages may be exploited in attempts to execute denial-of-service

attacks by sending consecutive erroneous IP packets”.

(Deering and Conta 1998)

Given the identified gap, prudent to devise a contemporary strategy employing

cutting-edge techniques, with the selection of AI Deep Neural Networks combination

approach standing out as a promising solution. The subsequent chapter’s literature

review underscores the significance of Neural Network methodologies explored by

previous researchers, along with their inherent limitations. This research endeavours

23

to transcend these limitations and make every effort to achieve a 100% accuracy rate

in detecting and predicting ICMPv6 DDoS attacks.

1.3 Aim

This research aims to develop an advanced ICMPv6 DDoS attack detection method

by leveraging feature engineering from the first two networking layers and

interpreting feature contributions using SHAP, LIME, and permutation importance. To

enhance detection accuracy, the study employs an ensemble stacking strategy that

integrates CNN-LSTM and RNN-GRU deep learning architectures.

1.4 Hypothesis

Can these two combinations i.e. CNN with LSTM and RNN with GRU be successfully

fused for the detection of ICMPv6 DDoS attacks with superior accuracy scores?

1.5 Related Questions

• Is there any similar kind of combination from existing researchers

that supports the proposed model?

• Does Ensemble stacking enhance the accuracy metric in the context

of a combination of DNN methods approach for predicting ICMPv6

DDoS attacks?

1.6 Objectives

1. Conduct a comprehensive literature review on ICMPv6 DDoS attacks,

focusing on key methodologies relevant to the project. This includes deep

learning models such as CNN-LSTM and RNN-GRU, ensemble techniques

like stacking, and traditional machine learning approaches such as SVM.

Additionally, the study of feature importance analysis using feature

engineering, SHAP, LIME, windowing, Time series split, Train test split,

ADASYN, etc. methods to enhance interpretability and model performance.

2. Designing a hybrid solution for the proposed model.

24

3. Use at least one benchmark dataset to deploy the proposed model and

compare the results with other datasets.

4. Find specific ICMPv6 DDoS attack datasets from previous researchers and

compare them with benchmark datasets (2&3).

5. Generating new ICMPv6 DDoS attack data sets using different network

environments.

6. Validating the proposed techniques using performance measuring in terms of

accuracy, precision, recall, and f-measure, comparing each technique based

on the accuracy metric as well as their combination.

7. Evaluate the proposed method against the contemporary DDoS detection

methods.

1.7 Contribution

1. Development of a Novel Deep Learning-Based Detection Model:

Designed and implemented a hybrid deep neural network architecture that

combines CNN-LSTM and RNN-GRU models using ensemble stacking,

specifically tailored for detecting ICMPv6 DDoS attacks.

2. Generation of Realistic ICMPv6 DDoS Datasets:

Created two original ICMPv6 DDoS datasets in distinct network environments,

each capturing unique attack patterns, to support robust model training and

evaluation.

3. Feature Engineering and Interpretability Analysis:

Applied feature extraction from the first two layers of the network stack and

utilized SHAP, LIME, and permutation importance to assess feature

contributions at both global and local levels.

4. Comprehensive Model Evaluation Against Benchmarks:

Evaluated the proposed model using both benchmark datasets (NSL-KDD,

Mendeley, Sain Malaysian) and the newly generated primary datasets. The

model achieved state-of-the-art performance, with accuracy scores reaching

up to 99.97%.

5. Scholarly Dissemination:

Published multiple research papers in peer-reviewed international

25

conferences, including a paper accepted and presented at an IEEE

conference.

1.8 Research Methodology

This research method was proposed by Saunders, who explains that research

methodology is always a challenge for a systematic approach to achieve the desired

aim. Various methodologies exist, such as quantitative, qualitative, experimental, and

applied research. Careful selection and adherence to a suitable technique are crucial

for justifying the research design, following a scientific model, and ensuring coherent

development. Research strategy is a method that defines the approach of research

and the steps involved to follow. It provides strong beliefs, theories, and philosophical

assumptions that create a shape to understand the research questions and select a

procedure to use righteous methods. Research methodology is an integral part of a

thesis, which helps to ensure the consistency between selected tools, techniques,

models, and underlying theories (Goundar 2012).

1.8.1 Onion Method

In the quantitative phase, the research involves collecting and analysing existing

techniques, and assessing their merits, demerits, and gaps concerning the current

industry standards. This process includes conducting surveys to identify specific

challenges that address and justify the research purpose. (Apuke 2017).

Figure 5 illustrates each layer with its unique guidance options, offering researchers

the flexibility to make the best selection. This approach helps researchers progress

toward achieving positive results while maintaining good consistency in their

research design. The first four layers outline the guiding steps to transform research

questions or hypotheses into a prospective project. The fifth layer involves project

testing, which is essential for validating the hypotheses and obtaining robust

evidence to support the project’s objectives. The final layer focuses on framing the

thesis with supporting test results, demonstrating that the technique used is superior

and effectively achieves the project’s aim (Alturki 2021)

26

Figure 5: Onion research methodology with 6 layers (Alturki 2021)

1.8.2 Applying Onion Research Methodology.

This Onion research Methodology consists of 6 layers employed in the proposed

research to the Hypothesis, Objectives, and contributions. The same is briefed in

tabular form and is also given at the end of this section.

1. Philosophy: In this research, the positivist approach is adopted as the

foundational layer of the Onion method. This approach is particularly suited

for the study, which aims to scan packets and detect attacks using a Deep

Neural Network (DNN) model designed to identify and mitigate DDoS attack

packets, thereby safeguarding the network system. The following steps

outline the nature of the idea, its development into a proposal, the scope of

proving the proposal through simulation or a development framework, the

strategic procedure, and the validation of the proposal (Mardiana 2020).

2. Approach to theory development: In the Onion method for designing Deep

Neural Network (DNN) combinations, an inductive approach from the second

layer was used. The literature review revealed DDoS attack detection at the

Network layer using various DNN techniques. However, no research has

combined RNN with GRU for monitoring and detecting ICMPv6 DDoS attacks

at the enterprise Edge Router. This gap led to the development of a theory

proposing DDoS detection using a DNN combination based on ICMPv6

27

echo/reply attributes. The objectives and hypotheses form a constructive base

to identify packet features for detecting DDoS attacks at the Network layer

(Melnikovas 2018).

3. Methodological choice: The Mono Method approach is utilized at the third

layer of the Onion method, focusing on quantitative techniques. This approach

involves conducting multiple experiments, tests, and assessments based on

selected Deep Neural Network (DNN) techniques. The goal is to achieve

outstanding performance measuring in terms of accuracy, precision, F1

measure, and recall (Apuke 2017).

4. Strategy: The Survey Experiment approach is used to develop solutions

either by analysing collected datasets or by creating real-time virtual

environments to gather datasets based on specific scenarios. Literature

reviews suggest that for detecting DDoS attacks, packet header features for

ICMPv6, in addition to essential frame features, should be collected at the

Network layer. These features are then processed in the development of code

designed to detect DDoS attacks on the first 3 layers in the OSI (Alturki 2021).

5. Time Horizons: This layer is about the cross-sectional or short-term of

studying and focusing mainly on the collection, processing, analysing, etc. of

data. Collecting data and understanding the insights of the data, like the

context of attack, to data sets existing parameters or data extracted from the

virtual platform of the DDoS attack scenario. Suitable parameters and frame

features are extracted for analysis to check how they can fit into the technique.

A systematic design and development of code is to be prepared to evaluate

the tests and find the metrics (Melnikovas 2018).

6. Techniques and Procedures: The technical approach involves designing

and developing a concrete solution using the Python programming language

on the Google Colab platform. This entails utilizing specific repositories/

modules like Tensorflow, Sckit learn, Keras, Pandas numpy, etc. to implement

a combination of Deep Neural Networks (DNNs), focusing on analysing

features extracted from the ICMPv6 packet headers. The goal is to assess the

efficiency of the developed code using accuracy, precision, F-measure, etc.,

to demonstrate the effectiveness of DDoS detection at the network layer. The

28

obtained results will serve to substantiate and defend the thesis, thereby

achieving the objectives outlined in this proposal (Mardiana 2020).

1.8.3 Research Objectives Based on Onion Methodology

Table 2 provides an example of Research Methods for the Onion Methodology

framework to ensure a thorough and robust investigation. It allows for precise

experimentation, rigorous evaluation, and clear demonstration of the proposed

model’s effectiveness, providing compelling evidence of its superiority with

impressive performance metrics.

Table 2: Research Objectives w.r.t Onion Methodology

Serial

No.
Objective

Methodological

Approach
Description

1

To investigate literature

review on existing

techniques, Gap and

Solution analysis,

related to ICMPv6

DDoS attacks detection

(Systematic Literature

Review (SLR), Rapid

Review(RR)

Quantitative technique

based on SLR.

SLR, RR streamline

approach for

producing evidence,

typically for informing

emergent decisions.

2

To study the ICMPv6

DDoS attacks,

detection

methodologies and

DNN-related models.

Quantitative technique

based on SLR.

SLR, RR. Identify

gaps and solutions.

3

To investigate the

application of DNN

aiding in ICMPv6 DDoS

detection.

Quantitative technique

based on SLR.

SLR, RR. Identify

gap-filling measures.

29

4

To propose and design

a novel approach with a

combination technique

of DNN using the

selected datasets.

Quantitative technique

based on SLR.

Design the solution,

plan and fill up the

measures.

5

Develop test,

implementation of a

new framework based

on the DNN model

Quantitative

techniques,

experiments, lab

environments,

virtualization of results

in graphs and metric

measures.

Laboratory

experiments by

simulation of

datasets, benchmark

datasets, verifying

hypothesis theory,

fine-tuning, feature

selection, applying

ADASYN, etc., for

yielding high metric

accuracy results.

6

Critical evaluation of

the proposed model.

Submission of the

thesis with achieved

results

SWOT(Strength,

Weakness,

Opportunities and

Threats) analysis.

Comparative Analysis.

Statistical Analysis

and Paper Publication

The proposed Novel

approach of

combination of DNN

is proved by

suppressing start of

the art results

1.9 Implementation Method

This section brief about the implementation of the proposed research work in 6

phases:

• Research and Analysis: The research began with a systematic literature

review of existing DNN techniques and their applications in addressing

ICMPv6 DDoS attacks. This review identified the limitations, gaps,

proposals, solutions, and achievements of various researchers.

Additionally, the study encompassed a comprehensive analysis of the

30

evolution from IPv4 to IPv6, including their relationships and associations

with ICMPv6. The investigation also covered ML, AI, and DNN techniques,

evaluating their merits and demerits.

• Planning: An effective research plan was devised, incorporating periodic

schedules and milestones to ensure the set deadline in due course of the

study.

• Design and Configuration: Effective model combinations were designed,

utilizing CNN with LSTM and RNN with GRU employing ensemble

techniques. Key datasets identified for this phase included NSL-KDD and

Mendeley and Sain-Malaysian. During the research on ICMPv6, it was

noted that ICMPv6 datasets were not openly available. This challenge was

addressed by obtaining datasets from a secondary researcher who had

conducted similar research.

• Implementation and Deployment: Additional ICMPv6 datasets were

generated, and the model was developed using Python on the Google

platform. Experiments were conducted to test the model.

• Validation and Critical Evaluation: High accuracy scores were targeted,

and efforts were made to achieve these using ensemble stacking

techniques. The model's performance was evaluated based on

comparisons of scores across different datasets and against other

researchers' achievements in similar research areas.

• Conclusion and Thesis Preparation: Upon successfully achieving the

required results, a conclusion was drawn affirming the robustness of the

proposed model in detecting ICMPv6 DDoS attacks. A thesis was prepared

detailing the research process from inception to completion and was

subsequently submitted.

1.10 Organization of Proposal Transforming into Thesis

The thesis is structured in the following Chapters format:

Chapter 1 provides the Introduction, Background, Research Gap, Aim, Hypothesis,

Objectives, Contribution, and Research Methodology.

31

Chapter 2 provides a comprehensive literature review of research to provide a good

understanding of the earlier researchers' work and their merits and limitations. A

similar technique can help to support this research.

Chapter 3 provides the concept and design of the Model. Architecture, a

Comprehensive review of DNNs used in the model, advantages, and applications.

Chapter 4 provides brief background information related to ICMPv6 Echo request /

reply header parameters and a Comprehensive Review of Primary and Secondary

Data sets.

Chapter 5 provides the evaluation of the results obtained and the state of the art that

determines the best performance of the designed model based on metrics like

accuracy, precision, F-measure, etc. It also provides discussions on the outstanding

results of the model performance and the feature contributions that impact the model

with different datasets that have different backgrounds.

Chapter 6 provides a summary of the entire project with the conclusion of

successfully achieving the hypothesis mentioned and correlating to the first chapter

i.e., aim, objectives, and contributions in the detection of DDoS using DNN, including

the impact, limitations, and future research.

32

 2 LITERATURE REVIEW

This chapter reviews previous research on solutions to DDoS attacks, ranging from

traditional IDS methods to modern AI approaches. This review supports the current

research, which aims to improve detection and prediction efficiency by incorporating

a combination of Deep Neural Networks.

There are many attacks in the network targeting some important services and

systems to break/crash resulting in the freezing of business thus causing great

financial loss. The most targeted service is DoS, and DDoS is among them. There

are many preventive techniques to mitigate DDoS, yet the attackers can succeed

due to the change of approaches based on the vulnerabilities present in the victim’s

network, applications, protocols, and infrastructure. Most of the earlier researchers

have come up with anomaly detection which is to find a pattern of a certain problem

that is based on behaviour at the Network layer. Such patterns are often referred to

as anomalies, outliers, discordant observations, etc. (Yang et al. 2022). Network

management is maintained based on a rule-based system, for example, a

Supervisory Control and Data Acquisition (SCADA) network is used for maintaining

or troubleshooting (Saad, Anbar, and Manickam 2018). With the rapid advancements

in emerging computing technologies, including Cloud computing and IoTs, DDoS

attacks have a substantial surge in frequency. This escalating trend poses a

significant and pervasive threat, establishing DDoS attacks as one of the most

formidable challenges in the realm of cyber security. The widespread acceptance of

cloud-based infrastructures and the interconnected nature of IoT devices contribute

to the amplification of these attacks, underscoring the pressing need for robust

cybersecurity measures to mitigate and counteract the escalating risks on the

Internet (Mishra and Pandya 2021).

2.1 Related work

In the realm of DDoS Attacks using Malware, two primary methodologies exist,

Signature-based detection and Anomaly-based detection. While Signature-based

detection has historically been effective, it falters when confronting malicious scripts

33

or bots due to their continual mutation. As these methods evolve, so do their

signatures, rendering traditional detection methods ineffective against new variants.

In contrast, Anomaly-based detection techniques, which operate on the premise that

malicious behaviour deviates from normal traffic patterns, have gained prominence

for their adaptability to detect emerging new variations in real-world scenarios due to

which current IDS detections failed (Mishra and Pandya 2021b).

IPv6, known as Internet Protocol Version 6 is the latest version of the Internet

protocol. The transition from the Internet Version 4 (IPv4) to IPv6 encountered new

problems, and the most crucial one is vulnerabilities. Some of these vulnerabilities

are Evasion attacks, DDoS, and Fragmentation attacks. As per RFC (Request for

Comment) recommendations, there are potential attacks launched by threat attackers

irrespective of any Operating System (OS). Due to different architecture and

technology platforms between Operating Systems and their different behaviour, it can

lead to evasions from IDS, Firewall evasion, OS fingerprinting, Network Mapping,

DoS/DDoS attacks, Remote script execution, and command and control code

execution attacks (Tajdini 2018).

Advanced Persistent Threat (APT) attacks represent a distinct form of network

intrusion, leveraging coordinated human actions rather than automated scripts. APT

attacks entail persistent monitoring and engagement with a target entity until specific

objectives are met. In contrast, DDoS attacks seek to disrupt network functionality by

overwhelming resources, often lacking further strategic goals. The Mirai botnet, a

notable instance of a DDoS attack, incapacitated numerous websites like Twitter,

Netflix, Reddit, and GitHub, for several hours in October 2016. Presently, Mirai

variants are still present posing ongoing threats capable of inflicting substantial harm

to networks (N. Wang et al. 2022).

2.2 Traditional IDS

In rule-based detection, the system monitors network traffic to identify potential

vulnerabilities and detect abnormal events by comparing incoming traffic against a

predefined set of rules that outline common attack patterns. This method involves

34

continuous monitoring to spot deviations from normal traffic, raising alarms when

such anomalies are detected. While effective for systematic attacks, it struggles with

abrupt network behaviour changes and conditions beyond preset parameters. Their

reliance on Boolean association rules for detecting irregularities can also slow down

the process as the number of attributes increases, complicating rule management

(Kaur, M. Kumar, and Bhandari 2017).

Bdair presented a concise examination of DDoS attacks, shedding light on the

vulnerabilities of intrusion detection systems in the context of IPv6. Various detection

mechanisms, such as anomaly, signature, and hybrid approaches, were outlined. An

emphasis was placed on the growing interest in anomaly-based detection, utilizing

rule-based methodologies. Additionally, he also pointed out the susceptibility of

unsecured messages within the ICMPv6 protocol. Moreover, he hinted at proposing

an Optimization Algorithm technique, aiming to enhance the intrusion detection

system either through adoption or hybridization with a meta-heuristic algorithm, thus

increasing its capability to detect DDoS attacks (Bdair et al. 2020).

Bahashwan provided an overview of IPv6 DDoS attack detection, emphasizing

signature, anomaly, Rule, Entropy, Machine Learning and Deep learning-based

mechanisms and techniques. It also brief about the approach to determine,

distinguish, and reduce the attacks related to IPv6 and efficiently brief their merits

and demerits (Bahashwan, Anbar, and Hanshi 2020). Figure 6 depicts the logical

approach to capture the anomaly behaviour by an IDS without any ML or any AI

employed.

35

Figure 6: Logical approach of Rule base anomaly

• “Rule 1: One-way connection density in IPv6 networks which is inbound link

utilization (bytes/s). The ICMPv6 packets that are sent without a

corresponding response packet create a one-way connection (OC). ICMPv6

OC is the ratio of OC packets to all packets in a sampling time interval T. If this

exceeds the predetermined value, then it implies, an abnormal behaviour is

detected.

• Rule 2: Generally, in ICMPv6 flow, a packet set with the same five-component

group (IPv6 source, IPv6 destination, source port, destination port and

protocol), is used in the network analysis. The number of packets that belong

to a certain ICMPv6 flow is called the length of the ICMPv6 flow. This rule is

to detect the anomaly behaviour if the average length of ICMPv6 flow exceeds

the given threshold.

• Rule 3: The ratio between inbound and outbound packets is usually steady.

However, in an ICMPv6 anomalous behaviour attack, the ratio of this traffic

increases rapidly. This rule is to determine as an attack if the anomaly

behaviour that exceeds the given threshold value.

• Rule 4: The ratio of ICMPv6 echo request packet is the rate of set of ICMPv6

packet arrival to that of length of time interval (T1, T2, T3 ,..Tn). This rule is to

detect the anomaly behaviour if the rate of ICMPv6 packet echo request

36

arrivals from a network to the set at the same length of time interval exceeds

a threshold value Count.

• Rule 5: In this rule the count is used to determine the same number of sources

IPv6 and the destination IP address. This rule is to detect the anomaly

behaviour, if the number of packets has the same IPsrcont address source

and IPdscont address destination exceeds the threshold value “

(Saad, Anbar, and Manickam 2018).

Rajat Tandon introduced AMON-SENSS, an open-source solution engineered to

address the demands of scalable and precise DDoS detection, along with signature

generation within expansive networks. AMON-SENSS adopts a hash-based binning

strategy featuring multiple bin layers to ensure scalability, while simultaneously

leveraging traffic analysis at various granularity. Additionally, it implements advanced

techniques such as traffic volume and traffic asymmetry change-point detection to

effectively pinpoint malicious activities. Consequently, their findings demonstrate

AMON-SENSS’s outperformance in accuracy, latency, and network signature quality

compared to existing commercial alternatives (Tandon et al. 2022). Abnormal

activities exceeding or deviating the threshold are concluded as an attack. The

ICMPv6 has emerged based on the limitation of address space in the IPv4. However,

IPv6 was developed with neighbour discovery protocol i.e. NDP which has

vulnerabilities that can be exploited by attackers to launch an attack in the form of

ICMPv6 which includes the lack of exchange of message authentication of NDP.

Some of the attacks related to ICMPv6 are network reconnaissance attacks, routing

headers, fragment headers and multi-casting. (Holkovic, Rysavy, and Dudek 2019).

The above discussion outlines the utilization of rule-based mechanisms for detecting

and mitigating DDoS attacks, particularly focusing on ICMPv6 packets. However, as

technology evolves, new attack vectors emerge, posing challenges at both hardware

and application levels. As technology progresses, attackers become more

sophisticated, adapting their methods to circumvent traditional defences. This

evolution has spurred the adoption of automation, leading to the integration of

machine learning (ML), artificial intelligence (AI), and deep neural networks (DNN) to

37

enhance defence mechanisms against these evolving threats. Additionally, it seeks

to identify novel approaches or methodologies that offer promising results while

acknowledging their inherent limitations.

2.3 A Research Review on ML.

In the previous section, we discussed how IDS are designed using basic threshold

and comparison mechanisms. These systems often fail to detect attack methods

because they rely on predefined patterns and thresholds, making them ineffective

against novel or sophisticated attacks that don’t match existing signatures.

Additionally, attackers can easily bypass these systems by slightly modifying their

techniques to fall below the detection thresholds. This section provides a

comprehensive overview of ML techniques employed by various researchers,

exploring their efficacy in addressing DDoS attacks.

Ojugo conducted a study comparing machine learning methods for DDoS detection.

They contrasted the Hidden Markov Model with an Experimental Hybrid (Memetic)

Genetic Algorithm Trained Neural Network, which was based on a Rule-Generated

and Fitness Function Model. Their evaluation utilized IDS datasets CIDDS-2017,

comprising supervised network flow data for traffic based on the anomaly. They

allocated 70% of the dataset for training and 30% for testing, achieving a fitness

range between 0.8 and 0.865. Their results indicated an estimated 80% classification

accuracy for detection (Ojugo and Eboka 2020). Liang Xiaoyu conducted a thorough

realistic assessment of ML-based DDoS detection methods, with a primary focus on

addressing the class imbalance problem. They underscored the importance of

feature selection, advocating for a model-oriented approach. Their evaluation,

employing datasets from CAIDA and DARPA, utilized the correlation coefficient

across various algorithms including Decision Trees (DT), Support Vector Machines

(SVM), Radial Basis Function SVM (RBF-SVM), Polynomial SVM (Poly-SVM), K-

Nearest Neighbours (KNN), K-Means (KM), Naive Bayes (NB), Artificial Neural

Networks (ANN), and D-Ward. Remarkably, their approach achieved a D-Ward score

of 77.03%, outperforming other algorithms in the evaluation (Liang and Znati 2019).

Yasser Alharbi developed an improved KNN algorithm, termed GR-AD-KNN, to

38

enhance the detection of ICMPv6 DoS attacks. This algorithm utilizes the information

gain rate to assign weights to different features, allowing them to have varying

degrees of influence on the classification process. By integrating the concept of offset

increment average distance, the measurement of the target point is refined,

enhancing the algorithm’s stability. This refinement specifically addresses the varying

impact of lengthy and small distance samples to determine, leading to more reliable

detection outcomes (Y. Alharbi et al. 2021). Zewdie has developed an evaluation

framework utilizing machine learning techniques to detect DoS and DDoS intrusions.

By applying algorithms such as K-Nearest Neighbours, Decision Trees, and Random

Forests, she conducted experiments using the CIC-IDS2017 dataset. The results

revealed impressive precision metrics, with accuracies ranging from 92.19% to

99.66% (Zewdie and Girma 2022). Manjula implemented three classifiers K-Nearest

Neighbours (KNN), Random Forest, and Naive Bayes on datasets generated using

Wireshark besides applying the LOIC attack tool. Among these, the Random Forest

classifier achieved the highest accuracy of 96.75%, demonstrating the model’s

effectiveness in detecting ICMP, TCP, and UDP flood attacks (Manjula and Mangla

2023). Researchers with similar research work on DDoS attacks using ML are

provided in Table 3. In summary, ML offers a more automated, scalable, and

adaptable approach to DDoS detection compared to traditional IDS methods. They

are particularly effective in managing the quick detection of network traffic attack

anomalies. However, lack of performance ability, scalability, complexity and

adaptability in large networks.

39

Table 3: ML summary review

SERIAL
NO.

OBJECTIVE ALGORITHM DATASET
FS -

APPROACH
CLASSIFICATION

TYPE
IDS

DOMAIN
PAPER REF.

ATTACK
LAYER

LIMITATION

1 DDoS
Attack(TCP-SYN
& ICMP Flood)

detection in SON-
enabled ISP

Netwo

KNN, XG Boos CAIDA20 Based on the
Time window

monitoring
and entropy
calculation

Binary
classification

Normal & DDoS

Flow-based N. N. Tuan, P. H. Hung,
N. D.Nghia, N. Van

Tho, T. Van Phan, and
N. H. Thanh, A DDoS

attack mitigation
scheme in IP networks
using machine learning

based on SON,"
Electron., vol. 9, no. ,

pp. 1-19, 2020.

Transport
layer

SDN-based
networks and

No
Combination /
Integration of

algorithm
Primary
Datasets

2 The DDoS attack
detection through
machine learning

and statistical
methods in SDN

J48, Bayes Net, Random
Tree, REP Tree, NB, LR.

UNB-ISCX,
CTU 13, ISOT

Manual
Selection
based on

neighboring
nodes.

Binary
Classification:

Normal and DDoS.

Flow-based A. Banttalebi Dehkordi,
M. R. Soltanaghaei,
and F. Z. Boroujeni,
"The DDoS attacks
detection through

machine learning and
statistical methods in

SON," J.
Supercomput., vol. 77,

no.3, pp.2383-2415
,2020

Network
layer

SDN-based
networks and

No
Combination /
Integration of

algorithm

3 Low-rate DDoS
attack detection

using ONOS
controller and ML

methods

J48, REP Tree,RF Random
Tree, SVM, MLP

CIC-DDoS-
2019

Manual
selection

Binary
Classification:

Normal and DDoS

Flow-based Perez-Diaz, J.A.,
Valdovinos, I.A., Choo,

K.K.R. and Zhu, D.,
2020. A flexible SDN-
based architecture for

identifying and
mitigating low-rate

DDoS attacks using
machine learning. IEEE
Access, 8, pp.155859-

155872.

Application
layer

Https-based
attacks and

No
Combination /
Integration of

algorithm

4 SVM
incorporated with

selective IP
traceback-based

SVM NSL-KDD Manual
Selection

Binary
Classification:

Normal and attack

Flow-based P. Hadem, 0. K. Saikia,
and S.Moulik, "An

SON-based Intrusion
Detection System using

Application
layer

Https-based
attacks and

No
Combination /

40

IDS mechanism
for SON

SVM with Selective
Logging for IP

Traceback ," Computer.
Networks, vol. 191, no.
September 2020, p.

108015,2021

Integration of
algorithm

5 DDoS attack
detection using

feature selection
and ML-based

techniques

SVM,ANN, KNN,NB Self-Generated
Simulated Data

Filter,
Wrapper and
Embedded

based
method

Multiclassification
Normal, TCP,

ICMP, and UDP

Flow-based H. Polat and 0. Polat,
"Detecting DDoS

Attacks in Software
Defined Networks
Through Feature

Selection Methods and
Machine Learning

Models," Sustainability,
vol. 12, no.

3,1035,2020

Network
Layer

SDN
controller

DDoS attack
and No

Combination /
Integration of

algorithm

6 DDoS attack
detection using
Hierarchical ML

and
Hyperparameter

optimization

XGboost, LGBM, CatBoost,
Random Forest (RF), and

Decision Tree (DT)

CICIDS 2017 LASSO
approach

was used for
feature

selection

Decision Tree
classification

Flow-based Dasari, S. and Kalari,
R., 2024. An effective
classification of DDoS
attacks in a distributed
network by adopting
hierarchical machine

learning and
hyperparameters

optimization
techniques. IEEE

Access.

Network
layer

No
Combination /
Integration of

algorithm

7 Detecting DDoS
Threats Using

Supervised
Machine

Learning for
Traffic

Classification in
Software Defined

Networking

 logistic regression, support
vector machine, random

forest, K-nearest neighbor,
and XGBoost,

CICDDoS2019 --- Traffic class
distribution based

on Benign and
attack

Flow-based Hirsi, A., Audah, L.,
Salh, A., Alhartomi,

M.A. and Ahmed, S.,
2024. Detecting DDoS

Threats Using
Supervised Machine
Learning for Traffic

Classification in
Software Defined
Networking. IEEE

Access.

Network
layer

No
Combination /
Integration of

algorithm

8 Online Network
DoS/DDoS
Detection:
Sampling,

Change Point
Detection, and

SVM,DT,KNN.RFLDA,QDA
and CPD

Multiple
datasets NSL-

KDD, CIC-
IDS2017, and

CSE-
CICIDS2018

PCA Classification
based on attack
instances normal

instances

Multiple
sampling

like IP flow-
based,

Systematic,
stratified, or

Owusu, E., Rahouti, M.,
Jagatheesaperumal,

S.K., Xiong, K., Xin, Y.,
Lu, L. and Hsu, D.F.,
2024. Online Network
DoS/DDoS Detection:

Network
layer

No
Combination /
Integration of

algorithm

41

Machine
Learning
Methods

random
sampling…

Sampling, Change
Point Detection, and
Machine Learning

Methods. IEEE
Communications

Surveys & Tutorials.

9 Federated
Learning Based
DDoS Attacks
Detection in
Large-Scale

Software-Defined
Network

Federated Learning,
XGBoost algorithm,

gradient-boosted decision
tree

InSDN,
CICDDoS2019,

and
CICDoS2017

Manual
Selection

DDoS attacks or
normal

Flow-based Fotse, Y.S.N., Tchendji,
V.K. and Velempini, M.,

2024. Federated
learning-based DDoS
attacks detection in

large-scale software-
defined network. IEEE

Transactions on
Computers.

Network
layer

No
Combination /
Integration of

algorithm

10 A Genetic
Algorithm- and t-

Test-Based
System for DDoS
Attack Detection
in IoT Networks

Random Forest (RF),
ExtraTree (ET), and
Adaptive Boosting

(AdaBoost)

ToN-IoT and
HL-IoT binary

datasets

PCC and
novel

‘‘GAStats’’

Flood and low time-series Saiyed, M.F. and Al-
Anbagi, I., 2024. A

Genetic Algorithm-and-
T-Test-Based System

for DDoS Attack
Detection in IoT
Networks. IEEE

Access, 12, pp.25623-
25641.

