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Abstract
Simulations of chaotic real-world scenarios are useful for attempting to understand, predict and even manage these complex
systems. This study simulates flocking birds and a predator which disrupts the flock, causing the birds to scatter and reform.
Three measures of chaos: polarisation, kinetic energy and Shannon entropy are visualised using a real-time heat map. Our
results find the heat map to be effective in highlighting the subtle differences in measurements, offering potential use-cases in
future studies.

CCS Concepts
• Computing methodologies → Scientific visualisation; • Information systems → Information systems applications;

1. Introduction

Complex, chaotic systems have been extensively studied and mea-
sured, using metrics such as directional variance and probability
[PVG02] [PMO19]. Combining a simulation with a visualisation
of chaos would provide useful insights into the understanding of
complex systems.

This paper presents early work which considers a chaotic simu-
lation of flocking birds (boids) [Rey87] accompanied with a visual-
isation of varying measures of chaos. Despite the seeming random-
ness of chaotic systems [Tso12], they can also be predictable and
repeatable, through emergent behaviour, and this offers the oppor-
tunity to understand why systems behave in such a way, and how
they can be managed or manipulated [GG94]. There are many ac-
cepted methods for measuring chaos [AAPR13], for example, com-
bination methods [HMA15]. In this study we consider directional
variance, velocity, and entropy which are calculated using measures
of polarisation, kinetic temperature, and Shannon entropy, respec-
tively. Whilst there is existing research on measuring chaotic sys-
tems, to the authors’ knowledge, this study is novel in the simula-
tion chosen, the use of a system disruptor, the specific measures of
chaos, and use of a real-time heat map. We discuss the effectiveness
of our approach and consider future work.

2. Background

Chaos theory was discovered by Edward Lorenz in 1963 while try-
ing to predict weather patterns [Oes07]. Counter-intuitively, chaotic
behaviour can emerge from deterministic laws. For example, the
behaviour of turbulent fluids is based on the deterministic motion

of particle elements. The complexity of these systems results in un-
predictablility at the micro level [Jen87], yet at the macro level can
often result in predictable emergent behaviour [Joh02].

Therefore, it seems intuitive that our understanding of chaotic
systems could be improved by narrowing the gap between the
macro and micro [Kad00], by measuring chaos [HMA15], and vi-
sualising this in real time [Ouy24]. The result of such work could
have a variety of use cases, for example in crowd management
[SP24].

The Lyapunov exponent (λ) [Bro97] is a common measure of
chaos [Sto24]. The exponent measures the average rate by which
the distance between close points changes after one iteration.
Other measures include the estimation of fractal dimensionality
[DKBP23], and Kolmogrov-Sinai entropy [Fri04] which measures
the rate of information production.

When visualising chaos, several common methods are in use.
Phase space portraits are used for the Lorenz Attractor [Lor17].
Bifurcation diagrams [MW24] illustrate the transitions between or-
der and chaos. Heat maps are useful in demonstrating the evolving
chaos within a system, with the temperature component acting as a
signifier of probability densities [dMBJBSRR∗22].

3. Methodology

Our methodology considers a simulation with chaos and emer-
gence, distinct measures of chaos, and a heat map visualisation.

The boids model by Reynolds [Rey87] was chosen as a sim-
ple but effective demonstration of both chaos and emergent or-
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der [PVG02]. An analogy of bird movement, the model simulates
flocking with simple rules for each bird. To reliably disrupt the
flock, an extension to the model by Oboshi [OKMI03] and later
White [Whi06] includes the addition of a predator. The predator, in
this instance, does not predate birds, but causes the flock to disperse
and reform.

The simulation was written in C++ and DirectX 11. Any graphi-
cal method or programming language would have been suitable; in
this case the authors have a particular expertise in this choice. The
simulation is in 3D space but movement only occurs on the XY
plane and the flock consists of 1000 birds.

Three measures of chaos are chosen for their distinctness and ap-
plicability to the model. For each bird, at each simulation cycle, a
sample of neighbouring birds, and their respective movement vec-
tors are taken to calculate an individual chaos value per bird. First,
to measure the degree of collective alignment, polarisation is calcu-
lated from the normalised average velocity of the agents [PVG02]
using the following formula, where N is the number of birds and
ui is the direction of a bird:

Chaos = 1−| 1
N

N

∑
i=1

ui| (1)

Second, kinetic temperature (speed variance) measures how agent
speed, isolated from direction, is affected by movement [PVG02],
where vi is a bird’s speed:

Chaos =
1
N ∑

N
i=1 |vi − ( 1

N ∑
N
i=1 vi)|2

v2
max
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The third measure is Shannon entropy [PMO19], which calculates
a probability for agent direction, providing a general measure of
uncertainty within the group. This is given by:

Chaos :=−K ∑
xϵχ

pi(x)logpi(x) (3)

This expression considers a discrete random variable xϵχ charac-
terised by the probability distribution p(x). The parameter K is a
positive constant, set to 1, and is used to express H (from Shan-
non’s formula) in a given unit of measure.

A heat map visualisation is rendered in real time by adapting
techniques from particle systems and volumetric rendering [JA17].
The first pass accumulates bird chaos values in world-space, splat-
ting [BHZK05] these onto an off-screen accumulation buffer. The
second pass samples the accumulation buffer and performs a tex-
ture lookup on a 1-D colour map, reassigning chaos (from 0 to 1)
to a colour gradient (from blue to red) onto the screen buffer.

4. Results

Figure 1 demonstrates the three measures during predator response
(affected, or unaffected), and recovering. See work by Ballerini
[BCC∗08] for examples of this in real-world populations. The heat
map colours equate to blue and green where chaos is between 0 and
0.3 (ordered), yellow in the region of 0.3 and 0.6, and red above 0.6
(chaotic).

Each measure has a unique visual difference, with kinetic

Figure 1: Comparing the three measures; Polarisation (P), Ki-
netic (K), and Shannon (S). The arrow signifies the direction of the
predator.

demonstrating the least chaos, and Shannon entropy the most; a re-
lationship also observed by [PVG02]. Kinetic energy has pools, or
hot spots, within the flock that show fidelity in speed variance, this
mirrors Ballerini’s [BCC∗08] observation that flocks of starlings
expand, split and regroup. The polarisation measurement demon-
strates this when recovering, but in the flock state it is uniformly
chaotic. Shannon entropy is uniformly chaotic in each state, espe-
cially in the flock state, but shows medium / high chaos in the re-
covery state, too. This aligns with Garnier [GGT07] who discusses
how collective behaviour relies on stochastic structures.

5. Conclusion

The behaviour of the birds in each scenario is predictable, we con-
sistently observe a pattern of flocking, disruption and recovery.
Our measurements demonstrate different perspectives of the chaos
within.

The use of a heat map has been effective in showing subtle
differences between measurements, underlining its common adop-
tion [WF09]. A real-time heat map has been especially effective in
observing similarity for measures across several simulation runs.

When comparing chaos measurements, the study has demon-
strated how each might have different use-cases. For example, if
a similar approach were used to simulate crowds to design safe
public spaces, polarisation may be useful for comparing Brownian
motion and ordered crowds [War18], kinetic energy to identify or
predict when crowds might panic [BKS∗02], and Shannon entropy
to observe the general predictability of crowds [ZYSC15].

This study has a few limitations. First, the boid population is con-
stant. Parrish [PVG02] discusses how flocks differ based on pop-
ulation size. The study could also compare chaos measurements
with different flocking algorithms. Future work could also consider
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whether the different measurements are effective in classifying dif-
ferent types of agents, building on work by Nabeel [NM22].
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