EG UK Computer Graphics & Visual Computing (2025)
Y. Sheng and A. Slingsby (Editors)

Peril: A Level Design Tool for Games Education

David James!

, Kieran Hicks !

and Chris Headleand!

IStaffordshire Games Institute
School of Digital, Technologies, Innovation and Business
University of Staffordshire, UK

Abstract

This technical report presents Peril; a complete, playable video game framework containing a streamlined level creation system.
Created using Unreal Engine 5, Peril provides students with a fully-featured, accessible framework for level design, incorporat-
ing a procedural assistance system which automates non-gameplay critical aspects of level layouts, such as walls and ceilings.
Peril is used as a valuable pedagogic tool in games design education, supporting experiential learning and rapid protoyping
- a task that is challenging to teach using base game engine tools. This paper describes the technical implementation of this
procedural assistance approach, allowing practioners and academics the means of incorporating these techniques into their

own teaching.

1. Background and Motivation

This technical report presents Peril, a game framework [JH24] con-
taining a level creation systems designed to support rapid prototyp-
ing and experiential learning. Level design is a unique challenge
within Games Design education, as (unlike many of the design sub-
disciplines) there are limited technical requirements with many low
or no-code tools (such as level editors) to facilitate development.
However, level designers have significant impact on player experi-
ence, and understanding how players interact with the environment
requires a mix of strong conceptual understanding and practical ex-
perience.

To facilitate this experience there are commercial game titles that
include level editors (such as Team Fortress 2), which has made
them a popular choice across Higher Education games curricula.
However, these games may have an associated purchase cost, or not
be available on the different hardware platforms that students own.
They also often lack access to the game’s underlying code base,
this means that any new feature or mechanic that the student may
wish to implement is often impractical or impossible. Furthermore,
level editors are often “over fitted” to a specific game, making the
skills developed less transferable.

To address these limitations, a custom game framework contain-
ing a full set of mechanics and streamlined level-editing tools was
created and provided to students freely. This was implemented in
Unreal Engine, providing full access to the Game’s underlying code
and structure, while also supporting the students development of
technical skills in an industry standard engine.

© 2025 The Author(s).

Proceedings published by Eurographics - The European Association for Computer Graphics.

This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

2. Design

Peril is a first-person shooter made using Unreal Engine 5. It is
predominantly sprite-based, in style of classic 90’s games such as
‘Wolfenstein’ and ‘Doom’. Peril is a “2.5D” game; it appears 3D
from the player’s perspective, but the player and enemy movement
is confined to a single flat plane (the floor). This means that first
year students can focus on making compelling experiences, focus-
ing on theoretical concepts such as beats, pacing, combat encoun-
ters and critical paths without the added complexity of 3D levels
that contain verticality.

Figure 1: Peril Gameplay.

This approach has the further benefit of making the game very
efficient, which was useful when students had the need to run the
software on their own PC hardware. Peril contains a range of me-
chanics, including multiple different weapons and enemy charac-
ters, as well as environmental objects such as hazards, checkpoints


https://orcid.org/0009-0002-6460-0817
https://orcid.org/0000-0002-6046-5454
https://orcid.org/0000-0002-4974-9536

20f2 David James & Kieran Hicks & Chris Headleand / Peril: A Level Design Tool for Games Education

B - BRE - 5

Figure 2: Diagram showing Procedural Generation. Frame 1
shows two Floor tiles (A and B) from a side-on perspective. In
Frame 2, Floor A is performing a trace on each side to see if it is
adjacent to another Floor Tile. The red arrow denotes it has found
a neighbouring floor, whilst the green arrow denotes a free space.
In Frame 3, Floor A has spawned a Wall in the free space.

and level goals. It is a full video game experience of commercial
quality. Aside from having a “flat” design, Peril levels are also
made of equally-sized floor and wall cubes.

This cube-based (voxel) approach to the level structure means
that map design can be represented easily and accurately using
“pixel maps”; where each pixel represents a single cube (floor or
wall) of the level.

3. Procedural-Assisted Design

Peril features a “Procedural Assistance” system that supports rapid
level design. The designer will place floor cubes, along with game-
play entities such as enemies, items, and the level goal. All of these
entities snap into position (see figure 2). At run-time, Peril will pro-
cedurally convert these blocks into the necessary walls and ceilings
to encapsulate the level. This is an agent-based system with each
block being an individual agent that is responsible for generating
specific content [DP10].

Walls and ceilings, and other visual obfuscations are important in
a first-person game; they prevent the player from seeing the entire
level from the offset, thus providing the need for exploration; they
are used as cover from enemy attacks; and they limit the render
distance within the engine (improving efficiency). This allows the
designer to focus on the "blocking out" of the level, establishing the
flow between areas and the subsequent encounters therein. Being
able to quickly layout these playable block-out floor-plans allows
for rapid implementation, testing and iteration [Bea24].

A “Level Manager” object stores all of the floor blocks into an
array. The Manager then processes the array, accessing each floor
block in turn, and asking each floor block to call its own wall gener-
ation function. This function involves the Floor Block performing
a trace on each of its 4 sides in order to ascertain as to whether
there exists a neighboring floor block. If a neighbor is present, the
floor block will not spawn a wall block on that side. If there is
no neighbor detected, then a wall block is spawned on that side.
Similar approaches have been applied in other procedural environ-
ment generators in the literature [HHACT14]. Once a floor block
has check all 4 directions, it informs the Manager it has completed.
The Manager then proceeds to the next floor block in its array. Once
the Manager has processed every floor block, it then processes the
array a second time, instructing each floor block to perform their
ceiling spawning function which encapsulated the generated room.

Level Manager
sets Selected
Floor=0.

Level Manager s
Floors into an arra

Selected Floor
> Floor Array
LastIndex?

Selected Floor starts Wall
Generation Process

L2

Floor contains alistof 4
directions: 0 - North, 1-
South, 2 - East, 3-West

F Y *

Direction 1o check

Level Manager increments
Selected Floor=+1

Selected Floor reporiste | True
Level Manager that it has
complete its Wall Spawning
process.

Direction to

Direction to check ¢
check > 37

=+1

F Y

Line Trace parformed in
current Direction

True
Other Floor

detected? Mo Wall Spawned

Spawn Wall in location of
current Direction

Figure 3: Wall generation process algorithm as a flow chart.

4. Conclusion

Peril offers an accessible, in-house framework that supports rapid
level design and prototyping. Its streamlined procedural assistance
tools remove extraneous level design tasks (such as wall placement)
and by providing a full set of functioning game mechanics, students
can focus on core design concepts such as encounter design, flow
and pacing. As confidence grows, students can explore more ad-
vanced engine features, making Peril a strong foundation for both
practical learning and progression in games education.

References

[Bea24] BEARDWOOD M.: Fundamental Level Design and Analysis: A
to B. CRC Press, 2024. 2

[DP10] DORAN J., PARBERRY I.: Controlled procedural terrain
generation using software agents. IEEE Transactions on Computational
Intelligence and Al in Games 2,2 (2010), 111-119. 2

[HHACT14] HEADLEAND C. J., HENSHALL G., Ap CENYDD L.,
TEAHAN W. J.: Randomised multiconnected environment generator.
Tech. rep., Bangor University, 2014. 2

[JH24] JAMES D., HEADLEAND C. J.: Games design frameworks: A
novel approach for games design pedagogy. In Proceedings of the 18th
European Conference on Games Based Learning (2024), Academic
Conferences and publishing limited. 1

© 2025 The Author(s).
Proceedings published by Eurographics - The European Association for Computer Graphics.