Network
layer

No
Combination /
Integration of

algorithm

42

2.4 A Research Review on DNN

Kumar and his team conducted a comparative analysis of various Deep Learning

techniques, including LSTM, Bidirectional LSTM, Stacked LSTM, and GRU. They

structured the unstructured dataset CI-CDDoS2019, provided in CSV format, and

pre-processing was performed by eliminating values such as NaN and infinity.

Numerical values underwent standardization, while class values were encoded

using label encoders. The pre-processed data was then fed into the model of Deep

Learning techniques, allocating 80% for training and 20% for evaluation from the

CSV file. Among these techniques, Stacked LSTM emerged as the most effective,

achieving a remarkable accuracy of 99.55% compared to others (K. Kumar, Behal,

et al. 2021). M. Asad and his team introduced a Deep Neural Network model

employing a feed-forward back-propagation architecture, comprising seven layers

to classify network flows and discern between attacks and normal traffic. The

architecture includes three layers: input, hidden, and output. The input layer

accommodates 66 features along with a bias factor, while the hidden layer initializes

synaptic weights and connections to aid in classification computations. The output

layer offers probabilities of benign traffic or a DDoS attack. They evaluated their

model using the CIDC IDS 2017 dataset, achieving 98% accuracy (Asad et al.

2020).

Assis introduced a defence system focused on analysing records on a single IP flow,

employing the GRU deep learning method to find DDoS and intrusion attacks. The

model was assessed against various machine learning approaches using the

CICDDoS 2019 and CICIDS 2018 datasets. An approach with a lightweight ability of

mitigation was proposed and rated, with performance tests conducted on real

network flow packets related to large-scale networks. The results obtained were

outstanding in detection rates, achieving an accuracy of 97.1% (Assis et al. 2021).

Cil developed a DNN model with three hidden layers, each consisting of 50 neurons

and utilizing sigmoid activation functions. This model was designed to detect DDoS

attacks with the CICDDoS2019 dataset, achieving an impressive accuracy of 97.1%

43

(Cil, Yildiz, and Buldu 2021). Christian Callegari aimed at a deep learning-based

method for network attack identification utilizing RNN, CNN, LSTM, and GRU. This

approach was tested using datasets of traffic traces collected from the MAWI Lab

archive, achieving an accuracy of 89.99% (Callegari, Giordano, and Pagano 2024).

Researchers with similar research work on DDoS attacks using DNN are provided in

Table 4.

44

Table 4:DNN Summary Review.

SERIAL
NO.

PAPER TITLE MODEL USED NATURE OF
LEARNING

DATASET DETECTION
OF

ATTACKS

ATTACK
LAYER

LIMITATION CHARACTERISTICS REF

1 A deep-learning
model for
detecting

network attacks

RNN with
autoencoder

Unsupervised CICDDOS2019 SYN Flood,
UDP, flood

attacks, web
DDoS
attacks

Transport
and

application
layer

No Combination /
Integration of algorithm and
no primary datasets used

Highest evaluation of
metric -Recall,

Fscore, Accuracy
precision. Feature

dimensionality
reduction

Elsayed, M.S., Le-Khac, N.A.,
Dev, S. and Jurcut, A.D.,
2020, August. Ddosnet: A
deep-learning model for

detecting network attacks.
In 2020 IEEE 21st

International Symposium on"
A World of Wireless, Mobile

and Multimedia
Networks"(WoWMoM) (pp.

391-396). IEEE.

2 CNN- Based
Network
Intrusion
Detection

against Denial-
of- Service

Attacks.

CNN Supervised KDDCUP
99 and CSE-
CIC-IDS 2018

DoS-Hulk,
DoS Slow

HTTP Test.
DoS-Golden
Eye, DDoS-
LOIC-HTTP

DDoS-
HOIC.

Neptune
Attack.

Smurf Attack

Network
layer

No Combination /
Integration of algorithm and
no primary datasets used

Hyper-parameter
tuning for designing
an optimal model

Kim. J.. Kim, J„ Kim. H..
Shim. M. Choi, E. CNN-
Based Network Intrusion

Detection against Denial-of-
Service Attacks. Electronics.
2020. 9(6). 916. https://doi.

org/10.3390/electronics9060

https://doi/

45

3 An Effective
Convolutional
Neural Network
based on
SMOTE and
Gaussian
Mixture Model
for Intrusion
Detection in
Imbalanced
Dataset.

SGM-CNN
(SGM-
combination of
Synthetic
Minority Over-
Sampling
Technique
(SMOTE) and
under-sampling
for clustering
based on
Gaussian Mixture
Model (GMM))

Supervised UNSW-
NB15and
CICIDS2017

DoS-Hulk.
DoS Slow
HTTP Test
DoS-Golden
Eye. DoS-
Slowloris.
DDoS-LOIC-
HTTP
DDoS-HOIC,
Bot Net
attacks.
general DoS
attacks
(UDP.TCP)

Application,
Transport,
and
Network
layer

No Combination /
Integration of algorithm and
no primary datasets used

Ability to address
class imbalance
problem.

Zhang. H.. Huang. L.. Wu, C.
a, Li. Z. An Effective
Convolutional Neural Network
based on SMOTE and
Gaussian Mixture Model for
Intrusion Detection in
Imbalanced Dataset.
Computer Networks. 2020,
177, 107315. https://d0i.0rg/l
0.1016/j.com
net.2020.107315

4 Detection of
DDOS Attack
using Deep
Learning Model
in Cloud
Storage
Application

Feature
Selection-Based
Whale
Optimization
DNN

Supervised CICIDS2017 DoS
Slowloris.
DoS Slow
HTTP Test.
DoS Hulk
and DoS
Golden

Network
layer

No Combination /
Integration of algorithm and
no primary datasets used

Storing the non-
attacked data in cloud
to provide security
and avoiding the
entry of DDOS
attacks

Agarwal, A., Khari, M., Singh,
R. Detection of DDOS Attack
using Deep Learning Model in
Cloud Storage Application.
Wireless Personal
Communications. 2021, 1-21.
https://doi.Org/10.1007/S1127
7-021-08271-z

5 A Multi-
Classifier for
DDoS Attacks
Using Stacking
Ensemble Deep
Neural Network

 CNN, LSTM,
GRU and
stacking
ensemble

Supervised CIC-
DDoS2019

DDoS Network
layer

Combination / Integration of
algorithm used but no
primary datasets used

Ability to determine
the various
classifications of
DDoS attacks and
lack to identify similar
categories.

M. I. Sayed, I. M. Sayem, S.
Saha and A. Haque, "A Multi-
Classifier for DDoS Attacks
Using Stacking Ensemble
Deep Neural Network," 2022
International Wireless
Communications and Mobile
Computing (IWCMC),
Dubrovnik, Croatia, 2022, pp.
1125-1130

6 Detection and
Characterization
of DDoS Attacks
Using Time-
Based Features

GNB, DNN and
SVM

Supervised CICDDoS2019 DDoS,
MSSQL,
SSDP, SYN
Flood,
PORTMAP,
DNS, LDAP,
NETBIOS,

Network
layer

No Combination /
Integration of algorithm and
no primary datasets used

Ability to identify and
perform well on time-
based features

J. Halladay et al., "Detection
and Characterization of DDoS
Attacks Using Time-Based
Features," in IEEE Access,
vol. 10, pp. 49794-49807,
2022,

https://doi.org/10.1007/S1127

46

SNMP,
TFTP, NTP,
UDP Flood,
or UDP-Lag

7 An Efficient
Hybrid DNN for
DDoS Detection
and
Classification in
Software-
Defined IIoT
Networks

(CNN-LSTM) &
XGBoost

Supervised CICDDoS2019 DDoS Network
layer

Combination / Integration of
algorithm used but no
primary datasets used

Ability to determine
feature selection

A. Zainudin, L. A. C.
Ahakonye, R. Akter, D. -S.
Kim and J. -M. Lee, "An
Efficient Hybrid-DNN for
DDoS Detection and
Classification in Software-
Defined IIoT Networks,"
in IEEE Internet of Things
Journal, vol. 10, no. 10, pp.
8491-8504, 15 May15, 2023

8 An
Autoencoder-
Based
Approach for
DDoS Attack
Detection Using
Semi-
Supervised
Learning

Autoencoder
(AE) and Support
Vector Machine
(SVM)

supervised
and semi-
supervised

CICDDoS2019 DDoS Network
layer

No Combination /
Integration of algorithm and
no primary datasets used

Ability to perform well
on unbalanced
datasets

T. Fardusy, S. Afrin, I. J.
Sraboni and U. K. Dey, "An
Autoencoder-Based Approach
for DDoS Attack Detection
Using Semi-Supervised
Learning," 2023 International
Conference on Next-
Generation Computing, IoT
and Machine Learning
(NCIM), Gazipur, Bangladesh,
2023, pp. 1-7

9 Lightweight
Deep Learning
Method based
on Group
Convolution:
Detecting DDoS
Attacks in IoT
Environments

Autoencoders
and CNN

supervised CICIoT2023 DDoS Network
layer

No Combination /
Integration of algorithm and
no primary datasets used

The DGConv-IDS
model has the ability
to lower
computational costs
and provide better
detection
performance to
improve security
protection capabilities
against DDoS attacks

S. Yan, H. Han, X. Dong and
Z. Xu, "Lightweight Deep
Learning Method based on
Group Convolution: Detecting
DDoS Attacks in IoT
Environments," 2024 10th
International Symposium on
System Security, Safety, and
Reliability (ISSSR), Xiamen,
China, 2024,

47

10 Enhanced
DDoS Attack
Detection Using
Advanced Deep
Learning
Techniques

LSTM,
GRU,RNN,DCAE
and CNN

supervised CICDDoS2019 DDoS Network
layer

Combination/amalgamation
of CNN - LSTM used and
no primary datasets used

Ability to detect
diverse DDoS attack
patterns

C. Abdelkarim, M. Merouane
and B. Lina, "Enhanced DDoS
Attack Detection Using
Advanced Deep Learning
Techniques," 2024
International Conference on
Advances in Electrical and
Communication Technologies
(ICAECOT), Setif, Algeria,
2024, pp. 1-4

48

This section summarizes about DNNs that are used mainly for their automated, adaptive

and high-accuracy detection capabilities in the following areas:

1. Complexity Handling: Easily fit in for typical model complex, non-linear

relationships due to their deep architecture and multiple layers.

2. Performance and Accuracy: They typically offer higher accuracy and better

performance on large and complex datasets due to their ability to capture

intricate patterns.

1. Scalability: It is devised to manage high-scale data effectively, yielding it for

more appropriate real-time detection of DDoS attacks.

2. Adaptability: More easily retrained with new data to adapt to evolving attack

patterns, offering better adaptability to changing threat landscapes.

3. End-to-end Learning: Support end-to-end learning, directly mapping raw input

data to output predictions in a streamlined manner.

4. Feature Engineering: Automatically discover and capture attributes from raw

data, reducing the need for manual intervention

(Mittal, K. Kumar, and Behal 2023).

Sections 2.2 to 2.4 of the literature review, including the ML-tables and DNN table,

provide the mechanisms behind DDoS attacks and highlight various research efforts

aimed at mitigating these attacks. These efforts have employed rule-based systems,

ML, and DNN. The review delves into the limitations of these approaches and explores

how researchers have innovatively adapted their methods over time to address these

challenges.

2.5 A Research Review on ICMP

Based on our aim the research was narrowed down to DDoS attacks related to ICMP,

TCP, and UDP attacks using ML and DNN by various researchers. Mohammad Tayyab

reviewed DoS and DDoS attack detection in ICMPv6 using ML techniques, discussing

single classifiers (e.g., SVM, KNN, Decision Trees, NB) and hybrid classifiers. They

detailed how classifiers, trained on DARPA 1999 and generic datasets, achieved

49

detection rates of 94.47% and 96.55%, respectively with performance, scalability,

efficiency, benchmarks, imbalance, and evaluation metrics addressed. Additionally,

Blockchain applicability for detecting ICMPv6 DDoS attacks was proposed as a new

research direction (Tayyab, Belaton, and Anbar 2020). Ren-Hung presented a model

that can learn unsupervised data using CNNs for the detection of traffic anomalies in

the network at an early stage. This model automatically profiles traffic features from raw

patterns, focusing on the first few packets in a flow to learn features and determine non-

linear relationships, achieving partial end-to-end learning. Trained on raw data, it builds

a classifier to differentiate benign traffic and detect anomalies accurately. Using the

277.1 GB Mirai-based DDoS dataset from Robert Gordon University, their evaluation

with PyTorch and TensorFlow achieved nearly 100% accuracy, with less than 1% false

alarms and false negatives, from just two packets and 80 bytes (Hwang et al. 2020).

Ahmed Issa introduced an innovative deep-learning classification approach by

combining two widely used algorithms, CNN and LSTM. The model was designed with

a 7-layer deep neural network consisting of a 1D CNN layer with kernel and stride

parameters, followed by a MaxPooling 1D layer, using ReLU activation function, and

SoftMax for the output layers. The model was assessed using the NSL-KDD dataset,

which contains 40 features and includes various types of attacks. The model achieved

an impressive accuracy rate of 99.20% (Issa and Albayrak 2023). Omar Elejla

introduced an innovative method for identifying ICMPv6 flooding DDoS attacks in IPv6

networks. This approach leverages deep learning and incorporates an ensemble

feature selection technique, utilizing chi-square and information gain ratio methods to

identify crucial features for accurate attack detection. The model employs LSTM

network trained on the selected features, resulting in impressive detection accuracy

rates: 87.1% for RNN, 99.4% for LSTM, and 99.11% for a GRU (Elejla et al. 2019).

Hasan provided good insight into ML and DL techniques focusing on ICMPv6 DDoS

attacks and their usage to detect and mitigate. He also provided the differences

between both and a review of the adaption of ML and DL techniques in AIDS for

detecting IPv4 and IPv6 attacks, such as DoS and DDoS flooding attacks (Hasan Kabla

et al. 2023). Researchers with similar work on ICMP DDoS attacks using ML and DNN

50

are provided in Table 5. The literature review highlights the evolution from traditional

IDS detection methods to the use of ML and AI, specifically deep neural networks

(DNNs), in detecting DDoS attacks, noting their limitations and merits. It reveals that

attackers are increasingly using sophisticated covert techniques to evade detection and

successfully launch DDoS attacks across networks of all sizes. Despite many proposed

techniques and approaches, existing methods face limitations that emphasize the need

for advanced techniques like DNNs.

Selecting LSTM in the combination:

Sections 2.4 and 2.5 highlight that several researchers have utilized LSTM-based

models for DDoS attack detection due to their effectiveness in handling sequential data.

Kumar employed LSTM, Bidirectional LSTM, Stacked LSTM, and GRU models,

achieving a remarkable accuracy of 99.55% in detecting DDoS attacks. Christian

Callegari used a combination of RNN, CNN, LSTM, and GRU models for network attack

identification, achieving an accuracy of 89.99%. Ahmed Issa integrated CNN and LSTM

to detect various types of attacks, reaching an accuracy of 99.20%. Omar Elejla trained

RNN, LSTM, and GRU models on selected features to detect ICMPv6 flooding DDoS

attacks in IPv6 networks, with resulting accuracies of 87.1% for RNN, 99.4% for LSTM,

and 99.11% for GRU. Similarly, Sayed applied CNN, LSTM, GRU, and a stacking

ensemble approach for DDoS detection. A. Zainudin proposed a hybrid deep neural

network using CNN-LSTM and XGBoost for DDoS detection and classification in

Software-Defined Networks (SDNs). C. Abdelkarim employed a combination of LSTM,

GRU, RNN, DCAE, and CNN to detect enhanced DDoS attacks.

Based on these studies, the LSTM technique is selected due to its superior performance

across the following parameters:

Temporal patterns:

DDoS attacks typically involve bursts of traffic over time. They exhibit

sequential behavior, such as rapid increases in packet rate or abnormal

flow durations.

51

Table 5: ICMP summary review

SERIAL
NO.

PAPER TITLE MODEL USED NATURE OF
LEARNING

DATASET DETECTION
OF ATTACKS

ATTACK
LAYER

LIMITATION CHARACTERISTICS REF

1. LUCID: A
practical,

lightweight
deep learning

solution for
DDoS attack

detection

CNN Supervised ISCX2012,
CIC2017 and
CSECIC2018

DoS Slowloris,

DDoS (TCP,
ICMP)

Network
layer

No
Combination
/ Integration
of algorithm

Reduction in
execution and saving
of processing power

Doriguzzi-Corin, R.,
Millar, S., Scott-

Hayward, S.,
Martinez-del-Rincon,
J. and Siracusa, D.,

2020. LUCID: A
practical, lightweight

deep learning
solution for DDoS

attack
detection. IEEE
Transactions on

Network and Service
Management, 17(2),

pp.876-889.

2. A deep
learning

approach with
Bayesian

optimization
and ensemble
classifiers for

detecting
denial of

service attacks

Ensemble models
and AE-based
deep learning

classifiers

Unsupervised Digiturk and
Labris

SYN ack DDoS
attacks, ICMP
DDoS, HTTP

Flooding

Network
and

application
layer

No
Combination
/ Integration
of algorithm

Hyper Parampara
uses Bayesian
optimization to

reduce and select
optimal values for
hyperparameters

Gormez, Y., Aydin,
Z., Karademir, R.
and Gungor, V.C.,

2020. A deep
learning approach

with Bayesian
optimization and

ensemble classifiers
for detecting denial

of service
attacks. International

Journal of
Communication

Systems, 33(11),
p.e4401.

3. A
comprehensive
study of DDoS

attack

GRU-BWFA Supervised SNMP-M IB
dataset

TCP-SYN, UDP
flood, ICMP-
echo, HTTP
flood, Slow

Application,
Transport,

and

No
Combination
/ Integration
of algorithm

To identify several
attacks from the

SNMP-MIB dataset
and restore the

Gangula, R. Mohan.
V.M. and Kumar. R.,

2022. A
comprehence study

52

detecting
algorithm using

GRU-8WFA
classifier

Loris. Slow
Post a

Network
Layer

and no
primary
dataset
used

System in the
shortest possible

time.

of DOoS attack
detecting algorithm
using GRU- BWFA

classifier
Measurement:
Sensors. 24.

p.100570.

4. Attack
detection

analysis in
software-
defined

networks using
various

machine
learning
method

KNN, SVM, XGB
,ANN and

Renyi joint entropy

Supervised Generated in
SDN environment

ICMP.TCP.UDP Network
and

Transport
layers

No
Combination
/ Integration
of algorithm

Efficacy and
efficiency of ANOVA

using the ML and
ANN techniques

Wang. Y.. Wang. X,
Ariffin, MM.

Abotfathi, M ,
Alqhatani, A. and
Almutairi, U 2023.
Attack detection

analysis in software-
defined networks

using various
machine learning

method. Computers
and Electrical

Engineering. 108. p
108655.

5. Modified
Flower

Pollination
Algorithm

(MFPA) for
ICMPv6-Based
DOoS Attacks

Anomaly
Detection

MFPA Supervised Generated ICMPv6 Network
layer

No
Combination
/ Integration
of algorithms

To select the most
relevant features
from the ICMPv6
dataset to detect
ICMPv6 DDoS

attacks using MFPA

Alghuraibawi. AH8.
Manickam. S..
Abdullah. R„

Alyasseri. Z.A.A,
Jasim, H.M. and
Sant N.S.. 2023.
Modified Flower

Pollination Algorithm
for ICMPv6- Based

DDoS Attacks
Anomaly Detection.
Procedia Computer

Science. 220.
pp.776-781.

6 An approach
to on-stream
DDoS blitz

detection using
machine

Naive Bayes. KNN
and Random

Forest

Supervised
Data set

generated using
Loic attacking tool

ICMP. TCP. or
UDP

Network &
Transport

layer

No
Combination
/ Integration
of algorithm

To detect attacks
related to any traffic

protocols

Manjula. H.T and
Mangia. N. 2023. An

approach to on
stream DDoS blitz

detection using

https://www.sciencedirect.com/topics/engineering/joints-structural-components

53

learning
algorithms

machine learning
algorithms. Materials
Today: Proceedings.

80. pp 3492-3499

7 Zone-based
stable and

secure
clustering

technique for
VANETs

K-means Supervised Data sets
generated using

network simulator.
NS2.35

ICMP Network
layer

No
Combination
/ Integration
of algorithm

To monitor mode of
RSU for the

detection and
mitigation of

impersonation
attacks in VANETs

Sharma. S. and
Awasthi, S.K., 2024.
Zone- based stable

and secure
clustering technique

for VANETs.
Simulation Modelling
Practice and Theory.

130, p102863

8 A Real Time
Deep Learning

Based
Approach for

Detecting
Network
Attacks

MLP. RNN. CNN.
LSTM and GRU

Supervised MAW1 Data sets HTTP, ICMP,
TCP & UDP

Application,
Network &
Transport

layer

No
Combination
/ Integration
of algorithm

and No
primary
datasets

used

To detect anomaly
attacks using Deep
learning techniques

Callegari. C„
Giordano. S. and

Pagano. M . 2024 A
Real Time Deep
Learning based

Approach for
Detecting Network

9 Detection of
ICMPV6

DDOS Attacks
Using

Ensemble
Stacking of

Hybrid Model-1
(CNN-LSTM)
and Model-2
(RNN-GRU)

CNN with LSTM,
RNN with GRU

Supervised NSL-KDD, Sain
Malaysian

Mendeley, two
distinct primary

datasets.

ICMPv6 Network
Layer

Combination
/ Integration
of algorithm
and primary

datasets
used

To detect ICMPv6
DDoS attacks

O. V. P.
Salamkayala, S. S.

Ghidary, C. Howard,
R. Campion and J.

Banerjee, "Detection
of ICMPV6 DDOS

Attacks Using
Ensemble Stacking
of Hybrid Model-1
(CNN-LSTM) and
Model-2 (RNN-
GRU)," 2024
International

Conference on
Machine Learning
and Cybernetics

(ICMLC), Miyazaki,
Japan, 2024, pp. 58-

64,

54

10 Detection and
Mitigation of

DDOS Attack
in SDN Using
Feature Based

RF & MLP
Approach

Genetic Algorithm
and Chimp

Optimization
Algorithm

Supervised SDN_DDoS_2020 TCP, UDP, and
ICMP

Transport
and

Network
layer

No
Combination
/ Integration
of algorithm

and No
primary
datasets

Optimal feature
selection methods to
identify ICMP, TCP,

and UDP attack
traffic

S. K, S. M, A. M. R,
G. N and S.
Tamilselvi,

"Detection and
Mitigation of DDOS
Attack in SDN Using
Feature Based RF &

MLP
Approach," 2025 3rd

International
Conference on
Intelligent Data
Communication

Technologies and
Internet of Things

(IDCIoT), Bengaluru,
India, 2025, pp. 457-

461

55

Traditional models may fail to detect such time-based anomalies, but LSTM is
explicitly designed to handle time series data.

Memory Capability:

LSTM networks are a type of Recurrent Neural Network (RNN) with gated

memory units that can remember long-term dependencies.

• Detecting slow-evolving attacks.

• Capturing traffic trends leading up to the attack.

Anomaly Detection:

• In DDoS detection, it's crucial to identify subtle deviations in traffic over

time.

• LSTMs can learn normal network behavior and detect when the

sequence of events deviates significantly, suggesting an attack.

High-Dimensional Sequential Data:

• Network traffic can include many features: packet size, flow count,

protocol type, etc.

• LSTMs can process multivariate time series data, allowing more

holistic analysis than traditional static classifiers.

Performance:

• Early detection

• Reduced false positives

• Adaptability to new attack patterns

56

2.6 DDoS scope level

Threat attackers can launch DDoS attacks at various levels. This section briefly

explains the different scopes of such attacks.

1. Application Level: In this level, the threat attacker aims to disrupt an

application by exhausting its resources, such as the maximum number of

processes or simultaneous connections it can handle. These kinds of DDoS

attacks are mostly found in web applications, blocking user access through

repeated invalid login attempts, etc (Velauthapillai 2014).

2. Operating System level: Operating system DDoS attacks are like

application DDoS attacks. Example: SYN flooding attack using TCP, where

the threat attacker floods TCP SYN packets to the victim without completing

the 3-way TCP handshake, exhausting the target system's connection state

memory (Tajdini 2018).

3. Hardware level: Attackers flood the hardware device with a high volume of

traffic or requests, consuming its available resources such as CPU cycles,

memory, or bandwidth. This can lead to device slowdown or complete

unresponsiveness (Velauthapillai 2014).

4. Network Layer Attacks: This layer can be considered as a communication

layer at a core level for packet transmission. ICMPv6 DDoS attacks primarily

target the network layer. They can involve flooding a network with ICMPv6

packets, such as ICMPv6 Echo Request (ping) floods, ICMPv6 Router

Advertisement floods, or ICMPv6 Neighbour Discovery floods. This results in

overwhelming network bandwidth or consuming network resources, impacting

the availability of network services (Droms 2014).

This research focuses on Network layer attacks, especially on ICMPv6 Echo-Reply

attacks and the rest are out of scope.

2.7 IPv4 Protocol

The origins of IPv4 are traced back to the ARPANET, which was an experimental

network funded by the U.S. Department of Defence’s Advanced Research Projects

57

Agency (ARPA). ARPANET was designed to explore packet-switching technology

developed as part of the research and development efforts in computer networking

that began in the late 1960s and early 1970s. As different networks began to emerge,

there was a growing need for a standardized protocol that could enable

communication between diverse systems. The development of a common protocol

was necessary to ensure interoperability and the seamless exchange of data (Vint

and Kahn 1974). As a result, IPv4 was born, and its improvisation was documented

through a series of RFC documents. RFCs are a set of technical and organizational

notes about the Internet, issued by the Internet Engineering Task Force (IETF). The

initial proposal for the Internet Protocol was outlined in RFC 791, published in

September 1981 by Jon Postel. This document defined the basic structure and

functionality of IPv4, and Jon Postel was A key person in the development of IPv4,

responsible for editing and publishing many of the early RFCs that defined the

protocol (Internet Control Message Protocol 1981). IPv4 known as Internet Protocol

version four, is widely used to identify devices on a network through an addressing

system. The adoption of IPv4 facilitated the development of the World Wide Web,

email, and other critical internet services.

Some of the key points of Ipv4 are:

1. Address Format: IPv4 is of a 32-bit address size, extending to a total of

addresses (approximately 4.3 billion addresses).

2. Address Representation: Typically represented in dot-decimal format (e.g.,

192.168.0.1).

3. Header Size: The header of an IPv4 packet is 20-60 bytes long.

4. Address Exhaustion: Due to the rapid expansion of the internet and the

scaling of devices, IPv4 addresses are nearly drained.

(CISCO 2006).

2.8 IPv6

As the internet continued to grow and scale drastically, it was becoming difficult to

cope with the 32-bit address space of IPv4 because of the shortage of IPs that are

unable to meet the needs of an increasingly connected system in the digital world.

This led to the development of IPv6 which was meant for larger address space. The

58

transition to IPv6 was deployed officially in 2018, with both protocols coexisting and

being used in parallel during the transition period.

Table 6: IPv6 address scheme

IPv6 uses a 128-bit address scheme, which allows for approximately unique

addresses. This vast address space is a significant improvement over IPv4 which

was supporting about 4.3 billion addresses. IPv6 addresses are written in

hexadecimal format and distinguished by colons

(e.g.,2001:0db8:85a3:0000:0000:8a2e:0370:7334). For easier format, leading zeros

can be skipped, and such sections of zeros can be replaced with a pair of colon (::)

and (2001:0db8:85a3:::8a2e:0370:7334 or 001:0db8:85a3:0:0:8a2e:0370:7334).The

IPv6 address format is in a hexadecimal number system, it starts from 0 to 9 as

numbers and from 10 to 15 its notation is represented as A to F (CISCO 2006).

2.8.1 Identifying the IPv6 address based on Type and notation.

It is based on higher-order bits that are shown briefly with the necessary format and

notations.

(Deering and Hinden 2006)

There are roughly 6 categories of IPv6 addresses that are briefed below:

1. Unicast: This address is mainly used for one interface. A packet that has a

unicast address is transported to that specific interface which is recognised by

that address. Further, it has 6 kinds that are used at different nodes at their

Address Type Binary prefix IPv6 Notation

Unspecified 00…0 (128 bits) ::/128

Loopback 00…1 (128 bits) ::1/128

Multicast 11111111 FF00::/8

Link-Local unicast 1111111010 FE80::/10

Global Unicast (everything else) --

59

designated levels and sometimes with the combination of IPv4. IPv4

compatible IPv6 address (nearly deprecated). The remaining are listed below:

a. Global unicast address

b. Site-local unicast address

c. Link-local unicast address

d. IPv4 mapped with IPv6 address.

e. Special IPv6 Address

Interface identifiers in IPv6 unicast addresses are used on a link and are

unique within a subnet prefix. It is advised that the same identifier is avoided

while assigning to different nodes of a link, though they are unique on a wider

scope. An interface identifier can be determined from its link-layer address and

should be used on multiple interfaces of a single node provided in different

subnets. For instance, a Global Unicast address can be applied to a local

scope identifier, and a Link-Local address can be applied to a universal scope

identifier

(Tajdini 2018).

2. Multicast: It is an IPv6 address type that is used for multiple identifiers for a

group of interfaces in the network. In a multicast address, there exist 4 flags

consisting of 0, R, P and T are used to restrict the possibility of the multicast

group. The higher order flag is reserved and assigned to “0”. The values are

interpreted as

• “R = 1 indicates a multicast address that embeds the address on the

RP. Then P must be set to 1, and consequently T must be set to 1,

• R = 0 indicates a multicast address that does not embed the address

of the RP

• P = 0 indicates a multicast address that is not assigned based on the

network prefix

• P = 1 indicates a multicast address that is assigned based on the

network prefix.

60

• T = 0 indicates a permanently assigned

• T = 1 indicates a non-permanent

Further, multicast is based on the scope of the 4-bit value of groups that

are listed as:

• reserved

• Interface-Local scope: Its scope is limited to a single interface on a

node and is only useful for loopback transmission of multicast.

• Link-Local scope: Its scope covers the same topological region as

the corresponding unicast scope.

• reserved

• Admin-Local scope: Its scope is the smallest scope that requires

administrative configuration, as it is not automatically derived from

physical connectivity or other non-multicast-related configurations.

• Site-Local scope: Its scope is limited to a single site.

• (unassigned)

• (unassigned)

• Organization-Local scope: Its scope is designed to span multiple

sites within a single organization.

• (unassigned)

• A (unassigned)

• B (unassigned)

• C (unassigned)

• D (unassigned)

• E Global scope: It does not have any boundary.

• F reserved

• Unassigned scopes are available for administrators to define

additional multicast regions”.

(Deering and Hinden 2006)

Within the reserved multicast address range from FF00:: to FF0F:: the following

addresses represent the scope of the nodes:

61

• “FF01::1—All Nodes within the node-local scope (its only for that

host)

• FF02::1—All Nodes on the local link (link-local scope).

• FF01::2—All Routers within the node-local scope

• FF02::2—All Routers on the link-local scope

• FF05::2—All Routers in the site (site-local scope)

• FF02::1:FFXX:XXXX—Solicited-Node (where XX:XXXX represents

the final 24 bits in the IPv6 address of a node)”

(Droms 2014).

3. Anycast: An address that typically represents a set of interfaces that belong

to various nodes. Anycast addresses are not syntactically distinguishable from

unicast addresses. An exception in the Anycast scope is that Multiple

interfaces can have a single unicast address assigned to them when they are

used for load sharing over multiple physical interfaces. The same is true when

multiple physical interfaces are treated as a single interface at the Internet

layer. Routers using unnumbered interfaces on point-to-point links are not

assigned IPv6 addresses, because the interfaces do not function as a source

or destination for IP datagrams (Deering and Hinden 2006).

4. Global unicast address: IPv6 Global Unicast Addresses are akin to IPv4

public addresses and serve as the IPv6 addresses used on the internet. They

are unique and routable, essential for global connectivity and crucial in the

realm of IoT. Assigned by IANA, these addresses encompass the entire range

of available IPv6 devices. The prefix for IPv6 Global Unicast Addresses is

2000::/3, where the high-level 3 bits are fixed as 001, allowing addresses

starting with hex digits 2 or 3 depending on the fourth-bit value (0010.. for

2000::/3 and 0011.. for 3000::/3) (Tajdini 2018).

5. Site-local unicast address: These addresses were originally intended for

intra-site addressing without requiring a global prefix. However, new

implementations must now treat this prefix as Global Unicast and should not

62

support its original special behaviour. Existing implementations and

deployments are allowed to continue using this prefix as they have been

(Deering and Hinden 2006).

6. Link-Local IPv6 Unicast Addresses: These addresses are intended for

addressing within a single link and are used primarily for tasks like automatic

address configuration and neighbour discovery, especially in the absence of

routers. Routers are prohibited from forwarding any packets with Link-Local

source or destination addresses to other links (Tajdini 2018).

2.8.2 A brief comparison of IPV4 vs IPv6 is shown in Table 6:

Table 7: IPv4 vs IPv6

Serial

No

Parameters Internet Protocol

Four

Internet Protocol Six

1 Version IPv4 IPv6

2 Address size 32 bits or 2 32 128 bits or 2 128

3 Notation Integer IP address

format. Four lots of

three-digit numbers,

separated by full

stops. Ex:

192.168.0.1

Hexadecimal format. Eight lots

of four-characters hexadecimal

numbers, separated by colons.

Ex: 2600:1600:5b3::4bd3

4 Loopback

address

127.0.0.1 ::1

5 Requires

address

translation

Network Address

Translation (NAT).

No

6 Packet

addressing

Unicast, Broadcast,

Multicast.

Unicast, Anycast, Multicast.

63

7 Address

configuration

Manual DHCP

Configuration

Default Autoconfiguration is

stateless. It also supports

stateful DHCPv6 Configuration

8 Header size Variable: 20 bytes and

can be increased up

to 60 bytes when

optional fields and

flags are added.

Fixed 40 bytes: The size of

separate extension headers

varies.

9 Header

Checksum

Yes No

10 Optional Extras Limited support for

options controls

Numerous extension headers

are available to enhance

routing, fragmenting, quality of

service, etc.

11 Privacy IP address masking to

hide the last eight bits

of an address

IP privacy extensions are used

for temporary addresses

12 Fragmentation Controlled by routers Controlled by the originator

13 Routing

efficiency

Controlled in headers Controlled in routing tables

14 Mobile support Manual assignment Default

2.9 IPv6 Header

Figure 7 provides a pictorial view of the IPv6 head structure comprises 8

fundamental fields essential for routing and delivering packets across networks.

These fields include the version, source and destination addresses, traffic class,

flow label, payload length, hop limit, and next header. Understanding the IPv6 field

format is crucial for managing and troubleshooting modern IP networks.

1. Version: It provides the Protocol version which is always IPv6 and its size is

4 bits with the 0110 binary sequence.

64

2. The Traffic Class: This field in IPv6 is 8 bits and indicates the priority of the

packet, aiding routers in traffic management. During congestion, routers

discard packets that have values indicating the lowest priority. Currently, only

4 bits are in use and corresponding values are from 0 to 7 meant for

controlling congestion traffic and likewise for values from 8 to 15 for

uncontrolled traffic like video or audio streaming. Initially, the source node

does the setting of priorities; however, in transmission, the routers can

change them (Tajdini 2018).

3. Flow Label: This field is of size 20 bits and used by the source to label packets

for handling special instances like non-default quality of service or real-time

service by intermediate IPv6 routers. Routers differentiate flows using the source

address, destination address, and flow label. Multiple flows can exist between a

source and a destination due to concurrent processes. For routers or hosts that do

not support flow label functionality, this field is set to 0. The source must also

specify the flow's lifetime when setting the flow label (CISCO 2006).

Figure 7: IPv6 header with optional Extension headers chain(CISCO 2006)

4. Payload Length: This 16-bit field is an unsigned integer informing routers

about the packet's payload size that includes upper-layer packet and

extension headers. The field is set to zero in case the payload exceeds the

65

size of 65,535 bytes, and the Hop-by-Hop options extension header in case

of the jumbo payload (Gont and LIU 2022).

5. Next Header: This 8-bit field is for the type and indication of the presence of

a forward extension header after the IPv6 header. In some cases, TCP or

UDP is specified as the protocol within upper-layer packets. (Tajdini 2018).

6. Hop Limit: It is like Time To Live (TTL) in the IPv4 version, determining the

number of intermediate nodes an IPv6 version packet can travel. Each

forwarding node decrements its value by one, and the packet is discarded if

it reaches 0. This mechanism prevents packets from getting stuck in an

infinite loop due to routing errors (CISCO 2006).

7. Source address: This field indicates the source of the packet that contains

a 128-bit IPv6 address (Gont and LIU 2022).

8. Destination address: This field indicates the original destination of the

packet that contains a 128-bit IPv6 address. All the nodes carried by this

packet go through this field to route the packet to the destination (Tajdini

2018).

9. Extension Headers: This field acts as a chain of next extension headers

associated with the packet, overcoming the limitations of the IPv4 option field.

It plays a significant role in the IPv6 architecture (CISCO 2006).

A sample packet that contains one or more extension headers should maintain the

recommended order and sometimes it can also contain zero headers which is given

below.

Table 8:IPv6 Header

1 Basic IPv6 Header -

2 Hop by Hop options 0

3
Destination options with routing information

60

4 Routing header 43

5 Fragmentation header 44

6 Authentication header 51

7
Encapsulation security payload header

50

8 Destination options 60

9 Mobility header 135

 No next header 59

66

Upper Layer
TCP

6

Upper Layer
TCP UDP

17

Upper Layer
TCP ICMPv6

58

2.9.1 Internet Control Message Protocol Version 6 (ICMPv6)

ICMPv6 serves a crucial role in network testing and diagnostics, enabling functions

like ping and traceroute to verify end-to-end connectivity and identify node errors

within the network. While ICMP can be disabled in IPv4 for security reasons, doing

so in IPv6 can severely impact network diagnostics and packet transmission

consistency (Deering and Conta 1998). Therefore, disabling ICMPv6 could lead to

significant network issues and disrupt the reliable flow of packet data. Threat

attackers take this service or utility as an advantage and exploit it to launch a deadly

attack by deploying command and control or by a simple script (Salih 2017). Error

messages and Information messages are the two categories present in ICMPv6

messages with their Type codes.

1. Error Message:

a. Destination unreachable -1

b. Packet too big-2

c. Time out-3

d. Parameter problem-4

e. Private experimentation-100

f. Private experimentation-101

g. Reserved for expansion of ICMPv6 message-127

2. Information message:

a. echo request-128

b. echo reply-129

(Davies and Mohacsi 2007).

As per RFC4890, ICMPv6 messages function differently on Firewalls and Routers,

and some of them are briefed below:

67

a. IPv4 consists of an address resolution protocol that converts a MAC address

to an IP address and a reverse resolution protocol that is quite the opposite,

i.e converts an IP address to a MAC address. This is not the same in IPv6,

and for such a similar kind of functionality, we have i.e. Neighbour Discovery

Protocol (NDP), Neighbour Advertisement (NA), and Neighbour Solicitation

(NS).

b. To determine node information, network prefix, default gateway, etc. in the

LAN Router Advertisement(RA) and Router Solicitation (RS).

c. Ping6 utility provides an Echo request and Echo reply.

d. Path Maximum Transmission Unit Discovery (PMTUD) provides the

information related to MTU size for communication.

e. IP multicast presence and absence can be determined through Multicast

Listener Discovery (MLD)

f. To find multicasting in routers, Multicast Router Discovery (MRD) is used.

g. Information about nodes among them is obtained using Node Information

Query (NIQ).

h. Secure Neighbour Discovery (SEND) provides secure communication

between neighbour devices like routers.

(Davies and Mohacsi 2007), (Deering and Conta 1998).

2.9.2 ICMPv6 vulnerabilities

Internet Control Message Protocol version 6 (ICMPv6) is an essential part of the IPv6

protocol suite, responsible for error messages and operational queries. Despite its

critical role in network operations, ICMPv6 is susceptible to various vulnerabilities that

can be exploited by attackers and some of them are provided below:

The Internet Assigned Numbers Authority (IANA) has established ICMPv6

parameters, categorizing ICMPv6 type numbers into two groups: error messages (0-

127) and informational messages (128-255) as provided in the 2.9.1 section. Each

type number is further defined with a sub-section of type code fields, as defined in

RFC 4443, and the parameters can be useful references for interpreting ICMPv6

anomalies (Davies and Mohácsi 2007). RFC 4443 reinforces the use of multicast

68

addressing (MA) and Multicast Listener Discovery (MLD), which are employed by

IPv6 devices like routers and switches to track IPv6 multicast listening nodes on the

link-local network. Similarly, Protocol Independent Multicast (PIM) is used by switches

to send multicast packets. Although IPv6 multicast messages are limited to the local

network prefix with a hop limit of 1, vulnerabilities exist where an attacker connected

to the local network could send spoofed packets to multicast groups, potentially

exploiting these groups to launch further attacks (Droms 2014), (M. Gupta and Conta

2006). Additionally, ICMPv6 error responses, such as "destination unreachable," are

not limited to the local network, posing a challenge for filtering malicious ICMPv6

attacks (Li et al. 2022).

Duplicate Address Detection(DAD) is used in IPv6 networks when a node is first

allocated an IPv6 address. The node sends an RS message to the all-routers

multicast group (ff02::2) to obtain an IPv6 prefix, then an NS message to the all-nodes

multicast group (ff02::1) to check this address is in use. A threat attacker exploits DAD

by sending spoofed NA responses to NS requests, falsely indicating the address is in

use, preventing any IPv6 addresses from being allocated on the network (CISCO-

2020). Router discovery is a neighbour discovery process where a node sends a RS

message to all router's multicast groups to obtain a RA response, receiving the

connected network prefix and other autoconfiguration options necessary for network

access. A Threat attacker can exploit this by deploying a malicious device to respond

with spoofing forcing nodes to communicate through a malicious route and potentially

launch DDoS and man-in-the-middle attacks (CISCO- 2012).

Threat attackers can exploit extension headers to craft new attack methods, using

ICMPv6 to generate response or error messages that mask these attacks

successfully evading from firewalls. ICMPv6 includes a parameter of type 137 and

code 0 to advertise a new IPv6 router address for routing redundancy if a router is

inaccessible. An attacker could spoof this redirect message, providing a fake gateway

address for nodes on the link-local network, enabling a man-in-the-middle replay

attack to capture packets and intercept sensitive information (Li et al. 2022).

Bahashwan highlights that DoS attacks are the most common cyber-attacks targeting

69

ICMPv6. These attacks often use specific ICMPv6 message numbers and codes, with

spoofed source addresses to hide the attacker's identity. One common method is

ICMP flooding, where hosts receive numerous echo requests (type 128, code 0),

forcing them to respond until network resources are exhausted, degrading

performance. Amplification can be achieved by sending ICMPv6 echo requests to a

multicast group address with the target's address spoofed as the source. Additionally,

IPv6 routing loop vulnerabilities can allow DDoS attacks, detectable using the 'Time

out' ICMPv6 message (Bahashwan, Anbar, and Hanshi 2020).

 In this chapter, sections 2.6 to 2.9.2 of the literature review offer comprehensive

insights into IPv6 and ICMPv6, covering their purposes, evolution, development, and

features that facilitate broader usage. However, alongside their benefits, these

technologies also exhibit vulnerabilities that can be exploited by attackers. To mitigate

these risks and maintain a secure environment, a proposed model is presented in the

next chapter to minimize the attacks especially related to ICMPv6 DDoS Echo-Reply

attacks.

70

 3 DESIGN OF ARTIFACT

This chapter addresses the design of the artifact aimed at bridging the gap identified

in Chapter 1, Section 1.2. Initially, it delves into the merits of Deep Neural Networks

(DNNs), offering a comprehensive understanding of how these networks contribute

to the proposed solution. Following this, the chapter elaborates on the model

architecture, and it concludes with a logical algorithm that is used to develop and

apply to the secondary datasets and primary datasets for expected results.

3.1 Attack Scenario

Assume an attacker from the internet attempts to bypass the firewall to establish a

connection. The attacker compromises systems in the E43 block of Figure 8(a)-ASN

and initiates a DDoS attack by deploying Command and Control (C2) servers to flood

the network with volumetric ICMPv6 packets. This flooding exhausts the server’s

resources, causing it to crash and malfunction in E42-DMZ. To counter this, a

Solution Model is proposed as depicted in Figure 8(b), which employs a Deep neural

network. This model integrates with CNN & LSTM as CNN and RNN &GRU as RNN

trained to identify and detect malicious packets of a DDoS attack. Genuine packets

are allowed to enter the enterprise network, while malicious packets identified by the

Stacking-Regression learning mechanism are dropped and further predict such

attacks in advance. This proposed model can be deployed in Medium to Large-scale

Enterprise systems.

71

Figure 8 (a): Attack Scenario Network

72

Figure 8 (b) Solution Model for ASN

73

3.2 Logical flow of a proposed model

Start
Pre-process

Datasets

Window

Figure 9: Logical diagram of the proposed Model

Figure 9 illustrates a Logical block diagram of the proposed Model. Specifically,

Models 1 and Model 2 are selected for scrutinizing the processed datasets, with a

focus on identifying ICMPv6 volumetric DDoS attacks. Following the application of

these techniques, the outputs from both models are amalgamated and input into a

regression model to enhance the efficacy of DDoS attack packet detection and

prediction.

3.2.1 Convolution Neural Networks(CNN)

The principle behind CNNs is inspired by the human visual system’s ability to process

and recognize visual patterns. CNNs are part of deep neural networks used for

74

processing and analyse large data like images and videos. They are highly efficient

for tasks like image recognition, object detection, image segmentation, etc. The key

principle of CNNs is the use of convolutional layers, which perform convolution

operations on the input data. Convolution involves sliding a small filter (also called a

kernel) over the input image and computing dot products between the filter and local

patches of the image. This operation enables the network to discover and identify

several features like edges, textures, and more complicated sequences.

A CNN should have at least one layer relating to convolution operations in its

architecture. CNNs are successful in learning local attributes. CNNs are highly fast

to run during training and conjecture due to shared kernels. CNNs use one-

dimensional to have minimum computational cost and good performance for simple

classification challenges (Ma, Zhou, and S. Wang 2019). CNN has a good

understanding of the sensory neuronal response field and shares weights that

successfully minimize the parameters of training, besides reducing the complication

of a network architecture model. The training of CNN mainly uses the forward

propagation algorithm to learn the connected layer weights, bias, and other

parameters (J. Chen et al. 2019). The structure of CNN mainly consists of the

following layers, which are briefly explained in Figure 10

 Figure 10: Illustrates a Simple CNN block

75

a. “Input layer: The CNN needs the network status i.e. a m×m array describing

the traffic of each link in a network containing m nodes. In addition, the Input

Layer will combine several network statuses in a time sequence to

demonstrate a trend of continuous network changes.

b. Convolution layer: It is a significant part of the entire CNN network layers.

Each input matrix in the Convolution Layer is the result of the previous output.

It can be calculated based on the computing formulae:-

Where Ym, n is the eigenvalue calculated by the network traffic matrix via

Convolution, and f is the ReLU or Ø (Sigmoid) activation function that is

defined as max(0,x), Xm+i,n+j,t which is newly entered matrix, or the result of

the last Convolution calculation. Fi,j,t and Br are filters. The learning method

here uses matrix multiplication and calculates based on each result of the

previous output to be input into the Convolution Layer. This calculation will

result in a linear relationship between the output and the input, but practically,

the occurrence of the attacks is not completely linear. Therefore, to make the

training model more perfect and accurate, it is necessary to adjust the

nonlinear excitation function. Based on the activation function, in case the

input is a positive value, then it is directly output. If the input is not a positive

value, the output is 0. The activation function is effective in solving the gradient

explosion and the gradient disappearance problem compared with the

excitation functions such as Sigmoid and tanh. Complex mathematical

operations such as indices greatly reduce the computational complexity and

greatly increase the speed of convergence.

c. Pooling layer: This layer is to remove the similarity and the excess of

overfitting. The matrix is divided into several rectangular regions, and in each

rectangular region, it selects the largest value as the output. The remaining

smaller values are rounded off, thus reducing the excessive feature

parameters and increasing the computing efficiency.

76

d. Non-Linearity (Activation): After each convolutional or pooling layer, a non-

linear activation function is applied elementwise to the output. ReLU (Rectified

Linear Unit) is a commonly used activation function in CNNs.

e. Fully connect layer: In this layer, after converting the Filter array of the

Convolution Layer into a one-dimensional matrix, the forward propagation

approach is used to calculate the relevant error value, update its weight value,

and output the result to the Output Layer.

f. Training and Backpropagation: CNNs are trained using backpropagation,

which involves iteratively adjusting the network’s biases and weights to reduce

the difference of predicted outputs and basic targets. This is usually

accomplished using flawless algorithms such as Stochastic Gradient Descent

(SGD).

g. Weight Sharing and Local Connectivity: CNNs utilize weight sharing and

local connectivity to minimize the number of attributes and create a network

efficient based on the computing. Weight sharing allows a single feature

detector (filter) to be used at multiple spatial positions, and local connectivity

ensures that each neuron present in the layer is connected to a modest region

of the earlier layer.

h. Hierarchical Representation: CNNs learn to represent features

hierarchically, starting from low-level features (e.g., edges, corners) and

gradually progressing to more complex and abstract features (e.g., object

parts, high-level structures).

i. Output layer: This layer is the output of a fully connected Layer that

distinguishes between the probability of attack and the probability of non-

attack based on the selection of the highest probability value in the Output

Layer thus using the predicted value of the CNN to complete the judgment of

attack detection”

(Y.-H. Chen et al. 2020).

3.2.1.a Merits of CNN

1. ”Spatial Hierarchy: CNNs use convolutional layers to process small,

localized regions of the input, capturing spatial hierarchies. This is critical for

77

jobs like image identification where local features are important. Convolutional

layers share weights across different parts of the input, significantly reducing

the number of parameters and computations required.

2. Translation Invariance: CNNs are designed to identify particular sequences

irrespective of their status in the visual field. This process known as translation

of invariance, is achieved through pooling layers that minimize the spatial

elements while preserving the significant features.

3. Feature Extraction: CNNs automatically learn and extract hierarchical

features from the input data, which are crucial for classification, object

detection, and other vision tasks. Lower layers might detect edges and

textures, while higher layers might detect shapes and objects.

4. Reduction of Parameters: Using convolution and pooling operations, CNNs

reduce the number of parameters compared to fully connected networks. This

makes training more efficient and reduces the risk of overfitting.

5. Handling Large Inputs: CNNs are well-suited for handling large inputs like

high-resolution images. The hierarchical structure allows them to break down

the complexity and focus on local patterns, making it computationally feasible

to process large images.

6. Strong Performance in Practice: CNNs have demonstrated superior

efficiency in a wide area of domains and relevant applications, including image

classification, and segmentation, They have become the de facto standard in

these domains.

7. Flexibility and Adaptability: CNN architectures can be adapted and

extended to various tasks beyond image recognition, such as video analysis,

natural language processing (with 1D convolutions), and even playing board

games.

8. Robustness to Variations: CNNs are robust to variations in the input, such

as changes in lighting, orientation, and partial occlusions. This robustness is

a key factor in their success in real-world applications.

9. End-to-end Learning: CNNs support perfect learning, i.e., they are capable

of learning to map raw input data directly to the desired output. This simplifies

the learning process and reduces the need for manual feature engineering.

78

10. Transfer Learning: Prior to training CNN models, they can be fine-tuned on

fresh tasks with limited data, leveraging the knowledge gained from large

datasets. This transfer learning capability accelerates training and improves

performance on related tasks”

(Mittal, K. Kumar, and Behal 2023).

Overall, the principle of CNNs is to automatically learn hierarchical and translation

invariant features from the input data, which makes them highly effective for tasks

involving huge data.

3.2.2 Long Short-Term Memory

Figure 11: LSTM Architecture (Alguliyev, Aliguliyev, and Abdullayeva 2019)

In Figure 11, there are three gates namely input, output, and forget which are the

regulatory gates for the information flow that is into and out in a cell which are

memorized over arbitrary time intervals. The important functionality of the LSTM cell

is to decide which value of the gate should be deleted or retained. For this, the forget

gate plays a role in information coming from a prior unknown state (ht-1) from the

current input (xt). On the combination of these values, it applies the σ function to get

the values between 0 and 1. Any information value closer to 0 will be dropped

otherwise it will be forwarded to the next step to process with the earlier cell state (ct-

1). The final result of (ht-1+xt) is passed through another σ and tan h activation

function respectively (Alshra’a, Farhat, and Seitz 2021).

79

3.2.3 Recurrent Neural Networks

In RNN, there are two types, one is a Feed-forward propagation, and the other is

feed-backward propagation or Bidirectional. RNN performs the same action for every

input data, whereas the output of the current input varies based on the earlier

calculation. Once it produces the output, it is then fed back into the recurrent network.

In Feed-forward RNN learns through the previous steps and produces the output as

an input to the after node in the unseen layer. The memory of nodes stores the

required information to be used for learning in future time steps. In a Bidirectional

RNN, it connects two unseen layers to run in opposite directions. This allows the

unseen layers to have information related to the previous and the next state (Nazih

et al. 2020).

Figure 12: Recurrent Neural Network (RNN) (Alguliyev, Aliguliyev, and

Abdullayeva 2019)

In theory, RNN operation can be illustrated as a memory for storing unbounded

history based on previously processed elements shown in Figure 12. This means that

at every point in time and instance, the stored history is used to predict the next output

from the process. For instance, if W indicates the weight of neurons relating unknown

state S. V indicates the weight of neurons relating to the unknown state S and the

output O. U indicates the weight of neurons relating the inputs X and the unknown

state S. Notice that all the 3 weights at any point in the process of the RNN operating

80

will have the same value but the values will be different in the case of Conventional

Neural Network. Because the same task is processed at each step with different input

attributes. This reduces the total number of attributes that RNN will learn. To revise

these weights, Back Propagation Through Time (BPTT) is to be used (Alguliyev,

Aliguliyev, and Abdullayeva 2019).

Simple example: C0 = John / June, C1 = France / French. These values are assigned

to C0 and C1. If John lived in France for a long time and could speak French fluently.

Who lived in France? John; Similarly, June can also speak French fluently as it is

her mother tongue. Whose mother tongue is French? June. Assigned values will

change based on the context, and those need to be retained or discarded

accordingly.

3.2.3.a Merits of RNN

RNN is an artificial neural network designed for processing sequential data.

1. The key principle behind RNNs is their ability to maintain a hidden state that

captures information about previous elements in a sequence and uses it to

process the current element. This hidden state acts as a form of memory that

allows RNNs to collect temporal dependencies and patterns in sequential

data.

2. The fundamental operation of an RNN involves iterating over a sequence of

inputs while updating the hidden state at each step.

3. This hidden state is passed along from one step to the next, allowing the

network to maintain information about previous inputs. Mathematically, the

unknown state at instance time step t is a function of the input at given

instance step t and the earlier unknown state: ht = f(ht − 1,xt) Where: ht is the

unknown state at given time step t. ht − 1 is the unknown state at time step t-

1 (earlier hidden state). xt is the input at instance step t.

4. RNNs can be used for various tasks related to sequential data, like natural

language processing (NLP), speech identification, music creation, video

analysis, and more. However, conventional RNNs have weaknesses in

81

capturing extended dependencies because of the vanishing gradient

problem, which can make them struggle with retaining information from

distant past time steps.

5. To address these limitations, more advanced RNN architectures have been

developed, such as LSTM networks and GRUs. These architectures

incorporate gating mechanisms that enable the network to control the flow of

information and gradients, making them better suited for capturing long-term

dependencies

(S. Sumathi and Lokesh 2021).

In summary, the principle underlying RNNs is their ability to process sequential data

by maintaining an unknown state that encodes information from earlier time steps,

allowing them to capture temporal patterns and dependencies.

3.2.4 Gated Recurrent Unit (GRU)

In RNN, a vanishing Gradient problem occurs when RNN starts with backpropagation

multiplying a tiny number by the weight values, which results in diminishing. To avoid

such issues, GRU is used. It has only two gates. Figure 13 illustrates the Architecture

of GRU.

Figure 13: GRU Architecture (I. Ahmad, Z. Wan, and A. Ahmad 2023).

82

The core function of a GRU is to maintain a hidden state vector, which stores

information about the sequence it has seen so far. The hidden state is updated at the

instance of the time step based on the present input and the earlier hidden state.

GRUs incorporate a gating mechanism that helps control the flow of information

through the network. This gating mechanism consists of two gates:

a A Reset Gate: Determines which information from the previous state should

be forgotten or reset.

b Update Gate: Controls how much of the new state is a blend of the old state

and the candidate's new state.

GRU is responsible for deciding which parts of the previous hidden state to forget

and which parts to update. It does this by considering the current input and the

earlier unknown state. If the reset gate value is close to 1, it means that the model

should mostly use the earlier unknown state. If it’s close to 0, it means that most

of the information should be replaced with the new input. The update gate helps

the model decide how much of the new candidate state to retain. A value close to

one implies retaining a lot of new information, while a value close to zero implies

relying more on the old state. Candidate New State: The candidate's new state is

computed based on the current input and the earlier unknown state, modified by

the reset gate. This candidate state is used to update the unknown state

(Alshra’a, Farhat, and Seitz 2021).

3.2.5 Ensemble Stacking

Advanced ensemble techniques enhance predictive performance by amalgamating

multiple machine-learning models. Stacking elevates ensemble learning by training

a meta-model, or second-level model, to predict based on the outputs of various base

models. It’s a versatile method enabling experimentation with different base models

and meta-models, empowering the construction of robust and highly accurate

machine learning models (Sayed et al. 2022).

The reason for opting for stacking in the proposed model is that, from Figure 8 at the

beginning of this chapter, if the detection accuracy of individual models is close to

83

each other or if any model has a lower score, stacking can be employed as it is a

powerful ensemble learning technique improves predictive performance by

combining the strengths of multiple models (S.Sumathi and Lokesh 2021). Wan

employed the Stacking method in the stock market by integrating TCN, CNN, LSTM,

and GRU classifiers into a stacked model, creating an ensemble learning approach.

Their study focused on utilizing CSI300 index stock market datasets with a primary

objective of minimizing the prediction error, specifically the Mean Absolute Error

(MAE). Their proposed model achieved an accuracy rate of 86.3% (Wan et al. 2022).

Sayed introduced a multi-classifier model with stacking ensemble deep neural

networks to discern different types of DDoS attacks, targeting to tackle prevalent

challenges in this domain. Their innovative hybrid model consists of CNN, LSTM,

and GRU architectures. The study demonstrates the effectiveness of the ensemble

technique in enhancing the performance of the model, particularly when evaluated

with extensive datasets like CIC-DDoS2019, achieving an impressive accuracy rate

of 89.4% (Sayed et al. 2022). Ali introduced an innovative ensemble approach based

on stacking, demonstrating its superior performance over the current contemporary

Network Intrusion Detection Systems (NIDS). His assessment encompasses diverse

attack scenarios, on a network topology crafted using the Graphical Network

Simulator-3 (GNS-3). Leveraging the CIC Flow Meter, they extracted key flow

features for each attack, subjecting them to comprehensive analysis. By employing

various machine learning approaches on the extracted traffic dataset features, with

their respective performances. Notably, his findings reveal that the stacking-based

ensemble approach emerges as the most promising accuracy score of 98.24% (Ali

et al. 2023). The stacking mechanism is briefly explained with a pictorial block

diagram in Figure 14.

84

Datasets

Processing

+

Normalization

Training Data (20%)

+

Test Data (80%)

Meta Learner

Ensemble Stacking

Detection and

Prediction of

DDoS Attacks

Figure 14: Pictorial block diagram of Stacking

1. “Train Base Learners: Multiple base learners are trained on the same

dataset. These can be different types of models (e.g., ML, neural networks,

both) or the same type of model with different hyperparameters.

2. Generate Predictions: Once trained, each base learner makes predictions

on the training data (or on a validation set if using cross-validation). These

predictions become the input features for the next step.

3. Train Meta-Learner: The meta-learner is trained taking the output of the base

learners as its input values treating it as features and the original target

variable as the target. The meta-learner learns how to conglomerate the

predictions from the base learners to improve overall performance”.

(Mohammed and Kora 2023)

3.2.4.a Merits of Stacking

Stacking is an ensemble learning technique that combines multiple models for better

predictive performance. Merits of stacking are given below:

85

1. Increased accuracy, model diversity, and handling of heterogeneous data.

2. Stacking reduces overfitting by combining models with different sources of

error.

3. Flexibility in model selection allows experimenting with various algorithms

based on dataset characteristics.

4. Stacking adapts well to model changes, enabling continuous improvement

with new and improved models.

5. It excels in capturing complex, nonlinear relationships in data, making it

effective for intricate datasets.

6. Stacking improves robustness by reducing the impact of outliers or noisy data

(Zhao et al. 2022).

3.3 Model-1 and Model-2

Issa has proposed a model related to a combination of CNN and LSTM having 7

layers indicating high quality of detecting DDoS attacks. Initially, he took CNN and

Maxpooloing repeating twice and placed the LSTM layer deriving to an output layer

using the SoftMax activation function. He assigned Filter = 10 Kernel size =3 and

strides = 1 using ReLu as an activation function for the internal layers. He employed

this combination neural network on NSL-KDD (IPv4 data) and achieved 99.20%

accuracy. Taking his research work has a good support, in the current research,

Model-1 was implemented with the same layers with different values and different

activation functions and received a decent result of up to 80% accuracy using on

different datasets including NSL-KDD. The combination of this neural network

retained the same, however, changed the layer position and its values with different

activation functions. On receiving good results and taking this as a good inspiration

a similar kind of combination i.e. RNN with GRU is designed and tried using the same

datasets achieving 84% of accuracy. Figure 15 a and b illustrates Model-1 and

Model-2.

86

Figure 15-(a) Model-1 Block diagram

Figure 15-(b) Model 2 Block diagram

Normally in each model Input Layer (IPL) and output layer (OPL) are present. In

between there exist hidden layers of the model designed by arranging them

depending upon the chosen algorithms and respective activation function Relu at the

required layer. The 14 parameters based on the datasets used are the traffic packet

parameters meant to improvise the model’s output. At any given time, t, the present

87

input is a combination of IPL(t) and IPL(t-1). The output at any given time is carried

back to the network to improvise the output.

1. The model-1 architecture starts with an initial input layer consisting of

a CNN with a kernel filter size of 128, using the ReLU activation

function. Following this, an LSTM layer is employed with 100 filters,

maintaining sequential order. The third layer comprises a MaxPooling

layer and a one-dimensional convolutional layer with a pooling size of

1. Subsequently, repeating these CNN and Maxpooling for the next 3

times with CNN decreasing to 32, 16 and 8 values at each layer

reshaping and focusing on the parameter’s filtration, then followed to

Flatten layer that reshapes the tensor into a vector, facilitating

seamless transition between connected layers, particularly interfacing

with two Dense layers paired with two Dropout layers alternatively.

Dropout regularization is then applied, randomly deactivating 10% of

neurons in a layer during training to mitigate overfitting. The 3rd Dense

layer designed for classification tasks act as output layer typically

undergoes a sigmoid activation function, generating probabilities for

each class, such as ”Normal” and ”Attack.”

2. The model-2 architecture starts with an initial input layer consisting of

a RNN with a kernel filter size of 128, utilizing the ReLU activation

function. Following this, a GRU layer relates to 64 filters, maintaining

sequential order. The third layer comprises a MaxPooling layer with a

pooling size of 1. Subsequently, 2 flattened layer reshapes the tensor

into a vector, facilitating a seamless transition between connected

layers, particularly interfacing with the 4 Dropout layers and 5 Dense

layers alternatively pairing, deactivating 10% of neurons in a layer

during training to mitigate overfitting. The final layer is a dense layer

designed for classification tasks. The output of this dense layer typically

undergoes a SoftMax activation function, generating probabilities for

each class, such as ”Normal” and ”Attack.”

88

3.4 Models Learning

During the training phase, the weights were adjusted using the forward propagation

in Model 1 and the back-propagation technique in Model 2. This process utilized the

Sparse Categorical Cross-entropy or Binary Cross-entropy loss function to calculate

error loss, which was then propagated across the network. All intermediate nodes

between layers were interconnected, contributing their error values to the forward

propagation. The entire network was enveloped by both forward and backward

propagation mechanisms in respective models. For weight updating, the stochastic

gradient descent optimizer for Adaptive Moment Estimation (ADAM) (Reyad, Sarhan,

and Arafa 2023) was employed with a learning rate of 0.01, and parameter tuning set

a minimum delta of 0.000001. To ensure effective training, the networks underwent

5 epochs, where each epoch involved one pass forward and backward of all data in

the training set, or a comprehensive training cycle with a batch size of 5000. This

iterative process enabled the network to gradually refine its weights and improve its

performance over each epoch.

3.5 ES-Model Architecture

In this proposed model, Stacking is an ensemble learning technique that uses

Logistic Regression as the meta-learner that combines predictions from various

classifier models during the learning process, creating an adaptive mechanism i.e

uses the predictions of base learners as input and then makes the final prediction.

In the training phase, the 3-fold cross-validation approach is followed so that the base

learners are trained on 2 folds of training data while the prediction is made on the 3rd

fold, and this process is iterated to obtain the prediction corresponding to the entire

training set. This synthesis of classifications from multiple models enhances the

overall predictive accuracy by leveraging the diverse strengths of individual learners,

ultimately resulting in more precise predictions. Figure 16 illustrates the Architecture

of the ES-Model.

89

Figure 16: ES-Model Architecture

1. CNN: A CNN should have at least one of its layers involving convolution

2. operations. CNN is effective for learning local features. CNN is relatively fast

to run during training and inference due to shared kernels. Mostly One-

dimensional CNNs are suggested instead of two-dimensional convolution, as

they have low computational cost and good performance for simple

classification problems.

3. LSTM: The primary function of LSTM is to effectively learn from sequences

by maintaining and updating information over extended periods. It has 3

gates, an Input gate to decide which values should be updated and added to

the cell state. Forget gate to controls which information from the cell state

should be forgotten or removed and the Output gate to determines what part

of the cell state should be used to produce the output at the current time step.

4. RNN: It encompasses two key architectures: feedforward and bidirectional

propagation. RNNs process data inputs iteratively, with outputs relying on past

computations. In feed-forward RNNs, learning progresses sequentially, with

each output feeding into the subsequent hidden layer node, retaining essential

90

information for future tasks. Conversely, bidirectional RNNs employ two

hidden layers operating in opposing directions, accessing both preceding and

succeeding states, thus enriching hidden layers with contextual information.

Computational processes involve input vectors guided by equations,

activation functions, and adjustments to weights via backpropagation. Despite

their strengths, RNNs face challenges like the vanishing gradient problem,

stemming from diminishing weight updates over time.

5. GRU: It stands as a formidable asset in handling sequential data tasks like

language modelling, speech recognition, and time series prediction. At its

core, it maintains a hidden state vector that evolves with each time step,

influenced by both the present input and the preceding state. Key to its

functionality is two gating mechanisms: the reset gate, which determines what

to discard from the prior state, and the update gate, regulating the infusion of

fresh state information. These gates strike a delicate equilibrium between

assimilating new data and retaining pertinent historical context, effectively

addressing the challenge of capturing distant dependencies while mitigating

the vanishing gradient predicament.

6. MaxPooling Layers: Max pooling and average pooling are common

techniques used to down-sample the feature maps. This helps reduce

computational complexity and enhances the model’s ability to recognize

important features.

7. Flatten: The flattened vector effectively preserves the relevant features and

provides a continuous input for the subsequent layers of the neural network.

8. Dense layers: These are associated with the connections between neurons

in the fully connected layers. These weights determine the strength of the link

between neurons and are discovered during training to map input features to

the output predictions.

9. Dropout: It is a process of ignoring certain nodes in a layer at random during

training. A dropout is a regular approach that avoids overfitting by assuring

that no neurons are co-reliant with one another.

10. Kernal or Filters: It is a key parameter that is the weight of a small matrix

employed across the data related to input to extract attributes in each layer or

91

the architecture. Each Kernal learns to detect a specific pattern or feature in

the input data.

11. Biases: Each neuron (or feature map) typically has an associated bias term.

These bias terms are added to the weighted sum of inputs before passing

through an activation function.

12. Adam: It is derived from stochastic gradient descent (SGD) that combines

ideas from RMSprop (Root Mean Square Propagation) and momentum. It is

abbreviated as Adaptive Moment Estimation which is a flawless technique and

highly known as an optimization technique mostly used in optimizing machine

learning models, specifically used in ML and deep learning applications.

13. Rectified Linear Unit (ReLu): It is an activation function defined as

f(x)=max(0,x) which means it returns “0” for any negative input value and

returns the self-input value for any positive input. Mathematically, it’s a linear

function where the output is linear for positive values and “0” for negative

values.

14. Sigmoid: It is an activation function, often denoted as σ(x), and represents a

mathematical notation that derives any real-valued number to a value range

of zero and one. In the context of artificial intelligence. and neural networks,

the σ function is commonly used as an activation function.

The two outputs of the base layers in the ES-Model are fed to the Meta learner by a

stacking technique for better predictive performance. The main advantages of

stacking are to increase accuracy, model diversity, and handle heterogeneous data.

It reduces overfitting by combining models with different sources of error. It provides

flexibility in model selection and allows experimenting with various algorithms based

on dataset characteristics. Stacking adapts well to model changes, enabling

continuous improvement with new and improved models. It excels in capturing

complex, nonlinear relationships in data, making it effective for intricate datasets and

improving robustness by reducing the impact of outliers or noisy data.

92

3.5.1 Reason for selection of LSTM :

Rationale Behind Choosing the Model Combination, especially the LSTM (Long

Short-Term Memory) model, was driven by the fundamental characteristics of the

dataset and the nature of the research problem, which involves sequential data and

temporal dependencies. Several factors were taken into consideration. Some of

them are:

• Nature of the Data – Temporal and Sequential Patterns: The dataset

comprises sequence-dependent features, where the order and timing of data

points are crucial for accurate prediction or classification, a kind of continuous

flow of packets. Traditional machine learning models, such as Random

Forests or Support Vector Machines, treat each instance independently and

fail to capture the underlying temporal correlations that may significantly

influence outcomes.

• Model Capability – Handling Long-Term Dependencies: LSTM networks

are a specialized type of Recurrent Neural Network (RNN) designed to retain

information over long sequences. Unlike basic RNNs, LSTMs effectively

mitigate the vanishing gradient problem and are capable of learning long-term

dependencies through their gating mechanisms. This property aligns well with

the problem at hand, where past events or feature states can influence future

behaviour over a span of time.

• Comparative Evaluation – Justification Over Alternatives: From the

research study, alternative architectures such as traditional RNNs, GRUs

(Gated Recurrent Units), and CNNs (Convolutional Neural Networks) were

considered. While GRUs offered a simplified alternative to LSTMs with

comparable performance in some tasks, preliminary evaluations showed that

LSTM slightly outperformed GRU in capturing nuanced temporal

dependencies in this particular dataset. CNNs, although effective in pattern

recognition, lacked the sequential memory needed for this task. Based on

these points a novel combination CNN with LSTM and RNN with GRU

architecture was designed.

93

• Research Integrity – Theoretical and Empirical Support: The choice of

LSTM is supported by a substantial body of literature where similar sequence

modelling tasks have successfully leveraged LSTM networks. Additionally,

empirical validation through experiments on this dataset confirmed the

model’s robustness and superior performance compared to non-sequential

models.

• Compatibility with Analytical Framework – Interpretability Tools: The

LSTM model was integrated into a broader interpretability framework using

SHAP, LIME, and permutation importance. Although neural networks are often

criticized for their "black-box" nature, the use of these interpretability

techniques ensured the model remained transparent and aligned with the

principles of explainable AI, allowing for a clear understanding of which

features influenced predictions over time.

3.6 Algorithms

===

Using Deep Learning Neural Network feature list trained and tested for CNN and

LSTM using MLP :

Input packets : Packet traffic / flow Output packets : Good Packets Main key process

of the technique:

===

CNN and LSTM

===

1:Load dataset

2: Split dataset into 80% training and 20% testing

3: T rain data ← dataset[0 : 80%]

4: T est data ← dataset[80% :]

5: Xtrain, Ytrain ← Train data

6: Xtest, Ytest ← Test data

7: while Batch = 5000 and Epoch = 5 do

8: Conv1D layer

9: LSTM layer

10: for weights in hidden layers do

11: MaxPooling1D

94

12: Flatten

13: Activation function: ReLU

14: Dense layer

15: Apply Dropout

16: if layer is final output layer then

17: Activation function: Sigmoid (σ)

18: end if

19: end for

20: Optimization function: Adam

21: end while

22: CNN MLP ← Final output

===

RNN and GRU

===

1: Split dataset into 80% training and 20% testing

2: Train data ← dataset[0 : 80%]

3: Test data ← dataset[80% :]

4: Xtrain, Ytrain ← T rain data

5: Xtest, Ytest ← T est data

6: while Batch = 5000 and Epoch = 5 do

7: Apply SimpleRNN layer

8: for weights in hidden layers do

9: Apply MaxPooling1D

10: Apply GRU layer

11: Apply Dense layer

12: if layer is final output layer then

13: Apply Activation function: softmax

14: end if

15: end for

16: Set Optimization function: Adam

17: end while

18: RNN MLP ← Final output

===

Stacking

===

1: Input: CNN-MLP, RNN-MLP

2: Estimator List ← {(CNN-MLP, classifier), (RNN-MLP, regressor)}

3: Stack Model ← StackingClassifier(Estimator List)

4: Logistic regressor = Stackmodel

5: Prediction:

95

6 : Ytrain pred ← Stack Model (Xtrain)

===

The above algorithm can be mathematically explained based on the proposed

architectures and the ensemble stacking approach model.

1. Data Representation:

Assume the input network traffic data is represented as a sequence of features

over time. Let X be the input data, where each instance xi∈X is a sequence of T

time steps, and each time step has F features. Thus, the input data can be

represented as a 3D tensor of shape (N,T,F), where N is the number of samples.

2. Model 1: CNN-LSTM

This model combines Convolutional Neural Networks (CNNs) and Long Short-

Term Memory (LSTM) networks to capture both spatial and temporal patterns in

the network traffic data.

• Convolutional Layers: The 1D convolutional layers extract local patterns

from the input sequence. For a given input sequence the output of

a 1D convolutional layer with K filters of size w can be represented as:

where is the activation of the j-th filter at time step t in the l-th layer,

are the weights of the i-th element of the j-th filter in the l-th layer, is the

bias of the j-th filter in the l-th layer, and σ is the activation function (e.g.,

ReLU). The model has multiple such convolutional layers with varying

numbers of filters (64, 32, 16, 8) and a fixed kernel size of 2.

• LSTM Layer: The LSTM layer processes the temporal dependencies in the

features extracted by the CNN. An LSTM unit at time step t takes the input

ht (output from the previous layer) and the previous hidden state ct−1 and

ht−1 to compute the current hidden state ht and cell state ct through a series

of gates:

96

where W are weight matrices, b are bias vectors, σg is the sigmoid function,

tanh is the hyperbolic tangent function, and ⊙ denotes element-wise

multiplication. The model uses an LSTM layer with 100 units. The

return_sequences=True argument indicates that the LSTM outputs a

sequence of hidden states for each time step, which is then processed by

the subsequent MaxPooling layer.

• MaxPooling Layers: The MaxPooling layers downsample the feature

maps, reducing dimensionality and providing translational invariance. For a

1D input sequence s, the output of a MaxPooling layer with pool size p is:

The model uses multiple MaxPooling1D layers with a pool size of 1, which

in practice doesn't perform downsampling but might be used for

architectural consistency or as a placeholder.

• Flatten Layer: The Flatten layer transforms the multi-dimensional output of

the convolutional and pooling layers into a 1D vector.

• Dense Layers (Fully Connected Layers): These layers perform linear

transformations followed by a non-linear activation function. For an input

vector x, a dense layer with m neurons and activation function σ computes

the output vector as: .

• Dropout Layers: Dropout layers randomly set a fraction (e.g., 0.2) of input

units to 0 during training to prevent overfitting.

• Output Layer: The final dense layer with a sigmoid activation function

outputs a probability score between 0 and 1, representing the likelihood of

97

the input traffic being a DDoS attack (1) or normal traffic (0).

where z is the output of the previous dense layer, w and b are the weights

and bias of the output layer, and σ is the sigmoid function:

• Loss Function and Optimizer: The model is compiled with binary cross-

entropy loss, which is suitable for binary classification problems:

 where y is the true label (0 or 1) and is the

predicted probability. The Adam optimizer is used to update the model's

weights during training to minimize this loss.

3. Model 2: RNN-GRU

This model utilizes a combination of SimpleRNN and Gated Recurrent Unit

(GRU) layers to capture temporal dependencies.

• SimpleRNN Layer: A SimpleRNN layer computes the hidden state at

time step t as: where xt is the input at time step

 is the previous hidden state, are weight matrices, is the bias

vector, and is the activation function (ReLU in this case). The model uses

a SimpleRNN layer with 128 units.

• GRU Layer: The GRU is a more sophisticated recurrent unit with update

and reset gates that help in capturing long-range dependencies more

effectively than SimpleRNN. The computations within a GRU unit are:

The model uses a GRU layer with 64 units.

• The rest of the layers (MaxPooling1D, Flatten, Dropout, Dense with ReLU,

and the final Dense with sigmoid) function similarly to those in Model 1. The

model is also compiled with binary cross-entropy loss and the Adam

optimizer.

98

4. Ensemble Stacking

Ensemble stacking combines the predictions of multiple base models to improve

overall performance. In this case, the base models are a CNN-LSTM model

(represented by the CNN function), an RNN-GRU model (represented by the RNN

function), and a Logistic Regression classifier.

• Base Models: Let M1(X), M2(X), and M3(X) represent the prediction

outputs (probabilities for DDoS attack) of Model 1 (CNN-LSTM), Model 2

(RNN-GRU), and Model 3 (Logistic Regression) for a given input X.

• Meta-Learner: The stacking approach involves training a meta-learner (in

this case, implicitly suggested but not explicitly defined in the provided

snippet as a separate trainable model) on the predictions of the base

models. A common approach is to use a simple model like Logistic

Regression as the meta-learner.

• Prediction with Stacking: For a new input x, the prediction process

involves:

o Obtaining predictions from each base model:

.

o Combining these predictions into a new feature vector:

.

o Feeding this feature vector z to the meta-learner :

 If the meta-learner is a Logistic Regression model,

its prediction would be: where

 are the weights and b is the bias learned by the meta-learner

during training.

In summary, DDoS detection is achieved through the following

mathematical processes:

1. Feature Extraction: CNN layers in Model 1 extract spatial features from

the time series network traffic data.

99

2. Temporal Dependency Modeling: LSTM layers in Model 1 and RNN/GRU

layers in Model 2 learn long-range temporal dependencies in the extracted

features or the raw input data.

3. Dimensionality Reduction and Abstraction: MaxPooling and Flatten

layers reduce the dimensionality of the feature maps and prepare them for

fully connected layers.

4. Classification: Dense layers learn complex non-linear relationships

between the extracted features and the target class (DDoS or normal), with

the final sigmoid activation providing a probability of a DDoS attack.

5. Regularization: Dropout layers help prevent overfitting by randomly

dropping out neurons during training.

6. Ensemble Aggregation: Ensemble stacking combines the predictions of

multiple diverse models (CNN-LSTM, RNN-GRU, and Logistic Regression)

using a meta-learner to produce a more robust and accurate final prediction.

The meta-learner learns the optimal way to weigh or combine the individual

model predictions.

The entire process involves learning the optimal weights and biases of all the

layers in each model through backpropagation and optimization algorithms like

Adam, based on a labeled training dataset of network traffic. The goal is to train

models that can accurately map input network traffic patterns to the probability of

it being a DDoS attack.

3.7 Implementation Specifications:

The algorithm developed for the proposed model was implemented using Python on

an HP laptop with an i7 processor, 64 GB RAM, and primarily using the T4 GPU

runtime of Google Colab. Key modules such as Scikit-learn, Keras, and TensorFlow

were applied. Model-1 consisted of a base classifier with 15 layers and an output

layer, while Model-2 consisted of a base classifier with 14 layers and an output layer,

where both models used the Adam optimizer. Each model was trained with 5 epochs

with a batch equal of 5000. The outputs from these models were then used as inputs

for an ensemble stacking meta-classifier, employing a regression classifier with

cross-validation up to 3 folds, resulting in promising final predictions. Detailed

100

information about the datasets, experiments, and validation is discussed in the

following chapters.

3.8 Handling New and Unseen Networks:

Handling New and Unseen Attacks

A key challenge in real-world deployment of detection of DDoS attacks is their ability

to generalize to new or unseen types of attacks. In this context, the proposed

system's performance on such attacks would depend on several factors, including

the diversity of the training data, the robustness of the learning algorithm, and the

system's architecture.

While the model is primarily trained on known attack categories from the training set,

it incorporates mechanisms that enhance generalization:

• Feature-based generalization: The use of high-level abstracted features

(especially those with high importance across interpretability methods such

as SHAP, LIME, and permutation importance) increases the likelihood that the

system can recognize patterns indicative of anomalous behaviour, even if the

specific attack vector is novel. (The discussion about this point is elaborated

in Chapter 5 Experiments under Phase 4, which is mainly focused on the

proposed model behaviour based on the results obtained).

• Anomaly detection capability: Though the system is primarily a supervised

classifier, additional mechanisms (e.g., thresholding prediction confidence,

monitoring rare feature patterns) can be integrated to flag low-confidence or

unfamiliar inputs as potential anomalies, which can then trigger further

investigation. This rare feature pattern investigation is outside the scope of

this research and can be extended for future research.

3.9 Responding to Attacks Not Seen During Training:

For attacks that the model has not encountered during training (zero-day or zero-

shot attacks), the system is able to respond appropriately. This research is focused

mainly on detection of DDoS attack and other attacks is outside the scope of this

research and can be extended for future research.

101

3.10 Handling Concept Drift:

In dynamic environments, data distributions may shift due to changes in network

behaviour, user activity, or emerging attack vectors, this phenomenon is referred to

as concept drift. The system addresses concept drift through the following strategies:

• Monitoring model performance over time: By evaluating metrics (e.g.,

precision, recall, F1-score) on recent traffic data in a sliding window, the

system can detect performance degradation that may indicate concept drift.

• Incremental or periodic retraining: Using new labelled data or pseudo-

labeled data from high-confidence predictions, the model can be updated

regularly. This allows it to adapt to evolving patterns in both normal and

malicious traffic.

• TimeSeries-aware model validation: The use of TimeSeriesSplit during

model evaluation and tuning provides better robustness to temporal shifts,

making the system more resilient to changes in traffic over time, which is

implemented in Chapter 5, Experiments Phase 4, and justified through results.

Chapter 3 presents the design artifact of the proposed model, detailing each

component block along with the mathematical formulations used to classify network

traffic as benign or malicious for DDoS detection. It includes a step-by-step

representation of the model’s workflow using algorithmic notation and explains the

rationale behind the deep neural network combination. Additionally, the chapter

outlines strategies for handling new and previously unseen traffic, ensuring

adaptability to evolving threat patterns.

102

 4 DATASETS

This chapter discusses the datasets used in this research, highlighting their

importance in providing empirical evidence to support hypotheses, validate models,

and draw conclusions. Datasets, being structured collections of data, are essential

for analysis and research across various fields. The dataset consists of network traffic

recordings obtained from previous research endeavours aligned with the objectives

of this proposal. These datasets, widely disseminated by diverse institutions,

research groups, and relevant entities, have been made publicly accessible, thereby

enabling contemporary researchers to incorporate them into ongoing projects. It is

worth noting that a majority of these datasets are specifically associated with IPv4.

Organizations and institutes use datasets from real-time attacks for research to find

mitigating solutions, while others generate datasets to address identified research

gaps. They extend their services by openly providing these datasets, allowing

researchers to perform similar experiments, validate their models, and draw

conclusions based on the results. Below is a list of some of these organizations and

a summary of their contributions.

1. The Centre for Applied Internet Data Analysis (CAIDA) was established in

1997 and administers network research and develops research groups to support

huge data gathering, maintenance, and data sharing to the scientific research

groups. It is an independent research group and analysis centre based at San Diego

Supercomputer Centre, University of California. Its main focus areas are

Measurement & Infrastructure, Research, Analysis and Data Collection. CAIDA

Dataset 2007 is mainly used for DDoS and intrusion detection projects that were

used earlier and hosted for new research projects and the page was updated in 2022.

Summary CAIDA can be found at (CAIDA 2022).

2. CIC, based at the University of New Brunswick, is a leading Canadian hub for

cybersecurity. Focused on innovation, disruptive technology, and groundbreaking

research, the institute explores diverse domains, including big security data

analytics, visualization, analysis, risk management, intrusion detection, malware

103

analysis, and more. It has various datasets like CIC-DDoS2019, ISCXIDS2012, NSL-

KDD, CIC-IDS2017, and CIC-IDS2018, addressing different cybersecurity

challenges such as intrusion detection and DDoS attacks. A summary of CIC can be

found at (CIC 2021).

3. MAWI Lab, established and managed by Dr. Kensuke Fukuda, is primarily

situated in Tokyo, Japan. The lab is dedicated to curating datasets focused on

Distributed Denial of Service (DDoS) anomalies, specifically those associated with

packet features. These datasets categorize anomalies into distinct labels, including

anomalous, suspicious, notice, and benign. The lab diligently and consistently

gathers data from researchers to contribute to ongoing research efforts in the field.

A summary of MAWI Lab can be found at (MAWI et al. 2010).

4. The KDD Cup 1999 Data set, created for the Third International Knowledge

Discovery and Data Mining Tools Competition, is publicly hosted and archived by the

University of California, Irvine. Designed in 1999, the dataset aimed to facilitate the

development of network intrusion detectorspredictive models capable of

differentiating between malicious intrusions or attacks and normal connections.

Simulated in a military network environment, the dataset provides a standard set of

auditable data, featuring a diverse range of intrusions. Since its inception,

researchers have widely utilized this dataset in various projects to assess and refine

their proposed techniques (KDDCup October 28, 1999).

5. The University of MIT’s Lincoln Laboratory R&D openly hosts a diverse array

of DARPA datasets, featuring a substantial collection of archived data. These

datasets are made readily available to emerging researchers, enabling them to

assess and refine their techniques. By utilizing these datasets, researchers can

effectively evaluate the suitability of their projects related to traffic flow, specifically

tailored to various attack scenarios. A summary of DARPA can be found at (DARPA

July 2000).

Below are some of the researchers who have used the datasets from the above

Organizations / Institutes for their research. Cheng et al. utilized CAIDA’s ”DDoS

104

Attack 2007” dataset, employing SVM, SMKL, and GMKL to enhance DDoS attack

detection using a novel method ”Optimized Generalized Multiple Kernel Learning”

thus achieving 86.2% accuracy in distinguishing attack flow from normal traffic

(Cheng et al. 2019). Omer Kasim introduced an innovative approach for detecting

Distributed Denial of Service (DDoS) attacks by leveraging Deep Learning and

Autoencoder Support Vector Machine (AE SVM) techniques. The evaluation of his

proposed method involved utilizing the CICIDS and NSL-KDD datasets. His

approach demonstrated a high accuracy of 99.1% (Omer 2020). Laurens D’hooge

and his team presented a study titled ”Inter-data Set Generalization Strength of

Supervised Machine Learning Methods for Intrusion Detection,” which explores the

assessment of generalization capabilities of inter-dataset using supervised ML

methods in ID. The study specifically utilizes the CIC-IDS2017 and CSE-CIC-

IDS2018 data sets. The research involved the application of a varied range of

algorithms, where Support Vector Machine (SVM) yielded 90% accuracy during their

evaluation (D’hooge et al. 2020). Kurniabudi Stiawan introduced a novel approach

for Anomaly Detection by employing Data Set Feature Analysis with Information

Gain, specifically using the CICIDS-2017 dataset. Focusing on substantial features

within extensive network traffic, their analysis significantly enhances the accuracy of

anomaly detection They evaluated their experiments using Random Forest, J48

classifier achieving 99.86 and 99.87 accuracy rates respectively (Stiawan et al.

2020). Jing has proposed a novel approach for countering DDoS flooding attacks

through ”Network traffic fusion and analysis” using a Chinese Remainder Theorem-

based Reversible Sketch (CRT-RS) and Modified Multi-chart Cumulative Sum (MM-

CUSUM) applied to the WIDE Internet (MAWI) datasets -2015050, 20150304, and

CICIDS2017. In their pursuit of heightened accuracy, they conducted additional

experiments employing Multi-scale Principal Component Analysis (MSPCA) and

information theory-based detection methods thus resulting in 79.36 percent accuracy

on comparison (Jing et al. 2019). Ahmed Issa introduced an innovative deep-learning

classification approach by combining two widely used algorithms, CNN and LSTM.

The model was evaluated using the NSL-KDD dataset achieving an impressive

accuracy rate of 99.20% (Issa and Albayrak 2023). Ieracitano introduced an

innovative intrusion detection approach, combining statistical analysis with Auto-

105

encoder (AE) technology. In their study, they conducted a comparative analysis

against LSTM and RNN techniques. Their experiments were carried out on the NSL-

KDD dataset resulting in 84.21%, 87% accuracy representing binary classification

and multi-classification respectively (Ieracitano et al. 2020). Wesam introduced a

novel methodology named Clustering Using Representative (CURE), which

underwent comprehensive evaluation through comparisons with alternative methods

such as SVM, Fuzzy Estimator, Fuzzy Logic, Growing Hierarchical SOM (GHSOM),

and k-means. The assessment utilized DARPA2000, CAIDA2007, and CAIDA2008

datasets, demonstrating an impressive accuracy rate of 97.25% specifically when

applied to DARPA2000 datasets (Bhaya and EbadyManaa 2017). Besides the

discussed datasets, further datasets that were used by different researchers are

briefly provided in a tabular form shown in Table 7 (Yang et al. 2022).

Table 9: Review of Datasets Summary (Yang et al. 2022)

106

4.1 Secondary Datasets

Initially, secondary datasets, derived from existing literature, were utilized. These

secondary datasets provided a foundational basis for the research. The details of

these datasets including their sizes, sources, etc. are provided.

4.1.1 Sain Malaysian Dataset

Omar Elejila generated ICMPv6 datasets based on the network topology illustrated

in Figure 16, serving as the foundational framework for his research. The data

generation process extended over a period of 2 hours, capturing network traffic

(Figure 17), and resulting in a dataset size of 15.8 MB.

A subset of this traffic, presented as a 2.8 MB Excel sheet, was already present as

training and testing datasets in the form of .csv files. These files consist of 11 features

outlined in Table 8 (Elejla et al. 2019), each provided with a description. Both

Datasets consist same 11 features where the “training.csv” file was utilized as

an 80:20 train-test split ratio and employed in the experiments. These data sets were

pre-processed where an additional column titled” Class” was added. This column

categorizes the network traffic as either” NORMAL” or ”ATTACK,” providing on the

whole classification aspect of the datasets (Elejla et al. 2019).

Table 10: Feature list of Sain Malaysian University datasets (Elejla et
al. 2019)

Serial no Feature Description Condition of Threshold

1 ICMPv6T

ype

Sent packets in

the traffic flow

Originally in the flow as a

key

2 Packet

Number

Number of sent

packets in the

traffic flow

Counting the number of

packets

107

3 Transferr

ed Bytes

Number of bytes

sent from the

source to the

destination

Summation of Packet

length

4 Duration Time length of

the traffic flow

Last packet time – first

packet time

5 Ratio The ratio of

bytes

transferring

during the traffic

flow duration

Transferred bytes/duration

6 Length_SD The variation in

the length of

traffic flow

packets

The standard deviation of

packet flow Length

7 Flowlabel_SD The variation in

the traffic flow

label of packets

The standard deviation of

the packet flow label

8 HopLimit_SD The variation in

the hop limits of

traffic flow

The standard deviation of

the hop limits

9 TrafficClass_SD The variation in

the traffic Class

of packet flow

The standard deviation of

the traffic Class of the

packet

10 NextHeader_SD The variation in

the Next header

of the traffic

packet flow

The standard deviation of

the Next header packet

11 Payloadlength_SD The variation in

payload length

of traffic packet

flow

The standard deviation of

the packet payload length

108

Figure 17: Omar Elejila’s Network Topology (Elejla et al. 2019)

4.1.2 Mendeley Dataset

These datasets comprise IPv4 data generated and utilized by Housman from

Universitas Muhammadiyah Malang for research purposes. The data encompasses

DDoS attacks within SDN, encompassing ICMP, TCP, and UDP flood incidents. The

attacks were simulated in the Mininet Emulator, employing Scapy and TCP Reply.

(Scapy details are briefed in Chapter 1 section 1.1.2). The resulting traffic was

captured as .pcap file format, amounting to a size of 34.7 MB, named TRAIN-DATA

.pcap. This file was generated through the packet generation process utilizing the

Scapy library. Each malicious packet contains a randomly generated IP source

address, targeting H4. The RYU controller was extended to possess the capability of

storing attack information in a .csv file, with a size of up to 37.9 MB, named TRAIN-

DATA.csv. This process was replicated for TESTDATA. However, only the TRAIN-

DATA.csv file was employed in the experiment as both files share the same 25

features that are provided in Table 9 (Housman Oxicusa Gugi 2020) in tabular form,

with an 80:20 train-test split ratio. These data sets were also pre-processed and a

new column” label” was added to categorize traffic into DDOS-ICMP, DDOS-TCP,

109

DDOS-UDP, NORMAL-ICMP, NORMAL-TCP, and NORMAL-UDP (Housman

Oxicusa Gugi 2020).

Table 11: 25 features from the Mendeley dataset (Housman Oxicusa
Gugi 2020)

4.1.3 NSL-KDD (Benchmark dataset)

According to Mahbod Tavallaee, the KDD dataset is essentially a compilation of data

gathered during the DARPA’98 Intrusion Detection System (IDS) evaluation program.

The DARPA’98 dataset comprises around a compressed of 4 GB of raw in binary

TCP dump, reflecting network traffic of 7 weeks. This extensive dataset can be

transformed into about 5 million connection records, each containing approximately

100 bytes of information. The testing phase of DARPA’98 spans two weeks and

generates approximately 2 million connection records. The KDD training dataset

contains nearly 4,900,000 vectors that are based on a single connection and contain

40 attributes and is categorized as normal or an attack. The NSL-KDD dataset are

improvised dataset over the original KDD dataset (DARPA July 2000). The training

set is free from redundant and duplicate records, encompassing files in both .txt and

.arff formats. Specifically, the KDDTrain+.txt, sized at 18.2 MB, and KDDTest+, with

a size of 3.28 MB, were employed in our experiments. The raw traffic data, initially

captured, was transformed into a .txt format, featuring 40 features provided in Table

10 (Tavallaee et al. 2009). It was processed where the data points were in binary and

an additional label was added categorizing the type of attacks. The traffic contains

multiple attack types. This was again updated by changing attack labels to their

respective attack class while experimenting. These NSL-KDD data sets were used

for Model 1 and Model 2. Table 10 provides the list of features (Tavallaee et al. 2009).

4.2 Primary Datasets

Subsequently, primary datasets were generated specifically for this Proposed

research. The details including their sizes, sources, and the methods used for their

110

generation, are explained. A network diagram is provided to illustrate the data

generation process, and further validation is explained based on the feature with

respect to one of the secondary datasets.

Table 12: 40 features from NSL-KDD dataset (Tavallaee et al. 2009)

4.2.1 Collection of Primary Dataset 1

Generation of Primary Dataset-1 was produced on a single machine equipped with

an Intel i7 11th generation 2.30 GHz processor, 64 GB RAM, and a 2 TB hard disk.

Within a VMware environment, four virtual machines were set up, comprising one

Linux machine (LVPC), two Windows machines (WVPC-1 and WVPC-2), and one

Windows server (WVS). These virtual machines were interconnected through

VMware network adapters on a single NIC card of the host machine with IP version

6 addresses. To generate traffic in the instance of an attack, an ICMPv6 DDoS attack

was launched using a Scapy script. The attack is launched from two virtual machines

(LVPC and WVPC-1), targeting the Windows server (WVS). The ensuing network

traffic, encompassing both normal activity and the ICMPv6 attack, was captured on

the Windows server (WVS) using Wireshark, resulting in a dataset size of 18.3 MB

111

(60,000 bytes/sec). Subsequently, the captured traffic was transformed into an Excel

sheet as scdtsets.csv of size 58.2 MB. The proposed Model was employed on this

dataset.

4.2.2 Collection of Primary Dataset 2

Dataset-2 was generated through the implementation of a straightforward network

design, featuring a Cisco 2901 router, a Cisco 3560 switch, and four Windows

systems. Within the network, three Linux operating systems (LPC-0, LPC-1, LPC-2)

were installed using VMware, alongside a Windows server system (WVS). Physical

connectivity was established through the com 4 port, with individual network adapters

in VMware tailored to respective individual systems that have individual NIC cards,

configured within the University of Staffordshire Lab environment using IP version 6

addresses. Configuration of the router and switch was carried out using PuTTY,

ensuring seamless network traffic among all devices. To assess network behaviour,

both under normal conditions and during an ICMPv6 attack, Wireshark was

employed on the WVS system to capture the traffic running the Scapy script from

LPC-1 and LPC-2. In the beginning, normal traffic was captured for a while and later

attack traffic for a duration of 4 hrs 45 min approximately accumulating to 5.12 GB

was captured (500,000 bytes/sec). This traffic was subsequently transformed into an

Excel sheet with a size of 183 MB as a sample dataset with the file name

Labdataset.csv. The proposed Model was employed on this dataset.

112

Figure 18: DDoS attack Scenario in University Lab.

Figure 18 depicts the network architecture utilized to simulate a scenario for

launching a DDoS attack and capturing the resulting traffic to generate datasets. The

router is configured with the IPv6 address 2001:db8:acad:10::1 on interface Gigabit

0/0 (G0/0), which connects to a Windows Server assigned the address

2001:db8:acad:10::5. Similarly, the other interface of the router, G0/1, is assigned the

address 2001:db8:1:20::db8 and is linked to a Switch via Fast Ethernet0/0 (Fe0), with

additional connections to LPC-0, LPC-1, and LPC-2 on ports Fe1, Fe2, and Fe3

respectively, each assigned an IPv6 address. All devices including the Router,

Switch, Server, and nodes (LPC-0, LPC-1, LPC-2), are verified to be connected and

communicating with each other using the ping command and their respective

assigned IP addresses. Wireshark was installed on the Windows Server to capture

both normal and attack traffic packets. The DDoS attack is initiated using a Scapy

script from LPC-1 and LPC-2, targeting the Windows Server with a high volume of

Echo requests and Echo replies to packets. Periodically, the Windows Server is

tested by pinging from LPC-0 to ascertain its availability. If the server is determined

to be down due to the attack, evidenced by response timeouts when pinged from

LPC-0, the traffic capturing process is halted.

113

4.2.3 Primary Dataset Validations

Figure 19 illustrates the packet rate validation in both the Network and ICMPv6 attack

scenarios, highlighting the traffic flow. In the Lab dataset, the packet flow speed was

6,097,961 packets per 1.013e+04s (10,130 seconds). In the Sain Malaysian dataset,

the packet flow speed was 15,066 packets per 1.051e+04s (10,510 seconds). In the

LT Dataset 2, the packet flow speed was 15,604 packets per 0.98e+58s (0.98×1058

seconds). It is evident from the graph that all three datasets exhibit a high number of

packets, which serves as a key parameter for validating the datasets based on their

features. The graph dataset of Lab Dataset 1 consists of predominantly high attack

traffic and less normal traffic. In contrast, LT Dataset 2 has a higher volume of normal

traffic and less attack traffic. This intentional variation between the datasets aims to

evaluate the proposed model's performance under different traffic conditions. These

distinct scenarios help determine the model's strength and efficiency in accuracy in

identifying DDoS attacks. The ability of the model to maintain consistent detection

performance across these varying conditions demonstrates its efficacy as a reliable

solution for mitigating DDoS attacks. It was ensured that the traffic content was

consistent in terms of traffic volume, speed, features, and values during an attack

across both datasets.

To ensure the collected features are sufficient for our model training, we studied

feature sets from various sources, including the Malaysian dataset, and selected an

appropriate feature set. Figure 20 illustrates the features captured from packet traffic

using Wireshark. These features were transformed into an Excel sheet, detailed in

section 5.3 of Chapter 5, and underwent necessary processing procedures before

being input into the proposed model for deployment. The cleaning and pre-

processing of datasets are also explained in the same section.

114

Figure 19: Primary Datasets validation based on packet flow and in the form of a waveform

Sain Malaysian Data sets capturing speed LT Data set 2 -Traffic capturing speed Lab Data set 1 -Traffic capturing speed

115

Figure 20: Primary Datasets validation-based features and values

Sain Malaysian Data set - Features

Lab Data set 1 - Features

LT Data set 2 - Features

116

 On keen observation, the data set features are the same and their values

are also mostly appropriate meaningful values. However, some features

may not have any values when scrolled down that would be taken care of

at the time of the preprocessing step.

Table 13: 18 Features Primary Datasets

As mentioned in the First Chapter section 1.1.1 the Features listed in Table 11 are

from the first 3 layers of the OSI Model Physical layer, Data link layer and Network

layer. However, the author Omar Elejla from Sain Malaysian University has used only

11 features confined to traffic (packet) flow. The validation of the datasets is

performed based on the features listed in Table 12, highlighting the commonality in

the description between the two datasets.

Table 14: Common Features

Common Features of Sain Malaysian Dataset and Primary Datasets 1 and 2

Serial
No.

Sain
Malaysian

dataset
Features

Description
Primary
Dataset

Features
Description

117

In this research experiment, generated data set features are taken for the ICMPv6

header fields and followed the same aspect of distinguishing the packets as Normal

1
ICMPv6 Type Type of sent packet Type Type code of

Echo request
and Echo reply

2
Packet Number Number of sent packets

within the flow
Frame Number Sequence number

of the
frame/packet

3

Transferred
Bytes

Number of bytes sent
from the source to

destination

Sequence Number to aid in
matching Echo
replies to Echo

request

4
Duration Time length of flow Time Time reference

from frame/packet

5

Ratio Ratio of bytes
transferring during the

flow

Identifier To aid in matching
echo reply to

respective Echo
request

6
Length The variation in the

lengths of flow's
packets

Length
frame/packet

Capture length
from the

frame/packet size

7
Flow label The variation in the

Flow Label of flow's
packets

Data Arbitrary data

8
Hope Limit The variation in the

Hope Limit
Hope Limit Time to live

9

Traffic Class The variation in the
traffic class of flow's

Checksum To detect data
corruption in

messages and
parts of the

header

10
Next Header The variation in the next

header
Next Header Info related to

next header in
packet

11
Payload Length The variation in the next

payload length
Payload
Length

Size/length of the
packet.

118

and Attack under Class Column (Label). The “info” feature is the summary of the

packet. Figure 21 depicts a sample of an ICMPv6 packet, correlating with the

features listed in Table 11. It shows that the highlighted parameters are mostly

consistent across all three datasets, with appropriate values. Some of the header

fields, like ICMPv6 header fields, including source and destination addresses,

payload length, protocol type, and embedded message, etc., are explained below:

119

Figure 21: ICMPv6 packet details correlating the features listed in Table 11

120

1) Frame Number:

• Value: 637487

• Explanation: This is the sequential number of the captured packet in the
pcap file.

2) Timestamp:

• Value: 7299.646740

• Explanation: Time in seconds since the first captured packet, helping
determine when the packet was seen.

3) Frame Length

• Value: 129 bytes

• Explanation: Total length of the packet captured on the wire, including
headers and payload.

4) Protocol

• Value: ICMPv6

• Explanation: Identifies the protocol in use, which is Internet Control
Message Protocol for IPv6.

5) IPv6 Addresses

• Source: 2001:db8:acad:10::5

• Destination: 2001:db8:1:20::abe

• Explanation: These are the source and destination IPv6 addresses of
the devices involved in communication.

6) Payload Length

• Value: 75

• Explanation: Indicates the length of the payload in the IPv6 packet (i.e.,
data excluding the IPv6 header).

7) Next Header

• Value: ICMPv6 (58)

• Explanation: Specifies the type of header immediately following the IPv6
header (here, ICMPv6).

8) Hop Limit

• Value: 64

• Explanation: Works like the TTL (Time to Live) in IPv4, determining how
many hops the packet can take before being discarded.

121

9) ICMPv6 Details

• Type: 129 (Echo Reply)

• Code: 0

• Checksum: Correct

• ID: 0x00f0

• Sequence Number: 2

• Explanation: This is an Echo Reply message in ICMPv6, often used in
ping operations to test connectivity.

10) Data Content

• Payload: ASCII-encoded string visible on the right:
"Hello from A-Atkr"

• Explanation: The actual message data is sent back in the Echo Reply
packet.

 Feature Engineering:

From the aim in Chapter 1, the feature engineering from the first two layers are
processed and mainly included along with the above-mentioned features in phase 4
experiments that are given in the following:

Table 15: Feature Engineering

Serial

No
Feature Significance in DDoS Detection

1 Error Type

Count

Detects malformed packets, indicative of protocol

abuse/flooding

2 Inter-Frame

Delay
Identifies high-rate/automated traffic

3 Packet Rate Measures traffic intensity; high rates suggest DDoS

4 Total Frame

Size

Flags volume-based attacks through payload size

patterns

5 LLC Indicator Detects protocol misuse or spoofing

122

Chapter 4 provides a comprehensive overview of the datasets used in this

research. It explains how each dataset was generated, detailing its structure, size,

key features, and relevance to the study. The chapter also illustrates the nature of

the captured traffic and highlights the significance of specific feature values in

representing real-world network behaviour.

123

5 EXPERIMENTS

5.1 Introduction:

This chapter delves into the experiments conducted and the results obtained. Building

on the discussion of the DDoS attack mechanism in Section 4.2.2 of the previous

chapter. It outlines the metrics employed to measure the results, comparing them

based on the datasets used. The chapter presents the promising experimental results

in graphical form and validates them in tabular form, concluding with a summary.

Before discussing the experiments, let's try to summarise the research gap in the 1.2

section, that despite the development of intelligent Intrusion Detection Systems (IDS),

the increasing intensity and sophistication of ICMPv6-based DDoS attacks exploiting

protocol vulnerabilities, such as fragment manipulation and header evasion, continue

to elude detection. Existing systems often fail to identify these attacks due to their lack

of identifiable signatures and the complexity of ICMPv6 traffic. With the widespread

adoption of IPv6 and the growing attack surface across smart technologies, there is a

critical research gap in effectively detecting such covert threats. This study addresses

this gap by exploring advanced AI techniques, particularly deep neural networks, to

enhance the detection and prediction of ICMPv6 DDoS attacks with the aim of

achieving near-perfect accuracy.

5.2. A summary of the dataset's background and the context scenarios:

In this section, the basic information of each dataset and the feature contribution

towards the model are provided. Further, the model performance is briefed with

respect to Table 16, focusing on the metrics used.

Sain Malaysian datasets: This is an ICMPv6 network traffic dataset using a

predefined network topology over a 2-hour capture period, resulting in a 15.8 MB

dataset. A 2.8 MB subset, formatted as .csv files, containing 11 features. The data was

pre-processed to include a "Class" column labelling each entry as either "NORMAL"

or "ATTACK,". Further detailed information about the dataset is given in Chapter 4,

section 4.1.1. Further, it has IPv6-based headers. Feature engineering from the first

two layers (physical and datalink layers), windowing, ADASYN, SHAP, and LIME are

applied.

124

The figure 22 provides brief information about the contribution of features that

impact the model's performance

Figure 22 Sain Malaysian Feature contribution.

125

Top Plot Highlights CNN_LSTM:

• NextHeader_STD is highly important in both Local SHAP and Local

LIME.

• TrafficClass_STD, HopLimit_STD, and FlowLabel_STD show

moderate importance in LIME evaluations.

• ICMPv6Type has the highest Permutation Importance, indicating

strong global relevance.

• Packet Rate and duration show minimal but non-zero importance in

Bottom Plot Highlights RNN_GRU:

• ICMPv6Type stands out in Permutation Importance.

• PacketsNumber, FlowLable_STD, and HopLimit_STD are dominant in

Local SHAP and Local LIME.

• TrafficClass_STD and NextHeader_STD also show consistent

importance in LIME evaluations.

Significant features from both models:

• ICMPv6Type is a consistently important feature across both models,

particularly for Permutation Importance.

• NextHeader_STD, PacketsNumber, and TrafficClass_STD are

significant in SHAP and LIME, especially for local interpretations.

• FlowLable_STD and HopLimit_STD also contribute substantially,

especially in LIME-based importance.

These features are likely crucial for the model’s predictive performance,

particularly in distinguishing specific patterns (possibly anomalies or attack

types) in the dataset.

Mendeley datasets: This dataset is generated on SDN environment,

including. These attacks were simulated using the Mininet emulator with

126

Scapy and TCP Reply, generating traffic stored in a 34.7 MB .pcap file. The

RYU controller recorded the traffic in a 37.9 MB .csv file, containing 25

features based on IPv4. The data was pre-processed to include a "label"

column labeling each entry as either "NORMAL_ICMP" or "DDOS_ICMP".

Further detailed information about the dataset is given in Chapter 4, section

4.1.2. Feature engineering from the first two layers (physical and datalink

layers), windowing, ADASYN, SHAP, and LIME are applied.

The figure 23 provides brief information about the contribution of features

that impact the model's performance

Top Plot Highlights CNN_LSTM:

• Local SHAP identifies ttl, src_port, and csum_icmp as significant.

• Permutation Importance highlights ttl, src_port, and dst_port as

important.

• LIME (Local) gives the highest importance to features such as Normal,

version, header_length, and tos.

Bottom Plot Highlights RNN_GRU:

• Local LIME again emphasizes Normal, version, header_length, and tos

as top contributors.

• Local SHAP highlights rx_bytes_ave, type_icmp, and csum_icmp.

• Global SHAP assigns modest importance to code_icmp and proto.

Significant features from both models:

• Normal, version, header_length, and tos are the most dominant in Local

LIME, showing very high importance (> 0.4).

• ttl, src_port, type_icmp, and csum_icmp appear significant in Local

SHAP and/or Permutation Importance.

• rx_bytes_ave shows some importance in both SHAP and LIME.

These features are likely critical for the model's decision-making and potentially

useful for further feature selection or interpretation in intrusion detection or

anomaly classification tasks.

127

Figure 23: Mendeley Feature contribution.

NSL_KDD datasets: The KDD dataset, derived from the DARPA’98 IDS

evaluation program, includes millions of connection records labelled as

normal or attack, with 40 features based on IPv4. Its improved version, the

NSL-KDD dataset, removes duplicates and redundancies and is available

in .txt and .arff formats. In this study, the KDDTrain+ (18.2 MB) and

128

KDDTest+ (3.28 MB) files were generated. The data was pre-processed to

include a "label" column labelling each entry as “Attack” and “Normal”.

Further detailed information about the dataset is given in Chapter 4, section

4.1.3. Windowing, ADASYN, SHAP, and LIME are applied, however, feature

engineering is not applied. Figure 24 provides brief information about the

contribution of features that impact the model's performance.

Top Plot Highlights CNN_LSTM:

• High contribution across all methods: flag_S0, count, service_http,

logged_in, dst_host_same_srv_rate, srv_count, service_private

• Consistent LIME and SHAP importance: dst_host_srv_count,

dst_host_count, error_rate, srv_error_rate

Bottom Plot Highlights RNN_GRU:

• Dominant Features: count, dst_host_srv_count, srv_count,

dst_host_count, service_http, logged_in, src_bytes, flag_S0

Identified prominently by SHAP, LIME, and Permutation)

Significant features from both models: The most significant features

contributing to model performance across interpretability methods are:

• count

• dst_host_srv_count

• srv_count

• service_http

• logged_in

• flag_S0

• src_bytes

129

Figure 24 NSL-KDD Feature contribution.

These features play a critical role in intrusion detection and are consistent

across both levels for interpretability techniques.

130

LTVM datasets: This dataset was generated in a VMware environment

using IPv6, with ICMPv6 DDoS attacks launched from two virtual machines

targeting a Windows server. Network traffic was captured using Wireshark

and converted into an Excel file of size 58.2 MB, containing 14 features. The

data was pre-processed to include a "Class" column labelling each entry as

“Attack” and “Normal”. Further detailed information about the dataset is

given in Chapter 4, section 4.2.1. Feature engineering from the first two

layers (physical and datalink layers), windowing, ADASYN, SHAP, and LIME

are applied.

Figure 25 provides brief information about the contribution of features that

impact the model's performance.

Top Plot Highlights CNN_LSTM:

o Total Frame Size — very high local SHAP importance

o Next Header — strong SHAP contribution

o ICMPv6srcLnklayerLength, Protocol, Inter-Frame Delay — moderate

importance across SHAP/LIME

Bottom Plot Highlights RNN_GRU:

o Source, Total Frame Size, Protocol, Code — high local SHAP

contribution

o Inter-Frame Delay, Frame Number, Next Header — key for global SHAP

131

Figure 25 LTVM Feature contribution

Significant features from both models:

The most impactful features identified across SHAP, LIME, and permutation

importance are:

1. Total Frame Size

2. Source

132

3. Protocol

4. Code

5. Next Header

6. Inter-Frame Delay

7. Time, LLC Indicator

8. Frame Number and Time

These features play a dominant role in model decision-making for the LTVM

dataset, especially with SHAP providing consistent global and local

importance.

Lab datasets: This dataset was created in a real lab setup using Cisco

hardware and multiple virtual machines configured with IPv6. ICMPv6 attack

traffic was generated from two Linux systems targeting a Windows server,

with both normal and attack traffic captured over 4 hours and 45 minutes

using Wireshark. The resulting 5.12 GB of traffic was converted into a

sample Excel file of size 183 MB, containing 14 features. The data was pre-

processed to include a "Class" column labelling each entry as “Attack” and

“Normal”. Further detailed information about the dataset is given in Chapter

4, section 4.2.2. Feature engineering from the first two layers (physical and

datalink layers), windowing, Time Series Split, ADASYN, SHAP, and LIME

are applied.

Figure 26 provides brief information about the contribution of features that

impact the model's performance.

Top Plot Highlights CNN_LSTM:

o Type and Next Header — high global SHAP

o LLC Indicator, Source, Length — dominant in local LIME

o Error Type Count and Time — visible across SHAP and permutation

o Payload Length, Frame Number — lower but consistent presence

133

Figure 26 Lab Feature contribution

Bottom Plot Highlights RNN_GRU:

o Payload Length, Total Frame Size, Next Header, Error Type Count

standout in global SHAP

o Packet Rate, Protocol, LLC Indicator important in local and global LIME

o Info, Hop Limit, Destination Address minor contribution via permutation

134

Significant features from both models:

1. Next Header – strong SHAP relevance

2. Payload Length – high SHAP importance

3. Packet Rate – key LIME-based contribution

4. LLC Indicator – impactful in local LIME

5. Protocol – consistently important in both LIME and SHAP

6. Error Type Count – relevant across multiple methods

These features are the most influential in driving model performance for the

Lab dataset based on both global and local interpretability methods.

5.3 Comparative Evaluation with Baseline Models:

Table 16: Comparison with state-of-the-art ML and the proposed
model.

 Serial

No

Author Model /

Algorithm

Detection

of DDoS/

Dos

Datasets Split

ratio

Metric:

Accuracy

1 Ojugo and

Eboka 2020

Hidden

Markov

DDoS CIDDS-

2017

Train-

test split

80%

2. Zewdie and

Girma 2022

DT, KNN,

RF

DDoS &

DoS

CIC-

IDS2017

Train-

test split

92.19% to

99.66%

3. Manjula and

Mangla

2023

KNN, RF,

Naïve

Bayes

ICMP,

TCP, and

UDP flood

attacks

Primary

(self-

generated

datasets)

Train-

test split

96.75%

4 Dasari and

Kalari 2024

XGboost,

LGBM,

CatBoost,

Random

Forest (RF),

and

Decision

Tree (DT)

DDoS CIC-

IDS2017

Train-

test split

99.77%

135

5. Liang and

Znati 2019

SVM, RBF-

SVM,KNN,

Kmeans,

NB, NN

DDoS CAIDA

and

DARPA

Train-

test split

77.03%

Comparison of the proposed model with the results

6.

Proposed

model 1

combination

CNN_LSTM DDoS Primary

Dataset

Train-

test split

99.36%

7. Proposed

model 2

combination

RNN-GRU DDOS Primary

dataset

Train-

test split

94.48%

Table 16 presents a comparative overview of various research efforts focused on

detecting Distributed Denial of Service (DDoS) attacks using different models and

algorithms. The primary metric for comparison in this table is Accuracy.

5.3.1 Comparative Summary of Model Performance (Based on Accuracy):

• High-Performing Models: Several studies report very high accuracy in

detecting DoS/DDoS attacks.

o Dasari and Kalari (2024), using an ensemble of XGBoost, LGBM,

CatBoost, Random Forest (RF), and Decision Tree (DT) on the CIC-

IDS2017 dataset, achieved a remarkable 99.77% accuracy. This

suggests that ensemble methods leveraging multiple tree-based

algorithms can be highly effective for this task on this specific dataset.

o Proposed model demonstrates strong performance on a Primary

Dataset using both deep learning models: CNN_LSTM (99.36%) and

RNN_GRU (94.48%). This highlights the potential of Recurrent Neural

Networks (RNNs), particularly with Convolutional layers for feature

extraction, in detecting these types of attacks.

o Manjula and Mangla (2023) achieved 96.75% accuracy using KNN, RF,

and Naive Bayes on their self-generated datasets for detecting ICMP,

TCP, and UDP flood attacks. This indicates that even traditional

machine learning algorithms can yield high accuracy depending on the

dataset characteristics and the specific attack types targeted.

136

o Zewdie and Girma (2022) reported a wide accuracy range of 92.19% to

99.66% using DT, KNN, and RF on the CIC-IDS2017 dataset. This

broad range likely reflects variations in the specific algorithms or

configurations used within their study.

• Lower-Performing Models (Comparatively): While still demonstrating

reasonable detection capabilities, some models reported lower accuracy

compared to the top performers.

o Ojujo and Eboka (2020) obtained 80% accuracy using a Hidden Markov

Model on the CIDDS-2017 dataset. While HMMs can be useful for

sequential data analysis, their performance might be less competitive

compared to more advanced machine learning and deep learning

techniques for this type of detection task.

o Liang and Znati (2019) achieved 77.03% accuracy using SVM, RBF-

SVM, KNN, K-means, NB, and NN on the CAIDA and DARPA datasets.

The lower accuracy here might be attributed to the complexity of these

specific datasets or the suitability of the algorithms employed.

General Observations:

• Dataset Influence: The performance of the models is significantly

influenced by the dataset used for training and testing. CIC-IDS2017 is

commonly used benchmark, with some models achieving very high

accuracy on it. The self-generated and CAIDA/DARPA datasets

presented different levels of challenges.

• Model Variety: A wide range of models, from traditional machine

learning algorithms (like Naive Bayes, KNN, Random Forest, Decision

Trees, SVM) to deep learning architectures (CNN_LSTM, RNN_GRU,

Neural Networks) and statistical models (Hidden Markov Model), have

been applied to DoS/DDoS detection.

• Ensemble Methods: The highest accuracy reported in this table was

achieved by an ensemble method, suggesting that combining the

strengths of multiple models can lead to improved detection

capabilities.

137

• Deep Learning Potential: The strong performance of CNN_LSTM and

RNN_GRU indicates the potential of deep learning models to learn

complex patterns in network traffic for effective DoS/DDoS detection.

In conclusion, the best performing models in this comparison, based solely on

accuracy, are the ensemble approach by Dasari and Kalari, and the deep

learning models (CNN_LSTM and RNN_GRU) from proposed model

combinations on their respective datasets.

5.3.2 Base Line Model 1, model 2, and Stacked Model Results

Evaluation:

Table 17: Results of 3 IPv6 datasets using Feature Engineering:

Serial
No.

Datasets IPv6
or

IPv4

Number of
Features

Train
Test

Series

Model 1 and
Model 2

Metric:
Accuracy

1 Sain
Malaysian

Ipv6 Original 11 +
Feature

Engineering 5
= Total 16

Yes CNN_LSTM 81.56%

RNN_GRU 82.58%

2 Primary
dataset 1
(LTVM)

Ipv6 Original 13 +
Feature

Engineering 5
= Total 18

Yes CNN_LSTM 99.91%

RNN_GRU 94.45%

3. Primary
dataset 2

(Lab)

Ipv6 Original 13 +
Feature

Engineering 5
= Total 18

Yes CNN_LSTM 99.98%

RNN_GRU 98.69%

By applying feature engineering from the Data Link Layer (Layer 2) and the Physical

Layer (Layer 1), 5 additional features were extracted. Initial model evaluation,

employing a standard 80:20 train-test split, yielded promising accuracy results ranging

from 81.56% to 99.98%. Notably, the close performance scores of the two primary

models (CNN_LSTM and RNN_GRU, as seen in the above table) suggested the

potential for improvement through Ensemble Stacking.

138

To further investigate the proposed model's behaviour, the experiments were extended

in their scope to include two additional datasets and the implementation of Ensemble

Stacking (ES). In this extended evaluation, the data splitting strategy was adapted to

a Time Series Split, Average Attack Detection Alarm is applied and the ES technique

is used to get standard results that can also provide prediction accuracy.

Explanation of each metric with respect to the 5 datasets used :

Table 16 presents the performance of two models (Model 1 and Model 2), specifically

CNN_LSTM and RNN_GRU, on five different network intrusion detection datasets

(Sain Malaysian, Primary dataset (LTVM), Primary dataset (Lab), NSL_KDD, and

Mendeley).

The proposed model was evaluated on the above datasets, with varying

numbers of features and using a time series split validation strategy. The

key performance metrics reported are Accuracy, Precision, Recall, and F1-

Score, along with the ADASYN application and Ensemble Stacking results.

The evaluation metrics, Accuracy, Precision, Recall, and F1-Score, are

critical in assessing the performance of DDoS detection models. Across

most datasets, particularly the Mendeley (IPv4) and Primary (LTVM and

Lab, IPv6), both CNN_LSTM and RNN_GRU models demonstrate high

accuracy (often exceeding 95%, and reaching 100% in some cases),

indicating strong overall performance. However, accuracy alone can be

misleading, especially in imbalanced datasets where a model may perform

well by favouring the majority class.

To complement this, precision measures how often the model's positive

predictions (i.e., attack detections) are correct. High precision (often above

90%) across most datasets confirms that false positives are minimal,

especially in Mendeley and Ensemble Stacking scenarios.

139

Table 18: 5 datasets extended to Ensemble stacking

Seria

l No.

Datasets IPv

6 or

IPv

4

Number of

Features

Time

Serie

s

Split

ADASYN

: Yes /No

Model 1

and Model

2

Metric:

AAD Alarm

Time (ms)

Ensemble

Stacking results

1 Sain

Malaysian

IPv6 Original 11

+ Feature

Engineering

5 = Total 16

Yes Yes CNN_LST

M

Recall: 91.80%

Precision:18.46

%

F1 Measure:

30.74%

Accuracy:

61.55%

0:00:00.00022

2

Recall:93.54%

Precision:20.16

%

F1

Measure:33.18%

Accuracy:64.97

%

RNN_GRU Recall: 91.94%

Precision:18.39

%

F1 Measure:

30.66%

Accuracy:

61.34%

0:00:00.00052

7

2 IPv6 Original 13

+ Feature

Yes Yes CNN_LST

M

Recall: 99.48% 0:00:00.00044

7

Recall: 99.69%

140

Primary

dataset 1

(LTVM)

Engineering

5 = Total 18

Precision:96.32

%

F1 Measure:

97.87%

Accuracy:

96.30%

Precision:95.50

%

F1 Measure:

97.55 %

Accuracy:

95.72%

RNN_GRU Recall: 100.0%

Precision:85.63

%

F1

Measure:92.26

%

Accuracy:

85.63%

0:00:00.00019

7

3. Primary

dataset 2

(Lab)

IPv6 Original 13

+ Feature

Engineering

5 = Total 18

Yes Yes CNN_LST

M

Recall: 90.90%

Precision:100.0

%

F1 Measure:

95.23%

Accuracy:

99.99%

0:00:00.00019

5

Recall: 100.0 %

Precision:100.0

%

F1 Measure:

1.0% Accuracy:

1.0%

141

RNN_GRU Recall: 90.92%

Precision:100.0

%

F1 Measure:

92.32%

Accuracy:

99.98%

0:00:00.00045

9

4 NSL_KD

D

IPv4 Original 44

+ Feature

Engineering

0 = Total 44

(No Feature

Engineering

)

Yes Yes CNN_LST

M

Recall: 68: 73%

Precision:

98.77%

F1 Measure:

81.05 %

Accuracy:

78.27%

0:00:00.00026

1

Recall: 85.65%

Precision:99.77

%

F1 Measure:

92.17%

Accuracy:90.16

%

RNN_GRU Recall: 73.72%

Precision:99.21

%

F1 Measure:

84.59 %

Accuracy:

81.83%

0:00:00.00029

7

142

5 Mendeley IPv4 Original 22

+ Feature

Engineering

4 = Total 26

Yes Yes CNN_LST

M

Recall: 100.0%

Precision:1.0%

F1 Measure:

100.0%

Accuracy:

100.0%

0:00:00.00039

7

Recall: 100.0%

Precision:1.0%

F1 Measure:

100.0%

Accuracy:

100.0%

RNN_GRU Recall: 100.0%

Precision:1.0%

F1 Measure:

100.0%

Accuracy:

100.0%

0:00:00.00022

0

143

However, lower precision, such as RNN_GRU’s 30% on the Sain Malaysian

dataset, reveals cases where the model frequently misclassifies benign traffic as

attacks.

Recall, on the other hand, evaluates the model’s ability to detect all actual attack

instances. Although recall is high in several cases, significant drops (as low as

6% for both models on the Sain Malaysian dataset) highlight scenarios where

many attacks go undetected, severely limiting the model's practical security

effectiveness.

The F1-Score serves as a balanced indicator by harmonizing precision and recall.

Consistently high F1-Scores (close to or at 1.0) in the Mendeley and Primary

datasets underscore effective and reliable detection. In contrast, very low F1-

Scores on challenging datasets like Sain Malaysian (as low as 8–11%) illustrate

an imbalanced or inconsistent detection capability.

5.3.3 Conclusion on Best Model Performance:

• Dataset Dependency: The best-performing model seems to be highly

dependent on the specific dataset. The Mendeley dataset (IPv4) consistently

shows perfect or near-perfect performance for both CNN_LSTM and

RNN_GRU across all metrics. This suggests that this dataset might be

relatively easier to classify or that the features are highly discriminative for

the types of attacks present.

• Model Consistency: While both CNN_LSTM and RNN_GRU show strong

performance on some datasets, neither model consistently outperforms the

other across all scenarios. In some cases, CNN_LSTM shows slightly better

results (e.g., on NSL_KDD), while in others, RNN_GRU performs

comparably well (e.g., on the Primary datasets).

• Challenge of Sain Malaysian (IPv6): Both models struggle significantly with

the Sain Malaysian dataset (IPv6), exhibiting very low recall and

consequently poor F1-Scores. This suggests that the features or the nature

of attacks in this dataset might be more complex or require different modelling

approaches.

144

• Potential of Ensemble Stacking: The Ensemble Stacking results often

show improved performance, particularly in terms of recall and F1-Score,

suggesting that combining the predictions of CNN_LSTM and RNN_GRU

can lead to a more robust and accurate intrusion detection system.

• NSL_KDD Difficulty: The NSL_KDD dataset (IPv4) appears to be more

challenging than the Primary datasets and Mendeley for both individual

models.

5.3.4 Summary:

Based on the provided results, it's difficult to definitively declare one model

as universally "best” i.e. CNN_LSTM or RNN_GRU.

• For the Mendeley dataset (IPv4), both CNN_LSTM and RNN_GRU

demonstrate excellent performance with perfect or near-perfect scores

across all metrics.

• For the Primary datasets (LTVM and Lab) with IPv6, both models also

perform very well with high accuracy, precision, recall, and F1-scores.

• The Sain Malaysian dataset (IPv6) poses a significant challenge for both

models.

• The NSL_KDD dataset (IPv4) shows moderate performance, with

CNN_LSTM generally exhibiting slightly better metrics than RNN_GRU on

this specific dataset.

• Ensemble Stacking appears to be a promising approach for improving

overall performance by leveraging the strengths of both individual models.

The robustness of the proposed model is discussed in detail in the following

section, mostly focused on the Primary datasets (Lab Dataset) as it is

generated in the context of DDoS attack scenario.

 5.4 Evaluation of the Model:

The common methods that are applied on all the datasets:

5.4.1 Feature Engineering:

5 features were extracted based on the following formulae:

145

• Error Type Count: Count the occurrences of specific error types

within a defined time interval (Δt). Let Ci(t) be the cumulative count of

error type i up to time t.

The error type count for error type i in the interval [t1,t2] is:

ErrorCounti=Ci(t2)−Ci(t1) .Where Δt=t2−t1.

• Inter-Frame Delay (IFD): Measure the time difference between the

arrival of consecutive frames at a network interface. Let Ti be the arrival

timestamp of the i-th frame. The inter-frame delay between the (i−1)-th

and i-th frame is: IFDi=Ti−Ti−1.Aggregation over a time window (Δt) and

Average IFD: .where N is the number of inter-frame delays

calculated within Δt

• Packet Rate: Measure the number of frames (packets at Layer 2)

observed on a network interface within a specific time interval. Let N(Δt)

be the number of frames observed during the time interval Δt=t2−t1.

The packet rate is: .

• Total Frame Size: Measure the size of each Data Link Layer frame

and aggregate these sizes over a time interval. Let Si be the size (in

bytes) of the i-th frame. Average Frame Size over Δt (with N frames):

 and Total Bytes Transferred over Δt: . Rate of Bytes

Transferred (Throughput)=

• LLC Indicator: Identify if a Data Link Layer frame uses Logical Link

Control (LLC) encapsulation (primarily relevant for older Ethernet

standards like 802.3). For Ethernet II frames, the EtherType field in the

header directly indicates the next-level protocol. If a frame uses

802.3/LLC, the EtherType field is typically 0x0000.Header Presence, If

the EtherType is 0x0000, the following bytes constitute the LLC header

(Destination SAP, Source SAP, Control field). Binary Indicator:

Feature engineering is not applied to the NSL_KDD datasets and the

rest 4 datasets were applied. Time Series Split, Rolling windows, and

ADASYN are applied to all 5 datasets. The NSL dataset can be treated

as a different scenario, and the results would be highlighted.

146

5.4.2 Time Series Split: The time-series strategy is particularly important when

working with time-dependent data, such as network traffic, sensor readings, or

financial data. Its key significance lies in preserving the temporal order of data, with

standard cross-validation methods. The datasets that were used for experiments

were related to network traffic, and the primary dataset is generated in the Networking

lab, created in a scenario of Volumetric DDoS attack. Further, the dataset is steadily

composed in the initial which is treated as "Normal" instances, and after sufficient

time, there is a sudden dramatic surge that significantly indicates an anomaly towards

the end, categorizing them as "Attack" instances. This suggests a period of intense

attack activity concentrated within a specific timeframe. The stark contrast between

the prolonged periods of normal activity and the sudden attack burst is a key

characteristic of this dataset.

5.4.3 Rolling window: This method uses a fixed-size window of recent data for

both training and testing, which moves forward in time for each split. The choice

between these methods depends on the characteristics of the time series data and

the specific forecasting problem. The rolling window focuses on evaluating the

model on more recent patterns.The Critical evaluation is mainly focused on the

Primary dataset (Lab), considered as a very good sample, as this dataset is very

close to the Volumetric DDoS attacks scenario when compared to the remaining

datasets:

5.4.4 Accuracy & Training validations:

Figure 27 Accuracy vs Validation (CNN_LSTM & RNN_GRU)

147

Figure 27 illustrates CNN_LSTM the "Accuracy vs Epoch" graph showing a

learning curve where the model's accuracy rapidly improves in the early stages

of training and then quickly reaches a very high level, followed by a plateau with

slight fluctuations. Whereas in RNN_ GRU it is constant. This suggests that the

model learned the training data effectively within the first few epochs in both

cases, and further training did not provide substantial gains. The near-perfect final

accuracy in CNN-LSTM and overall high accuracy in RNN_GRU indicate a very

strong fit to the training data in both combinations.

 The CNN_LSTM diagnostic plot shows that both the training and validation loss

are very low and decrease in the initial epochs. The validation loss remains

consistently low and close to the training loss throughout the training period with

reasonable fluctuations. This suggests that the model is learning reasonably and

generalizing well to the validation data, with no significant signs of overfitting or

underfitting.

Figure 28 Train vs Validation (CNN_LSTM & RNN_GRU)

Similarly, Figure 28 show RNN-GRU diagnostic plot shows that both the training

and validation loss are very low and decrease significantly in the initial epoch.

The validation loss remains consistently low and close to the training loss

throughout the training period. This suggests that the model is learning effectively

and generalizing well to the validation data, with no significant signs of overfitting

or underfitting. The low loss values on both sets indicate a good model fit.

148

5.4.5 ROC_AUC

Figure 29 CL Model ROC curve

Figure 29 illustrates Receiver Operating Characteristic (ROC) curves for a

"CL_Model" across three different folds from a cross-validation procedure. Each

curve plots the True Positive Rate (TPR) against the False Positive Rate (FPR)

at various classification thresholds. The diagonal dashed line represents a

random classifier (AUC = 0.5). There are three distinct ROC curves, each

representing the performance of the CL_Model on a different fold of the data.

Fold 1 (ROC = 0.67) as shown in blue, Fold 2 (ROC = 1.00) as shown in orange,

and the third Fold 3 (ROC = 1.00) as shown in green. The graph also provides

the Area Under the Curve (AUC) for each fold. The AUC is a single scalar value

that summarizes the classifier's overall performance across all possible

thresholds. Fold 1 has an AUC of 0.67, Fold 2 has an AUC of 1.00 and Fold 3 has

an AUC of 1.00.

• CL Model Evaluation: The model achieves perfect performance on two

folds but only moderate performance on the other. This indicates variability

in the model's ability to generalize across different subsets of the data. The

overall assessment of the CL_Model provides the average or the distribution

of these AUC scores across all folds.

• Summary: The image shows that the CL_Model performed perfectly on two

out of three cross-validation folds (AUC = 1.00), but its performance was

149

considerably lower on the first fold (AUC = 0.67). This indicates that the

model's effectiveness might depend on the specific data subset it is

evaluated.

Figure 30 RG Model ROC curve

Figure 30 illustrates Receiver Operating Characteristic (ROC) curves for a

"RG_Model" across three different folds from a cross-validation procedure. The

plot shows three distinct ROC curves, each corresponding to a different fold of

the RG_Model. Fold 1 (ROC = 0.81) is shown in blue, Fold 2 (ROC = 0.87) is

shown in orange, and Fold 3 (ROC = 1.00) is shown in green. The graph also

provides the AUC value for each fold, which summarizes the overall performance

of the classifier on that specific fold, where Fold 1 has an AUC of 0.81, Fold 2 has

an AUC of 0.87, and Fold 3 has a perfect AUC of 1.00.

• Model Evaluation: The RG_Model shows strong and consistent

performance across the three folds, with AUC scores ranging from 0.81 to

1.00. This indicates that the model is generally effective at classification, with

particularly excellent performance on the data subset corresponding to Fold

3. The variability in AUC scores indicates that the model's performance might

be slightly influenced by the specific data it is trained and evaluated.

• Summary: The ROC curves indicate that the RG_Model is a good classifier,

achieving high AUC scores across all three cross-validation folds, with one

fold demonstrating perfect classification.

150

Figure 31 Comparison of CL and RG Models based on AUC

Figure 31 depicts the comparison of the Area Under the Curve (AUC) scores of

two models, "CL_Model" and "RG_Model", across three folds of a dataset

containing 25,000 samples. AUC of CL model is indicated by a blue line, and AUC

of RG model is indicated by an orange line. Both models show an improvement

in AUC scores as they move from Fold 1 to Fold 3. By Fold 3, both models achieve

perfect classification performance on their respective data subsets.

• Summary: The graph indicates that both the CL_Model and the RG_Model

show good to excellent performance across the three folds, with both

achieving perfect AUC scores on the third fold. The RG_Model initially

performs better on the first fold, but the CL_Model shows a more dramatic

improvement between Fold 1 and Fold 2.

151

5.5. Sample Size Sensitivity:

Figure 32: Sample Size Sensitivity

Figure 32 demonstrates that the base and stacked samples are used for size

sensitivity. Relatively, line and scatter charts are generated, which explain that

reducing the training dataset size leads to a decrease in the F1 score for both the

Base and Stacked models. The Stacked Model is more robust to data scarcity,

152

maintaining a higher F1 score than the Base Model when the sample size is small.

As the sample size increases, the performance gap between the two models tends

to narrow. The study uses F1 score as the primary performance metric and visually

presents the relationship between sample size and F1 score using a line plot and

a bar chart comparing the models under data scarcity.

5.6 Cross-Validation Folds

 Table 19 summarizes the performance of a Base MLP model and a Stacked Model

using 3-fold, 5-fold, and 10-fold cross-validation.

Table 19: Cross-Validation Folds for Base MLP and Stacked Model

Model CV Folds F1 Score (avg ± std) AUC Score (avg ± std)

0 Base MLP 3 0.9986 ±

0.0000

0.9807 ±

0.0023

1 Stacked

Mode

 3 0.9986 ±

0.0000

0.9813 ±

0.0024

2 Base MLP 5 0.9986 ±

0.0000

 0.9814 ±

0.0036

3 Stacked

Model

5 0.9986 ±

0.0000

0.9813 ±

0.0025

4 Base MLP 10 0.9986 ±

0.0000

0.9816 ±

0.0060

5 Stacked

Model

 10 0.9986 ±

0.0000

 0.9817 ±

0.0061

For each number of folds, the average and standard deviation of the F1

score and AUC score are reported.

• Cross-Validation Runs: The experiment involved running both the Base MLP

and the Stacked Model with 3-fold, 5-fold, and 10-fold cross-validation.

• Mean and Standard Deviation: The table explicitly tracks and reports the

mean (average) and standard deviation (std) of both the F1 score and the

AUC score for each model and each cross-validation configuration.

• Performance: The data given in the above table describes the best statistical

performance of the Model related to number of CV Folds, average and

standard deviations for both F1 and AUC Scores.

153

• Impact of More Folds on Reliability: Observing the standard deviation of the

scores, there isn't a consistent or significant decrease in the standard

deviation as the number of folds increases from 3 to 10 for either model and

for both metrics (F1 and AUC). The statistics from the given table reveal that

the standard deviation of the AUC score tends to increase with more folds in

the case of Base MLP(Classifier).

Generally, a higher number of folds is expected to provide a more robust

estimate of the model's generalization performance and potentially lower the

variance of the estimates. However, in this specific case, the performance of

both models appears very stable across different folds, resulting in very low

standard deviations that don't show a clear trend of decreasing with more

folds. Therefore, based on this data, it's not definitively evident that more folds

significantly improve the reliability (reduce variance) of the performance

estimates for these particular models and dataset. The already high and

consistent performance might be contributing to this lack of substantial

change in standard deviation.

 5.7 ADASYN

Figure 33 ADASYN - Balancing Normal and Attack

Figure 33 illustrates the effect of a balancing technique on a time series

split training dataset. Initially, the dataset was severely imbalanced, with a

minuscule representation of the "Normal" class compared to the

overwhelming majority of "Attack" instances. After balancing, the number of

"Normal" instances has been significantly increased to achieve a more even

distribution between the two classes. This balancing step is crucial in

training machine learning models to prevent bias towards the majority class

154

("Attack") and to improve the model's ability to correctly identify instances

of the minority class ("Normal").

5.7.1 Confusion Matrix:

Figure 34: Confusion Matrix before ADASYN and AFTER ADASYN CNN_ LSTM

Figure 34 depicts the Confusion Matrix (CM) of CNN_LSTM, after applying

ADASYN, while the "Attack" class performance remains perfect, the "Normal"

class experiences a slight decrease in precision, leading to 10 false positives.

The overall accuracy remains at 1.00, but the introduction of false positives for

the "Normal" class suggests that ADASYN, which aims to balance the class

distribution by synthesizing new minority class samples, might have introduced

some complexity that led to misclassification of some "Normal" instances as

"Attack" in this specific case.

5.7.2 Confusion Matrix after ADASYN

Similarly, Figure 35 depicts the Confusion Matrix (CM) of RNN_GRU, without

ADASYN, the model completely fails to correctly classify any "Normal"

instances, classifying them all as "Attack". This results in perfect recall for both

classes but zero precision and F1-score for "Normal".

155

Figure 35 Confusion Matrix before ADASYN and AFTER ADASYN

RNN_ GRU

After applying ADASYN, the model's ability to identify "Normal" instances

dramatically improves, achieving perfect recall for this class. However, this

comes at the cost of introducing a small number of false negatives for the

"Attack" class. The overall accuracy remains at 1.00 in both scenarios, but

the model with ADASYN demonstrates a much better ability to correctly

identify both classes, even though it introduces a minor error in classifying

"Attack" instances. ADASYN appears to have effectively addressed the issue

of the model being unable to predict the minority "Normal" class, likely by

balancing the class distribution during training.

5.8 Extended Analysis:

5.8.1 Rolling Window Analysis:

The information regarding "Window Size" and "Stride" is provided at the bottom

of the image as part of the "Final Evaluation" section.

156

Figure 36 Rolling Windows Analysis

Figure 36: Explanation of Window Size, Stride, and Reasoning:

• Window Size: 10: This refers to the length of the temporal window used as

input to the time-series model. It means that the model processes sequences

of 10 consecutive data points at a time. The reasoning behind choosing a

window size of 10 would depend on the underlying temporal dependencies

in the data. A window too small might not capture relevant patterns, while a

window too large could include irrelevant information or increase

computational cost. In this context, a window size of 10 is used throughout

the experiments.

• Stride: 5: The stride defines the step size by which the sliding window moves

across the time series. A stride of 5 means that after processing a window of

10 data points, the next window starts 5 data points after the beginning of the

previous window. Using a stride smaller than the window size (in this case, 5

< 10) results in overlapping windows. The reasons for using a stride of 5 are

as follows:

o Increase the number of training samples: Overlapping windows

generate more data points for training the model.

o Capture finer-grained temporal patterns: By looking at overlapping

segments, the model might be better able to learn subtle changes and

dependencies in the time series.

• Performance Changes with Temporal Slices:

157

The two graphs in the image illustrate how the model's

performance (Accuracy and Loss) changes over training epochs.

Each epoch represents a complete pass through the training

data, which is implicitly structured into temporal slices due to the

windowing and striding process.

• Accuracy Over Epochs (Left Graph):

o The blue line shows the training accuracy, which generally increases

over the epochs, indicating that the model is learning to classify the

training data correctly.

o The orange line shows the validation accuracy, which also increases

initially but seems to plateau and even slightly decrease towards the

later epochs. This suggests that the model might be starting to overfit

the training data after a certain point, as its performance on unseen

validation data is no longer improving significantly. The validation

accuracy reaches a high level, indicating good generalization.

• Loss Over Epochs (Right Graph):

o The blue line shows the training loss, which decreases over the epochs,

as expected during the training process, where the model adjusts its

weights to minimize the error on the training data.

o The orange line shows the validation loss, which initially decreases but

then starts to increase after a few epochs. This is another indicator of

potential overfitting. While the model continues to reduce loss on the

training data, its ability to generalize (as measured by the validation

loss) deteriorates.

• Graphs to Illustrate Time-Series Model Behaviour:

The two line plots effectively illustrate the training dynamics of the time-series

model over epochs. While the x-axis represents epochs (iterations of training),

each epoch involves processing the time-series data in temporal slices defined

by the window size and stride.

• Increasing Training Accuracy and Decreasing Training Loss: These trends

suggest that the model is successfully learning the patterns within the

temporal slices of the training data.

• Plateauing/Decreasing Validation Accuracy and Increasing Validation Loss:

These trends are crucial for understanding the model's generalization ability

158

on unseen temporal slices (the validation set). The divergence between

training and validation performance indicates that the model might be

memorizing the training data rather than learning generalizable features from

the temporal sequences.

Summary:

• F1 Score: 1.0000: This indicates perfect precision and recall on the test set,

meaning the model correctly identified all positive instances and did not have

any false positives or false negatives.

• Accuracy: 0.9999: This shows a very high overall accuracy on the test set,

meaning the model correctly classified almost all instances.

The high final evaluation metrics suggest that despite the potential signs of

slight overfitting observed in the validation curves towards the end of training,

the model ultimately achieved excellent performance on unseen temporal

sequences.

5.8.2 Inclusion of Physical Layer Features:

 Figure 37 illustrates the comparison of features with and without those extracted

from the first two layers i.e. Data link layer and Physical layer. These were

discussed in the Feature engineering section. It shows model evaluation

using TimeSeriesSplit across 3 folds, focusing solely on the accuracy metric. It

includes a table and a corresponding bar chart visualizing the accuracy scores of

different model configurations. The accuracy scores for the two main models are

based on “Ext. Feat” which means adding the features from the Physical layer and

Data link layer.

 Similarly, “No Ext Feat.” No such extra features are added to the dataset. The

scores with and without features are as follows:

• CL_Model (Ext. Feat.): CL_Model using External Features. It

achieved an accuracy of 1.0.

• CL_Model (No Ext Feat.): CL_Model without using External

Features. It also achieved an accuracy of 1.0.

• RG_Model (Ext. Feat.): RG_Model using External Features. It

achieved an accuracy of 1.0.

159

Figure 37 Comparison of features with and without physical layer Features

• RG_Model (No Ext Feat.): RG_Model without using External

Features. It also achieved an accuracy of 1.0.

Figure 37 also indicates that all four model configurations achieved a perfect

accuracy score of 1.0 across the 3 time series split folds. The bar chart visually

confirms the results from the table, showing that all four model variations

achieved a perfect accuracy score.

Summary: The evaluation results, based on accuracy using time series split

across 3 folds, show that both the CL_Model and the RG_Model, regardless

of whether they use external features or not, achieved a perfect accuracy score

of 1.0. This suggests that all these model configurations performed

exceptionally well on the evaluated data, correctly classifying all instances.

From this, it is clear that the features generated through feature engineering

do not impact the model performance. However, further we shall deeply

160

analyse features that contribute to the model performance based on LIME and

SHAP.

5.9 Model Explainability and Interpretation

5.9.1 LIME: Figure 38 displays Local Interpretable Model-agnostic Explanations

(LIME) for five different samples (Sample 0, Sample 1, Sample 2, Sample 3, and

Sample 4). For each sample, there's a horizontal bar chart showing the contribution

of different features to the model's prediction for that specific instance.

• LIME Explanation: Each chart is labelled "LIME Explanation for Sample X (0

to 4)".

• Prediction and Ground Truth: Above each chart, it indicates the model's

"Prediction" and the "Ground Truth" for that sample. In all five cases shown,

the Prediction is 0 and the Ground Truth is also 0, meaning the model

correctly classified these samples.

o Feature Contributions: The horizontal bars represent the contribution of

each feature to the prediction. Red bars indicate that the feature's value

pushes the prediction towards the predicted class (in this case, class 0

(Normal)). The length of the bar signifies the magnitude of the

contribution. Green bars indicate that the feature's value pushes the

prediction away from the predicted class (towards the other class,

presumably class 1 (Attack)).

• Feature Values and Conditions: Each bar is labeled with the feature name

and the condition (e.g., "Error Type Count <= 0.91", "Length <= 0.15", "0.39

< Frame Number <= 0.63"). This indicates the value range of that feature for

the specific sample being explained.

Observations of Samples:

• Error Type Count: This feature consistently has a strong negative contribution

(red bar) across all five samples, suggesting that when "Error Type Count" is

low (less than or equal to 0.91), it strongly supports the prediction of class 0.

161

• Length: The "Length" feature (<= 0.15) also shows a negative contribution

(red bar) in most samples, indicating that shorter lengths tend to favor the

prediction of class 0.

• Length_1: Similarly, "Length_1" (<= 0.14) also generally contributes

negatively (red bar) towards the prediction of class 0.

• Frame Number: The condition "0.39 < Frame Number <= 0.63" often shows

a positive contribution (green bar), suggesting that frame numbers within this

range might push the prediction towards the other class (class 1).

Other Features: Features like "Payload Length", "Hop Limit", and "Inter-Frame

Delay" appear in some explanations with relatively smaller contributions (both

positive and negative)

Summary: The LIME explanations for these five correctly classified samples (as

class 0) highlight that low values for "Error Type Count", "Length", and "Length_1"

are strong indicators supporting this prediction. A "Frame Number" within a

specific mid-range tends to have the opposite effect, pushing the prediction

towards the other class. The other features shown have varying and generally

smaller influences on the individual predictions. This provides insight into which

feature values were most influential in the model's decision for these specific

instances.

162

Figure 38 Lime

163

5.9.2 SHAP:

The figure 39 presents an analysis of a classification model's performance and

feature importance using SHAP (Shapley Additive exPlanations).

The Left Side of the graph is Cross-Validation and Class Distribution

• Average Model Performance Across Valid Folds: The model was trained

and evaluated using 4 valid folds (from a cross-validation procedure).

The average accuracy across these folds is reported as 1.0000,

indicating perfect classification performance on the validation sets. It

also notes that Recall, Precision, and AUC could not be calculated,

likely because the test sets in some or all folds contained only one class.

• Class Distribution in Selected Data: The initial class distribution in the

selected data shows 2000 instances of class 1 and 500 instances of

class 0. This indicates an imbalanced dataset with significantly more

instances of class 1.

• Processing Fold 2 to Fold 5: This section details the class distribution in

the training data for folds 2 through 5. In each of these folds, class 1

respectively), while class 0 consistently has 500 instances. The

accuracy on each of these folds is reported as 1.0000.

• Right Side: SHAP Analysis on Last Valid Fold - Global Feature

Importance

• SHAP Analysis on Last Valid Fold: This indicates that the SHAP analysis

was performed on the predictions from the last (fourth) valid fold.

• Global SHAP Feature Importance: The horizontal bar chart displays the

global feature importance as determined by SHAP values. The length of

each bar represents the average absolute SHAP value for that feature

across all instances in the last validation fold. This indicates the overall

impact of each feature on the model's predictions.

164

Figure 39 SHAP

• Key Feature Importance:

o Error Type Count is by far the most important feature, with a

significantly higher SHAP value compared to others.

o Frame Number is the second most important feature.

o Time and Inter-Frame Delay also show relatively high importance.

o Length and Length_1 have moderate importance.

o The remaining features (Type, Source, Destination Address, Target

Address, Protocol, LLC Indicator, Code, Total Frame Size, Payload

Length, Next Header, Info, Packet Rate, Hop Limit) have

considerably lower global importance according to the SHAP

analysis.

Summary:

165

The model achieved perfect accuracy (1.0000) across all validation folds,

although standard classification metrics like Recall, Precision, and AUC could

not be computed due to the nature of the test sets. The SHAP analysis on

the last validation fold reveals that Error Type Count is the most crucial

feature influencing the model's predictions globally, followed by Frame

Number, Time, and Inter-Frame Delay. Other features have a less significant

overall impact on the model's output. The initial dataset shows an imbalance

in class distribution.

5.9.3 Efficiency Metrics:

Figure 40 depicts bar chart comparing the inference times of three different

machine learning models and AAD.

The table provides evaluation metrics for three models: CNN-LSTM, RNN-

GRU, and Stacking (CL+RG). The metrics reported are:

• Training Time (s): The time taken to train each model. CNN-LSTM took

51.77 seconds, RNN-GRU took 52.25 seconds, and Stacking (CL+RG)

took 29.76 seconds.

• Inference Time (s): The time taken for each model to make a prediction.

CNN-LSTM had an inference time of 1.13 seconds, RNN-GRU had 1.32

seconds, and Stacking (CL+RG) had 0.01 seconds.

• Accuracy: The classification accuracy of each model. All three

models achieved a perfect accuracy of 1.0.

The figure also provides Avg Attack Detection Delay and AAD:

• This relates to the delay in detecting attacks and whether it's feasible for

real-time application.

• For CNN-LSTM (row 0), the average attack detection delay is 0.0

seconds, and it's marked as "No" for feasibility.

• For RNN-GRU (row 1), the average attack detection delay is 0.0 seconds,

and it's marked as "No" for feasibility.

166

• For Stacking (CL+RG) (row 2), the average attack detection delay is NaN

(Not a Number), and it's marked as "Yes" for feasibility with an AAD of

0.0 seconds.

Figure 40 AAD

Inference Time by Model using Time Series Split - 10000 Samples (Bar Chart).

. The bar chart visually compares the inference times of the three models,

evaluated on a dataset of 10,000 samples using a time series split strategy.

167

• CNN-LSTM: Has an inference time of approximately 1.13 seconds

(matching the table).

• RNN-GRU: Has an inference time of approximately 1.32 seconds

(matching the table).

• Stacking (CL+RG): Has a very low inference time, close to 0 seconds

(matching the table at 0.01 seconds, which is barely visible on this scale).

Summary: All three models (CNN-LSTM, RNN-GRU, and Stacking

(CL+RG)) achieved perfect accuracy on the evaluated task. However, they

differ significantly in their training and inference times. The Stacking

(CL+RG) model has the lowest training time and a remarkably low inference

time, making it potentially more suitable for real-time applications despite

having a NaN value for average attack detection delay in the summary table.

Both CNN-LSTM and RNN-GRU have considerably higher inference times.

The feasibility of their attack detection delay for real-time applications is

marked as "No," while Stacking (CL+RG) is marked as "Yes" despite the

missing delay value. The bar chart clearly highlights the significant speed

advantage of the Stacking (CL+RG) model during inference.

5.10 Summary of Experiments:

Table 16: The tables presented in the above table provide a comprehensive

evaluation of various machine learning and deep learning techniques for the

detection of DoS and DDoS attacks, highlighting the critical factors that influence

their performance. Table 17 sets the stage by comparing the accuracy of different

models from existing research, alongside the proposed CNN_LSTM and RNN-

GRU models. This comparison underscores the substantial impact of the dataset

on model performance. For instance, the CIC-IDS2017 dataset appears to be

relatively "easier" to classify, with several models achieving high accuracy, while

the CAIDA and DARPA datasets pose a greater challenge. Ensemble methods, as

demonstrated by Dasari and Kalari (2024), achieve the highest accuracy in this

table, indicating the power of combining multiple models. The proposed deep

learning models also show strong potential.

168

Table 18 delves into the impact of feature engineering and the ADASYN technique

on the proposed models' performance with IPv6 datasets. Feature engineering,

which involves extracting additional relevant features from network traffic data,

generally improves the accuracy of both CNN_LSTM and RNN-GRU. ADASYN is

employed to address class imbalance, a common issue in network security

datasets where normal traffic instances far outnumber attack instances. The

comparable performance of CNN_LSTM and RNN-GRU in this table suggests the

potential for further improvement through ensemble stacking. Table 18 expands

the evaluation to five datasets and incorporates time series split validation and

ensemble stacking. This table provides a more granular view of performance by

including precision, recall, and F1-score, in addition to accuracy. The results further

emphasize the dataset dependency, with the Mendeley dataset standing out as

particularly easy to classify.

5.10.1 Overall comparison.

The Sain Malaysian dataset, on the other hand, proves to be challenging for both

CNN_LSTM and RNN-GRU, highlighting the need for robust models capable of

generalizing across diverse network conditions. Ensemble stacking generally

leads to performance gains, demonstrating the benefits of combining the

strengths of different models. Time series split validation is used to evaluate the

model's ability to detect attacks in a realistic time-evolving scenario.

Summary: The tabulated results collectively demonstrate that while deep

learning models like CNN_LSTM and RNN-GRU are effective for DDoS

detection, their performance is significantly influenced by the characteristics of

the network traffic data. Techniques like feature engineering, ADASYN, and

ensemble stacking can further enhance detection capabilities. The choice of

evaluation metrics and validation strategies, such as time series split, is also

crucial for obtaining a comprehensive and realistic assessment of the model's

effectiveness.

169

Table 20: Summary of the experiments and comparison

 Table 16: Comparison

with State-of-the-Art
Table 17: IPv6 Datasets with

ADASYN & Feature Eng.
Table 18: Extended

Evaluation with Stacking

Focus
Comparative accuracy of
various models

Impact of feature engineering
and ADASYN

Detailed performance with
time series split & stacking

Key Metric(s) Accuracy Accuracy
Accuracy, Precision, Recall,
F1-Score

Best Performing
Models/Techniques

Ensemble (XGBoost, etc.),
CNN_LSTM

CNN_LSTM, RNN-GRU (high
accuracy)

Ensemble Stacking (often
improves)

Challenging Datasets NSL_KDD Sain Malaysian Sain Malaysian, NSL_KDD

Impact of the Dataset
Significant influence on
performance

Varies across datasets
Performance varies
significantly by dataset

Feature Engineering N/A Improves performance
Used in most datasets, the
impact varies

ADASYN N/A
Improves handling of
imbalance

Used, impact on
precision/recall

Ensemble Stacking N/A Potential for improvement
Often enhances
performance

Time Series Split Train-test split Train-test split
Time Series Split - Used for
evaluation

170

5.10.2 Trade-offs observed across setups:

Trade-offs Observed Across Setups:

The evaluation of DDoS detection models involves navigating several trade-offs

that significantly impact their performance, generalization, and practical

applicability. The above discussions in this chapter highlight these trade-offs

across various experimental setups, primarily concerning dataset selection, model

complexity, feature engineering, class imbalance handling, and validation

strategies.

i. Dataset Dependency vs. Model Generalization:

• A prominent trade-off lies in the dataset's influence on model performance.

Models often achieve high accuracy on specific datasets (e.g.,

NSL_KDD/Mendeley), suggesting that the dataset's characteristics (e.g.,

traffic patterns, attack types, data quality) play a crucial role in a model's

success.

• However, this can lead to a trade-off between achieving high accuracy on

a particular dataset and the model's ability to generalize to unseen or

diverse network traffic. For example, models performing well on Primary

Datasets may struggle with Secondary datasets (Sain

Malaysian/NSL_KDD), indicating a trade-off between dataset-specific

optimization and broader applicability.

ii. Model Complexity vs. Performance and Computational Cost:

• The choice of model complexity presents another trade-off. Ensemble

methods (e.g., XGBoost, Random Forest) and deep learning models (e.g.,

CNN_LSTM, RNN-GRU) often demonstrate strong performance.

Ensemble methods, in particular, achieve high accuracy by combining

multiple models, but this comes at the cost of increased computational

complexity and training time.

• Deep learning models, while capable of learning complex patterns, also

require substantial computational resources and may be harder to interpret

compared to simpler machine learning algorithms. On the other hand,

171

simpler models like Naïve Bayes or KNN might be computationally efficient

but may not capture intricate attack patterns, leading to a trade-off between

computational cost and detection capability.

iii. Feature Engineering vs. Data Requirements:

• Feature engineering, the process of extracting relevant features from raw

data, is shown to improve model performance. However, this introduces a

trade-off: feature engineering requires domain expertise and can increase

the complexity of the data preprocessing pipeline.

• Furthermore, engineered features might be specific to certain network

environments, limiting the model's portability. The decision to invest in

feature engineering involves balancing the potential performance gains

with the added complexity and potential reduction in generalization.

iv. Class Imbalance Handling vs. Model Bias:

• Network traffic datasets often suffer from class imbalance, where normal

traffic instances are far more frequent than attack instances. This

imbalance can bias models towards the majority class, leading to poor

detection of rare attacks.

• Techniques like ADASYN are used to address this by generating synthetic

samples of the minority class. While ADASYN can improve the detection

of attacks (increased recall), it might also introduce noise or overlap,

potentially decreasing precision (increased false positives). Thus, there's

a trade-off between improving attack detection and maintaining the

accuracy of normal traffic classification.

v. Validation Strategy vs. Real-World Applicability:

• The choice of validation strategy influences how well model performance

estimates reflect real-world performance. Traditional train-test splits might

overestimate performance if the test set doesn't represent the temporal

dynamics of network traffic.

• Time series split validation is employed to address this, providing a more

realistic evaluation by respecting the temporal order of data. However, time

series split validation can be more computationally intensive and might

172

require larger datasets. This represents a trade-off between evaluation

accuracy and computational feasibility.

In conclusion, the development of effective DDoS detection systems

necessitates careful consideration of these trade-offs. The optimal setup

depends on the specific requirements of the deployment environment,

including the acceptable level of computational cost, the need for real-time

detection, the characteristics of the network traffic, and the importance of

accurately detecting rare attack types.

5.10.3 Impact of Added Physical Features :

In the section Feature Engineering and Inclusion of Physical Feature, the utilization

of specific features in the experiments discussed the results of proposed models

on IPv6 datasets, incorporating with and without feature engineering. This implies

that additional features beyond the basic network layer information were included.

Considering the context of network traffic analysis for attack detection, "physical

features" potentially refer to characteristics derived from the physical layer or data

link layer of the network communication. These include features like Inter Frame

Delay and Packet rate at the physical layer; and Error Type Count & LLC Indicator

information at the data link layer. The fact that the results in Table 15 show

promising performance for the proposed models on IPv6 datasets after feature

engineering suggests that the inclusion of these added physical features

contributed positively to the accuracy of the DDoS detection. By providing the

models with information beyond just the network layer headers and protocols,

these features also contributed to the models to identify subtle anomalies or

patterns indicative of malicious activity at a lower level of the network stack. For

instance, a high error type count or unusual patterns in frame sizes or link layer

control information are strong indicators of an attack.

5.10.4 Windowing:

In the Section Window Analysis, it was discussed about the optimum window size

being 10 and its results, focusing on F1 score and Accuracy. Time series splitting

inherently involves processing data in temporal windows. The use of time series

split implies that the models were trained and tested on sequential segments

(windows) of the network traffic data.

173

The application of a windowing technique is crucial for capturing the temporal

dependencies inherent in network traffic flows and attack patterns. DDoS attacks

often manifest as a sustained surge of malicious traffic over a period. By

processing data in windows, the models can learn to identify these temporal

patterns and correlations that might be missed by analysing individual packets in

isolation. For example, the rate of packet arrival, the consistency of inter-packet

timings, or the persistence of certain header flags over a window of time can be

significant indicators of an attack. The successful performance (perfect accuracy)

of the models, as mentioned in the summary, further suggests that this windowing

approach was effective in enabling the models to learn and detect attack patterns

within the temporal context of the network traffic.

5.10.5 Impact of Interpretability:

Section LIME explains that the five most contributory samples highlight values for

"Error Type Count", "Length", and "Length_1" are strong indicators supporting the

predictions. A "Frame Number" within a specific mid-range tends to have the

opposite effect, pushing the prediction towards the other class. Similarly, the SHAP

analysis on the last validation fold reveals that Error Type Count is the most crucial

feature influencing the model's predictions globally, followed by Frame Number,

Time, and Inter-Frame Delay. The inclusion of feature engineering, ADASYN to

overcome imbalanced data and the use of time series split (applying windowing)

have played a significant role in achieving the reported high accuracy in DDoS

detection. In addition, the AAD and inference results clearly show that the base

models are not suitable for real-time implementation. The proposed final Ensemble

Stack Model is being recommended for real-time implementation.

5.11 Critical Evaluation

The above sections from 5.1 to 5.9 describe and discuss the model's robustness

and its performance. Further experiments were done based on the train-test splits

and applying Ahmet Issa‘s model architecture and the proposed model architecture

using ADASYN and without ADSYN besides varying in features from 14 and 18.

174

Using the generated data sets, the “Ahmet Sardar Ahmed Issa” model and the

proposed model are used with a primary emphasis on accuracy. The evaluation

revealed that the proposed model outperformed the “Ahmet Sardar Ahmed Issa”

model in terms of accuracy. Furthermore, additional metrics were assessed for the

proposed model, showcasing notably high scores across various aspects, except

for the Recall metric, which indicates room for improvement as it registered a lower

value. A statistical tabular format for an easy understanding of the outstanding

results obtained based on the data sets and the combination of Models can be

viewed in Table 21.

Table 21: ES results of Issa and the Proposed model statistics using
generated datasets with features and ADASYN.

The statistics clearly show that experiments performed with different numbers of

features and the ADASYN technique yield varied results. When using the Sain

Malaysian datasets with the proposed model, the accuracy was 0.83%, and

175

Ensemble stacking did not enhance it significantly, resulting in an accuracy of

0.84%. However, with generated datasets, the results were significantly higher,

achieving up to 0.94% with very little variation. This led to the decision to use

Ensemble stacking, as both the Issa model with generated datasets and the

proposed model with Sain Malaysian datasets showed similar differences in

performance.

Table 22 illustrates the comparative results of experiments performed with combinations

of the proposed model and the ”Ahmet Sardar Ahmed Issa” model using all the datasets.

Table 22: Results of Issa and Proposed model statistics using all 4
datasets

From Table 22 the fusion of Model 1, incorporating the CNN-LSTM architecture

advocated by author Ahmet Sardar Ahmed Issa, has demonstrated its efficacy and

robustness in both learning and detecting DDoS attacks. Similarly, the integration of

Model 2 featuring RNN and GRU has yielded impressive outcomes. However, to

emphasize the significance of these models and enhance performance metrics in

DDoS attack detection and prediction, a Stacking ensemble technique has been

employed, resulting in outstanding scores of up to 99.89% with LTVM datasets

(primary dataset 1) and 99.97% with LAB datasets (primary dataset 2). This proves

176

that the aim in Chapter 1 section 1.3 is successfully achieved by answering yes to

the Hypothesis from Section 1.4.

The proposed model showcased its effectiveness in both learning and detecting

ICMPv6 DDoS attacks by generating real-time datasets. According to the statistics

presented in Table 18, the proposed model achieved an accuracy of 84.14%,

surpassing Omar Eleja’s result of 83.20% obtained using the Neural Network (NN)

algorithm on his ICMPv6 datasets at Sain Malaysian University. The ”Ahmet Sardar

Ahmed Issa” Model, combining Convolutional Neural Network (CNN) with Long Short-

Term Memory (LSTM), attained a 99.20% accuracy when trained on NSL-KDD IPv4

datasets. In comparison, the proposed model demonstrated even higher accuracies

of 99.89% and 99.97% when trained on generated datasets, specifically ICMPv6. This

answers the related questions from Chapter 1 section 1.5.

Table 23: Comparison of the proposed model with other researchers,
with results

177

This implementation specifically targeted ICMPv6 DDoS attack datasets. Furthermore,

section 1.6 contributed a novel approach, leveraging a model that combines CNN with

LSTM, RNN with GRU, and subsequently stacking both. The efficacy of this approach

was assessed by comparing and evaluating the remarkable results against benchmark

datasets such as NSL-KDD and Sain Malaysian, as well as against the model proposed

by Ahmet Sardar Ahmed Issa. Additionally, an extra 2 contributions were made in section

1.6 by generating two ICMPv6 datasets in different environmental settings and publishing

them on GitHub and Mendeley along with 3 papers in two different conferences. Hence,

the outstanding results of the accuracy score proved that the proposed model is worthy

of claiming that the Model is robust enough to detect and predict DDoS attacks.

Chapter 5 presents the experimental evaluation of the proposed model using the selected

datasets. It discusses the results obtained, comparing key performance metrics to assess

the model’s effectiveness. The chapter includes a critical comparison with state-of-the-art

models, highlighting strengths and limitations. It also explores various trade-offs and

assesses the model’s feasibility for real-world deployment based on requirements.

178

6 CONCLUSIONS

6.1 Introduction

This chapter provides the conclusion by summarizing the key reflections of the thesis, the

results achieved, and how these fulfill the stated objectives, ultimately validating the

contributions and further future research and some takeaways.

6.2 Summary of the thesis:

1. Study Aim: This study aims to detect ICMPv6 DDoS attacks using an innovative

combination of techniques, fusing CNN with LSTM and RNN with GRU, and

employing ensemble stacking to achieve superior accuracy, enabling early-stage

mitigation (Chapter 1)

2. ICMPv6 DDoS Attack Selection: ICMPv6 DDoS echo-reply attacks were chosen

due to their high vulnerability. The integrated combination approach is novel. A

review of related academic research confirmed the scarcity of this approach in

ICMPv6 DDoS attacks, with one author partially proposing a similar combination.

This supports the validity of the approach for achieving superior accuracy (Chapter

2.

3. Learning and Testing DDoS Attacks: DDoS attacks were studied and learned

through testing and analysing available attack methodologies (Chapter 1).

4. Approach Analysis: The study analysed traditional mechanisms, machine

learning (ML), artificial intelligence (AI) methods, and the Onion Methodology to

understand and counter DDoS attacks (Chapters 1 and 2).

5. Dataset Analysis: The required datasets, particularly those related to ICMPv6

DDoS attacks, were analysed due to their limitation of open/easy availability

(Chapters 2 and 4).

6. Dataset Creation and Validation: ICMPv6 datasets were built in two distinct

physical environments and validated to ensure suitability for experimentation

(Chapter 4).

7. Attack Scripting: It was observed that scripts in Scapy could easily launch

customized attacks regardless of infrastructure, demonstrating why Command and

Control and script-related DDoS attacks are effective and often undetectable.

179

8. Packet Crafting: The study involved learning how to craft ICMPv6 packets,

including modifying information to evade detection and launch attacks.

9. Attack Testing: Combined insights from 7 and 8 where successful ICMPv6 DDoS

attacks were then crafted to achieve high speed without damaging the institute’s

infrastructure (Chapter 4).

10. Model Design and Development: A model was designed and developed using

Python on the Google Colab platform, and tested with existing secondary datasets

of IPv4 and ICMPv6 (Chapter 5, sections 5.4 and 5.5).

11. Initial Model Testing: The model was initially tested using ICMPv6 datasets,

yielding decent results. Voting classifiers were tried but did not achieve superior

accuracy. To enhance performance, ensemble stacking was selected and

employed on the proposed model, resulting in superior results (Chapter 5, sections

5.7)

12. Data Splitting and Model Mechanism: In all testing and implementation

(Chapters 4 and 5), datasets were split into 80% for training and 20% for testing.

The model mechanism is outlined below:

a. Data points were categorized as "1" for attacks and "0" for normal.

b. Outputs from base models were fed into a meta-model, which rigorously

classified data points and repeated cross-validation three times. The first

two times involved training, and the third time tested the model, producing

the highest accuracy in classifying attacks and normal traffic.

c. The model successfully captured and dropped attack packets while allowing

normal packets into the system.

13. Performance Metrics: Accuracy was the main metric for measuring model

performance, along with precision, F1 measure, and recall. All metrics showed high

percentages, except for recall.

6.3 Contribution

1. From Chapter 1 section 1.7 Literature review was successfully accomplished and

based on that, a model was proposed i.e., the combination of CNN with LSTM and

RNN with GRU that determines the attack and predicts based on the Ensemble

Stacking technique.

180

2. Due to the shortage of ICMPv6 datasets that are not openly available, two

datasets were generated based on two distinct environments.

3. The performance of the designed model results was compared and validated with

state-of-the-art to determine the best fit for the learning and detection of DDoS

attacks.

4. 3 papers were published, Two at the CLMA conference in London. One at

the ICMLC Conference in Japan via virtual presentation. Two primary datasets

were published one in GitHub and the other in Mendeley.

6.4 Critical validation of the proposed Model based on comparison to state-of-

the-art Researcher’s

Chapter 5 presents experimental results demonstrating the robustness of the proposed

model in detecting DDoS attacks, using techniques such as feature engineering,

windowing, Time Series Split, and ADASYN (to address class imbalance between

"Attack" and "Normal" instances). Five diverse datasets, each reflecting different traffic

generation scenarios, were used. The model achieved performance ranging from 81.56%

to 99.98%, with some cases reaching 100%.

The average attack detection results indicate that base classifiers alone are not suitable

for real-time implementation. However, the ensemble stacking approach proves to be

effective for real-time deployment. Table 19 compares dataset performance, highlighting

that NSL-KDD and Sain Malaysian datasets posed greater challenges, suggesting

reduced model performance on previously unseen or more complex data

Furthermore, compared to other researchers who suggested and implemented the

Ensemble technique in their studies, this proposed combination of two learning models

and deploying a meta-model on them has proven to be the best solution, particularly for

ICMPv6 DDoS Echo request and Echo reply, attacks. This conclusion is based on the

promising and significantly higher results, as illustrated in Table 20.

In section 1.4 of the first chapter, the hypothesis is explored, revealing that the integration

of Multi DNN techniques has resulted in significantly higher scores, particularly

181

emphasizing accuracy metrics, achieving superior scores. Moving on to section 1.5, the

objectives were successfully accomplished, focusing on designing an efficient model and

implementing the code in Python within Google Labs.

Additionally, an extra 2 contributions were made in section 1.6 by generating two ICMPv6

datasets in different environmental settings and publishing them on GitHub and Mendeley

along with 3 papers in two different conferences. Hence, the outstanding results of the

accuracy score proved that the proposed model is worthy to claim that the Model is robust

enough to detect and predict DDoS attacks.

In Section 6.4, the contributions of the research are clearly explained, while Section 6.3

and the beginning of this section demonstrate that the objectives listed in Chapter 1,

Section 1.6 have been met. This includes a critical evaluation of the proposed model

against the state-of-the-art, achieving a superior score that is provided in Table 19. The

Onion Methodology, incorporating both quantitative and qualitative techniques, was

utilized in this research, as detailed in Chapter 1, Section 1.8.2, with the implementation

method described in Section 1.9. This methodology proved to be quite successful and

safe, allowing flexibility in choosing other techniques based on resource availability.

All studies and experiments were conducted in accordance with the university's policies

and ethics guidelines. No personal data or related information was used or exploited in

completing the research work. Utmost care was taken during the experiments to ensure

the risk and safety of the infrastructure especially configuring and generating datasets.

6.5 Challenges

During the course of the program, two main challenges were encountered, particularly

concerning dataset availability for ICMPv6, as discussed in Section 6.2. Initially, obtaining

ICMPv6 datasets was not straightforward. We successfully acquired them through a

request to Sain Malaysian University, which can be considered a qualitative method. To

further test and validate our proposed model, we reached out to other existing research

groups in various universities but did not receive fruitful responses. Consequently, we

182

needed additional datasets, prompting us to generate our own primary datasets following

a quantitative method.

Another challenge was with the model that initially combined CNN with LSTM and RNN

with GRU. Both combinations showed similar performance with minor differences. To

address this, we initially used a voting classifier to select between them based on a voting

mechanism. However, the voting classifier consistently favoured one combination,

leading to biased results. To overcome this, further research was conducted on

enhancing techniques, and the voting classifier was subsequently replaced with the

Stacking Ensemble technique, which yielded outstanding results without bias.

6.6 Learning Outcomes and Takeaways

This research demonstrated that by integrating a novel combination of deep neural

networks and selected algorithms, ICMPv6 DDoS attacks can be mitigated at an early

stage. The study explored how necessary datasets can be generated under various

scenarios and environments. The research methods employed had a significant impact

on the direction of the study, providing key turning points crucial for accomplishing the

required tasks. This process has contributed to professional development by fostering the

ability to generate innovative ideas that can be transformed into research projects. The

skills developed through this research enable the acceptance of challenges and the

implementation of similar projects in the future.

This program also provided an opportunity to learn multiple subjects in networking, AI,

software development, management, and cybersecurity. Additionally, the experience

honed the ability to submit papers to conferences, enhancing both communication and

presentation skills. Teaching similar modules Like Digital Forensics, Mobile Forensics at

level 7, CyberOps Security (MoD) at level 5, etc., further refined these skills and provided

an opportunity to pursue related program like PgCHPE Fellow HEA to develop teaching

capabilities that was funded by the Computer Science Department, University of

Staffordshire and Managing Leadership Performance a funded module by EU social fund

for enhancing leadership skills. The use of various tools for research, teaching, and

183

presentations, such as Overleaf LaTeX, MS Office Word, PowerPoint, and Project, was

also mastered during this research program.

6.7 Extension of Proposed Research

Current Performance Merits: The proposed ensemble stacking model demonstrates

strong performance across diverse datasets, achieving detection accuracies ranging from

81.56% to 100%. Time Series Split validation and windowing (optimal size = 10)

enhanced temporal learning, while feature engineering—especially with added physical

and data link layer features—contributed to improved DDoS detection in IPv6

environments. SHAP and LIME interpretations further validated feature relevance.

Limitations: Despite high accuracy, models such as CNN_LSTM and RNN-GRU show

reduced generalization on complex or unseen datasets like Sain Malaysian /NSL_KDD,

indicating possible overfitting or dataset dependency. Recall scores remain relatively

lower, and base models lack real-time feasibility due to high inference delay or model drift

across distributions.

Future Research: In continuation, it should focus on improving generalization across

unknown traffic patterns, enhancing recall, and exploring lightweight yet interpretable

models suitable for real-time deployment. Investigating more adaptive feature

engineering strategies and drift detection mechanisms will also support robust, scalable

solutions.

Future it can also be extended to encompass other ICMPv6 attacks, such as DDoS

attacks based on Neighbour Discovery, spoofing and Man-in-the-Middle attacks,

alongside conventional IPv6 attack vectors. The existing primary datasets can be

leveraged for exploring vulnerabilities in home network environments. The proposed

model can be deployed on non-supervised learning particularly using the captured traffic

in .pcap format of the DDoS attacks mostly may affect the DDoS attacks detection due to

the learning aspect. Additionally, it could serve as a preliminary assessment for industrial

domains like IoT DDoS attacks, Autonomous vehicular DDoS attacks, Drone DDoS

attacks, etc. provided careful feature selection or similar key attributes aligning with their

184

common values. Similarly, detection of DDoS attacks at a signal level using Amplitude

shift keying, Frequency shift keying, and Time shift keying can be implied using the

deployment of the proposed model where appropriate signal-related data sets are to be

used for effective and efficient promising results. Further, the generated primary datasets

are available on Mendeley and GitHub where similar kinds of research can be carried

enabling easy access to the new researchers.

A similar mitigation proposal can be implemented at the edge router to enhance network

security and protect the enterprise. By integrating the functionalities of an IDS or firewall,

the solution becomes highly compatible and portable within the router. This

implementation poses challenges, particularly in terms of physical resources, as it

requires substantial memory, which can be addressed by using high-capacity DDR5

memory. Additionally, the computing cost may be high due to the training time of the deep

neural networks, which necessitates the selection of very high-speed processors to

mitigate this issue.

185

7 REFERENCES

Ahmad, Ijaz, Zhong Wan, and Ashfaq Ahmad (2023). “A big data analytics for

DDOS attack detection using optimized ensemble framework in Internet

of Things”. In: Internet of Things 23, p. 100825.

Ahmed, Md Rayhan et al. (2023). “Intrusion Detection System in Software-Defined

Networks Using Machine Learning and Deep Learning Techniques–A

Comprehensive Survey”. In: Authorea Preprints

Alghazzawi, Daniyal et al. (2021). “Efficient detection of DDoS attacks using a hybrid deep

learning model with improved feature selection”. In: Applied Sciences 11.24, p.

11634.

Alghuraibawi, Adnan Hasan Bdair et al. (2021). “Detection of ICMPv6-based DDoS

attacks using anomaly based intrusion detection system: A comprehensive

review”. In: International Journal of Electrical and Computer Engineering 11.6,

p. 5216.

Alguliyev, Rasim M, Ramiz M Aliguliyev, and Fargana J Abdullayeva (2019). “Deep

learning method for prediction of DDoS attacks on social media”. In: Advances

in Data Science and Adaptive Analysis 11.01n02, p. 1950002.

Alharbi, Afnan and Khalid Alsubhi (2021). “Botnet detection approach using graph-based

machine learning”. In: IEEE Access 9, pp. 99166–99180.

Alharbi, Yasser et al. (2021). “Denial-of-Service Attack Detection over IPv6 Network

Based on KNN Algorithm”. In: Wireless Communications and Mobile Computing

2021.1, p. 8000869.

Ali, Muhammad et al. (2023). “Effective network intrusion detection using stackingbased

ensemble approach”. In: International Journal of Information Security 22.6, pp.

1781–1798.

Alshra’a, Abdullah Soliman, Ahmad Farhat, and Jochen Seitz (2021). “Deep Learning

Algorithms for Detecting Denial of Service Attacks in SoftwareDefined

Networks”. In: Procedia Computer Science 191, pp. 254–263.

Alturki, Ryan (2021). “Research onion for smart IoT-enabled mobile applications”. In:

Scientific Programming 2021, pp. 1–9.

An, Yi et al. (2019). “Deep learning enabled superfast and accurate M 2 evaluation for

fiber beams”. In: Optics Express 27.13, pp. 18683–18694.

Apuke, OD (2017). Quantitative Research Methods: A Synopsis Approach. Kuwait

Chapter of Arabian Journal of Business and Management Review, 6 (11), 40–

47.

186

Asad, Muhammad et al. (2020). “Deepdetect: detection of distributed denial of service

attacks using deep learning”. In: The Computer Journal 63.7, pp. 983–994.

Assis, Marcos VO et al. (2021). “A GRU deep learning system against attacks in software

defined networks”. In: Journal of Network and Computer Applications 177, p.

102942.

Aydın, Hakan, Zeynep Orman, and Muhammed Ali Aydın (2022). “A long short term

memory (LSTM)-based distributed denial of service (DDoS) detection and

defense system design in public cloud network environment”. In: Computers &

Security 118, p. 102725.

Bahashwan, Abdullah Ahmed, Mohammed Anbar, and Sabri M Hanshi (2020).

“Overview of IPv6 based DDoS and DoS attacks detection mechanisms”. In:

Advances in Cyber Security: First International Conference, ACeS 2019,

Penang, Malaysia, July 30–August 1, 2019, Revised Selected Papers 1.

Springer, pp. 153–167.

Bdair, Adnan Hasan et al. (2020). “Brief of intrusion detection systems in detecting

ICMPv6 attacks”. In: Computational Science and Technology: 6th ICCST 2019,

Kota Kinabalu, Malaysia, 29-30 August 2019. Springer, pp. 199–213.

Bhaya, Wesam and Mehdi EbadyManaa (2017). “DDoS attack detection approach using

an efficient cluster analysis in large data scale”. In: 2017 Annual Conference on

New Trends in Information & Communications Technology Applications

(NTICT). IEEE, pp. 168–173.

Biondi, Philippe (2008-2024). “Scapy Introduction”. In: Scapy community 8ed86476,

p. 1. url: https://scapy.readthedocs.io/en/latest/introduction.

html.

CAIDA (2022). “CAIDA 2018-2022 Program Plan”. In: Caida.org 2018-2022, p. 7. url:

https://www.caida.org/about/progplan/progplan2018/.

Callegari, Christian, Stefano Giordano, and Michele Pagano (2024). “A Real Time Deep

Learning based Approach for Detecting Network Attacks”. In: Big Data

Research, p. 100446.

Chen, Jinyin et al. (2019). “DAD-MCNN: DDoS attack detection via multi-channel CNN”.

In: Proceedings of the 2019 11th International Conference on Machine Learning

and Computing, pp. 484–488.

Chen, Yen-Hung et al. (2020). “Detecting linking flooding attacks using deep convolution

network”. In: Proceedings of the 2020 the 3rd International Conference on

Computers in Management and Business, pp. 70–74.

187

Cheng, Jieren et al. (2019). “A novel DDoS attack detection method using optimized

generalized multiple kernel learning”. In: arXiv preprint arXiv:1906.08204.

Chicco, Davide, Matthijs J Warrens, and Giuseppe Jurman (2021). “The Matthews

correlation coefficient (MCC) is more informative than Cohen’s Kappa and Brier

score in binary classification assessment”. In: IEEE Access 9, pp. 78368–78381.

CIC, Jeffrey J. Henderson (Chair) (2021). “Canadian Institute for Cybersecurity”. In:

University of New Brunswick, Jeffrey J. Henderson (Chair), unb.ca

0, p. 4. url: https://www.unb.ca/cic/about/index.html.

Cil, Abdullah Emir, Kazim Yildiz, and Ali Buldu (2021). “Detection of DDoS attacks with

feed forward based deep neural network model”. In: Expert Systems with

Applications 169, p. 114520.

CISCO (2006). “IPv6 Extension Headers Review and Considerations.” In: CISCOWhite

Paper, pp. 1–12.

Cloudflare (2024). “DDoS Attack Trends for 2024 Q1”. In: The Cloudflare Blog Report 3,

p. 18. url: https://radar.cloudflare.com/reports/ddos-

2024-q1.

D’hooge, Laurens et al. (2020). “Inter-dataset generalization strength of supervised

machine learning methods for intrusion detection”. In: Journal of Information

Security and Applications 54, p. 102564.

Dahiya, Amrita and Brij B Gupta (2021). “A reputation score policy and Bayesian game

theory based incentivized mechanism for DDoS attacks mitigation and cyber

defense”. In: Future Generation Computer Systems 117, pp. 193–204.

DARPA, MIT Lincoln Laboratory (July 2000). “2000 DARPA INTRUSION DETECTION

SCENARIO SPECIFIC DATASETS”. In: consensus from the Wisconsin Re-think

meeting and the July 2000 Hawaii PI meeting. 0, p. 3. url:

https://www.ll.mit.edu/r-d/datasets/2000-darpaintrusion-detection-scenario-

specific-datasets.

Davies, Elwyn B. and J ́anos Moh ́acsi (May 2007). Recommendations for Filtering

ICMPv6 Messages in Firewalls. RFC 4890. doi: 10 . 17487 / RFC4890.

url: https://www.rfc-editor.org/info/rfc4890

Deering, Dr. Steve E. and Alex Conta (Dec. 1998). Internet Control Message Protocol

(ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification. RFC 2463.

doi: 10.17487/RFC2463. url:

188

https://www.rfceditor.org/info/rfc2463%20;%20https://www.rfc-editor.org/

rfc/pdfrfc/rfc2463.txt.pdf.

Deering, Dr. Steve E. and Bob Hinden (Feb. 2006). IP Version 6 Addressing Archi-

tecture. RFC 4291. doi: 10.17487/RFC4291. url: https://www.rfc-

editor.org/info/rfc4291.

Dong, Shi and Mudar Sarem (2019). “DDoS attack detection method based on improved

KNN with the degree of DDoS attack in software-defined networks”. In: IEEE

Access 8, pp. 5039–5048.

Droms, Ralph (Aug. 2014). IPv6 Multicast Address Scopes. RFC 7346. doi: 10.

17487/RFC7346. url: https://www.rfc-editor.org/info/rfc7346

Elejla, Omar E et al. (2019). “Comparison of classification algorithms on ICMPv6based

DDoS attacks detection”. In: Computational Science and Technology: 5th

ICCST 2018, Kota Kinabalu, Malaysia, 29-30 August 2018. Springer, pp. 347–

357.

Elubeyd, Hani and Derya Yiltas-Kaplan (2023). “Hybrid Deep Learning Approach for

Automatic DoS/DDoS Attacks Detection in Software-Defined Networks”. In:

Applied Sciences 13.6, p. 3828.

Gaurav, Akshat, Brij B Gupta, and Prabin Kumar Panigrahi (2022). “A novel approach for

DDoS attacks detection in COVID-19 scenario for small entrepreneurs”. In:

Technological Forecasting and Social Change 177, p. 121554.

Gont, Fernando and Will (Shucheng) LIU (Aug. 2022). Recommendations on the

Filtering of IPv6 Packets Containing IPv6 Extension Headers at Transit

Routers. RFC 9288. doi: 10.17487/RFC9288. url: https://www.rfc-

editor.org/info/rfc9288.

Goundar, Sam (2012). “Chapter 3-Research Methodology and Research Method”. In:

Cloud Computing. Research Gate Publications.

Hasan Kabla, Arkan Hammoodi et al. (2023). “Machine and deep learning techniques for

detecting internet protocol version six attacks: a review.” In: International Journal

of Electrical & Computer Engineering (2088-8708)13.5.

Holkoviˇc, Martin, Ondˇrej Ryˇsavy`, and Jindˇrich Dudek (2019). “Automating network

security analysis at packet-level by using rule-based engine”. In: Proceedings

of the 6th Conference on the Engineering of Computer Based Systems, pp. 1–

8.

189

Housman Oxicusa Gugi Isnaini Hafida Sumadi, Fauzi Dwi Setiawan (2020). “SDN:DDOS

ICMP,TCP,UDP”. In: Mendeley Data, V1 1.1, p. 1. url: https:

//data.mendeley.com/datasets/hkjbp67rsc/1.

Hwang, Ren-Hung et al. (2020). “An unsupervised deep learning model for early network

traffic anomaly detection”. In: IEEE Access 8, pp. 30387–30399.

Ieracitano, Cosimo et al. (2020). “A novel statistical analysis and autoencoder driven

intelligent intrusion detection approach”. In: Neurocomputing 387, pp. 51–62.

Internet Control Message Protocol (Sept. 1981). RFC 792. doi: 10.17487/RFC0792.

url: https://www.rfc-editor.org/info/rfc792.

Issa, AS Ahmed and Zafer Albayrak (2023). “Ddos attack intrusion detection system

based on hybridization of cnn and lstm”. In: Acta Polytechnica Hungarica 20.2,

pp. 105–123.

Jing, Xuyang et al. (2019). “Network traffic fusion and analysis against DDoS flooding

attacks with a novel reversible sketch”. In: Information Fusion 51, pp. 100–113.

Kalutharage, Chathuranga Sampath et al. (2023). “Explainable AI-based DDOS attack

identification method for IoT networks”. In: Computers 12.2, p. 32.

Kaur, Parneet, Manish Kumar, and Abhinav Bhandari (2017). “A review of detection

approaches for distributed denial of service attacks”. In: Systems Science &

Control Engineering 5.1, pp. 301–320.

KDDCup University of California, Irvine (October 28, 1999). “KDD Cup 1999 Data, Fifth

International Conference on Knowledge Discovery and Data Mining.” In: The

UCI KDD Archive Information and Computer Science University of California,

Irvine 92697-3425, p. 1. url: https://kdd.

ics.uci.edu/databases/kddcup99/kddcup99.html.

Kumar, Krishan, Sunny Behal, et al. (2021). “Distributed Denial of Service Attack

Detection using Deep Learning Approaches”. In: pp. 491–495.

Li, Yubing et al. (2022). “P4-NSAF: defending IPv6 networks against ICMPv6 DoS and

DDoS attacks with P4”. In: ICC 2022-IEEE International Conference on

Communications. IEEE, pp. 5005–5010.

Liang, Xiaoyu and Taieb Znati (2019). “An empirical study of intelligent approaches to

DDoS detection in large scale networks”. In: 2019 International Conference on

Computing, Networking and Communications (ICNC). IEEE, pp. 821–827.

Ma, Yongsen, Gang Zhou, and Shuangquan Wang (2019). “WiFi sensing with channel

state information: A survey”. In: ACM Computing Surveys (CSUR) 52.3, pp. 1–

36. url: https://dl-acm-org.ezproxy.staffs.ac.uk/ doi/pdf/10.1145/3310194%0A.

190

Malliga, Subramaniam, PS Nandhini, and Shanmuga Vadivel Kogilavani (2022).

“A comprehensive review of deep learning techniques for the detection of

(distributed) denial of service attacks”. In: Information Technology and

Control 51.1, pp. 180–215.

Manjula, HT and Neha Mangla (2023). “An approach to on-stream DDoS blitz detection

using machine learning algorithms”. In: Materials Today: Proceedings 80, pp.

3492–3499.

Mardiana, Siti (2020). “Modifying research onion for information systems research”. In:

Solid State Technology 63.4, pp. 5304–5313.

Mateen, Hafsa and Malik Shahzad (2021). “Factors Effecting Businesses due to

Distributed Denial of Service (DDoS) Attack”. In: 2021 International Conference

on Innovative Computing (ICIC). IEEE, pp. 1–7.

MAWI Fontugne, Romain et al. (Dec. 2010). “MAWILab: Combining Diverse Anomaly

Detectors for Automated Anomaly Labeling and Performance Benchmarking”.

In.

Melnikovas, Aleksandras (2018). “Towards an explicit research methodology: Adapting

research onion model for futures studies”. In: Journal of Futures Studies 23.2,

pp. 29–44. url: https://jfsdigital.org/wp-content/ uploads/2019/01/03-

Melnikovas-Onion-Research-Model.pdf.

Mishra, Nivedita and Sharnil Pandya (2021a). “Internet of things applications, security

challenges, attacks, intrusion detection, and future visions: A systematic

review”. In: IEEE Access 9, pp. 59353–59377.

Mittal, Meenakshi, Krishan Kumar, and Sunny Behal (2023a). “Deep learning approaches

for detecting DDoS attacks: A systematic review”. In: Soft computing 27.18, pp.

13039–13075.

Mohammed, Ammar and Rania Kora (2023). “A comprehensive review on ensemble deep

learning: Opportunities and challenges”. In: Journal of King Saud University-

Computer and Information Sciences 35.2, pp. 757–774.

Mohmand, Muhammad Ismail et al. (2022). “A machine learning-based classification and

prediction technique for DDoS attacks”. In: IEEE Access 10, pp. 21443–21454.

Nazih, Waleed et al. (2020). “Countering ddos attacks in sip based voip networks using

recurrent neural networks”. In: Sensors 20.20, p. 5875.

Neira, Anderson Bergamini de, Burak Kantarci, and Michele Nogueira (2023). “Distributed

denial of service attack prediction: Challenges, open issues and opportunities”.

In: Computer Networks 222, p. 109553.

191

Ojugo, Arnold and Andrew Okonji Eboka (2020). “An Empirical Evaluation On

Comparative Machine Learning Techniques For Detection Of The Distributed

Denial Of Service (DDoS) Attacks”. In: Journal of Applied Science, Engineering,

Technology, and Education 2.1, pp. 18–27.

Omer, Kasim (2020). “An efficient and robust deep learning based network anomaly

detection against distributed denial of service attacks”. In: Computer Networks

180, p. 107390.

Ordabayeva, GK et al. (2020). “A systematic review of transition from IPV4 To IPV6”. In:

Proceedings of the 6th International Conference on Engineering & MIS 2020,

pp. 1–15.

Pedregosa, F. et al. (2011). “Scikit-learn: Machine Learning in Python”. In: Journal of

Machine Learning Research 12, pp. 2825–2830. url: https:// scikit-

learn.org/stable/auto_examples/model_selection/plot_ roc.html.

Purushotham, Pidugu and Akkalakshmi Muddana (2024). “Classification of Cy-

berattack detection in Network Traffic using Machine learning tech-

niques”. In: 2024 IEEE International Conference on Interdisciplinary

Approaches in Technology and Management for Social Innovation (IATMSI).

Vol. 2. IEEE, pp. 1–6

Reyad, Mohamed, Amany M Sarhan, and Mohammad Arafa (2023). “A modified Adam

algorithm for deep neural network optimization”. In: Neural Computing and

Applications 35.23, pp. 17095–17112.

S.Sumathi, Suresh Rajappa and Lokesh (2021). “Advanced Decision Sciences Based on

Deep Learning and Ensemble Learning Algorithms: A Practical Approach Using

Python.” In: Computer Science and Technology and Applications 2, pp. 1–357.

Saad, Redhwan MA, Mohammed Anbar, and Selvakumar Manickam (2018). “Rulebased

detection technique for ICMPv6 anomalous behaviour”. In: Neural Computing

and Applications 30, pp. 3815–3824.

Salamkayala, Om (20 June 2024). “ICMPv6DDoS−Dataset”. In: Mendeley Datasets

0, p. 1. url: https://data.mendeley.com/datasets/g583tzgv5s/1.

Salih, Abdulrahman (2017). An adaptive approach to detecting behavioural covert

channels in IPv6. Nottingham Trent University (United Kingdom).

Saqib, Iqra et al. (2023). “Comparison Of Different Firewalls Performance In A Virtual For

Cloud Data Center”. In: Journal of Advancement in Computing 1.1, pp. 21–28.

192

Sayed, Moinul Islam et al. (2022). “A Multi-Classifier for DDoS Attacks Using Stacking

Ensemble Deep Neural Network”. In: 2022 International Wireless

Communications and Mobile Computing (IWCMC). IEEE, pp. 1125– 1130.

Steingartner, William, Darko Galinec, and Andrija Kozina (2021). “Threat defense: Cyber

deception approach and education for resilience in hybrid threats model”. In:

Symmetry 13.4, p. 597.

Stiawan, Deris et al. (2020). “CICIDS-2017 dataset feature analysis with information gain

for anomaly detection”. In: IEEE Access 8, pp. 132911–132921.

Tajdini, Mostafa (2018). Developing an advanced IPv6 evasion attack detection

framework. Liverpool John Moores University (United Kingdom).

Tan, Shuaishuai et al. (2022). “Sneaking Through Security: Mutating Live Network Traffic

to Evade Learning-Based NIDS”. In: IEEE Transactions on Network and Service

Management 19.3, pp. 2295–2308.

Tandon, Rajat et al. (2022). “AMON-SENSS: Scalable and Accurate Detection of

Volumetric DDoS Attacks at ISPs”. In: GLOBECOM 2022-2022 IEEE Global

Communications Conference. IEEE, pp. 3399–3404.

Tanenbaum, Andrew s and David J Wetherall (2010). “Computer Networks”. In.

Tavallaee, Mahbod et al. (2009). “A detailed analysis of the KDD CUP 99 data set”. In:

2009 IEEE symposium on computational intelligence for security and defense

applications. Ieee, pp. 1–6.

Tayyab, Mohammad, Bahari Belaton, and Mohammed Anbar (2020). “ICMPv6Based DoS

and DDoS Attacks Detection Using Machine Learning Techniques, Open

Challenges, and Blockchain Applicability: A Review”. In: IEEE Access 8, pp.

170529–170547.

Vint, Cerf and Robert Kahn (1974). “A protocol for packet network interconnec-

tion”. In: IEEE Transactions of Communications 22.5, pp. 637–48

Wan, Weijie et al. (2022). “Using Deep Learning Neural Networks and Stacking Ensemble

Learning to Predict CSI 300 Index”. In: 2022 9th International Conference on

Digital Home (ICDH). IEEE, pp. 81–86.

Wang, Ning et al. (2022). “Manda: On adversarial example detection for network intrusion

detection system”. In: IEEE Transactions on Dependable and Secure

Computing 20.2, pp. 1139–1153.

193

Yang, Zhen et al. (2022a). “A systematic literature review of methods and datasets for

anomaly-based network intrusion detection”. In: Computers & Security 116, p.

102675.

Zewdie, Temechu Girma and Anteneh Girma (2022). “An Evaluation framework for

machine learning methods in detection of DoS and DDoS Intrusion”. In: 2022

International conference on artificial intelligence in information and

communication (ICAIIC). IEEE, pp. 115–121.

Zhao, Ruizhe et al. (2022). “A hybrid intrusion detection system based on feature selection

and weighted stacking classifier”. In: IEEE Access 10, pp. 71414–71426.

194

8 APPENDICES

 Appendix A: Implementation Code on Primary Datasets with highest score

install required python repositories

pip install self

import numpy as np

import pandas as pd

from os import path

importing required libraries for normalizing data

from sklearn import preprocessing

from sklearn.preprocessing import (StandardScaler, OrdinalEncoder,LabelEncoder, MinMaxScaler,

OneHotEncoder)

from sklearn.preprocessing import Normalizer, MaxAbsScaler , RobustScaler, PowerTransformer

importing library for plotting

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn import metrics

from sklearn.metrics import accuracy_score # for calculating accuracy of model

from sklearn.model_selection import train_test_split # for splitting the dataset for training and testing

from sklearn.metrics import classification_report # for generating a classification report of model

from sklearn.metrics import precision_score

from sklearn.metrics import recall_score

from sklearn.metrics import f1_score

from sklearn.metrics import roc_auc_score

from sklearn.metrics import roc_curve, auc

import tensorflow as tf

from tensorflow.keras.utils import to_categorical

from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping, ReduceLROnPlateau

from keras.layers import Dense, Conv1D, MaxPool1D, Flatten, Dropout # importing dense layer

from keras.models import Sequential #importing Sequential layer

from keras.layers import Input

from keras.models import Model

representation of model layers

import keras.utils

from keras import utils as np_utils

import matplotlib.pyplot as plt

from imblearn.over_sampling import ADASYN

from collections import Counter

from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, GRU, Flatten

from sklearn.preprocessing import MinMaxScaler

Selection of Datasets

195

df_train ='/content/scdtsets.csv' #Select the path for using Dataset 1

df_train ='/content/Labdataset.csv' #Select the path for using Dataset 2

train_data=pd.read_csv(df_train)

train_data.head()

train_data.info()

le=LabelEncoder()

clm=['Time','Source', 'Destination Address','Target

Address','Protocol','Type','ICMPv6srcLnklayerLength','Next Header','Frame Number','Info']

for x in clm:

 train_data[x]=le.fit_transform(train_data[x])

train_data.info()

train_data.describe().T

Y = train_data["Class"]

Drop 'label' column

X = train_data.drop(labels = ["Class"],axis = 1)

Y = train_data['Class'] ## get output label

Y_i = Y.map({'Normal' : 0, 'Attack' : 1}) ## convert into label

get all input data

X = train_data.drop(columns = 'Class')

X.shape, Y_i.shape

X_train, X_test, y_train, y_test = train_test_split(X, Y_i, test_size=0.2,

 random_state=12,

 stratify = Y_i)

get shape

X_train.shape, X_test.shape, y_train.shape, y_test.shape

plotting the class

g = sns.barplot(Y_i, palette="icefire")

plt.title(" Category \n Normal Attack ")

Y_i.value_counts().plot.bar()

Y_i.value_counts()

Using ADASYN

ada=ADASYN(sampling_strategy='minority',random_state=12)

X, Y_i = ada.fit_resample(X_train, y_train)

counter = Counter(Y_i)

print('After',counter)

g = sns.barplot(Y_i, palette="deep")

plt.title(" Category \n Normal Attack")

Y_i.value_counts().plot.bar()

Y_i.value_counts()

196

scaling data

encoder = MinMaxScaler()

encoder.fit(X_train)

transforming data into encoded form

X_train_enc = encoder.transform(X_train)

X_test_enc = encoder.transform(X_test)

X_train_enc.shape, X_test_enc.shape

learning_rate=0.00001

batch_size=5000

epochs = 5

model_save = ModelCheckpoint('./DDoS_ICMP.h5',

 save_best_only = True,

 save_weights_only = True,

 monitor = 'val_loss',

 mode = 'min', verbose = 1)

early_stop = EarlyStopping(monitor = 'val_loss', min_delta = 0.000001,

 patience = 6, mode = 'min', verbose = 10,

 restore_best_weights = True)

reduce_lr = ReduceLROnPlateau(monitor = 'val_loss', factor = 0.1,

 patience = 6, min_delta = 0.000001,

 mode = 'min', verbose = 1)

Building CNN with LSTM Neural Network model

model.add(Conv1D(64,2,input_shape = (X_test.shape[1], 1)))

model.add(LSTM(100, input_shape=(11, 12), return_sequences=True))

model.add(MaxPooling1D(1))

model.add(Conv1D(32,2))

model.add(MaxPooling1D(1))

model.add(Conv1D(16,2))

model.add(MaxPooling1D(1))

model.add(Conv1D(8,2))

model.add(MaxPooling1D(1))

model.add(Flatten())

model.add(Dense(15, activation='relu'))

model.add(Dropout(rate=0.2))

model.add(Dense(10, activation='relu'))

model.add(Dropout(rate=0.2))

model.add(Dense(1,activation='sigmoid'))

Model Compilation

model.compile(loss='binary_focal_crossentropy', optimizer='Adam',metrics=['accuracy'])

history = model.fit(X_train,

 y_train,

 batch_size=batch_size,

 steps_per_epoch=X_train.shape[0] // batch_size,

197

 epochs=epochs,

 validation_data=(X_test,y_test),

 callbacks = [model_save, early_stop, reduce_lr],)

Building RNN with GRU Neural Network model

model = Sequential()

model.add(SimpleRNN(128,'relu',return_sequences=True, input_shape=(X.shape[1],1)))

model.add(GRU(64, return_sequences=True))

model.add(MaxPooling1D(1))

model.add(Flatten())

model.add(Dropout(0.1))

model.add(Dense(64,activation='relu'))

model.add(Dropout(0.1))

model.add(Dense(32,activation='relu'))

model.add(Flatten())

model.add(Dense(16, activation='relu'))

model.add(Dropout(0.1))

model.add(Dense(8, activation='softmax'))

model.add(Dropout(0.1))

model.add(Dense(1,activation=LeakyReLU(alpha=1)))

Model Compilation

model.compile(loss='msle', optimizer='Adam', metrics=['accuracy'])

learning_rate=0.01

batch_size=5000

epochs = 5

model_save = ModelCheckpoint('./DDoS_ICMP.h5',

 save_best_only = True,

 save_weights_only = True,

 monitor = 'val_loss',

 mode = 'min', verbose = 1)

early_stop = EarlyStopping(monitor = 'val_loss', min_delta = 0.001,

 patience = 6, mode = 'min', verbose = 1,

 restore_best_weights = True)

reduce_lr = ReduceLROnPlateau(monitor = 'val_loss', factor = 0.6,

 patience = 6, min_delta = 0.001,

 mode = 'min', verbose = 1)

history = model.fit(X_train,

 y_train,

 batch_size=batch_size,

 steps_per_epoch=X_train.shape[0] // batch_size,

 epochs=epochs,

 validation_data=(X_test,y_test),

 callbacks = [model_save, early_stop, reduce_lr],)

STACKING

from sklearn.preprocessing import MinMaxScaler

198

from sklearn.linear_model import Lasso

from sklearn.feature_selection import SelectFromModel

from sklearn.neural_network import MLPClassifier

from sklearn.neural_network import MLPRegressor

from sklearn.ensemble import StackingClassifier

from sklearn.linear_model import LogisticRegression

from sklearn.ensemble import StackingRegressor

from sklearn.linear_model import LassoCV

from sklearn.linear_model import RidgeCV

from sklearn.pipeline import make_pipeline

from sklearn.preprocessing import OneHotEncoder, StandardScaler

from sklearn import preprocessing

from sklearn.metrics import mean_squared_log_error

from sklearn.metrics import mean_squared_error,r2_score

from sklearn.metrics import accuracy_score

from sklearn.metrics import f1_score

from sklearn.metrics import precision_score

from sklearn.metrics import recall_score

import math

import time

pd.pandas.set_option('display.max_columns', None)

import warnings

warnings.simplefilter(action='ignore')

from self import self

from keras.activations import *

from sklearn.metrics import precision_score, recall_score

from sklearn.metrics import roc_auc_score

from statistics import stdev

from sklearn.model_selection import cross_val_score

from sklearn.model_selection import train_test_split

from sklearn.metrics import roc_curve

from sklearn.metrics import RocCurveDisplay

CNN FUNCTION (CNN with LSTM)

def CNN_model(self, batch_size=5000, epochs=5, metrics=['Accuracy']):

 model = Sequential()

 model.add(Conv1D(64,2,input_shape = (X_test.shape[1], 1)))

 model.add(LSTM(100, input_shape=(11, 12), return_sequences=True))

 model.add(MaxPooling1D(1))

 model.add(Conv1D(32,2))

 model.add(MaxPooling1D(1))

 model.add(Conv1D(16,2))

 model.add(MaxPooling1D(1))

 model.add(Conv1D(8,2))

 model.add(MaxPooling1D(1))

 model.add(Flatten())

 model.add(Dense(15, activation='relu'))

 model.add(Dropout(rate=0.2))

 model.add(Dense(10, activation='relu'))

 model.add(Dropout(rate=0.2))

 model.add(Dense(1,activation='sigmoid'))

199

 model.compile(loss='binary_focal_crossentropy', optimizer='Adam',metrics=['accuracy'])

 return model

RNN FUNCTION (RNN and GRU)

def RNN_model(Self, batch_size=5000, epochs=5, metrics=['Accuracy']):

 model = Sequential()

 model.add(SimpleRNN(128,'relu',return_sequences=True, input_shape=(X.shape[1],1)))

 model.add(GRU(64, return_sequences=True))

 model.add(MaxPooling1D(1))

 model.add(Flatten())

 model.add(Dropout(0.1))

 model.add(Dense(64,activation='relu'))

 model.add(Dropout(0.1))

 model.add(Dense(32,activation='relu'))

 model.add(Flatten())

 model.add(Dense(16, activation='relu'))

 model.add(Dropout(0.1))

 model.add(Dense(8, activation='softmax'))

 model.add(Dropout(0.1))

 model.add(Dense(1,activation=LeakyReLU(alpha=1)))

 model.compile(loss='msle', optimizer='Adam', metrics=['accuracy'])

 return model

MLPClassifier(alpha=1, max_iter=5000) == CNN_model(self)

MLPRegressor(alpha=1, max_iter=5000) == RNN_model(self)

CNN = MLPClassifier()

RNN = MLPRegressor()

final_estimator=LogisticRegression()

estimator_list = [('CNN',MLPClassifier()),('RNN',MLPRegressor())]

stacking_regressor = StackingRegressor(cv=3, estimators=estimator_list,

final_estimator=LogisticRegression())

StackingRegressor(estimators=estimator_list, final_estimator=LogisticRegression())

estimator_list = [('CNN',MLPClassifier()),('RNN',MLPRegressor())]

Build stack model

stack_model = StackingClassifier(cv=3,estimators=estimator_list, final_estimator=LogisticRegression())

stack_model.fit(X_train, y_train)

Make predictions

y_train_pred = stack_model.predict(X_train)

y_test_pred = stack_model.predict(X_test)

stack_model_train_accuracy = accuracy_score(y_train, y_train_pred) # Calculate Accuracy

#stack_model_train_mcc = matthews_corrcoef(y_train, y_train_pred) # Calculate MCC

200

stack_model_train_rec = recall_score(y_train, y_train_pred) # Calculate Recall

stack_model_train_f1 = f1_score(y_train, y_train_pred, average='weighted') # Calculate F1-score

stack_model_train_prec = precision_score(y_train, y_train_pred)# Calculate Precision

stack_model_test_accuracy = accuracy_score(y_test, y_test_pred) # Calculate Accuracy

#stack_model_test_mcc = matthews_corrcoef(y_test, y_test_pred) # Calculate MCC

stack_model_test_rec = recall_score(y_test, y_test_pred) # Calculate Recall

stack_model_test_f1 = f1_score(y_test, y_test_pred, average='weighted') # Calculate F1-score

stack_model_test_prec = precision_score(y_test, y_test_pred)# Calculate Precision

print('Model performance for Training set')

print('- Accuracy: %s' % stack_model_train_accuracy)

#print('- MCC: %s' % stack_model_train_mcc)

print('- Rec Score: %s' % stack_model_train_rec)

print('- F1 score: %s' % stack_model_train_f1)

print('- Pre score: %s' % stack_model_train_prec)

print('----------------------------------')

print('Model performance for Test set')

print('- Accuracy: %s' % stack_model_test_accuracy)

#print('- MCC: %s' % stack_model_test_mcc)

print('- Rec- Score: %s' % stack_model_test_rec)

print('- F1 score: %s' % stack_model_test_f1)

print('- Pre score: %s' % stack_model_test_prec)

Train Test results of the stacking classifier

from sklearn.ensemble import StackingClassifier

SC = StackingClassifier(estimators=estimator_list,final_estimator=LogisticRegression())

SC.fit(X_train, y_train)

y_pred = SC.predict(X_test)

print(f"\nStacking classifier training Accuracy: {SC.score(X_train, y_train):0.2f}")

print(f"Stacking classifier test Accuracy: {SC.score(X_test, y_test):0.2f}")

SC_Recall = recall_score(y_test, y_pred)

SC_Precision = precision_score(y_test, y_pred)

SC_f1 = f1_score(y_test, y_pred)

SC_accuracy = accuracy_score(y_test, y_pred)

SC_roc_auc = roc_auc_score(y_test, y_pred)

score = cross_val_score(SC, X_train, y_train, cv=3, scoring='recall', error_score="raise")

SC_cv_score = score.mean()

SC_cv_stdev = stdev(score)

print('Cross Validation Recall scores are: {}'.format(score))

print('Average Cross Validation Recall score: ', SC_cv_score)

print('Cross Validation Recall standard deviation: ', SC_cv_stdev)

ndf = [(SC_Recall, SC_Precision, SC_f1, SC_accuracy)]

SC_score = pd.DataFrame(data = ndf, columns=['Recall','Precision','F1 Score', 'Accuracy'])

SC_score.insert(1, 'Model', 'Stacking')

SC_score

#OUT PUT while using Dataset 1

201

#OUT PUT while using Dataset 2

#Confusion Matrix

def confusion_matrix(actual, predicted, title):

 sns.heatmap(metrics.confusion_matrix(actual, predicted),

 cbar=False, annot=True, fmt='3g', cmap="Blues",

 annot_kws={"size": 16})

 plt.title("confusion matrix " + str(title), fontsize=25)

 plt.xlabel('predicted label', fontsize=20)

 plt.ylabel('true label', fontsize=20)

 return plt.show()

y_train_pred = stack_model.predict(X_train)

y_test_pred = stack_model.predict(X_test)

confusion_matrix(y_test, y_test_pred, 'cm')

from sklearn.metrics import confusion_matrix

cm = confusion_matrix(y_test, y_test_pred)

print(cm)

ROC curve

y_proba = SC.predict_proba(X_test)

def plot_auc_roc_curve(y_test, y_pred):

 fpr, tpr, _ = roc_curve(y_test, y_pred)

 roc_display = RocCurveDisplay(fpr=fpr, tpr=tpr).plot()

 roc_display.figure_.set_size_inches(5,5)

 plt.plot([0, 1], [0, 1], color = 'g')

plot_auc_roc_curve(y_test, y_proba[:, 1])

202

Appendix B: A sample of Dataset

Total 100130 rows in Dataset 1

Total 1048575 rows in Dataset 2

203

Appendix C: Certificates related to Paper Presentation in Conferences

204

Datasets:

GitHub :

205

Mendeley:

